1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /** |
4 | ******************************************************************************* |
5 | * Copyright (C) 2006-2016, International Business Machines Corporation |
6 | * and others. All Rights Reserved. |
7 | ******************************************************************************* |
8 | */ |
9 | |
10 | #include <utility> |
11 | |
12 | #include "unicode/utypes.h" |
13 | |
14 | #if !UCONFIG_NO_BREAK_ITERATION |
15 | |
16 | #include "brkeng.h" |
17 | #include "dictbe.h" |
18 | #include "unicode/uniset.h" |
19 | #include "unicode/chariter.h" |
20 | #include "unicode/ubrk.h" |
21 | #include "uvectr32.h" |
22 | #include "uvector.h" |
23 | #include "uassert.h" |
24 | #include "unicode/normlzr.h" |
25 | #include "cmemory.h" |
26 | #include "dictionarydata.h" |
27 | |
28 | U_NAMESPACE_BEGIN |
29 | |
30 | /* |
31 | ****************************************************************** |
32 | */ |
33 | |
34 | DictionaryBreakEngine::DictionaryBreakEngine() { |
35 | } |
36 | |
37 | DictionaryBreakEngine::~DictionaryBreakEngine() { |
38 | } |
39 | |
40 | UBool |
41 | DictionaryBreakEngine::handles(UChar32 c) const { |
42 | return fSet.contains(c); |
43 | } |
44 | |
45 | int32_t |
46 | DictionaryBreakEngine::findBreaks( UText *text, |
47 | int32_t startPos, |
48 | int32_t endPos, |
49 | UVector32 &foundBreaks ) const { |
50 | (void)startPos; // TODO: remove this param? |
51 | int32_t result = 0; |
52 | |
53 | // Find the span of characters included in the set. |
54 | // The span to break begins at the current position in the text, and |
55 | // extends towards the start or end of the text, depending on 'reverse'. |
56 | |
57 | int32_t start = (int32_t)utext_getNativeIndex(text); |
58 | int32_t current; |
59 | int32_t rangeStart; |
60 | int32_t rangeEnd; |
61 | UChar32 c = utext_current32(text); |
62 | while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { |
63 | utext_next32(text); // TODO: recast loop for postincrement |
64 | c = utext_current32(text); |
65 | } |
66 | rangeStart = start; |
67 | rangeEnd = current; |
68 | result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); |
69 | utext_setNativeIndex(text, current); |
70 | |
71 | return result; |
72 | } |
73 | |
74 | void |
75 | DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { |
76 | fSet = set; |
77 | // Compact for caching |
78 | fSet.compact(); |
79 | } |
80 | |
81 | /* |
82 | ****************************************************************** |
83 | * PossibleWord |
84 | */ |
85 | |
86 | // Helper class for improving readability of the Thai/Lao/Khmer word break |
87 | // algorithm. The implementation is completely inline. |
88 | |
89 | // List size, limited by the maximum number of words in the dictionary |
90 | // that form a nested sequence. |
91 | static const int32_t POSSIBLE_WORD_LIST_MAX = 20; |
92 | |
93 | class PossibleWord { |
94 | private: |
95 | // list of word candidate lengths, in increasing length order |
96 | // TODO: bytes would be sufficient for word lengths. |
97 | int32_t count; // Count of candidates |
98 | int32_t prefix; // The longest match with a dictionary word |
99 | int32_t offset; // Offset in the text of these candidates |
100 | int32_t mark; // The preferred candidate's offset |
101 | int32_t current; // The candidate we're currently looking at |
102 | int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units. |
103 | int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points. |
104 | |
105 | public: |
106 | PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {} |
107 | ~PossibleWord() {} |
108 | |
109 | // Fill the list of candidates if needed, select the longest, and return the number found |
110 | int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); |
111 | |
112 | // Select the currently marked candidate, point after it in the text, and invalidate self |
113 | int32_t acceptMarked( UText *text ); |
114 | |
115 | // Back up from the current candidate to the next shorter one; return TRUE if that exists |
116 | // and point the text after it |
117 | UBool backUp( UText *text ); |
118 | |
119 | // Return the longest prefix this candidate location shares with a dictionary word |
120 | // Return value is in code points. |
121 | int32_t longestPrefix() { return prefix; } |
122 | |
123 | // Mark the current candidate as the one we like |
124 | void markCurrent() { mark = current; } |
125 | |
126 | // Get length in code points of the marked word. |
127 | int32_t markedCPLength() { return cpLengths[mark]; } |
128 | }; |
129 | |
130 | |
131 | int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { |
132 | // TODO: If getIndex is too slow, use offset < 0 and add discardAll() |
133 | int32_t start = (int32_t)utext_getNativeIndex(text); |
134 | if (start != offset) { |
135 | offset = start; |
136 | count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix); |
137 | // Dictionary leaves text after longest prefix, not longest word. Back up. |
138 | if (count <= 0) { |
139 | utext_setNativeIndex(text, start); |
140 | } |
141 | } |
142 | if (count > 0) { |
143 | utext_setNativeIndex(text, start+cuLengths[count-1]); |
144 | } |
145 | current = count-1; |
146 | mark = current; |
147 | return count; |
148 | } |
149 | |
150 | int32_t |
151 | PossibleWord::acceptMarked( UText *text ) { |
152 | utext_setNativeIndex(text, offset + cuLengths[mark]); |
153 | return cuLengths[mark]; |
154 | } |
155 | |
156 | |
157 | UBool |
158 | PossibleWord::backUp( UText *text ) { |
159 | if (current > 0) { |
160 | utext_setNativeIndex(text, offset + cuLengths[--current]); |
161 | return TRUE; |
162 | } |
163 | return FALSE; |
164 | } |
165 | |
166 | /* |
167 | ****************************************************************** |
168 | * ThaiBreakEngine |
169 | */ |
170 | |
171 | // How many words in a row are "good enough"? |
172 | static const int32_t THAI_LOOKAHEAD = 3; |
173 | |
174 | // Will not combine a non-word with a preceding dictionary word longer than this |
175 | static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3; |
176 | |
177 | // Will not combine a non-word that shares at least this much prefix with a |
178 | // dictionary word, with a preceding word |
179 | static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3; |
180 | |
181 | // Ellision character |
182 | static const int32_t THAI_PAIYANNOI = 0x0E2F; |
183 | |
184 | // Repeat character |
185 | static const int32_t THAI_MAIYAMOK = 0x0E46; |
186 | |
187 | // Minimum word size |
188 | static const int32_t THAI_MIN_WORD = 2; |
189 | |
190 | // Minimum number of characters for two words |
191 | static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2; |
192 | |
193 | ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
194 | : DictionaryBreakEngine(), |
195 | fDictionary(adoptDictionary) |
196 | { |
197 | fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]" ), status); |
198 | if (U_SUCCESS(status)) { |
199 | setCharacters(fThaiWordSet); |
200 | } |
201 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]" ), status); |
202 | fMarkSet.add(0x0020); |
203 | fEndWordSet = fThaiWordSet; |
204 | fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
205 | fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
206 | fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
207 | fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
208 | fSuffixSet.add(THAI_PAIYANNOI); |
209 | fSuffixSet.add(THAI_MAIYAMOK); |
210 | |
211 | // Compact for caching. |
212 | fMarkSet.compact(); |
213 | fEndWordSet.compact(); |
214 | fBeginWordSet.compact(); |
215 | fSuffixSet.compact(); |
216 | } |
217 | |
218 | ThaiBreakEngine::~ThaiBreakEngine() { |
219 | delete fDictionary; |
220 | } |
221 | |
222 | int32_t |
223 | ThaiBreakEngine::divideUpDictionaryRange( UText *text, |
224 | int32_t rangeStart, |
225 | int32_t rangeEnd, |
226 | UVector32 &foundBreaks ) const { |
227 | utext_setNativeIndex(text, rangeStart); |
228 | utext_moveIndex32(text, THAI_MIN_WORD_SPAN); |
229 | if (utext_getNativeIndex(text) >= rangeEnd) { |
230 | return 0; // Not enough characters for two words |
231 | } |
232 | utext_setNativeIndex(text, rangeStart); |
233 | |
234 | |
235 | uint32_t wordsFound = 0; |
236 | int32_t cpWordLength = 0; // Word Length in Code Points. |
237 | int32_t cuWordLength = 0; // Word length in code units (UText native indexing) |
238 | int32_t current; |
239 | UErrorCode status = U_ZERO_ERROR; |
240 | PossibleWord words[THAI_LOOKAHEAD]; |
241 | |
242 | utext_setNativeIndex(text, rangeStart); |
243 | |
244 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
245 | cpWordLength = 0; |
246 | cuWordLength = 0; |
247 | |
248 | // Look for candidate words at the current position |
249 | int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
250 | |
251 | // If we found exactly one, use that |
252 | if (candidates == 1) { |
253 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
254 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); |
255 | wordsFound += 1; |
256 | } |
257 | // If there was more than one, see which one can take us forward the most words |
258 | else if (candidates > 1) { |
259 | // If we're already at the end of the range, we're done |
260 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
261 | goto foundBest; |
262 | } |
263 | do { |
264 | int32_t wordsMatched = 1; |
265 | if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
266 | if (wordsMatched < 2) { |
267 | // Followed by another dictionary word; mark first word as a good candidate |
268 | words[wordsFound%THAI_LOOKAHEAD].markCurrent(); |
269 | wordsMatched = 2; |
270 | } |
271 | |
272 | // If we're already at the end of the range, we're done |
273 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
274 | goto foundBest; |
275 | } |
276 | |
277 | // See if any of the possible second words is followed by a third word |
278 | do { |
279 | // If we find a third word, stop right away |
280 | if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
281 | words[wordsFound % THAI_LOOKAHEAD].markCurrent(); |
282 | goto foundBest; |
283 | } |
284 | } |
285 | while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); |
286 | } |
287 | } |
288 | while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); |
289 | foundBest: |
290 | // Set UText position to after the accepted word. |
291 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
292 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); |
293 | wordsFound += 1; |
294 | } |
295 | |
296 | // We come here after having either found a word or not. We look ahead to the |
297 | // next word. If it's not a dictionary word, we will combine it with the word we |
298 | // just found (if there is one), but only if the preceding word does not exceed |
299 | // the threshold. |
300 | // The text iterator should now be positioned at the end of the word we found. |
301 | |
302 | UChar32 uc = 0; |
303 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) { |
304 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
305 | // no preceding word, or the non-word shares less than the minimum threshold |
306 | // of characters with a dictionary word, then scan to resynchronize |
307 | if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
308 | && (cuWordLength == 0 |
309 | || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { |
310 | // Look for a plausible word boundary |
311 | int32_t remaining = rangeEnd - (current+cuWordLength); |
312 | UChar32 pc; |
313 | int32_t chars = 0; |
314 | for (;;) { |
315 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
316 | pc = utext_next32(text); |
317 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
318 | chars += pcSize; |
319 | remaining -= pcSize; |
320 | if (remaining <= 0) { |
321 | break; |
322 | } |
323 | uc = utext_current32(text); |
324 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
325 | // Maybe. See if it's in the dictionary. |
326 | // NOTE: In the original Apple code, checked that the next |
327 | // two characters after uc were not 0x0E4C THANTHAKHAT before |
328 | // checking the dictionary. That is just a performance filter, |
329 | // but it's not clear it's faster than checking the trie. |
330 | int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
331 | utext_setNativeIndex(text, current + cuWordLength + chars); |
332 | if (num_candidates > 0) { |
333 | break; |
334 | } |
335 | } |
336 | } |
337 | |
338 | // Bump the word count if there wasn't already one |
339 | if (cuWordLength <= 0) { |
340 | wordsFound += 1; |
341 | } |
342 | |
343 | // Update the length with the passed-over characters |
344 | cuWordLength += chars; |
345 | } |
346 | else { |
347 | // Back up to where we were for next iteration |
348 | utext_setNativeIndex(text, current+cuWordLength); |
349 | } |
350 | } |
351 | |
352 | // Never stop before a combining mark. |
353 | int32_t currPos; |
354 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
355 | utext_next32(text); |
356 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
357 | } |
358 | |
359 | // Look ahead for possible suffixes if a dictionary word does not follow. |
360 | // We do this in code rather than using a rule so that the heuristic |
361 | // resynch continues to function. For example, one of the suffix characters |
362 | // could be a typo in the middle of a word. |
363 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) { |
364 | if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
365 | && fSuffixSet.contains(uc = utext_current32(text))) { |
366 | if (uc == THAI_PAIYANNOI) { |
367 | if (!fSuffixSet.contains(utext_previous32(text))) { |
368 | // Skip over previous end and PAIYANNOI |
369 | utext_next32(text); |
370 | int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text); |
371 | utext_next32(text); |
372 | cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word |
373 | uc = utext_current32(text); // Fetch next character |
374 | } |
375 | else { |
376 | // Restore prior position |
377 | utext_next32(text); |
378 | } |
379 | } |
380 | if (uc == THAI_MAIYAMOK) { |
381 | if (utext_previous32(text) != THAI_MAIYAMOK) { |
382 | // Skip over previous end and MAIYAMOK |
383 | utext_next32(text); |
384 | int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text); |
385 | utext_next32(text); |
386 | cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word |
387 | } |
388 | else { |
389 | // Restore prior position |
390 | utext_next32(text); |
391 | } |
392 | } |
393 | } |
394 | else { |
395 | utext_setNativeIndex(text, current+cuWordLength); |
396 | } |
397 | } |
398 | |
399 | // Did we find a word on this iteration? If so, push it on the break stack |
400 | if (cuWordLength > 0) { |
401 | foundBreaks.push((current+cuWordLength), status); |
402 | } |
403 | } |
404 | |
405 | // Don't return a break for the end of the dictionary range if there is one there. |
406 | if (foundBreaks.peeki() >= rangeEnd) { |
407 | (void) foundBreaks.popi(); |
408 | wordsFound -= 1; |
409 | } |
410 | |
411 | return wordsFound; |
412 | } |
413 | |
414 | /* |
415 | ****************************************************************** |
416 | * LaoBreakEngine |
417 | */ |
418 | |
419 | // How many words in a row are "good enough"? |
420 | static const int32_t LAO_LOOKAHEAD = 3; |
421 | |
422 | // Will not combine a non-word with a preceding dictionary word longer than this |
423 | static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3; |
424 | |
425 | // Will not combine a non-word that shares at least this much prefix with a |
426 | // dictionary word, with a preceding word |
427 | static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3; |
428 | |
429 | // Minimum word size |
430 | static const int32_t LAO_MIN_WORD = 2; |
431 | |
432 | // Minimum number of characters for two words |
433 | static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2; |
434 | |
435 | LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
436 | : DictionaryBreakEngine(), |
437 | fDictionary(adoptDictionary) |
438 | { |
439 | fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]" ), status); |
440 | if (U_SUCCESS(status)) { |
441 | setCharacters(fLaoWordSet); |
442 | } |
443 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]" ), status); |
444 | fMarkSet.add(0x0020); |
445 | fEndWordSet = fLaoWordSet; |
446 | fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels |
447 | fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) |
448 | fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) |
449 | fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels |
450 | |
451 | // Compact for caching. |
452 | fMarkSet.compact(); |
453 | fEndWordSet.compact(); |
454 | fBeginWordSet.compact(); |
455 | } |
456 | |
457 | LaoBreakEngine::~LaoBreakEngine() { |
458 | delete fDictionary; |
459 | } |
460 | |
461 | int32_t |
462 | LaoBreakEngine::divideUpDictionaryRange( UText *text, |
463 | int32_t rangeStart, |
464 | int32_t rangeEnd, |
465 | UVector32 &foundBreaks ) const { |
466 | if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { |
467 | return 0; // Not enough characters for two words |
468 | } |
469 | |
470 | uint32_t wordsFound = 0; |
471 | int32_t cpWordLength = 0; |
472 | int32_t cuWordLength = 0; |
473 | int32_t current; |
474 | UErrorCode status = U_ZERO_ERROR; |
475 | PossibleWord words[LAO_LOOKAHEAD]; |
476 | |
477 | utext_setNativeIndex(text, rangeStart); |
478 | |
479 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
480 | cuWordLength = 0; |
481 | cpWordLength = 0; |
482 | |
483 | // Look for candidate words at the current position |
484 | int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
485 | |
486 | // If we found exactly one, use that |
487 | if (candidates == 1) { |
488 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
489 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); |
490 | wordsFound += 1; |
491 | } |
492 | // If there was more than one, see which one can take us forward the most words |
493 | else if (candidates > 1) { |
494 | // If we're already at the end of the range, we're done |
495 | if (utext_getNativeIndex(text) >= rangeEnd) { |
496 | goto foundBest; |
497 | } |
498 | do { |
499 | int32_t wordsMatched = 1; |
500 | if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
501 | if (wordsMatched < 2) { |
502 | // Followed by another dictionary word; mark first word as a good candidate |
503 | words[wordsFound%LAO_LOOKAHEAD].markCurrent(); |
504 | wordsMatched = 2; |
505 | } |
506 | |
507 | // If we're already at the end of the range, we're done |
508 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
509 | goto foundBest; |
510 | } |
511 | |
512 | // See if any of the possible second words is followed by a third word |
513 | do { |
514 | // If we find a third word, stop right away |
515 | if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
516 | words[wordsFound % LAO_LOOKAHEAD].markCurrent(); |
517 | goto foundBest; |
518 | } |
519 | } |
520 | while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); |
521 | } |
522 | } |
523 | while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); |
524 | foundBest: |
525 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
526 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); |
527 | wordsFound += 1; |
528 | } |
529 | |
530 | // We come here after having either found a word or not. We look ahead to the |
531 | // next word. If it's not a dictionary word, we will combine it withe the word we |
532 | // just found (if there is one), but only if the preceding word does not exceed |
533 | // the threshold. |
534 | // The text iterator should now be positioned at the end of the word we found. |
535 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) { |
536 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
537 | // no preceding word, or the non-word shares less than the minimum threshold |
538 | // of characters with a dictionary word, then scan to resynchronize |
539 | if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
540 | && (cuWordLength == 0 |
541 | || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { |
542 | // Look for a plausible word boundary |
543 | int32_t remaining = rangeEnd - (current + cuWordLength); |
544 | UChar32 pc; |
545 | UChar32 uc; |
546 | int32_t chars = 0; |
547 | for (;;) { |
548 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
549 | pc = utext_next32(text); |
550 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
551 | chars += pcSize; |
552 | remaining -= pcSize; |
553 | if (remaining <= 0) { |
554 | break; |
555 | } |
556 | uc = utext_current32(text); |
557 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
558 | // Maybe. See if it's in the dictionary. |
559 | // TODO: this looks iffy; compare with old code. |
560 | int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
561 | utext_setNativeIndex(text, current + cuWordLength + chars); |
562 | if (num_candidates > 0) { |
563 | break; |
564 | } |
565 | } |
566 | } |
567 | |
568 | // Bump the word count if there wasn't already one |
569 | if (cuWordLength <= 0) { |
570 | wordsFound += 1; |
571 | } |
572 | |
573 | // Update the length with the passed-over characters |
574 | cuWordLength += chars; |
575 | } |
576 | else { |
577 | // Back up to where we were for next iteration |
578 | utext_setNativeIndex(text, current + cuWordLength); |
579 | } |
580 | } |
581 | |
582 | // Never stop before a combining mark. |
583 | int32_t currPos; |
584 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
585 | utext_next32(text); |
586 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
587 | } |
588 | |
589 | // Look ahead for possible suffixes if a dictionary word does not follow. |
590 | // We do this in code rather than using a rule so that the heuristic |
591 | // resynch continues to function. For example, one of the suffix characters |
592 | // could be a typo in the middle of a word. |
593 | // NOT CURRENTLY APPLICABLE TO LAO |
594 | |
595 | // Did we find a word on this iteration? If so, push it on the break stack |
596 | if (cuWordLength > 0) { |
597 | foundBreaks.push((current+cuWordLength), status); |
598 | } |
599 | } |
600 | |
601 | // Don't return a break for the end of the dictionary range if there is one there. |
602 | if (foundBreaks.peeki() >= rangeEnd) { |
603 | (void) foundBreaks.popi(); |
604 | wordsFound -= 1; |
605 | } |
606 | |
607 | return wordsFound; |
608 | } |
609 | |
610 | /* |
611 | ****************************************************************** |
612 | * BurmeseBreakEngine |
613 | */ |
614 | |
615 | // How many words in a row are "good enough"? |
616 | static const int32_t BURMESE_LOOKAHEAD = 3; |
617 | |
618 | // Will not combine a non-word with a preceding dictionary word longer than this |
619 | static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3; |
620 | |
621 | // Will not combine a non-word that shares at least this much prefix with a |
622 | // dictionary word, with a preceding word |
623 | static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3; |
624 | |
625 | // Minimum word size |
626 | static const int32_t BURMESE_MIN_WORD = 2; |
627 | |
628 | // Minimum number of characters for two words |
629 | static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2; |
630 | |
631 | BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
632 | : DictionaryBreakEngine(), |
633 | fDictionary(adoptDictionary) |
634 | { |
635 | fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]" ), status); |
636 | if (U_SUCCESS(status)) { |
637 | setCharacters(fBurmeseWordSet); |
638 | } |
639 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]" ), status); |
640 | fMarkSet.add(0x0020); |
641 | fEndWordSet = fBurmeseWordSet; |
642 | fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels |
643 | |
644 | // Compact for caching. |
645 | fMarkSet.compact(); |
646 | fEndWordSet.compact(); |
647 | fBeginWordSet.compact(); |
648 | } |
649 | |
650 | BurmeseBreakEngine::~BurmeseBreakEngine() { |
651 | delete fDictionary; |
652 | } |
653 | |
654 | int32_t |
655 | BurmeseBreakEngine::divideUpDictionaryRange( UText *text, |
656 | int32_t rangeStart, |
657 | int32_t rangeEnd, |
658 | UVector32 &foundBreaks ) const { |
659 | if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) { |
660 | return 0; // Not enough characters for two words |
661 | } |
662 | |
663 | uint32_t wordsFound = 0; |
664 | int32_t cpWordLength = 0; |
665 | int32_t cuWordLength = 0; |
666 | int32_t current; |
667 | UErrorCode status = U_ZERO_ERROR; |
668 | PossibleWord words[BURMESE_LOOKAHEAD]; |
669 | |
670 | utext_setNativeIndex(text, rangeStart); |
671 | |
672 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
673 | cuWordLength = 0; |
674 | cpWordLength = 0; |
675 | |
676 | // Look for candidate words at the current position |
677 | int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
678 | |
679 | // If we found exactly one, use that |
680 | if (candidates == 1) { |
681 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); |
682 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); |
683 | wordsFound += 1; |
684 | } |
685 | // If there was more than one, see which one can take us forward the most words |
686 | else if (candidates > 1) { |
687 | // If we're already at the end of the range, we're done |
688 | if (utext_getNativeIndex(text) >= rangeEnd) { |
689 | goto foundBest; |
690 | } |
691 | do { |
692 | int32_t wordsMatched = 1; |
693 | if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
694 | if (wordsMatched < 2) { |
695 | // Followed by another dictionary word; mark first word as a good candidate |
696 | words[wordsFound%BURMESE_LOOKAHEAD].markCurrent(); |
697 | wordsMatched = 2; |
698 | } |
699 | |
700 | // If we're already at the end of the range, we're done |
701 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
702 | goto foundBest; |
703 | } |
704 | |
705 | // See if any of the possible second words is followed by a third word |
706 | do { |
707 | // If we find a third word, stop right away |
708 | if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
709 | words[wordsFound % BURMESE_LOOKAHEAD].markCurrent(); |
710 | goto foundBest; |
711 | } |
712 | } |
713 | while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text)); |
714 | } |
715 | } |
716 | while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text)); |
717 | foundBest: |
718 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); |
719 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); |
720 | wordsFound += 1; |
721 | } |
722 | |
723 | // We come here after having either found a word or not. We look ahead to the |
724 | // next word. If it's not a dictionary word, we will combine it withe the word we |
725 | // just found (if there is one), but only if the preceding word does not exceed |
726 | // the threshold. |
727 | // The text iterator should now be positioned at the end of the word we found. |
728 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) { |
729 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
730 | // no preceding word, or the non-word shares less than the minimum threshold |
731 | // of characters with a dictionary word, then scan to resynchronize |
732 | if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
733 | && (cuWordLength == 0 |
734 | || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) { |
735 | // Look for a plausible word boundary |
736 | int32_t remaining = rangeEnd - (current + cuWordLength); |
737 | UChar32 pc; |
738 | UChar32 uc; |
739 | int32_t chars = 0; |
740 | for (;;) { |
741 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
742 | pc = utext_next32(text); |
743 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
744 | chars += pcSize; |
745 | remaining -= pcSize; |
746 | if (remaining <= 0) { |
747 | break; |
748 | } |
749 | uc = utext_current32(text); |
750 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
751 | // Maybe. See if it's in the dictionary. |
752 | // TODO: this looks iffy; compare with old code. |
753 | int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
754 | utext_setNativeIndex(text, current + cuWordLength + chars); |
755 | if (num_candidates > 0) { |
756 | break; |
757 | } |
758 | } |
759 | } |
760 | |
761 | // Bump the word count if there wasn't already one |
762 | if (cuWordLength <= 0) { |
763 | wordsFound += 1; |
764 | } |
765 | |
766 | // Update the length with the passed-over characters |
767 | cuWordLength += chars; |
768 | } |
769 | else { |
770 | // Back up to where we were for next iteration |
771 | utext_setNativeIndex(text, current + cuWordLength); |
772 | } |
773 | } |
774 | |
775 | // Never stop before a combining mark. |
776 | int32_t currPos; |
777 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
778 | utext_next32(text); |
779 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
780 | } |
781 | |
782 | // Look ahead for possible suffixes if a dictionary word does not follow. |
783 | // We do this in code rather than using a rule so that the heuristic |
784 | // resynch continues to function. For example, one of the suffix characters |
785 | // could be a typo in the middle of a word. |
786 | // NOT CURRENTLY APPLICABLE TO BURMESE |
787 | |
788 | // Did we find a word on this iteration? If so, push it on the break stack |
789 | if (cuWordLength > 0) { |
790 | foundBreaks.push((current+cuWordLength), status); |
791 | } |
792 | } |
793 | |
794 | // Don't return a break for the end of the dictionary range if there is one there. |
795 | if (foundBreaks.peeki() >= rangeEnd) { |
796 | (void) foundBreaks.popi(); |
797 | wordsFound -= 1; |
798 | } |
799 | |
800 | return wordsFound; |
801 | } |
802 | |
803 | /* |
804 | ****************************************************************** |
805 | * KhmerBreakEngine |
806 | */ |
807 | |
808 | // How many words in a row are "good enough"? |
809 | static const int32_t KHMER_LOOKAHEAD = 3; |
810 | |
811 | // Will not combine a non-word with a preceding dictionary word longer than this |
812 | static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3; |
813 | |
814 | // Will not combine a non-word that shares at least this much prefix with a |
815 | // dictionary word, with a preceding word |
816 | static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3; |
817 | |
818 | // Minimum word size |
819 | static const int32_t KHMER_MIN_WORD = 2; |
820 | |
821 | // Minimum number of characters for two words |
822 | static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2; |
823 | |
824 | KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
825 | : DictionaryBreakEngine(), |
826 | fDictionary(adoptDictionary) |
827 | { |
828 | fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]" ), status); |
829 | if (U_SUCCESS(status)) { |
830 | setCharacters(fKhmerWordSet); |
831 | } |
832 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]" ), status); |
833 | fMarkSet.add(0x0020); |
834 | fEndWordSet = fKhmerWordSet; |
835 | fBeginWordSet.add(0x1780, 0x17B3); |
836 | //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels |
837 | //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word |
838 | //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word |
839 | fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters |
840 | //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels |
841 | // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
842 | // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
843 | // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
844 | // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
845 | // fSuffixSet.add(THAI_PAIYANNOI); |
846 | // fSuffixSet.add(THAI_MAIYAMOK); |
847 | |
848 | // Compact for caching. |
849 | fMarkSet.compact(); |
850 | fEndWordSet.compact(); |
851 | fBeginWordSet.compact(); |
852 | // fSuffixSet.compact(); |
853 | } |
854 | |
855 | KhmerBreakEngine::~KhmerBreakEngine() { |
856 | delete fDictionary; |
857 | } |
858 | |
859 | int32_t |
860 | KhmerBreakEngine::divideUpDictionaryRange( UText *text, |
861 | int32_t rangeStart, |
862 | int32_t rangeEnd, |
863 | UVector32 &foundBreaks ) const { |
864 | if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { |
865 | return 0; // Not enough characters for two words |
866 | } |
867 | |
868 | uint32_t wordsFound = 0; |
869 | int32_t cpWordLength = 0; |
870 | int32_t cuWordLength = 0; |
871 | int32_t current; |
872 | UErrorCode status = U_ZERO_ERROR; |
873 | PossibleWord words[KHMER_LOOKAHEAD]; |
874 | |
875 | utext_setNativeIndex(text, rangeStart); |
876 | |
877 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
878 | cuWordLength = 0; |
879 | cpWordLength = 0; |
880 | |
881 | // Look for candidate words at the current position |
882 | int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
883 | |
884 | // If we found exactly one, use that |
885 | if (candidates == 1) { |
886 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
887 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); |
888 | wordsFound += 1; |
889 | } |
890 | |
891 | // If there was more than one, see which one can take us forward the most words |
892 | else if (candidates > 1) { |
893 | // If we're already at the end of the range, we're done |
894 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
895 | goto foundBest; |
896 | } |
897 | do { |
898 | int32_t wordsMatched = 1; |
899 | if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
900 | if (wordsMatched < 2) { |
901 | // Followed by another dictionary word; mark first word as a good candidate |
902 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
903 | wordsMatched = 2; |
904 | } |
905 | |
906 | // If we're already at the end of the range, we're done |
907 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
908 | goto foundBest; |
909 | } |
910 | |
911 | // See if any of the possible second words is followed by a third word |
912 | do { |
913 | // If we find a third word, stop right away |
914 | if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
915 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
916 | goto foundBest; |
917 | } |
918 | } |
919 | while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); |
920 | } |
921 | } |
922 | while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); |
923 | foundBest: |
924 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
925 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); |
926 | wordsFound += 1; |
927 | } |
928 | |
929 | // We come here after having either found a word or not. We look ahead to the |
930 | // next word. If it's not a dictionary word, we will combine it with the word we |
931 | // just found (if there is one), but only if the preceding word does not exceed |
932 | // the threshold. |
933 | // The text iterator should now be positioned at the end of the word we found. |
934 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) { |
935 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
936 | // no preceding word, or the non-word shares less than the minimum threshold |
937 | // of characters with a dictionary word, then scan to resynchronize |
938 | if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
939 | && (cuWordLength == 0 |
940 | || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { |
941 | // Look for a plausible word boundary |
942 | int32_t remaining = rangeEnd - (current+cuWordLength); |
943 | UChar32 pc; |
944 | UChar32 uc; |
945 | int32_t chars = 0; |
946 | for (;;) { |
947 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
948 | pc = utext_next32(text); |
949 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
950 | chars += pcSize; |
951 | remaining -= pcSize; |
952 | if (remaining <= 0) { |
953 | break; |
954 | } |
955 | uc = utext_current32(text); |
956 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
957 | // Maybe. See if it's in the dictionary. |
958 | int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
959 | utext_setNativeIndex(text, current+cuWordLength+chars); |
960 | if (num_candidates > 0) { |
961 | break; |
962 | } |
963 | } |
964 | } |
965 | |
966 | // Bump the word count if there wasn't already one |
967 | if (cuWordLength <= 0) { |
968 | wordsFound += 1; |
969 | } |
970 | |
971 | // Update the length with the passed-over characters |
972 | cuWordLength += chars; |
973 | } |
974 | else { |
975 | // Back up to where we were for next iteration |
976 | utext_setNativeIndex(text, current+cuWordLength); |
977 | } |
978 | } |
979 | |
980 | // Never stop before a combining mark. |
981 | int32_t currPos; |
982 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
983 | utext_next32(text); |
984 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
985 | } |
986 | |
987 | // Look ahead for possible suffixes if a dictionary word does not follow. |
988 | // We do this in code rather than using a rule so that the heuristic |
989 | // resynch continues to function. For example, one of the suffix characters |
990 | // could be a typo in the middle of a word. |
991 | // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { |
992 | // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
993 | // && fSuffixSet.contains(uc = utext_current32(text))) { |
994 | // if (uc == KHMER_PAIYANNOI) { |
995 | // if (!fSuffixSet.contains(utext_previous32(text))) { |
996 | // // Skip over previous end and PAIYANNOI |
997 | // utext_next32(text); |
998 | // utext_next32(text); |
999 | // wordLength += 1; // Add PAIYANNOI to word |
1000 | // uc = utext_current32(text); // Fetch next character |
1001 | // } |
1002 | // else { |
1003 | // // Restore prior position |
1004 | // utext_next32(text); |
1005 | // } |
1006 | // } |
1007 | // if (uc == KHMER_MAIYAMOK) { |
1008 | // if (utext_previous32(text) != KHMER_MAIYAMOK) { |
1009 | // // Skip over previous end and MAIYAMOK |
1010 | // utext_next32(text); |
1011 | // utext_next32(text); |
1012 | // wordLength += 1; // Add MAIYAMOK to word |
1013 | // } |
1014 | // else { |
1015 | // // Restore prior position |
1016 | // utext_next32(text); |
1017 | // } |
1018 | // } |
1019 | // } |
1020 | // else { |
1021 | // utext_setNativeIndex(text, current+wordLength); |
1022 | // } |
1023 | // } |
1024 | |
1025 | // Did we find a word on this iteration? If so, push it on the break stack |
1026 | if (cuWordLength > 0) { |
1027 | foundBreaks.push((current+cuWordLength), status); |
1028 | } |
1029 | } |
1030 | |
1031 | // Don't return a break for the end of the dictionary range if there is one there. |
1032 | if (foundBreaks.peeki() >= rangeEnd) { |
1033 | (void) foundBreaks.popi(); |
1034 | wordsFound -= 1; |
1035 | } |
1036 | |
1037 | return wordsFound; |
1038 | } |
1039 | |
1040 | #if !UCONFIG_NO_NORMALIZATION |
1041 | /* |
1042 | ****************************************************************** |
1043 | * CjkBreakEngine |
1044 | */ |
1045 | static const uint32_t kuint32max = 0xFFFFFFFF; |
1046 | CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) |
1047 | : DictionaryBreakEngine(), fDictionary(adoptDictionary) { |
1048 | // Korean dictionary only includes Hangul syllables |
1049 | fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]" ), status); |
1050 | fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]" ), status); |
1051 | fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]" ), status); |
1052 | fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]" ), status); |
1053 | nfkcNorm2 = Normalizer2::getNFKCInstance(status); |
1054 | |
1055 | if (U_SUCCESS(status)) { |
1056 | // handle Korean and Japanese/Chinese using different dictionaries |
1057 | if (type == kKorean) { |
1058 | setCharacters(fHangulWordSet); |
1059 | } else { //Chinese and Japanese |
1060 | UnicodeSet cjSet; |
1061 | cjSet.addAll(fHanWordSet); |
1062 | cjSet.addAll(fKatakanaWordSet); |
1063 | cjSet.addAll(fHiraganaWordSet); |
1064 | cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK |
1065 | cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK |
1066 | setCharacters(cjSet); |
1067 | } |
1068 | } |
1069 | } |
1070 | |
1071 | CjkBreakEngine::~CjkBreakEngine(){ |
1072 | delete fDictionary; |
1073 | } |
1074 | |
1075 | // The katakanaCost values below are based on the length frequencies of all |
1076 | // katakana phrases in the dictionary |
1077 | static const int32_t kMaxKatakanaLength = 8; |
1078 | static const int32_t kMaxKatakanaGroupLength = 20; |
1079 | static const uint32_t maxSnlp = 255; |
1080 | |
1081 | static inline uint32_t getKatakanaCost(int32_t wordLength){ |
1082 | //TODO: fill array with actual values from dictionary! |
1083 | static const uint32_t katakanaCost[kMaxKatakanaLength + 1] |
1084 | = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; |
1085 | return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; |
1086 | } |
1087 | |
1088 | static inline bool isKatakana(UChar32 value) { |
1089 | return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) || |
1090 | (value >= 0xFF66 && value <= 0xFF9f); |
1091 | } |
1092 | |
1093 | |
1094 | // Function for accessing internal utext flags. |
1095 | // Replicates an internal UText function. |
1096 | |
1097 | static inline int32_t utext_i32_flag(int32_t bitIndex) { |
1098 | return (int32_t)1 << bitIndex; |
1099 | } |
1100 | |
1101 | |
1102 | /* |
1103 | * @param text A UText representing the text |
1104 | * @param rangeStart The start of the range of dictionary characters |
1105 | * @param rangeEnd The end of the range of dictionary characters |
1106 | * @param foundBreaks vector<int32> to receive the break positions |
1107 | * @return The number of breaks found |
1108 | */ |
1109 | int32_t |
1110 | CjkBreakEngine::divideUpDictionaryRange( UText *inText, |
1111 | int32_t rangeStart, |
1112 | int32_t rangeEnd, |
1113 | UVector32 &foundBreaks ) const { |
1114 | if (rangeStart >= rangeEnd) { |
1115 | return 0; |
1116 | } |
1117 | |
1118 | // UnicodeString version of input UText, NFKC normalized if necessary. |
1119 | UnicodeString inString; |
1120 | |
1121 | // inputMap[inStringIndex] = corresponding native index from UText inText. |
1122 | // If NULL then mapping is 1:1 |
1123 | LocalPointer<UVector32> inputMap; |
1124 | |
1125 | UErrorCode status = U_ZERO_ERROR; |
1126 | |
1127 | |
1128 | // if UText has the input string as one contiguous UTF-16 chunk |
1129 | if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) && |
1130 | inText->chunkNativeStart <= rangeStart && |
1131 | inText->chunkNativeLimit >= rangeEnd && |
1132 | inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) { |
1133 | |
1134 | // Input UText is in one contiguous UTF-16 chunk. |
1135 | // Use Read-only aliasing UnicodeString. |
1136 | inString.setTo(FALSE, |
1137 | inText->chunkContents + rangeStart - inText->chunkNativeStart, |
1138 | rangeEnd - rangeStart); |
1139 | } else { |
1140 | // Copy the text from the original inText (UText) to inString (UnicodeString). |
1141 | // Create a map from UnicodeString indices -> UText offsets. |
1142 | utext_setNativeIndex(inText, rangeStart); |
1143 | int32_t limit = rangeEnd; |
1144 | U_ASSERT(limit <= utext_nativeLength(inText)); |
1145 | if (limit > utext_nativeLength(inText)) { |
1146 | limit = (int32_t)utext_nativeLength(inText); |
1147 | } |
1148 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
1149 | if (U_FAILURE(status)) { |
1150 | return 0; |
1151 | } |
1152 | while (utext_getNativeIndex(inText) < limit) { |
1153 | int32_t nativePosition = (int32_t)utext_getNativeIndex(inText); |
1154 | UChar32 c = utext_next32(inText); |
1155 | U_ASSERT(c != U_SENTINEL); |
1156 | inString.append(c); |
1157 | while (inputMap->size() < inString.length()) { |
1158 | inputMap->addElement(nativePosition, status); |
1159 | } |
1160 | } |
1161 | inputMap->addElement(limit, status); |
1162 | } |
1163 | |
1164 | |
1165 | if (!nfkcNorm2->isNormalized(inString, status)) { |
1166 | UnicodeString normalizedInput; |
1167 | // normalizedMap[normalizedInput position] == original UText position. |
1168 | LocalPointer<UVector32> normalizedMap(new UVector32(status), status); |
1169 | if (U_FAILURE(status)) { |
1170 | return 0; |
1171 | } |
1172 | |
1173 | UnicodeString fragment; |
1174 | UnicodeString normalizedFragment; |
1175 | for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk |
1176 | fragment.remove(); |
1177 | int32_t fragmentStartI = srcI; |
1178 | UChar32 c = inString.char32At(srcI); |
1179 | for (;;) { |
1180 | fragment.append(c); |
1181 | srcI = inString.moveIndex32(srcI, 1); |
1182 | if (srcI == inString.length()) { |
1183 | break; |
1184 | } |
1185 | c = inString.char32At(srcI); |
1186 | if (nfkcNorm2->hasBoundaryBefore(c)) { |
1187 | break; |
1188 | } |
1189 | } |
1190 | nfkcNorm2->normalize(fragment, normalizedFragment, status); |
1191 | normalizedInput.append(normalizedFragment); |
1192 | |
1193 | // Map every position in the normalized chunk to the start of the chunk |
1194 | // in the original input. |
1195 | int32_t fragmentOriginalStart = inputMap.isValid() ? |
1196 | inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart; |
1197 | while (normalizedMap->size() < normalizedInput.length()) { |
1198 | normalizedMap->addElement(fragmentOriginalStart, status); |
1199 | if (U_FAILURE(status)) { |
1200 | break; |
1201 | } |
1202 | } |
1203 | } |
1204 | U_ASSERT(normalizedMap->size() == normalizedInput.length()); |
1205 | int32_t nativeEnd = inputMap.isValid() ? |
1206 | inputMap->elementAti(inString.length()) : inString.length()+rangeStart; |
1207 | normalizedMap->addElement(nativeEnd, status); |
1208 | |
1209 | inputMap = std::move(normalizedMap); |
1210 | inString = std::move(normalizedInput); |
1211 | } |
1212 | |
1213 | int32_t numCodePts = inString.countChar32(); |
1214 | if (numCodePts != inString.length()) { |
1215 | // There are supplementary characters in the input. |
1216 | // The dictionary will produce boundary positions in terms of code point indexes, |
1217 | // not in terms of code unit string indexes. |
1218 | // Use the inputMap mechanism to take care of this in addition to indexing differences |
1219 | // from normalization and/or UTF-8 input. |
1220 | UBool hadExistingMap = inputMap.isValid(); |
1221 | if (!hadExistingMap) { |
1222 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
1223 | if (U_FAILURE(status)) { |
1224 | return 0; |
1225 | } |
1226 | } |
1227 | int32_t cpIdx = 0; |
1228 | for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) { |
1229 | U_ASSERT(cuIdx >= cpIdx); |
1230 | if (hadExistingMap) { |
1231 | inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx); |
1232 | } else { |
1233 | inputMap->addElement(cuIdx+rangeStart, status); |
1234 | } |
1235 | cpIdx++; |
1236 | if (cuIdx == inString.length()) { |
1237 | break; |
1238 | } |
1239 | } |
1240 | } |
1241 | |
1242 | // bestSnlp[i] is the snlp of the best segmentation of the first i |
1243 | // code points in the range to be matched. |
1244 | UVector32 bestSnlp(numCodePts + 1, status); |
1245 | bestSnlp.addElement(0, status); |
1246 | for(int32_t i = 1; i <= numCodePts; i++) { |
1247 | bestSnlp.addElement(kuint32max, status); |
1248 | } |
1249 | |
1250 | |
1251 | // prev[i] is the index of the last CJK code point in the previous word in |
1252 | // the best segmentation of the first i characters. |
1253 | UVector32 prev(numCodePts + 1, status); |
1254 | for(int32_t i = 0; i <= numCodePts; i++){ |
1255 | prev.addElement(-1, status); |
1256 | } |
1257 | |
1258 | const int32_t maxWordSize = 20; |
1259 | UVector32 values(numCodePts, status); |
1260 | values.setSize(numCodePts); |
1261 | UVector32 lengths(numCodePts, status); |
1262 | lengths.setSize(numCodePts); |
1263 | |
1264 | UText fu = UTEXT_INITIALIZER; |
1265 | utext_openUnicodeString(&fu, &inString, &status); |
1266 | |
1267 | // Dynamic programming to find the best segmentation. |
1268 | |
1269 | // In outer loop, i is the code point index, |
1270 | // ix is the corresponding string (code unit) index. |
1271 | // They differ when the string contains supplementary characters. |
1272 | int32_t ix = 0; |
1273 | bool is_prev_katakana = false; |
1274 | for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) { |
1275 | if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) { |
1276 | continue; |
1277 | } |
1278 | |
1279 | int32_t count; |
1280 | utext_setNativeIndex(&fu, ix); |
1281 | count = fDictionary->matches(&fu, maxWordSize, numCodePts, |
1282 | NULL, lengths.getBuffer(), values.getBuffer(), NULL); |
1283 | // Note: lengths is filled with code point lengths |
1284 | // The NULL parameter is the ignored code unit lengths. |
1285 | |
1286 | // if there are no single character matches found in the dictionary |
1287 | // starting with this character, treat character as a 1-character word |
1288 | // with the highest value possible, i.e. the least likely to occur. |
1289 | // Exclude Korean characters from this treatment, as they should be left |
1290 | // together by default. |
1291 | if ((count == 0 || lengths.elementAti(0) != 1) && |
1292 | !fHangulWordSet.contains(inString.char32At(ix))) { |
1293 | values.setElementAt(maxSnlp, count); // 255 |
1294 | lengths.setElementAt(1, count++); |
1295 | } |
1296 | |
1297 | for (int32_t j = 0; j < count; j++) { |
1298 | uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j); |
1299 | int32_t ln_j_i = lengths.elementAti(j) + i; |
1300 | if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) { |
1301 | bestSnlp.setElementAt(newSnlp, ln_j_i); |
1302 | prev.setElementAt(i, ln_j_i); |
1303 | } |
1304 | } |
1305 | |
1306 | // In Japanese, |
1307 | // Katakana word in single character is pretty rare. So we apply |
1308 | // the following heuristic to Katakana: any continuous run of Katakana |
1309 | // characters is considered a candidate word with a default cost |
1310 | // specified in the katakanaCost table according to its length. |
1311 | |
1312 | bool is_katakana = isKatakana(inString.char32At(ix)); |
1313 | int32_t katakanaRunLength = 1; |
1314 | if (!is_prev_katakana && is_katakana) { |
1315 | int32_t j = inString.moveIndex32(ix, 1); |
1316 | // Find the end of the continuous run of Katakana characters |
1317 | while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength && |
1318 | isKatakana(inString.char32At(j))) { |
1319 | j = inString.moveIndex32(j, 1); |
1320 | katakanaRunLength++; |
1321 | } |
1322 | if (katakanaRunLength < kMaxKatakanaGroupLength) { |
1323 | uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength); |
1324 | if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) { |
1325 | bestSnlp.setElementAt(newSnlp, i+katakanaRunLength); |
1326 | prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i; |
1327 | } |
1328 | } |
1329 | } |
1330 | is_prev_katakana = is_katakana; |
1331 | } |
1332 | utext_close(&fu); |
1333 | |
1334 | // Start pushing the optimal offset index into t_boundary (t for tentative). |
1335 | // prev[numCodePts] is guaranteed to be meaningful. |
1336 | // We'll first push in the reverse order, i.e., |
1337 | // t_boundary[0] = numCodePts, and afterwards do a swap. |
1338 | UVector32 t_boundary(numCodePts+1, status); |
1339 | |
1340 | int32_t numBreaks = 0; |
1341 | // No segmentation found, set boundary to end of range |
1342 | if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) { |
1343 | t_boundary.addElement(numCodePts, status); |
1344 | numBreaks++; |
1345 | } else { |
1346 | for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) { |
1347 | t_boundary.addElement(i, status); |
1348 | numBreaks++; |
1349 | } |
1350 | U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0); |
1351 | } |
1352 | |
1353 | // Add a break for the start of the dictionary range if there is not one |
1354 | // there already. |
1355 | if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { |
1356 | t_boundary.addElement(0, status); |
1357 | numBreaks++; |
1358 | } |
1359 | |
1360 | // Now that we're done, convert positions in t_boundary[] (indices in |
1361 | // the normalized input string) back to indices in the original input UText |
1362 | // while reversing t_boundary and pushing values to foundBreaks. |
1363 | int32_t prevCPPos = -1; |
1364 | int32_t prevUTextPos = -1; |
1365 | for (int32_t i = numBreaks-1; i >= 0; i--) { |
1366 | int32_t cpPos = t_boundary.elementAti(i); |
1367 | U_ASSERT(cpPos > prevCPPos); |
1368 | int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart; |
1369 | U_ASSERT(utextPos >= prevUTextPos); |
1370 | if (utextPos > prevUTextPos) { |
1371 | // Boundaries are added to foundBreaks output in ascending order. |
1372 | U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos); |
1373 | foundBreaks.push(utextPos, status); |
1374 | } else { |
1375 | // Normalization expanded the input text, the dictionary found a boundary |
1376 | // within the expansion, giving two boundaries with the same index in the |
1377 | // original text. Ignore the second. See ticket #12918. |
1378 | --numBreaks; |
1379 | } |
1380 | prevCPPos = cpPos; |
1381 | prevUTextPos = utextPos; |
1382 | } |
1383 | (void)prevCPPos; // suppress compiler warnings about unused variable |
1384 | |
1385 | // inString goes out of scope |
1386 | // inputMap goes out of scope |
1387 | return numBreaks; |
1388 | } |
1389 | #endif |
1390 | |
1391 | U_NAMESPACE_END |
1392 | |
1393 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
1394 | |
1395 | |