1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * |
6 | * Copyright (C) 2007-2012, International Business Machines |
7 | * Corporation and others. All Rights Reserved. |
8 | * |
9 | ****************************************************************************** |
10 | * file name: unisetspan.cpp |
11 | * encoding: UTF-8 |
12 | * tab size: 8 (not used) |
13 | * indentation:4 |
14 | * |
15 | * created on: 2007mar01 |
16 | * created by: Markus W. Scherer |
17 | */ |
18 | |
19 | #include "unicode/utypes.h" |
20 | #include "unicode/uniset.h" |
21 | #include "unicode/ustring.h" |
22 | #include "unicode/utf8.h" |
23 | #include "unicode/utf16.h" |
24 | #include "cmemory.h" |
25 | #include "uvector.h" |
26 | #include "unisetspan.h" |
27 | |
28 | U_NAMESPACE_BEGIN |
29 | |
30 | /* |
31 | * List of offsets from the current position from where to try matching |
32 | * a code point or a string. |
33 | * Store offsets rather than indexes to simplify the code and use the same list |
34 | * for both increments (in span()) and decrements (in spanBack()). |
35 | * |
36 | * Assumption: The maximum offset is limited, and the offsets that are stored |
37 | * at any one time are relatively dense, that is, there are normally no gaps of |
38 | * hundreds or thousands of offset values. |
39 | * |
40 | * The implementation uses a circular buffer of byte flags, |
41 | * each indicating whether the corresponding offset is in the list. |
42 | * This avoids inserting into a sorted list of offsets (or absolute indexes) and |
43 | * physically moving part of the list. |
44 | * |
45 | * Note: In principle, the caller should setMaxLength() to the maximum of the |
46 | * max string length and U16_LENGTH/U8_LENGTH to account for |
47 | * "long" single code points. |
48 | * However, this implementation uses at least a staticList with more than |
49 | * U8_LENGTH entries anyway. |
50 | * |
51 | * Note: If maxLength were guaranteed to be no more than 32 or 64, |
52 | * the list could be stored as bit flags in a single integer. |
53 | * Rather than handling a circular buffer with a start list index, |
54 | * the integer would simply be shifted when lower offsets are removed. |
55 | * UnicodeSet does not have a limit on the lengths of strings. |
56 | */ |
57 | class OffsetList { // Only ever stack-allocated, does not need to inherit UMemory. |
58 | public: |
59 | OffsetList() : list(staticList), capacity(0), length(0), start(0) {} |
60 | |
61 | ~OffsetList() { |
62 | if(list!=staticList) { |
63 | uprv_free(list); |
64 | } |
65 | } |
66 | |
67 | // Call exactly once if the list is to be used. |
68 | void setMaxLength(int32_t maxLength) { |
69 | if(maxLength<=(int32_t)sizeof(staticList)) { |
70 | capacity=(int32_t)sizeof(staticList); |
71 | } else { |
72 | UBool *l=(UBool *)uprv_malloc(maxLength); |
73 | if(l!=NULL) { |
74 | list=l; |
75 | capacity=maxLength; |
76 | } |
77 | } |
78 | uprv_memset(list, 0, capacity); |
79 | } |
80 | |
81 | void clear() { |
82 | uprv_memset(list, 0, capacity); |
83 | start=length=0; |
84 | } |
85 | |
86 | UBool isEmpty() const { |
87 | return (UBool)(length==0); |
88 | } |
89 | |
90 | // Reduce all stored offsets by delta, used when the current position |
91 | // moves by delta. |
92 | // There must not be any offsets lower than delta. |
93 | // If there is an offset equal to delta, it is removed. |
94 | // delta=[1..maxLength] |
95 | void shift(int32_t delta) { |
96 | int32_t i=start+delta; |
97 | if(i>=capacity) { |
98 | i-=capacity; |
99 | } |
100 | if(list[i]) { |
101 | list[i]=FALSE; |
102 | --length; |
103 | } |
104 | start=i; |
105 | } |
106 | |
107 | // Add an offset. The list must not contain it yet. |
108 | // offset=[1..maxLength] |
109 | void addOffset(int32_t offset) { |
110 | int32_t i=start+offset; |
111 | if(i>=capacity) { |
112 | i-=capacity; |
113 | } |
114 | list[i]=TRUE; |
115 | ++length; |
116 | } |
117 | |
118 | // offset=[1..maxLength] |
119 | UBool containsOffset(int32_t offset) const { |
120 | int32_t i=start+offset; |
121 | if(i>=capacity) { |
122 | i-=capacity; |
123 | } |
124 | return list[i]; |
125 | } |
126 | |
127 | // Find the lowest stored offset from a non-empty list, remove it, |
128 | // and reduce all other offsets by this minimum. |
129 | // Returns [1..maxLength]. |
130 | int32_t popMinimum() { |
131 | // Look for the next offset in list[start+1..capacity-1]. |
132 | int32_t i=start, result; |
133 | while(++i<capacity) { |
134 | if(list[i]) { |
135 | list[i]=FALSE; |
136 | --length; |
137 | result=i-start; |
138 | start=i; |
139 | return result; |
140 | } |
141 | } |
142 | // i==capacity |
143 | |
144 | // Wrap around and look for the next offset in list[0..start]. |
145 | // Since the list is not empty, there will be one. |
146 | result=capacity-start; |
147 | i=0; |
148 | while(!list[i]) { |
149 | ++i; |
150 | } |
151 | list[i]=FALSE; |
152 | --length; |
153 | start=i; |
154 | return result+=i; |
155 | } |
156 | |
157 | private: |
158 | UBool *list; |
159 | int32_t capacity; |
160 | int32_t length; |
161 | int32_t start; |
162 | |
163 | UBool staticList[16]; |
164 | }; |
165 | |
166 | // Get the number of UTF-8 bytes for a UTF-16 (sub)string. |
167 | static int32_t |
168 | getUTF8Length(const UChar *s, int32_t length) { |
169 | UErrorCode errorCode=U_ZERO_ERROR; |
170 | int32_t length8=0; |
171 | u_strToUTF8(NULL, 0, &length8, s, length, &errorCode); |
172 | if(U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR) { |
173 | return length8; |
174 | } else { |
175 | // The string contains an unpaired surrogate. |
176 | // Ignore this string. |
177 | return 0; |
178 | } |
179 | } |
180 | |
181 | // Append the UTF-8 version of the string to t and return the appended UTF-8 length. |
182 | static int32_t |
183 | appendUTF8(const UChar *s, int32_t length, uint8_t *t, int32_t capacity) { |
184 | UErrorCode errorCode=U_ZERO_ERROR; |
185 | int32_t length8=0; |
186 | u_strToUTF8((char *)t, capacity, &length8, s, length, &errorCode); |
187 | if(U_SUCCESS(errorCode)) { |
188 | return length8; |
189 | } else { |
190 | // The string contains an unpaired surrogate. |
191 | // Ignore this string. |
192 | return 0; |
193 | } |
194 | } |
195 | |
196 | static inline uint8_t |
197 | makeSpanLengthByte(int32_t spanLength) { |
198 | // 0xfe==UnicodeSetStringSpan::LONG_SPAN |
199 | return spanLength<0xfe ? (uint8_t)spanLength : (uint8_t)0xfe; |
200 | } |
201 | |
202 | // Construct for all variants of span(), or only for any one variant. |
203 | // Initialize as little as possible, for single use. |
204 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSet &set, |
205 | const UVector &setStrings, |
206 | uint32_t which) |
207 | : spanSet(0, 0x10ffff), pSpanNotSet(NULL), strings(setStrings), |
208 | utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), |
209 | utf8Length(0), |
210 | maxLength16(0), maxLength8(0), |
211 | all((UBool)(which==ALL)) { |
212 | spanSet.retainAll(set); |
213 | if(which&NOT_CONTAINED) { |
214 | // Default to the same sets. |
215 | // addToSpanNotSet() will create a separate set if necessary. |
216 | pSpanNotSet=&spanSet; |
217 | } |
218 | |
219 | // Determine if the strings even need to be taken into account at all for span() etc. |
220 | // If any string is relevant, then all strings need to be used for |
221 | // span(longest match) but only the relevant ones for span(while contained). |
222 | // TODO: Possible optimization: Distinguish CONTAINED vs. LONGEST_MATCH |
223 | // and do not store UTF-8 strings if !thisRelevant and CONTAINED. |
224 | // (Only store irrelevant UTF-8 strings for LONGEST_MATCH where they are relevant after all.) |
225 | // Also count the lengths of the UTF-8 versions of the strings for memory allocation. |
226 | int32_t stringsLength=strings.size(); |
227 | |
228 | int32_t i, spanLength; |
229 | UBool someRelevant=FALSE; |
230 | for(i=0; i<stringsLength; ++i) { |
231 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
232 | const UChar *s16=string.getBuffer(); |
233 | int32_t length16=string.length(); |
234 | UBool thisRelevant; |
235 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); |
236 | if(spanLength<length16) { // Relevant string. |
237 | someRelevant=thisRelevant=TRUE; |
238 | } else { |
239 | thisRelevant=FALSE; |
240 | } |
241 | if((which&UTF16) && length16>maxLength16) { |
242 | maxLength16=length16; |
243 | } |
244 | if((which&UTF8) && (thisRelevant || (which&CONTAINED))) { |
245 | int32_t length8=getUTF8Length(s16, length16); |
246 | utf8Length+=length8; |
247 | if(length8>maxLength8) { |
248 | maxLength8=length8; |
249 | } |
250 | } |
251 | } |
252 | if(!someRelevant) { |
253 | maxLength16=maxLength8=0; |
254 | return; |
255 | } |
256 | |
257 | // Freeze after checking for the need to use strings at all because freezing |
258 | // a set takes some time and memory which are wasted if there are no relevant strings. |
259 | if(all) { |
260 | spanSet.freeze(); |
261 | } |
262 | |
263 | uint8_t *spanBackLengths; |
264 | uint8_t *spanUTF8Lengths; |
265 | uint8_t *spanBackUTF8Lengths; |
266 | |
267 | // Allocate a block of meta data. |
268 | int32_t allocSize; |
269 | if(all) { |
270 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. |
271 | allocSize=stringsLength*(4+1+1+1+1)+utf8Length; |
272 | } else { |
273 | allocSize=stringsLength; // One set of span lengths. |
274 | if(which&UTF8) { |
275 | // UTF-8 lengths and UTF-8 strings. |
276 | allocSize+=stringsLength*4+utf8Length; |
277 | } |
278 | } |
279 | if(allocSize<=(int32_t)sizeof(staticLengths)) { |
280 | utf8Lengths=staticLengths; |
281 | } else { |
282 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); |
283 | if(utf8Lengths==NULL) { |
284 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. |
285 | return; // Out of memory. |
286 | } |
287 | } |
288 | |
289 | if(all) { |
290 | // Store span lengths for all span() variants. |
291 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); |
292 | spanBackLengths=spanLengths+stringsLength; |
293 | spanUTF8Lengths=spanBackLengths+stringsLength; |
294 | spanBackUTF8Lengths=spanUTF8Lengths+stringsLength; |
295 | utf8=spanBackUTF8Lengths+stringsLength; |
296 | } else { |
297 | // Store span lengths for only one span() variant. |
298 | if(which&UTF8) { |
299 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); |
300 | utf8=spanLengths+stringsLength; |
301 | } else { |
302 | spanLengths=(uint8_t *)utf8Lengths; |
303 | } |
304 | spanBackLengths=spanUTF8Lengths=spanBackUTF8Lengths=spanLengths; |
305 | } |
306 | |
307 | // Set the meta data and pSpanNotSet and write the UTF-8 strings. |
308 | int32_t utf8Count=0; // Count UTF-8 bytes written so far. |
309 | |
310 | for(i=0; i<stringsLength; ++i) { |
311 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
312 | const UChar *s16=string.getBuffer(); |
313 | int32_t length16=string.length(); |
314 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); |
315 | if(spanLength<length16) { // Relevant string. |
316 | if(which&UTF16) { |
317 | if(which&CONTAINED) { |
318 | if(which&FWD) { |
319 | spanLengths[i]=makeSpanLengthByte(spanLength); |
320 | } |
321 | if(which&BACK) { |
322 | spanLength=length16-spanSet.spanBack(s16, length16, USET_SPAN_CONTAINED); |
323 | spanBackLengths[i]=makeSpanLengthByte(spanLength); |
324 | } |
325 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { |
326 | spanLengths[i]=spanBackLengths[i]=0; // Only store a relevant/irrelevant flag. |
327 | } |
328 | } |
329 | if(which&UTF8) { |
330 | uint8_t *s8=utf8+utf8Count; |
331 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); |
332 | utf8Count+=utf8Lengths[i]=length8; |
333 | if(length8==0) { // Irrelevant for UTF-8 because not representable in UTF-8. |
334 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=(uint8_t)ALL_CP_CONTAINED; |
335 | } else { // Relevant for UTF-8. |
336 | if(which&CONTAINED) { |
337 | if(which&FWD) { |
338 | spanLength=spanSet.spanUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); |
339 | spanUTF8Lengths[i]=makeSpanLengthByte(spanLength); |
340 | } |
341 | if(which&BACK) { |
342 | spanLength=length8-spanSet.spanBackUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); |
343 | spanBackUTF8Lengths[i]=makeSpanLengthByte(spanLength); |
344 | } |
345 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { |
346 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=0; // Only store a relevant/irrelevant flag. |
347 | } |
348 | } |
349 | } |
350 | if(which&NOT_CONTAINED) { |
351 | // Add string start and end code points to the spanNotSet so that |
352 | // a span(while not contained) stops before any string. |
353 | UChar32 c; |
354 | if(which&FWD) { |
355 | int32_t len=0; |
356 | U16_NEXT(s16, len, length16, c); |
357 | addToSpanNotSet(c); |
358 | } |
359 | if(which&BACK) { |
360 | int32_t len=length16; |
361 | U16_PREV(s16, 0, len, c); |
362 | addToSpanNotSet(c); |
363 | } |
364 | } |
365 | } else { // Irrelevant string. |
366 | if(which&UTF8) { |
367 | if(which&CONTAINED) { // Only necessary for LONGEST_MATCH. |
368 | uint8_t *s8=utf8+utf8Count; |
369 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); |
370 | utf8Count+=utf8Lengths[i]=length8; |
371 | } else { |
372 | utf8Lengths[i]=0; |
373 | } |
374 | } |
375 | if(all) { |
376 | spanLengths[i]=spanBackLengths[i]= |
377 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]= |
378 | (uint8_t)ALL_CP_CONTAINED; |
379 | } else { |
380 | // All spanXYZLengths pointers contain the same address. |
381 | spanLengths[i]=(uint8_t)ALL_CP_CONTAINED; |
382 | } |
383 | } |
384 | } |
385 | |
386 | // Finish. |
387 | if(all) { |
388 | pSpanNotSet->freeze(); |
389 | } |
390 | } |
391 | |
392 | // Copy constructor. Assumes which==ALL for a frozen set. |
393 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSetStringSpan &otherStringSpan, |
394 | const UVector &newParentSetStrings) |
395 | : spanSet(otherStringSpan.spanSet), pSpanNotSet(NULL), strings(newParentSetStrings), |
396 | utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), |
397 | utf8Length(otherStringSpan.utf8Length), |
398 | maxLength16(otherStringSpan.maxLength16), maxLength8(otherStringSpan.maxLength8), |
399 | all(TRUE) { |
400 | if(otherStringSpan.pSpanNotSet==&otherStringSpan.spanSet) { |
401 | pSpanNotSet=&spanSet; |
402 | } else { |
403 | pSpanNotSet=otherStringSpan.pSpanNotSet->clone(); |
404 | } |
405 | |
406 | // Allocate a block of meta data. |
407 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. |
408 | int32_t stringsLength=strings.size(); |
409 | int32_t allocSize=stringsLength*(4+1+1+1+1)+utf8Length; |
410 | if(allocSize<=(int32_t)sizeof(staticLengths)) { |
411 | utf8Lengths=staticLengths; |
412 | } else { |
413 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); |
414 | if(utf8Lengths==NULL) { |
415 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. |
416 | return; // Out of memory. |
417 | } |
418 | } |
419 | |
420 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); |
421 | utf8=spanLengths+stringsLength*4; |
422 | uprv_memcpy(utf8Lengths, otherStringSpan.utf8Lengths, allocSize); |
423 | } |
424 | |
425 | UnicodeSetStringSpan::~UnicodeSetStringSpan() { |
426 | if(pSpanNotSet!=NULL && pSpanNotSet!=&spanSet) { |
427 | delete pSpanNotSet; |
428 | } |
429 | if(utf8Lengths!=NULL && utf8Lengths!=staticLengths) { |
430 | uprv_free(utf8Lengths); |
431 | } |
432 | } |
433 | |
434 | void UnicodeSetStringSpan::addToSpanNotSet(UChar32 c) { |
435 | if(pSpanNotSet==NULL || pSpanNotSet==&spanSet) { |
436 | if(spanSet.contains(c)) { |
437 | return; // Nothing to do. |
438 | } |
439 | UnicodeSet *newSet=spanSet.cloneAsThawed(); |
440 | if(newSet==NULL) { |
441 | return; // Out of memory. |
442 | } else { |
443 | pSpanNotSet=newSet; |
444 | } |
445 | } |
446 | pSpanNotSet->add(c); |
447 | } |
448 | |
449 | // Compare strings without any argument checks. Requires length>0. |
450 | static inline UBool |
451 | matches16(const UChar *s, const UChar *t, int32_t length) { |
452 | do { |
453 | if(*s++!=*t++) { |
454 | return FALSE; |
455 | } |
456 | } while(--length>0); |
457 | return TRUE; |
458 | } |
459 | |
460 | static inline UBool |
461 | matches8(const uint8_t *s, const uint8_t *t, int32_t length) { |
462 | do { |
463 | if(*s++!=*t++) { |
464 | return FALSE; |
465 | } |
466 | } while(--length>0); |
467 | return TRUE; |
468 | } |
469 | |
470 | // Compare 16-bit Unicode strings (which may be malformed UTF-16) |
471 | // at code point boundaries. |
472 | // That is, each edge of a match must not be in the middle of a surrogate pair. |
473 | static inline UBool |
474 | matches16CPB(const UChar *s, int32_t start, int32_t limit, const UChar *t, int32_t length) { |
475 | s+=start; |
476 | limit-=start; |
477 | return matches16(s, t, length) && |
478 | !(0<start && U16_IS_LEAD(s[-1]) && U16_IS_TRAIL(s[0])) && |
479 | !(length<limit && U16_IS_LEAD(s[length-1]) && U16_IS_TRAIL(s[length])); |
480 | } |
481 | |
482 | // Does the set contain the next code point? |
483 | // If so, return its length; otherwise return its negative length. |
484 | static inline int32_t |
485 | spanOne(const UnicodeSet &set, const UChar *s, int32_t length) { |
486 | UChar c=*s, c2; |
487 | if(c>=0xd800 && c<=0xdbff && length>=2 && U16_IS_TRAIL(c2=s[1])) { |
488 | return set.contains(U16_GET_SUPPLEMENTARY(c, c2)) ? 2 : -2; |
489 | } |
490 | return set.contains(c) ? 1 : -1; |
491 | } |
492 | |
493 | static inline int32_t |
494 | spanOneBack(const UnicodeSet &set, const UChar *s, int32_t length) { |
495 | UChar c=s[length-1], c2; |
496 | if(c>=0xdc00 && c<=0xdfff && length>=2 && U16_IS_LEAD(c2=s[length-2])) { |
497 | return set.contains(U16_GET_SUPPLEMENTARY(c2, c)) ? 2 : -2; |
498 | } |
499 | return set.contains(c) ? 1 : -1; |
500 | } |
501 | |
502 | static inline int32_t |
503 | spanOneUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { |
504 | UChar32 c=*s; |
505 | if(U8_IS_SINGLE(c)) { |
506 | return set.contains(c) ? 1 : -1; |
507 | } |
508 | // Take advantage of non-ASCII fastpaths in U8_NEXT_OR_FFFD(). |
509 | int32_t i=0; |
510 | U8_NEXT_OR_FFFD(s, i, length, c); |
511 | return set.contains(c) ? i : -i; |
512 | } |
513 | |
514 | static inline int32_t |
515 | spanOneBackUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { |
516 | UChar32 c=s[length-1]; |
517 | if(U8_IS_SINGLE(c)) { |
518 | return set.contains(c) ? 1 : -1; |
519 | } |
520 | int32_t i=length-1; |
521 | c=utf8_prevCharSafeBody(s, 0, &i, c, -3); |
522 | length-=i; |
523 | return set.contains(c) ? length : -length; |
524 | } |
525 | |
526 | /* |
527 | * Note: In span() when spanLength==0 (after a string match, or at the beginning |
528 | * after an empty code point span) and in spanNot() and spanNotUTF8(), |
529 | * string matching could use a binary search |
530 | * because all string matches are done from the same start index. |
531 | * |
532 | * For UTF-8, this would require a comparison function that returns UTF-16 order. |
533 | * |
534 | * This optimization should not be necessary for normal UnicodeSets because |
535 | * most sets have no strings, and most sets with strings have |
536 | * very few very short strings. |
537 | * For cases with many strings, it might be better to use a different API |
538 | * and implementation with a DFA (state machine). |
539 | */ |
540 | |
541 | /* |
542 | * Algorithm for span(USET_SPAN_CONTAINED) |
543 | * |
544 | * Theoretical algorithm: |
545 | * - Iterate through the string, and at each code point boundary: |
546 | * + If the code point there is in the set, then remember to continue after it. |
547 | * + If a set string matches at the current position, then remember to continue after it. |
548 | * + Either recursively span for each code point or string match, |
549 | * or recursively span for all but the shortest one and |
550 | * iteratively continue the span with the shortest local match. |
551 | * + Remember the longest recursive span (the farthest end point). |
552 | * + If there is no match at the current position, neither for the code point there |
553 | * nor for any set string, then stop and return the longest recursive span length. |
554 | * |
555 | * Optimized implementation: |
556 | * |
557 | * (We assume that most sets will have very few very short strings. |
558 | * A span using a string-less set is extremely fast.) |
559 | * |
560 | * Create and cache a spanSet which contains all of the single code points |
561 | * of the original set but none of its strings. |
562 | * |
563 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). |
564 | * - Loop: |
565 | * + Try to match each set string at the end of the spanLength. |
566 | * ~ Set strings that start with set-contained code points must be matched |
567 | * with a partial overlap because the recursive algorithm would have tried |
568 | * to match them at every position. |
569 | * ~ Set strings that entirely consist of set-contained code points |
570 | * are irrelevant for span(USET_SPAN_CONTAINED) because the |
571 | * recursive algorithm would continue after them anyway |
572 | * and find the longest recursive match from their end. |
573 | * ~ Rather than recursing, note each end point of a set string match. |
574 | * + If no set string matched after spanSet.span(), then return |
575 | * with where the spanSet.span() ended. |
576 | * + If at least one set string matched after spanSet.span(), then |
577 | * pop the shortest string match end point and continue |
578 | * the loop, trying to match all set strings from there. |
579 | * + If at least one more set string matched after a previous string match, |
580 | * then test if the code point after the previous string match is also |
581 | * contained in the set. |
582 | * Continue the loop with the shortest end point of either this code point |
583 | * or a matching set string. |
584 | * + If no more set string matched after a previous string match, |
585 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). |
586 | * Stop if spanLength==0, otherwise continue the loop. |
587 | * |
588 | * By noting each end point of a set string match, |
589 | * the function visits each string position at most once and finishes |
590 | * in linear time. |
591 | * |
592 | * The recursive algorithm may visit the same string position many times |
593 | * if multiple paths lead to it and finishes in exponential time. |
594 | */ |
595 | |
596 | /* |
597 | * Algorithm for span(USET_SPAN_SIMPLE) |
598 | * |
599 | * Theoretical algorithm: |
600 | * - Iterate through the string, and at each code point boundary: |
601 | * + If the code point there is in the set, then remember to continue after it. |
602 | * + If a set string matches at the current position, then remember to continue after it. |
603 | * + Continue from the farthest match position and ignore all others. |
604 | * + If there is no match at the current position, |
605 | * then stop and return the current position. |
606 | * |
607 | * Optimized implementation: |
608 | * |
609 | * (Same assumption and spanSet as above.) |
610 | * |
611 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). |
612 | * - Loop: |
613 | * + Try to match each set string at the end of the spanLength. |
614 | * ~ Set strings that start with set-contained code points must be matched |
615 | * with a partial overlap because the standard algorithm would have tried |
616 | * to match them earlier. |
617 | * ~ Set strings that entirely consist of set-contained code points |
618 | * must be matched with a full overlap because the longest-match algorithm |
619 | * would hide set string matches that end earlier. |
620 | * Such set strings need not be matched earlier inside the code point span |
621 | * because the standard algorithm would then have continued after |
622 | * the set string match anyway. |
623 | * ~ Remember the longest set string match (farthest end point) from the earliest |
624 | * starting point. |
625 | * + If no set string matched after spanSet.span(), then return |
626 | * with where the spanSet.span() ended. |
627 | * + If at least one set string matched, then continue the loop after the |
628 | * longest match from the earliest position. |
629 | * + If no more set string matched after a previous string match, |
630 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). |
631 | * Stop if spanLength==0, otherwise continue the loop. |
632 | */ |
633 | |
634 | int32_t UnicodeSetStringSpan::span(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { |
635 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
636 | return spanNot(s, length); |
637 | } |
638 | int32_t spanLength=spanSet.span(s, length, USET_SPAN_CONTAINED); |
639 | if(spanLength==length) { |
640 | return length; |
641 | } |
642 | |
643 | // Consider strings; they may overlap with the span. |
644 | OffsetList offsets; |
645 | if(spanCondition==USET_SPAN_CONTAINED) { |
646 | // Use offset list to try all possibilities. |
647 | offsets.setMaxLength(maxLength16); |
648 | } |
649 | int32_t pos=spanLength, rest=length-pos; |
650 | int32_t i, stringsLength=strings.size(); |
651 | for(;;) { |
652 | if(spanCondition==USET_SPAN_CONTAINED) { |
653 | for(i=0; i<stringsLength; ++i) { |
654 | int32_t overlap=spanLengths[i]; |
655 | if(overlap==ALL_CP_CONTAINED) { |
656 | continue; // Irrelevant string. |
657 | } |
658 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
659 | const UChar *s16=string.getBuffer(); |
660 | int32_t length16=string.length(); |
661 | |
662 | // Try to match this string at pos-overlap..pos. |
663 | if(overlap>=LONG_SPAN) { |
664 | overlap=length16; |
665 | // While contained: No point matching fully inside the code point span. |
666 | U16_BACK_1(s16, 0, overlap); // Length of the string minus the last code point. |
667 | } |
668 | if(overlap>spanLength) { |
669 | overlap=spanLength; |
670 | } |
671 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. |
672 | for(;;) { |
673 | if(inc>rest) { |
674 | break; |
675 | } |
676 | // Try to match if the increment is not listed already. |
677 | if(!offsets.containsOffset(inc) && matches16CPB(s, pos-overlap, length, s16, length16)) { |
678 | if(inc==rest) { |
679 | return length; // Reached the end of the string. |
680 | } |
681 | offsets.addOffset(inc); |
682 | } |
683 | if(overlap==0) { |
684 | break; |
685 | } |
686 | --overlap; |
687 | ++inc; |
688 | } |
689 | } |
690 | } else /* USET_SPAN_SIMPLE */ { |
691 | int32_t maxInc=0, maxOverlap=0; |
692 | for(i=0; i<stringsLength; ++i) { |
693 | int32_t overlap=spanLengths[i]; |
694 | // For longest match, we do need to try to match even an all-contained string |
695 | // to find the match from the earliest start. |
696 | |
697 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
698 | const UChar *s16=string.getBuffer(); |
699 | int32_t length16=string.length(); |
700 | |
701 | // Try to match this string at pos-overlap..pos. |
702 | if(overlap>=LONG_SPAN) { |
703 | overlap=length16; |
704 | // Longest match: Need to match fully inside the code point span |
705 | // to find the match from the earliest start. |
706 | } |
707 | if(overlap>spanLength) { |
708 | overlap=spanLength; |
709 | } |
710 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. |
711 | for(;;) { |
712 | if(inc>rest || overlap<maxOverlap) { |
713 | break; |
714 | } |
715 | // Try to match if the string is longer or starts earlier. |
716 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && |
717 | matches16CPB(s, pos-overlap, length, s16, length16) |
718 | ) { |
719 | maxInc=inc; // Longest match from earliest start. |
720 | maxOverlap=overlap; |
721 | break; |
722 | } |
723 | --overlap; |
724 | ++inc; |
725 | } |
726 | } |
727 | |
728 | if(maxInc!=0 || maxOverlap!=0) { |
729 | // Longest-match algorithm, and there was a string match. |
730 | // Simply continue after it. |
731 | pos+=maxInc; |
732 | rest-=maxInc; |
733 | if(rest==0) { |
734 | return length; // Reached the end of the string. |
735 | } |
736 | spanLength=0; // Match strings from after a string match. |
737 | continue; |
738 | } |
739 | } |
740 | // Finished trying to match all strings at pos. |
741 | |
742 | if(spanLength!=0 || pos==0) { |
743 | // The position is after an unlimited code point span (spanLength!=0), |
744 | // not after a string match. |
745 | // The only position where spanLength==0 after a span is pos==0. |
746 | // Otherwise, an unlimited code point span is only tried again when no |
747 | // strings match, and if such a non-initial span fails we stop. |
748 | if(offsets.isEmpty()) { |
749 | return pos; // No strings matched after a span. |
750 | } |
751 | // Match strings from after the next string match. |
752 | } else { |
753 | // The position is after a string match (or a single code point). |
754 | if(offsets.isEmpty()) { |
755 | // No more strings matched after a previous string match. |
756 | // Try another code point span from after the last string match. |
757 | spanLength=spanSet.span(s+pos, rest, USET_SPAN_CONTAINED); |
758 | if( spanLength==rest || // Reached the end of the string, or |
759 | spanLength==0 // neither strings nor span progressed. |
760 | ) { |
761 | return pos+spanLength; |
762 | } |
763 | pos+=spanLength; |
764 | rest-=spanLength; |
765 | continue; // spanLength>0: Match strings from after a span. |
766 | } else { |
767 | // Try to match only one code point from after a string match if some |
768 | // string matched beyond it, so that we try all possible positions |
769 | // and don't overshoot. |
770 | spanLength=spanOne(spanSet, s+pos, rest); |
771 | if(spanLength>0) { |
772 | if(spanLength==rest) { |
773 | return length; // Reached the end of the string. |
774 | } |
775 | // Match strings after this code point. |
776 | // There cannot be any increments below it because UnicodeSet strings |
777 | // contain multiple code points. |
778 | pos+=spanLength; |
779 | rest-=spanLength; |
780 | offsets.shift(spanLength); |
781 | spanLength=0; |
782 | continue; // Match strings from after a single code point. |
783 | } |
784 | // Match strings from after the next string match. |
785 | } |
786 | } |
787 | int32_t minOffset=offsets.popMinimum(); |
788 | pos+=minOffset; |
789 | rest-=minOffset; |
790 | spanLength=0; // Match strings from after a string match. |
791 | } |
792 | } |
793 | |
794 | int32_t UnicodeSetStringSpan::spanBack(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { |
795 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
796 | return spanNotBack(s, length); |
797 | } |
798 | int32_t pos=spanSet.spanBack(s, length, USET_SPAN_CONTAINED); |
799 | if(pos==0) { |
800 | return 0; |
801 | } |
802 | int32_t spanLength=length-pos; |
803 | |
804 | // Consider strings; they may overlap with the span. |
805 | OffsetList offsets; |
806 | if(spanCondition==USET_SPAN_CONTAINED) { |
807 | // Use offset list to try all possibilities. |
808 | offsets.setMaxLength(maxLength16); |
809 | } |
810 | int32_t i, stringsLength=strings.size(); |
811 | uint8_t *spanBackLengths=spanLengths; |
812 | if(all) { |
813 | spanBackLengths+=stringsLength; |
814 | } |
815 | for(;;) { |
816 | if(spanCondition==USET_SPAN_CONTAINED) { |
817 | for(i=0; i<stringsLength; ++i) { |
818 | int32_t overlap=spanBackLengths[i]; |
819 | if(overlap==ALL_CP_CONTAINED) { |
820 | continue; // Irrelevant string. |
821 | } |
822 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
823 | const UChar *s16=string.getBuffer(); |
824 | int32_t length16=string.length(); |
825 | |
826 | // Try to match this string at pos-(length16-overlap)..pos-length16. |
827 | if(overlap>=LONG_SPAN) { |
828 | overlap=length16; |
829 | // While contained: No point matching fully inside the code point span. |
830 | int32_t len1=0; |
831 | U16_FWD_1(s16, len1, overlap); |
832 | overlap-=len1; // Length of the string minus the first code point. |
833 | } |
834 | if(overlap>spanLength) { |
835 | overlap=spanLength; |
836 | } |
837 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. |
838 | for(;;) { |
839 | if(dec>pos) { |
840 | break; |
841 | } |
842 | // Try to match if the decrement is not listed already. |
843 | if(!offsets.containsOffset(dec) && matches16CPB(s, pos-dec, length, s16, length16)) { |
844 | if(dec==pos) { |
845 | return 0; // Reached the start of the string. |
846 | } |
847 | offsets.addOffset(dec); |
848 | } |
849 | if(overlap==0) { |
850 | break; |
851 | } |
852 | --overlap; |
853 | ++dec; |
854 | } |
855 | } |
856 | } else /* USET_SPAN_SIMPLE */ { |
857 | int32_t maxDec=0, maxOverlap=0; |
858 | for(i=0; i<stringsLength; ++i) { |
859 | int32_t overlap=spanBackLengths[i]; |
860 | // For longest match, we do need to try to match even an all-contained string |
861 | // to find the match from the latest end. |
862 | |
863 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
864 | const UChar *s16=string.getBuffer(); |
865 | int32_t length16=string.length(); |
866 | |
867 | // Try to match this string at pos-(length16-overlap)..pos-length16. |
868 | if(overlap>=LONG_SPAN) { |
869 | overlap=length16; |
870 | // Longest match: Need to match fully inside the code point span |
871 | // to find the match from the latest end. |
872 | } |
873 | if(overlap>spanLength) { |
874 | overlap=spanLength; |
875 | } |
876 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. |
877 | for(;;) { |
878 | if(dec>pos || overlap<maxOverlap) { |
879 | break; |
880 | } |
881 | // Try to match if the string is longer or ends later. |
882 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && |
883 | matches16CPB(s, pos-dec, length, s16, length16) |
884 | ) { |
885 | maxDec=dec; // Longest match from latest end. |
886 | maxOverlap=overlap; |
887 | break; |
888 | } |
889 | --overlap; |
890 | ++dec; |
891 | } |
892 | } |
893 | |
894 | if(maxDec!=0 || maxOverlap!=0) { |
895 | // Longest-match algorithm, and there was a string match. |
896 | // Simply continue before it. |
897 | pos-=maxDec; |
898 | if(pos==0) { |
899 | return 0; // Reached the start of the string. |
900 | } |
901 | spanLength=0; // Match strings from before a string match. |
902 | continue; |
903 | } |
904 | } |
905 | // Finished trying to match all strings at pos. |
906 | |
907 | if(spanLength!=0 || pos==length) { |
908 | // The position is before an unlimited code point span (spanLength!=0), |
909 | // not before a string match. |
910 | // The only position where spanLength==0 before a span is pos==length. |
911 | // Otherwise, an unlimited code point span is only tried again when no |
912 | // strings match, and if such a non-initial span fails we stop. |
913 | if(offsets.isEmpty()) { |
914 | return pos; // No strings matched before a span. |
915 | } |
916 | // Match strings from before the next string match. |
917 | } else { |
918 | // The position is before a string match (or a single code point). |
919 | if(offsets.isEmpty()) { |
920 | // No more strings matched before a previous string match. |
921 | // Try another code point span from before the last string match. |
922 | int32_t oldPos=pos; |
923 | pos=spanSet.spanBack(s, oldPos, USET_SPAN_CONTAINED); |
924 | spanLength=oldPos-pos; |
925 | if( pos==0 || // Reached the start of the string, or |
926 | spanLength==0 // neither strings nor span progressed. |
927 | ) { |
928 | return pos; |
929 | } |
930 | continue; // spanLength>0: Match strings from before a span. |
931 | } else { |
932 | // Try to match only one code point from before a string match if some |
933 | // string matched beyond it, so that we try all possible positions |
934 | // and don't overshoot. |
935 | spanLength=spanOneBack(spanSet, s, pos); |
936 | if(spanLength>0) { |
937 | if(spanLength==pos) { |
938 | return 0; // Reached the start of the string. |
939 | } |
940 | // Match strings before this code point. |
941 | // There cannot be any decrements below it because UnicodeSet strings |
942 | // contain multiple code points. |
943 | pos-=spanLength; |
944 | offsets.shift(spanLength); |
945 | spanLength=0; |
946 | continue; // Match strings from before a single code point. |
947 | } |
948 | // Match strings from before the next string match. |
949 | } |
950 | } |
951 | pos-=offsets.popMinimum(); |
952 | spanLength=0; // Match strings from before a string match. |
953 | } |
954 | } |
955 | |
956 | int32_t UnicodeSetStringSpan::spanUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { |
957 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
958 | return spanNotUTF8(s, length); |
959 | } |
960 | int32_t spanLength=spanSet.spanUTF8((const char *)s, length, USET_SPAN_CONTAINED); |
961 | if(spanLength==length) { |
962 | return length; |
963 | } |
964 | |
965 | // Consider strings; they may overlap with the span. |
966 | OffsetList offsets; |
967 | if(spanCondition==USET_SPAN_CONTAINED) { |
968 | // Use offset list to try all possibilities. |
969 | offsets.setMaxLength(maxLength8); |
970 | } |
971 | int32_t pos=spanLength, rest=length-pos; |
972 | int32_t i, stringsLength=strings.size(); |
973 | uint8_t *spanUTF8Lengths=spanLengths; |
974 | if(all) { |
975 | spanUTF8Lengths+=2*stringsLength; |
976 | } |
977 | for(;;) { |
978 | const uint8_t *s8=utf8; |
979 | int32_t length8; |
980 | if(spanCondition==USET_SPAN_CONTAINED) { |
981 | for(i=0; i<stringsLength; ++i) { |
982 | length8=utf8Lengths[i]; |
983 | if(length8==0) { |
984 | continue; // String not representable in UTF-8. |
985 | } |
986 | int32_t overlap=spanUTF8Lengths[i]; |
987 | if(overlap==ALL_CP_CONTAINED) { |
988 | s8+=length8; |
989 | continue; // Irrelevant string. |
990 | } |
991 | |
992 | // Try to match this string at pos-overlap..pos. |
993 | if(overlap>=LONG_SPAN) { |
994 | overlap=length8; |
995 | // While contained: No point matching fully inside the code point span. |
996 | U8_BACK_1(s8, 0, overlap); // Length of the string minus the last code point. |
997 | } |
998 | if(overlap>spanLength) { |
999 | overlap=spanLength; |
1000 | } |
1001 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. |
1002 | for(;;) { |
1003 | if(inc>rest) { |
1004 | break; |
1005 | } |
1006 | // Try to match if the increment is not listed already. |
1007 | // Match at code point boundaries. (The UTF-8 strings were converted |
1008 | // from UTF-16 and are guaranteed to be well-formed.) |
1009 | if(!U8_IS_TRAIL(s[pos-overlap]) && |
1010 | !offsets.containsOffset(inc) && |
1011 | matches8(s+pos-overlap, s8, length8)) { |
1012 | if(inc==rest) { |
1013 | return length; // Reached the end of the string. |
1014 | } |
1015 | offsets.addOffset(inc); |
1016 | } |
1017 | if(overlap==0) { |
1018 | break; |
1019 | } |
1020 | --overlap; |
1021 | ++inc; |
1022 | } |
1023 | s8+=length8; |
1024 | } |
1025 | } else /* USET_SPAN_SIMPLE */ { |
1026 | int32_t maxInc=0, maxOverlap=0; |
1027 | for(i=0; i<stringsLength; ++i) { |
1028 | length8=utf8Lengths[i]; |
1029 | if(length8==0) { |
1030 | continue; // String not representable in UTF-8. |
1031 | } |
1032 | int32_t overlap=spanUTF8Lengths[i]; |
1033 | // For longest match, we do need to try to match even an all-contained string |
1034 | // to find the match from the earliest start. |
1035 | |
1036 | // Try to match this string at pos-overlap..pos. |
1037 | if(overlap>=LONG_SPAN) { |
1038 | overlap=length8; |
1039 | // Longest match: Need to match fully inside the code point span |
1040 | // to find the match from the earliest start. |
1041 | } |
1042 | if(overlap>spanLength) { |
1043 | overlap=spanLength; |
1044 | } |
1045 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. |
1046 | for(;;) { |
1047 | if(inc>rest || overlap<maxOverlap) { |
1048 | break; |
1049 | } |
1050 | // Try to match if the string is longer or starts earlier. |
1051 | // Match at code point boundaries. (The UTF-8 strings were converted |
1052 | // from UTF-16 and are guaranteed to be well-formed.) |
1053 | if(!U8_IS_TRAIL(s[pos-overlap]) && |
1054 | (overlap>maxOverlap || |
1055 | /* redundant overlap==maxOverlap && */ inc>maxInc) && |
1056 | matches8(s+pos-overlap, s8, length8)) { |
1057 | maxInc=inc; // Longest match from earliest start. |
1058 | maxOverlap=overlap; |
1059 | break; |
1060 | } |
1061 | --overlap; |
1062 | ++inc; |
1063 | } |
1064 | s8+=length8; |
1065 | } |
1066 | |
1067 | if(maxInc!=0 || maxOverlap!=0) { |
1068 | // Longest-match algorithm, and there was a string match. |
1069 | // Simply continue after it. |
1070 | pos+=maxInc; |
1071 | rest-=maxInc; |
1072 | if(rest==0) { |
1073 | return length; // Reached the end of the string. |
1074 | } |
1075 | spanLength=0; // Match strings from after a string match. |
1076 | continue; |
1077 | } |
1078 | } |
1079 | // Finished trying to match all strings at pos. |
1080 | |
1081 | if(spanLength!=0 || pos==0) { |
1082 | // The position is after an unlimited code point span (spanLength!=0), |
1083 | // not after a string match. |
1084 | // The only position where spanLength==0 after a span is pos==0. |
1085 | // Otherwise, an unlimited code point span is only tried again when no |
1086 | // strings match, and if such a non-initial span fails we stop. |
1087 | if(offsets.isEmpty()) { |
1088 | return pos; // No strings matched after a span. |
1089 | } |
1090 | // Match strings from after the next string match. |
1091 | } else { |
1092 | // The position is after a string match (or a single code point). |
1093 | if(offsets.isEmpty()) { |
1094 | // No more strings matched after a previous string match. |
1095 | // Try another code point span from after the last string match. |
1096 | spanLength=spanSet.spanUTF8((const char *)s+pos, rest, USET_SPAN_CONTAINED); |
1097 | if( spanLength==rest || // Reached the end of the string, or |
1098 | spanLength==0 // neither strings nor span progressed. |
1099 | ) { |
1100 | return pos+spanLength; |
1101 | } |
1102 | pos+=spanLength; |
1103 | rest-=spanLength; |
1104 | continue; // spanLength>0: Match strings from after a span. |
1105 | } else { |
1106 | // Try to match only one code point from after a string match if some |
1107 | // string matched beyond it, so that we try all possible positions |
1108 | // and don't overshoot. |
1109 | spanLength=spanOneUTF8(spanSet, s+pos, rest); |
1110 | if(spanLength>0) { |
1111 | if(spanLength==rest) { |
1112 | return length; // Reached the end of the string. |
1113 | } |
1114 | // Match strings after this code point. |
1115 | // There cannot be any increments below it because UnicodeSet strings |
1116 | // contain multiple code points. |
1117 | pos+=spanLength; |
1118 | rest-=spanLength; |
1119 | offsets.shift(spanLength); |
1120 | spanLength=0; |
1121 | continue; // Match strings from after a single code point. |
1122 | } |
1123 | // Match strings from after the next string match. |
1124 | } |
1125 | } |
1126 | int32_t minOffset=offsets.popMinimum(); |
1127 | pos+=minOffset; |
1128 | rest-=minOffset; |
1129 | spanLength=0; // Match strings from after a string match. |
1130 | } |
1131 | } |
1132 | |
1133 | int32_t UnicodeSetStringSpan::spanBackUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { |
1134 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
1135 | return spanNotBackUTF8(s, length); |
1136 | } |
1137 | int32_t pos=spanSet.spanBackUTF8((const char *)s, length, USET_SPAN_CONTAINED); |
1138 | if(pos==0) { |
1139 | return 0; |
1140 | } |
1141 | int32_t spanLength=length-pos; |
1142 | |
1143 | // Consider strings; they may overlap with the span. |
1144 | OffsetList offsets; |
1145 | if(spanCondition==USET_SPAN_CONTAINED) { |
1146 | // Use offset list to try all possibilities. |
1147 | offsets.setMaxLength(maxLength8); |
1148 | } |
1149 | int32_t i, stringsLength=strings.size(); |
1150 | uint8_t *spanBackUTF8Lengths=spanLengths; |
1151 | if(all) { |
1152 | spanBackUTF8Lengths+=3*stringsLength; |
1153 | } |
1154 | for(;;) { |
1155 | const uint8_t *s8=utf8; |
1156 | int32_t length8; |
1157 | if(spanCondition==USET_SPAN_CONTAINED) { |
1158 | for(i=0; i<stringsLength; ++i) { |
1159 | length8=utf8Lengths[i]; |
1160 | if(length8==0) { |
1161 | continue; // String not representable in UTF-8. |
1162 | } |
1163 | int32_t overlap=spanBackUTF8Lengths[i]; |
1164 | if(overlap==ALL_CP_CONTAINED) { |
1165 | s8+=length8; |
1166 | continue; // Irrelevant string. |
1167 | } |
1168 | |
1169 | // Try to match this string at pos-(length8-overlap)..pos-length8. |
1170 | if(overlap>=LONG_SPAN) { |
1171 | overlap=length8; |
1172 | // While contained: No point matching fully inside the code point span. |
1173 | int32_t len1=0; |
1174 | U8_FWD_1(s8, len1, overlap); |
1175 | overlap-=len1; // Length of the string minus the first code point. |
1176 | } |
1177 | if(overlap>spanLength) { |
1178 | overlap=spanLength; |
1179 | } |
1180 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. |
1181 | for(;;) { |
1182 | if(dec>pos) { |
1183 | break; |
1184 | } |
1185 | // Try to match if the decrement is not listed already. |
1186 | // Match at code point boundaries. (The UTF-8 strings were converted |
1187 | // from UTF-16 and are guaranteed to be well-formed.) |
1188 | if( !U8_IS_TRAIL(s[pos-dec]) && |
1189 | !offsets.containsOffset(dec) && |
1190 | matches8(s+pos-dec, s8, length8) |
1191 | ) { |
1192 | if(dec==pos) { |
1193 | return 0; // Reached the start of the string. |
1194 | } |
1195 | offsets.addOffset(dec); |
1196 | } |
1197 | if(overlap==0) { |
1198 | break; |
1199 | } |
1200 | --overlap; |
1201 | ++dec; |
1202 | } |
1203 | s8+=length8; |
1204 | } |
1205 | } else /* USET_SPAN_SIMPLE */ { |
1206 | int32_t maxDec=0, maxOverlap=0; |
1207 | for(i=0; i<stringsLength; ++i) { |
1208 | length8=utf8Lengths[i]; |
1209 | if(length8==0) { |
1210 | continue; // String not representable in UTF-8. |
1211 | } |
1212 | int32_t overlap=spanBackUTF8Lengths[i]; |
1213 | // For longest match, we do need to try to match even an all-contained string |
1214 | // to find the match from the latest end. |
1215 | |
1216 | // Try to match this string at pos-(length8-overlap)..pos-length8. |
1217 | if(overlap>=LONG_SPAN) { |
1218 | overlap=length8; |
1219 | // Longest match: Need to match fully inside the code point span |
1220 | // to find the match from the latest end. |
1221 | } |
1222 | if(overlap>spanLength) { |
1223 | overlap=spanLength; |
1224 | } |
1225 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. |
1226 | for(;;) { |
1227 | if(dec>pos || overlap<maxOverlap) { |
1228 | break; |
1229 | } |
1230 | // Try to match if the string is longer or ends later. |
1231 | // Match at code point boundaries. (The UTF-8 strings were converted |
1232 | // from UTF-16 and are guaranteed to be well-formed.) |
1233 | if( !U8_IS_TRAIL(s[pos-dec]) && |
1234 | (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && |
1235 | matches8(s+pos-dec, s8, length8) |
1236 | ) { |
1237 | maxDec=dec; // Longest match from latest end. |
1238 | maxOverlap=overlap; |
1239 | break; |
1240 | } |
1241 | --overlap; |
1242 | ++dec; |
1243 | } |
1244 | s8+=length8; |
1245 | } |
1246 | |
1247 | if(maxDec!=0 || maxOverlap!=0) { |
1248 | // Longest-match algorithm, and there was a string match. |
1249 | // Simply continue before it. |
1250 | pos-=maxDec; |
1251 | if(pos==0) { |
1252 | return 0; // Reached the start of the string. |
1253 | } |
1254 | spanLength=0; // Match strings from before a string match. |
1255 | continue; |
1256 | } |
1257 | } |
1258 | // Finished trying to match all strings at pos. |
1259 | |
1260 | if(spanLength!=0 || pos==length) { |
1261 | // The position is before an unlimited code point span (spanLength!=0), |
1262 | // not before a string match. |
1263 | // The only position where spanLength==0 before a span is pos==length. |
1264 | // Otherwise, an unlimited code point span is only tried again when no |
1265 | // strings match, and if such a non-initial span fails we stop. |
1266 | if(offsets.isEmpty()) { |
1267 | return pos; // No strings matched before a span. |
1268 | } |
1269 | // Match strings from before the next string match. |
1270 | } else { |
1271 | // The position is before a string match (or a single code point). |
1272 | if(offsets.isEmpty()) { |
1273 | // No more strings matched before a previous string match. |
1274 | // Try another code point span from before the last string match. |
1275 | int32_t oldPos=pos; |
1276 | pos=spanSet.spanBackUTF8((const char *)s, oldPos, USET_SPAN_CONTAINED); |
1277 | spanLength=oldPos-pos; |
1278 | if( pos==0 || // Reached the start of the string, or |
1279 | spanLength==0 // neither strings nor span progressed. |
1280 | ) { |
1281 | return pos; |
1282 | } |
1283 | continue; // spanLength>0: Match strings from before a span. |
1284 | } else { |
1285 | // Try to match only one code point from before a string match if some |
1286 | // string matched beyond it, so that we try all possible positions |
1287 | // and don't overshoot. |
1288 | spanLength=spanOneBackUTF8(spanSet, s, pos); |
1289 | if(spanLength>0) { |
1290 | if(spanLength==pos) { |
1291 | return 0; // Reached the start of the string. |
1292 | } |
1293 | // Match strings before this code point. |
1294 | // There cannot be any decrements below it because UnicodeSet strings |
1295 | // contain multiple code points. |
1296 | pos-=spanLength; |
1297 | offsets.shift(spanLength); |
1298 | spanLength=0; |
1299 | continue; // Match strings from before a single code point. |
1300 | } |
1301 | // Match strings from before the next string match. |
1302 | } |
1303 | } |
1304 | pos-=offsets.popMinimum(); |
1305 | spanLength=0; // Match strings from before a string match. |
1306 | } |
1307 | } |
1308 | |
1309 | /* |
1310 | * Algorithm for spanNot()==span(USET_SPAN_NOT_CONTAINED) |
1311 | * |
1312 | * Theoretical algorithm: |
1313 | * - Iterate through the string, and at each code point boundary: |
1314 | * + If the code point there is in the set, then return with the current position. |
1315 | * + If a set string matches at the current position, then return with the current position. |
1316 | * |
1317 | * Optimized implementation: |
1318 | * |
1319 | * (Same assumption as for span() above.) |
1320 | * |
1321 | * Create and cache a spanNotSet which contains all of the single code points |
1322 | * of the original set but none of its strings. |
1323 | * For each set string add its initial code point to the spanNotSet. |
1324 | * (Also add its final code point for spanNotBack().) |
1325 | * |
1326 | * - Loop: |
1327 | * + Do spanLength=spanNotSet.span(USET_SPAN_NOT_CONTAINED). |
1328 | * + If the current code point is in the original set, then |
1329 | * return the current position. |
1330 | * + If any set string matches at the current position, then |
1331 | * return the current position. |
1332 | * + If there is no match at the current position, neither for the code point there |
1333 | * nor for any set string, then skip this code point and continue the loop. |
1334 | * This happens for set-string-initial code points that were added to spanNotSet |
1335 | * when there is not actually a match for such a set string. |
1336 | */ |
1337 | |
1338 | int32_t UnicodeSetStringSpan::spanNot(const UChar *s, int32_t length) const { |
1339 | int32_t pos=0, rest=length; |
1340 | int32_t i, stringsLength=strings.size(); |
1341 | do { |
1342 | // Span until we find a code point from the set, |
1343 | // or a code point that starts or ends some string. |
1344 | i=pSpanNotSet->span(s+pos, rest, USET_SPAN_NOT_CONTAINED); |
1345 | if(i==rest) { |
1346 | return length; // Reached the end of the string. |
1347 | } |
1348 | pos+=i; |
1349 | rest-=i; |
1350 | |
1351 | // Check whether the current code point is in the original set, |
1352 | // without the string starts and ends. |
1353 | int32_t cpLength=spanOne(spanSet, s+pos, rest); |
1354 | if(cpLength>0) { |
1355 | return pos; // There is a set element at pos. |
1356 | } |
1357 | |
1358 | // Try to match the strings at pos. |
1359 | for(i=0; i<stringsLength; ++i) { |
1360 | if(spanLengths[i]==ALL_CP_CONTAINED) { |
1361 | continue; // Irrelevant string. |
1362 | } |
1363 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
1364 | const UChar *s16=string.getBuffer(); |
1365 | int32_t length16=string.length(); |
1366 | if(length16<=rest && matches16CPB(s, pos, length, s16, length16)) { |
1367 | return pos; // There is a set element at pos. |
1368 | } |
1369 | } |
1370 | |
1371 | // The span(while not contained) ended on a string start/end which is |
1372 | // not in the original set. Skip this code point and continue. |
1373 | // cpLength<0 |
1374 | pos-=cpLength; |
1375 | rest+=cpLength; |
1376 | } while(rest!=0); |
1377 | return length; // Reached the end of the string. |
1378 | } |
1379 | |
1380 | int32_t UnicodeSetStringSpan::spanNotBack(const UChar *s, int32_t length) const { |
1381 | int32_t pos=length; |
1382 | int32_t i, stringsLength=strings.size(); |
1383 | do { |
1384 | // Span until we find a code point from the set, |
1385 | // or a code point that starts or ends some string. |
1386 | pos=pSpanNotSet->spanBack(s, pos, USET_SPAN_NOT_CONTAINED); |
1387 | if(pos==0) { |
1388 | return 0; // Reached the start of the string. |
1389 | } |
1390 | |
1391 | // Check whether the current code point is in the original set, |
1392 | // without the string starts and ends. |
1393 | int32_t cpLength=spanOneBack(spanSet, s, pos); |
1394 | if(cpLength>0) { |
1395 | return pos; // There is a set element at pos. |
1396 | } |
1397 | |
1398 | // Try to match the strings at pos. |
1399 | for(i=0; i<stringsLength; ++i) { |
1400 | // Use spanLengths rather than a spanBackLengths pointer because |
1401 | // it is easier and we only need to know whether the string is irrelevant |
1402 | // which is the same in either array. |
1403 | if(spanLengths[i]==ALL_CP_CONTAINED) { |
1404 | continue; // Irrelevant string. |
1405 | } |
1406 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
1407 | const UChar *s16=string.getBuffer(); |
1408 | int32_t length16=string.length(); |
1409 | if(length16<=pos && matches16CPB(s, pos-length16, length, s16, length16)) { |
1410 | return pos; // There is a set element at pos. |
1411 | } |
1412 | } |
1413 | |
1414 | // The span(while not contained) ended on a string start/end which is |
1415 | // not in the original set. Skip this code point and continue. |
1416 | // cpLength<0 |
1417 | pos+=cpLength; |
1418 | } while(pos!=0); |
1419 | return 0; // Reached the start of the string. |
1420 | } |
1421 | |
1422 | int32_t UnicodeSetStringSpan::spanNotUTF8(const uint8_t *s, int32_t length) const { |
1423 | int32_t pos=0, rest=length; |
1424 | int32_t i, stringsLength=strings.size(); |
1425 | uint8_t *spanUTF8Lengths=spanLengths; |
1426 | if(all) { |
1427 | spanUTF8Lengths+=2*stringsLength; |
1428 | } |
1429 | do { |
1430 | // Span until we find a code point from the set, |
1431 | // or a code point that starts or ends some string. |
1432 | i=pSpanNotSet->spanUTF8((const char *)s+pos, rest, USET_SPAN_NOT_CONTAINED); |
1433 | if(i==rest) { |
1434 | return length; // Reached the end of the string. |
1435 | } |
1436 | pos+=i; |
1437 | rest-=i; |
1438 | |
1439 | // Check whether the current code point is in the original set, |
1440 | // without the string starts and ends. |
1441 | int32_t cpLength=spanOneUTF8(spanSet, s+pos, rest); |
1442 | if(cpLength>0) { |
1443 | return pos; // There is a set element at pos. |
1444 | } |
1445 | |
1446 | // Try to match the strings at pos. |
1447 | const uint8_t *s8=utf8; |
1448 | int32_t length8; |
1449 | for(i=0; i<stringsLength; ++i) { |
1450 | length8=utf8Lengths[i]; |
1451 | // ALL_CP_CONTAINED: Irrelevant string. |
1452 | if(length8!=0 && spanUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=rest && matches8(s+pos, s8, length8)) { |
1453 | return pos; // There is a set element at pos. |
1454 | } |
1455 | s8+=length8; |
1456 | } |
1457 | |
1458 | // The span(while not contained) ended on a string start/end which is |
1459 | // not in the original set. Skip this code point and continue. |
1460 | // cpLength<0 |
1461 | pos-=cpLength; |
1462 | rest+=cpLength; |
1463 | } while(rest!=0); |
1464 | return length; // Reached the end of the string. |
1465 | } |
1466 | |
1467 | int32_t UnicodeSetStringSpan::spanNotBackUTF8(const uint8_t *s, int32_t length) const { |
1468 | int32_t pos=length; |
1469 | int32_t i, stringsLength=strings.size(); |
1470 | uint8_t *spanBackUTF8Lengths=spanLengths; |
1471 | if(all) { |
1472 | spanBackUTF8Lengths+=3*stringsLength; |
1473 | } |
1474 | do { |
1475 | // Span until we find a code point from the set, |
1476 | // or a code point that starts or ends some string. |
1477 | pos=pSpanNotSet->spanBackUTF8((const char *)s, pos, USET_SPAN_NOT_CONTAINED); |
1478 | if(pos==0) { |
1479 | return 0; // Reached the start of the string. |
1480 | } |
1481 | |
1482 | // Check whether the current code point is in the original set, |
1483 | // without the string starts and ends. |
1484 | int32_t cpLength=spanOneBackUTF8(spanSet, s, pos); |
1485 | if(cpLength>0) { |
1486 | return pos; // There is a set element at pos. |
1487 | } |
1488 | |
1489 | // Try to match the strings at pos. |
1490 | const uint8_t *s8=utf8; |
1491 | int32_t length8; |
1492 | for(i=0; i<stringsLength; ++i) { |
1493 | length8=utf8Lengths[i]; |
1494 | // ALL_CP_CONTAINED: Irrelevant string. |
1495 | if(length8!=0 && spanBackUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=pos && matches8(s+pos-length8, s8, length8)) { |
1496 | return pos; // There is a set element at pos. |
1497 | } |
1498 | s8+=length8; |
1499 | } |
1500 | |
1501 | // The span(while not contained) ended on a string start/end which is |
1502 | // not in the original set. Skip this code point and continue. |
1503 | // cpLength<0 |
1504 | pos+=cpLength; |
1505 | } while(pos!=0); |
1506 | return 0; // Reached the start of the string. |
1507 | } |
1508 | |
1509 | U_NAMESPACE_END |
1510 | |