| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | //***************************************************************************** |
| 5 | // File: rspriv.inl |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // Inline functions for rspriv.h |
| 10 | // |
| 11 | //***************************************************************************** |
| 12 | |
| 13 | #ifndef RSPRIV_INL_ |
| 14 | #define RSPRIV_INL_ |
| 15 | |
| 16 | #include "rspriv.h" |
| 17 | |
| 18 | // Get the native pipeline object, which resides on the Win32EventThread. |
| 19 | inline |
| 20 | INativeEventPipeline * CordbWin32EventThread::GetNativePipeline() |
| 21 | { |
| 22 | return m_pNativePipeline; |
| 23 | } |
| 24 | |
| 25 | |
| 26 | // True if we're interop-debugging, else false. |
| 27 | // Note, we include this even in Non-interop builds because there are runtime checks throughout the APIs |
| 28 | // that certain operations only succeed/fail in interop-debugging. |
| 29 | inline |
| 30 | bool CordbProcess::IsInteropDebugging() |
| 31 | { |
| 32 | #ifdef FEATURE_INTEROP_DEBUGGING |
| 33 | return (m_state & PS_WIN32_ATTACHED) != 0; |
| 34 | #else |
| 35 | return false; |
| 36 | #endif // FEATURE_INTEROP_DEBUGGING |
| 37 | } |
| 38 | |
| 39 | |
| 40 | //----------------------------------------------------------------------------- |
| 41 | // Get the ShimProcess object. |
| 42 | // |
| 43 | // Returns: |
| 44 | // ShimProcess object if available; else NULL. |
| 45 | // |
| 46 | // Notes: |
| 47 | // This shim has V2 emulation logic. |
| 48 | // If we have no ShimProcess object, then we're in a V3 codepath. |
| 49 | // @dbgtodo - eventually, remove all emulation and this function. |
| 50 | //----------------------------------------------------------------------------- |
| 51 | inline |
| 52 | ShimProcess * CordbProcess::GetShim() |
| 53 | { |
| 54 | return m_pShim; |
| 55 | }; |
| 56 | |
| 57 | |
| 58 | |
| 59 | //--------------------------------------------------------------------------------------- |
| 60 | // Helper to read a structure from the target |
| 61 | // |
| 62 | // Arguments: |
| 63 | // T - type of structure to read. |
| 64 | // pRemotePtr - remote pointer into target (src). |
| 65 | // pLocalBuffer - local buffer to copy into (Dest). |
| 66 | // |
| 67 | // Return Value: |
| 68 | // Returns S_OK on success, in the event of a short read returns ERROR_PARTIAL_COPY |
| 69 | // |
| 70 | // Notes: |
| 71 | // This just does a raw Byte copy, but does not do any Marshalling. |
| 72 | // This fails if any part of the buffer can't be read. |
| 73 | // |
| 74 | //--------------------------------------------------------------------------------------- |
| 75 | template<typename T> |
| 76 | HRESULT CordbProcess::SafeReadStruct(CORDB_ADDRESS pRemotePtr, T * pLocalBuffer) |
| 77 | { |
| 78 | HRESULT hr = S_OK; |
| 79 | EX_TRY |
| 80 | { |
| 81 | TargetBuffer tb(pRemotePtr, sizeof(T)); |
| 82 | SafeReadBuffer(tb, (PBYTE) pLocalBuffer); |
| 83 | } |
| 84 | EX_CATCH_HRESULT(hr) ; |
| 85 | return hr; |
| 86 | } |
| 87 | |
| 88 | //--------------------------------------------------------------------------------------- |
| 89 | // Destructor for RSInitHolder. Will safely neuter and release the object. |
| 90 | template<class T> inline |
| 91 | RSInitHolder<T>::~RSInitHolder() |
| 92 | { |
| 93 | if (m_pObject != NULL) |
| 94 | { |
| 95 | CordbProcess * pProcess = m_pObject->GetProcess(); |
| 96 | RSLockHolder lockHolder(pProcess->GetProcessLock()); |
| 97 | |
| 98 | m_pObject->Neuter(); |
| 99 | |
| 100 | // Can't explicitly call 'delete' because somebody may have taken a reference. |
| 101 | m_pObject.Clear(); |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | //--------------------------------------------------------------------------------------- |
| 106 | // Helper to write a structure to the target |
| 107 | // |
| 108 | // Arguments: |
| 109 | // T - type of structure to read. |
| 110 | // pRemotePtr - remote pointer into target (dest). |
| 111 | // pLocalBuffer - local buffer to write (Src). |
| 112 | // |
| 113 | // Return Value: |
| 114 | // Returns S_OK on success, in the event of a short write returns ERROR_PARTIAL_COPY |
| 115 | // |
| 116 | // Notes: |
| 117 | // This just does a raw Byte copy into the Target, but does not do any Marshalling. |
| 118 | // This fails if any part of the buffer can't be written. |
| 119 | // |
| 120 | //--------------------------------------------------------------------------------------- |
| 121 | template<typename T> inline |
| 122 | HRESULT CordbProcess::SafeWriteStruct(CORDB_ADDRESS pRemotePtr, const T* pLocalBuffer) |
| 123 | { |
| 124 | HRESULT hr= S_OK; |
| 125 | EX_TRY |
| 126 | { |
| 127 | TargetBuffer tb(pRemotePtr, sizeof(T)); |
| 128 | SafeWriteBuffer(tb, (BYTE *) (pLocalBuffer)); |
| 129 | } |
| 130 | EX_CATCH_HRESULT(hr); |
| 131 | return hr; |
| 132 | } |
| 133 | |
| 134 | inline |
| 135 | CordbModule *CordbJITILFrame::GetModule() |
| 136 | { |
| 137 | return (m_ilCode->GetModule()); |
| 138 | } |
| 139 | |
| 140 | inline |
| 141 | CordbAppDomain *CordbJITILFrame::GetCurrentAppDomain() |
| 142 | { |
| 143 | return (m_nativeFrame->GetCurrentAppDomain()); |
| 144 | } |
| 145 | |
| 146 | //----------------------------------------------------------------------------- |
| 147 | // Called to notify that we must flush DAC |
| 148 | //----------------------------------------------------------------------------- |
| 149 | inline |
| 150 | void CordbProcess::ForceDacFlush() |
| 151 | { |
| 152 | // We need to take the process lock here because otherwise we could race with the Arrowhead stackwalking |
| 153 | // APIs. The Arrowhead stackwalking APIs check the flush counter and refresh all the state if necessary. |
| 154 | // However, while one thread is refreshing the state of the stackwalker, another thread may come in |
| 155 | // and force a flush. That's why we need to take a process lock before we flush. We need to synchronize |
| 156 | // with other threads which are using DAC memory. |
| 157 | RSLockHolder lockHolder(GetProcessLock()); |
| 158 | |
| 159 | // For Mac debugging, it is not safe to call into the DAC once code:INativeEventPipeline::TerminateProcess |
| 160 | // is called. Also, we must check m_exiting under the process lock. |
| 161 | if (!m_exiting) |
| 162 | { |
| 163 | if (m_pDacPrimitives != NULL) |
| 164 | { |
| 165 | STRESS_LOG1(LF_CORDB, LL_INFO1000, "Flush() - old counter: %d\n" , m_flushCounter); |
| 166 | m_flushCounter++; |
| 167 | HRESULT hr = S_OK; |
| 168 | EX_TRY |
| 169 | { |
| 170 | m_pDacPrimitives->FlushCache(); |
| 171 | } |
| 172 | EX_CATCH_HRESULT(hr); |
| 173 | SIMPLIFYING_ASSUMPTION_SUCCEEDED(hr); |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | |
| 179 | inline |
| 180 | CordbFunction *CordbJITILFrame::GetFunction() |
| 181 | { |
| 182 | return m_nativeFrame->m_nativeCode->GetFunction(); |
| 183 | } |
| 184 | |
| 185 | //----------------------------------------------------------------------------- |
| 186 | // Helpers to assert threading semantics. |
| 187 | //----------------------------------------------------------------------------- |
| 188 | inline bool IsWin32EventThread(CordbProcess * p) |
| 189 | { |
| 190 | _ASSERTE(p!= NULL); |
| 191 | return p->IsWin32EventThread(); |
| 192 | } |
| 193 | |
| 194 | inline bool IsRCEventThread(Cordb* p) |
| 195 | { |
| 196 | _ASSERTE(p!= NULL); |
| 197 | return (p->m_rcEventThread != NULL) && p->m_rcEventThread->IsRCEventThread(); |
| 198 | } |
| 199 | |
| 200 | |
| 201 | |
| 202 | //----------------------------------------------------------------------------- |
| 203 | // StopContinueHolder. Ensure that we're synced during a certain region. |
| 204 | //----------------------------------------------------------------------------- |
| 205 | inline HRESULT StopContinueHolder::Init(CordbProcess * p) |
| 206 | { |
| 207 | _ASSERTE(p != NULL); |
| 208 | LOG((LF_CORDB, LL_INFO100000, "Doing RS internal Stop\n" )); |
| 209 | HRESULT hr = p->StopInternal(INFINITE, VMPTR_AppDomain::NullPtr()); |
| 210 | if ((hr == CORDBG_E_PROCESS_TERMINATED) || SUCCEEDED(hr)) |
| 211 | { |
| 212 | // Better be synced after calling Stop! |
| 213 | _ASSERTE(p->GetSynchronized()); |
| 214 | m_p = p; |
| 215 | } |
| 216 | |
| 217 | return hr; |
| 218 | }; |
| 219 | |
| 220 | inline StopContinueHolder::~StopContinueHolder() |
| 221 | { |
| 222 | // If Init() failed to call Stop, then don't call continue |
| 223 | if (m_p == NULL) |
| 224 | return; |
| 225 | |
| 226 | HRESULT hr; |
| 227 | LOG((LF_CORDB, LL_INFO100000, "Doing RS internal Continue\n" )); |
| 228 | hr = m_p->ContinueInternal(false); |
| 229 | SIMPLIFYING_ASSUMPTION( |
| 230 | (hr == CORDBG_E_PROCESS_TERMINATED) || |
| 231 | (hr == CORDBG_E_PROCESS_DETACHED) || |
| 232 | (hr == CORDBG_E_OBJECT_NEUTERED) || |
| 233 | (hr == E_ACCESSDENIED) || //Sadly in rare cases we leak this error code instead of PROCESS_TERMINATED |
| 234 | //See Dev10 bug 872621 |
| 235 | SUCCEEDED(hr)); |
| 236 | } |
| 237 | |
| 238 | //----------------------------------------------------------------------------- |
| 239 | // Neutering on the base object |
| 240 | //----------------------------------------------------------------------------- |
| 241 | inline |
| 242 | void CordbCommonBase::Neuter() |
| 243 | { |
| 244 | LOG((LF_CORDB, LL_EVERYTHING, "Memory: CordbBase object neutered: this=%p, id=%p\n" , this, m_id)); |
| 245 | m_fIsNeutered = 1; |
| 246 | } |
| 247 | |
| 248 | // Unsafe neuter for an object that's already dead. Only use this if you know exactly what you're doing. |
| 249 | // The point here is that we can mark the object neutered even though we may not hold the stop-go lock. |
| 250 | inline |
| 251 | void CordbCommonBase::UnsafeNeuterDeadObject() |
| 252 | { |
| 253 | LOG((LF_CORDB, LL_EVERYTHING, "Memory: CordbBase object neutered: this=%p, id=%p\n" , this, m_id)); |
| 254 | m_fIsNeutered = 1; |
| 255 | } |
| 256 | |
| 257 | |
| 258 | //----------------------------------------------------------------------------- |
| 259 | // Reference Counting |
| 260 | //----------------------------------------------------------------------------- |
| 261 | inline |
| 262 | void CordbCommonBase::InternalAddRef() |
| 263 | { |
| 264 | CONSISTENCY_CHECK_MSGF((m_RefCount & CordbBase_InternalRefCountMask) != (CordbBase_InternalRefCountMax), |
| 265 | ("Internal AddRef overlow, External Count = %d,\n'%s' @ 0x%p" , |
| 266 | (m_RefCount >> CordbBase_ExternalRefCountShift), this->DbgGetName(), this)); |
| 267 | |
| 268 | // Since the internal ref-count is the lower bits, and we know we'll never overflow ;) |
| 269 | // we can just do an interlocked increment on the whole 32 bits. |
| 270 | #ifdef TRACK_OUTSTANDING_OBJECTS |
| 271 | MixedRefCountUnsigned Count = |
| 272 | #endif |
| 273 | |
| 274 | InterlockedIncrement64((MixedRefCountSigned*) &m_RefCount); |
| 275 | |
| 276 | |
| 277 | #ifdef _DEBUG_IMPL |
| 278 | |
| 279 | // For leak detection in debug builds, track all internal references. |
| 280 | InterlockedIncrement(&Cordb::s_DbgMemTotalOutstandingInternalRefs); |
| 281 | #endif |
| 282 | |
| 283 | #ifdef TRACK_OUTSTANDING_OBJECTS |
| 284 | if ((Count & CordbBase_InternalRefCountMask) != 1) |
| 285 | { |
| 286 | return; |
| 287 | } |
| 288 | |
| 289 | LONG i; |
| 290 | |
| 291 | for (i = 0; i < Cordb::s_DbgMemOutstandingObjectMax; i++) |
| 292 | { |
| 293 | if (Cordb::s_DbgMemOutstandingObjects[i] == NULL) |
| 294 | { |
| 295 | if (InterlockedCompareExchangeT(&(Cordb::s_DbgMemOutstandingObjects[i]), (LPVOID) this, NULL) == NULL) |
| 296 | { |
| 297 | return; |
| 298 | } |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | do |
| 303 | { |
| 304 | i = Cordb::s_DbgMemOutstandingObjectMax + 1; |
| 305 | } |
| 306 | while ((i < MAX_TRACKED_OUTSTANDING_OBJECTS) && |
| 307 | (InterlockedCompareExchange(&Cordb::s_DbgMemOutstandingObjectMax, i, i - 1) != (i - 1))); |
| 308 | |
| 309 | if (i < MAX_TRACKED_OUTSTANDING_OBJECTS) |
| 310 | { |
| 311 | Cordb::s_DbgMemOutstandingObjects[i] = this; |
| 312 | } |
| 313 | #endif |
| 314 | |
| 315 | } |
| 316 | |
| 317 | // Derived versions of AddRef / Release will call these. |
| 318 | // External AddRef. |
| 319 | inline |
| 320 | ULONG CordbCommonBase::BaseAddRef() |
| 321 | { |
| 322 | Volatile<MixedRefCountUnsigned> ref; |
| 323 | MixedRefCountUnsigned refNew; |
| 324 | ExternalRefCount cExternalCount; |
| 325 | |
| 326 | // Compute what refNew ought to look like; and then If m_RefCount hasn't changed on us |
| 327 | // (via another thread), then stash the new one in. |
| 328 | do |
| 329 | { |
| 330 | ref = m_RefCount; |
| 331 | |
| 332 | cExternalCount = (ExternalRefCount) (ref >> CordbBase_ExternalRefCountShift); |
| 333 | |
| 334 | if (cExternalCount == CordbBase_InternalRefCountMax) |
| 335 | { |
| 336 | CONSISTENCY_CHECK_MSGF(false, ("Overflow in External AddRef. Internal Count =%d,\n'%s' @ 0x%p" , |
| 337 | (ref & CordbBase_InternalRefCountMask), this->DbgGetName(), this)); |
| 338 | |
| 339 | // Ignore any AddRefs beyond this... This will screw up Release(), but we're |
| 340 | // probably already so screwed it wouldn't matter. |
| 341 | return cExternalCount; |
| 342 | } |
| 343 | |
| 344 | cExternalCount++; |
| 345 | |
| 346 | refNew = (((MixedRefCountUnsigned)cExternalCount) << CordbBase_ExternalRefCountShift) | (ref & CordbBase_InternalRefCountMask); |
| 347 | } |
| 348 | while ((MixedRefCountUnsigned)InterlockedCompareExchange64((MixedRefCountSigned*)&m_RefCount, refNew, ref) != ref); |
| 349 | |
| 350 | return cExternalCount; |
| 351 | } |
| 352 | |
| 353 | // Do an AddRef against the External count. This is a semantics issue. |
| 354 | // We use this when an internal component Addrefs out-parameters (which Cordbg will call Release on). |
| 355 | inline |
| 356 | void CordbCommonBase::ExternalAddRef() |
| 357 | { |
| 358 | // Call on BaseAddRef() to avoid any asserts that prevent stuff from inside the RS from bumping |
| 359 | // up the external ref count. |
| 360 | BaseAddRef(); |
| 361 | } |
| 362 | |
| 363 | inline |
| 364 | void CordbCommonBase::InternalRelease() |
| 365 | { |
| 366 | CONSISTENCY_CHECK_MSGF((m_RefCount & CordbBase_InternalRefCountMask) != 0, |
| 367 | ("Internal Release underflow, External Count = %d,\n'%s' @ 0x%p" , |
| 368 | (m_RefCount >> CordbBase_ExternalRefCountShift), this->DbgGetName(), this)); |
| 369 | |
| 370 | #ifdef _DEBUG_IMPL |
| 371 | // For leak detection in debug builds, track all internal references. |
| 372 | InterlockedDecrement(&Cordb::s_DbgMemTotalOutstandingInternalRefs); |
| 373 | #endif |
| 374 | |
| 375 | |
| 376 | |
| 377 | // The internal count is in the low 16 bits, and we know that we'll never underflow the internal |
| 378 | // release. ;) |
| 379 | // Furthermore we know that ExternalRelease will prevent us from underflowing the external release count. |
| 380 | // Thus we can just do an simple decrement here, and compare against 0x00000000 (which is the value |
| 381 | // when both the Internal + External counts are at 0) |
| 382 | MixedRefCountSigned cRefCount = InterlockedDecrement64((MixedRefCountSigned*) &m_RefCount); |
| 383 | |
| 384 | #ifdef TRACK_OUTSTANDING_OBJECTS |
| 385 | if ((cRefCount & CordbBase_InternalRefCountMask) == 0) |
| 386 | { |
| 387 | for (LONG i = 0; i < Cordb::s_DbgMemOutstandingObjectMax; i++) |
| 388 | { |
| 389 | if (Cordb::s_DbgMemOutstandingObjects[i] == this) |
| 390 | { |
| 391 | Cordb::s_DbgMemOutstandingObjects[i] = NULL; |
| 392 | break; |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | #endif |
| 397 | |
| 398 | |
| 399 | if (cRefCount == 0x00000000) |
| 400 | { |
| 401 | delete this; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | // Do an external release. |
| 406 | inline |
| 407 | ULONG CordbCommonBase::BaseRelease() |
| 408 | { |
| 409 | Volatile<MixedRefCountUnsigned> ref; |
| 410 | MixedRefCountUnsigned refNew; |
| 411 | ExternalRefCount cExternalCount; |
| 412 | |
| 413 | // Compute what refNew ought to look like; and then If m_RefCount hasn't changed on us |
| 414 | // (via another thread), then stash the new one in. |
| 415 | do |
| 416 | { |
| 417 | ref = m_RefCount; |
| 418 | |
| 419 | cExternalCount = (ExternalRefCount) (ref >> CordbBase_ExternalRefCountShift); |
| 420 | |
| 421 | if (cExternalCount == 0) |
| 422 | { |
| 423 | CONSISTENCY_CHECK_MSGF(false, ("Underflow in External Release. Internal Count = %d\n'%s' @ 0x%p" , |
| 424 | (ref & CordbBase_InternalRefCountMask), this->DbgGetName(), this)); |
| 425 | |
| 426 | // Ignore any Releases beyond this... This will screw up Release(), but we're |
| 427 | // probably already so screwed it wouldn't matter. |
| 428 | // It's very important that we don't let the release count go negative (both |
| 429 | // Releases assumes this when deciding whether to delete) |
| 430 | return 0; |
| 431 | } |
| 432 | |
| 433 | cExternalCount--; |
| 434 | |
| 435 | refNew = (((MixedRefCountUnsigned) cExternalCount) << CordbBase_ExternalRefCountShift) | (ref & CordbBase_InternalRefCountMask); |
| 436 | } |
| 437 | while ((MixedRefCountUnsigned)InterlockedCompareExchange64((MixedRefCountSigned*)&m_RefCount, refNew, ref) != ref); |
| 438 | |
| 439 | // If the external count just dropped to 0, then this object can be neutered. |
| 440 | if (cExternalCount == 0) |
| 441 | { |
| 442 | m_fNeuterAtWill = 1; |
| 443 | } |
| 444 | |
| 445 | if (refNew == 0) |
| 446 | { |
| 447 | delete this; |
| 448 | return 0; |
| 449 | } |
| 450 | return cExternalCount; |
| 451 | |
| 452 | } |
| 453 | |
| 454 | |
| 455 | inline ULONG CordbCommonBase::BaseAddRefEnforceExternal() |
| 456 | { |
| 457 | // External refs shouldn't be called while in the RS |
| 458 | #ifdef RSCONTRACTS |
| 459 | DbgRSThread * pThread = DbgRSThread::GetThread(); |
| 460 | CONSISTENCY_CHECK_MSGF(!pThread->IsInRS(), |
| 461 | ("External addref for pThis=0x%p, name='%s' called from within RS" , |
| 462 | this, this->DbgGetName() |
| 463 | )); |
| 464 | #endif |
| 465 | return (BaseAddRef()); |
| 466 | |
| 467 | } |
| 468 | |
| 469 | inline ULONG CordbCommonBase::BaseReleaseEnforceExternal() |
| 470 | { |
| 471 | #ifdef RSCONTRACTS |
| 472 | DbgRSThread * pThread = DbgRSThread::GetThread(); |
| 473 | |
| 474 | CONSISTENCY_CHECK_MSGF(!pThread->IsInRS(), |
| 475 | ("External release for pThis=0x%p, name='%s' called from within RS" , |
| 476 | this, this->DbgGetName() |
| 477 | )); |
| 478 | #endif |
| 479 | |
| 480 | return (BaseRelease()); |
| 481 | } |
| 482 | |
| 483 | |
| 484 | |
| 485 | //----------------------------------------------------------------------------- |
| 486 | // Locks |
| 487 | //----------------------------------------------------------------------------- |
| 488 | |
| 489 | // Base class |
| 490 | #ifdef _DEBUG |
| 491 | inline bool RSLock::HasLock() |
| 492 | { |
| 493 | CONSISTENCY_CHECK_MSGF(IsInit(), ("RSLock '%s' not inited" , m_szTag)); |
| 494 | return m_tidOwner == ::GetCurrentThreadId(); |
| 495 | } |
| 496 | #endif |
| 497 | |
| 498 | #ifdef _DEBUG |
| 499 | // Ctor+ Dtor are only used for asserts. |
| 500 | inline RSLock::RSLock() |
| 501 | { |
| 502 | m_eAttr = cLockUninit; |
| 503 | m_tidOwner = (DWORD)-1; |
| 504 | }; |
| 505 | |
| 506 | inline RSLock::~RSLock() |
| 507 | { |
| 508 | // If this lock is still ininitialized, then no body ever deleted the critical section |
| 509 | // for it and we're leaking. |
| 510 | CONSISTENCY_CHECK_MSGF(!IsInit(), ("Leaking Critical section for RS Lock '%s'" , m_szTag)); |
| 511 | } |
| 512 | #endif |
| 513 | |
| 514 | |
| 515 | // Initialize a lock. |
| 516 | inline void RSLock::Init(const char * szTag, int eAttr, ERSLockLevel level) |
| 517 | { |
| 518 | CONSISTENCY_CHECK_MSGF(!IsInit(), ("RSLock '%s' already inited" , szTag)); |
| 519 | #ifdef _DEBUG |
| 520 | m_szTag = szTag; |
| 521 | m_eAttr = eAttr; |
| 522 | m_count = 0; |
| 523 | m_level = level; |
| 524 | |
| 525 | // Must be either re-entrant xor flat. (not neither; not both) |
| 526 | _ASSERTE(IsReentrant() ^ ((m_eAttr & cLockFlat) == cLockFlat)); |
| 527 | #endif |
| 528 | _ASSERTE((level >= 0) && (level <= RSLock::LL_MAX)); |
| 529 | |
| 530 | _ASSERTE(IsInit()); |
| 531 | |
| 532 | InitializeCriticalSection(&m_lock); |
| 533 | } |
| 534 | |
| 535 | // Cleanup a lock. |
| 536 | inline void RSLock::Destroy() |
| 537 | { |
| 538 | CONSISTENCY_CHECK_MSGF(IsInit(), ("RSLock '%s' not inited" , m_szTag)); |
| 539 | DeleteCriticalSection(&m_lock); |
| 540 | |
| 541 | #ifdef _DEBUG |
| 542 | m_eAttr = cLockUninit; // No longer initialized. |
| 543 | _ASSERTE(!IsInit()); |
| 544 | #endif |
| 545 | } |
| 546 | |
| 547 | inline void RSLock::Lock() |
| 548 | { |
| 549 | CONSISTENCY_CHECK_MSGF(IsInit(), ("RSLock '%s' not inited" , m_szTag)); |
| 550 | |
| 551 | #ifdef RSCONTRACTS |
| 552 | DbgRSThread * pThread = DbgRSThread::GetThread(); |
| 553 | pThread->NotifyTakeLock(this); |
| 554 | #endif |
| 555 | |
| 556 | EnterCriticalSection(&m_lock); |
| 557 | #ifdef _DEBUG |
| 558 | m_tidOwner = ::GetCurrentThreadId(); |
| 559 | m_count++; |
| 560 | |
| 561 | // Either count == 1 or we're re-entrant. |
| 562 | _ASSERTE((m_count == 1) || (m_eAttr == cLockReentrant)); |
| 563 | #endif |
| 564 | } |
| 565 | |
| 566 | inline void RSLock::Unlock() |
| 567 | { |
| 568 | CONSISTENCY_CHECK_MSGF(IsInit(), ("RSLock '%s' not inited" , m_szTag)); |
| 569 | |
| 570 | #ifdef _DEBUG |
| 571 | _ASSERTE(HasLock()); |
| 572 | m_count--; |
| 573 | _ASSERTE(m_count >= 0); |
| 574 | if (m_count == 0) |
| 575 | { |
| 576 | m_tidOwner = (DWORD)-1; |
| 577 | } |
| 578 | #endif |
| 579 | |
| 580 | #ifdef RSCONTRACTS |
| 581 | // NotifyReleaseLock needs to be called before we release the lock. |
| 582 | // Note that HasLock()==false at this point. NotifyReleaseLock relies on that. |
| 583 | DbgRSThread * pThread = DbgRSThread::GetThread(); |
| 584 | pThread->NotifyReleaseLock(this); |
| 585 | #endif |
| 586 | |
| 587 | LeaveCriticalSection(&m_lock); |
| 588 | } |
| 589 | |
| 590 | template <class T> |
| 591 | inline T* CordbSafeHashTable<T>::GetBase(ULONG_PTR id, BOOL fFab) |
| 592 | { |
| 593 | return static_cast<T*>(UnsafeGetBase(id, fFab)); |
| 594 | } |
| 595 | |
| 596 | template <class T> |
| 597 | inline T* CordbSafeHashTable<T>::GetBaseOrThrow(ULONG_PTR id, BOOL fFab) |
| 598 | { |
| 599 | T* pResult = GetBase(id, fFab); |
| 600 | if (pResult == NULL) |
| 601 | { |
| 602 | ThrowHR(E_INVALIDARG); |
| 603 | } |
| 604 | else |
| 605 | { |
| 606 | return pResult; |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | // Copy the contents of the hash to an strong-ref array |
| 611 | // |
| 612 | // Arguments: |
| 613 | // pArray - array to allocate storage and copy to |
| 614 | // |
| 615 | // Assumptions: |
| 616 | // Caller locks. |
| 617 | // |
| 618 | // Notes: |
| 619 | // Array takes strong internal references. |
| 620 | // This can be useful for dancing around locks; eg: If we want to iterate on a hash |
| 621 | // and do an operation that requires a lock that can't be held when iterating. |
| 622 | // (Example: Neuter needs Big stop-go lock; Hash is protected by little Process-lock). |
| 623 | // |
| 624 | template <class T> |
| 625 | inline void CordbSafeHashTable<T>::(RSPtrArray<T> * pArray) |
| 626 | { |
| 627 | // Assumes caller has necessary locks to iterate |
| 628 | UINT32 count = GetCount(); |
| 629 | pArray->AllocOrThrow(count); |
| 630 | |
| 631 | |
| 632 | HASHFIND find; |
| 633 | UINT32 idx = 0; |
| 634 | |
| 635 | T * pCordbBase = FindFirst(&find); |
| 636 | while(idx < count) |
| 637 | { |
| 638 | pArray->Assign(idx, pCordbBase); |
| 639 | idx++; |
| 640 | pCordbBase = FindNext(&find); |
| 641 | } |
| 642 | |
| 643 | // Assert is at end. |
| 644 | _ASSERTE(pCordbBase == NULL); |
| 645 | } |
| 646 | |
| 647 | // Empty the contents of the hash to an array. Array gets ownersship. |
| 648 | // |
| 649 | // Arguments: |
| 650 | // pArray - array to allocate and get ownership |
| 651 | // |
| 652 | // Assumptions: |
| 653 | // Caller locks. |
| 654 | // |
| 655 | // Notes: |
| 656 | // Hashtable will be empty after this. |
| 657 | template <class T> |
| 658 | inline void CordbSafeHashTable<T>::(RSPtrArray<T> * pArray) |
| 659 | { |
| 660 | // Assumes caller has necessary locks |
| 661 | |
| 662 | HASHFIND find; |
| 663 | UINT32 count = GetCount(); |
| 664 | UINT32 idx = 0; |
| 665 | |
| 666 | pArray->AllocOrThrow(count); |
| 667 | |
| 668 | while(idx < count) |
| 669 | { |
| 670 | T * pCordbBase = FindFirst(&find); |
| 671 | _ASSERTE(pCordbBase != NULL); |
| 672 | pArray->Assign(idx, pCordbBase); |
| 673 | |
| 674 | idx++; |
| 675 | // We're removing while iterating the collection. |
| 676 | // But we reset the iteration each time by calling FindFirst. |
| 677 | RemoveBase((ULONG_PTR)pCordbBase->m_id); // this will call release, adjust GetCount() |
| 678 | } |
| 679 | |
| 680 | // Assert is at end. |
| 681 | _ASSERTE(GetCount() == 0); |
| 682 | } |
| 683 | |
| 684 | // |
| 685 | // Neuter all elements in the hash table and empty the hash. |
| 686 | // |
| 687 | // Arguments: |
| 688 | // pLock - lock required to iterate through hash. |
| 689 | // |
| 690 | // Assumptions: |
| 691 | // Caller ensured it's safe to Neuter. |
| 692 | // Caller has locked the hash. |
| 693 | // |
| 694 | template <class T> |
| 695 | inline void CordbSafeHashTable<T>::NeuterAndClear(RSLock * pLock) |
| 696 | { |
| 697 | _ASSERTE(pLock->HasLock()); |
| 698 | |
| 699 | HASHFIND find; |
| 700 | UINT32 count = GetCount(); |
| 701 | UINT32 idx = 0; |
| 702 | |
| 703 | while(idx < count) |
| 704 | { |
| 705 | T * pCordbBase = FindFirst(&find); |
| 706 | _ASSERTE(pCordbBase != NULL); |
| 707 | |
| 708 | // Using this Validate to help track down bug DevDiv bugs 739406 |
| 709 | pCordbBase->ValidateObject(); |
| 710 | pCordbBase->Neuter(); |
| 711 | idx++; |
| 712 | |
| 713 | // We're removing while iterating the collection. |
| 714 | // But we reset the iteration each time by calling FindFirst. |
| 715 | RemoveBase((ULONG_PTR)pCordbBase->m_id); // this will call release, adjust GetCount() |
| 716 | } |
| 717 | |
| 718 | // Assert is at end. |
| 719 | _ASSERTE(GetCount() == 0); |
| 720 | } |
| 721 | |
| 722 | |
| 723 | #endif // RSPRIV_INL_ |
| 724 | |