| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | #ifndef _SIMPLERHASHTABLE_H_ |
| 6 | #define _SIMPLERHASHTABLE_H_ |
| 7 | |
| 8 | #include "iallocator.h" |
| 9 | |
| 10 | // SimplerHashTable implements a mapping from a Key type to a Value type, |
| 11 | // via a hash table. |
| 12 | |
| 13 | // Synchronization is the responsibility of the caller: if a |
| 14 | // SimplerHash is used in a multithreaded context, the table should be |
| 15 | // associated with a lock. |
| 16 | |
| 17 | // SimplerHashTable actually takes four template arguments: Key, |
| 18 | // KeyFuncs, Value, and Behavior. We don't assume that Key has hash or equality |
| 19 | // functions specific names; rather, we assume that KeyFuncs has |
| 20 | // statics methods |
| 21 | // int GetHashCode(Key) |
| 22 | // and |
| 23 | // bool Equals(Key, Key) |
| 24 | // and use those. An |
| 25 | // instantiator can thus make a small "adaptor class" to invoke |
| 26 | // existing instance method hash and/or equality functions. If the |
| 27 | // implementor of a candidate Key class K understands this convention, |
| 28 | // these static methods can be implemented by K, so that K can be used |
| 29 | // as the actual arguments for the both Key and KeyTrait classes. |
| 30 | // |
| 31 | // The "Behavior" argument provides the following static members: |
| 32 | // |
| 33 | // s_growth_factor_numerator |
| 34 | // s_growth_factor_denominator Factor to grow allocation (numerator/denominator). |
| 35 | // Typically inherited from default traits (3/2) |
| 36 | // |
| 37 | // s_density_factor_numerator |
| 38 | // s_density_factor_denominator Maxium occupied density of table before growth |
| 39 | // occurs (num/denom). Typically inherited (3/4). |
| 40 | // |
| 41 | // s_minimum_allocation Minimum table allocation count (size on first growth.) It is |
| 42 | // probably preferable to call Reallocate on initialization rather |
| 43 | // than override his from the default traits. (7) |
| 44 | // |
| 45 | // NoMemory() Called when the hash table is unable to grow due to potential |
| 46 | // overflow or the lack of a sufficiently large prime. |
| 47 | |
| 48 | void DECLSPEC_NORETURN ThrowOutOfMemory(); |
| 49 | |
| 50 | class DefaultSimplerHashBehavior |
| 51 | { |
| 52 | public: |
| 53 | static const unsigned s_growth_factor_numerator = 3; |
| 54 | static const unsigned s_growth_factor_denominator = 2; |
| 55 | |
| 56 | static const unsigned s_density_factor_numerator = 3; |
| 57 | static const unsigned s_density_factor_denominator = 4; |
| 58 | |
| 59 | static const unsigned s_minimum_allocation = 7; |
| 60 | |
| 61 | inline static void DECLSPEC_NORETURN NoMemory() |
| 62 | { |
| 63 | ::ThrowOutOfMemory(); |
| 64 | } |
| 65 | }; |
| 66 | |
| 67 | // Stores info about primes, including the magic number and shift amount needed |
| 68 | // to implement a divide without using the divide instruction |
| 69 | class PrimeInfo |
| 70 | { |
| 71 | public: |
| 72 | PrimeInfo() : prime(0), magic(0), shift(0) {} |
| 73 | PrimeInfo(unsigned p, unsigned m, unsigned s) : prime(p), magic(m), shift(s) {} |
| 74 | unsigned prime; |
| 75 | unsigned magic; |
| 76 | unsigned shift; |
| 77 | }; |
| 78 | |
| 79 | |
| 80 | // Hash table class definition |
| 81 | |
| 82 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
| 83 | class SimplerHashTable |
| 84 | { |
| 85 | public: |
| 86 | // Forward declaration. |
| 87 | class KeyIterator; |
| 88 | |
| 89 | // Constructor/destructor. SHash tables always start out empty, with no |
| 90 | // allocation overhead. Call Reallocate to prime with an initial size if |
| 91 | // desired. Pass NULL as the IAllocator* if you want to use DefaultAllocator |
| 92 | // (basically, operator new/delete). |
| 93 | |
| 94 | SimplerHashTable(IAllocator* alloc); |
| 95 | ~SimplerHashTable(); |
| 96 | |
| 97 | // operators new/delete when an IAllocator is to be used. |
| 98 | void * operator new(size_t sz, IAllocator * alloc); |
| 99 | void * operator new[](size_t sz, IAllocator * alloc); |
| 100 | void operator delete(void * p, IAllocator * alloc); |
| 101 | void operator delete[](void * p, IAllocator * alloc); |
| 102 | |
| 103 | // If the table contains a mapping for "key", returns "true" and |
| 104 | // sets "*pVal" to the value to which "key" maps. Otherwise, |
| 105 | // returns false, and does not modify "*pVal". |
| 106 | bool Lookup(Key k, Value* pVal = NULL) const; |
| 107 | |
| 108 | Value *LookupPointer(Key k) const; |
| 109 | |
| 110 | // Causes the table to map "key" to "val". Returns "true" if |
| 111 | // "key" had already been mapped by the table, "false" otherwise. |
| 112 | bool Set(Key k, Value val); |
| 113 | |
| 114 | // Ensures that "key" is not mapped to a value by the "table." |
| 115 | // Returns "true" iff it had been mapped. |
| 116 | bool Remove(Key k); |
| 117 | |
| 118 | // Remove all mappings in the table. |
| 119 | void RemoveAll(); |
| 120 | |
| 121 | // Begin and End pointers for iteration over entire table. |
| 122 | KeyIterator Begin() const; |
| 123 | KeyIterator End() const; |
| 124 | |
| 125 | // Return the number of elements currently stored in the table |
| 126 | unsigned GetCount() const; |
| 127 | |
| 128 | private: |
| 129 | // Forward declaration of the linked-list node class. |
| 130 | struct Node; |
| 131 | |
| 132 | unsigned GetIndexForKey(Key k) const; |
| 133 | |
| 134 | // If the table has a mapping for "k", return the node containing |
| 135 | // that mapping, else "NULL". |
| 136 | Node* FindNode(Key k) const; |
| 137 | |
| 138 | // Resizes a hash table for growth. The new size is computed based |
| 139 | // on the current population, growth factor, and maximum density factor. |
| 140 | void Grow(); |
| 141 | |
| 142 | // See if it is OK to grow the hash table by one element. If not, reallocate |
| 143 | // the hash table. |
| 144 | void CheckGrowth(); |
| 145 | |
| 146 | public: |
| 147 | // Reallocates a hash table to a specific size. The size must be big enough |
| 148 | // to hold all elements in the table appropriately. |
| 149 | // |
| 150 | // Note that the actual table size must always be a prime number; the number |
| 151 | // passed in will be upward adjusted if necessary. |
| 152 | void Reallocate(unsigned newTableSize); |
| 153 | |
| 154 | // For iteration, we use a pattern similar to the STL "forward |
| 155 | // iterator" pattern. It basically consists of wrapping an |
| 156 | // "iteration variable" in an object, and providing pointer-like |
| 157 | // operators on the iterator. Example usage: |
| 158 | // |
| 159 | // for (SimplerHashTable::KeyIterator iter = foo->Begin(), end = foo->End(); !iter.Equal(end); iter++) |
| 160 | // { |
| 161 | // // use foo, iter. |
| 162 | // } |
| 163 | // iter.Get() will yield (a reference to) the |
| 164 | // current key. It will assert the equivalent of "iter != end." |
| 165 | class KeyIterator |
| 166 | { |
| 167 | private: |
| 168 | friend class SimplerHashTable; |
| 169 | |
| 170 | // The method implementations have to be here for portability. |
| 171 | // Some compilers won't compile the separate implementation in shash.inl |
| 172 | |
| 173 | Node** m_table; |
| 174 | Node* m_node; |
| 175 | unsigned m_tableSize; |
| 176 | unsigned m_index; |
| 177 | |
| 178 | public: |
| 179 | KeyIterator(const SimplerHashTable *hash, BOOL begin) |
| 180 | : m_table(hash->m_table), |
| 181 | m_node(NULL), |
| 182 | m_tableSize(hash->m_tableSizeInfo.prime), |
| 183 | m_index(begin ? 0 : m_tableSize) |
| 184 | { |
| 185 | if (begin && hash->m_tableCount > 0) |
| 186 | { |
| 187 | assert(m_table != NULL); |
| 188 | while (m_index < m_tableSize && m_table[m_index] == NULL) |
| 189 | m_index++; |
| 190 | |
| 191 | if (m_index >= m_tableSize) |
| 192 | { |
| 193 | return; |
| 194 | } |
| 195 | else |
| 196 | { |
| 197 | m_node = m_table[m_index]; |
| 198 | } |
| 199 | assert(m_node != NULL); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | const Key& Get() const |
| 204 | { |
| 205 | assert(m_node != NULL); |
| 206 | |
| 207 | return m_node->m_key; |
| 208 | } |
| 209 | |
| 210 | const Value& GetValue() const |
| 211 | { |
| 212 | assert(m_node != NULL); |
| 213 | |
| 214 | return m_node->m_val; |
| 215 | } |
| 216 | |
| 217 | void SetValue(const Value & value) const |
| 218 | { |
| 219 | assert(m_node != NULL); |
| 220 | |
| 221 | m_node->m_val = value; |
| 222 | } |
| 223 | |
| 224 | void Next() |
| 225 | { |
| 226 | if (m_node != NULL) |
| 227 | { |
| 228 | m_node = m_node->m_next; |
| 229 | if (m_node != NULL) |
| 230 | { |
| 231 | return; |
| 232 | } |
| 233 | |
| 234 | // Otherwise... |
| 235 | m_index++; |
| 236 | } |
| 237 | while (m_index < m_tableSize && m_table[m_index] == NULL) |
| 238 | m_index++; |
| 239 | |
| 240 | if (m_index >= m_tableSize) |
| 241 | { |
| 242 | m_node = NULL; |
| 243 | return; |
| 244 | } |
| 245 | else |
| 246 | { |
| 247 | m_node = m_table[m_index]; |
| 248 | } |
| 249 | assert(m_node != NULL); |
| 250 | } |
| 251 | |
| 252 | bool Equal(const KeyIterator &i) const |
| 253 | { |
| 254 | return i.m_node == m_node; |
| 255 | } |
| 256 | |
| 257 | void operator++() { |
| 258 | Next(); |
| 259 | } |
| 260 | |
| 261 | void operator++(int) { |
| 262 | Next(); |
| 263 | } |
| 264 | }; |
| 265 | |
| 266 | // HashTableRef only exists to support operator[] |
| 267 | // operator[] returns a HashTableRef which enables operator[] to support reading and writing |
| 268 | // in a normal array, it just returns a ref an actual element, which is not possible here. |
| 269 | class HashTableRef |
| 270 | { |
| 271 | public: |
| 272 | // this is really the getter for the array. |
| 273 | operator Value() |
| 274 | { |
| 275 | |
| 276 | Value result; |
| 277 | table->Lookup(key, &result); |
| 278 | return result; |
| 279 | } |
| 280 | |
| 281 | void operator =(const Value v) |
| 282 | { |
| 283 | table->Set(key, v); |
| 284 | } |
| 285 | |
| 286 | friend class SimplerHashTable; |
| 287 | |
| 288 | protected: |
| 289 | HashTableRef(SimplerHashTable *t, Key k) |
| 290 | { |
| 291 | table = t; |
| 292 | key = k; |
| 293 | } |
| 294 | |
| 295 | SimplerHashTable *table; |
| 296 | Key key; |
| 297 | }; |
| 298 | |
| 299 | Value &operator[](Key k) const |
| 300 | { |
| 301 | Value* p = LookupPointer(k); |
| 302 | assert(p); |
| 303 | return *p; |
| 304 | } |
| 305 | |
| 306 | private: |
| 307 | // Find the next prime number >= the given value. |
| 308 | static PrimeInfo NextPrime(unsigned number); |
| 309 | |
| 310 | // Instance members |
| 311 | IAllocator* m_alloc; // IAllocator to use in this |
| 312 | // table. |
| 313 | // The node type. |
| 314 | struct Node { |
| 315 | Node* m_next; // Assume that the alignment requirement of Key and Value are no greater than Node*, so put m_next to avoid unnecessary padding. |
| 316 | Key m_key; |
| 317 | Value m_val; |
| 318 | |
| 319 | Node(Key k, Value v, Node* next) : m_next(next), m_key(k), m_val(v) {} |
| 320 | |
| 321 | void* operator new(size_t sz, IAllocator* alloc) |
| 322 | { |
| 323 | return alloc->Alloc(sz); |
| 324 | } |
| 325 | |
| 326 | void operator delete(void* p, IAllocator* alloc) |
| 327 | { |
| 328 | alloc->Free(p); |
| 329 | } |
| 330 | }; |
| 331 | |
| 332 | Node** m_table; // pointer to table |
| 333 | PrimeInfo m_tableSizeInfo; // size of table (a prime) and information about it |
| 334 | unsigned m_tableCount; // number of elements in table |
| 335 | unsigned m_tableMax; // maximum occupied count |
| 336 | }; |
| 337 | |
| 338 | #include "simplerhash.inl" |
| 339 | |
| 340 | // A few simple KeyFuncs types... |
| 341 | |
| 342 | // Base class for types whose equality function is the same as their "==". |
| 343 | template<typename T> |
| 344 | struct KeyFuncsDefEquals |
| 345 | { |
| 346 | static bool Equals(const T& x, const T& y) |
| 347 | { |
| 348 | return x == y; |
| 349 | } |
| 350 | }; |
| 351 | |
| 352 | template<typename T> |
| 353 | struct PtrKeyFuncs: public KeyFuncsDefEquals<const T*> |
| 354 | { |
| 355 | public: |
| 356 | static unsigned GetHashCode(const T* ptr) |
| 357 | { |
| 358 | // Hmm. Maybe (unsigned) ought to be "ssize_t" -- or this ought to be ifdef'd by size. |
| 359 | return static_cast<unsigned>(reinterpret_cast<uintptr_t>(ptr)); |
| 360 | } |
| 361 | }; |
| 362 | |
| 363 | template<typename T> // Must be coercable to "unsigned" with no loss of information. |
| 364 | struct SmallPrimitiveKeyFuncs: public KeyFuncsDefEquals<T> |
| 365 | { |
| 366 | static unsigned GetHashCode(const T& val) |
| 367 | { |
| 368 | return static_cast<unsigned>(val); |
| 369 | } |
| 370 | }; |
| 371 | |
| 372 | template<typename T> // Assumed to be of size sizeof(UINT64). |
| 373 | struct LargePrimitiveKeyFuncs: public KeyFuncsDefEquals<T> |
| 374 | { |
| 375 | static unsigned GetHashCode(const T val) |
| 376 | { |
| 377 | // A static cast when T is a float or a double converts the value (i.e. 0.25 converts to 0) |
| 378 | // |
| 379 | // Instead we want to use all of the bits of a float to create the hash value |
| 380 | // So we cast the address of val to a pointer to an equivalent sized unsigned int |
| 381 | // This allows us to read the actual bit representation of a float type |
| 382 | // |
| 383 | // We can't read beyond the end of val, so we use sizeof(T) to determine |
| 384 | // exactly how many bytes to read |
| 385 | // |
| 386 | if (sizeof(T) == 8) |
| 387 | { |
| 388 | // cast &val to (UINT64 *) then deref to get the bits |
| 389 | UINT64 asUINT64 = *(reinterpret_cast<const UINT64 *>(&val)); |
| 390 | |
| 391 | // Get the upper and lower 32-bit values from the 64-bit value |
| 392 | UINT32 upper32 = static_cast<UINT32> (asUINT64 >> 32); |
| 393 | UINT32 lower32 = static_cast<UINT32> (asUINT64 & 0xFFFFFFFF); |
| 394 | |
| 395 | // Exclusive-Or the upper32 and the lower32 values |
| 396 | return static_cast<unsigned>(upper32 ^ lower32); |
| 397 | |
| 398 | } |
| 399 | else if (sizeof(T) == 4) |
| 400 | { |
| 401 | // cast &val to (UINT32 *) then deref to get the bits |
| 402 | UINT32 asUINT32 = *(reinterpret_cast<const UINT32 *>(&val)); |
| 403 | |
| 404 | // Just return the 32-bit value |
| 405 | return static_cast<unsigned>(asUINT32); |
| 406 | } |
| 407 | else if ((sizeof(T) == 2) || (sizeof(T) == 1)) |
| 408 | { |
| 409 | // For small sizes we must have an integer type |
| 410 | // so we can just use the static_cast. |
| 411 | // |
| 412 | return static_cast<unsigned>(val); |
| 413 | } |
| 414 | else |
| 415 | { |
| 416 | // Only support Hashing for types that are 8,4,2 or 1 bytes in size |
| 417 | assert(!"Unsupported size" ); |
| 418 | return static_cast<unsigned>(val); // compile-time error here when we have a illegal size |
| 419 | } |
| 420 | } |
| 421 | }; |
| 422 | |
| 423 | #endif // _SIMPLERHASHTABLE_H_ |
| 424 | |