1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | #ifndef _SIMPLERHASHTABLE_INL_ |
6 | #define _SIMPLERHASHTABLE_INL_ |
7 | |
8 | // To implement magic-number divide with a 32-bit magic number, |
9 | // multiply by the magic number, take the top 64 bits, and shift that |
10 | // by the amount given in the table. |
11 | |
12 | inline |
13 | unsigned magicNumberDivide(unsigned numerator, const PrimeInfo &p) |
14 | { |
15 | unsigned __int64 num = numerator; |
16 | unsigned __int64 mag = p.magic; |
17 | unsigned __int64 product = (num * mag) >> (32 + p.shift); |
18 | return (unsigned) product; |
19 | } |
20 | |
21 | inline |
22 | unsigned magicNumberRem(unsigned numerator, const PrimeInfo &p) |
23 | { |
24 | unsigned div = magicNumberDivide(numerator, p); |
25 | unsigned result = numerator - (div * p.prime); |
26 | assert(result == numerator % p.prime); |
27 | return result; |
28 | } |
29 | |
30 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
31 | SimplerHashTable<Key,KeyFuncs,Value,Behavior>::SimplerHashTable(IAllocator* alloc) |
32 | : m_alloc(alloc), |
33 | m_table(NULL), |
34 | m_tableSizeInfo(), |
35 | m_tableCount(0), |
36 | m_tableMax(0) |
37 | { |
38 | assert(m_alloc != nullptr); |
39 | |
40 | #ifndef __GNUC__ // these crash GCC |
41 | static_assert_no_msg(Behavior::s_growth_factor_numerator > Behavior::s_growth_factor_denominator); |
42 | static_assert_no_msg(Behavior::s_density_factor_numerator < Behavior::s_density_factor_denominator); |
43 | #endif |
44 | } |
45 | |
46 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
47 | SimplerHashTable<Key,KeyFuncs,Value,Behavior>::~SimplerHashTable() |
48 | { |
49 | RemoveAll(); |
50 | } |
51 | |
52 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
53 | void * SimplerHashTable<Key,KeyFuncs,Value,Behavior>::operator new(size_t sz, IAllocator * alloc) |
54 | { |
55 | return alloc->Alloc(sz); |
56 | } |
57 | |
58 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
59 | void * SimplerHashTable<Key,KeyFuncs,Value,Behavior>::operator new[](size_t sz, IAllocator * alloc) |
60 | { |
61 | return alloc->Alloc(sz); |
62 | } |
63 | |
64 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
65 | void SimplerHashTable<Key,KeyFuncs,Value,Behavior>::operator delete(void * p, IAllocator * alloc) |
66 | { |
67 | alloc->Free(p); |
68 | } |
69 | |
70 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
71 | void SimplerHashTable<Key,KeyFuncs,Value,Behavior>::operator delete[](void * p, IAllocator * alloc) |
72 | { |
73 | alloc->Free(p); |
74 | } |
75 | |
76 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
77 | unsigned SimplerHashTable<Key,KeyFuncs,Value,Behavior>::GetCount() const |
78 | { |
79 | return m_tableCount; |
80 | } |
81 | |
82 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
83 | bool SimplerHashTable<Key,KeyFuncs,Value,Behavior>::Lookup(Key key, Value* pVal) const |
84 | { |
85 | Node* pN = FindNode(key); |
86 | |
87 | if (pN != NULL) |
88 | { |
89 | if (pVal != NULL) |
90 | { |
91 | *pVal = pN->m_val; |
92 | } |
93 | return true; |
94 | } |
95 | else |
96 | { |
97 | return false; |
98 | } |
99 | } |
100 | |
101 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
102 | Value *SimplerHashTable<Key,KeyFuncs,Value,Behavior>::LookupPointer(Key key) const |
103 | { |
104 | Node* pN = FindNode(key); |
105 | |
106 | if (pN != NULL) |
107 | return &(pN->m_val); |
108 | else |
109 | return NULL; |
110 | } |
111 | |
112 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
113 | typename SimplerHashTable<Key,KeyFuncs,Value,Behavior>::Node* |
114 | SimplerHashTable<Key,KeyFuncs,Value,Behavior>::FindNode(Key k) const |
115 | { |
116 | if (m_tableSizeInfo.prime == 0) |
117 | return NULL; |
118 | |
119 | unsigned index = GetIndexForKey(k); |
120 | |
121 | Node* pN = m_table[index]; |
122 | if (pN == NULL) |
123 | return NULL; |
124 | |
125 | // Otherwise... |
126 | while (pN != NULL && !KeyFuncs::Equals(k, pN->m_key)) |
127 | pN = pN->m_next; |
128 | |
129 | assert(pN == NULL || KeyFuncs::Equals(k, pN->m_key)); |
130 | |
131 | // If pN != NULL, it's the node for the key, else the key isn't mapped. |
132 | return pN; |
133 | } |
134 | |
135 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
136 | unsigned SimplerHashTable<Key,KeyFuncs,Value,Behavior>::GetIndexForKey(Key k) const |
137 | { |
138 | unsigned hash = KeyFuncs::GetHashCode(k); |
139 | |
140 | unsigned index = magicNumberRem(hash, m_tableSizeInfo); |
141 | |
142 | return index; |
143 | } |
144 | |
145 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
146 | bool SimplerHashTable<Key,KeyFuncs,Value,Behavior>::Set(Key k, Value v) |
147 | { |
148 | CheckGrowth(); |
149 | |
150 | assert(m_tableSizeInfo.prime != 0); |
151 | |
152 | unsigned index = GetIndexForKey(k); |
153 | |
154 | Node* pN = m_table[index]; |
155 | while (pN != NULL && !KeyFuncs::Equals(k, pN->m_key)) |
156 | { |
157 | pN = pN->m_next; |
158 | } |
159 | if (pN != NULL) |
160 | { |
161 | pN->m_val = v; |
162 | return true; |
163 | } |
164 | else |
165 | { |
166 | Node* pNewNode = new (m_alloc) Node(k, v, m_table[index]); |
167 | m_table[index] = pNewNode; |
168 | m_tableCount++; |
169 | return false; |
170 | } |
171 | } |
172 | |
173 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
174 | bool SimplerHashTable<Key,KeyFuncs,Value,Behavior>::Remove(Key k) |
175 | { |
176 | unsigned index = GetIndexForKey(k); |
177 | |
178 | Node* pN = m_table[index]; |
179 | Node** ppN = &m_table[index]; |
180 | while (pN != NULL && !KeyFuncs::Equals(k, pN->m_key)) |
181 | { |
182 | ppN = &pN->m_next; |
183 | pN = pN->m_next; |
184 | } |
185 | if (pN != NULL) |
186 | { |
187 | *ppN = pN->m_next; |
188 | m_tableCount--; |
189 | Node::operator delete(pN, m_alloc); |
190 | return true; |
191 | } |
192 | else |
193 | { |
194 | return false; |
195 | } |
196 | } |
197 | |
198 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
199 | void SimplerHashTable<Key,KeyFuncs,Value,Behavior>::RemoveAll() |
200 | { |
201 | for (unsigned i = 0; i < m_tableSizeInfo.prime; i++) |
202 | { |
203 | for (Node* pN = m_table[i]; pN != NULL; ) |
204 | { |
205 | Node* pNext = pN->m_next; |
206 | Node::operator delete(pN, m_alloc); |
207 | pN = pNext; |
208 | } |
209 | } |
210 | m_alloc->Free(m_table); |
211 | |
212 | m_table = NULL; |
213 | m_tableSizeInfo = PrimeInfo(); |
214 | m_tableCount = 0; |
215 | m_tableMax = 0; |
216 | |
217 | return; |
218 | } |
219 | |
220 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
221 | typename SimplerHashTable<Key,KeyFuncs,Value,Behavior>::KeyIterator SimplerHashTable<Key,KeyFuncs,Value,Behavior>::Begin() const |
222 | { |
223 | KeyIterator i(this, TRUE); |
224 | return i; |
225 | } |
226 | |
227 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
228 | typename SimplerHashTable<Key,KeyFuncs,Value,Behavior>::KeyIterator SimplerHashTable<Key,KeyFuncs,Value,Behavior>::End() const |
229 | { |
230 | return KeyIterator(this, FALSE); |
231 | } |
232 | |
233 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
234 | void SimplerHashTable<Key,KeyFuncs,Value,Behavior>::CheckGrowth() |
235 | { |
236 | if (m_tableCount == m_tableMax) |
237 | { |
238 | Grow(); |
239 | } |
240 | } |
241 | |
242 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
243 | void SimplerHashTable<Key,KeyFuncs,Value,Behavior>::Grow() |
244 | { |
245 | unsigned newSize = (unsigned) (m_tableCount |
246 | * Behavior::s_growth_factor_numerator / Behavior::s_growth_factor_denominator |
247 | * Behavior::s_density_factor_denominator / Behavior::s_density_factor_numerator); |
248 | if (newSize < Behavior::s_minimum_allocation) |
249 | newSize = Behavior::s_minimum_allocation; |
250 | |
251 | // handle potential overflow |
252 | if (newSize < m_tableCount) |
253 | Behavior::NoMemory(); |
254 | |
255 | Reallocate(newSize); |
256 | } |
257 | |
258 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
259 | void SimplerHashTable<Key,KeyFuncs,Value,Behavior>::Reallocate(unsigned newTableSize) |
260 | { |
261 | assert(newTableSize >= (GetCount() * Behavior::s_density_factor_denominator / Behavior::s_density_factor_numerator)); |
262 | |
263 | // Allocation size must be a prime number. This is necessary so that hashes uniformly |
264 | // distribute to all indices, and so that chaining will visit all indices in the hash table. |
265 | PrimeInfo newPrime = NextPrime(newTableSize); |
266 | newTableSize = newPrime.prime; |
267 | |
268 | Node** newTable = (Node**)m_alloc->ArrayAlloc(newTableSize, sizeof(Node*)); |
269 | |
270 | for (unsigned i = 0; i < newTableSize; i++) { |
271 | newTable[i] = NULL; |
272 | } |
273 | |
274 | // Move all entries over to new table (re-using the Node structures.) |
275 | |
276 | for (unsigned i = 0; i < m_tableSizeInfo.prime; i++) |
277 | { |
278 | Node* pN = m_table[i]; |
279 | while (pN != NULL) |
280 | { |
281 | Node* pNext = pN->m_next; |
282 | |
283 | unsigned newIndex = magicNumberRem(KeyFuncs::GetHashCode(pN->m_key), newPrime); |
284 | pN->m_next = newTable[newIndex]; |
285 | newTable[newIndex] = pN; |
286 | |
287 | pN = pNext; |
288 | } |
289 | } |
290 | |
291 | // @todo: |
292 | // We might want to try to delay this cleanup to allow asynchronous readers |
293 | if (m_table != NULL) |
294 | m_alloc->Free(m_table); |
295 | |
296 | m_table = newTable; |
297 | m_tableSizeInfo = newPrime; |
298 | m_tableMax = (unsigned) (newTableSize * Behavior::s_density_factor_numerator / Behavior::s_density_factor_denominator); |
299 | } |
300 | |
301 | // Table of primes and their magic-number-divide constant. |
302 | // For more info see the book "Hacker's Delight" chapter 10.9 "Unsigned Division by Divisors >= 1" |
303 | // These were selected by looking for primes, each roughly twice as big as the next, having |
304 | // 32-bit magic numbers, (because the algorithm for using 33-bit magic numbers is slightly slower). |
305 | // |
306 | |
307 | SELECTANY const PrimeInfo primeInfo[] = |
308 | { |
309 | PrimeInfo(9, 0x38e38e39, 1), |
310 | PrimeInfo(23, 0xb21642c9, 4), |
311 | PrimeInfo(59, 0x22b63cbf, 3), |
312 | PrimeInfo(131, 0xfa232cf3, 7), |
313 | PrimeInfo(239, 0x891ac73b, 7), |
314 | PrimeInfo(433, 0x975a751, 4), |
315 | PrimeInfo(761, 0x561e46a5, 8), |
316 | PrimeInfo(1399, 0xbb612aa3, 10), |
317 | PrimeInfo(2473, 0x6a009f01, 10), |
318 | PrimeInfo(4327, 0xf2555049, 12), |
319 | PrimeInfo(7499, 0x45ea155f, 11), |
320 | PrimeInfo(12973, 0x1434f6d3, 10), |
321 | PrimeInfo(22433, 0x2ebe18db, 12), |
322 | PrimeInfo(46559, 0xb42bebd5, 15), |
323 | PrimeInfo(96581, 0xadb61b1b, 16), |
324 | PrimeInfo(200341, 0x29df2461, 15), |
325 | PrimeInfo(415517, 0xa181c46d, 18), |
326 | PrimeInfo(861719, 0x4de0bde5, 18), |
327 | PrimeInfo(1787021, 0x9636c46f, 20), |
328 | PrimeInfo(3705617, 0x4870adc1, 20), |
329 | PrimeInfo(7684087, 0x8bbc5b83, 22), |
330 | PrimeInfo(15933877, 0x86c65361, 23), |
331 | PrimeInfo(33040633, 0x40fec79b, 23), |
332 | PrimeInfo(68513161, 0x7d605cd1, 25), |
333 | PrimeInfo(142069021, 0xf1da390b, 27), |
334 | PrimeInfo(294594427, 0x74a2507d, 27), |
335 | PrimeInfo(733045421, 0x5dbec447, 28), |
336 | }; |
337 | |
338 | template <typename Key, typename KeyFuncs, typename Value, typename Behavior> |
339 | PrimeInfo SimplerHashTable<Key,KeyFuncs,Value,Behavior>::NextPrime(unsigned number) |
340 | { |
341 | for (int i = 0; i < (int) (sizeof(primeInfo) / sizeof(primeInfo[0])); i++) { |
342 | if (primeInfo[i].prime >= number) |
343 | return primeInfo[i]; |
344 | } |
345 | |
346 | // overflow |
347 | Behavior::NoMemory(); |
348 | } |
349 | |
350 | #endif // _SIMPLERHASHTABLE_INL_ |
351 | |