| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | //***************************************************************************** |
| 5 | |
| 6 | // |
| 7 | // File: DacDbiInterface.inl |
| 8 | // |
| 9 | // Inline functions for DacDbiStructures.h |
| 10 | // |
| 11 | //***************************************************************************** |
| 12 | |
| 13 | #ifndef DACDBISTRUCTURES_INL_ |
| 14 | #define DACDBISTRUCTURES_INL_ |
| 15 | |
| 16 | //----------------------------------------------------------------------------------- |
| 17 | // DacDbiArrayList member function implementations |
| 18 | //----------------------------------------------------------------------------------- |
| 19 | |
| 20 | // constructor--sets list to empty state |
| 21 | // Arguments: none |
| 22 | // Notes: this allocates no memory, so the list will not be ready to use |
| 23 | template<class T> |
| 24 | inline |
| 25 | DacDbiArrayList<T>::DacDbiArrayList(): |
| 26 | m_pList(NULL), |
| 27 | m_nEntries(0) |
| 28 | { |
| 29 | } |
| 30 | |
| 31 | // conversion constructor--takes a list of type T and a count and converts to a |
| 32 | // DacDbiArrayList |
| 33 | // Arguments: |
| 34 | // input: list - a consecutive list (array) of elements of type T |
| 35 | // count - the number of elements in list |
| 36 | // Notes: - Allocates memory and copies the elements of list into "this" |
| 37 | // - It is assumed that the list does NOT already have memory allocated; if it does, |
| 38 | // calling Init will cause a leak. |
| 39 | // - the element copy relies on the assignment operator for T |
| 40 | // - may throw OOM |
| 41 | template<class T> |
| 42 | inline |
| 43 | DacDbiArrayList<T>::DacDbiArrayList(const T * pList, int count): |
| 44 | m_pList(NULL), |
| 45 | m_nEntries(0) |
| 46 | { |
| 47 | Init(pList, count); |
| 48 | } |
| 49 | |
| 50 | // destructor: deallocates memory and sets list back to empty state |
| 51 | // Arguments: none |
| 52 | template<class T> |
| 53 | inline |
| 54 | DacDbiArrayList<T>::~DacDbiArrayList() |
| 55 | { |
| 56 | Dealloc(); |
| 57 | } |
| 58 | |
| 59 | // explicitly deallocate the list and set it back to the empty state |
| 60 | // Arguments: none |
| 61 | // Notes: - Dealloc can be called multiple times without danger, since it |
| 62 | // checks first that memory has been allocated |
| 63 | template<class T> |
| 64 | inline |
| 65 | void DacDbiArrayList<T>::Dealloc() |
| 66 | { |
| 67 | CONTRACT_VOID |
| 68 | { |
| 69 | NOTHROW; |
| 70 | } |
| 71 | CONTRACT_END; |
| 72 | |
| 73 | if (m_pList != NULL) |
| 74 | { |
| 75 | delete [] m_pList; |
| 76 | m_pList = NULL; |
| 77 | } |
| 78 | m_nEntries = 0; |
| 79 | RETURN; |
| 80 | } |
| 81 | |
| 82 | // Alloc and Init are very similar. Both preallocate the array; but Alloc leaves the |
| 83 | // contents unintialized while Init provides initial values. The array contents are always |
| 84 | // mutable. |
| 85 | |
| 86 | // allocate space for the list--in some instances, we'll know the count first, and then |
| 87 | // we'll compute the elements one at a time. This (along with the array access operator |
| 88 | // overload) allows us to handle that situation |
| 89 | // Arguments: |
| 90 | // input: nElements - number of elements of type T for which we need space |
| 91 | // Notes: |
| 92 | // - Alloc can be called multiple times and will free previous arrays. |
| 93 | // - May throw OOM |
| 94 | // - The array is not expandable, so you must allocate for all the elements at once. |
| 95 | // - requesting an allocation of 0 or fewer bytes will not cause an error, but no memory is |
| 96 | // allocated |
| 97 | template<class T> |
| 98 | inline |
| 99 | void DacDbiArrayList<T>::Alloc(int nElements) |
| 100 | { |
| 101 | Dealloc(); |
| 102 | if (nElements > 0) |
| 103 | { |
| 104 | m_pList = new(forDbi) T[(size_t)nElements]; |
| 105 | m_nEntries = nElements; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | // allocate and initialize a DacDbiArrayList from a list of type T and a count |
| 110 | // Arguments: |
| 111 | // input: list - consecutive list (array) of elements of type T to be copied into |
| 112 | // "this" |
| 113 | // count - number of elements in list |
| 114 | // Notes: |
| 115 | // - May throw OOM |
| 116 | // - Can be called multiple times with different lists, since this will deallocate |
| 117 | // previous arrays. |
| 118 | template<class T> |
| 119 | inline |
| 120 | void DacDbiArrayList<T>::Init(const T * pList, int count) |
| 121 | { |
| 122 | _ASSERTE((m_pList == NULL) && (m_nEntries == 0)); |
| 123 | if (count > 0) |
| 124 | { |
| 125 | Alloc(count); |
| 126 | m_nEntries = count; |
| 127 | for (int index = 0; index < count; ++index) |
| 128 | { |
| 129 | m_pList[index] = pList[index]; |
| 130 | } |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | // read-only list element access |
| 135 | template<class T> |
| 136 | inline |
| 137 | const T & DacDbiArrayList<T>::operator [](int i) const |
| 138 | { |
| 139 | _ASSERTE(m_pList != NULL); |
| 140 | _ASSERTE((i >= 0) && (i < m_nEntries)); |
| 141 | return m_pList[i]; |
| 142 | } |
| 143 | |
| 144 | // writeable list element access |
| 145 | template<class T> |
| 146 | inline |
| 147 | T & DacDbiArrayList<T>::operator [](int i) |
| 148 | { |
| 149 | _ASSERTE(m_pList != NULL); |
| 150 | _ASSERTE((i >= 0) && (i < m_nEntries)); |
| 151 | return m_pList[i]; |
| 152 | } |
| 153 | |
| 154 | // get the number of elements in the list |
| 155 | template<class T> |
| 156 | inline |
| 157 | int DacDbiArrayList<T>::Count() const |
| 158 | { |
| 159 | return m_nEntries; |
| 160 | } |
| 161 | |
| 162 | //----------------------------------------------------------------------------- |
| 163 | // Target Buffer functions |
| 164 | //----------------------------------------------------------------------------- |
| 165 | |
| 166 | // Default ctor |
| 167 | inline |
| 168 | TargetBuffer::TargetBuffer() |
| 169 | { |
| 170 | this->pAddress = NULL; |
| 171 | this->cbSize = 0; |
| 172 | } |
| 173 | |
| 174 | // Convenience Ctor to initialize around an (Address, size). |
| 175 | inline |
| 176 | TargetBuffer::TargetBuffer(CORDB_ADDRESS pBuffer, ULONG cbSizeInput) |
| 177 | { |
| 178 | this->pAddress = pBuffer; |
| 179 | this->cbSize = cbSizeInput; |
| 180 | } |
| 181 | |
| 182 | // Convenience Ctor to initialize around an (Address, size). |
| 183 | inline |
| 184 | TargetBuffer::TargetBuffer(void * pBuffer, ULONG cbSizeInput) |
| 185 | { |
| 186 | this->pAddress = PTR_TO_CORDB_ADDRESS(pBuffer); |
| 187 | this->cbSize = cbSizeInput; |
| 188 | } |
| 189 | |
| 190 | // Return a sub-buffer that's starts at byteOffset within this buffer and runs to the end. |
| 191 | // |
| 192 | // Arguments: |
| 193 | // byteOffset - offset in bytes within this buffer that the new buffer starts at. |
| 194 | // |
| 195 | // Returns: |
| 196 | // A new buffer that's a subset of the existing buffer. |
| 197 | inline |
| 198 | TargetBuffer TargetBuffer::SubBuffer(ULONG byteOffset) const |
| 199 | { |
| 200 | _ASSERTE(byteOffset <= cbSize); |
| 201 | return TargetBuffer(pAddress + byteOffset, cbSize - byteOffset); |
| 202 | } |
| 203 | |
| 204 | // Return a sub-buffer that starts at byteOffset within this buffer and is byteLength long. |
| 205 | // |
| 206 | // Arguments: |
| 207 | // byteOffset - offset in bytes within this buffer that the new buffer starts at. |
| 208 | // byteLength - length in bytes of the new buffer. |
| 209 | // |
| 210 | // Returns: |
| 211 | // A new buffer that's a subset of the existing buffer. |
| 212 | inline |
| 213 | TargetBuffer TargetBuffer::SubBuffer(ULONG byteOffset, ULONG byteLength) const |
| 214 | { |
| 215 | _ASSERTE(byteOffset + byteLength <= cbSize); |
| 216 | return TargetBuffer(pAddress + byteOffset, byteLength); |
| 217 | } |
| 218 | |
| 219 | // Sets address to NULL and size to 0 |
| 220 | inline |
| 221 | void TargetBuffer::Clear() |
| 222 | { |
| 223 | pAddress = NULL; |
| 224 | cbSize = 0; |
| 225 | } |
| 226 | |
| 227 | // Initialize fields |
| 228 | inline |
| 229 | void TargetBuffer::Init(CORDB_ADDRESS address, ULONG size) |
| 230 | { |
| 231 | pAddress = address; |
| 232 | cbSize = size; |
| 233 | } |
| 234 | |
| 235 | |
| 236 | // Returns true iff the buffer is empty. |
| 237 | inline |
| 238 | bool TargetBuffer::IsEmpty() const |
| 239 | { |
| 240 | return (this->cbSize == 0); |
| 241 | } |
| 242 | |
| 243 | //----------------------------------------------------------------------------- |
| 244 | // NativeVarData member function implementations |
| 245 | //----------------------------------------------------------------------------- |
| 246 | |
| 247 | // Initialize a new instance of NativeVarData |
| 248 | inline NativeVarData::NativeVarData() : |
| 249 | m_allArgsCount(0), |
| 250 | m_fInitialized(false) |
| 251 | { |
| 252 | } |
| 253 | |
| 254 | // destructor |
| 255 | inline NativeVarData::~NativeVarData() |
| 256 | { |
| 257 | m_fInitialized = false; |
| 258 | } |
| 259 | |
| 260 | // initialize the list of native var information structures, including the starting address of the list, the number of |
| 261 | // entries and the number of fixed args. |
| 262 | inline void NativeVarData::InitVarDataList(ICorDebugInfo::NativeVarInfo * pListStart, |
| 263 | int fixedArgCount, |
| 264 | int entryCount) |
| 265 | { |
| 266 | m_offsetInfo.Init(pListStart, entryCount); |
| 267 | m_fixedArgsCount = fixedArgCount; |
| 268 | m_fInitialized = true; |
| 269 | } |
| 270 | |
| 271 | //----------------------------------------------------------------------------- |
| 272 | // SequencePoints member function implementations |
| 273 | //----------------------------------------------------------------------------- |
| 274 | |
| 275 | // initializing constructor |
| 276 | inline SequencePoints::SequencePoints() : |
| 277 | m_mapCount(0), |
| 278 | m_lastILOffset(0), |
| 279 | m_fInitialized(false) |
| 280 | { |
| 281 | } |
| 282 | |
| 283 | // destructor |
| 284 | inline SequencePoints::~SequencePoints() |
| 285 | { |
| 286 | m_fInitialized = false; |
| 287 | } |
| 288 | |
| 289 | // Initialize the m_pMap data member to the address of an allocated chunk |
| 290 | // of memory (or to NULL if the count is zero). Set m_count as the |
| 291 | // number of entries in the map. |
| 292 | inline void SequencePoints::InitSequencePoints(ULONG32 count) |
| 293 | { |
| 294 | m_map.Alloc(count), |
| 295 | m_fInitialized = true; |
| 296 | } |
| 297 | |
| 298 | // |
| 299 | // Map the given native offset to IL offset and return the mapping type. |
| 300 | // |
| 301 | // Arguments: |
| 302 | // dwNativeOffset - the native offset to be mapped |
| 303 | // pMapType - out parameter; return the mapping type |
| 304 | // |
| 305 | // Return Value: |
| 306 | // Return the IL offset corresponding to the given native offset. |
| 307 | // For a prolog, return 0. |
| 308 | // For an epilog, return the IL offset of the last sequence point before the epilog. |
| 309 | // If we can't map to an IL offset, then return 0, with a mapping type of MAPPING_NO_INFO. |
| 310 | // |
| 311 | // Assumptions: |
| 312 | // The sequence points are sorted. |
| 313 | // |
| 314 | |
| 315 | inline |
| 316 | DWORD SequencePoints::MapNativeOffsetToIL(DWORD dwNativeOffset, |
| 317 | CorDebugMappingResult *pMapType) |
| 318 | { |
| 319 | //_ASSERTE(IsInitialized()); |
| 320 | if (!IsInitialized()) |
| 321 | { |
| 322 | (*pMapType) = MAPPING_NO_INFO; |
| 323 | return 0; |
| 324 | } |
| 325 | |
| 326 | _ASSERTE(pMapType != NULL); |
| 327 | |
| 328 | int i; |
| 329 | |
| 330 | for (i = 0; i < (int)m_mapCount; ++i) |
| 331 | { |
| 332 | // Check to determine if dwNativeOffset is within this sequence point. Checking the lower bound is trivial-- |
| 333 | // we just make sure that dwNativeOffset >= m_map[i].nativeStartOffset. |
| 334 | // Checking to be sure it's before the end of the range is a little trickier. We can have |
| 335 | // m_map[i].nativeEndOffset = 0 for two reasons: |
| 336 | // 1. We use an end offset of 0 to signify that this end offset is also the end of the method. |
| 337 | // 2. We could also have an end offset of 0 if the IL prologue doesn't translate to any native |
| 338 | // instructions. Thus, the first native instruction (which will not be in the prologue) is at an offset |
| 339 | // of 0. The end offset is always set to the start offset of the next sequence point, so this means |
| 340 | // that both the start and end offsets of the (non-existent) native instruction range for the |
| 341 | // prologue is also 0. |
| 342 | // If the end offset is 0, we want to check if we're in the prologue before concluding that the |
| 343 | // value of dwNativeOffset is out of range. |
| 344 | if ((dwNativeOffset >= m_map[i].nativeStartOffset) && |
| 345 | (((m_map[i].nativeEndOffset == 0) && (m_map[i].ilOffset != (ULONG)ICorDebugInfo::PROLOG)) || |
| 346 | (dwNativeOffset < m_map[i].nativeEndOffset))) |
| 347 | { |
| 348 | ULONG uILOffset = m_map[i].ilOffset; |
| 349 | |
| 350 | if (m_map[i].ilOffset == (ULONG)ICorDebugInfo::PROLOG) |
| 351 | { |
| 352 | uILOffset = 0; |
| 353 | (*pMapType) = MAPPING_PROLOG; |
| 354 | } |
| 355 | else if (m_map[i].ilOffset == (ULONG)ICorDebugInfo::NO_MAPPING) |
| 356 | { |
| 357 | uILOffset = 0; |
| 358 | (*pMapType) = MAPPING_UNMAPPED_ADDRESS; |
| 359 | } |
| 360 | else if (m_map[i].ilOffset == (ULONG)ICorDebugInfo::EPILOG) |
| 361 | { |
| 362 | uILOffset = m_lastILOffset; |
| 363 | (*pMapType) = MAPPING_EPILOG; |
| 364 | } |
| 365 | else if (dwNativeOffset == m_map[i].nativeStartOffset) |
| 366 | { |
| 367 | (*pMapType) = MAPPING_EXACT; |
| 368 | } |
| 369 | else |
| 370 | { |
| 371 | (*pMapType) = MAPPING_APPROXIMATE; |
| 372 | } |
| 373 | return uILOffset; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | (*pMapType) = MAPPING_NO_INFO; |
| 378 | return 0; |
| 379 | } |
| 380 | |
| 381 | // |
| 382 | // Copy data from the VM map data to our own map structure and sort. The |
| 383 | // information comes to us in a data structure that differs slightly from the |
| 384 | // one we use out of process, so we have to copy it to the right-side struct. |
| 385 | // Arguments |
| 386 | // input |
| 387 | // mapCopy sequence points |
| 388 | // output |
| 389 | // pSeqPoints.m_map is initialized with the correct right side representation of sequence points |
| 390 | |
| 391 | inline |
| 392 | void SequencePoints::CopyAndSortSequencePoints(const ICorDebugInfo::OffsetMapping mapCopy[]) |
| 393 | { |
| 394 | // copy information to pSeqPoint and set end offsets |
| 395 | int i; |
| 396 | |
| 397 | ULONG32 lastILOffset = 0; |
| 398 | |
| 399 | const DWORD call_inst = (DWORD)ICorDebugInfo::CALL_INSTRUCTION; |
| 400 | for (i = 0; i < m_map.Count(); i++) |
| 401 | { |
| 402 | m_map[i].ilOffset = mapCopy[i].ilOffset; |
| 403 | m_map[i].nativeStartOffset = mapCopy[i].nativeOffset; |
| 404 | |
| 405 | if (i < m_map.Count() - 1) |
| 406 | { |
| 407 | // We need to not use CALL_INSTRUCTION's IL start offset. |
| 408 | int j = i + 1; |
| 409 | while ((mapCopy[j].source & call_inst) == call_inst && j < m_map.Count()-1) |
| 410 | j++; |
| 411 | |
| 412 | m_map[i].nativeEndOffset = mapCopy[j].nativeOffset; |
| 413 | } |
| 414 | |
| 415 | m_map[i].source = mapCopy[i].source; |
| 416 | |
| 417 | // need to cast the offsets to signed values first because we do actually use |
| 418 | // special negative offsets such as ICorDebugInfo::PROLOG |
| 419 | if ((m_map[i].source & call_inst) != call_inst) |
| 420 | lastILOffset = max((int)lastILOffset, (int)m_map[i].ilOffset); |
| 421 | } |
| 422 | |
| 423 | if (m_map.Count() >= 1) |
| 424 | { |
| 425 | m_map[i - 1].nativeEndOffset = 0; |
| 426 | m_map[i - 1].source = |
| 427 | (ICorDebugInfo::SourceTypes)(m_map[i - 1].source | ICorDebugInfo::NATIVE_END_OFFSET_UNKNOWN); |
| 428 | } |
| 429 | |
| 430 | // sort the map |
| 431 | MapSortILMap mapSorter(&m_map[0], m_map.Count()); |
| 432 | mapSorter.Sort(); |
| 433 | |
| 434 | |
| 435 | m_mapCount = m_map.Count(); |
| 436 | while (m_mapCount > 0 && (m_map[m_mapCount-1].source & (call_inst)) == call_inst) |
| 437 | m_mapCount--; |
| 438 | |
| 439 | SetLastILOffset(lastILOffset); |
| 440 | } // CopyAndSortSequencePoints |
| 441 | |
| 442 | //----------------------------------------------------------------------------- |
| 443 | // member function implementations for MapSortILMap class to sort sequence points |
| 444 | // by IL offset |
| 445 | //----------------------------------------------------------------------------- |
| 446 | |
| 447 | // secondary key comparison--if two IL offsets are the same, |
| 448 | // we determine order based on native offset |
| 449 | |
| 450 | inline |
| 451 | int SequencePoints::MapSortILMap::CompareInternal(DebuggerILToNativeMap *first, |
| 452 | DebuggerILToNativeMap *second) |
| 453 | { |
| 454 | LIMITED_METHOD_CONTRACT; |
| 455 | |
| 456 | if (first->nativeStartOffset == second->nativeStartOffset) |
| 457 | return 0; |
| 458 | else if (first->nativeStartOffset < second->nativeStartOffset) |
| 459 | return -1; |
| 460 | else |
| 461 | return 1; |
| 462 | } |
| 463 | |
| 464 | //Comparison operator |
| 465 | inline |
| 466 | int SequencePoints::MapSortILMap::Compare(DebuggerILToNativeMap * first, |
| 467 | DebuggerILToNativeMap * second) |
| 468 | { |
| 469 | LIMITED_METHOD_CONTRACT; |
| 470 | const DWORD call_inst = (DWORD)ICorDebugInfo::CALL_INSTRUCTION; |
| 471 | |
| 472 | //PROLOGs go first |
| 473 | if (first->ilOffset == (ULONG) ICorDebugInfo::PROLOG && |
| 474 | second->ilOffset == (ULONG) ICorDebugInfo::PROLOG) |
| 475 | { |
| 476 | return CompareInternal(first, second); |
| 477 | } |
| 478 | else if (first->ilOffset == (ULONG) ICorDebugInfo::PROLOG) |
| 479 | { |
| 480 | return -1; |
| 481 | } |
| 482 | else if (second->ilOffset == (ULONG) ICorDebugInfo::PROLOG) |
| 483 | { |
| 484 | return 1; |
| 485 | } |
| 486 | // call_instruction goes at the very very end of the table. |
| 487 | else if ((first->source & call_inst) == call_inst |
| 488 | && (second->source & call_inst) == call_inst) |
| 489 | { |
| 490 | return CompareInternal(first, second); |
| 491 | } else if ((first->source & call_inst) == call_inst) |
| 492 | { |
| 493 | return 1; |
| 494 | } else if ((second->source & call_inst) == call_inst) |
| 495 | { |
| 496 | return -1; |
| 497 | } |
| 498 | //NO_MAPPING go last |
| 499 | else if (first->ilOffset == (ULONG) ICorDebugInfo::NO_MAPPING && |
| 500 | second->ilOffset == (ULONG) ICorDebugInfo::NO_MAPPING) |
| 501 | { |
| 502 | return CompareInternal(first, second); |
| 503 | } |
| 504 | else if (first->ilOffset == (ULONG) ICorDebugInfo::NO_MAPPING) |
| 505 | { |
| 506 | return 1; |
| 507 | } |
| 508 | else if (second->ilOffset == (ULONG) ICorDebugInfo::NO_MAPPING) |
| 509 | { |
| 510 | return -1; |
| 511 | } |
| 512 | //EPILOGs go next-to-last |
| 513 | else if (first->ilOffset == (ULONG) ICorDebugInfo::EPILOG && |
| 514 | second->ilOffset == (ULONG) ICorDebugInfo::EPILOG) |
| 515 | { |
| 516 | return CompareInternal(first, second); |
| 517 | } |
| 518 | else if (first->ilOffset == (ULONG) ICorDebugInfo::EPILOG) |
| 519 | { |
| 520 | return 1; |
| 521 | } |
| 522 | else if (second->ilOffset == (ULONG) ICorDebugInfo::EPILOG) |
| 523 | { |
| 524 | return -1; |
| 525 | } |
| 526 | //normal offsets compared otherwise |
| 527 | else if (first->ilOffset < second->ilOffset) |
| 528 | { |
| 529 | return -1; |
| 530 | } |
| 531 | else if (first->ilOffset == second->ilOffset) |
| 532 | { |
| 533 | return CompareInternal(first, second); |
| 534 | } |
| 535 | else |
| 536 | { |
| 537 | return 1; |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | //----------------------------------------------------------------------------- |
| 542 | // NativeCodeFunctionData member function implementations |
| 543 | // (for getting native code regions) |
| 544 | //----------------------------------------------------------------------------- |
| 545 | |
| 546 | inline |
| 547 | CodeBlobRegion & operator++(CodeBlobRegion & rs) |
| 548 | { |
| 549 | return rs = CodeBlobRegion(rs + 1); |
| 550 | } |
| 551 | |
| 552 | // Convert the data in an instance of DebuggerIPCE_JITFUncData to an instance of NativeCodeFunctionData. |
| 553 | // We need to have this latter type to look up or create a new CordbNativeCode object, but the stack walker is |
| 554 | // using the former type to gather information. |
| 555 | // Arguments: |
| 556 | // Input: |
| 557 | // source - an initialized instance of DebuggerIPCE_JITFuncData containing the information to |
| 558 | // be copied into this instance of NativeCodeFunctionData |
| 559 | // @dbgtodo dlaw: Once CordbThread::RefreshStack is fully DAC-ized, we can change the data structure that it uses |
| 560 | // to have a member of type NativeCodeFunctionData which we can pass without copying. At that point, |
| 561 | // this method can disappear. |
| 562 | inline |
| 563 | NativeCodeFunctionData::NativeCodeFunctionData(DebuggerIPCE_JITFuncData * source) |
| 564 | { |
| 565 | // copy the code region information |
| 566 | m_rgCodeRegions[kHot].Init(CORDB_ADDRESS(source->nativeStartAddressPtr), (ULONG)source->nativeHotSize); |
| 567 | m_rgCodeRegions[kCold].Init(CORDB_ADDRESS(source->nativeStartAddressColdPtr), (ULONG)source->nativeColdSize); |
| 568 | |
| 569 | // copy the other function information |
| 570 | isInstantiatedGeneric = source->isInstantiatedGeneric; |
| 571 | vmNativeCodeMethodDescToken = source->vmNativeCodeMethodDescToken; |
| 572 | encVersion = source->enCVersion; |
| 573 | } |
| 574 | |
| 575 | |
| 576 | // set all fields to default values (NULL, FALSE, or zero as appropriate) |
| 577 | inline |
| 578 | NativeCodeFunctionData::NativeCodeFunctionData() |
| 579 | { |
| 580 | Clear(); |
| 581 | } |
| 582 | |
| 583 | inline |
| 584 | void NativeCodeFunctionData::Clear() |
| 585 | { |
| 586 | isInstantiatedGeneric = FALSE; |
| 587 | encVersion = CorDB_DEFAULT_ENC_FUNCTION_VERSION; |
| 588 | for (CodeBlobRegion region = kHot; region < MAX_REGIONS; ++region) |
| 589 | { |
| 590 | m_rgCodeRegions[region].Clear(); |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | //----------------------------------------------------------------------------------- |
| 595 | // ClassInfo member functions |
| 596 | //----------------------------------------------------------------------------------- |
| 597 | |
| 598 | inline |
| 599 | ClassInfo::ClassInfo(): |
| 600 | m_objectSize(0) |
| 601 | {} |
| 602 | |
| 603 | // clear all fields |
| 604 | inline |
| 605 | void ClassInfo::Clear() |
| 606 | { |
| 607 | m_objectSize = 0; |
| 608 | m_fieldList.Dealloc(); |
| 609 | } |
| 610 | |
| 611 | inline |
| 612 | ClassInfo::~ClassInfo() |
| 613 | { |
| 614 | m_fieldList.Dealloc(); |
| 615 | } |
| 616 | |
| 617 | //----------------------------------------------------------------------------------- |
| 618 | // FieldData member functions |
| 619 | //----------------------------------------------------------------------------------- |
| 620 | #ifndef RIGHT_SIDE_COMPILE |
| 621 | |
| 622 | // initialize various fields of an instance of FieldData from information retrieved from a FieldDesc |
| 623 | inline |
| 624 | void FieldData::Initialize(BOOL fIsStatic, BOOL fIsPrimitive, mdFieldDef mdToken) |
| 625 | { |
| 626 | ClearFields(); |
| 627 | m_fFldIsStatic = (fIsStatic == TRUE); |
| 628 | m_fFldIsPrimitive = (fIsPrimitive == TRUE); |
| 629 | // This is what tells the right side the field is unavailable due to EnC. |
| 630 | m_fldMetadataToken = mdToken; |
| 631 | } |
| 632 | #endif |
| 633 | |
| 634 | // clear various fields for a new instance of FieldData |
| 635 | inline |
| 636 | void FieldData::ClearFields() |
| 637 | { |
| 638 | m_fldSignatureCache = NULL; |
| 639 | m_fldSignatureCacheSize = 0; |
| 640 | m_fldInstanceOffset = 0; |
| 641 | m_pFldStaticAddress = NULL; |
| 642 | } |
| 643 | |
| 644 | typedef ULONG_PTR SIZE_T; |
| 645 | |
| 646 | inline |
| 647 | BOOL FieldData::OkToGetOrSetInstanceOffset() |
| 648 | { |
| 649 | return (!m_fFldIsStatic && !m_fFldIsRVA && !m_fFldIsTLS && |
| 650 | m_fFldStorageAvailable && (m_pFldStaticAddress == NULL)); |
| 651 | } |
| 652 | |
| 653 | // If this is an instance field, store its offset |
| 654 | inline |
| 655 | void FieldData::SetInstanceOffset(SIZE_T offset) |
| 656 | { |
| 657 | _ASSERTE(!m_fFldIsStatic); |
| 658 | _ASSERTE(!m_fFldIsRVA); |
| 659 | _ASSERTE(!m_fFldIsTLS); |
| 660 | _ASSERTE(m_fFldStorageAvailable); |
| 661 | _ASSERTE(m_pFldStaticAddress == NULL); |
| 662 | m_fldInstanceOffset = offset; |
| 663 | } |
| 664 | |
| 665 | inline |
| 666 | BOOL FieldData::OkToGetOrSetStaticAddress() |
| 667 | { |
| 668 | return (m_fFldIsStatic && !m_fFldIsTLS && |
| 669 | m_fFldStorageAvailable && (m_fldInstanceOffset == 0)); |
| 670 | } |
| 671 | |
| 672 | // If this is a "normal" static, store its absolute address |
| 673 | inline |
| 674 | void FieldData::SetStaticAddress(TADDR addr) |
| 675 | { |
| 676 | _ASSERTE(m_fFldIsStatic); |
| 677 | _ASSERTE(!m_fFldIsTLS); |
| 678 | _ASSERTE(m_fFldStorageAvailable); |
| 679 | _ASSERTE(m_fldInstanceOffset == 0); |
| 680 | m_pFldStaticAddress = TADDR(addr); |
| 681 | } |
| 682 | |
| 683 | // Get the offset of a field |
| 684 | inline |
| 685 | SIZE_T FieldData::GetInstanceOffset() |
| 686 | { |
| 687 | _ASSERTE(!m_fFldIsStatic); |
| 688 | _ASSERTE(!m_fFldIsRVA); |
| 689 | _ASSERTE(!m_fFldIsTLS); |
| 690 | _ASSERTE(m_fFldStorageAvailable); |
| 691 | _ASSERTE(m_pFldStaticAddress == NULL); |
| 692 | return m_fldInstanceOffset; |
| 693 | } |
| 694 | |
| 695 | // Get the static address for a field |
| 696 | inline |
| 697 | TADDR FieldData::GetStaticAddress() |
| 698 | { |
| 699 | _ASSERTE(m_fFldIsStatic); |
| 700 | _ASSERTE(!m_fFldIsTLS); |
| 701 | _ASSERTE(m_fFldStorageAvailable || (m_pFldStaticAddress == NULL)); |
| 702 | _ASSERTE(m_fldInstanceOffset == 0); |
| 703 | return m_pFldStaticAddress; |
| 704 | } |
| 705 | |
| 706 | //----------------------------------------------------------------------------------- |
| 707 | // EnCHangingFieldInfo member functions |
| 708 | //----------------------------------------------------------------------------------- |
| 709 | |
| 710 | inline |
| 711 | void EnCHangingFieldInfo::Init(VMPTR_Object pObject, |
| 712 | SIZE_T offset, |
| 713 | mdFieldDef fieldToken, |
| 714 | CorElementType elementType, |
| 715 | mdTypeDef metadataToken, |
| 716 | VMPTR_DomainFile vmDomainFile) |
| 717 | { |
| 718 | m_vmObject = pObject; |
| 719 | m_offsetToVars = offset; |
| 720 | m_fldToken = fieldToken; |
| 721 | m_objectTypeData.elementType = elementType; |
| 722 | m_objectTypeData.metadataToken = metadataToken; |
| 723 | m_objectTypeData.vmDomainFile = vmDomainFile; |
| 724 | } |
| 725 | |
| 726 | |
| 727 | |
| 728 | #endif // DACDBISTRUCTURES_INL_ |
| 729 | |