| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /***************************************************************************** |
| 6 | * |
| 7 | * GC Information Encoding API |
| 8 | * |
| 9 | */ |
| 10 | |
| 11 | #include <stdint.h> |
| 12 | |
| 13 | #include "gcinfoencoder.h" |
| 14 | |
| 15 | #ifdef _DEBUG |
| 16 | #ifndef LOGGING |
| 17 | #define LOGGING |
| 18 | #endif |
| 19 | #endif |
| 20 | |
| 21 | #ifndef STANDALONE_BUILD |
| 22 | #include "log.h" |
| 23 | #include "simplerhash.h" |
| 24 | #include "bitposition.h" |
| 25 | #endif |
| 26 | |
| 27 | #ifdef MEASURE_GCINFO |
| 28 | #define GCINFO_WRITE(writer, val, numBits, counter) \ |
| 29 | { \ |
| 30 | writer.Write(val, numBits); \ |
| 31 | m_CurrentMethodSize.counter += numBits; \ |
| 32 | m_CurrentMethodSize.TotalSize += numBits; \ |
| 33 | } |
| 34 | #define GCINFO_WRITE_VARL_U(writer, val, base, counter) \ |
| 35 | { \ |
| 36 | size_t __temp = \ |
| 37 | writer.EncodeVarLengthUnsigned(val, base); \ |
| 38 | m_CurrentMethodSize.counter += __temp; \ |
| 39 | m_CurrentMethodSize.TotalSize += __temp; \ |
| 40 | } |
| 41 | #define GCINFO_WRITE_VARL_S(writer, val, base, counter) \ |
| 42 | { \ |
| 43 | size_t __temp = \ |
| 44 | writer.EncodeVarLengthSigned(val, base); \ |
| 45 | m_CurrentMethodSize.counter += __temp; \ |
| 46 | m_CurrentMethodSize.TotalSize += __temp; \ |
| 47 | } |
| 48 | #define GCINFO_WRITE_VECTOR(writer, vector, counter) \ |
| 49 | { \ |
| 50 | WriteSlotStateVector(writer, vector); \ |
| 51 | for(UINT32 i = 0; i < m_NumSlots; i++) \ |
| 52 | { \ |
| 53 | if(!m_SlotTable[i].IsDeleted() && \ |
| 54 | !m_SlotTable[i].IsUntracked()) \ |
| 55 | { \ |
| 56 | m_CurrentMethodSize.counter++; \ |
| 57 | m_CurrentMethodSize.TotalSize++; \ |
| 58 | } \ |
| 59 | } \ |
| 60 | } |
| 61 | #define GCINFO_WRITE_VAR_VECTOR(writer, vector, baseSkip, baseRun, counter) \ |
| 62 | { \ |
| 63 | size_t __temp = \ |
| 64 | WriteSlotStateVarLengthVector(writer, vector, baseSkip, baseRun); \ |
| 65 | m_CurrentMethodSize.counter += __temp; \ |
| 66 | m_CurrentMethodSize.TotalSize += __temp; \ |
| 67 | } |
| 68 | #else |
| 69 | #define GCINFO_WRITE(writer, val, numBits, counter) \ |
| 70 | writer.Write(val, numBits); |
| 71 | |
| 72 | #define GCINFO_WRITE_VARL_U(writer, val, base, counter) \ |
| 73 | writer.EncodeVarLengthUnsigned(val, base); |
| 74 | |
| 75 | #define GCINFO_WRITE_VARL_S(writer, val, base, counter) \ |
| 76 | writer.EncodeVarLengthSigned(val, base); |
| 77 | |
| 78 | #define GCINFO_WRITE_VECTOR(writer, vector, counter) \ |
| 79 | WriteSlotStateVector(writer, vector); |
| 80 | |
| 81 | #define GCINFO_WRITE_VAR_VECTOR(writer, vector, baseSkip, baseRun, counter) \ |
| 82 | WriteSlotStateVarLengthVector(writer, vector, baseSkip, baseRun); |
| 83 | #endif |
| 84 | |
| 85 | #define LOG_GCSLOTDESC_FMT "%s%c%d%s%s%s" |
| 86 | #define LOG_GCSLOTDESC_ARGS(pDesc) (pDesc)->IsRegister() ? "register" \ |
| 87 | : GcStackSlotBaseNames[(pDesc)->Slot.Stack.Base], \ |
| 88 | (pDesc)->IsRegister() ? ' ' : (pDesc)->Slot.Stack.SpOffset < 0 ? '-' : '+', \ |
| 89 | (pDesc)->IsRegister() ? (pDesc)->Slot.RegisterNumber \ |
| 90 | : ((pDesc)->Slot.Stack.SpOffset), \ |
| 91 | (pDesc)->IsPinned() ? " pinned" : "", \ |
| 92 | (pDesc)->IsInterior() ? " interior" : "", \ |
| 93 | (pDesc)->IsUntracked() ? " untracked" : "" |
| 94 | |
| 95 | #define LOG_REGTRANSITION_FMT "register %u%s%s" |
| 96 | #define LOG_REGTRANSITION_ARGS(RegisterNumber, Flags) \ |
| 97 | RegisterNumber, \ |
| 98 | (Flags & GC_SLOT_PINNED) ? " pinned" : "", \ |
| 99 | (Flags & GC_SLOT_INTERIOR) ? " interior" : "" |
| 100 | |
| 101 | #define LOG_STACKTRANSITION_FMT "%s%c%d%s%s%s" |
| 102 | #define LOG_STACKTRANSITION_ARGS(BaseRegister, StackOffset, Flags) \ |
| 103 | GcStackSlotBaseNames[BaseRegister], \ |
| 104 | ((StackOffset) < 0) ? '-' : '+', \ |
| 105 | ((StackOffset) >= 0) ? (StackOffset) \ |
| 106 | : -(StackOffset), \ |
| 107 | (Flags & GC_SLOT_PINNED) ? " pinned" : "", \ |
| 108 | (Flags & GC_SLOT_INTERIOR) ? " interior" : "", \ |
| 109 | (Flags & GC_SLOT_UNTRACKED) ? " untracked" : "" |
| 110 | |
| 111 | class BitArray |
| 112 | { |
| 113 | friend class BitArrayIterator; |
| 114 | typedef uint32_t ChunkType; |
| 115 | static constexpr size_t NumBitsPerChunk = sizeof(ChunkType) * CHAR_BIT; |
| 116 | public: |
| 117 | BitArray(IAllocator* pJitAllocator, size_t numBits) |
| 118 | { |
| 119 | const size_t numChunks = (numBits + NumBitsPerChunk - 1) / NumBitsPerChunk; |
| 120 | m_pData = (ChunkType*)pJitAllocator->Alloc(sizeof(ChunkType) * numChunks); |
| 121 | m_pEndData = m_pData + numChunks; |
| 122 | #ifdef MUST_CALL_IALLOCATOR_FREE |
| 123 | m_pJitAllocator = pJitAllocator; |
| 124 | #endif |
| 125 | } |
| 126 | |
| 127 | inline void SetBit( size_t pos ) |
| 128 | { |
| 129 | size_t element = pos / NumBitsPerChunk; |
| 130 | int bpos = (int)(pos % NumBitsPerChunk); |
| 131 | m_pData[element] |= ((ChunkType)1 << bpos); |
| 132 | } |
| 133 | |
| 134 | inline void ClearBit( size_t pos ) |
| 135 | { |
| 136 | size_t element = pos / NumBitsPerChunk; |
| 137 | int bpos = (int)(pos % NumBitsPerChunk); |
| 138 | m_pData[element] &= ~((ChunkType)1 << bpos); |
| 139 | } |
| 140 | |
| 141 | inline void SetAll() |
| 142 | { |
| 143 | ChunkType* ptr = m_pData; |
| 144 | while(ptr < m_pEndData) |
| 145 | *(ptr++) = ~(ChunkType)0; |
| 146 | } |
| 147 | |
| 148 | inline void ClearAll() |
| 149 | { |
| 150 | ChunkType* ptr = m_pData; |
| 151 | while(ptr < m_pEndData) |
| 152 | *(ptr++) = (ChunkType)0; |
| 153 | } |
| 154 | |
| 155 | inline void WriteBit( size_t pos, BOOL val) |
| 156 | { |
| 157 | if(val) |
| 158 | SetBit(pos); |
| 159 | else |
| 160 | ClearBit(pos); |
| 161 | } |
| 162 | |
| 163 | inline uint32_t ReadBit( size_t pos ) const |
| 164 | { |
| 165 | size_t element = pos / NumBitsPerChunk; |
| 166 | int bpos = (int)(pos % NumBitsPerChunk); |
| 167 | return (m_pData[element] & ((ChunkType)1 << bpos)); |
| 168 | } |
| 169 | |
| 170 | inline bool operator==(const BitArray &other) const |
| 171 | { |
| 172 | _ASSERTE(other.m_pEndData - other.m_pData == m_pEndData - m_pData); |
| 173 | ChunkType* dest = m_pData; |
| 174 | ChunkType* src = other.m_pData; |
| 175 | return 0 == memcmp(dest, src, (m_pEndData - m_pData) * sizeof(ChunkType)); |
| 176 | } |
| 177 | |
| 178 | inline int GetHashCode() const |
| 179 | { |
| 180 | const int* src = (const int*)m_pData; |
| 181 | int result = *src++; |
| 182 | while (src < (const int*)m_pEndData) |
| 183 | result = _rotr(result, 5) ^ *src++; |
| 184 | return result; |
| 185 | } |
| 186 | |
| 187 | inline BitArray& operator=(const BitArray &other) |
| 188 | { |
| 189 | _ASSERTE(other.m_pEndData - other.m_pData == m_pEndData - m_pData); |
| 190 | ChunkType* dest = m_pData; |
| 191 | ChunkType* src = other.m_pData; |
| 192 | while(dest < m_pEndData) |
| 193 | *(dest++) = *(src++); |
| 194 | |
| 195 | return *this; |
| 196 | } |
| 197 | |
| 198 | inline BitArray& operator|=(const BitArray &other) |
| 199 | { |
| 200 | _ASSERTE(other.m_pEndData - other.m_pData == m_pEndData - m_pData); |
| 201 | ChunkType* dest = m_pData; |
| 202 | ChunkType* src = other.m_pData; |
| 203 | while(dest < m_pEndData) |
| 204 | *(dest++) |= *(src++); |
| 205 | |
| 206 | return *this; |
| 207 | } |
| 208 | |
| 209 | #ifdef MUST_CALL_IALLOCATOR_FREE |
| 210 | ~BitArray() |
| 211 | { |
| 212 | m_pAllocator->Free( m_pData ); |
| 213 | } |
| 214 | #endif |
| 215 | |
| 216 | static void* operator new(size_t size, IAllocator* allocator) |
| 217 | { |
| 218 | return allocator->Alloc(size); |
| 219 | } |
| 220 | |
| 221 | private: |
| 222 | ChunkType * m_pData; |
| 223 | ChunkType * m_pEndData; |
| 224 | #ifdef MUST_CALL_IALLOCATOR_FREE |
| 225 | IAllocator* m_pJitAllocator; |
| 226 | #endif |
| 227 | }; |
| 228 | |
| 229 | |
| 230 | class BitArrayIterator |
| 231 | { |
| 232 | public: |
| 233 | BitArrayIterator(BitArray* bitArray) |
| 234 | { |
| 235 | m_pCurData = (unsigned *)bitArray->m_pData; |
| 236 | m_pEndData = (unsigned *)bitArray->m_pEndData; |
| 237 | m_curBits = *m_pCurData; |
| 238 | m_curBit = 0; |
| 239 | m_curBase = 0; |
| 240 | GetNext(); |
| 241 | } |
| 242 | void operator++(int dummy) //int dummy is c++ for "this is postfix ++" |
| 243 | { |
| 244 | GetNext(); |
| 245 | } |
| 246 | |
| 247 | void operator++() // prefix ++ |
| 248 | { |
| 249 | GetNext(); |
| 250 | } |
| 251 | void GetNext() |
| 252 | { |
| 253 | m_curBits -= m_curBit; |
| 254 | while (m_curBits == 0) |
| 255 | { |
| 256 | m_pCurData++; |
| 257 | m_curBase += 32; |
| 258 | if (m_pCurData == m_pEndData) |
| 259 | break; |
| 260 | m_curBits = *m_pCurData; |
| 261 | } |
| 262 | m_curBit = (unsigned)((int)m_curBits & -(int)m_curBits); |
| 263 | } |
| 264 | unsigned operator*() |
| 265 | { |
| 266 | assert(!end() && (m_curBit != 0)); |
| 267 | unsigned bitPosition = BitPosition(m_curBit); |
| 268 | return bitPosition + m_curBase; |
| 269 | } |
| 270 | bool end() |
| 271 | { |
| 272 | return (m_pCurData == m_pEndData); |
| 273 | } |
| 274 | private: |
| 275 | unsigned* m_pCurData; |
| 276 | unsigned* m_pEndData; |
| 277 | unsigned m_curBits; |
| 278 | unsigned m_curBit; |
| 279 | unsigned m_curBase; |
| 280 | }; |
| 281 | |
| 282 | class LiveStateFuncs |
| 283 | { |
| 284 | public: |
| 285 | static int GetHashCode(const BitArray * key) |
| 286 | { |
| 287 | return key->GetHashCode(); |
| 288 | } |
| 289 | |
| 290 | static bool Equals(const BitArray * k1, const BitArray * k2) |
| 291 | { |
| 292 | return *k1 == *k2; |
| 293 | } |
| 294 | }; |
| 295 | |
| 296 | class GcInfoNoMemoryException |
| 297 | { |
| 298 | }; |
| 299 | |
| 300 | class GcInfoHashBehavior |
| 301 | { |
| 302 | public: |
| 303 | static const unsigned s_growth_factor_numerator = 3; |
| 304 | static const unsigned s_growth_factor_denominator = 2; |
| 305 | |
| 306 | static const unsigned s_density_factor_numerator = 3; |
| 307 | static const unsigned s_density_factor_denominator = 4; |
| 308 | |
| 309 | static const unsigned s_minimum_allocation = 7; |
| 310 | |
| 311 | inline static void DECLSPEC_NORETURN NoMemory() |
| 312 | { |
| 313 | throw GcInfoNoMemoryException(); |
| 314 | } |
| 315 | }; |
| 316 | |
| 317 | typedef SimplerHashTable<const BitArray *, LiveStateFuncs, UINT32, GcInfoHashBehavior> LiveStateHashTable; |
| 318 | |
| 319 | #ifdef MEASURE_GCINFO |
| 320 | // Fi = fully-interruptible; we count any method that has one or more interruptible ranges |
| 321 | // Pi = partially-interruptible; methods with zero fully-interruptible ranges |
| 322 | GcInfoSize g_FiGcInfoSize; |
| 323 | GcInfoSize g_PiGcInfoSize; |
| 324 | // Number of methods with GcInfo that have SlimHeader |
| 325 | size_t = 0; |
| 326 | // Number of methods with GcInfo that have FatHeader |
| 327 | size_t = 0; |
| 328 | |
| 329 | GcInfoSize::GcInfoSize() |
| 330 | { |
| 331 | memset(this, 0, sizeof(*this)); |
| 332 | } |
| 333 | |
| 334 | GcInfoSize& GcInfoSize::operator+=(const GcInfoSize& other) |
| 335 | { |
| 336 | TotalSize += other.TotalSize; |
| 337 | |
| 338 | NumMethods += other.NumMethods; |
| 339 | NumCallSites += other.NumCallSites; |
| 340 | NumRanges += other.NumRanges; |
| 341 | NumRegs += other.NumRegs; |
| 342 | NumStack += other.NumStack; |
| 343 | NumUntracked += other.NumUntracked; |
| 344 | NumTransitions += other.NumTransitions; |
| 345 | SizeOfCode += other.SizeOfCode; |
| 346 | EncPreservedSlots += other.EncPreservedSlots; |
| 347 | |
| 348 | UntrackedSlotSize += other.UntrackedSlotSize; |
| 349 | NumUntrackedSize += other.NumUntrackedSize; |
| 350 | FlagsSize += other.FlagsSize; |
| 351 | CodeLengthSize += other.CodeLengthSize; |
| 352 | ProEpilogSize += other.ProEpilogSize; |
| 353 | SecObjSize += other.SecObjSize; |
| 354 | GsCookieSize += other.GsCookieSize; |
| 355 | GenericsCtxSize += other.GenericsCtxSize; |
| 356 | PspSymSize += other.PspSymSize; |
| 357 | StackBaseSize += other.StackBaseSize; |
| 358 | ReversePInvokeFrameSize += other.ReversePInvokeFrameSize; |
| 359 | FixedAreaSize += other.FixedAreaSize; |
| 360 | NumCallSitesSize += other.NumCallSitesSize; |
| 361 | NumRangesSize += other.NumRangesSize; |
| 362 | CallSitePosSize += other.CallSitePosSize; |
| 363 | RangeSize += other.RangeSize; |
| 364 | NumRegsSize += other.NumRegsSize; |
| 365 | NumStackSize += other.NumStackSize; |
| 366 | RegSlotSize += other.RegSlotSize; |
| 367 | StackSlotSize += other.StackSlotSize; |
| 368 | CallSiteStateSize += other.CallSiteStateSize; |
| 369 | EhPosSize += other.EhPosSize; |
| 370 | EhStateSize += other.EhStateSize; |
| 371 | ChunkPtrSize += other.ChunkPtrSize; |
| 372 | ChunkMaskSize += other.ChunkMaskSize; |
| 373 | ChunkFinalStateSize += other.ChunkFinalStateSize; |
| 374 | ChunkTransitionSize += other.ChunkTransitionSize; |
| 375 | |
| 376 | return *this; |
| 377 | } |
| 378 | |
| 379 | void GcInfoSize::Log(DWORD level, const char * ) |
| 380 | { |
| 381 | if(LoggingOn(LF_GCINFO, level)) |
| 382 | { |
| 383 | LogSpew(LF_GCINFO, level, header); |
| 384 | |
| 385 | LogSpew(LF_GCINFO, level, "---COUNTS---\n" ); |
| 386 | LogSpew(LF_GCINFO, level, "NumMethods: %Iu\n" , NumMethods); |
| 387 | LogSpew(LF_GCINFO, level, "NumCallSites: %Iu\n" , NumCallSites); |
| 388 | LogSpew(LF_GCINFO, level, "NumRanges: %Iu\n" , NumRanges); |
| 389 | LogSpew(LF_GCINFO, level, "NumRegs: %Iu\n" , NumRegs); |
| 390 | LogSpew(LF_GCINFO, level, "NumStack: %Iu\n" , NumStack); |
| 391 | LogSpew(LF_GCINFO, level, "NumUntracked: %Iu\n" , NumUntracked); |
| 392 | LogSpew(LF_GCINFO, level, "NumTransitions: %Iu\n" , NumTransitions); |
| 393 | LogSpew(LF_GCINFO, level, "SizeOfCode: %Iu\n" , SizeOfCode); |
| 394 | LogSpew(LF_GCINFO, level, "EncPreservedSlots: %Iu\n" , EncPreservedSlots); |
| 395 | |
| 396 | LogSpew(LF_GCINFO, level, "---SIZES(bits)---\n" ); |
| 397 | LogSpew(LF_GCINFO, level, "Total: %Iu\n" , TotalSize); |
| 398 | LogSpew(LF_GCINFO, level, "UntrackedSlot: %Iu\n" , UntrackedSlotSize); |
| 399 | LogSpew(LF_GCINFO, level, "NumUntracked: %Iu\n" , NumUntrackedSize); |
| 400 | LogSpew(LF_GCINFO, level, "Flags: %Iu\n" , FlagsSize); |
| 401 | LogSpew(LF_GCINFO, level, "CodeLength: %Iu\n" , CodeLengthSize); |
| 402 | LogSpew(LF_GCINFO, level, "Prolog/Epilog: %Iu\n" , ProEpilogSize); |
| 403 | LogSpew(LF_GCINFO, level, "SecObj: %Iu\n" , SecObjSize); |
| 404 | LogSpew(LF_GCINFO, level, "GsCookie: %Iu\n" , GsCookieSize); |
| 405 | LogSpew(LF_GCINFO, level, "PspSym: %Iu\n" , PspSymSize); |
| 406 | LogSpew(LF_GCINFO, level, "GenericsCtx: %Iu\n" , GenericsCtxSize); |
| 407 | LogSpew(LF_GCINFO, level, "StackBase: %Iu\n" , StackBaseSize); |
| 408 | LogSpew(LF_GCINFO, level, "FixedArea: %Iu\n" , FixedAreaSize); |
| 409 | LogSpew(LF_GCINFO, level, "ReversePInvokeFrame: %Iu\n" , ReversePInvokeFrameSize); |
| 410 | LogSpew(LF_GCINFO, level, "NumCallSites: %Iu\n" , NumCallSitesSize); |
| 411 | LogSpew(LF_GCINFO, level, "NumRanges: %Iu\n" , NumRangesSize); |
| 412 | LogSpew(LF_GCINFO, level, "CallSiteOffsets: %Iu\n" , CallSitePosSize); |
| 413 | LogSpew(LF_GCINFO, level, "Ranges: %Iu\n" , RangeSize); |
| 414 | LogSpew(LF_GCINFO, level, "NumRegs: %Iu\n" , NumRegsSize); |
| 415 | LogSpew(LF_GCINFO, level, "NumStack: %Iu\n" , NumStackSize); |
| 416 | LogSpew(LF_GCINFO, level, "RegSlots: %Iu\n" , RegSlotSize); |
| 417 | LogSpew(LF_GCINFO, level, "StackSlots: %Iu\n" , StackSlotSize); |
| 418 | LogSpew(LF_GCINFO, level, "CallSiteStates: %Iu\n" , CallSiteStateSize); |
| 419 | LogSpew(LF_GCINFO, level, "EhOffsets: %Iu\n" , EhPosSize); |
| 420 | LogSpew(LF_GCINFO, level, "EhStates: %Iu\n" , EhStateSize); |
| 421 | LogSpew(LF_GCINFO, level, "ChunkPointers: %Iu\n" , ChunkPtrSize); |
| 422 | LogSpew(LF_GCINFO, level, "ChunkMasks: %Iu\n" , ChunkMaskSize); |
| 423 | LogSpew(LF_GCINFO, level, "ChunkFinalStates: %Iu\n" , ChunkFinalStateSize); |
| 424 | LogSpew(LF_GCINFO, level, "Transitions: %Iu\n" , ChunkTransitionSize); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | #endif |
| 429 | |
| 430 | GcInfoEncoder::GcInfoEncoder( |
| 431 | ICorJitInfo* pCorJitInfo, |
| 432 | CORINFO_METHOD_INFO* pMethodInfo, |
| 433 | IAllocator* pJitAllocator, |
| 434 | NoMemoryFunction pNoMem |
| 435 | ) |
| 436 | : m_Info1( pJitAllocator ), |
| 437 | m_Info2( pJitAllocator ), |
| 438 | m_InterruptibleRanges( pJitAllocator ), |
| 439 | m_LifetimeTransitions( pJitAllocator ) |
| 440 | { |
| 441 | #ifdef MEASURE_GCINFO |
| 442 | // This causes multiple complus.log files in JIT64. TODO: consider using ICorJitInfo::logMsg instead. |
| 443 | InitializeLogging(); |
| 444 | #endif |
| 445 | |
| 446 | _ASSERTE( pCorJitInfo != NULL ); |
| 447 | _ASSERTE( pMethodInfo != NULL ); |
| 448 | _ASSERTE( pJitAllocator != NULL ); |
| 449 | _ASSERTE( pNoMem != NULL ); |
| 450 | |
| 451 | m_pCorJitInfo = pCorJitInfo; |
| 452 | m_pMethodInfo = pMethodInfo; |
| 453 | m_pAllocator = pJitAllocator; |
| 454 | m_pNoMem = pNoMem; |
| 455 | |
| 456 | #ifdef _DEBUG |
| 457 | CORINFO_METHOD_HANDLE methodHandle = pMethodInfo->ftn; |
| 458 | |
| 459 | // Get the name of the current method along with the enclosing class |
| 460 | // or module name. |
| 461 | m_MethodName = |
| 462 | pCorJitInfo->getMethodName(methodHandle, (const char **)&m_ModuleName); |
| 463 | #endif |
| 464 | |
| 465 | |
| 466 | m_SlotTableSize = m_SlotTableInitialSize; |
| 467 | m_SlotTable = (GcSlotDesc*) m_pAllocator->Alloc( m_SlotTableSize*sizeof(GcSlotDesc) ); |
| 468 | m_NumSlots = 0; |
| 469 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 470 | m_pCallSites = NULL; |
| 471 | m_pCallSiteSizes = NULL; |
| 472 | m_NumCallSites = 0; |
| 473 | #endif |
| 474 | |
| 475 | m_SecurityObjectStackSlot = NO_SECURITY_OBJECT; |
| 476 | m_GSCookieStackSlot = NO_GS_COOKIE; |
| 477 | m_GSCookieValidRangeStart = 0; |
| 478 | _ASSERTE(sizeof(m_GSCookieValidRangeEnd) == sizeof(UINT32)); |
| 479 | m_GSCookieValidRangeEnd = (UINT32) (-1); // == UINT32.MaxValue |
| 480 | m_PSPSymStackSlot = NO_PSP_SYM; |
| 481 | m_GenericsInstContextStackSlot = NO_GENERICS_INST_CONTEXT; |
| 482 | m_contextParamType = GENERIC_CONTEXTPARAM_NONE; |
| 483 | |
| 484 | m_StackBaseRegister = NO_STACK_BASE_REGISTER; |
| 485 | m_SizeOfEditAndContinuePreservedArea = NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA; |
| 486 | m_ReversePInvokeFrameSlot = NO_REVERSE_PINVOKE_FRAME; |
| 487 | #ifdef _TARGET_AMD64_ |
| 488 | m_WantsReportOnlyLeaf = false; |
| 489 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 490 | m_HasTailCalls = false; |
| 491 | #endif // _TARGET_AMD64_ |
| 492 | m_IsVarArg = false; |
| 493 | m_pLastInterruptibleRange = NULL; |
| 494 | |
| 495 | #ifdef _DEBUG |
| 496 | m_IsSlotTableFrozen = FALSE; |
| 497 | #endif //_DEBUG |
| 498 | |
| 499 | #ifndef _TARGET_X86_ |
| 500 | // If the compiler doesn't set the GCInfo, report RT_Unset. |
| 501 | // This is used for compatibility with JITs that aren't updated to use the new API. |
| 502 | m_ReturnKind = RT_Unset; |
| 503 | #else |
| 504 | m_ReturnKind = RT_Illegal; |
| 505 | #endif // _TARGET_X86_ |
| 506 | m_CodeLength = 0; |
| 507 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 508 | m_SizeOfStackOutgoingAndScratchArea = -1; |
| 509 | #endif // FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 510 | |
| 511 | } |
| 512 | |
| 513 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 514 | void GcInfoEncoder::DefineCallSites(UINT32* pCallSites, BYTE* pCallSiteSizes, UINT32 numCallSites) |
| 515 | { |
| 516 | m_pCallSites = pCallSites; |
| 517 | m_pCallSiteSizes = pCallSiteSizes; |
| 518 | m_NumCallSites = numCallSites; |
| 519 | #ifdef _DEBUG |
| 520 | for(UINT32 i=0; i<numCallSites; i++) |
| 521 | { |
| 522 | _ASSERTE(pCallSiteSizes[i] > 0); |
| 523 | _ASSERTE(DENORMALIZE_CODE_OFFSET(NORMALIZE_CODE_OFFSET(pCallSites[i])) == pCallSites[i]); |
| 524 | if(i > 0) |
| 525 | { |
| 526 | UINT32 prevEnd = pCallSites[i-1] + pCallSiteSizes[i-1]; |
| 527 | UINT32 curStart = pCallSites[i]; |
| 528 | _ASSERTE(curStart >= prevEnd); |
| 529 | } |
| 530 | } |
| 531 | #endif |
| 532 | } |
| 533 | #endif |
| 534 | |
| 535 | GcSlotId GcInfoEncoder::GetRegisterSlotId( UINT32 regNum, GcSlotFlags flags ) |
| 536 | { |
| 537 | // We could lookup an existing identical slot in the slot table (via some hashtable mechanism). |
| 538 | // We just create duplicates for now. |
| 539 | |
| 540 | #ifdef _DEBUG |
| 541 | _ASSERTE( !m_IsSlotTableFrozen ); |
| 542 | #endif |
| 543 | |
| 544 | if( m_NumSlots == m_SlotTableSize ) |
| 545 | { |
| 546 | GrowSlotTable(); |
| 547 | } |
| 548 | _ASSERTE( m_NumSlots < m_SlotTableSize ); |
| 549 | |
| 550 | _ASSERTE( (flags & (GC_SLOT_IS_REGISTER | GC_SLOT_IS_DELETED | GC_SLOT_UNTRACKED)) == 0 ); |
| 551 | m_SlotTable[ m_NumSlots ].Slot.RegisterNumber = regNum; |
| 552 | m_SlotTable[ m_NumSlots ].Flags = (GcSlotFlags) (flags | GC_SLOT_IS_REGISTER); |
| 553 | |
| 554 | GcSlotId newSlotId; |
| 555 | newSlotId = m_NumSlots++; |
| 556 | |
| 557 | return newSlotId; |
| 558 | } |
| 559 | |
| 560 | GcSlotId GcInfoEncoder::GetStackSlotId( INT32 spOffset, GcSlotFlags flags, GcStackSlotBase spBase ) |
| 561 | { |
| 562 | // We could lookup an existing identical slot in the slot table (via some hashtable mechanism). |
| 563 | // We just create duplicates for now. |
| 564 | |
| 565 | #ifdef _DEBUG |
| 566 | _ASSERTE( !m_IsSlotTableFrozen ); |
| 567 | #endif |
| 568 | |
| 569 | if( m_NumSlots == m_SlotTableSize ) |
| 570 | { |
| 571 | GrowSlotTable(); |
| 572 | } |
| 573 | _ASSERTE( m_NumSlots < m_SlotTableSize ); |
| 574 | |
| 575 | // Not valid to reference anything below the current stack pointer |
| 576 | _ASSERTE(GC_SP_REL != spBase || spOffset >= 0); |
| 577 | |
| 578 | _ASSERTE( (flags & (GC_SLOT_IS_REGISTER | GC_SLOT_IS_DELETED)) == 0 ); |
| 579 | |
| 580 | // the spOffset for the stack slot is required to be pointer size aligned |
| 581 | _ASSERTE((spOffset % TARGET_POINTER_SIZE) == 0); |
| 582 | |
| 583 | m_SlotTable[ m_NumSlots ].Slot.Stack.SpOffset = spOffset; |
| 584 | m_SlotTable[ m_NumSlots ].Slot.Stack.Base = spBase; |
| 585 | m_SlotTable[ m_NumSlots ].Flags = flags; |
| 586 | |
| 587 | GcSlotId newSlotId; |
| 588 | newSlotId = m_NumSlots++; |
| 589 | |
| 590 | return newSlotId; |
| 591 | } |
| 592 | |
| 593 | void GcInfoEncoder::GrowSlotTable() |
| 594 | { |
| 595 | m_SlotTableSize *= 2; |
| 596 | GcSlotDesc* newSlotTable = (GcSlotDesc*) m_pAllocator->Alloc( m_SlotTableSize * sizeof(GcSlotDesc) ); |
| 597 | memcpy( newSlotTable, m_SlotTable, m_NumSlots * sizeof(GcSlotDesc) ); |
| 598 | |
| 599 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
| 600 | m_pAllocator->Free( m_SlotTable ); |
| 601 | #endif |
| 602 | |
| 603 | m_SlotTable = newSlotTable; |
| 604 | } |
| 605 | |
| 606 | void GcInfoEncoder::WriteSlotStateVector(BitStreamWriter &writer, const BitArray& vector) |
| 607 | { |
| 608 | for(UINT32 i = 0; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
| 609 | { |
| 610 | if(!m_SlotTable[i].IsDeleted()) |
| 611 | writer.Write(vector.ReadBit(i) ? 1 : 0, 1); |
| 612 | else |
| 613 | _ASSERTE(vector.ReadBit(i) == 0); |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | void GcInfoEncoder::DefineInterruptibleRange( UINT32 startInstructionOffset, UINT32 length ) |
| 618 | { |
| 619 | UINT32 stopInstructionOffset = startInstructionOffset + length; |
| 620 | |
| 621 | UINT32 normStartOffset = NORMALIZE_CODE_OFFSET(startInstructionOffset); |
| 622 | UINT32 normStopOffset = NORMALIZE_CODE_OFFSET(stopInstructionOffset); |
| 623 | |
| 624 | // Ranges must not overlap and must be passed sorted by increasing offset |
| 625 | _ASSERTE( |
| 626 | m_pLastInterruptibleRange == NULL || |
| 627 | normStartOffset >= m_pLastInterruptibleRange->NormStopOffset |
| 628 | ); |
| 629 | |
| 630 | // Ignore empty ranges |
| 631 | if(normStopOffset > normStartOffset) |
| 632 | { |
| 633 | if(m_pLastInterruptibleRange |
| 634 | && normStartOffset == m_pLastInterruptibleRange->NormStopOffset) |
| 635 | { |
| 636 | // Merge adjacent ranges |
| 637 | m_pLastInterruptibleRange->NormStopOffset = normStopOffset; |
| 638 | } |
| 639 | else |
| 640 | { |
| 641 | InterruptibleRange range; |
| 642 | range.NormStartOffset = normStartOffset; |
| 643 | range.NormStopOffset = normStopOffset; |
| 644 | m_pLastInterruptibleRange = m_InterruptibleRanges.Append(); |
| 645 | *m_pLastInterruptibleRange = range; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | LOG((LF_GCINFO, LL_INFO1000000, "interruptible at %x length %x\n" , startInstructionOffset, length)); |
| 650 | } |
| 651 | |
| 652 | |
| 653 | |
| 654 | // |
| 655 | // For inputs, pass zero as offset |
| 656 | // |
| 657 | void GcInfoEncoder::SetSlotState( |
| 658 | UINT32 instructionOffset, |
| 659 | GcSlotId slotId, |
| 660 | GcSlotState slotState |
| 661 | ) |
| 662 | { |
| 663 | _ASSERTE( (m_SlotTable[ slotId ].Flags & GC_SLOT_UNTRACKED) == 0 ); |
| 664 | |
| 665 | LifetimeTransition transition; |
| 666 | |
| 667 | transition.SlotId = slotId; |
| 668 | transition.CodeOffset = instructionOffset; |
| 669 | transition.BecomesLive = ( slotState == GC_SLOT_LIVE ); |
| 670 | transition.IsDeleted = FALSE; |
| 671 | |
| 672 | *( m_LifetimeTransitions.Append() ) = transition; |
| 673 | |
| 674 | LOG((LF_GCINFO, LL_INFO1000000, LOG_GCSLOTDESC_FMT " %s at %x\n" , LOG_GCSLOTDESC_ARGS(&m_SlotTable[slotId]), slotState == GC_SLOT_LIVE ? "live" : "dead" , instructionOffset)); |
| 675 | } |
| 676 | |
| 677 | |
| 678 | void GcInfoEncoder::SetIsVarArg() |
| 679 | { |
| 680 | m_IsVarArg = true; |
| 681 | } |
| 682 | |
| 683 | void GcInfoEncoder::SetCodeLength( UINT32 length ) |
| 684 | { |
| 685 | _ASSERTE( length > 0 ); |
| 686 | _ASSERTE( m_CodeLength == 0 || m_CodeLength == length ); |
| 687 | m_CodeLength = length; |
| 688 | } |
| 689 | |
| 690 | |
| 691 | void GcInfoEncoder::SetSecurityObjectStackSlot( INT32 spOffset ) |
| 692 | { |
| 693 | _ASSERTE( spOffset != NO_SECURITY_OBJECT ); |
| 694 | #if defined(_TARGET_AMD64_) |
| 695 | _ASSERTE( spOffset < 0x10 && "The security object cannot reside in an input variable!" ); |
| 696 | #endif |
| 697 | _ASSERTE( m_SecurityObjectStackSlot == NO_SECURITY_OBJECT || m_SecurityObjectStackSlot == spOffset ); |
| 698 | |
| 699 | m_SecurityObjectStackSlot = spOffset; |
| 700 | } |
| 701 | |
| 702 | void GcInfoEncoder::SetPrologSize( UINT32 prologSize ) |
| 703 | { |
| 704 | _ASSERTE(prologSize != 0); |
| 705 | _ASSERTE(m_GSCookieValidRangeStart == 0 || m_GSCookieValidRangeStart == prologSize); |
| 706 | _ASSERTE(m_GSCookieValidRangeEnd == (UINT32)(-1) || m_GSCookieValidRangeEnd == prologSize+1); |
| 707 | |
| 708 | m_GSCookieValidRangeStart = prologSize; |
| 709 | // satisfy asserts that assume m_GSCookieValidRangeStart != 0 ==> m_GSCookieValidRangeStart < m_GSCookieValidRangeEnd |
| 710 | m_GSCookieValidRangeEnd = prologSize+1; |
| 711 | } |
| 712 | |
| 713 | void GcInfoEncoder::SetGSCookieStackSlot( INT32 spOffsetGSCookie, UINT32 validRangeStart, UINT32 validRangeEnd ) |
| 714 | { |
| 715 | _ASSERTE( spOffsetGSCookie != NO_GS_COOKIE ); |
| 716 | _ASSERTE( m_GSCookieStackSlot == NO_GS_COOKIE || m_GSCookieStackSlot == spOffsetGSCookie ); |
| 717 | _ASSERTE( validRangeStart < validRangeEnd ); |
| 718 | |
| 719 | m_GSCookieStackSlot = spOffsetGSCookie; |
| 720 | m_GSCookieValidRangeStart = validRangeStart; |
| 721 | m_GSCookieValidRangeEnd = validRangeEnd; |
| 722 | } |
| 723 | |
| 724 | void GcInfoEncoder::SetPSPSymStackSlot( INT32 spOffsetPSPSym ) |
| 725 | { |
| 726 | _ASSERTE( spOffsetPSPSym != NO_PSP_SYM ); |
| 727 | _ASSERTE( m_PSPSymStackSlot == NO_PSP_SYM || m_PSPSymStackSlot == spOffsetPSPSym ); |
| 728 | |
| 729 | m_PSPSymStackSlot = spOffsetPSPSym; |
| 730 | } |
| 731 | |
| 732 | void GcInfoEncoder::SetGenericsInstContextStackSlot( INT32 spOffsetGenericsContext, GENERIC_CONTEXTPARAM_TYPE type) |
| 733 | { |
| 734 | _ASSERTE( spOffsetGenericsContext != NO_GENERICS_INST_CONTEXT); |
| 735 | _ASSERTE( m_GenericsInstContextStackSlot == NO_GENERICS_INST_CONTEXT || m_GenericsInstContextStackSlot == spOffsetGenericsContext ); |
| 736 | |
| 737 | m_GenericsInstContextStackSlot = spOffsetGenericsContext; |
| 738 | m_contextParamType = type; |
| 739 | } |
| 740 | |
| 741 | void GcInfoEncoder::SetStackBaseRegister( UINT32 regNum ) |
| 742 | { |
| 743 | _ASSERTE( regNum != NO_STACK_BASE_REGISTER ); |
| 744 | _ASSERTE(DENORMALIZE_STACK_BASE_REGISTER(NORMALIZE_STACK_BASE_REGISTER(regNum)) == regNum); |
| 745 | _ASSERTE( m_StackBaseRegister == NO_STACK_BASE_REGISTER || m_StackBaseRegister == regNum ); |
| 746 | m_StackBaseRegister = regNum; |
| 747 | } |
| 748 | |
| 749 | void GcInfoEncoder::SetSizeOfEditAndContinuePreservedArea( UINT32 slots ) |
| 750 | { |
| 751 | _ASSERTE( slots != NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA ); |
| 752 | _ASSERTE( m_SizeOfEditAndContinuePreservedArea == NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA ); |
| 753 | m_SizeOfEditAndContinuePreservedArea = slots; |
| 754 | } |
| 755 | |
| 756 | #ifdef _TARGET_AMD64_ |
| 757 | void GcInfoEncoder::SetWantsReportOnlyLeaf() |
| 758 | { |
| 759 | m_WantsReportOnlyLeaf = true; |
| 760 | } |
| 761 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 762 | void GcInfoEncoder::SetHasTailCalls() |
| 763 | { |
| 764 | m_HasTailCalls = true; |
| 765 | } |
| 766 | #endif // _TARGET_AMD64_ |
| 767 | |
| 768 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 769 | void GcInfoEncoder::SetSizeOfStackOutgoingAndScratchArea( UINT32 size ) |
| 770 | { |
| 771 | _ASSERTE( size != (UINT32)-1 ); |
| 772 | _ASSERTE( m_SizeOfStackOutgoingAndScratchArea == (UINT32)-1 || m_SizeOfStackOutgoingAndScratchArea == size ); |
| 773 | m_SizeOfStackOutgoingAndScratchArea = size; |
| 774 | } |
| 775 | #endif // FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 776 | |
| 777 | void GcInfoEncoder::SetReversePInvokeFrameSlot(INT32 spOffset) |
| 778 | { |
| 779 | m_ReversePInvokeFrameSlot = spOffset; |
| 780 | } |
| 781 | |
| 782 | void GcInfoEncoder::SetReturnKind(ReturnKind returnKind) |
| 783 | { |
| 784 | _ASSERTE(IsValidReturnKind(returnKind)); |
| 785 | |
| 786 | m_ReturnKind = returnKind; |
| 787 | } |
| 788 | |
| 789 | struct GcSlotDescAndId |
| 790 | { |
| 791 | GcSlotDesc m_SlotDesc; |
| 792 | UINT32 m_SlotId; |
| 793 | }; |
| 794 | |
| 795 | int __cdecl CompareSlotDescAndIdBySlotDesc(const void* p1, const void* p2) |
| 796 | { |
| 797 | const GcSlotDesc* pFirst = &reinterpret_cast<const GcSlotDescAndId*>(p1)->m_SlotDesc; |
| 798 | const GcSlotDesc* pSecond = &reinterpret_cast<const GcSlotDescAndId*>(p2)->m_SlotDesc; |
| 799 | |
| 800 | int firstFlags = pFirst->Flags ^ GC_SLOT_UNTRACKED; |
| 801 | int secondFlags = pSecond->Flags ^ GC_SLOT_UNTRACKED; |
| 802 | |
| 803 | // All registers come before all stack slots |
| 804 | // All untracked come last |
| 805 | // Then sort them by flags, ensuring that the least-frequent interior/pinned flag combinations are first |
| 806 | // This is accomplished in the comparison of flags, since we encode IsRegister in the highest flag bit |
| 807 | // And we XOR the UNTRACKED flag to place them last in the second highest flag bit |
| 808 | if( firstFlags > secondFlags ) return -1; |
| 809 | if( firstFlags < secondFlags ) return 1; |
| 810 | |
| 811 | // Then sort them by slot |
| 812 | if( pFirst->IsRegister() ) |
| 813 | { |
| 814 | _ASSERTE( pSecond->IsRegister() ); |
| 815 | if( pFirst->Slot.RegisterNumber < pSecond->Slot.RegisterNumber ) return -1; |
| 816 | if( pFirst->Slot.RegisterNumber > pSecond->Slot.RegisterNumber ) return 1; |
| 817 | } |
| 818 | else |
| 819 | { |
| 820 | _ASSERTE( !pSecond->IsRegister() ); |
| 821 | if( pFirst->Slot.Stack.SpOffset < pSecond->Slot.Stack.SpOffset ) return -1; |
| 822 | if( pFirst->Slot.Stack.SpOffset > pSecond->Slot.Stack.SpOffset ) return 1; |
| 823 | |
| 824 | // This is arbitrary, but we want to make sure they are considered separate slots |
| 825 | if( pFirst->Slot.Stack.Base < pSecond->Slot.Stack.Base ) return -1; |
| 826 | if( pFirst->Slot.Stack.Base > pSecond->Slot.Stack.Base ) return 1; |
| 827 | } |
| 828 | |
| 829 | // If we get here, the slots are identical |
| 830 | _ASSERTE(!"Duplicate slots definitions found in GC information!" ); |
| 831 | return 0; |
| 832 | } |
| 833 | |
| 834 | |
| 835 | int __cdecl CompareLifetimeTransitionsByOffsetThenSlot(const void* p1, const void* p2) |
| 836 | { |
| 837 | const GcInfoEncoder::LifetimeTransition* pFirst = (const GcInfoEncoder::LifetimeTransition*) p1; |
| 838 | const GcInfoEncoder::LifetimeTransition* pSecond = (const GcInfoEncoder::LifetimeTransition*) p2; |
| 839 | |
| 840 | UINT32 firstOffset = pFirst->CodeOffset; |
| 841 | UINT32 secondOffset = pSecond->CodeOffset; |
| 842 | |
| 843 | if (firstOffset == secondOffset) |
| 844 | { |
| 845 | return pFirst->SlotId - pSecond->SlotId; |
| 846 | } |
| 847 | else |
| 848 | { |
| 849 | return firstOffset - secondOffset; |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | |
| 854 | int __cdecl CompareLifetimeTransitionsBySlot(const void* p1, const void* p2) |
| 855 | { |
| 856 | const GcInfoEncoder::LifetimeTransition* pFirst = (const GcInfoEncoder::LifetimeTransition*) p1; |
| 857 | const GcInfoEncoder::LifetimeTransition* pSecond = (const GcInfoEncoder::LifetimeTransition*) p2; |
| 858 | |
| 859 | UINT32 firstOffset = pFirst->CodeOffset; |
| 860 | UINT32 secondOffset = pSecond->CodeOffset; |
| 861 | |
| 862 | _ASSERTE(GetNormCodeOffsetChunk(firstOffset) == GetNormCodeOffsetChunk(secondOffset)); |
| 863 | |
| 864 | // Sort them by slot |
| 865 | if( pFirst->SlotId < pSecond->SlotId ) return -1; |
| 866 | if( pFirst->SlotId > pSecond->SlotId ) return 1; |
| 867 | |
| 868 | // Then sort them by code offset |
| 869 | if( firstOffset < secondOffset ) |
| 870 | return -1; |
| 871 | else |
| 872 | { |
| 873 | _ASSERTE(( firstOffset > secondOffset ) && "Redundant transitions found in GC info!" ); |
| 874 | return 1; |
| 875 | } |
| 876 | } |
| 877 | |
| 878 | BitStreamWriter::MemoryBlockList::MemoryBlockList() |
| 879 | : m_head(nullptr), |
| 880 | m_tail(nullptr) |
| 881 | { |
| 882 | } |
| 883 | |
| 884 | BitStreamWriter::MemoryBlock* BitStreamWriter::MemoryBlockList::AppendNew(IAllocator* allocator, size_t bytes) |
| 885 | { |
| 886 | auto* memBlock = reinterpret_cast<MemoryBlock*>(allocator->Alloc(sizeof(MemoryBlock) + bytes)); |
| 887 | memBlock->m_next = nullptr; |
| 888 | |
| 889 | if (m_tail != nullptr) |
| 890 | { |
| 891 | _ASSERTE(m_head != nullptr); |
| 892 | m_tail->m_next = memBlock; |
| 893 | } |
| 894 | else |
| 895 | { |
| 896 | _ASSERTE(m_head == nullptr); |
| 897 | m_head = memBlock; |
| 898 | } |
| 899 | |
| 900 | m_tail = memBlock; |
| 901 | return memBlock; |
| 902 | } |
| 903 | |
| 904 | void BitStreamWriter::MemoryBlockList::Dispose(IAllocator* allocator) |
| 905 | { |
| 906 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
| 907 | for (MemoryBlock* block = m_head, *next; block != nullptr; block = next) |
| 908 | { |
| 909 | next = block->m_next; |
| 910 | allocator->Free(block); |
| 911 | } |
| 912 | m_head = nullptr; |
| 913 | m_tail = nullptr; |
| 914 | #endif |
| 915 | } |
| 916 | |
| 917 | void GcInfoEncoder::FinalizeSlotIds() |
| 918 | { |
| 919 | #ifdef _DEBUG |
| 920 | m_IsSlotTableFrozen = TRUE; |
| 921 | #endif |
| 922 | } |
| 923 | |
| 924 | bool GcInfoEncoder::IsAlwaysScratch(GcSlotDesc &slotDesc) |
| 925 | { |
| 926 | #if defined(_TARGET_ARM_) |
| 927 | |
| 928 | _ASSERTE( m_SizeOfStackOutgoingAndScratchArea != (UINT32)-1 ); |
| 929 | if(slotDesc.IsRegister()) |
| 930 | { |
| 931 | int regNum = (int) slotDesc.Slot.RegisterNumber; |
| 932 | _ASSERTE(regNum >= 0 && regNum <= 14); |
| 933 | _ASSERTE(regNum != 13); // sp |
| 934 | |
| 935 | return ((regNum <= 3) || (regNum >= 12)); // R12 and R14/LR are both scratch registers |
| 936 | } |
| 937 | else if (!slotDesc.IsUntracked() && (slotDesc.Slot.Stack.Base == GC_SP_REL) && |
| 938 | ((UINT32)slotDesc.Slot.Stack.SpOffset < m_SizeOfStackOutgoingAndScratchArea)) |
| 939 | { |
| 940 | return TRUE; |
| 941 | } |
| 942 | else |
| 943 | return FALSE; |
| 944 | |
| 945 | #elif defined(_TARGET_AMD64_) |
| 946 | |
| 947 | _ASSERTE( m_SizeOfStackOutgoingAndScratchArea != (UINT32)-1 ); |
| 948 | if(slotDesc.IsRegister()) |
| 949 | { |
| 950 | int regNum = (int) slotDesc.Slot.RegisterNumber; |
| 951 | _ASSERTE(regNum >= 0 && regNum <= 16); |
| 952 | _ASSERTE(regNum != 4); // rsp |
| 953 | |
| 954 | UINT16 PreservedRegMask = |
| 955 | (1 << 3) // rbx |
| 956 | | (1 << 5) // rbp |
| 957 | #ifndef UNIX_AMD64_ABI |
| 958 | | (1 << 6) // rsi |
| 959 | | (1 << 7) // rdi |
| 960 | #endif // UNIX_AMD64_ABI |
| 961 | | (1 << 12) // r12 |
| 962 | | (1 << 13) // r13 |
| 963 | | (1 << 14) // r14 |
| 964 | | (1 << 15); // r15 |
| 965 | |
| 966 | return !(PreservedRegMask & (1 << regNum)); |
| 967 | } |
| 968 | else if (!slotDesc.IsUntracked() && (slotDesc.Slot.Stack.Base == GC_SP_REL) && |
| 969 | ((UINT32)slotDesc.Slot.Stack.SpOffset < m_SizeOfStackOutgoingAndScratchArea)) |
| 970 | { |
| 971 | return TRUE; |
| 972 | } |
| 973 | else |
| 974 | return FALSE; |
| 975 | |
| 976 | #else |
| 977 | return FALSE; |
| 978 | #endif |
| 979 | } |
| 980 | |
| 981 | void GcInfoEncoder::Build() |
| 982 | { |
| 983 | #ifdef _DEBUG |
| 984 | _ASSERTE(m_IsSlotTableFrozen || m_NumSlots == 0); |
| 985 | #endif |
| 986 | |
| 987 | _ASSERTE((1 << NUM_NORM_CODE_OFFSETS_PER_CHUNK_LOG2) == NUM_NORM_CODE_OFFSETS_PER_CHUNK); |
| 988 | |
| 989 | LOG((LF_GCINFO, LL_INFO100, |
| 990 | "Entering GcInfoEncoder::Build() for method %s[%s]\n" , |
| 991 | m_MethodName, m_ModuleName |
| 992 | )); |
| 993 | |
| 994 | |
| 995 | /////////////////////////////////////////////////////////////////////// |
| 996 | // Method header |
| 997 | /////////////////////////////////////////////////////////////////////// |
| 998 | |
| 999 | |
| 1000 | UINT32 hasSecurityObject = (m_SecurityObjectStackSlot != NO_SECURITY_OBJECT); |
| 1001 | UINT32 hasGSCookie = (m_GSCookieStackSlot != NO_GS_COOKIE); |
| 1002 | UINT32 hasContextParamType = (m_GenericsInstContextStackSlot != NO_GENERICS_INST_CONTEXT); |
| 1003 | UINT32 hasReversePInvokeFrame = (m_ReversePInvokeFrameSlot != NO_REVERSE_PINVOKE_FRAME); |
| 1004 | |
| 1005 | BOOL = (!m_IsVarArg && !hasSecurityObject && !hasGSCookie && (m_PSPSymStackSlot == NO_PSP_SYM) && |
| 1006 | !hasContextParamType && (m_InterruptibleRanges.Count() == 0) && !hasReversePInvokeFrame && |
| 1007 | ((m_StackBaseRegister == NO_STACK_BASE_REGISTER) || (NORMALIZE_STACK_BASE_REGISTER(m_StackBaseRegister) == 0))) && |
| 1008 | (m_SizeOfEditAndContinuePreservedArea == NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA) && |
| 1009 | #ifdef _TARGET_AMD64_ |
| 1010 | !m_WantsReportOnlyLeaf && |
| 1011 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 1012 | !m_HasTailCalls && |
| 1013 | #endif // _TARGET_AMD64_ |
| 1014 | !IsStructReturnKind(m_ReturnKind); |
| 1015 | |
| 1016 | // All new code is generated for the latest GCINFO_VERSION. |
| 1017 | // So, always encode RetunrKind and encode ReversePInvokeFrameSlot where applicable. |
| 1018 | if (slimHeader) |
| 1019 | { |
| 1020 | // Slim encoding means nothing special, partially interruptible, maybe a default frame register |
| 1021 | GCINFO_WRITE(m_Info1, 0, 1, FlagsSize); // Slim encoding |
| 1022 | GCINFO_WRITE(m_Info1, (m_StackBaseRegister == NO_STACK_BASE_REGISTER) ? 0 : 1, 1, FlagsSize); |
| 1023 | |
| 1024 | GCINFO_WRITE(m_Info1, m_ReturnKind, SIZE_OF_RETURN_KIND_IN_SLIM_HEADER, RetKindSize); |
| 1025 | } |
| 1026 | else |
| 1027 | { |
| 1028 | GCINFO_WRITE(m_Info1, 1, 1, FlagsSize); // Fat encoding |
| 1029 | GCINFO_WRITE(m_Info1, (m_IsVarArg ? 1 : 0), 1, FlagsSize); |
| 1030 | GCINFO_WRITE(m_Info1, (hasSecurityObject ? 1 : 0), 1, FlagsSize); |
| 1031 | GCINFO_WRITE(m_Info1, (hasGSCookie ? 1 : 0), 1, FlagsSize); |
| 1032 | GCINFO_WRITE(m_Info1, ((m_PSPSymStackSlot != NO_PSP_SYM) ? 1 : 0), 1, FlagsSize); |
| 1033 | GCINFO_WRITE(m_Info1, m_contextParamType, 2, FlagsSize); |
| 1034 | GCINFO_WRITE(m_Info1, ((m_StackBaseRegister != NO_STACK_BASE_REGISTER) ? 1 : 0), 1, FlagsSize); |
| 1035 | #ifdef _TARGET_AMD64_ |
| 1036 | GCINFO_WRITE(m_Info1, (m_WantsReportOnlyLeaf ? 1 : 0), 1, FlagsSize); |
| 1037 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 1038 | GCINFO_WRITE(m_Info1, (m_HasTailCalls ? 1 : 0), 1, FlagsSize); |
| 1039 | #endif // _TARGET_AMD64_ |
| 1040 | GCINFO_WRITE(m_Info1, ((m_SizeOfEditAndContinuePreservedArea != NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA) ? 1 : 0), 1, FlagsSize); |
| 1041 | GCINFO_WRITE(m_Info1, (hasReversePInvokeFrame ? 1 : 0), 1, FlagsSize); |
| 1042 | |
| 1043 | GCINFO_WRITE(m_Info1, m_ReturnKind, SIZE_OF_RETURN_KIND_IN_FAT_HEADER, RetKindSize); |
| 1044 | } |
| 1045 | |
| 1046 | _ASSERTE( m_CodeLength > 0 ); |
| 1047 | _ASSERTE(DENORMALIZE_CODE_LENGTH(NORMALIZE_CODE_LENGTH(m_CodeLength)) == m_CodeLength); |
| 1048 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_CODE_LENGTH(m_CodeLength), CODE_LENGTH_ENCBASE, CodeLengthSize); |
| 1049 | |
| 1050 | if(hasGSCookie) |
| 1051 | { |
| 1052 | _ASSERTE(!slimHeader); |
| 1053 | // Save the valid code range, to be used for determining when GS cookie validation |
| 1054 | // should be performed |
| 1055 | // Encode an intersection of valid offsets |
| 1056 | UINT32 intersectionStart = m_GSCookieValidRangeStart; |
| 1057 | UINT32 intersectionEnd = m_GSCookieValidRangeEnd; |
| 1058 | |
| 1059 | _ASSERTE(intersectionStart > 0 && intersectionStart < m_CodeLength); |
| 1060 | _ASSERTE(intersectionEnd > 0 && intersectionEnd <= m_CodeLength); |
| 1061 | _ASSERTE(intersectionStart <= intersectionEnd); |
| 1062 | UINT32 normPrologSize = NORMALIZE_CODE_OFFSET(intersectionStart); |
| 1063 | UINT32 normEpilogSize = NORMALIZE_CODE_OFFSET(m_CodeLength) - NORMALIZE_CODE_OFFSET(intersectionEnd); |
| 1064 | _ASSERTE(normPrologSize > 0 && normPrologSize < m_CodeLength); |
| 1065 | _ASSERTE(normEpilogSize < m_CodeLength); |
| 1066 | |
| 1067 | GCINFO_WRITE_VARL_U(m_Info1, normPrologSize-1, NORM_PROLOG_SIZE_ENCBASE, ProEpilogSize); |
| 1068 | GCINFO_WRITE_VARL_U(m_Info1, normEpilogSize, NORM_EPILOG_SIZE_ENCBASE, ProEpilogSize); |
| 1069 | } |
| 1070 | else if (hasSecurityObject || hasContextParamType) |
| 1071 | { |
| 1072 | _ASSERTE(!slimHeader); |
| 1073 | // Save the prolog size, to be used for determining when it is not safe |
| 1074 | // to report generics param context and the security object |
| 1075 | _ASSERTE(m_GSCookieValidRangeStart > 0 && m_GSCookieValidRangeStart < m_CodeLength); |
| 1076 | UINT32 normPrologSize = NORMALIZE_CODE_OFFSET(m_GSCookieValidRangeStart); |
| 1077 | _ASSERTE(normPrologSize > 0 && normPrologSize < m_CodeLength); |
| 1078 | |
| 1079 | GCINFO_WRITE_VARL_U(m_Info1, normPrologSize-1, NORM_PROLOG_SIZE_ENCBASE, ProEpilogSize); |
| 1080 | } |
| 1081 | |
| 1082 | // Encode the offset to the security object. |
| 1083 | if(hasSecurityObject) |
| 1084 | { |
| 1085 | _ASSERTE(!slimHeader); |
| 1086 | #ifdef _DEBUG |
| 1087 | LOG((LF_GCINFO, LL_INFO1000, "Security object at " FMT_STK "\n" , |
| 1088 | DBG_STK(m_SecurityObjectStackSlot) |
| 1089 | )); |
| 1090 | #endif |
| 1091 | |
| 1092 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_SecurityObjectStackSlot), SECURITY_OBJECT_STACK_SLOT_ENCBASE, SecObjSize); |
| 1093 | } |
| 1094 | |
| 1095 | // Encode the offset to the GS cookie. |
| 1096 | if(hasGSCookie) |
| 1097 | { |
| 1098 | _ASSERTE(!slimHeader); |
| 1099 | #ifdef _DEBUG |
| 1100 | LOG((LF_GCINFO, LL_INFO1000, "GS cookie at " FMT_STK "\n" , |
| 1101 | DBG_STK(m_GSCookieStackSlot) |
| 1102 | )); |
| 1103 | #endif |
| 1104 | |
| 1105 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_GSCookieStackSlot), GS_COOKIE_STACK_SLOT_ENCBASE, GsCookieSize); |
| 1106 | |
| 1107 | } |
| 1108 | |
| 1109 | // Encode the offset to the PSPSym. |
| 1110 | // The PSPSym is relative to the caller SP on IA64 and the initial stack pointer before stack allocations on X64. |
| 1111 | if(m_PSPSymStackSlot != NO_PSP_SYM) |
| 1112 | { |
| 1113 | _ASSERTE(!slimHeader); |
| 1114 | #ifdef _DEBUG |
| 1115 | LOG((LF_GCINFO, LL_INFO1000, "Parent PSP at " FMT_STK "\n" , DBG_STK(m_PSPSymStackSlot))); |
| 1116 | #endif |
| 1117 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_PSPSymStackSlot), PSP_SYM_STACK_SLOT_ENCBASE, PspSymSize); |
| 1118 | } |
| 1119 | |
| 1120 | // Encode the offset to the generics type context. |
| 1121 | if(m_GenericsInstContextStackSlot != NO_GENERICS_INST_CONTEXT) |
| 1122 | { |
| 1123 | _ASSERTE(!slimHeader); |
| 1124 | #ifdef _DEBUG |
| 1125 | LOG((LF_GCINFO, LL_INFO1000, "Generics instantiation context at " FMT_STK "\n" , |
| 1126 | DBG_STK(m_GenericsInstContextStackSlot) |
| 1127 | )); |
| 1128 | #endif |
| 1129 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_GenericsInstContextStackSlot), GENERICS_INST_CONTEXT_STACK_SLOT_ENCBASE, GenericsCtxSize); |
| 1130 | } |
| 1131 | |
| 1132 | if(!slimHeader && (m_StackBaseRegister != NO_STACK_BASE_REGISTER)) |
| 1133 | { |
| 1134 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_STACK_BASE_REGISTER(m_StackBaseRegister), STACK_BASE_REGISTER_ENCBASE, StackBaseSize); |
| 1135 | } |
| 1136 | |
| 1137 | if (m_SizeOfEditAndContinuePreservedArea != NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA) |
| 1138 | { |
| 1139 | GCINFO_WRITE_VARL_U(m_Info1, m_SizeOfEditAndContinuePreservedArea, SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA_ENCBASE, EncPreservedSlots); |
| 1140 | } |
| 1141 | |
| 1142 | if (hasReversePInvokeFrame) |
| 1143 | { |
| 1144 | _ASSERTE(!slimHeader); |
| 1145 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_ReversePInvokeFrameSlot), REVERSE_PINVOKE_FRAME_ENCBASE, ReversePInvokeFrameSize); |
| 1146 | } |
| 1147 | |
| 1148 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 1149 | if (!slimHeader) |
| 1150 | { |
| 1151 | _ASSERTE( m_SizeOfStackOutgoingAndScratchArea != (UINT32)-1 ); |
| 1152 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_SIZE_OF_STACK_AREA(m_SizeOfStackOutgoingAndScratchArea), SIZE_OF_STACK_AREA_ENCBASE, FixedAreaSize); |
| 1153 | } |
| 1154 | #endif // FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 1155 | |
| 1156 | UINT32 numInterruptibleRanges = (UINT32) m_InterruptibleRanges.Count(); |
| 1157 | |
| 1158 | InterruptibleRange *pRanges = NULL; |
| 1159 | if(numInterruptibleRanges) |
| 1160 | { |
| 1161 | pRanges = (InterruptibleRange*) m_pAllocator->Alloc(numInterruptibleRanges * sizeof(InterruptibleRange)); |
| 1162 | m_InterruptibleRanges.CopyTo(pRanges); |
| 1163 | } |
| 1164 | |
| 1165 | BitArray liveState(m_pAllocator, m_NumSlots); |
| 1166 | BitArray couldBeLive(m_pAllocator, m_NumSlots); |
| 1167 | liveState.ClearAll(); |
| 1168 | couldBeLive.ClearAll(); |
| 1169 | |
| 1170 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1171 | _ASSERTE(m_NumCallSites == 0 || m_pCallSites != NULL); |
| 1172 | |
| 1173 | /////////////////////////////////////////////////////////////////////// |
| 1174 | // Normalize call sites |
| 1175 | // Eliminate call sites that fall inside interruptible ranges |
| 1176 | /////////////////////////////////////////////////////////////////////// |
| 1177 | |
| 1178 | UINT32 numCallSites = 0; |
| 1179 | for(UINT32 callSiteIndex = 0; callSiteIndex < m_NumCallSites; callSiteIndex++) |
| 1180 | { |
| 1181 | UINT32 callSite = m_pCallSites[callSiteIndex]; |
| 1182 | // There's a contract with the EE that says for non-leaf stack frames, where the |
| 1183 | // method is stopped at a call site, the EE will not query with the return PC, but |
| 1184 | // rather the return PC *minus 1*. |
| 1185 | // The reason is that variable/register liveness may change at the instruction immediately after the |
| 1186 | // call, so we want such frames to appear as if they are "within" the call. |
| 1187 | // Since we use "callSite" as the "key" when we search for the matching descriptor, also subtract 1 here |
| 1188 | // (after, of course, adding the size of the call instruction to get the return PC). |
| 1189 | callSite += m_pCallSiteSizes[callSiteIndex] - 1; |
| 1190 | |
| 1191 | _ASSERTE(DENORMALIZE_CODE_OFFSET(NORMALIZE_CODE_OFFSET(callSite)) == callSite); |
| 1192 | UINT32 normOffset = NORMALIZE_CODE_OFFSET(callSite); |
| 1193 | |
| 1194 | BOOL keepIt = TRUE; |
| 1195 | |
| 1196 | for(UINT32 intRangeIndex = 0; intRangeIndex < numInterruptibleRanges; intRangeIndex++) |
| 1197 | { |
| 1198 | InterruptibleRange *pRange = &pRanges[intRangeIndex]; |
| 1199 | if(pRange->NormStopOffset > normOffset) |
| 1200 | { |
| 1201 | if(pRange->NormStartOffset <= normOffset) |
| 1202 | { |
| 1203 | keepIt = FALSE; |
| 1204 | } |
| 1205 | break; |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | if(keepIt) |
| 1210 | m_pCallSites[numCallSites++] = normOffset; |
| 1211 | } |
| 1212 | |
| 1213 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_NUM_SAFE_POINTS(numCallSites), NUM_SAFE_POINTS_ENCBASE, NumCallSitesSize); |
| 1214 | m_NumCallSites = numCallSites; |
| 1215 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1216 | |
| 1217 | if (slimHeader) |
| 1218 | { |
| 1219 | _ASSERTE(numInterruptibleRanges == 0); |
| 1220 | } |
| 1221 | else |
| 1222 | { |
| 1223 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_NUM_INTERRUPTIBLE_RANGES(numInterruptibleRanges), NUM_INTERRUPTIBLE_RANGES_ENCBASE, NumRangesSize); |
| 1224 | } |
| 1225 | |
| 1226 | |
| 1227 | |
| 1228 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1229 | /////////////////////////////////////////////////////////////////////// |
| 1230 | // Encode call site offsets |
| 1231 | /////////////////////////////////////////////////////////////////////// |
| 1232 | |
| 1233 | UINT32 numBitsPerOffset = CeilOfLog2(NORMALIZE_CODE_OFFSET(m_CodeLength)); |
| 1234 | |
| 1235 | for(UINT32 callSiteIndex = 0; callSiteIndex < m_NumCallSites; callSiteIndex++) |
| 1236 | { |
| 1237 | UINT32 normOffset = m_pCallSites[callSiteIndex]; |
| 1238 | |
| 1239 | _ASSERTE(normOffset < (UINT32)1 << (numBitsPerOffset+1)); |
| 1240 | GCINFO_WRITE(m_Info1, normOffset, numBitsPerOffset, CallSitePosSize); |
| 1241 | } |
| 1242 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1243 | |
| 1244 | |
| 1245 | /////////////////////////////////////////////////////////////////////// |
| 1246 | // Encode fully-interruptible ranges |
| 1247 | /////////////////////////////////////////////////////////////////////// |
| 1248 | |
| 1249 | if(numInterruptibleRanges) |
| 1250 | { |
| 1251 | UINT32 lastStopOffset = 0; |
| 1252 | |
| 1253 | for(UINT32 i = 0; i < numInterruptibleRanges; i++) |
| 1254 | { |
| 1255 | UINT32 normStartOffset = pRanges[i].NormStartOffset; |
| 1256 | UINT32 normStopOffset = pRanges[i].NormStopOffset; |
| 1257 | |
| 1258 | size_t normStartDelta = normStartOffset - lastStopOffset; |
| 1259 | size_t normStopDelta = normStopOffset - normStartOffset; |
| 1260 | _ASSERTE(normStopDelta > 0); |
| 1261 | |
| 1262 | lastStopOffset = normStopOffset; |
| 1263 | |
| 1264 | GCINFO_WRITE_VARL_U(m_Info1, normStartDelta, INTERRUPTIBLE_RANGE_DELTA1_ENCBASE, RangeSize); |
| 1265 | |
| 1266 | GCINFO_WRITE_VARL_U(m_Info1, normStopDelta-1, INTERRUPTIBLE_RANGE_DELTA2_ENCBASE, RangeSize); |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | |
| 1271 | /////////////////////////////////////////////////////////////////////// |
| 1272 | // Pre-process transitions |
| 1273 | /////////////////////////////////////////////////////////////////////// |
| 1274 | |
| 1275 | |
| 1276 | size_t numTransitions = m_LifetimeTransitions.Count(); |
| 1277 | LifetimeTransition *pTransitions = (LifetimeTransition*)m_pAllocator->Alloc(numTransitions * sizeof(LifetimeTransition)); |
| 1278 | m_LifetimeTransitions.CopyTo(pTransitions); |
| 1279 | |
| 1280 | LifetimeTransition* pEndTransitions = pTransitions + numTransitions; |
| 1281 | LifetimeTransition* pCurrent; |
| 1282 | |
| 1283 | //----------------------------------------------------------------- |
| 1284 | // Sort the lifetime transitions by offset (then by slot id). |
| 1285 | //----------------------------------------------------------------- |
| 1286 | |
| 1287 | // Don't use the CQuickSort algorithm, it's prone to stack overflows |
| 1288 | qsort( |
| 1289 | pTransitions, |
| 1290 | numTransitions, |
| 1291 | sizeof(LifetimeTransition), |
| 1292 | CompareLifetimeTransitionsByOffsetThenSlot |
| 1293 | ); |
| 1294 | |
| 1295 | // Eliminate transitions outside the method |
| 1296 | while(pEndTransitions > pTransitions) |
| 1297 | { |
| 1298 | LifetimeTransition *pPrev = pEndTransitions - 1; |
| 1299 | if(pPrev->CodeOffset < m_CodeLength) |
| 1300 | break; |
| 1301 | |
| 1302 | _ASSERTE(pPrev->CodeOffset == m_CodeLength && !pPrev->BecomesLive); |
| 1303 | pEndTransitions = pPrev; |
| 1304 | } |
| 1305 | |
| 1306 | // Now eliminate any pairs of dead/live transitions for the same slot at the same offset. |
| 1307 | EliminateRedundantLiveDeadPairs(&pTransitions, &numTransitions, &pEndTransitions); |
| 1308 | |
| 1309 | #ifdef _DEBUG |
| 1310 | numTransitions = -1; |
| 1311 | #endif |
| 1312 | /////////////////////////////////////////////////////////////////////// |
| 1313 | // Sort the slot table |
| 1314 | /////////////////////////////////////////////////////////////////////// |
| 1315 | |
| 1316 | { |
| 1317 | GcSlotDescAndId* sortedSlots = (GcSlotDescAndId*) m_pAllocator->Alloc(m_NumSlots * sizeof(GcSlotDescAndId)); |
| 1318 | UINT32* sortOrder = (UINT32*) m_pAllocator->Alloc(m_NumSlots * sizeof(UINT32)); |
| 1319 | |
| 1320 | for(UINT32 i = 0; i < m_NumSlots; i++) |
| 1321 | { |
| 1322 | sortedSlots[i].m_SlotDesc = m_SlotTable[i]; |
| 1323 | sortedSlots[i].m_SlotId = i; |
| 1324 | } |
| 1325 | |
| 1326 | qsort(sortedSlots, m_NumSlots, sizeof(GcSlotDescAndId), CompareSlotDescAndIdBySlotDesc); |
| 1327 | |
| 1328 | for(UINT32 i = 0; i < m_NumSlots; i++) |
| 1329 | { |
| 1330 | sortOrder[sortedSlots[i].m_SlotId] = i; |
| 1331 | } |
| 1332 | |
| 1333 | // Re-order the slot table |
| 1334 | for(UINT32 i = 0; i < m_NumSlots; i++) |
| 1335 | { |
| 1336 | m_SlotTable[i] = sortedSlots[i].m_SlotDesc; |
| 1337 | } |
| 1338 | |
| 1339 | // Update transitions to assign new slot ids |
| 1340 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
| 1341 | { |
| 1342 | UINT32 newSlotId = sortOrder[pCurrent->SlotId]; |
| 1343 | pCurrent->SlotId = newSlotId; |
| 1344 | } |
| 1345 | |
| 1346 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
| 1347 | m_pAllocator->Free( sortedSlots ); |
| 1348 | m_pAllocator->Free( sortOrder ); |
| 1349 | #endif |
| 1350 | } |
| 1351 | |
| 1352 | #if CODE_OFFSETS_NEED_NORMALIZATION |
| 1353 | // Do a pass to normalize transition offsets |
| 1354 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
| 1355 | { |
| 1356 | _ASSERTE(pCurrent->CodeOffset <= m_CodeLength); |
| 1357 | pCurrent->CodeOffset = NORMALIZE_CODE_OFFSET(pCurrent->CodeOffset); |
| 1358 | } |
| 1359 | #endif |
| 1360 | |
| 1361 | /////////////////////////////////////////////////////////////////// |
| 1362 | // Find out which slots are really used |
| 1363 | /////////////////////////////////////////////////////////////////// |
| 1364 | |
| 1365 | couldBeLive.ClearAll(); |
| 1366 | |
| 1367 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1368 | if(m_NumCallSites) |
| 1369 | { |
| 1370 | _ASSERTE(m_pCallSites != NULL); |
| 1371 | liveState.ClearAll(); |
| 1372 | |
| 1373 | UINT32 callSiteIndex = 0; |
| 1374 | UINT32 callSite = m_pCallSites[0]; |
| 1375 | |
| 1376 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
| 1377 | { |
| 1378 | if(pCurrent->CodeOffset > callSite) |
| 1379 | { |
| 1380 | couldBeLive |= liveState; |
| 1381 | |
| 1382 | if(++callSiteIndex == m_NumCallSites) |
| 1383 | break; |
| 1384 | |
| 1385 | callSite = m_pCallSites[callSiteIndex]; |
| 1386 | } |
| 1387 | else |
| 1388 | { |
| 1389 | UINT32 slotIndex = pCurrent->SlotId; |
| 1390 | if(!IsAlwaysScratch(m_SlotTable[slotIndex])) |
| 1391 | { |
| 1392 | BYTE becomesLive = pCurrent->BecomesLive; |
| 1393 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
| 1394 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
| 1395 | |
| 1396 | liveState.WriteBit(slotIndex, becomesLive); |
| 1397 | } |
| 1398 | pCurrent++; |
| 1399 | } |
| 1400 | } |
| 1401 | // There could be call sites after the last transition |
| 1402 | if(callSiteIndex < m_NumCallSites) |
| 1403 | { |
| 1404 | couldBeLive |= liveState; |
| 1405 | } |
| 1406 | } |
| 1407 | |
| 1408 | if(numInterruptibleRanges) |
| 1409 | { |
| 1410 | liveState.ClearAll(); |
| 1411 | |
| 1412 | InterruptibleRange *pCurrentRange = pRanges; |
| 1413 | InterruptibleRange *pEndRanges = pRanges + numInterruptibleRanges; |
| 1414 | |
| 1415 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
| 1416 | { |
| 1417 | // Find the first transition at offset > of the start of the current range |
| 1418 | LifetimeTransition *pFirstAfterStart = pCurrent; |
| 1419 | while(pFirstAfterStart->CodeOffset <= pCurrentRange->NormStartOffset) |
| 1420 | { |
| 1421 | UINT32 slotIndex = (UINT32) (pFirstAfterStart->SlotId); |
| 1422 | BYTE becomesLive = pFirstAfterStart->BecomesLive; |
| 1423 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
| 1424 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
| 1425 | liveState.WriteBit(slotIndex, becomesLive); |
| 1426 | |
| 1427 | if(++pFirstAfterStart == pEndTransitions) |
| 1428 | break; |
| 1429 | } |
| 1430 | |
| 1431 | couldBeLive |= liveState; |
| 1432 | |
| 1433 | // Now iterate through all the remaining transitions in the range, |
| 1434 | // making the offset range-relative, and tracking live state |
| 1435 | UINT32 rangeStop = pCurrentRange->NormStopOffset; |
| 1436 | |
| 1437 | for(pCurrent = pFirstAfterStart; pCurrent < pEndTransitions && pCurrent->CodeOffset < rangeStop; pCurrent++) |
| 1438 | { |
| 1439 | UINT32 slotIndex = (UINT32) (pCurrent->SlotId); |
| 1440 | BYTE becomesLive = pCurrent->BecomesLive; |
| 1441 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
| 1442 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
| 1443 | liveState.WriteBit(slotIndex, becomesLive); |
| 1444 | couldBeLive.SetBit(slotIndex); |
| 1445 | } |
| 1446 | |
| 1447 | // Move to the next range |
| 1448 | if(pCurrentRange < pEndRanges - 1) |
| 1449 | { |
| 1450 | pCurrentRange++; |
| 1451 | } |
| 1452 | else |
| 1453 | { |
| 1454 | break; |
| 1455 | } |
| 1456 | } |
| 1457 | } |
| 1458 | |
| 1459 | //----------------------------------------------------------------- |
| 1460 | // Mark unneeded slots as deleted |
| 1461 | //----------------------------------------------------------------- |
| 1462 | |
| 1463 | UINT32 numUsedSlots = 0; |
| 1464 | for(UINT32 i = 0; i < m_NumSlots; i++) |
| 1465 | { |
| 1466 | if(!(m_SlotTable[i].IsUntracked()) && (couldBeLive.ReadBit(i) == 0)) |
| 1467 | { |
| 1468 | m_SlotTable[i].MarkDeleted(); |
| 1469 | } |
| 1470 | else |
| 1471 | numUsedSlots++; |
| 1472 | } |
| 1473 | |
| 1474 | if(numUsedSlots < m_NumSlots) |
| 1475 | { |
| 1476 | // Delete transitions on unused slots |
| 1477 | LifetimeTransition *pNextFree = pTransitions; |
| 1478 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
| 1479 | { |
| 1480 | UINT32 slotId = pCurrent->SlotId; |
| 1481 | if(!m_SlotTable[slotId].IsDeleted()) |
| 1482 | { |
| 1483 | if(pCurrent > pNextFree) |
| 1484 | { |
| 1485 | *pNextFree = *pCurrent; |
| 1486 | } |
| 1487 | pNextFree++; |
| 1488 | } |
| 1489 | } |
| 1490 | pEndTransitions = pNextFree; |
| 1491 | } |
| 1492 | |
| 1493 | #else // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1494 | |
| 1495 | UINT32 numUsedSlots = m_NumSlots; |
| 1496 | |
| 1497 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1498 | |
| 1499 | |
| 1500 | /////////////////////////////////////////////////////////////////////// |
| 1501 | // Encode slot table |
| 1502 | /////////////////////////////////////////////////////////////////////// |
| 1503 | |
| 1504 | //------------------------------------------------------------------ |
| 1505 | // Count registers and stack slots |
| 1506 | //------------------------------------------------------------------ |
| 1507 | |
| 1508 | UINT32 numRegisters; |
| 1509 | UINT32 numUntrackedSlots; |
| 1510 | UINT32 numStackSlots; |
| 1511 | |
| 1512 | { |
| 1513 | UINT32 numDeleted = 0; |
| 1514 | UINT32 i; |
| 1515 | for(i = 0; i < m_NumSlots && m_SlotTable[i].IsRegister(); i++) |
| 1516 | { |
| 1517 | if(m_SlotTable[i].IsDeleted()) |
| 1518 | { |
| 1519 | numDeleted++; |
| 1520 | } |
| 1521 | } |
| 1522 | numRegisters = i - numDeleted; |
| 1523 | |
| 1524 | for(; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
| 1525 | { |
| 1526 | if(m_SlotTable[i].IsDeleted()) |
| 1527 | { |
| 1528 | numDeleted++; |
| 1529 | } |
| 1530 | } |
| 1531 | numStackSlots = i - (numRegisters + numDeleted); |
| 1532 | } |
| 1533 | numUntrackedSlots = numUsedSlots - (numRegisters + numStackSlots); |
| 1534 | |
| 1535 | // Common case: nothing, or a few registers |
| 1536 | if (numRegisters) |
| 1537 | { |
| 1538 | GCINFO_WRITE(m_Info1, 1, 1, FlagsSize); |
| 1539 | GCINFO_WRITE_VARL_U(m_Info1, numRegisters, NUM_REGISTERS_ENCBASE, NumRegsSize); |
| 1540 | } |
| 1541 | else |
| 1542 | { |
| 1543 | GCINFO_WRITE(m_Info1, 0, 1, FlagsSize); |
| 1544 | } |
| 1545 | if (numStackSlots || numUntrackedSlots) |
| 1546 | { |
| 1547 | GCINFO_WRITE(m_Info1, 1, 1, FlagsSize); |
| 1548 | GCINFO_WRITE_VARL_U(m_Info1, numStackSlots, NUM_STACK_SLOTS_ENCBASE, NumStackSize); |
| 1549 | GCINFO_WRITE_VARL_U(m_Info1, numUntrackedSlots, NUM_UNTRACKED_SLOTS_ENCBASE, NumUntrackedSize); |
| 1550 | } |
| 1551 | else |
| 1552 | { |
| 1553 | GCINFO_WRITE(m_Info1, 0, 1, FlagsSize); |
| 1554 | } |
| 1555 | |
| 1556 | UINT32 currentSlot = 0; |
| 1557 | |
| 1558 | if(numUsedSlots == 0) |
| 1559 | goto lExitSuccess; |
| 1560 | |
| 1561 | if(numRegisters > 0) |
| 1562 | { |
| 1563 | GcSlotDesc *pSlotDesc; |
| 1564 | do |
| 1565 | { |
| 1566 | _ASSERTE(currentSlot < m_NumSlots); |
| 1567 | pSlotDesc = &m_SlotTable[currentSlot++]; |
| 1568 | } |
| 1569 | while(pSlotDesc->IsDeleted()); |
| 1570 | _ASSERTE(pSlotDesc->IsRegister()); |
| 1571 | |
| 1572 | // Encode slot identification |
| 1573 | UINT32 currentNormRegNum = NORMALIZE_REGISTER(pSlotDesc->Slot.RegisterNumber); |
| 1574 | GCINFO_WRITE_VARL_U(m_Info1, currentNormRegNum, REGISTER_ENCBASE, RegSlotSize); |
| 1575 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, RegSlotSize); |
| 1576 | |
| 1577 | for(UINT32 j = 1; j < numRegisters; j++) |
| 1578 | { |
| 1579 | UINT32 lastNormRegNum = currentNormRegNum; |
| 1580 | GcSlotFlags lastFlags = pSlotDesc->Flags; |
| 1581 | |
| 1582 | do |
| 1583 | { |
| 1584 | _ASSERTE(currentSlot < m_NumSlots); |
| 1585 | pSlotDesc = &m_SlotTable[currentSlot++]; |
| 1586 | } |
| 1587 | while(pSlotDesc->IsDeleted()); |
| 1588 | _ASSERTE(pSlotDesc->IsRegister()); |
| 1589 | |
| 1590 | currentNormRegNum = NORMALIZE_REGISTER(pSlotDesc->Slot.RegisterNumber); |
| 1591 | |
| 1592 | if(lastFlags != GC_SLOT_IS_REGISTER) |
| 1593 | { |
| 1594 | GCINFO_WRITE_VARL_U(m_Info1, currentNormRegNum, REGISTER_ENCBASE, RegSlotSize); |
| 1595 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, RegSlotSize); |
| 1596 | } |
| 1597 | else |
| 1598 | { |
| 1599 | _ASSERTE(pSlotDesc->Flags == GC_SLOT_IS_REGISTER); |
| 1600 | GCINFO_WRITE_VARL_U(m_Info1, currentNormRegNum - lastNormRegNum - 1, REGISTER_DELTA_ENCBASE, RegSlotSize); |
| 1601 | } |
| 1602 | } |
| 1603 | } |
| 1604 | |
| 1605 | if(numStackSlots > 0) |
| 1606 | { |
| 1607 | GcSlotDesc *pSlotDesc; |
| 1608 | do |
| 1609 | { |
| 1610 | _ASSERTE(currentSlot < m_NumSlots); |
| 1611 | pSlotDesc = &m_SlotTable[currentSlot++]; |
| 1612 | } |
| 1613 | while(pSlotDesc->IsDeleted()); |
| 1614 | _ASSERTE(!pSlotDesc->IsRegister()); |
| 1615 | _ASSERTE(!pSlotDesc->IsUntracked()); |
| 1616 | |
| 1617 | // Encode slot identification |
| 1618 | _ASSERTE((pSlotDesc->Slot.Stack.Base & ~3) == 0); |
| 1619 | GCINFO_WRITE(m_Info1, pSlotDesc->Slot.Stack.Base, 2, StackSlotSize); |
| 1620 | INT32 currentNormStackSlot = NORMALIZE_STACK_SLOT(pSlotDesc->Slot.Stack.SpOffset); |
| 1621 | GCINFO_WRITE_VARL_S(m_Info1, currentNormStackSlot, STACK_SLOT_ENCBASE, StackSlotSize); |
| 1622 | |
| 1623 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, StackSlotSize); |
| 1624 | |
| 1625 | for(UINT32 j = 1; j < numStackSlots; j++) |
| 1626 | { |
| 1627 | INT32 lastNormStackSlot = currentNormStackSlot; |
| 1628 | GcSlotFlags lastFlags = pSlotDesc->Flags; |
| 1629 | |
| 1630 | do |
| 1631 | { |
| 1632 | _ASSERTE(currentSlot < m_NumSlots); |
| 1633 | pSlotDesc = &m_SlotTable[currentSlot++]; |
| 1634 | } |
| 1635 | while(pSlotDesc->IsDeleted()); |
| 1636 | _ASSERTE(!pSlotDesc->IsRegister()); |
| 1637 | _ASSERTE(!pSlotDesc->IsUntracked()); |
| 1638 | |
| 1639 | currentNormStackSlot = NORMALIZE_STACK_SLOT(pSlotDesc->Slot.Stack.SpOffset); |
| 1640 | |
| 1641 | _ASSERTE((pSlotDesc->Slot.Stack.Base & ~3) == 0); |
| 1642 | GCINFO_WRITE(m_Info1, pSlotDesc->Slot.Stack.Base, 2, StackSlotSize); |
| 1643 | |
| 1644 | if(lastFlags != GC_SLOT_BASE) |
| 1645 | { |
| 1646 | GCINFO_WRITE_VARL_S(m_Info1, currentNormStackSlot, STACK_SLOT_ENCBASE, StackSlotSize); |
| 1647 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, StackSlotSize); |
| 1648 | } |
| 1649 | else |
| 1650 | { |
| 1651 | _ASSERTE(pSlotDesc->Flags == GC_SLOT_BASE); |
| 1652 | GCINFO_WRITE_VARL_U(m_Info1, currentNormStackSlot - lastNormStackSlot, STACK_SLOT_DELTA_ENCBASE, StackSlotSize); |
| 1653 | } |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | if(numUntrackedSlots > 0) |
| 1658 | { |
| 1659 | GcSlotDesc *pSlotDesc; |
| 1660 | do |
| 1661 | { |
| 1662 | _ASSERTE(currentSlot < m_NumSlots); |
| 1663 | pSlotDesc = &m_SlotTable[currentSlot++]; |
| 1664 | } |
| 1665 | while(pSlotDesc->IsDeleted()); |
| 1666 | _ASSERTE(!pSlotDesc->IsRegister()); |
| 1667 | _ASSERTE(pSlotDesc->IsUntracked()); |
| 1668 | |
| 1669 | // Encode slot identification |
| 1670 | _ASSERTE((pSlotDesc->Slot.Stack.Base & ~3) == 0); |
| 1671 | GCINFO_WRITE(m_Info1, pSlotDesc->Slot.Stack.Base, 2, UntrackedSlotSize); |
| 1672 | INT32 currentNormStackSlot = NORMALIZE_STACK_SLOT(pSlotDesc->Slot.Stack.SpOffset); |
| 1673 | GCINFO_WRITE_VARL_S(m_Info1, currentNormStackSlot, STACK_SLOT_ENCBASE, UntrackedSlotSize); |
| 1674 | |
| 1675 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, UntrackedSlotSize); |
| 1676 | |
| 1677 | for(UINT32 j = 1; j < numUntrackedSlots; j++) |
| 1678 | { |
| 1679 | INT32 lastNormStackSlot = currentNormStackSlot; |
| 1680 | GcSlotFlags lastFlags = pSlotDesc->Flags; |
| 1681 | |
| 1682 | do |
| 1683 | { |
| 1684 | _ASSERTE(currentSlot < m_NumSlots); |
| 1685 | pSlotDesc = &m_SlotTable[currentSlot++]; |
| 1686 | } |
| 1687 | while(pSlotDesc->IsDeleted()); |
| 1688 | _ASSERTE(!pSlotDesc->IsRegister()); |
| 1689 | _ASSERTE(pSlotDesc->IsUntracked()); |
| 1690 | |
| 1691 | currentNormStackSlot = NORMALIZE_STACK_SLOT(pSlotDesc->Slot.Stack.SpOffset); |
| 1692 | |
| 1693 | _ASSERTE((pSlotDesc->Slot.Stack.Base & ~3) == 0); |
| 1694 | GCINFO_WRITE(m_Info1, pSlotDesc->Slot.Stack.Base, 2, UntrackedSlotSize); |
| 1695 | |
| 1696 | if(lastFlags != GC_SLOT_UNTRACKED) |
| 1697 | { |
| 1698 | GCINFO_WRITE_VARL_S(m_Info1, currentNormStackSlot, STACK_SLOT_ENCBASE, UntrackedSlotSize); |
| 1699 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, UntrackedSlotSize); |
| 1700 | } |
| 1701 | else |
| 1702 | { |
| 1703 | _ASSERTE(pSlotDesc->Flags == GC_SLOT_UNTRACKED); |
| 1704 | GCINFO_WRITE_VARL_U(m_Info1, currentNormStackSlot - lastNormStackSlot, STACK_SLOT_DELTA_ENCBASE, UntrackedSlotSize); |
| 1705 | } |
| 1706 | } |
| 1707 | } |
| 1708 | |
| 1709 | |
| 1710 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1711 | //----------------------------------------------------------------- |
| 1712 | // Encode GC info at call sites |
| 1713 | //----------------------------------------------------------------- |
| 1714 | |
| 1715 | if(m_NumCallSites) |
| 1716 | { |
| 1717 | |
| 1718 | _ASSERTE(m_pCallSites != NULL); |
| 1719 | |
| 1720 | liveState.ClearAll(); |
| 1721 | |
| 1722 | UINT32 callSiteIndex = 0; |
| 1723 | UINT32 callSite = m_pCallSites[0]; |
| 1724 | |
| 1725 | // Create a hash table for storing the locations of the live sets |
| 1726 | LiveStateHashTable hashMap(m_pAllocator); |
| 1727 | |
| 1728 | bool outOfMemory = false; |
| 1729 | try |
| 1730 | { |
| 1731 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
| 1732 | { |
| 1733 | if(pCurrent->CodeOffset > callSite) |
| 1734 | { |
| 1735 | // Time to record the call site |
| 1736 | |
| 1737 | // Add it to the table if it doesn't exist |
| 1738 | UINT32 liveStateOffset = 0; |
| 1739 | if (!hashMap.Lookup(&liveState, &liveStateOffset)) |
| 1740 | { |
| 1741 | BitArray * newLiveState = new (m_pAllocator) BitArray(m_pAllocator, m_NumSlots); |
| 1742 | *newLiveState = liveState; |
| 1743 | hashMap.Set(newLiveState, (UINT32)(-1)); |
| 1744 | } |
| 1745 | |
| 1746 | |
| 1747 | if(++callSiteIndex == m_NumCallSites) |
| 1748 | break; |
| 1749 | |
| 1750 | callSite = m_pCallSites[callSiteIndex]; |
| 1751 | } |
| 1752 | else |
| 1753 | { |
| 1754 | UINT32 slotIndex = pCurrent->SlotId; |
| 1755 | BYTE becomesLive = pCurrent->BecomesLive; |
| 1756 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
| 1757 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
| 1758 | liveState.WriteBit(slotIndex, becomesLive); |
| 1759 | pCurrent++; |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | // Check for call sites at offsets past the last transition |
| 1764 | if (callSiteIndex < m_NumCallSites) |
| 1765 | { |
| 1766 | UINT32 liveStateOffset = 0; |
| 1767 | if (!hashMap.Lookup(&liveState, &liveStateOffset)) |
| 1768 | { |
| 1769 | BitArray * newLiveState = new (m_pAllocator) BitArray(m_pAllocator, m_NumSlots); |
| 1770 | *newLiveState = liveState; |
| 1771 | hashMap.Set(newLiveState, (UINT32)(-1)); |
| 1772 | } |
| 1773 | } |
| 1774 | } |
| 1775 | catch (GcInfoNoMemoryException&) |
| 1776 | { |
| 1777 | outOfMemory = true; |
| 1778 | } |
| 1779 | |
| 1780 | if (outOfMemory) |
| 1781 | { |
| 1782 | m_pNoMem(); |
| 1783 | } |
| 1784 | |
| 1785 | // Figure out the largest offset, and total size of the sets |
| 1786 | // Be sure to figure out the largest offset in the order that we will be emitting |
| 1787 | // them in and not the order of their appearances in the safe point array. |
| 1788 | // TODO: we should sort this to improve locality (the more frequent ones at the beginning) |
| 1789 | // and to improve the indirection size (if the largest one is last, we *might* be able |
| 1790 | // so use 1 less bit for each indirection for the offset encoding). |
| 1791 | UINT32 largestSetOffset = 0; |
| 1792 | UINT32 sizeofSets = 0; |
| 1793 | for (LiveStateHashTable::KeyIterator iter = hashMap.Begin(), end = hashMap.End(); !iter.Equal(end); iter.Next()) |
| 1794 | { |
| 1795 | largestSetOffset = sizeofSets; |
| 1796 | sizeofSets += SizeofSlotStateVarLengthVector(*iter.Get(), LIVESTATE_RLE_SKIP_ENCBASE, LIVESTATE_RLE_RUN_ENCBASE); |
| 1797 | } |
| 1798 | |
| 1799 | // Now that we know the largest offset, we can figure out how much the indirection |
| 1800 | // will cost us and commit |
| 1801 | UINT32 numBitsPerPointer = ((largestSetOffset < 2) ? 1 : CeilOfLog2(largestSetOffset + 1)); |
| 1802 | const size_t sizeofEncodedNumBitsPerPointer = BitStreamWriter::SizeofVarLengthUnsigned(numBitsPerPointer, POINTER_SIZE_ENCBASE); |
| 1803 | const size_t sizeofNoIndirection = m_NumCallSites * (numRegisters + numStackSlots); |
| 1804 | const size_t sizeofIndirection = sizeofEncodedNumBitsPerPointer // Encode the pointer sizes |
| 1805 | + (m_NumCallSites * numBitsPerPointer) // Encoe the pointers |
| 1806 | + 7 // Up to 7 bits of alignment padding |
| 1807 | + sizeofSets; // Encode the actual live sets |
| 1808 | |
| 1809 | liveState.ClearAll(); |
| 1810 | |
| 1811 | callSiteIndex = 0; |
| 1812 | callSite = m_pCallSites[0]; |
| 1813 | |
| 1814 | if (sizeofIndirection < sizeofNoIndirection) |
| 1815 | { |
| 1816 | // we are using an indirection |
| 1817 | GCINFO_WRITE(m_Info1, 1, 1, FlagsSize); |
| 1818 | GCINFO_WRITE_VARL_U(m_Info1, numBitsPerPointer - 1, POINTER_SIZE_ENCBASE, CallSiteStateSize); |
| 1819 | |
| 1820 | // Now encode the live sets and record the real offset |
| 1821 | for (LiveStateHashTable::KeyIterator iter = hashMap.Begin(), end = hashMap.End(); !iter.Equal(end); iter.Next()) |
| 1822 | { |
| 1823 | _ASSERTE(FitsIn<UINT32>(m_Info2.GetBitCount())); |
| 1824 | iter.SetValue((UINT32)m_Info2.GetBitCount()); |
| 1825 | GCINFO_WRITE_VAR_VECTOR(m_Info2, *iter.Get(), LIVESTATE_RLE_SKIP_ENCBASE, LIVESTATE_RLE_RUN_ENCBASE, CallSiteStateSize); |
| 1826 | } |
| 1827 | |
| 1828 | _ASSERTE(sizeofSets == m_Info2.GetBitCount()); |
| 1829 | |
| 1830 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
| 1831 | { |
| 1832 | if(pCurrent->CodeOffset > callSite) |
| 1833 | { |
| 1834 | // Time to encode the call site |
| 1835 | |
| 1836 | // Find the match and emit it |
| 1837 | UINT32 liveStateOffset; |
| 1838 | bool found = hashMap.Lookup(&liveState, &liveStateOffset); |
| 1839 | _ASSERTE(found); |
| 1840 | (void)found; |
| 1841 | GCINFO_WRITE(m_Info1, liveStateOffset, numBitsPerPointer, CallSiteStateSize); |
| 1842 | |
| 1843 | |
| 1844 | if(++callSiteIndex == m_NumCallSites) |
| 1845 | break; |
| 1846 | |
| 1847 | callSite = m_pCallSites[callSiteIndex]; |
| 1848 | } |
| 1849 | else |
| 1850 | { |
| 1851 | UINT32 slotIndex = pCurrent->SlotId; |
| 1852 | BYTE becomesLive = pCurrent->BecomesLive; |
| 1853 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
| 1854 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
| 1855 | liveState.WriteBit(slotIndex, becomesLive); |
| 1856 | pCurrent++; |
| 1857 | } |
| 1858 | } |
| 1859 | |
| 1860 | // Encode call sites at offsets past the last transition |
| 1861 | { |
| 1862 | UINT32 liveStateOffset; |
| 1863 | bool found = hashMap.Lookup(&liveState, &liveStateOffset); |
| 1864 | _ASSERTE(found); |
| 1865 | (void)found; |
| 1866 | for( ; callSiteIndex < m_NumCallSites; callSiteIndex++) |
| 1867 | { |
| 1868 | GCINFO_WRITE(m_Info1, liveStateOffset, numBitsPerPointer, CallSiteStateSize); |
| 1869 | } |
| 1870 | } |
| 1871 | } |
| 1872 | else |
| 1873 | { |
| 1874 | // we are not using an indirection |
| 1875 | GCINFO_WRITE(m_Info1, 0, 1, FlagsSize); |
| 1876 | |
| 1877 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
| 1878 | { |
| 1879 | if(pCurrent->CodeOffset > callSite) |
| 1880 | { |
| 1881 | // Time to encode the call site |
| 1882 | GCINFO_WRITE_VECTOR(m_Info1, liveState, CallSiteStateSize); |
| 1883 | |
| 1884 | if(++callSiteIndex == m_NumCallSites) |
| 1885 | break; |
| 1886 | |
| 1887 | callSite = m_pCallSites[callSiteIndex]; |
| 1888 | } |
| 1889 | else |
| 1890 | { |
| 1891 | UINT32 slotIndex = pCurrent->SlotId; |
| 1892 | BYTE becomesLive = pCurrent->BecomesLive; |
| 1893 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
| 1894 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
| 1895 | liveState.WriteBit(slotIndex, becomesLive); |
| 1896 | pCurrent++; |
| 1897 | } |
| 1898 | } |
| 1899 | |
| 1900 | // Encode call sites at offsets past the last transition |
| 1901 | for( ; callSiteIndex < m_NumCallSites; callSiteIndex++) |
| 1902 | { |
| 1903 | GCINFO_WRITE_VECTOR(m_Info1, liveState, CallSiteStateSize); |
| 1904 | } |
| 1905 | } |
| 1906 | |
| 1907 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
| 1908 | // Cleanup |
| 1909 | for (LiveStateHashTable::KeyIterator iter = hashMap.Begin(), end = hashMap.End(); !iter.Equal(end); iter.Next()) |
| 1910 | { |
| 1911 | m_pAllocator->Free((LPVOID)iter.Get()); |
| 1912 | } |
| 1913 | #endif // MUST_CALL_JITALLOCATOR_FREE |
| 1914 | |
| 1915 | } |
| 1916 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1917 | |
| 1918 | |
| 1919 | /////////////////////////////////////////////////////////////////////// |
| 1920 | // Fully-interruptible: Encode lifetime transitions |
| 1921 | /////////////////////////////////////////////////////////////////////// |
| 1922 | |
| 1923 | if(numInterruptibleRanges) |
| 1924 | { |
| 1925 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 1926 | //----------------------------------------------------- |
| 1927 | // Under partially-interruptible, make the transition |
| 1928 | // offsets relative to the interruptible regions |
| 1929 | //----------------------------------------------------- |
| 1930 | |
| 1931 | // Compute total length of interruptible ranges |
| 1932 | UINT32 totalInterruptibleLength = 0; |
| 1933 | for(UINT32 i = 0; i < numInterruptibleRanges; i++) |
| 1934 | { |
| 1935 | InterruptibleRange *pRange = &pRanges[i]; |
| 1936 | totalInterruptibleLength += pRange->NormStopOffset - pRange->NormStartOffset; |
| 1937 | } |
| 1938 | _ASSERTE(totalInterruptibleLength <= NORMALIZE_CODE_OFFSET(m_CodeLength)); |
| 1939 | |
| 1940 | liveState.ClearAll(); |
| 1941 | // Re-use couldBeLive |
| 1942 | BitArray& liveStateAtPrevRange = couldBeLive; |
| 1943 | liveStateAtPrevRange.ClearAll(); |
| 1944 | |
| 1945 | InterruptibleRange *pCurrentRange = pRanges; |
| 1946 | InterruptibleRange *pEndRanges = pRanges + numInterruptibleRanges; |
| 1947 | UINT32 cumInterruptibleLength = 0; |
| 1948 | |
| 1949 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
| 1950 | { |
| 1951 | _ASSERTE(!m_SlotTable[pCurrent->SlotId].IsDeleted()); |
| 1952 | |
| 1953 | // Find the first transition at offset > of the start of the current range |
| 1954 | LifetimeTransition *pFirstAfterStart = pCurrent; |
| 1955 | while(pFirstAfterStart->CodeOffset <= pCurrentRange->NormStartOffset) |
| 1956 | { |
| 1957 | UINT32 slotIndex = (UINT32) (pFirstAfterStart->SlotId); |
| 1958 | BYTE becomesLive = pFirstAfterStart->BecomesLive; |
| 1959 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
| 1960 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
| 1961 | liveState.WriteBit(slotIndex, becomesLive); |
| 1962 | |
| 1963 | if(++pFirstAfterStart == pEndTransitions) |
| 1964 | break; |
| 1965 | } |
| 1966 | |
| 1967 | // Now compare the liveState with liveStateAtPrevRange |
| 1968 | LifetimeTransition *pFirstPreserved = pFirstAfterStart; |
| 1969 | for(UINT32 slotIndex = 0; slotIndex < m_NumSlots; slotIndex++) |
| 1970 | { |
| 1971 | uint32_t isLive = liveState.ReadBit(slotIndex); |
| 1972 | if(isLive != liveStateAtPrevRange.ReadBit(slotIndex)) |
| 1973 | { |
| 1974 | pFirstPreserved--; |
| 1975 | _ASSERTE(pFirstPreserved >= pCurrent); |
| 1976 | pFirstPreserved->CodeOffset = cumInterruptibleLength; |
| 1977 | pFirstPreserved->SlotId = slotIndex; |
| 1978 | pFirstPreserved->BecomesLive = (isLive) ? 1 : 0; |
| 1979 | _ASSERTE(!pFirstPreserved->IsDeleted); |
| 1980 | } |
| 1981 | } |
| 1982 | |
| 1983 | // Mark all the other transitions since last range as deleted |
| 1984 | _ASSERTE(pCurrent <= pFirstPreserved); |
| 1985 | while(pCurrent < pFirstPreserved) |
| 1986 | { |
| 1987 | (pCurrent++)->IsDeleted = TRUE; |
| 1988 | } |
| 1989 | |
| 1990 | // Now iterate through all the remaining transitions in the range, |
| 1991 | // making the offset range-relative, and tracking live state |
| 1992 | UINT32 rangeStop = pCurrentRange->NormStopOffset; |
| 1993 | |
| 1994 | for(pCurrent = pFirstAfterStart; pCurrent < pEndTransitions && pCurrent->CodeOffset < rangeStop; pCurrent++) |
| 1995 | { |
| 1996 | pCurrent->CodeOffset = |
| 1997 | pCurrent->CodeOffset - |
| 1998 | pCurrentRange->NormStartOffset + |
| 1999 | cumInterruptibleLength; |
| 2000 | |
| 2001 | UINT32 slotIndex = (UINT32) (pCurrent->SlotId); |
| 2002 | BYTE becomesLive = pCurrent->BecomesLive; |
| 2003 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
| 2004 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
| 2005 | liveState.WriteBit(slotIndex, becomesLive); |
| 2006 | } |
| 2007 | |
| 2008 | // Move to the next range |
| 2009 | if(pCurrentRange < pEndRanges - 1) |
| 2010 | { |
| 2011 | cumInterruptibleLength += pCurrentRange->NormStopOffset - pCurrentRange->NormStartOffset; |
| 2012 | pCurrentRange++; |
| 2013 | |
| 2014 | liveStateAtPrevRange = liveState; |
| 2015 | } |
| 2016 | else |
| 2017 | { |
| 2018 | pEndTransitions = pCurrent; |
| 2019 | break; |
| 2020 | } |
| 2021 | } |
| 2022 | |
| 2023 | // Make another pass, deleting everything that's marked as deleted |
| 2024 | LifetimeTransition *pNextFree = pTransitions; |
| 2025 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
| 2026 | { |
| 2027 | if(!pCurrent->IsDeleted) |
| 2028 | { |
| 2029 | if(pCurrent > pNextFree) |
| 2030 | { |
| 2031 | *pNextFree = *pCurrent; |
| 2032 | } |
| 2033 | pNextFree++; |
| 2034 | } |
| 2035 | } |
| 2036 | pEndTransitions = pNextFree; |
| 2037 | |
| 2038 | #else |
| 2039 | UINT32 totalInterruptibleLength = NORMALIZE_CODE_OFFSET(m_CodeLength); |
| 2040 | |
| 2041 | #endif //PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 2042 | |
| 2043 | // |
| 2044 | // Initialize chunk pointers |
| 2045 | // |
| 2046 | UINT32 numChunks = (totalInterruptibleLength + NUM_NORM_CODE_OFFSETS_PER_CHUNK - 1) / NUM_NORM_CODE_OFFSETS_PER_CHUNK; |
| 2047 | _ASSERTE(numChunks > 0); |
| 2048 | |
| 2049 | size_t* pChunkPointers = (size_t*) m_pAllocator->Alloc(numChunks*sizeof(size_t)); |
| 2050 | ZeroMemory(pChunkPointers, numChunks*sizeof(size_t)); |
| 2051 | |
| 2052 | //------------------------------------------------------------------ |
| 2053 | // Encode transitions |
| 2054 | //------------------------------------------------------------------ |
| 2055 | |
| 2056 | LOG((LF_GCINFO, LL_INFO1000, "Encoding %i lifetime transitions.\n" , pEndTransitions - pTransitions)); |
| 2057 | |
| 2058 | |
| 2059 | liveState.ClearAll(); |
| 2060 | couldBeLive.ClearAll(); |
| 2061 | |
| 2062 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
| 2063 | { |
| 2064 | _ASSERTE(pCurrent->CodeOffset < m_CodeLength); |
| 2065 | |
| 2066 | UINT32 currentChunk = GetNormCodeOffsetChunk(pCurrent->CodeOffset); |
| 2067 | _ASSERTE(currentChunk < numChunks); |
| 2068 | UINT32 numTransitionsInCurrentChunk = 1; |
| 2069 | |
| 2070 | for(;;) |
| 2071 | { |
| 2072 | UINT32 slotIndex = (UINT32) (pCurrent->SlotId); |
| 2073 | BYTE becomesLive = pCurrent->BecomesLive; |
| 2074 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
| 2075 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
| 2076 | liveState.WriteBit(slotIndex, becomesLive); |
| 2077 | couldBeLive.SetBit(slotIndex); |
| 2078 | |
| 2079 | pCurrent++; |
| 2080 | if(pCurrent == pEndTransitions || GetNormCodeOffsetChunk(pCurrent->CodeOffset) != currentChunk) |
| 2081 | break; |
| 2082 | |
| 2083 | numTransitionsInCurrentChunk++; |
| 2084 | } |
| 2085 | |
| 2086 | //----------------------------------------------------- |
| 2087 | // Time to encode the chunk |
| 2088 | //----------------------------------------------------- |
| 2089 | |
| 2090 | _ASSERTE(numTransitionsInCurrentChunk > 0); |
| 2091 | |
| 2092 | // Sort the transitions in this chunk by slot |
| 2093 | qsort( |
| 2094 | pCurrent - numTransitionsInCurrentChunk, |
| 2095 | numTransitionsInCurrentChunk, |
| 2096 | sizeof(LifetimeTransition), |
| 2097 | CompareLifetimeTransitionsBySlot |
| 2098 | ); |
| 2099 | |
| 2100 | // Save chunk pointer |
| 2101 | pChunkPointers[currentChunk] = m_Info2.GetBitCount() + 1; |
| 2102 | |
| 2103 | // Write couldBeLive slot map |
| 2104 | GCINFO_WRITE_VAR_VECTOR(m_Info2, couldBeLive, LIVESTATE_RLE_SKIP_ENCBASE, LIVESTATE_RLE_RUN_ENCBASE, ChunkMaskSize); |
| 2105 | |
| 2106 | LOG((LF_GCINFO, LL_INFO100000, |
| 2107 | "Chunk %d couldBeLive (%04x-%04x):\n" , currentChunk, |
| 2108 | currentChunk * NUM_NORM_CODE_OFFSETS_PER_CHUNK, |
| 2109 | ((currentChunk + 1) * NUM_NORM_CODE_OFFSETS_PER_CHUNK) - 1 |
| 2110 | )); |
| 2111 | |
| 2112 | // Write final state |
| 2113 | // For all the bits set in couldBeLive. |
| 2114 | UINT32 i; |
| 2115 | for (BitArrayIterator iter(&couldBeLive); !iter.end(); iter++) |
| 2116 | { |
| 2117 | i = *iter; |
| 2118 | { |
| 2119 | _ASSERTE(!m_SlotTable[i].IsDeleted()); |
| 2120 | _ASSERTE(!m_SlotTable[i].IsUntracked()); |
| 2121 | GCINFO_WRITE( m_Info2, |
| 2122 | liveState.ReadBit(i) ? 1 : 0, |
| 2123 | 1, |
| 2124 | ChunkFinalStateSize |
| 2125 | ); |
| 2126 | |
| 2127 | LOG((LF_GCINFO, LL_INFO100000, |
| 2128 | "\t" LOG_GCSLOTDESC_FMT " %s at end of chunk.\n" , |
| 2129 | LOG_GCSLOTDESC_ARGS(&m_SlotTable[i]), |
| 2130 | liveState.ReadBit(i) ? "live" : "dead" )); |
| 2131 | } |
| 2132 | } |
| 2133 | |
| 2134 | // Write transitions offsets |
| 2135 | UINT32 normChunkBaseCodeOffset = currentChunk * NUM_NORM_CODE_OFFSETS_PER_CHUNK; |
| 2136 | |
| 2137 | LifetimeTransition* pT = pCurrent - numTransitionsInCurrentChunk; |
| 2138 | |
| 2139 | for (BitArrayIterator iter(&couldBeLive); !iter.end(); iter++) |
| 2140 | { |
| 2141 | i = *iter; |
| 2142 | |
| 2143 | while(pT < pCurrent) |
| 2144 | { |
| 2145 | GcSlotId slotId = pT->SlotId; |
| 2146 | if(slotId != i) |
| 2147 | break; |
| 2148 | |
| 2149 | _ASSERTE(couldBeLive.ReadBit(slotId)); |
| 2150 | |
| 2151 | LOG((LF_GCINFO, LL_INFO100000, |
| 2152 | "\tTransition " LOG_GCSLOTDESC_FMT " going %s at offset %04x.\n" , |
| 2153 | LOG_GCSLOTDESC_ARGS(&m_SlotTable[pT->SlotId]), |
| 2154 | pT->BecomesLive ? "live" : "dead" , |
| 2155 | (int) pT->CodeOffset )); |
| 2156 | |
| 2157 | // Write code offset delta |
| 2158 | UINT32 normCodeOffset = pT->CodeOffset; |
| 2159 | UINT32 normCodeOffsetDelta = normCodeOffset - normChunkBaseCodeOffset; |
| 2160 | |
| 2161 | // Don't encode transitions at offset 0 as they are useless |
| 2162 | if(normCodeOffsetDelta) |
| 2163 | { |
| 2164 | _ASSERTE(normCodeOffsetDelta < NUM_NORM_CODE_OFFSETS_PER_CHUNK); |
| 2165 | |
| 2166 | GCINFO_WRITE(m_Info2, 1, 1, ChunkTransitionSize); |
| 2167 | GCINFO_WRITE(m_Info2, normCodeOffsetDelta, NUM_NORM_CODE_OFFSETS_PER_CHUNK_LOG2, ChunkTransitionSize); |
| 2168 | |
| 2169 | #ifdef MEASURE_GCINFO |
| 2170 | m_CurrentMethodSize.NumTransitions++; |
| 2171 | #endif |
| 2172 | } |
| 2173 | |
| 2174 | pT++; |
| 2175 | } |
| 2176 | |
| 2177 | // Write terminator |
| 2178 | GCINFO_WRITE(m_Info2, 0, 1, ChunkTransitionSize); |
| 2179 | |
| 2180 | } |
| 2181 | _ASSERTE(pT == pCurrent); |
| 2182 | |
| 2183 | couldBeLive = liveState; |
| 2184 | } |
| 2185 | |
| 2186 | //--------------------------------------------------------------------- |
| 2187 | // The size of chunk encodings is now known. Write the chunk pointers. |
| 2188 | //--------------------------------------------------------------------- |
| 2189 | |
| 2190 | |
| 2191 | // Find the largest pointer |
| 2192 | size_t largestPointer = 0; |
| 2193 | for(int i = numChunks - 1; i >=0; i--) |
| 2194 | { |
| 2195 | largestPointer = pChunkPointers[i]; |
| 2196 | if(largestPointer > 0) |
| 2197 | break; |
| 2198 | } |
| 2199 | |
| 2200 | UINT32 numBitsPerPointer = CeilOfLog2(largestPointer + 1); |
| 2201 | GCINFO_WRITE_VARL_U(m_Info1, numBitsPerPointer, POINTER_SIZE_ENCBASE, ChunkPtrSize); |
| 2202 | |
| 2203 | if(numBitsPerPointer) |
| 2204 | { |
| 2205 | for(UINT32 i = 0; i < numChunks; i++) |
| 2206 | { |
| 2207 | GCINFO_WRITE(m_Info1, pChunkPointers[i], numBitsPerPointer, ChunkPtrSize); |
| 2208 | } |
| 2209 | } |
| 2210 | |
| 2211 | //------------------------------------------------------------------- |
| 2212 | // Cleanup |
| 2213 | //------------------------------------------------------------------- |
| 2214 | |
| 2215 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
| 2216 | m_pAllocator->Free(pRanges); |
| 2217 | m_pAllocator->Free(pChunkPointers); |
| 2218 | #endif |
| 2219 | } |
| 2220 | |
| 2221 | |
| 2222 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
| 2223 | m_pAllocator->Free(pTransitions); |
| 2224 | #endif |
| 2225 | |
| 2226 | |
| 2227 | lExitSuccess:; |
| 2228 | |
| 2229 | //------------------------------------------------------------------- |
| 2230 | // Update global stats |
| 2231 | //------------------------------------------------------------------- |
| 2232 | |
| 2233 | #ifdef MEASURE_GCINFO |
| 2234 | if (slimHeader) |
| 2235 | { |
| 2236 | g_NumSlimHeaders++; |
| 2237 | } |
| 2238 | else |
| 2239 | { |
| 2240 | g_NumFatHeaders++; |
| 2241 | } |
| 2242 | |
| 2243 | m_CurrentMethodSize.NumMethods = 1; |
| 2244 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 2245 | m_CurrentMethodSize.NumCallSites = m_NumCallSites; |
| 2246 | #endif |
| 2247 | m_CurrentMethodSize.NumRanges = numInterruptibleRanges; |
| 2248 | m_CurrentMethodSize.NumRegs = numRegisters; |
| 2249 | m_CurrentMethodSize.NumStack = numStackSlots; |
| 2250 | m_CurrentMethodSize.NumUntracked = numUntrackedSlots; |
| 2251 | m_CurrentMethodSize.SizeOfCode = m_CodeLength; |
| 2252 | if(numInterruptibleRanges) |
| 2253 | { |
| 2254 | g_FiGcInfoSize += m_CurrentMethodSize; |
| 2255 | m_CurrentMethodSize.Log(LL_INFO100, "=== FullyInterruptible method breakdown ===\r\n" ); |
| 2256 | g_FiGcInfoSize.Log(LL_INFO10, "=== FullyInterruptible global breakdown ===\r\n" ); |
| 2257 | } |
| 2258 | else |
| 2259 | { |
| 2260 | g_PiGcInfoSize += m_CurrentMethodSize; |
| 2261 | m_CurrentMethodSize.Log(LL_INFO100, "=== PartiallyInterruptible method breakdown ===\r\n" ); |
| 2262 | g_PiGcInfoSize.Log(LL_INFO10, "=== PartiallyInterruptible global breakdown ===\r\n" ); |
| 2263 | } |
| 2264 | LogSpew(LF_GCINFO, LL_INFO10, "Total SlimHeaders: %Iu\n" , g_NumSlimHeaders); |
| 2265 | LogSpew(LF_GCINFO, LL_INFO10, "NumMethods: %Iu\n" , g_NumFatHeaders); |
| 2266 | #endif |
| 2267 | } |
| 2268 | |
| 2269 | void GcInfoEncoder::SizeofSlotStateVarLengthVector(const BitArray &vector, |
| 2270 | UINT32 baseSkip, |
| 2271 | UINT32 baseRun, |
| 2272 | UINT32 *pSizeofSimple, |
| 2273 | UINT32 *pSizeofRLE, |
| 2274 | UINT32 *pSizeofRLENeg) |
| 2275 | { |
| 2276 | // Try 3 different encodings |
| 2277 | UINT32 sizeofSimple = 1; |
| 2278 | UINT32 sizeofRLE; |
| 2279 | UINT32 sizeofRLENeg; |
| 2280 | for(UINT32 i = 0; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
| 2281 | { |
| 2282 | if(!m_SlotTable[i].IsDeleted()) |
| 2283 | sizeofSimple++; |
| 2284 | } |
| 2285 | |
| 2286 | if (sizeofSimple <= 2 + baseSkip + 1 + baseRun + 1) |
| 2287 | { |
| 2288 | // simple encoding is smaller than the smallest of the others |
| 2289 | // without even trying |
| 2290 | sizeofRLE = sizeofSimple + 1; |
| 2291 | sizeofRLENeg = sizeofSimple + 1; |
| 2292 | } |
| 2293 | else |
| 2294 | { |
| 2295 | sizeofRLE = 2; // For the header |
| 2296 | sizeofRLENeg = 2; |
| 2297 | |
| 2298 | UINT32 rleStart = 0; |
| 2299 | bool fPrev = false; |
| 2300 | UINT32 i; |
| 2301 | for(i = 0; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
| 2302 | { |
| 2303 | if(!m_SlotTable[i].IsDeleted()) |
| 2304 | { |
| 2305 | if (vector.ReadBit(i)) |
| 2306 | { |
| 2307 | if (!fPrev) |
| 2308 | { |
| 2309 | // Skipping is done |
| 2310 | sizeofRLE += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, baseSkip); |
| 2311 | sizeofRLENeg += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, baseRun); |
| 2312 | rleStart = i + 1; |
| 2313 | fPrev = true; |
| 2314 | } |
| 2315 | } |
| 2316 | else |
| 2317 | { |
| 2318 | if (fPrev) |
| 2319 | { |
| 2320 | // Run is done |
| 2321 | sizeofRLE += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, baseRun); |
| 2322 | sizeofRLENeg += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, baseSkip); |
| 2323 | rleStart = i + 1; |
| 2324 | fPrev = false; |
| 2325 | } |
| 2326 | } |
| 2327 | } |
| 2328 | else |
| 2329 | { |
| 2330 | rleStart++; |
| 2331 | } |
| 2332 | } |
| 2333 | |
| 2334 | _ASSERTE(i >= rleStart); |
| 2335 | sizeofRLE += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, fPrev ? baseRun : baseSkip); |
| 2336 | sizeofRLENeg += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, fPrev ? baseSkip : baseRun); |
| 2337 | } |
| 2338 | |
| 2339 | *pSizeofSimple = sizeofSimple; |
| 2340 | *pSizeofRLE = sizeofRLE; |
| 2341 | *pSizeofRLENeg = sizeofRLENeg; |
| 2342 | } |
| 2343 | |
| 2344 | UINT32 GcInfoEncoder::SizeofSlotStateVarLengthVector(const BitArray &vector, |
| 2345 | UINT32 baseSkip, |
| 2346 | UINT32 baseRun) |
| 2347 | { |
| 2348 | // Try 3 different encodings |
| 2349 | UINT32 sizeofSimple; |
| 2350 | UINT32 sizeofRLE; |
| 2351 | UINT32 sizeofRLENeg; |
| 2352 | SizeofSlotStateVarLengthVector(vector, baseSkip, baseRun, &sizeofSimple, &sizeofRLE, &sizeofRLENeg); |
| 2353 | |
| 2354 | if (sizeofSimple <= sizeofRLE && sizeofSimple <= sizeofRLENeg) |
| 2355 | return sizeofSimple; |
| 2356 | if (sizeofRLE <= sizeofRLENeg) |
| 2357 | return sizeofRLE; |
| 2358 | return sizeofRLENeg; |
| 2359 | } |
| 2360 | |
| 2361 | UINT32 GcInfoEncoder::WriteSlotStateVarLengthVector(BitStreamWriter &writer, |
| 2362 | const BitArray &vector, |
| 2363 | UINT32 baseSkip, |
| 2364 | UINT32 baseRun) |
| 2365 | { |
| 2366 | // Try 3 different encodings |
| 2367 | UINT32 sizeofSimple; |
| 2368 | UINT32 sizeofRLE; |
| 2369 | UINT32 sizeofRLENeg; |
| 2370 | SizeofSlotStateVarLengthVector(vector, baseSkip, baseRun, &sizeofSimple, &sizeofRLE, &sizeofRLENeg); |
| 2371 | UINT32 result; |
| 2372 | |
| 2373 | #ifdef _DEBUG |
| 2374 | size_t initial = writer.GetBitCount(); |
| 2375 | #endif // _DEBUG |
| 2376 | |
| 2377 | if (sizeofSimple <= sizeofRLE && sizeofSimple <= sizeofRLENeg) |
| 2378 | { |
| 2379 | // Simple encoding is smallest |
| 2380 | writer.Write(0, 1); |
| 2381 | WriteSlotStateVector(writer, vector); |
| 2382 | result = sizeofSimple; |
| 2383 | } |
| 2384 | else |
| 2385 | { |
| 2386 | // One of the RLE encodings is the smallest |
| 2387 | writer.Write(1, 1); |
| 2388 | |
| 2389 | if (sizeofRLENeg < sizeofRLE) |
| 2390 | { |
| 2391 | writer.Write(1, 1); |
| 2392 | UINT32 swap = baseSkip; |
| 2393 | baseSkip = baseRun; |
| 2394 | baseRun = swap; |
| 2395 | result = sizeofRLENeg; |
| 2396 | } |
| 2397 | else |
| 2398 | { |
| 2399 | writer.Write(0, 1); |
| 2400 | result = sizeofRLE; |
| 2401 | } |
| 2402 | |
| 2403 | |
| 2404 | UINT32 rleStart = 0; |
| 2405 | UINT32 i; |
| 2406 | bool fPrev = false; |
| 2407 | for(i = 0; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
| 2408 | { |
| 2409 | if(!m_SlotTable[i].IsDeleted()) |
| 2410 | { |
| 2411 | |
| 2412 | if (vector.ReadBit(i)) |
| 2413 | { |
| 2414 | if (!fPrev) |
| 2415 | { |
| 2416 | // Skipping is done |
| 2417 | writer.EncodeVarLengthUnsigned(i - rleStart, baseSkip); |
| 2418 | rleStart = i + 1; |
| 2419 | fPrev = true; |
| 2420 | } |
| 2421 | } |
| 2422 | else |
| 2423 | { |
| 2424 | if (fPrev) |
| 2425 | { |
| 2426 | // Run is done |
| 2427 | writer.EncodeVarLengthUnsigned(i - rleStart, baseRun); |
| 2428 | rleStart = i + 1; |
| 2429 | fPrev = false; |
| 2430 | } |
| 2431 | } |
| 2432 | } |
| 2433 | else |
| 2434 | { |
| 2435 | rleStart++; |
| 2436 | } |
| 2437 | } |
| 2438 | |
| 2439 | _ASSERTE(i >= rleStart); |
| 2440 | writer.EncodeVarLengthUnsigned(i - rleStart, fPrev ? baseRun : baseSkip); |
| 2441 | } |
| 2442 | |
| 2443 | #ifdef _DEBUG |
| 2444 | _ASSERTE(result + initial == writer.GetBitCount()); |
| 2445 | #endif // _DEBUG |
| 2446 | |
| 2447 | return result; |
| 2448 | } |
| 2449 | |
| 2450 | |
| 2451 | void GcInfoEncoder::EliminateRedundantLiveDeadPairs(LifetimeTransition** ppTransitions, |
| 2452 | size_t* pNumTransitions, |
| 2453 | LifetimeTransition** ppEndTransitions) |
| 2454 | { |
| 2455 | LifetimeTransition* pTransitions = *ppTransitions; |
| 2456 | LifetimeTransition* pEndTransitions = *ppEndTransitions; |
| 2457 | |
| 2458 | LifetimeTransition* pNewTransitions = NULL; |
| 2459 | LifetimeTransition* pNewTransitionsCopyPtr = NULL; |
| 2460 | for (LifetimeTransition* pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
| 2461 | { |
| 2462 | // Is pCurrent the first of a dead/live pair? |
| 2463 | LifetimeTransition* pNext = pCurrent + 1; |
| 2464 | if (pNext < pEndTransitions && |
| 2465 | pCurrent->CodeOffset == pNext->CodeOffset && |
| 2466 | pCurrent->SlotId == pNext->SlotId && |
| 2467 | pCurrent->IsDeleted == pNext->IsDeleted && |
| 2468 | pCurrent->BecomesLive != pNext->BecomesLive) |
| 2469 | { |
| 2470 | // They are a pair we want to delete. If this is the first pair we've encountered, allocate |
| 2471 | // the new array: |
| 2472 | if (pNewTransitions == NULL) |
| 2473 | { |
| 2474 | pNewTransitions = (LifetimeTransition*)m_pAllocator->Alloc((*pNumTransitions) * sizeof(LifetimeTransition)); |
| 2475 | pNewTransitionsCopyPtr = pNewTransitions; |
| 2476 | // Copy from the start up to (but not including) pCurrent... |
| 2477 | for (LifetimeTransition* pCopyPtr = pTransitions; pCopyPtr < pCurrent; pCopyPtr++, pNewTransitionsCopyPtr++) |
| 2478 | *pNewTransitionsCopyPtr = *pCopyPtr; |
| 2479 | } |
| 2480 | pCurrent++; |
| 2481 | } |
| 2482 | else |
| 2483 | { |
| 2484 | // pCurrent is not part of a pair. If we're copying, copy. |
| 2485 | if (pNewTransitionsCopyPtr != NULL) |
| 2486 | { |
| 2487 | *pNewTransitionsCopyPtr++ = *pCurrent; |
| 2488 | } |
| 2489 | } |
| 2490 | } |
| 2491 | // If we deleted any pairs, substitute the new array for the old. |
| 2492 | if (pNewTransitions != NULL) |
| 2493 | { |
| 2494 | m_pAllocator->Free(pTransitions); |
| 2495 | *ppTransitions = pNewTransitions; |
| 2496 | assert(pNewTransitionsCopyPtr != NULL); |
| 2497 | *ppEndTransitions = pNewTransitionsCopyPtr; |
| 2498 | *pNumTransitions = (*ppEndTransitions) - (*ppTransitions); |
| 2499 | } |
| 2500 | } |
| 2501 | |
| 2502 | // |
| 2503 | // Write encoded information to its final destination and frees temporary buffers. |
| 2504 | // The encoder shouldn't be used anymore after calling this method. |
| 2505 | // |
| 2506 | BYTE* GcInfoEncoder::Emit() |
| 2507 | { |
| 2508 | size_t cbGcInfoSize = m_Info1.GetByteCount() + |
| 2509 | m_Info2.GetByteCount(); |
| 2510 | |
| 2511 | LOG((LF_GCINFO, LL_INFO100, "GcInfoEncoder::Emit(): Size of GC info is %u bytes, code size %u bytes.\n" , (unsigned)cbGcInfoSize, m_CodeLength )); |
| 2512 | |
| 2513 | BYTE* destBuffer = (BYTE *)eeAllocGCInfo(cbGcInfoSize); |
| 2514 | // Allocator will throw an exception on failure. |
| 2515 | // NOTE: the returned pointer may not be aligned during ngen. |
| 2516 | _ASSERTE( destBuffer ); |
| 2517 | |
| 2518 | BYTE* ptr = destBuffer; |
| 2519 | |
| 2520 | m_Info1.CopyTo( ptr ); |
| 2521 | ptr += m_Info1.GetByteCount(); |
| 2522 | m_Info1.Dispose(); |
| 2523 | |
| 2524 | m_Info2.CopyTo( ptr ); |
| 2525 | ptr += m_Info2.GetByteCount(); |
| 2526 | m_Info2.Dispose(); |
| 2527 | |
| 2528 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
| 2529 | m_pAllocator->Free( m_SlotTable ); |
| 2530 | #endif |
| 2531 | |
| 2532 | return destBuffer; |
| 2533 | } |
| 2534 | |
| 2535 | void * GcInfoEncoder::eeAllocGCInfo (size_t blockSize) |
| 2536 | { |
| 2537 | return m_pCorJitInfo->allocGCInfo(blockSize); |
| 2538 | } |
| 2539 | |
| 2540 | |
| 2541 | BitStreamWriter::BitStreamWriter( IAllocator* pAllocator ) |
| 2542 | { |
| 2543 | m_pAllocator = pAllocator; |
| 2544 | m_BitCount = 0; |
| 2545 | #ifdef _DEBUG |
| 2546 | m_MemoryBlocksCount = 0; |
| 2547 | #endif |
| 2548 | |
| 2549 | // Allocate memory blocks lazily |
| 2550 | m_OutOfBlockSlot = m_pCurrentSlot = (size_t*) NULL; |
| 2551 | m_FreeBitsInCurrentSlot = 0; |
| 2552 | } |
| 2553 | |
| 2554 | // |
| 2555 | // bit 0 is the least significative bit |
| 2556 | // The stream encodes the first come bit in the least significant bit of each byte |
| 2557 | // |
| 2558 | void BitStreamWriter::Write( size_t data, UINT32 count ) |
| 2559 | { |
| 2560 | _ASSERT(count <= BITS_PER_SIZE_T); |
| 2561 | |
| 2562 | if(count) |
| 2563 | { |
| 2564 | // Increment it now as we change count later on |
| 2565 | m_BitCount += count; |
| 2566 | |
| 2567 | if( count > m_FreeBitsInCurrentSlot ) |
| 2568 | { |
| 2569 | if( m_FreeBitsInCurrentSlot > 0 ) |
| 2570 | { |
| 2571 | _ASSERTE(m_FreeBitsInCurrentSlot < BITS_PER_SIZE_T); |
| 2572 | WriteInCurrentSlot( data, m_FreeBitsInCurrentSlot ); |
| 2573 | count -= m_FreeBitsInCurrentSlot; |
| 2574 | data >>= m_FreeBitsInCurrentSlot; |
| 2575 | } |
| 2576 | |
| 2577 | _ASSERTE( count > 0 ); |
| 2578 | |
| 2579 | // Initialize the next slot |
| 2580 | if( ++m_pCurrentSlot >= m_OutOfBlockSlot ) |
| 2581 | { |
| 2582 | // Get a new memory block |
| 2583 | AllocMemoryBlock(); |
| 2584 | } |
| 2585 | |
| 2586 | InitCurrentSlot(); |
| 2587 | |
| 2588 | // Write the remainder |
| 2589 | WriteInCurrentSlot( data, count ); |
| 2590 | m_FreeBitsInCurrentSlot -= count; |
| 2591 | } |
| 2592 | else |
| 2593 | { |
| 2594 | WriteInCurrentSlot( data, count ); |
| 2595 | m_FreeBitsInCurrentSlot -= count; |
| 2596 | // if m_FreeBitsInCurrentSlot becomes 0 a nwe slot will initialized on the next request |
| 2597 | } |
| 2598 | } |
| 2599 | } |
| 2600 | |
| 2601 | |
| 2602 | void BitStreamWriter::CopyTo( BYTE* buffer ) |
| 2603 | { |
| 2604 | int i,c; |
| 2605 | BYTE* source = NULL; |
| 2606 | |
| 2607 | MemoryBlock* pMemBlock = m_MemoryBlocks.Head(); |
| 2608 | if( pMemBlock == NULL ) |
| 2609 | return; |
| 2610 | |
| 2611 | while (pMemBlock->Next() != NULL) |
| 2612 | { |
| 2613 | source = (BYTE*) pMemBlock->Contents; |
| 2614 | // @TODO: use memcpy instead |
| 2615 | for( i = 0; i < m_MemoryBlockSize; i++ ) |
| 2616 | { |
| 2617 | *( buffer++ ) = *( source++ ); |
| 2618 | } |
| 2619 | |
| 2620 | pMemBlock = pMemBlock->Next(); |
| 2621 | } |
| 2622 | |
| 2623 | source = (BYTE*) pMemBlock->Contents; |
| 2624 | // The number of bytes to copy in the last block |
| 2625 | c = (int) ((BYTE*) ( m_pCurrentSlot + 1 ) - source - m_FreeBitsInCurrentSlot/8); |
| 2626 | _ASSERTE( c >= 0 ); |
| 2627 | // @TODO: use memcpy instead |
| 2628 | for( i = 0; i < c; i++ ) |
| 2629 | { |
| 2630 | *( buffer++ ) = *( source++ ); |
| 2631 | } |
| 2632 | |
| 2633 | } |
| 2634 | |
| 2635 | void BitStreamWriter::Dispose() |
| 2636 | { |
| 2637 | m_MemoryBlocks.Dispose(m_pAllocator); |
| 2638 | } |
| 2639 | |
| 2640 | int BitStreamWriter::SizeofVarLengthUnsigned( size_t n, UINT32 base) |
| 2641 | { |
| 2642 | // If a value gets so big we are probably doing something wrong |
| 2643 | _ASSERTE(((INT32)(UINT32)n) >= 0); |
| 2644 | _ASSERTE((base > 0) && (base < BITS_PER_SIZE_T)); |
| 2645 | size_t numEncodings = size_t{ 1 } << base; |
| 2646 | int bitsUsed; |
| 2647 | for(bitsUsed = base+1; ; bitsUsed += base+1) |
| 2648 | { |
| 2649 | if( n < numEncodings ) |
| 2650 | { |
| 2651 | return bitsUsed; |
| 2652 | } |
| 2653 | else |
| 2654 | { |
| 2655 | n >>= base; |
| 2656 | } |
| 2657 | } |
| 2658 | return bitsUsed; |
| 2659 | } |
| 2660 | |
| 2661 | int BitStreamWriter::EncodeVarLengthUnsigned( size_t n, UINT32 base) |
| 2662 | { |
| 2663 | // If a value gets so big we are probably doing something wrong |
| 2664 | _ASSERTE(((INT32)(UINT32)n) >= 0); |
| 2665 | _ASSERTE((base > 0) && (base < BITS_PER_SIZE_T)); |
| 2666 | size_t numEncodings = size_t{ 1 } << base; |
| 2667 | int bitsUsed; |
| 2668 | for(bitsUsed = base+1; ; bitsUsed += base+1) |
| 2669 | { |
| 2670 | if( n < numEncodings ) |
| 2671 | { |
| 2672 | Write( n, base+1 ); // This sets the extension bit to zero |
| 2673 | return bitsUsed; |
| 2674 | } |
| 2675 | else |
| 2676 | { |
| 2677 | size_t currentChunk = n & (numEncodings-1); |
| 2678 | Write( currentChunk | numEncodings, base+1 ); |
| 2679 | n >>= base; |
| 2680 | } |
| 2681 | } |
| 2682 | return bitsUsed; |
| 2683 | } |
| 2684 | |
| 2685 | int BitStreamWriter::EncodeVarLengthSigned( SSIZE_T n, UINT32 base ) |
| 2686 | { |
| 2687 | _ASSERTE((base > 0) && (base < BITS_PER_SIZE_T)); |
| 2688 | size_t numEncodings = size_t{ 1 } << base; |
| 2689 | for(int bitsUsed = base+1; ; bitsUsed += base+1) |
| 2690 | { |
| 2691 | size_t currentChunk = ((size_t) n) & (numEncodings-1); |
| 2692 | size_t topmostBit = currentChunk & (numEncodings >> 1); |
| 2693 | n >>= base; // signed arithmetic shift |
| 2694 | if((topmostBit && (n == (SSIZE_T)-1)) || (!topmostBit && (n == 0))) |
| 2695 | { |
| 2696 | // The topmost bit correctly represents the sign |
| 2697 | Write( currentChunk, base+1 ); // This sets the extension bit to zero |
| 2698 | return bitsUsed; |
| 2699 | } |
| 2700 | else |
| 2701 | { |
| 2702 | Write( currentChunk | numEncodings, base+1 ); |
| 2703 | } |
| 2704 | } |
| 2705 | } |
| 2706 | |
| 2707 | |