1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * |
6 | * Copyright (C) 2008-2015, International Business Machines |
7 | * Corporation and others. All Rights Reserved. |
8 | * |
9 | ****************************************************************************** |
10 | * file name: uspoof_conf.cpp |
11 | * encoding: UTF-8 |
12 | * tab size: 8 (not used) |
13 | * indentation:4 |
14 | * |
15 | * created on: 2009Jan05 (refactoring earlier files) |
16 | * created by: Andy Heninger |
17 | * |
18 | * Internal classes for compililing confusable data into its binary (runtime) form. |
19 | */ |
20 | |
21 | #include "unicode/utypes.h" |
22 | #include "unicode/uspoof.h" |
23 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS |
24 | #if !UCONFIG_NO_NORMALIZATION |
25 | |
26 | #include "unicode/unorm.h" |
27 | #include "unicode/uregex.h" |
28 | #include "unicode/ustring.h" |
29 | #include "cmemory.h" |
30 | #include "uspoof_impl.h" |
31 | #include "uhash.h" |
32 | #include "uvector.h" |
33 | #include "uassert.h" |
34 | #include "uarrsort.h" |
35 | #include "uspoof_conf.h" |
36 | |
37 | U_NAMESPACE_USE |
38 | |
39 | |
40 | //--------------------------------------------------------------------- |
41 | // |
42 | // buildConfusableData Compile the source confusable data, as defined by |
43 | // the Unicode data file confusables.txt, into the binary |
44 | // structures used by the confusable detector. |
45 | // |
46 | // The binary structures are described in uspoof_impl.h |
47 | // |
48 | // 1. Parse the data, making a hash table mapping from a UChar32 to a String. |
49 | // |
50 | // 2. Sort all of the strings encountered by length, since they will need to |
51 | // be stored in that order in the final string table. |
52 | // TODO: Sorting these strings by length is no longer needed since the removal of |
53 | // the string lengths table. This logic can be removed to save processing time |
54 | // when building confusables data. |
55 | // |
56 | // 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the |
57 | // list because that will be the ordering of our runtime table. |
58 | // |
59 | // 4. Generate the run time string table. This is generated before the key & value |
60 | // tables because we need the string indexes when building those tables. |
61 | // |
62 | // 5. Build the run-time key and value tables. These are parallel tables, and are built |
63 | // at the same time |
64 | // |
65 | |
66 | SPUString::SPUString(UnicodeString *s) { |
67 | fStr = s; |
68 | fCharOrStrTableIndex = 0; |
69 | } |
70 | |
71 | |
72 | SPUString::~SPUString() { |
73 | delete fStr; |
74 | } |
75 | |
76 | |
77 | SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) { |
78 | fVec = new UVector(status); |
79 | if (fVec == NULL) { |
80 | status = U_MEMORY_ALLOCATION_ERROR; |
81 | return; |
82 | } |
83 | fHash = uhash_open(uhash_hashUnicodeString, // key hash function |
84 | uhash_compareUnicodeString, // Key Comparator |
85 | NULL, // Value Comparator |
86 | &status); |
87 | } |
88 | |
89 | |
90 | SPUStringPool::~SPUStringPool() { |
91 | int i; |
92 | for (i=fVec->size()-1; i>=0; i--) { |
93 | SPUString *s = static_cast<SPUString *>(fVec->elementAt(i)); |
94 | delete s; |
95 | } |
96 | delete fVec; |
97 | uhash_close(fHash); |
98 | } |
99 | |
100 | |
101 | int32_t SPUStringPool::size() { |
102 | return fVec->size(); |
103 | } |
104 | |
105 | SPUString *SPUStringPool::getByIndex(int32_t index) { |
106 | SPUString *retString = (SPUString *)fVec->elementAt(index); |
107 | return retString; |
108 | } |
109 | |
110 | |
111 | // Comparison function for ordering strings in the string pool. |
112 | // Compare by length first, then, within a group of the same length, |
113 | // by code point order. |
114 | // Conforms to the type signature for a USortComparator in uvector.h |
115 | |
116 | static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) { |
117 | const SPUString *sL = const_cast<const SPUString *>( |
118 | static_cast<SPUString *>(left.pointer)); |
119 | const SPUString *sR = const_cast<const SPUString *>( |
120 | static_cast<SPUString *>(right.pointer)); |
121 | int32_t lenL = sL->fStr->length(); |
122 | int32_t lenR = sR->fStr->length(); |
123 | if (lenL < lenR) { |
124 | return -1; |
125 | } else if (lenL > lenR) { |
126 | return 1; |
127 | } else { |
128 | return sL->fStr->compare(*(sR->fStr)); |
129 | } |
130 | } |
131 | |
132 | void SPUStringPool::sort(UErrorCode &status) { |
133 | fVec->sort(SPUStringCompare, status); |
134 | } |
135 | |
136 | |
137 | SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) { |
138 | SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src)); |
139 | if (hashedString != NULL) { |
140 | delete src; |
141 | } else { |
142 | hashedString = new SPUString(src); |
143 | if (hashedString == NULL) { |
144 | status = U_MEMORY_ALLOCATION_ERROR; |
145 | return NULL; |
146 | } |
147 | uhash_put(fHash, src, hashedString, &status); |
148 | fVec->addElement(hashedString, status); |
149 | } |
150 | return hashedString; |
151 | } |
152 | |
153 | |
154 | |
155 | ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) : |
156 | fSpoofImpl(spImpl), |
157 | fInput(NULL), |
158 | fTable(NULL), |
159 | fKeySet(NULL), |
160 | fKeyVec(NULL), |
161 | fValueVec(NULL), |
162 | fStringTable(NULL), |
163 | stringPool(NULL), |
164 | fParseLine(NULL), |
165 | fParseHexNum(NULL), |
166 | fLineNum(0) |
167 | { |
168 | if (U_FAILURE(status)) { |
169 | return; |
170 | } |
171 | |
172 | fTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); |
173 | |
174 | fKeySet = new UnicodeSet(); |
175 | if (fKeySet == NULL) { |
176 | status = U_MEMORY_ALLOCATION_ERROR; |
177 | return; |
178 | } |
179 | |
180 | fKeyVec = new UVector(status); |
181 | if (fKeyVec == NULL) { |
182 | status = U_MEMORY_ALLOCATION_ERROR; |
183 | return; |
184 | } |
185 | |
186 | fValueVec = new UVector(status); |
187 | if (fValueVec == NULL) { |
188 | status = U_MEMORY_ALLOCATION_ERROR; |
189 | return; |
190 | } |
191 | |
192 | stringPool = new SPUStringPool(status); |
193 | if (stringPool == NULL) { |
194 | status = U_MEMORY_ALLOCATION_ERROR; |
195 | return; |
196 | } |
197 | } |
198 | |
199 | |
200 | ConfusabledataBuilder::~ConfusabledataBuilder() { |
201 | uprv_free(fInput); |
202 | uregex_close(fParseLine); |
203 | uregex_close(fParseHexNum); |
204 | uhash_close(fTable); |
205 | delete fKeySet; |
206 | delete fKeyVec; |
207 | delete fStringTable; |
208 | delete fValueVec; |
209 | delete stringPool; |
210 | } |
211 | |
212 | |
213 | void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables, |
214 | int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) { |
215 | |
216 | if (U_FAILURE(status)) { |
217 | return; |
218 | } |
219 | ConfusabledataBuilder builder(spImpl, status); |
220 | builder.build(confusables, confusablesLen, status); |
221 | if (U_FAILURE(status) && errorType != NULL) { |
222 | *errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE; |
223 | pe->line = builder.fLineNum; |
224 | } |
225 | } |
226 | |
227 | |
228 | void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen, |
229 | UErrorCode &status) { |
230 | |
231 | // Convert the user input data from UTF-8 to UChar (UTF-16) |
232 | int32_t inputLen = 0; |
233 | if (U_FAILURE(status)) { |
234 | return; |
235 | } |
236 | u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status); |
237 | if (status != U_BUFFER_OVERFLOW_ERROR) { |
238 | return; |
239 | } |
240 | status = U_ZERO_ERROR; |
241 | fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar))); |
242 | if (fInput == NULL) { |
243 | status = U_MEMORY_ALLOCATION_ERROR; |
244 | return; |
245 | } |
246 | u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status); |
247 | |
248 | |
249 | // Regular Expression to parse a line from Confusables.txt. The expression will match |
250 | // any line. What was matched is determined by examining which capture groups have a match. |
251 | // Capture Group 1: the source char |
252 | // Capture Group 2: the replacement chars |
253 | // Capture Group 3-6 the table type, SL, SA, ML, or MA (deprecated) |
254 | // Capture Group 7: A blank or comment only line. |
255 | // Capture Group 8: A syntactically invalid line. Anything that didn't match before. |
256 | // Example Line from the confusables.txt source file: |
257 | // "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... " |
258 | UnicodeString pattern( |
259 | "(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char |
260 | "[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s) |
261 | "(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued) |
262 | "\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type |
263 | "[ \\t]*(?:#.*?)?$" // Match any trailing #comment |
264 | "|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment |
265 | "|^(.*?)$" , -1, US_INV); // OR match any line, which catches illegal lines. |
266 | // TODO: Why are we using the regex C API here? C++ would just take UnicodeString... |
267 | fParseLine = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); |
268 | |
269 | // Regular expression for parsing a hex number out of a space-separated list of them. |
270 | // Capture group 1 gets the number, with spaces removed. |
271 | pattern = UNICODE_STRING_SIMPLE("\\s*([0-9A-F]+)" ); |
272 | fParseHexNum = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); |
273 | |
274 | // Zap any Byte Order Mark at the start of input. Changing it to a space is benign |
275 | // given the syntax of the input. |
276 | if (*fInput == 0xfeff) { |
277 | *fInput = 0x20; |
278 | } |
279 | |
280 | // Parse the input, one line per iteration of this loop. |
281 | uregex_setText(fParseLine, fInput, inputLen, &status); |
282 | while (uregex_findNext(fParseLine, &status)) { |
283 | fLineNum++; |
284 | if (uregex_start(fParseLine, 7, &status) >= 0) { |
285 | // this was a blank or comment line. |
286 | continue; |
287 | } |
288 | if (uregex_start(fParseLine, 8, &status) >= 0) { |
289 | // input file syntax error. |
290 | status = U_PARSE_ERROR; |
291 | return; |
292 | } |
293 | |
294 | // We have a good input line. Extract the key character and mapping string, and |
295 | // put them into the appropriate mapping table. |
296 | UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status), |
297 | uregex_end(fParseLine, 1, &status), status); |
298 | |
299 | int32_t mapStringStart = uregex_start(fParseLine, 2, &status); |
300 | int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart; |
301 | uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status); |
302 | |
303 | UnicodeString *mapString = new UnicodeString(); |
304 | if (mapString == NULL) { |
305 | status = U_MEMORY_ALLOCATION_ERROR; |
306 | return; |
307 | } |
308 | while (uregex_findNext(fParseHexNum, &status)) { |
309 | UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status), |
310 | uregex_end(fParseHexNum, 1, &status), status); |
311 | mapString->append(c); |
312 | } |
313 | U_ASSERT(mapString->length() >= 1); |
314 | |
315 | // Put the map (value) string into the string pool |
316 | // This a little like a Java intern() - any duplicates will be eliminated. |
317 | SPUString *smapString = stringPool->addString(mapString, status); |
318 | |
319 | // Add the UChar32 -> string mapping to the table. |
320 | // For Unicode 8, the SL, SA and ML tables have been discontinued. |
321 | // All input data from confusables.txt is tagged MA. |
322 | uhash_iput(fTable, keyChar, smapString, &status); |
323 | if (U_FAILURE(status)) { return; } |
324 | fKeySet->add(keyChar); |
325 | } |
326 | |
327 | // Input data is now all parsed and collected. |
328 | // Now create the run-time binary form of the data. |
329 | // |
330 | // This is done in two steps. First the data is assembled into vectors and strings, |
331 | // for ease of construction, then the contents of these collections are dumped |
332 | // into the actual raw-bytes data storage. |
333 | |
334 | // Build up the string array, and record the index of each string therein |
335 | // in the (build time only) string pool. |
336 | // Strings of length one are not entered into the strings array. |
337 | // (Strings in the table are sorted by length) |
338 | stringPool->sort(status); |
339 | fStringTable = new UnicodeString(); |
340 | int32_t poolSize = stringPool->size(); |
341 | int32_t i; |
342 | for (i=0; i<poolSize; i++) { |
343 | SPUString *s = stringPool->getByIndex(i); |
344 | int32_t strLen = s->fStr->length(); |
345 | int32_t strIndex = fStringTable->length(); |
346 | if (strLen == 1) { |
347 | // strings of length one do not get an entry in the string table. |
348 | // Keep the single string character itself here, which is the same |
349 | // convention that is used in the final run-time string table index. |
350 | s->fCharOrStrTableIndex = s->fStr->charAt(0); |
351 | } else { |
352 | s->fCharOrStrTableIndex = strIndex; |
353 | fStringTable->append(*(s->fStr)); |
354 | } |
355 | } |
356 | |
357 | // Construct the compile-time Key and Value tables |
358 | // |
359 | // For each key code point, check which mapping tables it applies to, |
360 | // and create the final data for the key & value structures. |
361 | // |
362 | // The four logical mapping tables are conflated into one combined table. |
363 | // If multiple logical tables have the same mapping for some key, they |
364 | // share a single entry in the combined table. |
365 | // If more than one mapping exists for the same key code point, multiple |
366 | // entries will be created in the table |
367 | |
368 | for (int32_t range=0; range<fKeySet->getRangeCount(); range++) { |
369 | // It is an oddity of the UnicodeSet API that simply enumerating the contained |
370 | // code points requires a nested loop. |
371 | for (UChar32 keyChar=fKeySet->getRangeStart(range); |
372 | keyChar <= fKeySet->getRangeEnd(range); keyChar++) { |
373 | SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(fTable, keyChar)); |
374 | U_ASSERT(targetMapping != NULL); |
375 | |
376 | // Set an error code if trying to consume a long string. Otherwise, |
377 | // codePointAndLengthToKey will abort on a U_ASSERT. |
378 | if (targetMapping->fStr->length() > 256) { |
379 | status = U_ILLEGAL_ARGUMENT_ERROR; |
380 | return; |
381 | } |
382 | |
383 | int32_t key = ConfusableDataUtils::codePointAndLengthToKey(keyChar, |
384 | targetMapping->fStr->length()); |
385 | int32_t value = targetMapping->fCharOrStrTableIndex; |
386 | |
387 | fKeyVec->addElement(key, status); |
388 | fValueVec->addElement(value, status); |
389 | } |
390 | } |
391 | |
392 | // Put the assembled data into the flat runtime array |
393 | outputData(status); |
394 | |
395 | // All of the intermediate allocated data belongs to the ConfusabledataBuilder |
396 | // object (this), and is deleted in the destructor. |
397 | return; |
398 | } |
399 | |
400 | // |
401 | // outputData The confusable data has been compiled and stored in intermediate |
402 | // collections and strings. Copy it from there to the final flat |
403 | // binary array. |
404 | // |
405 | // Note that as each section is added to the output data, the |
406 | // expand (reserveSpace() function will likely relocate it in memory. |
407 | // Be careful with pointers. |
408 | // |
409 | void ConfusabledataBuilder::outputData(UErrorCode &status) { |
410 | |
411 | U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE); |
412 | |
413 | // The Key Table |
414 | // While copying the keys to the runtime array, |
415 | // also sanity check that they are sorted. |
416 | |
417 | int32_t numKeys = fKeyVec->size(); |
418 | int32_t *keys = |
419 | static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status)); |
420 | if (U_FAILURE(status)) { |
421 | return; |
422 | } |
423 | int i; |
424 | UChar32 previousCodePoint = 0; |
425 | for (i=0; i<numKeys; i++) { |
426 | int32_t key = fKeyVec->elementAti(i); |
427 | UChar32 codePoint = ConfusableDataUtils::keyToCodePoint(key); |
428 | (void)previousCodePoint; // Suppress unused variable warning. |
429 | // strictly greater because there can be only one entry per code point |
430 | U_ASSERT(codePoint > previousCodePoint); |
431 | keys[i] = key; |
432 | previousCodePoint = codePoint; |
433 | } |
434 | SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData; |
435 | rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData); |
436 | rawData->fCFUKeysSize = numKeys; |
437 | fSpoofImpl->fSpoofData->fCFUKeys = keys; |
438 | |
439 | |
440 | // The Value Table, parallels the key table |
441 | int32_t numValues = fValueVec->size(); |
442 | U_ASSERT(numKeys == numValues); |
443 | uint16_t *values = |
444 | static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status)); |
445 | if (U_FAILURE(status)) { |
446 | return; |
447 | } |
448 | for (i=0; i<numValues; i++) { |
449 | uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i)); |
450 | U_ASSERT(value < 0xffff); |
451 | values[i] = static_cast<uint16_t>(value); |
452 | } |
453 | rawData = fSpoofImpl->fSpoofData->fRawData; |
454 | rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData); |
455 | rawData->fCFUStringIndexSize = numValues; |
456 | fSpoofImpl->fSpoofData->fCFUValues = values; |
457 | |
458 | // The Strings Table. |
459 | |
460 | uint32_t stringsLength = fStringTable->length(); |
461 | // Reserve an extra space so the string will be nul-terminated. This is |
462 | // only a convenience, for when debugging; it is not needed otherwise. |
463 | UChar *strings = |
464 | static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status)); |
465 | if (U_FAILURE(status)) { |
466 | return; |
467 | } |
468 | fStringTable->extract(strings, stringsLength+1, status); |
469 | rawData = fSpoofImpl->fSpoofData->fRawData; |
470 | U_ASSERT(rawData->fCFUStringTable == 0); |
471 | rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData); |
472 | rawData->fCFUStringTableLen = stringsLength; |
473 | fSpoofImpl->fSpoofData->fCFUStrings = strings; |
474 | } |
475 | |
476 | #endif |
477 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |
478 | |
479 | |