1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | *************************************************************************** |
5 | * Copyright (C) 1999-2016 International Business Machines Corporation |
6 | * and others. All rights reserved. |
7 | *************************************************************************** |
8 | */ |
9 | // |
10 | // file: rbbi.cpp Contains the implementation of the rule based break iterator |
11 | // runtime engine and the API implementation for |
12 | // class RuleBasedBreakIterator |
13 | // |
14 | |
15 | #include "utypeinfo.h" // for 'typeid' to work |
16 | |
17 | #include "unicode/utypes.h" |
18 | |
19 | #if !UCONFIG_NO_BREAK_ITERATION |
20 | |
21 | #include <cinttypes> |
22 | |
23 | #include "unicode/rbbi.h" |
24 | #include "unicode/schriter.h" |
25 | #include "unicode/uchriter.h" |
26 | #include "unicode/uclean.h" |
27 | #include "unicode/udata.h" |
28 | |
29 | #include "brkeng.h" |
30 | #include "ucln_cmn.h" |
31 | #include "cmemory.h" |
32 | #include "cstring.h" |
33 | #include "localsvc.h" |
34 | #include "rbbidata.h" |
35 | #include "rbbi_cache.h" |
36 | #include "rbbirb.h" |
37 | #include "uassert.h" |
38 | #include "umutex.h" |
39 | #include "uvectr32.h" |
40 | |
41 | #ifdef RBBI_DEBUG |
42 | static UBool gTrace = FALSE; |
43 | #endif |
44 | |
45 | U_NAMESPACE_BEGIN |
46 | |
47 | // The state number of the starting state |
48 | constexpr int32_t START_STATE = 1; |
49 | |
50 | // The state-transition value indicating "stop" |
51 | constexpr int32_t STOP_STATE = 0; |
52 | |
53 | |
54 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator) |
55 | |
56 | |
57 | //======================================================================= |
58 | // constructors |
59 | //======================================================================= |
60 | |
61 | /** |
62 | * Constructs a RuleBasedBreakIterator that uses the already-created |
63 | * tables object that is passed in as a parameter. |
64 | */ |
65 | RuleBasedBreakIterator::(RBBIDataHeader* data, UErrorCode &status) |
66 | : fSCharIter(UnicodeString()) |
67 | { |
68 | init(status); |
69 | fData = new RBBIDataWrapper(data, status); // status checked in constructor |
70 | if (U_FAILURE(status)) {return;} |
71 | if(fData == 0) { |
72 | status = U_MEMORY_ALLOCATION_ERROR; |
73 | return; |
74 | } |
75 | } |
76 | |
77 | // |
78 | // Construct from precompiled binary rules (tables). This constructor is public API, |
79 | // taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules(). |
80 | // |
81 | RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules, |
82 | uint32_t ruleLength, |
83 | UErrorCode &status) |
84 | : fSCharIter(UnicodeString()) |
85 | { |
86 | init(status); |
87 | if (U_FAILURE(status)) { |
88 | return; |
89 | } |
90 | if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) { |
91 | status = U_ILLEGAL_ARGUMENT_ERROR; |
92 | return; |
93 | } |
94 | const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules; |
95 | if (data->fLength > ruleLength) { |
96 | status = U_ILLEGAL_ARGUMENT_ERROR; |
97 | return; |
98 | } |
99 | fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); |
100 | if (U_FAILURE(status)) {return;} |
101 | if(fData == 0) { |
102 | status = U_MEMORY_ALLOCATION_ERROR; |
103 | return; |
104 | } |
105 | } |
106 | |
107 | |
108 | //------------------------------------------------------------------------------- |
109 | // |
110 | // Constructor from a UDataMemory handle to precompiled break rules |
111 | // stored in an ICU data file. |
112 | // |
113 | //------------------------------------------------------------------------------- |
114 | RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status) |
115 | : fSCharIter(UnicodeString()) |
116 | { |
117 | init(status); |
118 | fData = new RBBIDataWrapper(udm, status); // status checked in constructor |
119 | if (U_FAILURE(status)) {return;} |
120 | if(fData == 0) { |
121 | status = U_MEMORY_ALLOCATION_ERROR; |
122 | return; |
123 | } |
124 | } |
125 | |
126 | |
127 | |
128 | //------------------------------------------------------------------------------- |
129 | // |
130 | // Constructor from a set of rules supplied as a string. |
131 | // |
132 | //------------------------------------------------------------------------------- |
133 | RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules, |
134 | UParseError &parseError, |
135 | UErrorCode &status) |
136 | : fSCharIter(UnicodeString()) |
137 | { |
138 | init(status); |
139 | if (U_FAILURE(status)) {return;} |
140 | RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *) |
141 | RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status); |
142 | // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that |
143 | // creates and returns a complete RBBI. From here, in a constructor, we |
144 | // can't just return the object created by the builder factory, hence |
145 | // the assignment of the factory created object to "this". |
146 | if (U_SUCCESS(status)) { |
147 | *this = *bi; |
148 | delete bi; |
149 | } |
150 | } |
151 | |
152 | |
153 | //------------------------------------------------------------------------------- |
154 | // |
155 | // Default Constructor. Create an empty shell that can be set up later. |
156 | // Used when creating a RuleBasedBreakIterator from a set |
157 | // of rules. |
158 | //------------------------------------------------------------------------------- |
159 | RuleBasedBreakIterator::RuleBasedBreakIterator() |
160 | : fSCharIter(UnicodeString()) |
161 | { |
162 | UErrorCode status = U_ZERO_ERROR; |
163 | init(status); |
164 | } |
165 | |
166 | |
167 | //------------------------------------------------------------------------------- |
168 | // |
169 | // Copy constructor. Will produce a break iterator with the same behavior, |
170 | // and which iterates over the same text, as the one passed in. |
171 | // |
172 | //------------------------------------------------------------------------------- |
173 | RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other) |
174 | : BreakIterator(other), |
175 | fSCharIter(UnicodeString()) |
176 | { |
177 | UErrorCode status = U_ZERO_ERROR; |
178 | this->init(status); |
179 | *this = other; |
180 | } |
181 | |
182 | |
183 | /** |
184 | * Destructor |
185 | */ |
186 | RuleBasedBreakIterator::~RuleBasedBreakIterator() { |
187 | if (fCharIter != &fSCharIter) { |
188 | // fCharIter was adopted from the outside. |
189 | delete fCharIter; |
190 | } |
191 | fCharIter = NULL; |
192 | |
193 | utext_close(&fText); |
194 | |
195 | if (fData != NULL) { |
196 | fData->removeReference(); |
197 | fData = NULL; |
198 | } |
199 | delete fBreakCache; |
200 | fBreakCache = NULL; |
201 | |
202 | delete fDictionaryCache; |
203 | fDictionaryCache = NULL; |
204 | |
205 | delete fLanguageBreakEngines; |
206 | fLanguageBreakEngines = NULL; |
207 | |
208 | delete fUnhandledBreakEngine; |
209 | fUnhandledBreakEngine = NULL; |
210 | } |
211 | |
212 | /** |
213 | * Assignment operator. Sets this iterator to have the same behavior, |
214 | * and iterate over the same text, as the one passed in. |
215 | */ |
216 | RuleBasedBreakIterator& |
217 | RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) { |
218 | if (this == &that) { |
219 | return *this; |
220 | } |
221 | BreakIterator::operator=(that); |
222 | |
223 | if (fLanguageBreakEngines != NULL) { |
224 | delete fLanguageBreakEngines; |
225 | fLanguageBreakEngines = NULL; // Just rebuild for now |
226 | } |
227 | // TODO: clone fLanguageBreakEngines from "that" |
228 | UErrorCode status = U_ZERO_ERROR; |
229 | utext_clone(&fText, &that.fText, FALSE, TRUE, &status); |
230 | |
231 | if (fCharIter != &fSCharIter) { |
232 | delete fCharIter; |
233 | } |
234 | fCharIter = &fSCharIter; |
235 | |
236 | if (that.fCharIter != NULL && that.fCharIter != &that.fSCharIter) { |
237 | // This is a little bit tricky - it will intially appear that |
238 | // this->fCharIter is adopted, even if that->fCharIter was |
239 | // not adopted. That's ok. |
240 | fCharIter = that.fCharIter->clone(); |
241 | } |
242 | fSCharIter = that.fSCharIter; |
243 | if (fCharIter == NULL) { |
244 | fCharIter = &fSCharIter; |
245 | } |
246 | |
247 | if (fData != NULL) { |
248 | fData->removeReference(); |
249 | fData = NULL; |
250 | } |
251 | if (that.fData != NULL) { |
252 | fData = that.fData->addReference(); |
253 | } |
254 | |
255 | fPosition = that.fPosition; |
256 | fRuleStatusIndex = that.fRuleStatusIndex; |
257 | fDone = that.fDone; |
258 | |
259 | // TODO: both the dictionary and the main cache need to be copied. |
260 | // Current position could be within a dictionary range. Trying to continue |
261 | // the iteration without the caches present would go to the rules, with |
262 | // the assumption that the current position is on a rule boundary. |
263 | fBreakCache->reset(fPosition, fRuleStatusIndex); |
264 | fDictionaryCache->reset(); |
265 | |
266 | return *this; |
267 | } |
268 | |
269 | |
270 | |
271 | //----------------------------------------------------------------------------- |
272 | // |
273 | // init() Shared initialization routine. Used by all the constructors. |
274 | // Initializes all fields, leaving the object in a consistent state. |
275 | // |
276 | //----------------------------------------------------------------------------- |
277 | void RuleBasedBreakIterator::init(UErrorCode &status) { |
278 | fCharIter = NULL; |
279 | fData = NULL; |
280 | fPosition = 0; |
281 | fRuleStatusIndex = 0; |
282 | fDone = false; |
283 | fDictionaryCharCount = 0; |
284 | fLanguageBreakEngines = NULL; |
285 | fUnhandledBreakEngine = NULL; |
286 | fBreakCache = NULL; |
287 | fDictionaryCache = NULL; |
288 | |
289 | // Note: IBM xlC is unable to assign or initialize member fText from UTEXT_INITIALIZER. |
290 | // fText = UTEXT_INITIALIZER; |
291 | static const UText initializedUText = UTEXT_INITIALIZER; |
292 | uprv_memcpy(&fText, &initializedUText, sizeof(UText)); |
293 | |
294 | if (U_FAILURE(status)) { |
295 | return; |
296 | } |
297 | |
298 | utext_openUChars(&fText, NULL, 0, &status); |
299 | fDictionaryCache = new DictionaryCache(this, status); |
300 | fBreakCache = new BreakCache(this, status); |
301 | if (U_SUCCESS(status) && (fDictionaryCache == NULL || fBreakCache == NULL)) { |
302 | status = U_MEMORY_ALLOCATION_ERROR; |
303 | } |
304 | |
305 | #ifdef RBBI_DEBUG |
306 | static UBool debugInitDone = FALSE; |
307 | if (debugInitDone == FALSE) { |
308 | char *debugEnv = getenv("U_RBBIDEBUG" ); |
309 | if (debugEnv && uprv_strstr(debugEnv, "trace" )) { |
310 | gTrace = TRUE; |
311 | } |
312 | debugInitDone = TRUE; |
313 | } |
314 | #endif |
315 | } |
316 | |
317 | |
318 | |
319 | //----------------------------------------------------------------------------- |
320 | // |
321 | // clone - Returns a newly-constructed RuleBasedBreakIterator with the same |
322 | // behavior, and iterating over the same text, as this one. |
323 | // Virtual function: does the right thing with subclasses. |
324 | // |
325 | //----------------------------------------------------------------------------- |
326 | RuleBasedBreakIterator* |
327 | RuleBasedBreakIterator::clone() const { |
328 | return new RuleBasedBreakIterator(*this); |
329 | } |
330 | |
331 | /** |
332 | * Equality operator. Returns TRUE if both BreakIterators are of the |
333 | * same class, have the same behavior, and iterate over the same text. |
334 | */ |
335 | UBool |
336 | RuleBasedBreakIterator::operator==(const BreakIterator& that) const { |
337 | if (typeid(*this) != typeid(that)) { |
338 | return FALSE; |
339 | } |
340 | if (this == &that) { |
341 | return TRUE; |
342 | } |
343 | |
344 | // The base class BreakIterator carries no state that participates in equality, |
345 | // and does not implement an equality function that would otherwise be |
346 | // checked at this point. |
347 | |
348 | const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that; |
349 | |
350 | if (!utext_equals(&fText, &that2.fText)) { |
351 | // The two break iterators are operating on different text, |
352 | // or have a different iteration position. |
353 | // Note that fText's position is always the same as the break iterator's position. |
354 | return FALSE; |
355 | } |
356 | |
357 | if (!(fPosition == that2.fPosition && |
358 | fRuleStatusIndex == that2.fRuleStatusIndex && |
359 | fDone == that2.fDone)) { |
360 | return FALSE; |
361 | } |
362 | |
363 | if (that2.fData == fData || |
364 | (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) { |
365 | // The two break iterators are using the same rules. |
366 | return TRUE; |
367 | } |
368 | return FALSE; |
369 | } |
370 | |
371 | /** |
372 | * Compute a hash code for this BreakIterator |
373 | * @return A hash code |
374 | */ |
375 | int32_t |
376 | RuleBasedBreakIterator::hashCode(void) const { |
377 | int32_t hash = 0; |
378 | if (fData != NULL) { |
379 | hash = fData->hashCode(); |
380 | } |
381 | return hash; |
382 | } |
383 | |
384 | |
385 | void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) { |
386 | if (U_FAILURE(status)) { |
387 | return; |
388 | } |
389 | fBreakCache->reset(); |
390 | fDictionaryCache->reset(); |
391 | utext_clone(&fText, ut, FALSE, TRUE, &status); |
392 | |
393 | // Set up a dummy CharacterIterator to be returned if anyone |
394 | // calls getText(). With input from UText, there is no reasonable |
395 | // way to return a characterIterator over the actual input text. |
396 | // Return one over an empty string instead - this is the closest |
397 | // we can come to signaling a failure. |
398 | // (GetText() is obsolete, this failure is sort of OK) |
399 | fSCharIter.setText(UnicodeString()); |
400 | |
401 | if (fCharIter != &fSCharIter) { |
402 | // existing fCharIter was adopted from the outside. Delete it now. |
403 | delete fCharIter; |
404 | } |
405 | fCharIter = &fSCharIter; |
406 | |
407 | this->first(); |
408 | } |
409 | |
410 | |
411 | UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const { |
412 | UText *result = utext_clone(fillIn, &fText, FALSE, TRUE, &status); |
413 | return result; |
414 | } |
415 | |
416 | |
417 | //======================================================================= |
418 | // BreakIterator overrides |
419 | //======================================================================= |
420 | |
421 | /** |
422 | * Return a CharacterIterator over the text being analyzed. |
423 | */ |
424 | CharacterIterator& |
425 | RuleBasedBreakIterator::getText() const { |
426 | return *fCharIter; |
427 | } |
428 | |
429 | /** |
430 | * Set the iterator to analyze a new piece of text. This function resets |
431 | * the current iteration position to the beginning of the text. |
432 | * @param newText An iterator over the text to analyze. |
433 | */ |
434 | void |
435 | RuleBasedBreakIterator::adoptText(CharacterIterator* newText) { |
436 | // If we are holding a CharacterIterator adopted from a |
437 | // previous call to this function, delete it now. |
438 | if (fCharIter != &fSCharIter) { |
439 | delete fCharIter; |
440 | } |
441 | |
442 | fCharIter = newText; |
443 | UErrorCode status = U_ZERO_ERROR; |
444 | fBreakCache->reset(); |
445 | fDictionaryCache->reset(); |
446 | if (newText==NULL || newText->startIndex() != 0) { |
447 | // startIndex !=0 wants to be an error, but there's no way to report it. |
448 | // Make the iterator text be an empty string. |
449 | utext_openUChars(&fText, NULL, 0, &status); |
450 | } else { |
451 | utext_openCharacterIterator(&fText, newText, &status); |
452 | } |
453 | this->first(); |
454 | } |
455 | |
456 | /** |
457 | * Set the iterator to analyze a new piece of text. This function resets |
458 | * the current iteration position to the beginning of the text. |
459 | * @param newText An iterator over the text to analyze. |
460 | */ |
461 | void |
462 | RuleBasedBreakIterator::setText(const UnicodeString& newText) { |
463 | UErrorCode status = U_ZERO_ERROR; |
464 | fBreakCache->reset(); |
465 | fDictionaryCache->reset(); |
466 | utext_openConstUnicodeString(&fText, &newText, &status); |
467 | |
468 | // Set up a character iterator on the string. |
469 | // Needed in case someone calls getText(). |
470 | // Can not, unfortunately, do this lazily on the (probably never) |
471 | // call to getText(), because getText is const. |
472 | fSCharIter.setText(newText); |
473 | |
474 | if (fCharIter != &fSCharIter) { |
475 | // old fCharIter was adopted from the outside. Delete it. |
476 | delete fCharIter; |
477 | } |
478 | fCharIter = &fSCharIter; |
479 | |
480 | this->first(); |
481 | } |
482 | |
483 | |
484 | /** |
485 | * Provide a new UText for the input text. Must reference text with contents identical |
486 | * to the original. |
487 | * Intended for use with text data originating in Java (garbage collected) environments |
488 | * where the data may be moved in memory at arbitrary times. |
489 | */ |
490 | RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) { |
491 | if (U_FAILURE(status)) { |
492 | return *this; |
493 | } |
494 | if (input == NULL) { |
495 | status = U_ILLEGAL_ARGUMENT_ERROR; |
496 | return *this; |
497 | } |
498 | int64_t pos = utext_getNativeIndex(&fText); |
499 | // Shallow read-only clone of the new UText into the existing input UText |
500 | utext_clone(&fText, input, FALSE, TRUE, &status); |
501 | if (U_FAILURE(status)) { |
502 | return *this; |
503 | } |
504 | utext_setNativeIndex(&fText, pos); |
505 | if (utext_getNativeIndex(&fText) != pos) { |
506 | // Sanity check. The new input utext is supposed to have the exact same |
507 | // contents as the old. If we can't set to the same position, it doesn't. |
508 | // The contents underlying the old utext might be invalid at this point, |
509 | // so it's not safe to check directly. |
510 | status = U_ILLEGAL_ARGUMENT_ERROR; |
511 | } |
512 | return *this; |
513 | } |
514 | |
515 | |
516 | /** |
517 | * Sets the current iteration position to the beginning of the text, position zero. |
518 | * @return The new iterator position, which is zero. |
519 | */ |
520 | int32_t RuleBasedBreakIterator::first(void) { |
521 | UErrorCode status = U_ZERO_ERROR; |
522 | if (!fBreakCache->seek(0)) { |
523 | fBreakCache->populateNear(0, status); |
524 | } |
525 | fBreakCache->current(); |
526 | U_ASSERT(fPosition == 0); |
527 | return 0; |
528 | } |
529 | |
530 | /** |
531 | * Sets the current iteration position to the end of the text. |
532 | * @return The text's past-the-end offset. |
533 | */ |
534 | int32_t RuleBasedBreakIterator::last(void) { |
535 | int32_t endPos = (int32_t)utext_nativeLength(&fText); |
536 | UBool endShouldBeBoundary = isBoundary(endPos); // Has side effect of setting iterator position. |
537 | (void)endShouldBeBoundary; |
538 | U_ASSERT(endShouldBeBoundary); |
539 | U_ASSERT(fPosition == endPos); |
540 | return endPos; |
541 | } |
542 | |
543 | /** |
544 | * Advances the iterator either forward or backward the specified number of steps. |
545 | * Negative values move backward, and positive values move forward. This is |
546 | * equivalent to repeatedly calling next() or previous(). |
547 | * @param n The number of steps to move. The sign indicates the direction |
548 | * (negative is backwards, and positive is forwards). |
549 | * @return The character offset of the boundary position n boundaries away from |
550 | * the current one. |
551 | */ |
552 | int32_t RuleBasedBreakIterator::next(int32_t n) { |
553 | int32_t result = 0; |
554 | if (n > 0) { |
555 | for (; n > 0 && result != UBRK_DONE; --n) { |
556 | result = next(); |
557 | } |
558 | } else if (n < 0) { |
559 | for (; n < 0 && result != UBRK_DONE; ++n) { |
560 | result = previous(); |
561 | } |
562 | } else { |
563 | result = current(); |
564 | } |
565 | return result; |
566 | } |
567 | |
568 | /** |
569 | * Advances the iterator to the next boundary position. |
570 | * @return The position of the first boundary after this one. |
571 | */ |
572 | int32_t RuleBasedBreakIterator::next(void) { |
573 | fBreakCache->next(); |
574 | return fDone ? UBRK_DONE : fPosition; |
575 | } |
576 | |
577 | /** |
578 | * Move the iterator backwards, to the boundary preceding the current one. |
579 | * |
580 | * Starts from the current position within fText. |
581 | * Starting position need not be on a boundary. |
582 | * |
583 | * @return The position of the boundary position immediately preceding the starting position. |
584 | */ |
585 | int32_t RuleBasedBreakIterator::previous(void) { |
586 | UErrorCode status = U_ZERO_ERROR; |
587 | fBreakCache->previous(status); |
588 | return fDone ? UBRK_DONE : fPosition; |
589 | } |
590 | |
591 | /** |
592 | * Sets the iterator to refer to the first boundary position following |
593 | * the specified position. |
594 | * @param startPos The position from which to begin searching for a break position. |
595 | * @return The position of the first break after the current position. |
596 | */ |
597 | int32_t RuleBasedBreakIterator::following(int32_t startPos) { |
598 | // if the supplied position is before the beginning, return the |
599 | // text's starting offset |
600 | if (startPos < 0) { |
601 | return first(); |
602 | } |
603 | |
604 | // Move requested offset to a code point start. It might be on a trail surrogate, |
605 | // or on a trail byte if the input is UTF-8. Or it may be beyond the end of the text. |
606 | utext_setNativeIndex(&fText, startPos); |
607 | startPos = (int32_t)utext_getNativeIndex(&fText); |
608 | |
609 | UErrorCode status = U_ZERO_ERROR; |
610 | fBreakCache->following(startPos, status); |
611 | return fDone ? UBRK_DONE : fPosition; |
612 | } |
613 | |
614 | /** |
615 | * Sets the iterator to refer to the last boundary position before the |
616 | * specified position. |
617 | * @param offset The position to begin searching for a break from. |
618 | * @return The position of the last boundary before the starting position. |
619 | */ |
620 | int32_t RuleBasedBreakIterator::preceding(int32_t offset) { |
621 | if (offset > utext_nativeLength(&fText)) { |
622 | return last(); |
623 | } |
624 | |
625 | // Move requested offset to a code point start. It might be on a trail surrogate, |
626 | // or on a trail byte if the input is UTF-8. |
627 | |
628 | utext_setNativeIndex(&fText, offset); |
629 | int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText)); |
630 | |
631 | UErrorCode status = U_ZERO_ERROR; |
632 | fBreakCache->preceding(adjustedOffset, status); |
633 | return fDone ? UBRK_DONE : fPosition; |
634 | } |
635 | |
636 | /** |
637 | * Returns true if the specfied position is a boundary position. As a side |
638 | * effect, leaves the iterator pointing to the first boundary position at |
639 | * or after "offset". |
640 | * |
641 | * @param offset the offset to check. |
642 | * @return True if "offset" is a boundary position. |
643 | */ |
644 | UBool RuleBasedBreakIterator::isBoundary(int32_t offset) { |
645 | // out-of-range indexes are never boundary positions |
646 | if (offset < 0) { |
647 | first(); // For side effects on current position, tag values. |
648 | return FALSE; |
649 | } |
650 | |
651 | // Adjust offset to be on a code point boundary and not beyond the end of the text. |
652 | // Note that isBoundary() is always false for offsets that are not on code point boundaries. |
653 | // But we still need the side effect of leaving iteration at the following boundary. |
654 | |
655 | utext_setNativeIndex(&fText, offset); |
656 | int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText)); |
657 | |
658 | bool result = false; |
659 | UErrorCode status = U_ZERO_ERROR; |
660 | if (fBreakCache->seek(adjustedOffset) || fBreakCache->populateNear(adjustedOffset, status)) { |
661 | result = (fBreakCache->current() == offset); |
662 | } |
663 | |
664 | if (result && adjustedOffset < offset && utext_char32At(&fText, offset) == U_SENTINEL) { |
665 | // Original offset is beyond the end of the text. Return FALSE, it's not a boundary, |
666 | // but the iteration position remains set to the end of the text, which is a boundary. |
667 | return FALSE; |
668 | } |
669 | if (!result) { |
670 | // Not on a boundary. isBoundary() must leave iterator on the following boundary. |
671 | // Cache->seek(), above, left us on the preceding boundary, so advance one. |
672 | next(); |
673 | } |
674 | return result; |
675 | } |
676 | |
677 | |
678 | /** |
679 | * Returns the current iteration position. |
680 | * @return The current iteration position. |
681 | */ |
682 | int32_t RuleBasedBreakIterator::current(void) const { |
683 | return fPosition; |
684 | } |
685 | |
686 | |
687 | //======================================================================= |
688 | // implementation |
689 | //======================================================================= |
690 | |
691 | // |
692 | // RBBIRunMode - the state machine runs an extra iteration at the beginning and end |
693 | // of user text. A variable with this enum type keeps track of where we |
694 | // are. The state machine only fetches user input while in the RUN mode. |
695 | // |
696 | enum RBBIRunMode { |
697 | RBBI_START, // state machine processing is before first char of input |
698 | RBBI_RUN, // state machine processing is in the user text |
699 | RBBI_END // state machine processing is after end of user text. |
700 | }; |
701 | |
702 | |
703 | // Map from look-ahead break states (corresponds to rules) to boundary positions. |
704 | // Allows multiple lookahead break rules to be in flight at the same time. |
705 | // |
706 | // This is a temporary approach for ICU 57. A better fix is to make the look-ahead numbers |
707 | // in the state table be sequential, then we can just index an array. And the |
708 | // table could also tell us in advance how big that array needs to be. |
709 | // |
710 | // Before ICU 57 there was just a single simple variable for a look-ahead match that |
711 | // was in progress. Two rules at once did not work. |
712 | |
713 | static const int32_t kMaxLookaheads = 8; |
714 | struct LookAheadResults { |
715 | int32_t fUsedSlotLimit; |
716 | int32_t fPositions[8]; |
717 | int16_t fKeys[8]; |
718 | |
719 | LookAheadResults() : fUsedSlotLimit(0), fPositions(), fKeys() {} |
720 | |
721 | int32_t getPosition(int16_t key) { |
722 | for (int32_t i=0; i<fUsedSlotLimit; ++i) { |
723 | if (fKeys[i] == key) { |
724 | return fPositions[i]; |
725 | } |
726 | } |
727 | UPRV_UNREACHABLE; |
728 | } |
729 | |
730 | void setPosition(int16_t key, int32_t position) { |
731 | int32_t i; |
732 | for (i=0; i<fUsedSlotLimit; ++i) { |
733 | if (fKeys[i] == key) { |
734 | fPositions[i] = position; |
735 | return; |
736 | } |
737 | } |
738 | if (i >= kMaxLookaheads) { |
739 | UPRV_UNREACHABLE; |
740 | } |
741 | fKeys[i] = key; |
742 | fPositions[i] = position; |
743 | U_ASSERT(fUsedSlotLimit == i); |
744 | fUsedSlotLimit = i + 1; |
745 | } |
746 | }; |
747 | |
748 | |
749 | //----------------------------------------------------------------------------------- |
750 | // |
751 | // handleNext() |
752 | // Run the state machine to find a boundary |
753 | // |
754 | //----------------------------------------------------------------------------------- |
755 | int32_t RuleBasedBreakIterator::handleNext() { |
756 | int32_t state; |
757 | uint16_t category = 0; |
758 | RBBIRunMode mode; |
759 | |
760 | RBBIStateTableRow *row; |
761 | UChar32 c; |
762 | LookAheadResults lookAheadMatches; |
763 | int32_t result = 0; |
764 | int32_t initialPosition = 0; |
765 | const RBBIStateTable *statetable = fData->fForwardTable; |
766 | const char *tableData = statetable->fTableData; |
767 | uint32_t tableRowLen = statetable->fRowLen; |
768 | #ifdef RBBI_DEBUG |
769 | if (gTrace) { |
770 | RBBIDebugPuts("Handle Next pos char state category" ); |
771 | } |
772 | #endif |
773 | |
774 | // handleNext alway sets the break tag value. |
775 | // Set the default for it. |
776 | fRuleStatusIndex = 0; |
777 | |
778 | fDictionaryCharCount = 0; |
779 | |
780 | // if we're already at the end of the text, return DONE. |
781 | initialPosition = fPosition; |
782 | UTEXT_SETNATIVEINDEX(&fText, initialPosition); |
783 | result = initialPosition; |
784 | c = UTEXT_NEXT32(&fText); |
785 | if (c==U_SENTINEL) { |
786 | fDone = TRUE; |
787 | return UBRK_DONE; |
788 | } |
789 | |
790 | // Set the initial state for the state machine |
791 | state = START_STATE; |
792 | row = (RBBIStateTableRow *) |
793 | //(statetable->fTableData + (statetable->fRowLen * state)); |
794 | (tableData + tableRowLen * state); |
795 | |
796 | |
797 | mode = RBBI_RUN; |
798 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { |
799 | category = 2; |
800 | mode = RBBI_START; |
801 | } |
802 | |
803 | |
804 | // loop until we reach the end of the text or transition to state 0 |
805 | // |
806 | for (;;) { |
807 | if (c == U_SENTINEL) { |
808 | // Reached end of input string. |
809 | if (mode == RBBI_END) { |
810 | // We have already run the loop one last time with the |
811 | // character set to the psueudo {eof} value. Now it is time |
812 | // to unconditionally bail out. |
813 | break; |
814 | } |
815 | // Run the loop one last time with the fake end-of-input character category. |
816 | mode = RBBI_END; |
817 | category = 1; |
818 | } |
819 | |
820 | // |
821 | // Get the char category. An incoming category of 1 or 2 means that |
822 | // we are preset for doing the beginning or end of input, and |
823 | // that we shouldn't get a category from an actual text input character. |
824 | // |
825 | if (mode == RBBI_RUN) { |
826 | // look up the current character's character category, which tells us |
827 | // which column in the state table to look at. |
828 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, |
829 | // not the size of the character going in, which is a UChar32. |
830 | // |
831 | category = UTRIE2_GET16(fData->fTrie, c); |
832 | |
833 | // Check the dictionary bit in the character's category. |
834 | // Counter is only used by dictionary based iteration. |
835 | // Chars that need to be handled by a dictionary have a flag bit set |
836 | // in their category values. |
837 | // |
838 | if ((category & 0x4000) != 0) { |
839 | fDictionaryCharCount++; |
840 | // And off the dictionary flag bit. |
841 | category &= ~0x4000; |
842 | } |
843 | } |
844 | |
845 | #ifdef RBBI_DEBUG |
846 | if (gTrace) { |
847 | RBBIDebugPrintf(" %4" PRId64 " " , utext_getNativeIndex(&fText)); |
848 | if (0x20<=c && c<0x7f) { |
849 | RBBIDebugPrintf("\"%c\" " , c); |
850 | } else { |
851 | RBBIDebugPrintf("%5x " , c); |
852 | } |
853 | RBBIDebugPrintf("%3d %3d\n" , state, category); |
854 | } |
855 | #endif |
856 | |
857 | // State Transition - move machine to its next state |
858 | // |
859 | |
860 | // fNextState is a variable-length array. |
861 | U_ASSERT(category<fData->fHeader->fCatCount); |
862 | state = row->fNextState[category]; /*Not accessing beyond memory*/ |
863 | row = (RBBIStateTableRow *) |
864 | // (statetable->fTableData + (statetable->fRowLen * state)); |
865 | (tableData + tableRowLen * state); |
866 | |
867 | |
868 | if (row->fAccepting == -1) { |
869 | // Match found, common case. |
870 | if (mode != RBBI_START) { |
871 | result = (int32_t)UTEXT_GETNATIVEINDEX(&fText); |
872 | } |
873 | fRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values. |
874 | } |
875 | |
876 | int16_t completedRule = row->fAccepting; |
877 | if (completedRule > 0) { |
878 | // Lookahead match is completed. |
879 | int32_t lookaheadResult = lookAheadMatches.getPosition(completedRule); |
880 | if (lookaheadResult >= 0) { |
881 | fRuleStatusIndex = row->fTagIdx; |
882 | fPosition = lookaheadResult; |
883 | return lookaheadResult; |
884 | } |
885 | } |
886 | |
887 | // If we are at the position of the '/' in a look-ahead (hard break) rule; |
888 | // record the current position, to be returned later, if the full rule matches. |
889 | // TODO: Move this check before the previous check of fAccepting. |
890 | // This would enable hard-break rules with no following context. |
891 | // But there are line break test failures when trying this. Investigate. |
892 | // Issue ICU-20837 |
893 | int16_t rule = row->fLookAhead; |
894 | if (rule != 0) { |
895 | int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(&fText); |
896 | lookAheadMatches.setPosition(rule, pos); |
897 | } |
898 | |
899 | if (state == STOP_STATE) { |
900 | // This is the normal exit from the lookup state machine. |
901 | // We have advanced through the string until it is certain that no |
902 | // longer match is possible, no matter what characters follow. |
903 | break; |
904 | } |
905 | |
906 | // Advance to the next character. |
907 | // If this is a beginning-of-input loop iteration, don't advance |
908 | // the input position. The next iteration will be processing the |
909 | // first real input character. |
910 | if (mode == RBBI_RUN) { |
911 | c = UTEXT_NEXT32(&fText); |
912 | } else { |
913 | if (mode == RBBI_START) { |
914 | mode = RBBI_RUN; |
915 | } |
916 | } |
917 | } |
918 | |
919 | // The state machine is done. Check whether it found a match... |
920 | |
921 | // If the iterator failed to advance in the match engine, force it ahead by one. |
922 | // (This really indicates a defect in the break rules. They should always match |
923 | // at least one character.) |
924 | if (result == initialPosition) { |
925 | utext_setNativeIndex(&fText, initialPosition); |
926 | utext_next32(&fText); |
927 | result = (int32_t)utext_getNativeIndex(&fText); |
928 | fRuleStatusIndex = 0; |
929 | } |
930 | |
931 | // Leave the iterator at our result position. |
932 | fPosition = result; |
933 | #ifdef RBBI_DEBUG |
934 | if (gTrace) { |
935 | RBBIDebugPrintf("result = %d\n\n" , result); |
936 | } |
937 | #endif |
938 | return result; |
939 | } |
940 | |
941 | |
942 | //----------------------------------------------------------------------------------- |
943 | // |
944 | // handleSafePrevious() |
945 | // |
946 | // Iterate backwards using the safe reverse rules. |
947 | // The logic of this function is similar to handleNext(), but simpler |
948 | // because the safe table does not require as many options. |
949 | // |
950 | //----------------------------------------------------------------------------------- |
951 | int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) { |
952 | int32_t state; |
953 | uint16_t category = 0; |
954 | RBBIStateTableRow *row; |
955 | UChar32 c; |
956 | int32_t result = 0; |
957 | |
958 | const RBBIStateTable *stateTable = fData->fReverseTable; |
959 | UTEXT_SETNATIVEINDEX(&fText, fromPosition); |
960 | #ifdef RBBI_DEBUG |
961 | if (gTrace) { |
962 | RBBIDebugPuts("Handle Previous pos char state category" ); |
963 | } |
964 | #endif |
965 | |
966 | // if we're already at the start of the text, return DONE. |
967 | if (fData == NULL || UTEXT_GETNATIVEINDEX(&fText)==0) { |
968 | return BreakIterator::DONE; |
969 | } |
970 | |
971 | // Set the initial state for the state machine |
972 | c = UTEXT_PREVIOUS32(&fText); |
973 | state = START_STATE; |
974 | row = (RBBIStateTableRow *) |
975 | (stateTable->fTableData + (stateTable->fRowLen * state)); |
976 | |
977 | // loop until we reach the start of the text or transition to state 0 |
978 | // |
979 | for (; c != U_SENTINEL; c = UTEXT_PREVIOUS32(&fText)) { |
980 | |
981 | // look up the current character's character category, which tells us |
982 | // which column in the state table to look at. |
983 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, |
984 | // not the size of the character going in, which is a UChar32. |
985 | // |
986 | // And off the dictionary flag bit. For reverse iteration it is not used. |
987 | category = UTRIE2_GET16(fData->fTrie, c); |
988 | category &= ~0x4000; |
989 | |
990 | #ifdef RBBI_DEBUG |
991 | if (gTrace) { |
992 | RBBIDebugPrintf(" %4d " , (int32_t)utext_getNativeIndex(&fText)); |
993 | if (0x20<=c && c<0x7f) { |
994 | RBBIDebugPrintf("\"%c\" " , c); |
995 | } else { |
996 | RBBIDebugPrintf("%5x " , c); |
997 | } |
998 | RBBIDebugPrintf("%3d %3d\n" , state, category); |
999 | } |
1000 | #endif |
1001 | |
1002 | // State Transition - move machine to its next state |
1003 | // |
1004 | // fNextState is a variable-length array. |
1005 | U_ASSERT(category<fData->fHeader->fCatCount); |
1006 | state = row->fNextState[category]; /*Not accessing beyond memory*/ |
1007 | row = (RBBIStateTableRow *) |
1008 | (stateTable->fTableData + (stateTable->fRowLen * state)); |
1009 | |
1010 | if (state == STOP_STATE) { |
1011 | // This is the normal exit from the lookup state machine. |
1012 | // Transistion to state zero means we have found a safe point. |
1013 | break; |
1014 | } |
1015 | } |
1016 | |
1017 | // The state machine is done. Check whether it found a match... |
1018 | result = (int32_t)UTEXT_GETNATIVEINDEX(&fText); |
1019 | #ifdef RBBI_DEBUG |
1020 | if (gTrace) { |
1021 | RBBIDebugPrintf("result = %d\n\n" , result); |
1022 | } |
1023 | #endif |
1024 | return result; |
1025 | } |
1026 | |
1027 | //------------------------------------------------------------------------------- |
1028 | // |
1029 | // getRuleStatus() Return the break rule tag associated with the current |
1030 | // iterator position. If the iterator arrived at its current |
1031 | // position by iterating forwards, the value will have been |
1032 | // cached by the handleNext() function. |
1033 | // |
1034 | //------------------------------------------------------------------------------- |
1035 | |
1036 | int32_t RuleBasedBreakIterator::getRuleStatus() const { |
1037 | |
1038 | // fLastRuleStatusIndex indexes to the start of the appropriate status record |
1039 | // (the number of status values.) |
1040 | // This function returns the last (largest) of the array of status values. |
1041 | int32_t idx = fRuleStatusIndex + fData->fRuleStatusTable[fRuleStatusIndex]; |
1042 | int32_t tagVal = fData->fRuleStatusTable[idx]; |
1043 | |
1044 | return tagVal; |
1045 | } |
1046 | |
1047 | |
1048 | int32_t RuleBasedBreakIterator::getRuleStatusVec( |
1049 | int32_t *fillInVec, int32_t capacity, UErrorCode &status) { |
1050 | if (U_FAILURE(status)) { |
1051 | return 0; |
1052 | } |
1053 | |
1054 | int32_t numVals = fData->fRuleStatusTable[fRuleStatusIndex]; |
1055 | int32_t numValsToCopy = numVals; |
1056 | if (numVals > capacity) { |
1057 | status = U_BUFFER_OVERFLOW_ERROR; |
1058 | numValsToCopy = capacity; |
1059 | } |
1060 | int i; |
1061 | for (i=0; i<numValsToCopy; i++) { |
1062 | fillInVec[i] = fData->fRuleStatusTable[fRuleStatusIndex + i + 1]; |
1063 | } |
1064 | return numVals; |
1065 | } |
1066 | |
1067 | |
1068 | |
1069 | //------------------------------------------------------------------------------- |
1070 | // |
1071 | // getBinaryRules Access to the compiled form of the rules, |
1072 | // for use by build system tools that save the data |
1073 | // for standard iterator types. |
1074 | // |
1075 | //------------------------------------------------------------------------------- |
1076 | const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) { |
1077 | const uint8_t *retPtr = NULL; |
1078 | length = 0; |
1079 | |
1080 | if (fData != NULL) { |
1081 | retPtr = (const uint8_t *)fData->fHeader; |
1082 | length = fData->fHeader->fLength; |
1083 | } |
1084 | return retPtr; |
1085 | } |
1086 | |
1087 | |
1088 | RuleBasedBreakIterator *RuleBasedBreakIterator::createBufferClone( |
1089 | void * /*stackBuffer*/, int32_t &bufferSize, UErrorCode &status) { |
1090 | if (U_FAILURE(status)){ |
1091 | return NULL; |
1092 | } |
1093 | |
1094 | if (bufferSize == 0) { |
1095 | bufferSize = 1; // preflighting for deprecated functionality |
1096 | return NULL; |
1097 | } |
1098 | |
1099 | BreakIterator *clonedBI = clone(); |
1100 | if (clonedBI == NULL) { |
1101 | status = U_MEMORY_ALLOCATION_ERROR; |
1102 | } else { |
1103 | status = U_SAFECLONE_ALLOCATED_WARNING; |
1104 | } |
1105 | return (RuleBasedBreakIterator *)clonedBI; |
1106 | } |
1107 | |
1108 | U_NAMESPACE_END |
1109 | |
1110 | |
1111 | static icu::UStack *gLanguageBreakFactories = nullptr; |
1112 | static const icu::UnicodeString *gEmptyString = nullptr; |
1113 | static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER; |
1114 | static icu::UInitOnce gRBBIInitOnce = U_INITONCE_INITIALIZER; |
1115 | |
1116 | /** |
1117 | * Release all static memory held by breakiterator. |
1118 | */ |
1119 | U_CDECL_BEGIN |
1120 | static UBool U_CALLCONV rbbi_cleanup(void) { |
1121 | delete gLanguageBreakFactories; |
1122 | gLanguageBreakFactories = nullptr; |
1123 | delete gEmptyString; |
1124 | gEmptyString = nullptr; |
1125 | gLanguageBreakFactoriesInitOnce.reset(); |
1126 | gRBBIInitOnce.reset(); |
1127 | return TRUE; |
1128 | } |
1129 | U_CDECL_END |
1130 | |
1131 | U_CDECL_BEGIN |
1132 | static void U_CALLCONV _deleteFactory(void *obj) { |
1133 | delete (icu::LanguageBreakFactory *) obj; |
1134 | } |
1135 | U_CDECL_END |
1136 | U_NAMESPACE_BEGIN |
1137 | |
1138 | static void U_CALLCONV rbbiInit() { |
1139 | gEmptyString = new UnicodeString(); |
1140 | ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup); |
1141 | } |
1142 | |
1143 | static void U_CALLCONV initLanguageFactories() { |
1144 | UErrorCode status = U_ZERO_ERROR; |
1145 | U_ASSERT(gLanguageBreakFactories == NULL); |
1146 | gLanguageBreakFactories = new UStack(_deleteFactory, NULL, status); |
1147 | if (gLanguageBreakFactories != NULL && U_SUCCESS(status)) { |
1148 | ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status); |
1149 | gLanguageBreakFactories->push(builtIn, status); |
1150 | #ifdef U_LOCAL_SERVICE_HOOK |
1151 | LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory" , &status); |
1152 | if (extra != NULL) { |
1153 | gLanguageBreakFactories->push(extra, status); |
1154 | } |
1155 | #endif |
1156 | } |
1157 | ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup); |
1158 | } |
1159 | |
1160 | |
1161 | static const LanguageBreakEngine* |
1162 | getLanguageBreakEngineFromFactory(UChar32 c) |
1163 | { |
1164 | umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories); |
1165 | if (gLanguageBreakFactories == NULL) { |
1166 | return NULL; |
1167 | } |
1168 | |
1169 | int32_t i = gLanguageBreakFactories->size(); |
1170 | const LanguageBreakEngine *lbe = NULL; |
1171 | while (--i >= 0) { |
1172 | LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i)); |
1173 | lbe = factory->getEngineFor(c); |
1174 | if (lbe != NULL) { |
1175 | break; |
1176 | } |
1177 | } |
1178 | return lbe; |
1179 | } |
1180 | |
1181 | |
1182 | //------------------------------------------------------------------------------- |
1183 | // |
1184 | // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the |
1185 | // the character c. |
1186 | // |
1187 | //------------------------------------------------------------------------------- |
1188 | const LanguageBreakEngine * |
1189 | RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) { |
1190 | const LanguageBreakEngine *lbe = NULL; |
1191 | UErrorCode status = U_ZERO_ERROR; |
1192 | |
1193 | if (fLanguageBreakEngines == NULL) { |
1194 | fLanguageBreakEngines = new UStack(status); |
1195 | if (fLanguageBreakEngines == NULL || U_FAILURE(status)) { |
1196 | delete fLanguageBreakEngines; |
1197 | fLanguageBreakEngines = 0; |
1198 | return NULL; |
1199 | } |
1200 | } |
1201 | |
1202 | int32_t i = fLanguageBreakEngines->size(); |
1203 | while (--i >= 0) { |
1204 | lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i)); |
1205 | if (lbe->handles(c)) { |
1206 | return lbe; |
1207 | } |
1208 | } |
1209 | |
1210 | // No existing dictionary took the character. See if a factory wants to |
1211 | // give us a new LanguageBreakEngine for this character. |
1212 | lbe = getLanguageBreakEngineFromFactory(c); |
1213 | |
1214 | // If we got one, use it and push it on our stack. |
1215 | if (lbe != NULL) { |
1216 | fLanguageBreakEngines->push((void *)lbe, status); |
1217 | // Even if we can't remember it, we can keep looking it up, so |
1218 | // return it even if the push fails. |
1219 | return lbe; |
1220 | } |
1221 | |
1222 | // No engine is forthcoming for this character. Add it to the |
1223 | // reject set. Create the reject break engine if needed. |
1224 | if (fUnhandledBreakEngine == NULL) { |
1225 | fUnhandledBreakEngine = new UnhandledEngine(status); |
1226 | if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) { |
1227 | status = U_MEMORY_ALLOCATION_ERROR; |
1228 | return nullptr; |
1229 | } |
1230 | // Put it last so that scripts for which we have an engine get tried |
1231 | // first. |
1232 | fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status); |
1233 | // If we can't insert it, or creation failed, get rid of it |
1234 | if (U_FAILURE(status)) { |
1235 | delete fUnhandledBreakEngine; |
1236 | fUnhandledBreakEngine = 0; |
1237 | return NULL; |
1238 | } |
1239 | } |
1240 | |
1241 | // Tell the reject engine about the character; at its discretion, it may |
1242 | // add more than just the one character. |
1243 | fUnhandledBreakEngine->handleCharacter(c); |
1244 | |
1245 | return fUnhandledBreakEngine; |
1246 | } |
1247 | |
1248 | void RuleBasedBreakIterator::dumpCache() { |
1249 | fBreakCache->dumpCache(); |
1250 | } |
1251 | |
1252 | void RuleBasedBreakIterator::dumpTables() { |
1253 | fData->printData(); |
1254 | } |
1255 | |
1256 | /** |
1257 | * Returns the description used to create this iterator |
1258 | */ |
1259 | |
1260 | const UnicodeString& |
1261 | RuleBasedBreakIterator::getRules() const { |
1262 | if (fData != NULL) { |
1263 | return fData->getRuleSourceString(); |
1264 | } else { |
1265 | umtx_initOnce(gRBBIInitOnce, &rbbiInit); |
1266 | return *gEmptyString; |
1267 | } |
1268 | } |
1269 | |
1270 | U_NAMESPACE_END |
1271 | |
1272 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
1273 | |