1 | // Copyright 2010 the V8 project authors. All rights reserved. |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions are |
4 | // met: |
5 | // |
6 | // * Redistributions of source code must retain the above copyright |
7 | // notice, this list of conditions and the following disclaimer. |
8 | // * Redistributions in binary form must reproduce the above |
9 | // copyright notice, this list of conditions and the following |
10 | // disclaimer in the documentation and/or other materials provided |
11 | // with the distribution. |
12 | // * Neither the name of Google Inc. nor the names of its |
13 | // contributors may be used to endorse or promote products derived |
14 | // from this software without specific prior written permission. |
15 | // |
16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | |
28 | #include <limits.h> |
29 | #include <math.h> |
30 | |
31 | #include "double-conversion.h" |
32 | |
33 | #include "bignum-dtoa.h" |
34 | #include "fast-dtoa.h" |
35 | #include "fixed-dtoa.h" |
36 | #include "ieee.h" |
37 | #include "strtod.h" |
38 | #include "utils.h" |
39 | |
40 | namespace double_conversion { |
41 | |
42 | const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() { |
43 | int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; |
44 | static DoubleToStringConverter converter(flags, |
45 | "Infinity" , |
46 | "NaN" , |
47 | 'e', |
48 | -6, 21, |
49 | 6, 0); |
50 | return converter; |
51 | } |
52 | |
53 | |
54 | bool DoubleToStringConverter::HandleSpecialValues( |
55 | double value, |
56 | StringBuilder* result_builder) const { |
57 | Double double_inspect(value); |
58 | if (double_inspect.IsInfinite()) { |
59 | if (infinity_symbol_ == NULL) return false; |
60 | if (value < 0) { |
61 | result_builder->AddCharacter('-'); |
62 | } |
63 | result_builder->AddString(infinity_symbol_); |
64 | return true; |
65 | } |
66 | if (double_inspect.IsNan()) { |
67 | if (nan_symbol_ == NULL) return false; |
68 | result_builder->AddString(nan_symbol_); |
69 | return true; |
70 | } |
71 | return false; |
72 | } |
73 | |
74 | |
75 | void DoubleToStringConverter::CreateExponentialRepresentation( |
76 | const char* decimal_digits, |
77 | int length, |
78 | int exponent, |
79 | StringBuilder* result_builder) const { |
80 | ASSERT(length != 0); |
81 | result_builder->AddCharacter(decimal_digits[0]); |
82 | if (length != 1) { |
83 | result_builder->AddCharacter('.'); |
84 | result_builder->AddSubstring(&decimal_digits[1], length-1); |
85 | } |
86 | result_builder->AddCharacter(exponent_character_); |
87 | if (exponent < 0) { |
88 | result_builder->AddCharacter('-'); |
89 | exponent = -exponent; |
90 | } else { |
91 | if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { |
92 | result_builder->AddCharacter('+'); |
93 | } |
94 | } |
95 | if (exponent == 0) { |
96 | result_builder->AddCharacter('0'); |
97 | return; |
98 | } |
99 | ASSERT(exponent < 1e4); |
100 | const int kMaxExponentLength = 5; |
101 | char buffer[kMaxExponentLength + 1]; |
102 | buffer[kMaxExponentLength] = '\0'; |
103 | int first_char_pos = kMaxExponentLength; |
104 | while (exponent > 0) { |
105 | buffer[--first_char_pos] = '0' + (exponent % 10); |
106 | exponent /= 10; |
107 | } |
108 | result_builder->AddSubstring(&buffer[first_char_pos], |
109 | kMaxExponentLength - first_char_pos); |
110 | } |
111 | |
112 | |
113 | void DoubleToStringConverter::CreateDecimalRepresentation( |
114 | const char* decimal_digits, |
115 | int length, |
116 | int decimal_point, |
117 | int digits_after_point, |
118 | StringBuilder* result_builder) const { |
119 | // Create a representation that is padded with zeros if needed. |
120 | if (decimal_point <= 0) { |
121 | // "0.00000decimal_rep". |
122 | result_builder->AddCharacter('0'); |
123 | if (digits_after_point > 0) { |
124 | result_builder->AddCharacter('.'); |
125 | result_builder->AddPadding('0', -decimal_point); |
126 | ASSERT(length <= digits_after_point - (-decimal_point)); |
127 | result_builder->AddSubstring(decimal_digits, length); |
128 | int remaining_digits = digits_after_point - (-decimal_point) - length; |
129 | result_builder->AddPadding('0', remaining_digits); |
130 | } |
131 | } else if (decimal_point >= length) { |
132 | // "decimal_rep0000.00000" or "decimal_rep.0000" |
133 | result_builder->AddSubstring(decimal_digits, length); |
134 | result_builder->AddPadding('0', decimal_point - length); |
135 | if (digits_after_point > 0) { |
136 | result_builder->AddCharacter('.'); |
137 | result_builder->AddPadding('0', digits_after_point); |
138 | } |
139 | } else { |
140 | // "decima.l_rep000" |
141 | ASSERT(digits_after_point > 0); |
142 | result_builder->AddSubstring(decimal_digits, decimal_point); |
143 | result_builder->AddCharacter('.'); |
144 | ASSERT(length - decimal_point <= digits_after_point); |
145 | result_builder->AddSubstring(&decimal_digits[decimal_point], |
146 | length - decimal_point); |
147 | int remaining_digits = digits_after_point - (length - decimal_point); |
148 | result_builder->AddPadding('0', remaining_digits); |
149 | } |
150 | if (digits_after_point == 0) { |
151 | if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { |
152 | result_builder->AddCharacter('.'); |
153 | } |
154 | if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { |
155 | result_builder->AddCharacter('0'); |
156 | } |
157 | } |
158 | } |
159 | |
160 | |
161 | bool DoubleToStringConverter::ToShortestIeeeNumber( |
162 | double value, |
163 | StringBuilder* result_builder, |
164 | DoubleToStringConverter::DtoaMode mode) const { |
165 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE); |
166 | if (Double(value).IsSpecial()) { |
167 | return HandleSpecialValues(value, result_builder); |
168 | } |
169 | |
170 | int decimal_point; |
171 | bool sign; |
172 | const int kDecimalRepCapacity = kBase10MaximalLength + 1; |
173 | char decimal_rep[kDecimalRepCapacity]; |
174 | int decimal_rep_length; |
175 | |
176 | DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity, |
177 | &sign, &decimal_rep_length, &decimal_point); |
178 | |
179 | bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; |
180 | if (sign && (value != 0.0 || !unique_zero)) { |
181 | result_builder->AddCharacter('-'); |
182 | } |
183 | |
184 | int exponent = decimal_point - 1; |
185 | if ((decimal_in_shortest_low_ <= exponent) && |
186 | (exponent < decimal_in_shortest_high_)) { |
187 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, |
188 | decimal_point, |
189 | Max(0, decimal_rep_length - decimal_point), |
190 | result_builder); |
191 | } else { |
192 | CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, |
193 | result_builder); |
194 | } |
195 | return true; |
196 | } |
197 | |
198 | |
199 | bool DoubleToStringConverter::ToFixed(double value, |
200 | int requested_digits, |
201 | StringBuilder* result_builder) const { |
202 | ASSERT(kMaxFixedDigitsBeforePoint == 60); |
203 | const double kFirstNonFixed = 1e60; |
204 | |
205 | if (Double(value).IsSpecial()) { |
206 | return HandleSpecialValues(value, result_builder); |
207 | } |
208 | |
209 | if (requested_digits > kMaxFixedDigitsAfterPoint) return false; |
210 | if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false; |
211 | |
212 | // Find a sufficiently precise decimal representation of n. |
213 | int decimal_point; |
214 | bool sign; |
215 | // Add space for the '\0' byte. |
216 | const int kDecimalRepCapacity = |
217 | kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; |
218 | char decimal_rep[kDecimalRepCapacity]; |
219 | int decimal_rep_length; |
220 | DoubleToAscii(value, FIXED, requested_digits, |
221 | decimal_rep, kDecimalRepCapacity, |
222 | &sign, &decimal_rep_length, &decimal_point); |
223 | |
224 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
225 | if (sign && (value != 0.0 || !unique_zero)) { |
226 | result_builder->AddCharacter('-'); |
227 | } |
228 | |
229 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
230 | requested_digits, result_builder); |
231 | return true; |
232 | } |
233 | |
234 | |
235 | bool DoubleToStringConverter::ToExponential( |
236 | double value, |
237 | int requested_digits, |
238 | StringBuilder* result_builder) const { |
239 | if (Double(value).IsSpecial()) { |
240 | return HandleSpecialValues(value, result_builder); |
241 | } |
242 | |
243 | if (requested_digits < -1) return false; |
244 | if (requested_digits > kMaxExponentialDigits) return false; |
245 | |
246 | int decimal_point; |
247 | bool sign; |
248 | // Add space for digit before the decimal point and the '\0' character. |
249 | const int kDecimalRepCapacity = kMaxExponentialDigits + 2; |
250 | ASSERT(kDecimalRepCapacity > kBase10MaximalLength); |
251 | char decimal_rep[kDecimalRepCapacity]; |
252 | int decimal_rep_length; |
253 | |
254 | if (requested_digits == -1) { |
255 | DoubleToAscii(value, SHORTEST, 0, |
256 | decimal_rep, kDecimalRepCapacity, |
257 | &sign, &decimal_rep_length, &decimal_point); |
258 | } else { |
259 | DoubleToAscii(value, PRECISION, requested_digits + 1, |
260 | decimal_rep, kDecimalRepCapacity, |
261 | &sign, &decimal_rep_length, &decimal_point); |
262 | ASSERT(decimal_rep_length <= requested_digits + 1); |
263 | |
264 | for (int i = decimal_rep_length; i < requested_digits + 1; ++i) { |
265 | decimal_rep[i] = '0'; |
266 | } |
267 | decimal_rep_length = requested_digits + 1; |
268 | } |
269 | |
270 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
271 | if (sign && (value != 0.0 || !unique_zero)) { |
272 | result_builder->AddCharacter('-'); |
273 | } |
274 | |
275 | int exponent = decimal_point - 1; |
276 | CreateExponentialRepresentation(decimal_rep, |
277 | decimal_rep_length, |
278 | exponent, |
279 | result_builder); |
280 | return true; |
281 | } |
282 | |
283 | |
284 | bool DoubleToStringConverter::ToPrecision(double value, |
285 | int precision, |
286 | StringBuilder* result_builder) const { |
287 | if (Double(value).IsSpecial()) { |
288 | return HandleSpecialValues(value, result_builder); |
289 | } |
290 | |
291 | if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) { |
292 | return false; |
293 | } |
294 | |
295 | // Find a sufficiently precise decimal representation of n. |
296 | int decimal_point; |
297 | bool sign; |
298 | // Add one for the terminating null character. |
299 | const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; |
300 | char decimal_rep[kDecimalRepCapacity]; |
301 | int decimal_rep_length; |
302 | |
303 | DoubleToAscii(value, PRECISION, precision, |
304 | decimal_rep, kDecimalRepCapacity, |
305 | &sign, &decimal_rep_length, &decimal_point); |
306 | ASSERT(decimal_rep_length <= precision); |
307 | |
308 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
309 | if (sign && (value != 0.0 || !unique_zero)) { |
310 | result_builder->AddCharacter('-'); |
311 | } |
312 | |
313 | // The exponent if we print the number as x.xxeyyy. That is with the |
314 | // decimal point after the first digit. |
315 | int exponent = decimal_point - 1; |
316 | |
317 | int = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; |
318 | if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || |
319 | (decimal_point - precision + extra_zero > |
320 | max_trailing_padding_zeroes_in_precision_mode_)) { |
321 | // Fill buffer to contain 'precision' digits. |
322 | // Usually the buffer is already at the correct length, but 'DoubleToAscii' |
323 | // is allowed to return less characters. |
324 | for (int i = decimal_rep_length; i < precision; ++i) { |
325 | decimal_rep[i] = '0'; |
326 | } |
327 | |
328 | CreateExponentialRepresentation(decimal_rep, |
329 | precision, |
330 | exponent, |
331 | result_builder); |
332 | } else { |
333 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
334 | Max(0, precision - decimal_point), |
335 | result_builder); |
336 | } |
337 | return true; |
338 | } |
339 | |
340 | |
341 | static BignumDtoaMode DtoaToBignumDtoaMode( |
342 | DoubleToStringConverter::DtoaMode dtoa_mode) { |
343 | switch (dtoa_mode) { |
344 | case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST; |
345 | case DoubleToStringConverter::SHORTEST_SINGLE: |
346 | return BIGNUM_DTOA_SHORTEST_SINGLE; |
347 | case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED; |
348 | case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION; |
349 | default: |
350 | UNREACHABLE(); |
351 | return BIGNUM_DTOA_SHORTEST; |
352 | } |
353 | } |
354 | |
355 | |
356 | void DoubleToStringConverter::DoubleToAscii(double v, |
357 | DtoaMode mode, |
358 | int requested_digits, |
359 | char* buffer, |
360 | int buffer_length, |
361 | bool* sign, |
362 | int* length, |
363 | int* point) { |
364 | Vector<char> vector(buffer, buffer_length); |
365 | ASSERT(!Double(v).IsSpecial()); |
366 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0); |
367 | |
368 | if (Double(v).Sign() < 0) { |
369 | *sign = true; |
370 | v = -v; |
371 | } else { |
372 | *sign = false; |
373 | } |
374 | |
375 | if (mode == PRECISION && requested_digits == 0) { |
376 | vector[0] = '\0'; |
377 | *length = 0; |
378 | return; |
379 | } |
380 | |
381 | if (v == 0) { |
382 | vector[0] = '0'; |
383 | vector[1] = '\0'; |
384 | *length = 1; |
385 | *point = 1; |
386 | return; |
387 | } |
388 | |
389 | bool fast_worked; |
390 | switch (mode) { |
391 | case SHORTEST: |
392 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point); |
393 | break; |
394 | case SHORTEST_SINGLE: |
395 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0, |
396 | vector, length, point); |
397 | break; |
398 | case FIXED: |
399 | fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point); |
400 | break; |
401 | case PRECISION: |
402 | fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, |
403 | vector, length, point); |
404 | break; |
405 | default: |
406 | fast_worked = false; |
407 | UNREACHABLE(); |
408 | } |
409 | if (fast_worked) return; |
410 | |
411 | // If the fast dtoa didn't succeed use the slower bignum version. |
412 | BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); |
413 | BignumDtoa(v, bignum_mode, requested_digits, vector, length, point); |
414 | vector[*length] = '\0'; |
415 | } |
416 | |
417 | |
418 | // Consumes the given substring from the iterator. |
419 | // Returns false, if the substring does not match. |
420 | static bool ConsumeSubString(const char** current, |
421 | const char* end, |
422 | const char* substring) { |
423 | ASSERT(**current == *substring); |
424 | for (substring++; *substring != '\0'; substring++) { |
425 | ++*current; |
426 | if (*current == end || **current != *substring) return false; |
427 | } |
428 | ++*current; |
429 | return true; |
430 | } |
431 | |
432 | |
433 | // Maximum number of significant digits in decimal representation. |
434 | // The longest possible double in decimal representation is |
435 | // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 |
436 | // (768 digits). If we parse a number whose first digits are equal to a |
437 | // mean of 2 adjacent doubles (that could have up to 769 digits) the result |
438 | // must be rounded to the bigger one unless the tail consists of zeros, so |
439 | // we don't need to preserve all the digits. |
440 | const int kMaxSignificantDigits = 772; |
441 | |
442 | |
443 | // Returns true if a nonspace found and false if the end has reached. |
444 | static inline bool AdvanceToNonspace(const char** current, const char* end) { |
445 | while (*current != end) { |
446 | if (**current != ' ') return true; |
447 | ++*current; |
448 | } |
449 | return false; |
450 | } |
451 | |
452 | |
453 | static bool isDigit(int x, int radix) { |
454 | return (x >= '0' && x <= '9' && x < '0' + radix) |
455 | || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) |
456 | || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); |
457 | } |
458 | |
459 | |
460 | static double SignedZero(bool sign) { |
461 | return sign ? -0.0 : 0.0; |
462 | } |
463 | |
464 | |
465 | // Returns true if 'c' is a decimal digit that is valid for the given radix. |
466 | // |
467 | // The function is small and could be inlined, but VS2012 emitted a warning |
468 | // because it constant-propagated the radix and concluded that the last |
469 | // condition was always true. By moving it into a separate function the |
470 | // compiler wouldn't warn anymore. |
471 | static bool IsDecimalDigitForRadix(int c, int radix) { |
472 | return '0' <= c && c <= '9' && (c - '0') < radix; |
473 | } |
474 | |
475 | // Returns true if 'c' is a character digit that is valid for the given radix. |
476 | // The 'a_character' should be 'a' or 'A'. |
477 | // |
478 | // The function is small and could be inlined, but VS2012 emitted a warning |
479 | // because it constant-propagated the radix and concluded that the first |
480 | // condition was always false. By moving it into a separate function the |
481 | // compiler wouldn't warn anymore. |
482 | static bool IsCharacterDigitForRadix(int c, int radix, char a_character) { |
483 | return radix > 10 && c >= a_character && c < a_character + radix - 10; |
484 | } |
485 | |
486 | |
487 | // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. |
488 | template <int radix_log_2> |
489 | static double RadixStringToIeee(const char* current, |
490 | const char* end, |
491 | bool sign, |
492 | bool allow_trailing_junk, |
493 | double junk_string_value, |
494 | bool read_as_double, |
495 | const char** trailing_pointer) { |
496 | ASSERT(current != end); |
497 | |
498 | const int kDoubleSize = Double::kSignificandSize; |
499 | const int kSingleSize = Single::kSignificandSize; |
500 | const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize; |
501 | |
502 | // Skip leading 0s. |
503 | while (*current == '0') { |
504 | ++current; |
505 | if (current == end) { |
506 | *trailing_pointer = end; |
507 | return SignedZero(sign); |
508 | } |
509 | } |
510 | |
511 | int64_t number = 0; |
512 | int exponent = 0; |
513 | const int radix = (1 << radix_log_2); |
514 | |
515 | do { |
516 | int digit; |
517 | if (IsDecimalDigitForRadix(*current, radix)) { |
518 | digit = static_cast<char>(*current) - '0'; |
519 | } else if (IsCharacterDigitForRadix(*current, radix, 'a')) { |
520 | digit = static_cast<char>(*current) - 'a' + 10; |
521 | } else if (IsCharacterDigitForRadix(*current, radix, 'A')) { |
522 | digit = static_cast<char>(*current) - 'A' + 10; |
523 | } else { |
524 | if (allow_trailing_junk || !AdvanceToNonspace(¤t, end)) { |
525 | break; |
526 | } else { |
527 | return junk_string_value; |
528 | } |
529 | } |
530 | |
531 | number = number * radix + digit; |
532 | int overflow = static_cast<int>(number >> kSignificandSize); |
533 | if (overflow != 0) { |
534 | // Overflow occurred. Need to determine which direction to round the |
535 | // result. |
536 | int overflow_bits_count = 1; |
537 | while (overflow > 1) { |
538 | overflow_bits_count++; |
539 | overflow >>= 1; |
540 | } |
541 | |
542 | int dropped_bits_mask = ((1 << overflow_bits_count) - 1); |
543 | int dropped_bits = static_cast<int>(number) & dropped_bits_mask; |
544 | number >>= overflow_bits_count; |
545 | exponent = overflow_bits_count; |
546 | |
547 | bool zero_tail = true; |
548 | for (;;) { |
549 | ++current; |
550 | if (current == end || !isDigit(*current, radix)) break; |
551 | zero_tail = zero_tail && *current == '0'; |
552 | exponent += radix_log_2; |
553 | } |
554 | |
555 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
556 | return junk_string_value; |
557 | } |
558 | |
559 | int middle_value = (1 << (overflow_bits_count - 1)); |
560 | if (dropped_bits > middle_value) { |
561 | number++; // Rounding up. |
562 | } else if (dropped_bits == middle_value) { |
563 | // Rounding to even to consistency with decimals: half-way case rounds |
564 | // up if significant part is odd and down otherwise. |
565 | if ((number & 1) != 0 || !zero_tail) { |
566 | number++; // Rounding up. |
567 | } |
568 | } |
569 | |
570 | // Rounding up may cause overflow. |
571 | if ((number & ((int64_t)1 << kSignificandSize)) != 0) { |
572 | exponent++; |
573 | number >>= 1; |
574 | } |
575 | break; |
576 | } |
577 | ++current; |
578 | } while (current != end); |
579 | |
580 | ASSERT(number < ((int64_t)1 << kSignificandSize)); |
581 | ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); |
582 | |
583 | *trailing_pointer = current; |
584 | |
585 | if (exponent == 0) { |
586 | if (sign) { |
587 | if (number == 0) return -0.0; |
588 | number = -number; |
589 | } |
590 | return static_cast<double>(number); |
591 | } |
592 | |
593 | ASSERT(number != 0); |
594 | return Double(DiyFp(number, exponent)).value(); |
595 | } |
596 | |
597 | |
598 | double StringToDoubleConverter::StringToIeee( |
599 | const char* input, |
600 | int length, |
601 | int* processed_characters_count, |
602 | bool read_as_double) const { |
603 | const char* current = input; |
604 | const char* end = input + length; |
605 | |
606 | *processed_characters_count = 0; |
607 | |
608 | const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0; |
609 | const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0; |
610 | const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0; |
611 | const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0; |
612 | |
613 | // To make sure that iterator dereferencing is valid the following |
614 | // convention is used: |
615 | // 1. Each '++current' statement is followed by check for equality to 'end'. |
616 | // 2. If AdvanceToNonspace returned false then current == end. |
617 | // 3. If 'current' becomes equal to 'end' the function returns or goes to |
618 | // 'parsing_done'. |
619 | // 4. 'current' is not dereferenced after the 'parsing_done' label. |
620 | // 5. Code before 'parsing_done' may rely on 'current != end'. |
621 | if (current == end) return empty_string_value_; |
622 | |
623 | if (allow_leading_spaces || allow_trailing_spaces) { |
624 | if (!AdvanceToNonspace(¤t, end)) { |
625 | *processed_characters_count = static_cast<int>(current - input); |
626 | return empty_string_value_; |
627 | } |
628 | if (!allow_leading_spaces && (input != current)) { |
629 | // No leading spaces allowed, but AdvanceToNonspace moved forward. |
630 | return junk_string_value_; |
631 | } |
632 | } |
633 | |
634 | // The longest form of simplified number is: "-<significant digits>.1eXXX\0". |
635 | const int kBufferSize = kMaxSignificantDigits + 10; |
636 | char buffer[kBufferSize]; // NOLINT: size is known at compile time. |
637 | int buffer_pos = 0; |
638 | |
639 | // Exponent will be adjusted if insignificant digits of the integer part |
640 | // or insignificant leading zeros of the fractional part are dropped. |
641 | int exponent = 0; |
642 | int significant_digits = 0; |
643 | int insignificant_digits = 0; |
644 | bool nonzero_digit_dropped = false; |
645 | |
646 | bool sign = false; |
647 | |
648 | if (*current == '+' || *current == '-') { |
649 | sign = (*current == '-'); |
650 | ++current; |
651 | const char* next_non_space = current; |
652 | // Skip following spaces (if allowed). |
653 | if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_; |
654 | if (!allow_spaces_after_sign && (current != next_non_space)) { |
655 | return junk_string_value_; |
656 | } |
657 | current = next_non_space; |
658 | } |
659 | |
660 | if (infinity_symbol_ != NULL) { |
661 | if (*current == infinity_symbol_[0]) { |
662 | if (!ConsumeSubString(¤t, end, infinity_symbol_)) { |
663 | return junk_string_value_; |
664 | } |
665 | |
666 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
667 | return junk_string_value_; |
668 | } |
669 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
670 | return junk_string_value_; |
671 | } |
672 | |
673 | ASSERT(buffer_pos == 0); |
674 | *processed_characters_count = static_cast<int>(current - input); |
675 | return sign ? -Double::Infinity() : Double::Infinity(); |
676 | } |
677 | } |
678 | |
679 | if (nan_symbol_ != NULL) { |
680 | if (*current == nan_symbol_[0]) { |
681 | if (!ConsumeSubString(¤t, end, nan_symbol_)) { |
682 | return junk_string_value_; |
683 | } |
684 | |
685 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
686 | return junk_string_value_; |
687 | } |
688 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
689 | return junk_string_value_; |
690 | } |
691 | |
692 | ASSERT(buffer_pos == 0); |
693 | *processed_characters_count = static_cast<int>(current - input); |
694 | return sign ? -Double::NaN() : Double::NaN(); |
695 | } |
696 | } |
697 | |
698 | bool leading_zero = false; |
699 | if (*current == '0') { |
700 | ++current; |
701 | if (current == end) { |
702 | *processed_characters_count = static_cast<int>(current - input); |
703 | return SignedZero(sign); |
704 | } |
705 | |
706 | leading_zero = true; |
707 | |
708 | // It could be hexadecimal value. |
709 | if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { |
710 | ++current; |
711 | if (current == end || !isDigit(*current, 16)) { |
712 | return junk_string_value_; // "0x". |
713 | } |
714 | |
715 | const char* tail_pointer = NULL; |
716 | double result = RadixStringToIeee<4>(current, |
717 | end, |
718 | sign, |
719 | allow_trailing_junk, |
720 | junk_string_value_, |
721 | read_as_double, |
722 | &tail_pointer); |
723 | if (tail_pointer != NULL) { |
724 | if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end); |
725 | *processed_characters_count = static_cast<int>(tail_pointer - input); |
726 | } |
727 | return result; |
728 | } |
729 | |
730 | // Ignore leading zeros in the integer part. |
731 | while (*current == '0') { |
732 | ++current; |
733 | if (current == end) { |
734 | *processed_characters_count = static_cast<int>(current - input); |
735 | return SignedZero(sign); |
736 | } |
737 | } |
738 | } |
739 | |
740 | bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0; |
741 | |
742 | // Copy significant digits of the integer part (if any) to the buffer. |
743 | while (*current >= '0' && *current <= '9') { |
744 | if (significant_digits < kMaxSignificantDigits) { |
745 | ASSERT(buffer_pos < kBufferSize); |
746 | buffer[buffer_pos++] = static_cast<char>(*current); |
747 | significant_digits++; |
748 | // Will later check if it's an octal in the buffer. |
749 | } else { |
750 | insignificant_digits++; // Move the digit into the exponential part. |
751 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
752 | } |
753 | octal = octal && *current < '8'; |
754 | ++current; |
755 | if (current == end) goto parsing_done; |
756 | } |
757 | |
758 | if (significant_digits == 0) { |
759 | octal = false; |
760 | } |
761 | |
762 | if (*current == '.') { |
763 | if (octal && !allow_trailing_junk) return junk_string_value_; |
764 | if (octal) goto parsing_done; |
765 | |
766 | ++current; |
767 | if (current == end) { |
768 | if (significant_digits == 0 && !leading_zero) { |
769 | return junk_string_value_; |
770 | } else { |
771 | goto parsing_done; |
772 | } |
773 | } |
774 | |
775 | if (significant_digits == 0) { |
776 | // octal = false; |
777 | // Integer part consists of 0 or is absent. Significant digits start after |
778 | // leading zeros (if any). |
779 | while (*current == '0') { |
780 | ++current; |
781 | if (current == end) { |
782 | *processed_characters_count = static_cast<int>(current - input); |
783 | return SignedZero(sign); |
784 | } |
785 | exponent--; // Move this 0 into the exponent. |
786 | } |
787 | } |
788 | |
789 | // There is a fractional part. |
790 | // We don't emit a '.', but adjust the exponent instead. |
791 | while (*current >= '0' && *current <= '9') { |
792 | if (significant_digits < kMaxSignificantDigits) { |
793 | ASSERT(buffer_pos < kBufferSize); |
794 | buffer[buffer_pos++] = static_cast<char>(*current); |
795 | significant_digits++; |
796 | exponent--; |
797 | } else { |
798 | // Ignore insignificant digits in the fractional part. |
799 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
800 | } |
801 | ++current; |
802 | if (current == end) goto parsing_done; |
803 | } |
804 | } |
805 | |
806 | if (!leading_zero && exponent == 0 && significant_digits == 0) { |
807 | // If leading_zeros is true then the string contains zeros. |
808 | // If exponent < 0 then string was [+-]\.0*... |
809 | // If significant_digits != 0 the string is not equal to 0. |
810 | // Otherwise there are no digits in the string. |
811 | return junk_string_value_; |
812 | } |
813 | |
814 | // Parse exponential part. |
815 | if (*current == 'e' || *current == 'E') { |
816 | if (octal && !allow_trailing_junk) return junk_string_value_; |
817 | if (octal) goto parsing_done; |
818 | ++current; |
819 | if (current == end) { |
820 | if (allow_trailing_junk) { |
821 | goto parsing_done; |
822 | } else { |
823 | return junk_string_value_; |
824 | } |
825 | } |
826 | char currentSign = '+'; |
827 | if (*current == '+' || *current == '-') { |
828 | currentSign = static_cast<char>(*current); |
829 | ++current; |
830 | if (current == end) { |
831 | if (allow_trailing_junk) { |
832 | goto parsing_done; |
833 | } else { |
834 | return junk_string_value_; |
835 | } |
836 | } |
837 | } |
838 | |
839 | if (current == end || *current < '0' || *current > '9') { |
840 | if (allow_trailing_junk) { |
841 | goto parsing_done; |
842 | } else { |
843 | return junk_string_value_; |
844 | } |
845 | } |
846 | |
847 | const int max_exponent = INT_MAX / 2; |
848 | ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
849 | int num = 0; |
850 | do { |
851 | // Check overflow. |
852 | int digit = *current - '0'; |
853 | if (num >= max_exponent / 10 |
854 | && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
855 | num = max_exponent; |
856 | } else { |
857 | num = num * 10 + digit; |
858 | } |
859 | ++current; |
860 | } while (current != end && *current >= '0' && *current <= '9'); |
861 | |
862 | exponent += (currentSign == '-' ? -num : num); |
863 | } |
864 | |
865 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
866 | return junk_string_value_; |
867 | } |
868 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
869 | return junk_string_value_; |
870 | } |
871 | if (allow_trailing_spaces) { |
872 | AdvanceToNonspace(¤t, end); |
873 | } |
874 | |
875 | parsing_done: |
876 | exponent += insignificant_digits; |
877 | |
878 | if (octal) { |
879 | double result; |
880 | const char* tail_pointer = NULL; |
881 | result = RadixStringToIeee<3>(buffer, |
882 | buffer + buffer_pos, |
883 | sign, |
884 | allow_trailing_junk, |
885 | junk_string_value_, |
886 | read_as_double, |
887 | &tail_pointer); |
888 | ASSERT(tail_pointer != NULL); |
889 | *processed_characters_count = static_cast<int>(current - input); |
890 | return result; |
891 | } |
892 | |
893 | if (nonzero_digit_dropped) { |
894 | buffer[buffer_pos++] = '1'; |
895 | exponent--; |
896 | } |
897 | |
898 | ASSERT(buffer_pos < kBufferSize); |
899 | buffer[buffer_pos] = '\0'; |
900 | |
901 | double converted; |
902 | if (read_as_double) { |
903 | converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); |
904 | } else { |
905 | converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent); |
906 | } |
907 | *processed_characters_count = static_cast<int>(current - input); |
908 | return sign? -converted: converted; |
909 | } |
910 | |
911 | } // namespace double_conversion |
912 | |