| 1 | // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions are |
| 4 | // met: |
| 5 | // |
| 6 | // * Redistributions of source code must retain the above copyright |
| 7 | // notice, this list of conditions and the following disclaimer. |
| 8 | // * Redistributions in binary form must reproduce the above |
| 9 | // copyright notice, this list of conditions and the following |
| 10 | // disclaimer in the documentation and/or other materials provided |
| 11 | // with the distribution. |
| 12 | // * Neither the name of Google Inc. nor the names of its |
| 13 | // contributors may be used to endorse or promote products derived |
| 14 | // from this software without specific prior written permission. |
| 15 | // |
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | |
| 28 | #include <limits.h> |
| 29 | #include <math.h> |
| 30 | |
| 31 | #include "double-conversion.h" |
| 32 | |
| 33 | #include "bignum-dtoa.h" |
| 34 | #include "fast-dtoa.h" |
| 35 | #include "fixed-dtoa.h" |
| 36 | #include "ieee.h" |
| 37 | #include "strtod.h" |
| 38 | #include "utils.h" |
| 39 | |
| 40 | namespace double_conversion { |
| 41 | |
| 42 | const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() { |
| 43 | int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; |
| 44 | static DoubleToStringConverter converter(flags, |
| 45 | "Infinity" , |
| 46 | "NaN" , |
| 47 | 'e', |
| 48 | -6, 21, |
| 49 | 6, 0); |
| 50 | return converter; |
| 51 | } |
| 52 | |
| 53 | |
| 54 | bool DoubleToStringConverter::HandleSpecialValues( |
| 55 | double value, |
| 56 | StringBuilder* result_builder) const { |
| 57 | Double double_inspect(value); |
| 58 | if (double_inspect.IsInfinite()) { |
| 59 | if (infinity_symbol_ == NULL) return false; |
| 60 | if (value < 0) { |
| 61 | result_builder->AddCharacter('-'); |
| 62 | } |
| 63 | result_builder->AddString(infinity_symbol_); |
| 64 | return true; |
| 65 | } |
| 66 | if (double_inspect.IsNan()) { |
| 67 | if (nan_symbol_ == NULL) return false; |
| 68 | result_builder->AddString(nan_symbol_); |
| 69 | return true; |
| 70 | } |
| 71 | return false; |
| 72 | } |
| 73 | |
| 74 | |
| 75 | void DoubleToStringConverter::CreateExponentialRepresentation( |
| 76 | const char* decimal_digits, |
| 77 | int length, |
| 78 | int exponent, |
| 79 | StringBuilder* result_builder) const { |
| 80 | ASSERT(length != 0); |
| 81 | result_builder->AddCharacter(decimal_digits[0]); |
| 82 | if (length != 1) { |
| 83 | result_builder->AddCharacter('.'); |
| 84 | result_builder->AddSubstring(&decimal_digits[1], length-1); |
| 85 | } |
| 86 | result_builder->AddCharacter(exponent_character_); |
| 87 | if (exponent < 0) { |
| 88 | result_builder->AddCharacter('-'); |
| 89 | exponent = -exponent; |
| 90 | } else { |
| 91 | if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { |
| 92 | result_builder->AddCharacter('+'); |
| 93 | } |
| 94 | } |
| 95 | if (exponent == 0) { |
| 96 | result_builder->AddCharacter('0'); |
| 97 | return; |
| 98 | } |
| 99 | ASSERT(exponent < 1e4); |
| 100 | const int kMaxExponentLength = 5; |
| 101 | char buffer[kMaxExponentLength + 1]; |
| 102 | buffer[kMaxExponentLength] = '\0'; |
| 103 | int first_char_pos = kMaxExponentLength; |
| 104 | while (exponent > 0) { |
| 105 | buffer[--first_char_pos] = '0' + (exponent % 10); |
| 106 | exponent /= 10; |
| 107 | } |
| 108 | result_builder->AddSubstring(&buffer[first_char_pos], |
| 109 | kMaxExponentLength - first_char_pos); |
| 110 | } |
| 111 | |
| 112 | |
| 113 | void DoubleToStringConverter::CreateDecimalRepresentation( |
| 114 | const char* decimal_digits, |
| 115 | int length, |
| 116 | int decimal_point, |
| 117 | int digits_after_point, |
| 118 | StringBuilder* result_builder) const { |
| 119 | // Create a representation that is padded with zeros if needed. |
| 120 | if (decimal_point <= 0) { |
| 121 | // "0.00000decimal_rep". |
| 122 | result_builder->AddCharacter('0'); |
| 123 | if (digits_after_point > 0) { |
| 124 | result_builder->AddCharacter('.'); |
| 125 | result_builder->AddPadding('0', -decimal_point); |
| 126 | ASSERT(length <= digits_after_point - (-decimal_point)); |
| 127 | result_builder->AddSubstring(decimal_digits, length); |
| 128 | int remaining_digits = digits_after_point - (-decimal_point) - length; |
| 129 | result_builder->AddPadding('0', remaining_digits); |
| 130 | } |
| 131 | } else if (decimal_point >= length) { |
| 132 | // "decimal_rep0000.00000" or "decimal_rep.0000" |
| 133 | result_builder->AddSubstring(decimal_digits, length); |
| 134 | result_builder->AddPadding('0', decimal_point - length); |
| 135 | if (digits_after_point > 0) { |
| 136 | result_builder->AddCharacter('.'); |
| 137 | result_builder->AddPadding('0', digits_after_point); |
| 138 | } |
| 139 | } else { |
| 140 | // "decima.l_rep000" |
| 141 | ASSERT(digits_after_point > 0); |
| 142 | result_builder->AddSubstring(decimal_digits, decimal_point); |
| 143 | result_builder->AddCharacter('.'); |
| 144 | ASSERT(length - decimal_point <= digits_after_point); |
| 145 | result_builder->AddSubstring(&decimal_digits[decimal_point], |
| 146 | length - decimal_point); |
| 147 | int remaining_digits = digits_after_point - (length - decimal_point); |
| 148 | result_builder->AddPadding('0', remaining_digits); |
| 149 | } |
| 150 | if (digits_after_point == 0) { |
| 151 | if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { |
| 152 | result_builder->AddCharacter('.'); |
| 153 | } |
| 154 | if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { |
| 155 | result_builder->AddCharacter('0'); |
| 156 | } |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | |
| 161 | bool DoubleToStringConverter::ToShortestIeeeNumber( |
| 162 | double value, |
| 163 | StringBuilder* result_builder, |
| 164 | DoubleToStringConverter::DtoaMode mode) const { |
| 165 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE); |
| 166 | if (Double(value).IsSpecial()) { |
| 167 | return HandleSpecialValues(value, result_builder); |
| 168 | } |
| 169 | |
| 170 | int decimal_point; |
| 171 | bool sign; |
| 172 | const int kDecimalRepCapacity = kBase10MaximalLength + 1; |
| 173 | char decimal_rep[kDecimalRepCapacity]; |
| 174 | int decimal_rep_length; |
| 175 | |
| 176 | DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity, |
| 177 | &sign, &decimal_rep_length, &decimal_point); |
| 178 | |
| 179 | bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; |
| 180 | if (sign && (value != 0.0 || !unique_zero)) { |
| 181 | result_builder->AddCharacter('-'); |
| 182 | } |
| 183 | |
| 184 | int exponent = decimal_point - 1; |
| 185 | if ((decimal_in_shortest_low_ <= exponent) && |
| 186 | (exponent < decimal_in_shortest_high_)) { |
| 187 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, |
| 188 | decimal_point, |
| 189 | Max(0, decimal_rep_length - decimal_point), |
| 190 | result_builder); |
| 191 | } else { |
| 192 | CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, |
| 193 | result_builder); |
| 194 | } |
| 195 | return true; |
| 196 | } |
| 197 | |
| 198 | |
| 199 | bool DoubleToStringConverter::ToFixed(double value, |
| 200 | int requested_digits, |
| 201 | StringBuilder* result_builder) const { |
| 202 | ASSERT(kMaxFixedDigitsBeforePoint == 60); |
| 203 | const double kFirstNonFixed = 1e60; |
| 204 | |
| 205 | if (Double(value).IsSpecial()) { |
| 206 | return HandleSpecialValues(value, result_builder); |
| 207 | } |
| 208 | |
| 209 | if (requested_digits > kMaxFixedDigitsAfterPoint) return false; |
| 210 | if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false; |
| 211 | |
| 212 | // Find a sufficiently precise decimal representation of n. |
| 213 | int decimal_point; |
| 214 | bool sign; |
| 215 | // Add space for the '\0' byte. |
| 216 | const int kDecimalRepCapacity = |
| 217 | kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; |
| 218 | char decimal_rep[kDecimalRepCapacity]; |
| 219 | int decimal_rep_length; |
| 220 | DoubleToAscii(value, FIXED, requested_digits, |
| 221 | decimal_rep, kDecimalRepCapacity, |
| 222 | &sign, &decimal_rep_length, &decimal_point); |
| 223 | |
| 224 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 225 | if (sign && (value != 0.0 || !unique_zero)) { |
| 226 | result_builder->AddCharacter('-'); |
| 227 | } |
| 228 | |
| 229 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
| 230 | requested_digits, result_builder); |
| 231 | return true; |
| 232 | } |
| 233 | |
| 234 | |
| 235 | bool DoubleToStringConverter::ToExponential( |
| 236 | double value, |
| 237 | int requested_digits, |
| 238 | StringBuilder* result_builder) const { |
| 239 | if (Double(value).IsSpecial()) { |
| 240 | return HandleSpecialValues(value, result_builder); |
| 241 | } |
| 242 | |
| 243 | if (requested_digits < -1) return false; |
| 244 | if (requested_digits > kMaxExponentialDigits) return false; |
| 245 | |
| 246 | int decimal_point; |
| 247 | bool sign; |
| 248 | // Add space for digit before the decimal point and the '\0' character. |
| 249 | const int kDecimalRepCapacity = kMaxExponentialDigits + 2; |
| 250 | ASSERT(kDecimalRepCapacity > kBase10MaximalLength); |
| 251 | char decimal_rep[kDecimalRepCapacity]; |
| 252 | int decimal_rep_length; |
| 253 | |
| 254 | if (requested_digits == -1) { |
| 255 | DoubleToAscii(value, SHORTEST, 0, |
| 256 | decimal_rep, kDecimalRepCapacity, |
| 257 | &sign, &decimal_rep_length, &decimal_point); |
| 258 | } else { |
| 259 | DoubleToAscii(value, PRECISION, requested_digits + 1, |
| 260 | decimal_rep, kDecimalRepCapacity, |
| 261 | &sign, &decimal_rep_length, &decimal_point); |
| 262 | ASSERT(decimal_rep_length <= requested_digits + 1); |
| 263 | |
| 264 | for (int i = decimal_rep_length; i < requested_digits + 1; ++i) { |
| 265 | decimal_rep[i] = '0'; |
| 266 | } |
| 267 | decimal_rep_length = requested_digits + 1; |
| 268 | } |
| 269 | |
| 270 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 271 | if (sign && (value != 0.0 || !unique_zero)) { |
| 272 | result_builder->AddCharacter('-'); |
| 273 | } |
| 274 | |
| 275 | int exponent = decimal_point - 1; |
| 276 | CreateExponentialRepresentation(decimal_rep, |
| 277 | decimal_rep_length, |
| 278 | exponent, |
| 279 | result_builder); |
| 280 | return true; |
| 281 | } |
| 282 | |
| 283 | |
| 284 | bool DoubleToStringConverter::ToPrecision(double value, |
| 285 | int precision, |
| 286 | StringBuilder* result_builder) const { |
| 287 | if (Double(value).IsSpecial()) { |
| 288 | return HandleSpecialValues(value, result_builder); |
| 289 | } |
| 290 | |
| 291 | if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) { |
| 292 | return false; |
| 293 | } |
| 294 | |
| 295 | // Find a sufficiently precise decimal representation of n. |
| 296 | int decimal_point; |
| 297 | bool sign; |
| 298 | // Add one for the terminating null character. |
| 299 | const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; |
| 300 | char decimal_rep[kDecimalRepCapacity]; |
| 301 | int decimal_rep_length; |
| 302 | |
| 303 | DoubleToAscii(value, PRECISION, precision, |
| 304 | decimal_rep, kDecimalRepCapacity, |
| 305 | &sign, &decimal_rep_length, &decimal_point); |
| 306 | ASSERT(decimal_rep_length <= precision); |
| 307 | |
| 308 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 309 | if (sign && (value != 0.0 || !unique_zero)) { |
| 310 | result_builder->AddCharacter('-'); |
| 311 | } |
| 312 | |
| 313 | // The exponent if we print the number as x.xxeyyy. That is with the |
| 314 | // decimal point after the first digit. |
| 315 | int exponent = decimal_point - 1; |
| 316 | |
| 317 | int = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; |
| 318 | if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || |
| 319 | (decimal_point - precision + extra_zero > |
| 320 | max_trailing_padding_zeroes_in_precision_mode_)) { |
| 321 | // Fill buffer to contain 'precision' digits. |
| 322 | // Usually the buffer is already at the correct length, but 'DoubleToAscii' |
| 323 | // is allowed to return less characters. |
| 324 | for (int i = decimal_rep_length; i < precision; ++i) { |
| 325 | decimal_rep[i] = '0'; |
| 326 | } |
| 327 | |
| 328 | CreateExponentialRepresentation(decimal_rep, |
| 329 | precision, |
| 330 | exponent, |
| 331 | result_builder); |
| 332 | } else { |
| 333 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
| 334 | Max(0, precision - decimal_point), |
| 335 | result_builder); |
| 336 | } |
| 337 | return true; |
| 338 | } |
| 339 | |
| 340 | |
| 341 | static BignumDtoaMode DtoaToBignumDtoaMode( |
| 342 | DoubleToStringConverter::DtoaMode dtoa_mode) { |
| 343 | switch (dtoa_mode) { |
| 344 | case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST; |
| 345 | case DoubleToStringConverter::SHORTEST_SINGLE: |
| 346 | return BIGNUM_DTOA_SHORTEST_SINGLE; |
| 347 | case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED; |
| 348 | case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION; |
| 349 | default: |
| 350 | UNREACHABLE(); |
| 351 | return BIGNUM_DTOA_SHORTEST; |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | |
| 356 | void DoubleToStringConverter::DoubleToAscii(double v, |
| 357 | DtoaMode mode, |
| 358 | int requested_digits, |
| 359 | char* buffer, |
| 360 | int buffer_length, |
| 361 | bool* sign, |
| 362 | int* length, |
| 363 | int* point) { |
| 364 | Vector<char> vector(buffer, buffer_length); |
| 365 | ASSERT(!Double(v).IsSpecial()); |
| 366 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0); |
| 367 | |
| 368 | if (Double(v).Sign() < 0) { |
| 369 | *sign = true; |
| 370 | v = -v; |
| 371 | } else { |
| 372 | *sign = false; |
| 373 | } |
| 374 | |
| 375 | if (mode == PRECISION && requested_digits == 0) { |
| 376 | vector[0] = '\0'; |
| 377 | *length = 0; |
| 378 | return; |
| 379 | } |
| 380 | |
| 381 | if (v == 0) { |
| 382 | vector[0] = '0'; |
| 383 | vector[1] = '\0'; |
| 384 | *length = 1; |
| 385 | *point = 1; |
| 386 | return; |
| 387 | } |
| 388 | |
| 389 | bool fast_worked; |
| 390 | switch (mode) { |
| 391 | case SHORTEST: |
| 392 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point); |
| 393 | break; |
| 394 | case SHORTEST_SINGLE: |
| 395 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0, |
| 396 | vector, length, point); |
| 397 | break; |
| 398 | case FIXED: |
| 399 | fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point); |
| 400 | break; |
| 401 | case PRECISION: |
| 402 | fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, |
| 403 | vector, length, point); |
| 404 | break; |
| 405 | default: |
| 406 | fast_worked = false; |
| 407 | UNREACHABLE(); |
| 408 | } |
| 409 | if (fast_worked) return; |
| 410 | |
| 411 | // If the fast dtoa didn't succeed use the slower bignum version. |
| 412 | BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); |
| 413 | BignumDtoa(v, bignum_mode, requested_digits, vector, length, point); |
| 414 | vector[*length] = '\0'; |
| 415 | } |
| 416 | |
| 417 | |
| 418 | // Consumes the given substring from the iterator. |
| 419 | // Returns false, if the substring does not match. |
| 420 | static bool ConsumeSubString(const char** current, |
| 421 | const char* end, |
| 422 | const char* substring) { |
| 423 | ASSERT(**current == *substring); |
| 424 | for (substring++; *substring != '\0'; substring++) { |
| 425 | ++*current; |
| 426 | if (*current == end || **current != *substring) return false; |
| 427 | } |
| 428 | ++*current; |
| 429 | return true; |
| 430 | } |
| 431 | |
| 432 | |
| 433 | // Maximum number of significant digits in decimal representation. |
| 434 | // The longest possible double in decimal representation is |
| 435 | // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 |
| 436 | // (768 digits). If we parse a number whose first digits are equal to a |
| 437 | // mean of 2 adjacent doubles (that could have up to 769 digits) the result |
| 438 | // must be rounded to the bigger one unless the tail consists of zeros, so |
| 439 | // we don't need to preserve all the digits. |
| 440 | const int kMaxSignificantDigits = 772; |
| 441 | |
| 442 | |
| 443 | // Returns true if a nonspace found and false if the end has reached. |
| 444 | static inline bool AdvanceToNonspace(const char** current, const char* end) { |
| 445 | while (*current != end) { |
| 446 | if (**current != ' ') return true; |
| 447 | ++*current; |
| 448 | } |
| 449 | return false; |
| 450 | } |
| 451 | |
| 452 | |
| 453 | static bool isDigit(int x, int radix) { |
| 454 | return (x >= '0' && x <= '9' && x < '0' + radix) |
| 455 | || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) |
| 456 | || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); |
| 457 | } |
| 458 | |
| 459 | |
| 460 | static double SignedZero(bool sign) { |
| 461 | return sign ? -0.0 : 0.0; |
| 462 | } |
| 463 | |
| 464 | |
| 465 | // Returns true if 'c' is a decimal digit that is valid for the given radix. |
| 466 | // |
| 467 | // The function is small and could be inlined, but VS2012 emitted a warning |
| 468 | // because it constant-propagated the radix and concluded that the last |
| 469 | // condition was always true. By moving it into a separate function the |
| 470 | // compiler wouldn't warn anymore. |
| 471 | static bool IsDecimalDigitForRadix(int c, int radix) { |
| 472 | return '0' <= c && c <= '9' && (c - '0') < radix; |
| 473 | } |
| 474 | |
| 475 | // Returns true if 'c' is a character digit that is valid for the given radix. |
| 476 | // The 'a_character' should be 'a' or 'A'. |
| 477 | // |
| 478 | // The function is small and could be inlined, but VS2012 emitted a warning |
| 479 | // because it constant-propagated the radix and concluded that the first |
| 480 | // condition was always false. By moving it into a separate function the |
| 481 | // compiler wouldn't warn anymore. |
| 482 | static bool IsCharacterDigitForRadix(int c, int radix, char a_character) { |
| 483 | return radix > 10 && c >= a_character && c < a_character + radix - 10; |
| 484 | } |
| 485 | |
| 486 | |
| 487 | // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. |
| 488 | template <int radix_log_2> |
| 489 | static double RadixStringToIeee(const char* current, |
| 490 | const char* end, |
| 491 | bool sign, |
| 492 | bool allow_trailing_junk, |
| 493 | double junk_string_value, |
| 494 | bool read_as_double, |
| 495 | const char** trailing_pointer) { |
| 496 | ASSERT(current != end); |
| 497 | |
| 498 | const int kDoubleSize = Double::kSignificandSize; |
| 499 | const int kSingleSize = Single::kSignificandSize; |
| 500 | const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize; |
| 501 | |
| 502 | // Skip leading 0s. |
| 503 | while (*current == '0') { |
| 504 | ++current; |
| 505 | if (current == end) { |
| 506 | *trailing_pointer = end; |
| 507 | return SignedZero(sign); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | int64_t number = 0; |
| 512 | int exponent = 0; |
| 513 | const int radix = (1 << radix_log_2); |
| 514 | |
| 515 | do { |
| 516 | int digit; |
| 517 | if (IsDecimalDigitForRadix(*current, radix)) { |
| 518 | digit = static_cast<char>(*current) - '0'; |
| 519 | } else if (IsCharacterDigitForRadix(*current, radix, 'a')) { |
| 520 | digit = static_cast<char>(*current) - 'a' + 10; |
| 521 | } else if (IsCharacterDigitForRadix(*current, radix, 'A')) { |
| 522 | digit = static_cast<char>(*current) - 'A' + 10; |
| 523 | } else { |
| 524 | if (allow_trailing_junk || !AdvanceToNonspace(¤t, end)) { |
| 525 | break; |
| 526 | } else { |
| 527 | return junk_string_value; |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | number = number * radix + digit; |
| 532 | int overflow = static_cast<int>(number >> kSignificandSize); |
| 533 | if (overflow != 0) { |
| 534 | // Overflow occurred. Need to determine which direction to round the |
| 535 | // result. |
| 536 | int overflow_bits_count = 1; |
| 537 | while (overflow > 1) { |
| 538 | overflow_bits_count++; |
| 539 | overflow >>= 1; |
| 540 | } |
| 541 | |
| 542 | int dropped_bits_mask = ((1 << overflow_bits_count) - 1); |
| 543 | int dropped_bits = static_cast<int>(number) & dropped_bits_mask; |
| 544 | number >>= overflow_bits_count; |
| 545 | exponent = overflow_bits_count; |
| 546 | |
| 547 | bool zero_tail = true; |
| 548 | for (;;) { |
| 549 | ++current; |
| 550 | if (current == end || !isDigit(*current, radix)) break; |
| 551 | zero_tail = zero_tail && *current == '0'; |
| 552 | exponent += radix_log_2; |
| 553 | } |
| 554 | |
| 555 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 556 | return junk_string_value; |
| 557 | } |
| 558 | |
| 559 | int middle_value = (1 << (overflow_bits_count - 1)); |
| 560 | if (dropped_bits > middle_value) { |
| 561 | number++; // Rounding up. |
| 562 | } else if (dropped_bits == middle_value) { |
| 563 | // Rounding to even to consistency with decimals: half-way case rounds |
| 564 | // up if significant part is odd and down otherwise. |
| 565 | if ((number & 1) != 0 || !zero_tail) { |
| 566 | number++; // Rounding up. |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | // Rounding up may cause overflow. |
| 571 | if ((number & ((int64_t)1 << kSignificandSize)) != 0) { |
| 572 | exponent++; |
| 573 | number >>= 1; |
| 574 | } |
| 575 | break; |
| 576 | } |
| 577 | ++current; |
| 578 | } while (current != end); |
| 579 | |
| 580 | ASSERT(number < ((int64_t)1 << kSignificandSize)); |
| 581 | ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); |
| 582 | |
| 583 | *trailing_pointer = current; |
| 584 | |
| 585 | if (exponent == 0) { |
| 586 | if (sign) { |
| 587 | if (number == 0) return -0.0; |
| 588 | number = -number; |
| 589 | } |
| 590 | return static_cast<double>(number); |
| 591 | } |
| 592 | |
| 593 | ASSERT(number != 0); |
| 594 | return Double(DiyFp(number, exponent)).value(); |
| 595 | } |
| 596 | |
| 597 | |
| 598 | double StringToDoubleConverter::StringToIeee( |
| 599 | const char* input, |
| 600 | int length, |
| 601 | int* processed_characters_count, |
| 602 | bool read_as_double) const { |
| 603 | const char* current = input; |
| 604 | const char* end = input + length; |
| 605 | |
| 606 | *processed_characters_count = 0; |
| 607 | |
| 608 | const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0; |
| 609 | const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0; |
| 610 | const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0; |
| 611 | const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0; |
| 612 | |
| 613 | // To make sure that iterator dereferencing is valid the following |
| 614 | // convention is used: |
| 615 | // 1. Each '++current' statement is followed by check for equality to 'end'. |
| 616 | // 2. If AdvanceToNonspace returned false then current == end. |
| 617 | // 3. If 'current' becomes equal to 'end' the function returns or goes to |
| 618 | // 'parsing_done'. |
| 619 | // 4. 'current' is not dereferenced after the 'parsing_done' label. |
| 620 | // 5. Code before 'parsing_done' may rely on 'current != end'. |
| 621 | if (current == end) return empty_string_value_; |
| 622 | |
| 623 | if (allow_leading_spaces || allow_trailing_spaces) { |
| 624 | if (!AdvanceToNonspace(¤t, end)) { |
| 625 | *processed_characters_count = static_cast<int>(current - input); |
| 626 | return empty_string_value_; |
| 627 | } |
| 628 | if (!allow_leading_spaces && (input != current)) { |
| 629 | // No leading spaces allowed, but AdvanceToNonspace moved forward. |
| 630 | return junk_string_value_; |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | // The longest form of simplified number is: "-<significant digits>.1eXXX\0". |
| 635 | const int kBufferSize = kMaxSignificantDigits + 10; |
| 636 | char buffer[kBufferSize]; // NOLINT: size is known at compile time. |
| 637 | int buffer_pos = 0; |
| 638 | |
| 639 | // Exponent will be adjusted if insignificant digits of the integer part |
| 640 | // or insignificant leading zeros of the fractional part are dropped. |
| 641 | int exponent = 0; |
| 642 | int significant_digits = 0; |
| 643 | int insignificant_digits = 0; |
| 644 | bool nonzero_digit_dropped = false; |
| 645 | |
| 646 | bool sign = false; |
| 647 | |
| 648 | if (*current == '+' || *current == '-') { |
| 649 | sign = (*current == '-'); |
| 650 | ++current; |
| 651 | const char* next_non_space = current; |
| 652 | // Skip following spaces (if allowed). |
| 653 | if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_; |
| 654 | if (!allow_spaces_after_sign && (current != next_non_space)) { |
| 655 | return junk_string_value_; |
| 656 | } |
| 657 | current = next_non_space; |
| 658 | } |
| 659 | |
| 660 | if (infinity_symbol_ != NULL) { |
| 661 | if (*current == infinity_symbol_[0]) { |
| 662 | if (!ConsumeSubString(¤t, end, infinity_symbol_)) { |
| 663 | return junk_string_value_; |
| 664 | } |
| 665 | |
| 666 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| 667 | return junk_string_value_; |
| 668 | } |
| 669 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 670 | return junk_string_value_; |
| 671 | } |
| 672 | |
| 673 | ASSERT(buffer_pos == 0); |
| 674 | *processed_characters_count = static_cast<int>(current - input); |
| 675 | return sign ? -Double::Infinity() : Double::Infinity(); |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | if (nan_symbol_ != NULL) { |
| 680 | if (*current == nan_symbol_[0]) { |
| 681 | if (!ConsumeSubString(¤t, end, nan_symbol_)) { |
| 682 | return junk_string_value_; |
| 683 | } |
| 684 | |
| 685 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| 686 | return junk_string_value_; |
| 687 | } |
| 688 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 689 | return junk_string_value_; |
| 690 | } |
| 691 | |
| 692 | ASSERT(buffer_pos == 0); |
| 693 | *processed_characters_count = static_cast<int>(current - input); |
| 694 | return sign ? -Double::NaN() : Double::NaN(); |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | bool leading_zero = false; |
| 699 | if (*current == '0') { |
| 700 | ++current; |
| 701 | if (current == end) { |
| 702 | *processed_characters_count = static_cast<int>(current - input); |
| 703 | return SignedZero(sign); |
| 704 | } |
| 705 | |
| 706 | leading_zero = true; |
| 707 | |
| 708 | // It could be hexadecimal value. |
| 709 | if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { |
| 710 | ++current; |
| 711 | if (current == end || !isDigit(*current, 16)) { |
| 712 | return junk_string_value_; // "0x". |
| 713 | } |
| 714 | |
| 715 | const char* tail_pointer = NULL; |
| 716 | double result = RadixStringToIeee<4>(current, |
| 717 | end, |
| 718 | sign, |
| 719 | allow_trailing_junk, |
| 720 | junk_string_value_, |
| 721 | read_as_double, |
| 722 | &tail_pointer); |
| 723 | if (tail_pointer != NULL) { |
| 724 | if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end); |
| 725 | *processed_characters_count = static_cast<int>(tail_pointer - input); |
| 726 | } |
| 727 | return result; |
| 728 | } |
| 729 | |
| 730 | // Ignore leading zeros in the integer part. |
| 731 | while (*current == '0') { |
| 732 | ++current; |
| 733 | if (current == end) { |
| 734 | *processed_characters_count = static_cast<int>(current - input); |
| 735 | return SignedZero(sign); |
| 736 | } |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0; |
| 741 | |
| 742 | // Copy significant digits of the integer part (if any) to the buffer. |
| 743 | while (*current >= '0' && *current <= '9') { |
| 744 | if (significant_digits < kMaxSignificantDigits) { |
| 745 | ASSERT(buffer_pos < kBufferSize); |
| 746 | buffer[buffer_pos++] = static_cast<char>(*current); |
| 747 | significant_digits++; |
| 748 | // Will later check if it's an octal in the buffer. |
| 749 | } else { |
| 750 | insignificant_digits++; // Move the digit into the exponential part. |
| 751 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 752 | } |
| 753 | octal = octal && *current < '8'; |
| 754 | ++current; |
| 755 | if (current == end) goto parsing_done; |
| 756 | } |
| 757 | |
| 758 | if (significant_digits == 0) { |
| 759 | octal = false; |
| 760 | } |
| 761 | |
| 762 | if (*current == '.') { |
| 763 | if (octal && !allow_trailing_junk) return junk_string_value_; |
| 764 | if (octal) goto parsing_done; |
| 765 | |
| 766 | ++current; |
| 767 | if (current == end) { |
| 768 | if (significant_digits == 0 && !leading_zero) { |
| 769 | return junk_string_value_; |
| 770 | } else { |
| 771 | goto parsing_done; |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | if (significant_digits == 0) { |
| 776 | // octal = false; |
| 777 | // Integer part consists of 0 or is absent. Significant digits start after |
| 778 | // leading zeros (if any). |
| 779 | while (*current == '0') { |
| 780 | ++current; |
| 781 | if (current == end) { |
| 782 | *processed_characters_count = static_cast<int>(current - input); |
| 783 | return SignedZero(sign); |
| 784 | } |
| 785 | exponent--; // Move this 0 into the exponent. |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | // There is a fractional part. |
| 790 | // We don't emit a '.', but adjust the exponent instead. |
| 791 | while (*current >= '0' && *current <= '9') { |
| 792 | if (significant_digits < kMaxSignificantDigits) { |
| 793 | ASSERT(buffer_pos < kBufferSize); |
| 794 | buffer[buffer_pos++] = static_cast<char>(*current); |
| 795 | significant_digits++; |
| 796 | exponent--; |
| 797 | } else { |
| 798 | // Ignore insignificant digits in the fractional part. |
| 799 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 800 | } |
| 801 | ++current; |
| 802 | if (current == end) goto parsing_done; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | if (!leading_zero && exponent == 0 && significant_digits == 0) { |
| 807 | // If leading_zeros is true then the string contains zeros. |
| 808 | // If exponent < 0 then string was [+-]\.0*... |
| 809 | // If significant_digits != 0 the string is not equal to 0. |
| 810 | // Otherwise there are no digits in the string. |
| 811 | return junk_string_value_; |
| 812 | } |
| 813 | |
| 814 | // Parse exponential part. |
| 815 | if (*current == 'e' || *current == 'E') { |
| 816 | if (octal && !allow_trailing_junk) return junk_string_value_; |
| 817 | if (octal) goto parsing_done; |
| 818 | ++current; |
| 819 | if (current == end) { |
| 820 | if (allow_trailing_junk) { |
| 821 | goto parsing_done; |
| 822 | } else { |
| 823 | return junk_string_value_; |
| 824 | } |
| 825 | } |
| 826 | char currentSign = '+'; |
| 827 | if (*current == '+' || *current == '-') { |
| 828 | currentSign = static_cast<char>(*current); |
| 829 | ++current; |
| 830 | if (current == end) { |
| 831 | if (allow_trailing_junk) { |
| 832 | goto parsing_done; |
| 833 | } else { |
| 834 | return junk_string_value_; |
| 835 | } |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | if (current == end || *current < '0' || *current > '9') { |
| 840 | if (allow_trailing_junk) { |
| 841 | goto parsing_done; |
| 842 | } else { |
| 843 | return junk_string_value_; |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | const int max_exponent = INT_MAX / 2; |
| 848 | ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
| 849 | int num = 0; |
| 850 | do { |
| 851 | // Check overflow. |
| 852 | int digit = *current - '0'; |
| 853 | if (num >= max_exponent / 10 |
| 854 | && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
| 855 | num = max_exponent; |
| 856 | } else { |
| 857 | num = num * 10 + digit; |
| 858 | } |
| 859 | ++current; |
| 860 | } while (current != end && *current >= '0' && *current <= '9'); |
| 861 | |
| 862 | exponent += (currentSign == '-' ? -num : num); |
| 863 | } |
| 864 | |
| 865 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| 866 | return junk_string_value_; |
| 867 | } |
| 868 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 869 | return junk_string_value_; |
| 870 | } |
| 871 | if (allow_trailing_spaces) { |
| 872 | AdvanceToNonspace(¤t, end); |
| 873 | } |
| 874 | |
| 875 | parsing_done: |
| 876 | exponent += insignificant_digits; |
| 877 | |
| 878 | if (octal) { |
| 879 | double result; |
| 880 | const char* tail_pointer = NULL; |
| 881 | result = RadixStringToIeee<3>(buffer, |
| 882 | buffer + buffer_pos, |
| 883 | sign, |
| 884 | allow_trailing_junk, |
| 885 | junk_string_value_, |
| 886 | read_as_double, |
| 887 | &tail_pointer); |
| 888 | ASSERT(tail_pointer != NULL); |
| 889 | *processed_characters_count = static_cast<int>(current - input); |
| 890 | return result; |
| 891 | } |
| 892 | |
| 893 | if (nonzero_digit_dropped) { |
| 894 | buffer[buffer_pos++] = '1'; |
| 895 | exponent--; |
| 896 | } |
| 897 | |
| 898 | ASSERT(buffer_pos < kBufferSize); |
| 899 | buffer[buffer_pos] = '\0'; |
| 900 | |
| 901 | double converted; |
| 902 | if (read_as_double) { |
| 903 | converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); |
| 904 | } else { |
| 905 | converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent); |
| 906 | } |
| 907 | *processed_characters_count = static_cast<int>(current - input); |
| 908 | return sign? -converted: converted; |
| 909 | } |
| 910 | |
| 911 | } // namespace double_conversion |
| 912 | |