1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ******************************************************************************* |
5 | * Copyright (C) 2013-2015, International Business Machines |
6 | * Corporation and others. All Rights Reserved. |
7 | ******************************************************************************* |
8 | * collationfastlatinbuilder.cpp |
9 | * |
10 | * created on: 2013aug09 |
11 | * created by: Markus W. Scherer |
12 | */ |
13 | |
14 | #define DEBUG_COLLATION_FAST_LATIN_BUILDER 0 // 0 or 1 or 2 |
15 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
16 | #include <stdio.h> |
17 | #include <string> |
18 | #endif |
19 | |
20 | #include "unicode/utypes.h" |
21 | |
22 | #if !UCONFIG_NO_COLLATION |
23 | |
24 | #include "unicode/ucol.h" |
25 | #include "unicode/ucharstrie.h" |
26 | #include "unicode/unistr.h" |
27 | #include "unicode/uobject.h" |
28 | #include "unicode/uscript.h" |
29 | #include "cmemory.h" |
30 | #include "collation.h" |
31 | #include "collationdata.h" |
32 | #include "collationfastlatin.h" |
33 | #include "collationfastlatinbuilder.h" |
34 | #include "uassert.h" |
35 | #include "uvectr64.h" |
36 | |
37 | U_NAMESPACE_BEGIN |
38 | |
39 | struct CollationData; |
40 | |
41 | namespace { |
42 | |
43 | /** |
44 | * Compare two signed int64_t values as if they were unsigned. |
45 | */ |
46 | int32_t |
47 | compareInt64AsUnsigned(int64_t a, int64_t b) { |
48 | if((uint64_t)a < (uint64_t)b) { |
49 | return -1; |
50 | } else if((uint64_t)a > (uint64_t)b) { |
51 | return 1; |
52 | } else { |
53 | return 0; |
54 | } |
55 | } |
56 | |
57 | // TODO: Merge this with the near-identical version in collationbasedatabuilder.cpp |
58 | /** |
59 | * Like Java Collections.binarySearch(List, String, Comparator). |
60 | * |
61 | * @return the index>=0 where the item was found, |
62 | * or the index<0 for inserting the string at ~index in sorted order |
63 | */ |
64 | int32_t |
65 | binarySearch(const int64_t list[], int32_t limit, int64_t ce) { |
66 | if (limit == 0) { return ~0; } |
67 | int32_t start = 0; |
68 | for (;;) { |
69 | int32_t i = (start + limit) / 2; |
70 | int32_t cmp = compareInt64AsUnsigned(ce, list[i]); |
71 | if (cmp == 0) { |
72 | return i; |
73 | } else if (cmp < 0) { |
74 | if (i == start) { |
75 | return ~start; // insert ce before i |
76 | } |
77 | limit = i; |
78 | } else { |
79 | if (i == start) { |
80 | return ~(start + 1); // insert ce after i |
81 | } |
82 | start = i; |
83 | } |
84 | } |
85 | } |
86 | |
87 | } // namespace |
88 | |
89 | CollationFastLatinBuilder::CollationFastLatinBuilder(UErrorCode &errorCode) |
90 | : ce0(0), ce1(0), |
91 | contractionCEs(errorCode), uniqueCEs(errorCode), |
92 | miniCEs(NULL), |
93 | firstDigitPrimary(0), firstLatinPrimary(0), lastLatinPrimary(0), |
94 | firstShortPrimary(0), shortPrimaryOverflow(FALSE), |
95 | headerLength(0) { |
96 | } |
97 | |
98 | CollationFastLatinBuilder::~CollationFastLatinBuilder() { |
99 | uprv_free(miniCEs); |
100 | } |
101 | |
102 | UBool |
103 | CollationFastLatinBuilder::forData(const CollationData &data, UErrorCode &errorCode) { |
104 | if(U_FAILURE(errorCode)) { return FALSE; } |
105 | if(!result.isEmpty()) { // This builder is not reusable. |
106 | errorCode = U_INVALID_STATE_ERROR; |
107 | return FALSE; |
108 | } |
109 | if(!loadGroups(data, errorCode)) { return FALSE; } |
110 | |
111 | // Fast handling of digits. |
112 | firstShortPrimary = firstDigitPrimary; |
113 | getCEs(data, errorCode); |
114 | if(!encodeUniqueCEs(errorCode)) { return FALSE; } |
115 | if(shortPrimaryOverflow) { |
116 | // Give digits long mini primaries, |
117 | // so that there are more short primaries for letters. |
118 | firstShortPrimary = firstLatinPrimary; |
119 | resetCEs(); |
120 | getCEs(data, errorCode); |
121 | if(!encodeUniqueCEs(errorCode)) { return FALSE; } |
122 | } |
123 | // Note: If we still have a short-primary overflow but not a long-primary overflow, |
124 | // then we could calculate how many more long primaries would fit, |
125 | // and set the firstShortPrimary to that many after the current firstShortPrimary, |
126 | // and try again. |
127 | // However, this might only benefit the en_US_POSIX tailoring, |
128 | // and it is simpler to suppress building fast Latin data for it in genrb, |
129 | // or by returning FALSE here if shortPrimaryOverflow. |
130 | |
131 | UBool ok = !shortPrimaryOverflow && |
132 | encodeCharCEs(errorCode) && encodeContractions(errorCode); |
133 | contractionCEs.removeAllElements(); // might reduce heap memory usage |
134 | uniqueCEs.removeAllElements(); |
135 | return ok; |
136 | } |
137 | |
138 | UBool |
139 | CollationFastLatinBuilder::loadGroups(const CollationData &data, UErrorCode &errorCode) { |
140 | if(U_FAILURE(errorCode)) { return FALSE; } |
141 | headerLength = 1 + NUM_SPECIAL_GROUPS; |
142 | uint32_t r0 = (CollationFastLatin::VERSION << 8) | headerLength; |
143 | result.append((UChar)r0); |
144 | // The first few reordering groups should be special groups |
145 | // (space, punct, ..., digit) followed by Latn, then Grek and other scripts. |
146 | for(int32_t i = 0; i < NUM_SPECIAL_GROUPS; ++i) { |
147 | lastSpecialPrimaries[i] = data.getLastPrimaryForGroup(UCOL_REORDER_CODE_FIRST + i); |
148 | if(lastSpecialPrimaries[i] == 0) { |
149 | // missing data |
150 | return FALSE; |
151 | } |
152 | result.append((UChar)0); // reserve a slot for this group |
153 | } |
154 | |
155 | firstDigitPrimary = data.getFirstPrimaryForGroup(UCOL_REORDER_CODE_DIGIT); |
156 | firstLatinPrimary = data.getFirstPrimaryForGroup(USCRIPT_LATIN); |
157 | lastLatinPrimary = data.getLastPrimaryForGroup(USCRIPT_LATIN); |
158 | if(firstDigitPrimary == 0 || firstLatinPrimary == 0) { |
159 | // missing data |
160 | return FALSE; |
161 | } |
162 | return TRUE; |
163 | } |
164 | |
165 | UBool |
166 | CollationFastLatinBuilder::inSameGroup(uint32_t p, uint32_t q) const { |
167 | // Both or neither need to be encoded as short primaries, |
168 | // so that we can test only one and use the same bit mask. |
169 | if(p >= firstShortPrimary) { |
170 | return q >= firstShortPrimary; |
171 | } else if(q >= firstShortPrimary) { |
172 | return FALSE; |
173 | } |
174 | // Both or neither must be potentially-variable, |
175 | // so that we can test only one and determine if both are variable. |
176 | uint32_t lastVariablePrimary = lastSpecialPrimaries[NUM_SPECIAL_GROUPS - 1]; |
177 | if(p > lastVariablePrimary) { |
178 | return q > lastVariablePrimary; |
179 | } else if(q > lastVariablePrimary) { |
180 | return FALSE; |
181 | } |
182 | // Both will be encoded with long mini primaries. |
183 | // They must be in the same special reordering group, |
184 | // so that we can test only one and determine if both are variable. |
185 | U_ASSERT(p != 0 && q != 0); |
186 | for(int32_t i = 0;; ++i) { // will terminate |
187 | uint32_t lastPrimary = lastSpecialPrimaries[i]; |
188 | if(p <= lastPrimary) { |
189 | return q <= lastPrimary; |
190 | } else if(q <= lastPrimary) { |
191 | return FALSE; |
192 | } |
193 | } |
194 | } |
195 | |
196 | void |
197 | CollationFastLatinBuilder::resetCEs() { |
198 | contractionCEs.removeAllElements(); |
199 | uniqueCEs.removeAllElements(); |
200 | shortPrimaryOverflow = FALSE; |
201 | result.truncate(headerLength); |
202 | } |
203 | |
204 | void |
205 | CollationFastLatinBuilder::getCEs(const CollationData &data, UErrorCode &errorCode) { |
206 | if(U_FAILURE(errorCode)) { return; } |
207 | int32_t i = 0; |
208 | for(UChar c = 0;; ++i, ++c) { |
209 | if(c == CollationFastLatin::LATIN_LIMIT) { |
210 | c = CollationFastLatin::PUNCT_START; |
211 | } else if(c == CollationFastLatin::PUNCT_LIMIT) { |
212 | break; |
213 | } |
214 | const CollationData *d; |
215 | uint32_t ce32 = data.getCE32(c); |
216 | if(ce32 == Collation::FALLBACK_CE32) { |
217 | d = data.base; |
218 | ce32 = d->getCE32(c); |
219 | } else { |
220 | d = &data; |
221 | } |
222 | if(getCEsFromCE32(*d, c, ce32, errorCode)) { |
223 | charCEs[i][0] = ce0; |
224 | charCEs[i][1] = ce1; |
225 | addUniqueCE(ce0, errorCode); |
226 | addUniqueCE(ce1, errorCode); |
227 | } else { |
228 | // bail out for c |
229 | charCEs[i][0] = ce0 = Collation::NO_CE; |
230 | charCEs[i][1] = ce1 = 0; |
231 | } |
232 | if(c == 0 && !isContractionCharCE(ce0)) { |
233 | // Always map U+0000 to a contraction. |
234 | // Write a contraction list with only a default value if there is no real contraction. |
235 | U_ASSERT(contractionCEs.isEmpty()); |
236 | addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); |
237 | charCEs[0][0] = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG; |
238 | charCEs[0][1] = 0; |
239 | } |
240 | } |
241 | // Terminate the last contraction list. |
242 | contractionCEs.addElement(CollationFastLatin::CONTR_CHAR_MASK, errorCode); |
243 | } |
244 | |
245 | UBool |
246 | CollationFastLatinBuilder::getCEsFromCE32(const CollationData &data, UChar32 c, uint32_t ce32, |
247 | UErrorCode &errorCode) { |
248 | if(U_FAILURE(errorCode)) { return FALSE; } |
249 | ce32 = data.getFinalCE32(ce32); |
250 | ce1 = 0; |
251 | if(Collation::isSimpleOrLongCE32(ce32)) { |
252 | ce0 = Collation::ceFromCE32(ce32); |
253 | } else { |
254 | switch(Collation::tagFromCE32(ce32)) { |
255 | case Collation::LATIN_EXPANSION_TAG: |
256 | ce0 = Collation::latinCE0FromCE32(ce32); |
257 | ce1 = Collation::latinCE1FromCE32(ce32); |
258 | break; |
259 | case Collation::EXPANSION32_TAG: { |
260 | const uint32_t *ce32s = data.ce32s + Collation::indexFromCE32(ce32); |
261 | int32_t length = Collation::lengthFromCE32(ce32); |
262 | if(length <= 2) { |
263 | ce0 = Collation::ceFromCE32(ce32s[0]); |
264 | if(length == 2) { |
265 | ce1 = Collation::ceFromCE32(ce32s[1]); |
266 | } |
267 | break; |
268 | } else { |
269 | return FALSE; |
270 | } |
271 | } |
272 | case Collation::EXPANSION_TAG: { |
273 | const int64_t *ces = data.ces + Collation::indexFromCE32(ce32); |
274 | int32_t length = Collation::lengthFromCE32(ce32); |
275 | if(length <= 2) { |
276 | ce0 = ces[0]; |
277 | if(length == 2) { |
278 | ce1 = ces[1]; |
279 | } |
280 | break; |
281 | } else { |
282 | return FALSE; |
283 | } |
284 | } |
285 | // Note: We could support PREFIX_TAG (assert c>=0) |
286 | // by recursing on its default CE32 and checking that none of the prefixes starts |
287 | // with a fast Latin character. |
288 | // However, currently (2013) there are only the L-before-middle-dot |
289 | // prefix mappings in the Latin range, and those would be rejected anyway. |
290 | case Collation::CONTRACTION_TAG: |
291 | U_ASSERT(c >= 0); |
292 | return getCEsFromContractionCE32(data, ce32, errorCode); |
293 | case Collation::OFFSET_TAG: |
294 | U_ASSERT(c >= 0); |
295 | ce0 = data.getCEFromOffsetCE32(c, ce32); |
296 | break; |
297 | default: |
298 | return FALSE; |
299 | } |
300 | } |
301 | // A mapping can be completely ignorable. |
302 | if(ce0 == 0) { return ce1 == 0; } |
303 | // We do not support an ignorable ce0 unless it is completely ignorable. |
304 | uint32_t p0 = (uint32_t)(ce0 >> 32); |
305 | if(p0 == 0) { return FALSE; } |
306 | // We only support primaries up to the Latin script. |
307 | if(p0 > lastLatinPrimary) { return FALSE; } |
308 | // We support non-common secondary and case weights only together with short primaries. |
309 | uint32_t lower32_0 = (uint32_t)ce0; |
310 | if(p0 < firstShortPrimary) { |
311 | uint32_t sc0 = lower32_0 & Collation::SECONDARY_AND_CASE_MASK; |
312 | if(sc0 != Collation::COMMON_SECONDARY_CE) { return FALSE; } |
313 | } |
314 | // No below-common tertiary weights. |
315 | if((lower32_0 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } |
316 | if(ce1 != 0) { |
317 | // Both primaries must be in the same group, |
318 | // or both must get short mini primaries, |
319 | // or a short-primary CE is followed by a secondary CE. |
320 | // This is so that we can test the first primary and use the same mask for both, |
321 | // and determine for both whether they are variable. |
322 | uint32_t p1 = (uint32_t)(ce1 >> 32); |
323 | if(p1 == 0 ? p0 < firstShortPrimary : !inSameGroup(p0, p1)) { return FALSE; } |
324 | uint32_t lower32_1 = (uint32_t)ce1; |
325 | // No tertiary CEs. |
326 | if((lower32_1 >> 16) == 0) { return FALSE; } |
327 | // We support non-common secondary and case weights |
328 | // only for secondary CEs or together with short primaries. |
329 | if(p1 != 0 && p1 < firstShortPrimary) { |
330 | uint32_t sc1 = lower32_1 & Collation::SECONDARY_AND_CASE_MASK; |
331 | if(sc1 != Collation::COMMON_SECONDARY_CE) { return FALSE; } |
332 | } |
333 | // No below-common tertiary weights. |
334 | if((lower32_1 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } |
335 | } |
336 | // No quaternary weights. |
337 | if(((ce0 | ce1) & Collation::QUATERNARY_MASK) != 0) { return FALSE; } |
338 | return TRUE; |
339 | } |
340 | |
341 | UBool |
342 | CollationFastLatinBuilder::getCEsFromContractionCE32(const CollationData &data, uint32_t ce32, |
343 | UErrorCode &errorCode) { |
344 | if(U_FAILURE(errorCode)) { return FALSE; } |
345 | const UChar *p = data.contexts + Collation::indexFromCE32(ce32); |
346 | ce32 = CollationData::readCE32(p); // Default if no suffix match. |
347 | // Since the original ce32 is not a prefix mapping, |
348 | // the default ce32 must not be another contraction. |
349 | U_ASSERT(!Collation::isContractionCE32(ce32)); |
350 | int32_t contractionIndex = contractionCEs.size(); |
351 | if(getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { |
352 | addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); |
353 | } else { |
354 | // Bail out for c-without-contraction. |
355 | addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, Collation::NO_CE, 0, errorCode); |
356 | } |
357 | // Handle an encodable contraction unless the next contraction is too long |
358 | // and starts with the same character. |
359 | int32_t prevX = -1; |
360 | UBool addContraction = FALSE; |
361 | UCharsTrie::Iterator suffixes(p + 2, 0, errorCode); |
362 | while(suffixes.next(errorCode)) { |
363 | const UnicodeString &suffix = suffixes.getString(); |
364 | int32_t x = CollationFastLatin::getCharIndex(suffix.charAt(0)); |
365 | if(x < 0) { continue; } // ignore anything but fast Latin text |
366 | if(x == prevX) { |
367 | if(addContraction) { |
368 | // Bail out for all contractions starting with this character. |
369 | addContractionEntry(x, Collation::NO_CE, 0, errorCode); |
370 | addContraction = FALSE; |
371 | } |
372 | continue; |
373 | } |
374 | if(addContraction) { |
375 | addContractionEntry(prevX, ce0, ce1, errorCode); |
376 | } |
377 | ce32 = (uint32_t)suffixes.getValue(); |
378 | if(suffix.length() == 1 && getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { |
379 | addContraction = TRUE; |
380 | } else { |
381 | addContractionEntry(x, Collation::NO_CE, 0, errorCode); |
382 | addContraction = FALSE; |
383 | } |
384 | prevX = x; |
385 | } |
386 | if(addContraction) { |
387 | addContractionEntry(prevX, ce0, ce1, errorCode); |
388 | } |
389 | if(U_FAILURE(errorCode)) { return FALSE; } |
390 | // Note: There might not be any fast Latin contractions, but |
391 | // we need to enter contraction handling anyway so that we can bail out |
392 | // when there is a non-fast-Latin character following. |
393 | // For example: Danish &Y<<u+umlaut, when we compare Y vs. u\u0308 we need to see the |
394 | // following umlaut and bail out, rather than return the difference of Y vs. u. |
395 | ce0 = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG | contractionIndex; |
396 | ce1 = 0; |
397 | return TRUE; |
398 | } |
399 | |
400 | void |
401 | CollationFastLatinBuilder::addContractionEntry(int32_t x, int64_t cce0, int64_t cce1, |
402 | UErrorCode &errorCode) { |
403 | contractionCEs.addElement(x, errorCode); |
404 | contractionCEs.addElement(cce0, errorCode); |
405 | contractionCEs.addElement(cce1, errorCode); |
406 | addUniqueCE(cce0, errorCode); |
407 | addUniqueCE(cce1, errorCode); |
408 | } |
409 | |
410 | void |
411 | CollationFastLatinBuilder::addUniqueCE(int64_t ce, UErrorCode &errorCode) { |
412 | if(U_FAILURE(errorCode)) { return; } |
413 | if(ce == 0 || (uint32_t)(ce >> 32) == Collation::NO_CE_PRIMARY) { return; } |
414 | ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits |
415 | int32_t i = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); |
416 | if(i < 0) { |
417 | uniqueCEs.insertElementAt(ce, ~i, errorCode); |
418 | } |
419 | } |
420 | |
421 | uint32_t |
422 | CollationFastLatinBuilder::getMiniCE(int64_t ce) const { |
423 | ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits |
424 | int32_t index = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); |
425 | U_ASSERT(index >= 0); |
426 | return miniCEs[index]; |
427 | } |
428 | |
429 | UBool |
430 | CollationFastLatinBuilder::encodeUniqueCEs(UErrorCode &errorCode) { |
431 | if(U_FAILURE(errorCode)) { return FALSE; } |
432 | uprv_free(miniCEs); |
433 | miniCEs = (uint16_t *)uprv_malloc(uniqueCEs.size() * 2); |
434 | if(miniCEs == NULL) { |
435 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
436 | return FALSE; |
437 | } |
438 | int32_t group = 0; |
439 | uint32_t lastGroupPrimary = lastSpecialPrimaries[group]; |
440 | // The lowest unique CE must be at least a secondary CE. |
441 | U_ASSERT(((uint32_t)uniqueCEs.elementAti(0) >> 16) != 0); |
442 | uint32_t prevPrimary = 0; |
443 | uint32_t prevSecondary = 0; |
444 | uint32_t pri = 0; |
445 | uint32_t sec = 0; |
446 | uint32_t ter = CollationFastLatin::COMMON_TER; |
447 | for(int32_t i = 0; i < uniqueCEs.size(); ++i) { |
448 | int64_t ce = uniqueCEs.elementAti(i); |
449 | // Note: At least one of the p/s/t weights changes from one unique CE to the next. |
450 | // (uniqueCEs does not store case bits.) |
451 | uint32_t p = (uint32_t)(ce >> 32); |
452 | if(p != prevPrimary) { |
453 | while(p > lastGroupPrimary) { |
454 | U_ASSERT(pri <= CollationFastLatin::MAX_LONG); |
455 | // Set the group's header entry to the |
456 | // last "long primary" in or before the group. |
457 | result.setCharAt(1 + group, (UChar)pri); |
458 | if(++group < NUM_SPECIAL_GROUPS) { |
459 | lastGroupPrimary = lastSpecialPrimaries[group]; |
460 | } else { |
461 | lastGroupPrimary = 0xffffffff; |
462 | break; |
463 | } |
464 | } |
465 | if(p < firstShortPrimary) { |
466 | if(pri == 0) { |
467 | pri = CollationFastLatin::MIN_LONG; |
468 | } else if(pri < CollationFastLatin::MAX_LONG) { |
469 | pri += CollationFastLatin::LONG_INC; |
470 | } else { |
471 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
472 | printf("long-primary overflow for %08x\n" , p); |
473 | #endif |
474 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
475 | continue; |
476 | } |
477 | } else { |
478 | if(pri < CollationFastLatin::MIN_SHORT) { |
479 | pri = CollationFastLatin::MIN_SHORT; |
480 | } else if(pri < (CollationFastLatin::MAX_SHORT - CollationFastLatin::SHORT_INC)) { |
481 | // Reserve the highest primary weight for U+FFFF. |
482 | pri += CollationFastLatin::SHORT_INC; |
483 | } else { |
484 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
485 | printf("short-primary overflow for %08x\n" , p); |
486 | #endif |
487 | shortPrimaryOverflow = TRUE; |
488 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
489 | continue; |
490 | } |
491 | } |
492 | prevPrimary = p; |
493 | prevSecondary = Collation::COMMON_WEIGHT16; |
494 | sec = CollationFastLatin::COMMON_SEC; |
495 | ter = CollationFastLatin::COMMON_TER; |
496 | } |
497 | uint32_t lower32 = (uint32_t)ce; |
498 | uint32_t s = lower32 >> 16; |
499 | if(s != prevSecondary) { |
500 | if(pri == 0) { |
501 | if(sec == 0) { |
502 | sec = CollationFastLatin::MIN_SEC_HIGH; |
503 | } else if(sec < CollationFastLatin::MAX_SEC_HIGH) { |
504 | sec += CollationFastLatin::SEC_INC; |
505 | } else { |
506 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
507 | continue; |
508 | } |
509 | prevSecondary = s; |
510 | ter = CollationFastLatin::COMMON_TER; |
511 | } else if(s < Collation::COMMON_WEIGHT16) { |
512 | if(sec == CollationFastLatin::COMMON_SEC) { |
513 | sec = CollationFastLatin::MIN_SEC_BEFORE; |
514 | } else if(sec < CollationFastLatin::MAX_SEC_BEFORE) { |
515 | sec += CollationFastLatin::SEC_INC; |
516 | } else { |
517 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
518 | continue; |
519 | } |
520 | } else if(s == Collation::COMMON_WEIGHT16) { |
521 | sec = CollationFastLatin::COMMON_SEC; |
522 | } else { |
523 | if(sec < CollationFastLatin::MIN_SEC_AFTER) { |
524 | sec = CollationFastLatin::MIN_SEC_AFTER; |
525 | } else if(sec < CollationFastLatin::MAX_SEC_AFTER) { |
526 | sec += CollationFastLatin::SEC_INC; |
527 | } else { |
528 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
529 | continue; |
530 | } |
531 | } |
532 | prevSecondary = s; |
533 | ter = CollationFastLatin::COMMON_TER; |
534 | } |
535 | U_ASSERT((lower32 & Collation::CASE_MASK) == 0); // blanked out in uniqueCEs |
536 | uint32_t t = lower32 & Collation::ONLY_TERTIARY_MASK; |
537 | if(t > Collation::COMMON_WEIGHT16) { |
538 | if(ter < CollationFastLatin::MAX_TER_AFTER) { |
539 | ++ter; |
540 | } else { |
541 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
542 | continue; |
543 | } |
544 | } |
545 | if(CollationFastLatin::MIN_LONG <= pri && pri <= CollationFastLatin::MAX_LONG) { |
546 | U_ASSERT(sec == CollationFastLatin::COMMON_SEC); |
547 | miniCEs[i] = (uint16_t)(pri | ter); |
548 | } else { |
549 | miniCEs[i] = (uint16_t)(pri | sec | ter); |
550 | } |
551 | } |
552 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
553 | printf("last mini primary: %04x\n" , pri); |
554 | #endif |
555 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER >= 2 |
556 | for(int32_t i = 0; i < uniqueCEs.size(); ++i) { |
557 | int64_t ce = uniqueCEs.elementAti(i); |
558 | printf("unique CE 0x%016lx -> 0x%04x\n" , ce, miniCEs[i]); |
559 | } |
560 | #endif |
561 | return U_SUCCESS(errorCode); |
562 | } |
563 | |
564 | UBool |
565 | CollationFastLatinBuilder::encodeCharCEs(UErrorCode &errorCode) { |
566 | if(U_FAILURE(errorCode)) { return FALSE; } |
567 | int32_t miniCEsStart = result.length(); |
568 | for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { |
569 | result.append((UChar)0); // initialize to completely ignorable |
570 | } |
571 | int32_t indexBase = result.length(); |
572 | for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { |
573 | int64_t ce = charCEs[i][0]; |
574 | if(isContractionCharCE(ce)) { continue; } // defer contraction |
575 | uint32_t miniCE = encodeTwoCEs(ce, charCEs[i][1]); |
576 | if(miniCE > 0xffff) { |
577 | // Note: There is a chance that this new expansion is the same as a previous one, |
578 | // and if so, then we could reuse the other expansion. |
579 | // However, that seems unlikely. |
580 | int32_t expansionIndex = result.length() - indexBase; |
581 | if(expansionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { |
582 | miniCE = CollationFastLatin::BAIL_OUT; |
583 | } else { |
584 | result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); |
585 | miniCE = CollationFastLatin::EXPANSION | expansionIndex; |
586 | } |
587 | } |
588 | result.setCharAt(miniCEsStart + i, (UChar)miniCE); |
589 | } |
590 | return U_SUCCESS(errorCode); |
591 | } |
592 | |
593 | UBool |
594 | CollationFastLatinBuilder::encodeContractions(UErrorCode &errorCode) { |
595 | // We encode all contraction lists so that the first word of a list |
596 | // terminates the previous list, and we only need one additional terminator at the end. |
597 | if(U_FAILURE(errorCode)) { return FALSE; } |
598 | int32_t indexBase = headerLength + CollationFastLatin::NUM_FAST_CHARS; |
599 | int32_t firstContractionIndex = result.length(); |
600 | for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { |
601 | int64_t ce = charCEs[i][0]; |
602 | if(!isContractionCharCE(ce)) { continue; } |
603 | int32_t contractionIndex = result.length() - indexBase; |
604 | if(contractionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { |
605 | result.setCharAt(headerLength + i, CollationFastLatin::BAIL_OUT); |
606 | continue; |
607 | } |
608 | UBool firstTriple = TRUE; |
609 | for(int32_t index = (int32_t)ce & 0x7fffffff;; index += 3) { |
610 | int32_t x = static_cast<int32_t>(contractionCEs.elementAti(index)); |
611 | if((uint32_t)x == CollationFastLatin::CONTR_CHAR_MASK && !firstTriple) { break; } |
612 | int64_t cce0 = contractionCEs.elementAti(index + 1); |
613 | int64_t cce1 = contractionCEs.elementAti(index + 2); |
614 | uint32_t miniCE = encodeTwoCEs(cce0, cce1); |
615 | if(miniCE == CollationFastLatin::BAIL_OUT) { |
616 | result.append((UChar)(x | (1 << CollationFastLatin::CONTR_LENGTH_SHIFT))); |
617 | } else if(miniCE <= 0xffff) { |
618 | result.append((UChar)(x | (2 << CollationFastLatin::CONTR_LENGTH_SHIFT))); |
619 | result.append((UChar)miniCE); |
620 | } else { |
621 | result.append((UChar)(x | (3 << CollationFastLatin::CONTR_LENGTH_SHIFT))); |
622 | result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); |
623 | } |
624 | firstTriple = FALSE; |
625 | } |
626 | // Note: There is a chance that this new contraction list is the same as a previous one, |
627 | // and if so, then we could truncate the result and reuse the other list. |
628 | // However, that seems unlikely. |
629 | result.setCharAt(headerLength + i, |
630 | (UChar)(CollationFastLatin::CONTRACTION | contractionIndex)); |
631 | } |
632 | if(result.length() > firstContractionIndex) { |
633 | // Terminate the last contraction list. |
634 | result.append((UChar)CollationFastLatin::CONTR_CHAR_MASK); |
635 | } |
636 | if(result.isBogus()) { |
637 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
638 | return FALSE; |
639 | } |
640 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
641 | printf("** fast Latin %d * 2 = %d bytes\n" , result.length(), result.length() * 2); |
642 | puts(" header & below-digit groups map" ); |
643 | int32_t i = 0; |
644 | for(; i < headerLength; ++i) { |
645 | printf(" %04x" , result[i]); |
646 | } |
647 | printf("\n char mini CEs" ); |
648 | U_ASSERT(CollationFastLatin::NUM_FAST_CHARS % 16 == 0); |
649 | for(; i < indexBase; i += 16) { |
650 | UChar32 c = i - headerLength; |
651 | if(c >= CollationFastLatin::LATIN_LIMIT) { |
652 | c = CollationFastLatin::PUNCT_START + c - CollationFastLatin::LATIN_LIMIT; |
653 | } |
654 | printf("\n %04x:" , c); |
655 | for(int32_t j = 0; j < 16; ++j) { |
656 | printf(" %04x" , result[i + j]); |
657 | } |
658 | } |
659 | printf("\n expansions & contractions" ); |
660 | for(; i < result.length(); ++i) { |
661 | if((i - indexBase) % 16 == 0) { puts("" ); } |
662 | printf(" %04x" , result[i]); |
663 | } |
664 | puts("" ); |
665 | #endif |
666 | return TRUE; |
667 | } |
668 | |
669 | uint32_t |
670 | CollationFastLatinBuilder::encodeTwoCEs(int64_t first, int64_t second) const { |
671 | if(first == 0) { |
672 | return 0; // completely ignorable |
673 | } |
674 | if(first == Collation::NO_CE) { |
675 | return CollationFastLatin::BAIL_OUT; |
676 | } |
677 | U_ASSERT((uint32_t)(first >> 32) != Collation::NO_CE_PRIMARY); |
678 | |
679 | uint32_t miniCE = getMiniCE(first); |
680 | if(miniCE == CollationFastLatin::BAIL_OUT) { return miniCE; } |
681 | if(miniCE >= CollationFastLatin::MIN_SHORT) { |
682 | // Extract & copy the case bits. |
683 | // Shift them from normal CE bits 15..14 to mini CE bits 4..3. |
684 | uint32_t c = (((uint32_t)first & Collation::CASE_MASK) >> (14 - 3)); |
685 | // Only in mini CEs: Ignorable case bits = 0, lowercase = 1. |
686 | c += CollationFastLatin::LOWER_CASE; |
687 | miniCE |= c; |
688 | } |
689 | if(second == 0) { return miniCE; } |
690 | |
691 | uint32_t miniCE1 = getMiniCE(second); |
692 | if(miniCE1 == CollationFastLatin::BAIL_OUT) { return miniCE1; } |
693 | |
694 | uint32_t case1 = (uint32_t)second & Collation::CASE_MASK; |
695 | if(miniCE >= CollationFastLatin::MIN_SHORT && |
696 | (miniCE & CollationFastLatin::SECONDARY_MASK) == CollationFastLatin::COMMON_SEC) { |
697 | // Try to combine the two mini CEs into one. |
698 | uint32_t sec1 = miniCE1 & CollationFastLatin::SECONDARY_MASK; |
699 | uint32_t ter1 = miniCE1 & CollationFastLatin::TERTIARY_MASK; |
700 | if(sec1 >= CollationFastLatin::MIN_SEC_HIGH && case1 == 0 && |
701 | ter1 == CollationFastLatin::COMMON_TER) { |
702 | // sec1>=sec_high implies pri1==0. |
703 | return (miniCE & ~CollationFastLatin::SECONDARY_MASK) | sec1; |
704 | } |
705 | } |
706 | |
707 | if(miniCE1 <= CollationFastLatin::SECONDARY_MASK || CollationFastLatin::MIN_SHORT <= miniCE1) { |
708 | // Secondary CE, or a CE with a short primary, copy the case bits. |
709 | case1 = (case1 >> (14 - 3)) + CollationFastLatin::LOWER_CASE; |
710 | miniCE1 |= case1; |
711 | } |
712 | return (miniCE << 16) | miniCE1; |
713 | } |
714 | |
715 | U_NAMESPACE_END |
716 | |
717 | #endif // !UCONFIG_NO_COLLATION |
718 | |