1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /***************************************************************************** |
6 | * |
7 | * GC Information Encoding API |
8 | * |
9 | */ |
10 | |
11 | #include <stdint.h> |
12 | |
13 | #include "gcinfoencoder.h" |
14 | |
15 | #ifdef _DEBUG |
16 | #ifndef LOGGING |
17 | #define LOGGING |
18 | #endif |
19 | #endif |
20 | |
21 | #ifndef STANDALONE_BUILD |
22 | #include "log.h" |
23 | #include "simplerhash.h" |
24 | #include "bitposition.h" |
25 | #endif |
26 | |
27 | #ifdef MEASURE_GCINFO |
28 | #define GCINFO_WRITE(writer, val, numBits, counter) \ |
29 | { \ |
30 | writer.Write(val, numBits); \ |
31 | m_CurrentMethodSize.counter += numBits; \ |
32 | m_CurrentMethodSize.TotalSize += numBits; \ |
33 | } |
34 | #define GCINFO_WRITE_VARL_U(writer, val, base, counter) \ |
35 | { \ |
36 | size_t __temp = \ |
37 | writer.EncodeVarLengthUnsigned(val, base); \ |
38 | m_CurrentMethodSize.counter += __temp; \ |
39 | m_CurrentMethodSize.TotalSize += __temp; \ |
40 | } |
41 | #define GCINFO_WRITE_VARL_S(writer, val, base, counter) \ |
42 | { \ |
43 | size_t __temp = \ |
44 | writer.EncodeVarLengthSigned(val, base); \ |
45 | m_CurrentMethodSize.counter += __temp; \ |
46 | m_CurrentMethodSize.TotalSize += __temp; \ |
47 | } |
48 | #define GCINFO_WRITE_VECTOR(writer, vector, counter) \ |
49 | { \ |
50 | WriteSlotStateVector(writer, vector); \ |
51 | for(UINT32 i = 0; i < m_NumSlots; i++) \ |
52 | { \ |
53 | if(!m_SlotTable[i].IsDeleted() && \ |
54 | !m_SlotTable[i].IsUntracked()) \ |
55 | { \ |
56 | m_CurrentMethodSize.counter++; \ |
57 | m_CurrentMethodSize.TotalSize++; \ |
58 | } \ |
59 | } \ |
60 | } |
61 | #define GCINFO_WRITE_VAR_VECTOR(writer, vector, baseSkip, baseRun, counter) \ |
62 | { \ |
63 | size_t __temp = \ |
64 | WriteSlotStateVarLengthVector(writer, vector, baseSkip, baseRun); \ |
65 | m_CurrentMethodSize.counter += __temp; \ |
66 | m_CurrentMethodSize.TotalSize += __temp; \ |
67 | } |
68 | #else |
69 | #define GCINFO_WRITE(writer, val, numBits, counter) \ |
70 | writer.Write(val, numBits); |
71 | |
72 | #define GCINFO_WRITE_VARL_U(writer, val, base, counter) \ |
73 | writer.EncodeVarLengthUnsigned(val, base); |
74 | |
75 | #define GCINFO_WRITE_VARL_S(writer, val, base, counter) \ |
76 | writer.EncodeVarLengthSigned(val, base); |
77 | |
78 | #define GCINFO_WRITE_VECTOR(writer, vector, counter) \ |
79 | WriteSlotStateVector(writer, vector); |
80 | |
81 | #define GCINFO_WRITE_VAR_VECTOR(writer, vector, baseSkip, baseRun, counter) \ |
82 | WriteSlotStateVarLengthVector(writer, vector, baseSkip, baseRun); |
83 | #endif |
84 | |
85 | #define LOG_GCSLOTDESC_FMT "%s%c%d%s%s%s" |
86 | #define LOG_GCSLOTDESC_ARGS(pDesc) (pDesc)->IsRegister() ? "register" \ |
87 | : GcStackSlotBaseNames[(pDesc)->Slot.Stack.Base], \ |
88 | (pDesc)->IsRegister() ? ' ' : (pDesc)->Slot.Stack.SpOffset < 0 ? '-' : '+', \ |
89 | (pDesc)->IsRegister() ? (pDesc)->Slot.RegisterNumber \ |
90 | : ((pDesc)->Slot.Stack.SpOffset), \ |
91 | (pDesc)->IsPinned() ? " pinned" : "", \ |
92 | (pDesc)->IsInterior() ? " interior" : "", \ |
93 | (pDesc)->IsUntracked() ? " untracked" : "" |
94 | |
95 | #define LOG_REGTRANSITION_FMT "register %u%s%s" |
96 | #define LOG_REGTRANSITION_ARGS(RegisterNumber, Flags) \ |
97 | RegisterNumber, \ |
98 | (Flags & GC_SLOT_PINNED) ? " pinned" : "", \ |
99 | (Flags & GC_SLOT_INTERIOR) ? " interior" : "" |
100 | |
101 | #define LOG_STACKTRANSITION_FMT "%s%c%d%s%s%s" |
102 | #define LOG_STACKTRANSITION_ARGS(BaseRegister, StackOffset, Flags) \ |
103 | GcStackSlotBaseNames[BaseRegister], \ |
104 | ((StackOffset) < 0) ? '-' : '+', \ |
105 | ((StackOffset) >= 0) ? (StackOffset) \ |
106 | : -(StackOffset), \ |
107 | (Flags & GC_SLOT_PINNED) ? " pinned" : "", \ |
108 | (Flags & GC_SLOT_INTERIOR) ? " interior" : "", \ |
109 | (Flags & GC_SLOT_UNTRACKED) ? " untracked" : "" |
110 | |
111 | class BitArray |
112 | { |
113 | friend class BitArrayIterator; |
114 | typedef uint32_t ChunkType; |
115 | static constexpr size_t NumBitsPerChunk = sizeof(ChunkType) * CHAR_BIT; |
116 | public: |
117 | BitArray(IAllocator* pJitAllocator, size_t numBits) |
118 | { |
119 | const size_t numChunks = (numBits + NumBitsPerChunk - 1) / NumBitsPerChunk; |
120 | m_pData = (ChunkType*)pJitAllocator->Alloc(sizeof(ChunkType) * numChunks); |
121 | m_pEndData = m_pData + numChunks; |
122 | #ifdef MUST_CALL_IALLOCATOR_FREE |
123 | m_pJitAllocator = pJitAllocator; |
124 | #endif |
125 | } |
126 | |
127 | inline void SetBit( size_t pos ) |
128 | { |
129 | size_t element = pos / NumBitsPerChunk; |
130 | int bpos = (int)(pos % NumBitsPerChunk); |
131 | m_pData[element] |= ((ChunkType)1 << bpos); |
132 | } |
133 | |
134 | inline void ClearBit( size_t pos ) |
135 | { |
136 | size_t element = pos / NumBitsPerChunk; |
137 | int bpos = (int)(pos % NumBitsPerChunk); |
138 | m_pData[element] &= ~((ChunkType)1 << bpos); |
139 | } |
140 | |
141 | inline void SetAll() |
142 | { |
143 | ChunkType* ptr = m_pData; |
144 | while(ptr < m_pEndData) |
145 | *(ptr++) = ~(ChunkType)0; |
146 | } |
147 | |
148 | inline void ClearAll() |
149 | { |
150 | ChunkType* ptr = m_pData; |
151 | while(ptr < m_pEndData) |
152 | *(ptr++) = (ChunkType)0; |
153 | } |
154 | |
155 | inline void WriteBit( size_t pos, BOOL val) |
156 | { |
157 | if(val) |
158 | SetBit(pos); |
159 | else |
160 | ClearBit(pos); |
161 | } |
162 | |
163 | inline uint32_t ReadBit( size_t pos ) const |
164 | { |
165 | size_t element = pos / NumBitsPerChunk; |
166 | int bpos = (int)(pos % NumBitsPerChunk); |
167 | return (m_pData[element] & ((ChunkType)1 << bpos)); |
168 | } |
169 | |
170 | inline bool operator==(const BitArray &other) const |
171 | { |
172 | _ASSERTE(other.m_pEndData - other.m_pData == m_pEndData - m_pData); |
173 | ChunkType* dest = m_pData; |
174 | ChunkType* src = other.m_pData; |
175 | return 0 == memcmp(dest, src, (m_pEndData - m_pData) * sizeof(ChunkType)); |
176 | } |
177 | |
178 | inline int GetHashCode() const |
179 | { |
180 | const int* src = (const int*)m_pData; |
181 | int result = *src++; |
182 | while (src < (const int*)m_pEndData) |
183 | result = _rotr(result, 5) ^ *src++; |
184 | return result; |
185 | } |
186 | |
187 | inline BitArray& operator=(const BitArray &other) |
188 | { |
189 | _ASSERTE(other.m_pEndData - other.m_pData == m_pEndData - m_pData); |
190 | ChunkType* dest = m_pData; |
191 | ChunkType* src = other.m_pData; |
192 | while(dest < m_pEndData) |
193 | *(dest++) = *(src++); |
194 | |
195 | return *this; |
196 | } |
197 | |
198 | inline BitArray& operator|=(const BitArray &other) |
199 | { |
200 | _ASSERTE(other.m_pEndData - other.m_pData == m_pEndData - m_pData); |
201 | ChunkType* dest = m_pData; |
202 | ChunkType* src = other.m_pData; |
203 | while(dest < m_pEndData) |
204 | *(dest++) |= *(src++); |
205 | |
206 | return *this; |
207 | } |
208 | |
209 | #ifdef MUST_CALL_IALLOCATOR_FREE |
210 | ~BitArray() |
211 | { |
212 | m_pAllocator->Free( m_pData ); |
213 | } |
214 | #endif |
215 | |
216 | static void* operator new(size_t size, IAllocator* allocator) |
217 | { |
218 | return allocator->Alloc(size); |
219 | } |
220 | |
221 | private: |
222 | ChunkType * m_pData; |
223 | ChunkType * m_pEndData; |
224 | #ifdef MUST_CALL_IALLOCATOR_FREE |
225 | IAllocator* m_pJitAllocator; |
226 | #endif |
227 | }; |
228 | |
229 | |
230 | class BitArrayIterator |
231 | { |
232 | public: |
233 | BitArrayIterator(BitArray* bitArray) |
234 | { |
235 | m_pCurData = (unsigned *)bitArray->m_pData; |
236 | m_pEndData = (unsigned *)bitArray->m_pEndData; |
237 | m_curBits = *m_pCurData; |
238 | m_curBit = 0; |
239 | m_curBase = 0; |
240 | GetNext(); |
241 | } |
242 | void operator++(int dummy) //int dummy is c++ for "this is postfix ++" |
243 | { |
244 | GetNext(); |
245 | } |
246 | |
247 | void operator++() // prefix ++ |
248 | { |
249 | GetNext(); |
250 | } |
251 | void GetNext() |
252 | { |
253 | m_curBits -= m_curBit; |
254 | while (m_curBits == 0) |
255 | { |
256 | m_pCurData++; |
257 | m_curBase += 32; |
258 | if (m_pCurData == m_pEndData) |
259 | break; |
260 | m_curBits = *m_pCurData; |
261 | } |
262 | m_curBit = (unsigned)((int)m_curBits & -(int)m_curBits); |
263 | } |
264 | unsigned operator*() |
265 | { |
266 | assert(!end() && (m_curBit != 0)); |
267 | unsigned bitPosition = BitPosition(m_curBit); |
268 | return bitPosition + m_curBase; |
269 | } |
270 | bool end() |
271 | { |
272 | return (m_pCurData == m_pEndData); |
273 | } |
274 | private: |
275 | unsigned* m_pCurData; |
276 | unsigned* m_pEndData; |
277 | unsigned m_curBits; |
278 | unsigned m_curBit; |
279 | unsigned m_curBase; |
280 | }; |
281 | |
282 | class LiveStateFuncs |
283 | { |
284 | public: |
285 | static int GetHashCode(const BitArray * key) |
286 | { |
287 | return key->GetHashCode(); |
288 | } |
289 | |
290 | static bool Equals(const BitArray * k1, const BitArray * k2) |
291 | { |
292 | return *k1 == *k2; |
293 | } |
294 | }; |
295 | |
296 | class GcInfoNoMemoryException |
297 | { |
298 | }; |
299 | |
300 | class GcInfoHashBehavior |
301 | { |
302 | public: |
303 | static const unsigned s_growth_factor_numerator = 3; |
304 | static const unsigned s_growth_factor_denominator = 2; |
305 | |
306 | static const unsigned s_density_factor_numerator = 3; |
307 | static const unsigned s_density_factor_denominator = 4; |
308 | |
309 | static const unsigned s_minimum_allocation = 7; |
310 | |
311 | inline static void DECLSPEC_NORETURN NoMemory() |
312 | { |
313 | throw GcInfoNoMemoryException(); |
314 | } |
315 | }; |
316 | |
317 | typedef SimplerHashTable<const BitArray *, LiveStateFuncs, UINT32, GcInfoHashBehavior> LiveStateHashTable; |
318 | |
319 | #ifdef MEASURE_GCINFO |
320 | // Fi = fully-interruptible; we count any method that has one or more interruptible ranges |
321 | // Pi = partially-interruptible; methods with zero fully-interruptible ranges |
322 | GcInfoSize g_FiGcInfoSize; |
323 | GcInfoSize g_PiGcInfoSize; |
324 | // Number of methods with GcInfo that have SlimHeader |
325 | size_t = 0; |
326 | // Number of methods with GcInfo that have FatHeader |
327 | size_t = 0; |
328 | |
329 | GcInfoSize::GcInfoSize() |
330 | { |
331 | memset(this, 0, sizeof(*this)); |
332 | } |
333 | |
334 | GcInfoSize& GcInfoSize::operator+=(const GcInfoSize& other) |
335 | { |
336 | TotalSize += other.TotalSize; |
337 | |
338 | NumMethods += other.NumMethods; |
339 | NumCallSites += other.NumCallSites; |
340 | NumRanges += other.NumRanges; |
341 | NumRegs += other.NumRegs; |
342 | NumStack += other.NumStack; |
343 | NumUntracked += other.NumUntracked; |
344 | NumTransitions += other.NumTransitions; |
345 | SizeOfCode += other.SizeOfCode; |
346 | EncPreservedSlots += other.EncPreservedSlots; |
347 | |
348 | UntrackedSlotSize += other.UntrackedSlotSize; |
349 | NumUntrackedSize += other.NumUntrackedSize; |
350 | FlagsSize += other.FlagsSize; |
351 | CodeLengthSize += other.CodeLengthSize; |
352 | ProEpilogSize += other.ProEpilogSize; |
353 | SecObjSize += other.SecObjSize; |
354 | GsCookieSize += other.GsCookieSize; |
355 | GenericsCtxSize += other.GenericsCtxSize; |
356 | PspSymSize += other.PspSymSize; |
357 | StackBaseSize += other.StackBaseSize; |
358 | ReversePInvokeFrameSize += other.ReversePInvokeFrameSize; |
359 | FixedAreaSize += other.FixedAreaSize; |
360 | NumCallSitesSize += other.NumCallSitesSize; |
361 | NumRangesSize += other.NumRangesSize; |
362 | CallSitePosSize += other.CallSitePosSize; |
363 | RangeSize += other.RangeSize; |
364 | NumRegsSize += other.NumRegsSize; |
365 | NumStackSize += other.NumStackSize; |
366 | RegSlotSize += other.RegSlotSize; |
367 | StackSlotSize += other.StackSlotSize; |
368 | CallSiteStateSize += other.CallSiteStateSize; |
369 | EhPosSize += other.EhPosSize; |
370 | EhStateSize += other.EhStateSize; |
371 | ChunkPtrSize += other.ChunkPtrSize; |
372 | ChunkMaskSize += other.ChunkMaskSize; |
373 | ChunkFinalStateSize += other.ChunkFinalStateSize; |
374 | ChunkTransitionSize += other.ChunkTransitionSize; |
375 | |
376 | return *this; |
377 | } |
378 | |
379 | void GcInfoSize::Log(DWORD level, const char * ) |
380 | { |
381 | if(LoggingOn(LF_GCINFO, level)) |
382 | { |
383 | LogSpew(LF_GCINFO, level, header); |
384 | |
385 | LogSpew(LF_GCINFO, level, "---COUNTS---\n" ); |
386 | LogSpew(LF_GCINFO, level, "NumMethods: %Iu\n" , NumMethods); |
387 | LogSpew(LF_GCINFO, level, "NumCallSites: %Iu\n" , NumCallSites); |
388 | LogSpew(LF_GCINFO, level, "NumRanges: %Iu\n" , NumRanges); |
389 | LogSpew(LF_GCINFO, level, "NumRegs: %Iu\n" , NumRegs); |
390 | LogSpew(LF_GCINFO, level, "NumStack: %Iu\n" , NumStack); |
391 | LogSpew(LF_GCINFO, level, "NumUntracked: %Iu\n" , NumUntracked); |
392 | LogSpew(LF_GCINFO, level, "NumTransitions: %Iu\n" , NumTransitions); |
393 | LogSpew(LF_GCINFO, level, "SizeOfCode: %Iu\n" , SizeOfCode); |
394 | LogSpew(LF_GCINFO, level, "EncPreservedSlots: %Iu\n" , EncPreservedSlots); |
395 | |
396 | LogSpew(LF_GCINFO, level, "---SIZES(bits)---\n" ); |
397 | LogSpew(LF_GCINFO, level, "Total: %Iu\n" , TotalSize); |
398 | LogSpew(LF_GCINFO, level, "UntrackedSlot: %Iu\n" , UntrackedSlotSize); |
399 | LogSpew(LF_GCINFO, level, "NumUntracked: %Iu\n" , NumUntrackedSize); |
400 | LogSpew(LF_GCINFO, level, "Flags: %Iu\n" , FlagsSize); |
401 | LogSpew(LF_GCINFO, level, "CodeLength: %Iu\n" , CodeLengthSize); |
402 | LogSpew(LF_GCINFO, level, "Prolog/Epilog: %Iu\n" , ProEpilogSize); |
403 | LogSpew(LF_GCINFO, level, "SecObj: %Iu\n" , SecObjSize); |
404 | LogSpew(LF_GCINFO, level, "GsCookie: %Iu\n" , GsCookieSize); |
405 | LogSpew(LF_GCINFO, level, "PspSym: %Iu\n" , PspSymSize); |
406 | LogSpew(LF_GCINFO, level, "GenericsCtx: %Iu\n" , GenericsCtxSize); |
407 | LogSpew(LF_GCINFO, level, "StackBase: %Iu\n" , StackBaseSize); |
408 | LogSpew(LF_GCINFO, level, "FixedArea: %Iu\n" , FixedAreaSize); |
409 | LogSpew(LF_GCINFO, level, "ReversePInvokeFrame: %Iu\n" , ReversePInvokeFrameSize); |
410 | LogSpew(LF_GCINFO, level, "NumCallSites: %Iu\n" , NumCallSitesSize); |
411 | LogSpew(LF_GCINFO, level, "NumRanges: %Iu\n" , NumRangesSize); |
412 | LogSpew(LF_GCINFO, level, "CallSiteOffsets: %Iu\n" , CallSitePosSize); |
413 | LogSpew(LF_GCINFO, level, "Ranges: %Iu\n" , RangeSize); |
414 | LogSpew(LF_GCINFO, level, "NumRegs: %Iu\n" , NumRegsSize); |
415 | LogSpew(LF_GCINFO, level, "NumStack: %Iu\n" , NumStackSize); |
416 | LogSpew(LF_GCINFO, level, "RegSlots: %Iu\n" , RegSlotSize); |
417 | LogSpew(LF_GCINFO, level, "StackSlots: %Iu\n" , StackSlotSize); |
418 | LogSpew(LF_GCINFO, level, "CallSiteStates: %Iu\n" , CallSiteStateSize); |
419 | LogSpew(LF_GCINFO, level, "EhOffsets: %Iu\n" , EhPosSize); |
420 | LogSpew(LF_GCINFO, level, "EhStates: %Iu\n" , EhStateSize); |
421 | LogSpew(LF_GCINFO, level, "ChunkPointers: %Iu\n" , ChunkPtrSize); |
422 | LogSpew(LF_GCINFO, level, "ChunkMasks: %Iu\n" , ChunkMaskSize); |
423 | LogSpew(LF_GCINFO, level, "ChunkFinalStates: %Iu\n" , ChunkFinalStateSize); |
424 | LogSpew(LF_GCINFO, level, "Transitions: %Iu\n" , ChunkTransitionSize); |
425 | } |
426 | } |
427 | |
428 | #endif |
429 | |
430 | GcInfoEncoder::GcInfoEncoder( |
431 | ICorJitInfo* pCorJitInfo, |
432 | CORINFO_METHOD_INFO* pMethodInfo, |
433 | IAllocator* pJitAllocator, |
434 | NoMemoryFunction pNoMem |
435 | ) |
436 | : m_Info1( pJitAllocator ), |
437 | m_Info2( pJitAllocator ), |
438 | m_InterruptibleRanges( pJitAllocator ), |
439 | m_LifetimeTransitions( pJitAllocator ) |
440 | { |
441 | #ifdef MEASURE_GCINFO |
442 | // This causes multiple complus.log files in JIT64. TODO: consider using ICorJitInfo::logMsg instead. |
443 | InitializeLogging(); |
444 | #endif |
445 | |
446 | _ASSERTE( pCorJitInfo != NULL ); |
447 | _ASSERTE( pMethodInfo != NULL ); |
448 | _ASSERTE( pJitAllocator != NULL ); |
449 | _ASSERTE( pNoMem != NULL ); |
450 | |
451 | m_pCorJitInfo = pCorJitInfo; |
452 | m_pMethodInfo = pMethodInfo; |
453 | m_pAllocator = pJitAllocator; |
454 | m_pNoMem = pNoMem; |
455 | |
456 | #ifdef _DEBUG |
457 | CORINFO_METHOD_HANDLE methodHandle = pMethodInfo->ftn; |
458 | |
459 | // Get the name of the current method along with the enclosing class |
460 | // or module name. |
461 | m_MethodName = |
462 | pCorJitInfo->getMethodName(methodHandle, (const char **)&m_ModuleName); |
463 | #endif |
464 | |
465 | |
466 | m_SlotTableSize = m_SlotTableInitialSize; |
467 | m_SlotTable = (GcSlotDesc*) m_pAllocator->Alloc( m_SlotTableSize*sizeof(GcSlotDesc) ); |
468 | m_NumSlots = 0; |
469 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
470 | m_pCallSites = NULL; |
471 | m_pCallSiteSizes = NULL; |
472 | m_NumCallSites = 0; |
473 | #endif |
474 | |
475 | m_SecurityObjectStackSlot = NO_SECURITY_OBJECT; |
476 | m_GSCookieStackSlot = NO_GS_COOKIE; |
477 | m_GSCookieValidRangeStart = 0; |
478 | _ASSERTE(sizeof(m_GSCookieValidRangeEnd) == sizeof(UINT32)); |
479 | m_GSCookieValidRangeEnd = (UINT32) (-1); // == UINT32.MaxValue |
480 | m_PSPSymStackSlot = NO_PSP_SYM; |
481 | m_GenericsInstContextStackSlot = NO_GENERICS_INST_CONTEXT; |
482 | m_contextParamType = GENERIC_CONTEXTPARAM_NONE; |
483 | |
484 | m_StackBaseRegister = NO_STACK_BASE_REGISTER; |
485 | m_SizeOfEditAndContinuePreservedArea = NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA; |
486 | m_ReversePInvokeFrameSlot = NO_REVERSE_PINVOKE_FRAME; |
487 | #ifdef _TARGET_AMD64_ |
488 | m_WantsReportOnlyLeaf = false; |
489 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
490 | m_HasTailCalls = false; |
491 | #endif // _TARGET_AMD64_ |
492 | m_IsVarArg = false; |
493 | m_pLastInterruptibleRange = NULL; |
494 | |
495 | #ifdef _DEBUG |
496 | m_IsSlotTableFrozen = FALSE; |
497 | #endif //_DEBUG |
498 | |
499 | #ifndef _TARGET_X86_ |
500 | // If the compiler doesn't set the GCInfo, report RT_Unset. |
501 | // This is used for compatibility with JITs that aren't updated to use the new API. |
502 | m_ReturnKind = RT_Unset; |
503 | #else |
504 | m_ReturnKind = RT_Illegal; |
505 | #endif // _TARGET_X86_ |
506 | m_CodeLength = 0; |
507 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
508 | m_SizeOfStackOutgoingAndScratchArea = -1; |
509 | #endif // FIXED_STACK_PARAMETER_SCRATCH_AREA |
510 | |
511 | } |
512 | |
513 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
514 | void GcInfoEncoder::DefineCallSites(UINT32* pCallSites, BYTE* pCallSiteSizes, UINT32 numCallSites) |
515 | { |
516 | m_pCallSites = pCallSites; |
517 | m_pCallSiteSizes = pCallSiteSizes; |
518 | m_NumCallSites = numCallSites; |
519 | #ifdef _DEBUG |
520 | for(UINT32 i=0; i<numCallSites; i++) |
521 | { |
522 | _ASSERTE(pCallSiteSizes[i] > 0); |
523 | _ASSERTE(DENORMALIZE_CODE_OFFSET(NORMALIZE_CODE_OFFSET(pCallSites[i])) == pCallSites[i]); |
524 | if(i > 0) |
525 | { |
526 | UINT32 prevEnd = pCallSites[i-1] + pCallSiteSizes[i-1]; |
527 | UINT32 curStart = pCallSites[i]; |
528 | _ASSERTE(curStart >= prevEnd); |
529 | } |
530 | } |
531 | #endif |
532 | } |
533 | #endif |
534 | |
535 | GcSlotId GcInfoEncoder::GetRegisterSlotId( UINT32 regNum, GcSlotFlags flags ) |
536 | { |
537 | // We could lookup an existing identical slot in the slot table (via some hashtable mechanism). |
538 | // We just create duplicates for now. |
539 | |
540 | #ifdef _DEBUG |
541 | _ASSERTE( !m_IsSlotTableFrozen ); |
542 | #endif |
543 | |
544 | if( m_NumSlots == m_SlotTableSize ) |
545 | { |
546 | GrowSlotTable(); |
547 | } |
548 | _ASSERTE( m_NumSlots < m_SlotTableSize ); |
549 | |
550 | _ASSERTE( (flags & (GC_SLOT_IS_REGISTER | GC_SLOT_IS_DELETED | GC_SLOT_UNTRACKED)) == 0 ); |
551 | m_SlotTable[ m_NumSlots ].Slot.RegisterNumber = regNum; |
552 | m_SlotTable[ m_NumSlots ].Flags = (GcSlotFlags) (flags | GC_SLOT_IS_REGISTER); |
553 | |
554 | GcSlotId newSlotId; |
555 | newSlotId = m_NumSlots++; |
556 | |
557 | return newSlotId; |
558 | } |
559 | |
560 | GcSlotId GcInfoEncoder::GetStackSlotId( INT32 spOffset, GcSlotFlags flags, GcStackSlotBase spBase ) |
561 | { |
562 | // We could lookup an existing identical slot in the slot table (via some hashtable mechanism). |
563 | // We just create duplicates for now. |
564 | |
565 | #ifdef _DEBUG |
566 | _ASSERTE( !m_IsSlotTableFrozen ); |
567 | #endif |
568 | |
569 | if( m_NumSlots == m_SlotTableSize ) |
570 | { |
571 | GrowSlotTable(); |
572 | } |
573 | _ASSERTE( m_NumSlots < m_SlotTableSize ); |
574 | |
575 | // Not valid to reference anything below the current stack pointer |
576 | _ASSERTE(GC_SP_REL != spBase || spOffset >= 0); |
577 | |
578 | _ASSERTE( (flags & (GC_SLOT_IS_REGISTER | GC_SLOT_IS_DELETED)) == 0 ); |
579 | |
580 | // the spOffset for the stack slot is required to be pointer size aligned |
581 | _ASSERTE((spOffset % TARGET_POINTER_SIZE) == 0); |
582 | |
583 | m_SlotTable[ m_NumSlots ].Slot.Stack.SpOffset = spOffset; |
584 | m_SlotTable[ m_NumSlots ].Slot.Stack.Base = spBase; |
585 | m_SlotTable[ m_NumSlots ].Flags = flags; |
586 | |
587 | GcSlotId newSlotId; |
588 | newSlotId = m_NumSlots++; |
589 | |
590 | return newSlotId; |
591 | } |
592 | |
593 | void GcInfoEncoder::GrowSlotTable() |
594 | { |
595 | m_SlotTableSize *= 2; |
596 | GcSlotDesc* newSlotTable = (GcSlotDesc*) m_pAllocator->Alloc( m_SlotTableSize * sizeof(GcSlotDesc) ); |
597 | memcpy( newSlotTable, m_SlotTable, m_NumSlots * sizeof(GcSlotDesc) ); |
598 | |
599 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
600 | m_pAllocator->Free( m_SlotTable ); |
601 | #endif |
602 | |
603 | m_SlotTable = newSlotTable; |
604 | } |
605 | |
606 | void GcInfoEncoder::WriteSlotStateVector(BitStreamWriter &writer, const BitArray& vector) |
607 | { |
608 | for(UINT32 i = 0; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
609 | { |
610 | if(!m_SlotTable[i].IsDeleted()) |
611 | writer.Write(vector.ReadBit(i) ? 1 : 0, 1); |
612 | else |
613 | _ASSERTE(vector.ReadBit(i) == 0); |
614 | } |
615 | } |
616 | |
617 | void GcInfoEncoder::DefineInterruptibleRange( UINT32 startInstructionOffset, UINT32 length ) |
618 | { |
619 | UINT32 stopInstructionOffset = startInstructionOffset + length; |
620 | |
621 | UINT32 normStartOffset = NORMALIZE_CODE_OFFSET(startInstructionOffset); |
622 | UINT32 normStopOffset = NORMALIZE_CODE_OFFSET(stopInstructionOffset); |
623 | |
624 | // Ranges must not overlap and must be passed sorted by increasing offset |
625 | _ASSERTE( |
626 | m_pLastInterruptibleRange == NULL || |
627 | normStartOffset >= m_pLastInterruptibleRange->NormStopOffset |
628 | ); |
629 | |
630 | // Ignore empty ranges |
631 | if(normStopOffset > normStartOffset) |
632 | { |
633 | if(m_pLastInterruptibleRange |
634 | && normStartOffset == m_pLastInterruptibleRange->NormStopOffset) |
635 | { |
636 | // Merge adjacent ranges |
637 | m_pLastInterruptibleRange->NormStopOffset = normStopOffset; |
638 | } |
639 | else |
640 | { |
641 | InterruptibleRange range; |
642 | range.NormStartOffset = normStartOffset; |
643 | range.NormStopOffset = normStopOffset; |
644 | m_pLastInterruptibleRange = m_InterruptibleRanges.Append(); |
645 | *m_pLastInterruptibleRange = range; |
646 | } |
647 | } |
648 | |
649 | LOG((LF_GCINFO, LL_INFO1000000, "interruptible at %x length %x\n" , startInstructionOffset, length)); |
650 | } |
651 | |
652 | |
653 | |
654 | // |
655 | // For inputs, pass zero as offset |
656 | // |
657 | void GcInfoEncoder::SetSlotState( |
658 | UINT32 instructionOffset, |
659 | GcSlotId slotId, |
660 | GcSlotState slotState |
661 | ) |
662 | { |
663 | _ASSERTE( (m_SlotTable[ slotId ].Flags & GC_SLOT_UNTRACKED) == 0 ); |
664 | |
665 | LifetimeTransition transition; |
666 | |
667 | transition.SlotId = slotId; |
668 | transition.CodeOffset = instructionOffset; |
669 | transition.BecomesLive = ( slotState == GC_SLOT_LIVE ); |
670 | transition.IsDeleted = FALSE; |
671 | |
672 | *( m_LifetimeTransitions.Append() ) = transition; |
673 | |
674 | LOG((LF_GCINFO, LL_INFO1000000, LOG_GCSLOTDESC_FMT " %s at %x\n" , LOG_GCSLOTDESC_ARGS(&m_SlotTable[slotId]), slotState == GC_SLOT_LIVE ? "live" : "dead" , instructionOffset)); |
675 | } |
676 | |
677 | |
678 | void GcInfoEncoder::SetIsVarArg() |
679 | { |
680 | m_IsVarArg = true; |
681 | } |
682 | |
683 | void GcInfoEncoder::SetCodeLength( UINT32 length ) |
684 | { |
685 | _ASSERTE( length > 0 ); |
686 | _ASSERTE( m_CodeLength == 0 || m_CodeLength == length ); |
687 | m_CodeLength = length; |
688 | } |
689 | |
690 | |
691 | void GcInfoEncoder::SetSecurityObjectStackSlot( INT32 spOffset ) |
692 | { |
693 | _ASSERTE( spOffset != NO_SECURITY_OBJECT ); |
694 | #if defined(_TARGET_AMD64_) |
695 | _ASSERTE( spOffset < 0x10 && "The security object cannot reside in an input variable!" ); |
696 | #endif |
697 | _ASSERTE( m_SecurityObjectStackSlot == NO_SECURITY_OBJECT || m_SecurityObjectStackSlot == spOffset ); |
698 | |
699 | m_SecurityObjectStackSlot = spOffset; |
700 | } |
701 | |
702 | void GcInfoEncoder::SetPrologSize( UINT32 prologSize ) |
703 | { |
704 | _ASSERTE(prologSize != 0); |
705 | _ASSERTE(m_GSCookieValidRangeStart == 0 || m_GSCookieValidRangeStart == prologSize); |
706 | _ASSERTE(m_GSCookieValidRangeEnd == (UINT32)(-1) || m_GSCookieValidRangeEnd == prologSize+1); |
707 | |
708 | m_GSCookieValidRangeStart = prologSize; |
709 | // satisfy asserts that assume m_GSCookieValidRangeStart != 0 ==> m_GSCookieValidRangeStart < m_GSCookieValidRangeEnd |
710 | m_GSCookieValidRangeEnd = prologSize+1; |
711 | } |
712 | |
713 | void GcInfoEncoder::SetGSCookieStackSlot( INT32 spOffsetGSCookie, UINT32 validRangeStart, UINT32 validRangeEnd ) |
714 | { |
715 | _ASSERTE( spOffsetGSCookie != NO_GS_COOKIE ); |
716 | _ASSERTE( m_GSCookieStackSlot == NO_GS_COOKIE || m_GSCookieStackSlot == spOffsetGSCookie ); |
717 | _ASSERTE( validRangeStart < validRangeEnd ); |
718 | |
719 | m_GSCookieStackSlot = spOffsetGSCookie; |
720 | m_GSCookieValidRangeStart = validRangeStart; |
721 | m_GSCookieValidRangeEnd = validRangeEnd; |
722 | } |
723 | |
724 | void GcInfoEncoder::SetPSPSymStackSlot( INT32 spOffsetPSPSym ) |
725 | { |
726 | _ASSERTE( spOffsetPSPSym != NO_PSP_SYM ); |
727 | _ASSERTE( m_PSPSymStackSlot == NO_PSP_SYM || m_PSPSymStackSlot == spOffsetPSPSym ); |
728 | |
729 | m_PSPSymStackSlot = spOffsetPSPSym; |
730 | } |
731 | |
732 | void GcInfoEncoder::SetGenericsInstContextStackSlot( INT32 spOffsetGenericsContext, GENERIC_CONTEXTPARAM_TYPE type) |
733 | { |
734 | _ASSERTE( spOffsetGenericsContext != NO_GENERICS_INST_CONTEXT); |
735 | _ASSERTE( m_GenericsInstContextStackSlot == NO_GENERICS_INST_CONTEXT || m_GenericsInstContextStackSlot == spOffsetGenericsContext ); |
736 | |
737 | m_GenericsInstContextStackSlot = spOffsetGenericsContext; |
738 | m_contextParamType = type; |
739 | } |
740 | |
741 | void GcInfoEncoder::SetStackBaseRegister( UINT32 regNum ) |
742 | { |
743 | _ASSERTE( regNum != NO_STACK_BASE_REGISTER ); |
744 | _ASSERTE(DENORMALIZE_STACK_BASE_REGISTER(NORMALIZE_STACK_BASE_REGISTER(regNum)) == regNum); |
745 | _ASSERTE( m_StackBaseRegister == NO_STACK_BASE_REGISTER || m_StackBaseRegister == regNum ); |
746 | m_StackBaseRegister = regNum; |
747 | } |
748 | |
749 | void GcInfoEncoder::SetSizeOfEditAndContinuePreservedArea( UINT32 slots ) |
750 | { |
751 | _ASSERTE( slots != NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA ); |
752 | _ASSERTE( m_SizeOfEditAndContinuePreservedArea == NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA ); |
753 | m_SizeOfEditAndContinuePreservedArea = slots; |
754 | } |
755 | |
756 | #ifdef _TARGET_AMD64_ |
757 | void GcInfoEncoder::SetWantsReportOnlyLeaf() |
758 | { |
759 | m_WantsReportOnlyLeaf = true; |
760 | } |
761 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
762 | void GcInfoEncoder::SetHasTailCalls() |
763 | { |
764 | m_HasTailCalls = true; |
765 | } |
766 | #endif // _TARGET_AMD64_ |
767 | |
768 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
769 | void GcInfoEncoder::SetSizeOfStackOutgoingAndScratchArea( UINT32 size ) |
770 | { |
771 | _ASSERTE( size != (UINT32)-1 ); |
772 | _ASSERTE( m_SizeOfStackOutgoingAndScratchArea == (UINT32)-1 || m_SizeOfStackOutgoingAndScratchArea == size ); |
773 | m_SizeOfStackOutgoingAndScratchArea = size; |
774 | } |
775 | #endif // FIXED_STACK_PARAMETER_SCRATCH_AREA |
776 | |
777 | void GcInfoEncoder::SetReversePInvokeFrameSlot(INT32 spOffset) |
778 | { |
779 | m_ReversePInvokeFrameSlot = spOffset; |
780 | } |
781 | |
782 | void GcInfoEncoder::SetReturnKind(ReturnKind returnKind) |
783 | { |
784 | _ASSERTE(IsValidReturnKind(returnKind)); |
785 | |
786 | m_ReturnKind = returnKind; |
787 | } |
788 | |
789 | struct GcSlotDescAndId |
790 | { |
791 | GcSlotDesc m_SlotDesc; |
792 | UINT32 m_SlotId; |
793 | }; |
794 | |
795 | int __cdecl CompareSlotDescAndIdBySlotDesc(const void* p1, const void* p2) |
796 | { |
797 | const GcSlotDesc* pFirst = &reinterpret_cast<const GcSlotDescAndId*>(p1)->m_SlotDesc; |
798 | const GcSlotDesc* pSecond = &reinterpret_cast<const GcSlotDescAndId*>(p2)->m_SlotDesc; |
799 | |
800 | int firstFlags = pFirst->Flags ^ GC_SLOT_UNTRACKED; |
801 | int secondFlags = pSecond->Flags ^ GC_SLOT_UNTRACKED; |
802 | |
803 | // All registers come before all stack slots |
804 | // All untracked come last |
805 | // Then sort them by flags, ensuring that the least-frequent interior/pinned flag combinations are first |
806 | // This is accomplished in the comparison of flags, since we encode IsRegister in the highest flag bit |
807 | // And we XOR the UNTRACKED flag to place them last in the second highest flag bit |
808 | if( firstFlags > secondFlags ) return -1; |
809 | if( firstFlags < secondFlags ) return 1; |
810 | |
811 | // Then sort them by slot |
812 | if( pFirst->IsRegister() ) |
813 | { |
814 | _ASSERTE( pSecond->IsRegister() ); |
815 | if( pFirst->Slot.RegisterNumber < pSecond->Slot.RegisterNumber ) return -1; |
816 | if( pFirst->Slot.RegisterNumber > pSecond->Slot.RegisterNumber ) return 1; |
817 | } |
818 | else |
819 | { |
820 | _ASSERTE( !pSecond->IsRegister() ); |
821 | if( pFirst->Slot.Stack.SpOffset < pSecond->Slot.Stack.SpOffset ) return -1; |
822 | if( pFirst->Slot.Stack.SpOffset > pSecond->Slot.Stack.SpOffset ) return 1; |
823 | |
824 | // This is arbitrary, but we want to make sure they are considered separate slots |
825 | if( pFirst->Slot.Stack.Base < pSecond->Slot.Stack.Base ) return -1; |
826 | if( pFirst->Slot.Stack.Base > pSecond->Slot.Stack.Base ) return 1; |
827 | } |
828 | |
829 | // If we get here, the slots are identical |
830 | _ASSERTE(!"Duplicate slots definitions found in GC information!" ); |
831 | return 0; |
832 | } |
833 | |
834 | |
835 | int __cdecl CompareLifetimeTransitionsByOffsetThenSlot(const void* p1, const void* p2) |
836 | { |
837 | const GcInfoEncoder::LifetimeTransition* pFirst = (const GcInfoEncoder::LifetimeTransition*) p1; |
838 | const GcInfoEncoder::LifetimeTransition* pSecond = (const GcInfoEncoder::LifetimeTransition*) p2; |
839 | |
840 | UINT32 firstOffset = pFirst->CodeOffset; |
841 | UINT32 secondOffset = pSecond->CodeOffset; |
842 | |
843 | if (firstOffset == secondOffset) |
844 | { |
845 | return pFirst->SlotId - pSecond->SlotId; |
846 | } |
847 | else |
848 | { |
849 | return firstOffset - secondOffset; |
850 | } |
851 | } |
852 | |
853 | |
854 | int __cdecl CompareLifetimeTransitionsBySlot(const void* p1, const void* p2) |
855 | { |
856 | const GcInfoEncoder::LifetimeTransition* pFirst = (const GcInfoEncoder::LifetimeTransition*) p1; |
857 | const GcInfoEncoder::LifetimeTransition* pSecond = (const GcInfoEncoder::LifetimeTransition*) p2; |
858 | |
859 | UINT32 firstOffset = pFirst->CodeOffset; |
860 | UINT32 secondOffset = pSecond->CodeOffset; |
861 | |
862 | _ASSERTE(GetNormCodeOffsetChunk(firstOffset) == GetNormCodeOffsetChunk(secondOffset)); |
863 | |
864 | // Sort them by slot |
865 | if( pFirst->SlotId < pSecond->SlotId ) return -1; |
866 | if( pFirst->SlotId > pSecond->SlotId ) return 1; |
867 | |
868 | // Then sort them by code offset |
869 | if( firstOffset < secondOffset ) |
870 | return -1; |
871 | else |
872 | { |
873 | _ASSERTE(( firstOffset > secondOffset ) && "Redundant transitions found in GC info!" ); |
874 | return 1; |
875 | } |
876 | } |
877 | |
878 | BitStreamWriter::MemoryBlockList::MemoryBlockList() |
879 | : m_head(nullptr), |
880 | m_tail(nullptr) |
881 | { |
882 | } |
883 | |
884 | BitStreamWriter::MemoryBlock* BitStreamWriter::MemoryBlockList::AppendNew(IAllocator* allocator, size_t bytes) |
885 | { |
886 | auto* memBlock = reinterpret_cast<MemoryBlock*>(allocator->Alloc(sizeof(MemoryBlock) + bytes)); |
887 | memBlock->m_next = nullptr; |
888 | |
889 | if (m_tail != nullptr) |
890 | { |
891 | _ASSERTE(m_head != nullptr); |
892 | m_tail->m_next = memBlock; |
893 | } |
894 | else |
895 | { |
896 | _ASSERTE(m_head == nullptr); |
897 | m_head = memBlock; |
898 | } |
899 | |
900 | m_tail = memBlock; |
901 | return memBlock; |
902 | } |
903 | |
904 | void BitStreamWriter::MemoryBlockList::Dispose(IAllocator* allocator) |
905 | { |
906 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
907 | for (MemoryBlock* block = m_head, *next; block != nullptr; block = next) |
908 | { |
909 | next = block->m_next; |
910 | allocator->Free(block); |
911 | } |
912 | m_head = nullptr; |
913 | m_tail = nullptr; |
914 | #endif |
915 | } |
916 | |
917 | void GcInfoEncoder::FinalizeSlotIds() |
918 | { |
919 | #ifdef _DEBUG |
920 | m_IsSlotTableFrozen = TRUE; |
921 | #endif |
922 | } |
923 | |
924 | bool GcInfoEncoder::IsAlwaysScratch(GcSlotDesc &slotDesc) |
925 | { |
926 | #if defined(_TARGET_ARM_) |
927 | |
928 | _ASSERTE( m_SizeOfStackOutgoingAndScratchArea != (UINT32)-1 ); |
929 | if(slotDesc.IsRegister()) |
930 | { |
931 | int regNum = (int) slotDesc.Slot.RegisterNumber; |
932 | _ASSERTE(regNum >= 0 && regNum <= 14); |
933 | _ASSERTE(regNum != 13); // sp |
934 | |
935 | return ((regNum <= 3) || (regNum >= 12)); // R12 and R14/LR are both scratch registers |
936 | } |
937 | else if (!slotDesc.IsUntracked() && (slotDesc.Slot.Stack.Base == GC_SP_REL) && |
938 | ((UINT32)slotDesc.Slot.Stack.SpOffset < m_SizeOfStackOutgoingAndScratchArea)) |
939 | { |
940 | return TRUE; |
941 | } |
942 | else |
943 | return FALSE; |
944 | |
945 | #elif defined(_TARGET_AMD64_) |
946 | |
947 | _ASSERTE( m_SizeOfStackOutgoingAndScratchArea != (UINT32)-1 ); |
948 | if(slotDesc.IsRegister()) |
949 | { |
950 | int regNum = (int) slotDesc.Slot.RegisterNumber; |
951 | _ASSERTE(regNum >= 0 && regNum <= 16); |
952 | _ASSERTE(regNum != 4); // rsp |
953 | |
954 | UINT16 PreservedRegMask = |
955 | (1 << 3) // rbx |
956 | | (1 << 5) // rbp |
957 | #ifndef UNIX_AMD64_ABI |
958 | | (1 << 6) // rsi |
959 | | (1 << 7) // rdi |
960 | #endif // UNIX_AMD64_ABI |
961 | | (1 << 12) // r12 |
962 | | (1 << 13) // r13 |
963 | | (1 << 14) // r14 |
964 | | (1 << 15); // r15 |
965 | |
966 | return !(PreservedRegMask & (1 << regNum)); |
967 | } |
968 | else if (!slotDesc.IsUntracked() && (slotDesc.Slot.Stack.Base == GC_SP_REL) && |
969 | ((UINT32)slotDesc.Slot.Stack.SpOffset < m_SizeOfStackOutgoingAndScratchArea)) |
970 | { |
971 | return TRUE; |
972 | } |
973 | else |
974 | return FALSE; |
975 | |
976 | #else |
977 | return FALSE; |
978 | #endif |
979 | } |
980 | |
981 | void GcInfoEncoder::Build() |
982 | { |
983 | #ifdef _DEBUG |
984 | _ASSERTE(m_IsSlotTableFrozen || m_NumSlots == 0); |
985 | #endif |
986 | |
987 | _ASSERTE((1 << NUM_NORM_CODE_OFFSETS_PER_CHUNK_LOG2) == NUM_NORM_CODE_OFFSETS_PER_CHUNK); |
988 | |
989 | LOG((LF_GCINFO, LL_INFO100, |
990 | "Entering GcInfoEncoder::Build() for method %s[%s]\n" , |
991 | m_MethodName, m_ModuleName |
992 | )); |
993 | |
994 | |
995 | /////////////////////////////////////////////////////////////////////// |
996 | // Method header |
997 | /////////////////////////////////////////////////////////////////////// |
998 | |
999 | |
1000 | UINT32 hasSecurityObject = (m_SecurityObjectStackSlot != NO_SECURITY_OBJECT); |
1001 | UINT32 hasGSCookie = (m_GSCookieStackSlot != NO_GS_COOKIE); |
1002 | UINT32 hasContextParamType = (m_GenericsInstContextStackSlot != NO_GENERICS_INST_CONTEXT); |
1003 | UINT32 hasReversePInvokeFrame = (m_ReversePInvokeFrameSlot != NO_REVERSE_PINVOKE_FRAME); |
1004 | |
1005 | BOOL = (!m_IsVarArg && !hasSecurityObject && !hasGSCookie && (m_PSPSymStackSlot == NO_PSP_SYM) && |
1006 | !hasContextParamType && (m_InterruptibleRanges.Count() == 0) && !hasReversePInvokeFrame && |
1007 | ((m_StackBaseRegister == NO_STACK_BASE_REGISTER) || (NORMALIZE_STACK_BASE_REGISTER(m_StackBaseRegister) == 0))) && |
1008 | (m_SizeOfEditAndContinuePreservedArea == NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA) && |
1009 | #ifdef _TARGET_AMD64_ |
1010 | !m_WantsReportOnlyLeaf && |
1011 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
1012 | !m_HasTailCalls && |
1013 | #endif // _TARGET_AMD64_ |
1014 | !IsStructReturnKind(m_ReturnKind); |
1015 | |
1016 | // All new code is generated for the latest GCINFO_VERSION. |
1017 | // So, always encode RetunrKind and encode ReversePInvokeFrameSlot where applicable. |
1018 | if (slimHeader) |
1019 | { |
1020 | // Slim encoding means nothing special, partially interruptible, maybe a default frame register |
1021 | GCINFO_WRITE(m_Info1, 0, 1, FlagsSize); // Slim encoding |
1022 | GCINFO_WRITE(m_Info1, (m_StackBaseRegister == NO_STACK_BASE_REGISTER) ? 0 : 1, 1, FlagsSize); |
1023 | |
1024 | GCINFO_WRITE(m_Info1, m_ReturnKind, SIZE_OF_RETURN_KIND_IN_SLIM_HEADER, RetKindSize); |
1025 | } |
1026 | else |
1027 | { |
1028 | GCINFO_WRITE(m_Info1, 1, 1, FlagsSize); // Fat encoding |
1029 | GCINFO_WRITE(m_Info1, (m_IsVarArg ? 1 : 0), 1, FlagsSize); |
1030 | GCINFO_WRITE(m_Info1, (hasSecurityObject ? 1 : 0), 1, FlagsSize); |
1031 | GCINFO_WRITE(m_Info1, (hasGSCookie ? 1 : 0), 1, FlagsSize); |
1032 | GCINFO_WRITE(m_Info1, ((m_PSPSymStackSlot != NO_PSP_SYM) ? 1 : 0), 1, FlagsSize); |
1033 | GCINFO_WRITE(m_Info1, m_contextParamType, 2, FlagsSize); |
1034 | GCINFO_WRITE(m_Info1, ((m_StackBaseRegister != NO_STACK_BASE_REGISTER) ? 1 : 0), 1, FlagsSize); |
1035 | #ifdef _TARGET_AMD64_ |
1036 | GCINFO_WRITE(m_Info1, (m_WantsReportOnlyLeaf ? 1 : 0), 1, FlagsSize); |
1037 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
1038 | GCINFO_WRITE(m_Info1, (m_HasTailCalls ? 1 : 0), 1, FlagsSize); |
1039 | #endif // _TARGET_AMD64_ |
1040 | GCINFO_WRITE(m_Info1, ((m_SizeOfEditAndContinuePreservedArea != NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA) ? 1 : 0), 1, FlagsSize); |
1041 | GCINFO_WRITE(m_Info1, (hasReversePInvokeFrame ? 1 : 0), 1, FlagsSize); |
1042 | |
1043 | GCINFO_WRITE(m_Info1, m_ReturnKind, SIZE_OF_RETURN_KIND_IN_FAT_HEADER, RetKindSize); |
1044 | } |
1045 | |
1046 | _ASSERTE( m_CodeLength > 0 ); |
1047 | _ASSERTE(DENORMALIZE_CODE_LENGTH(NORMALIZE_CODE_LENGTH(m_CodeLength)) == m_CodeLength); |
1048 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_CODE_LENGTH(m_CodeLength), CODE_LENGTH_ENCBASE, CodeLengthSize); |
1049 | |
1050 | if(hasGSCookie) |
1051 | { |
1052 | _ASSERTE(!slimHeader); |
1053 | // Save the valid code range, to be used for determining when GS cookie validation |
1054 | // should be performed |
1055 | // Encode an intersection of valid offsets |
1056 | UINT32 intersectionStart = m_GSCookieValidRangeStart; |
1057 | UINT32 intersectionEnd = m_GSCookieValidRangeEnd; |
1058 | |
1059 | _ASSERTE(intersectionStart > 0 && intersectionStart < m_CodeLength); |
1060 | _ASSERTE(intersectionEnd > 0 && intersectionEnd <= m_CodeLength); |
1061 | _ASSERTE(intersectionStart <= intersectionEnd); |
1062 | UINT32 normPrologSize = NORMALIZE_CODE_OFFSET(intersectionStart); |
1063 | UINT32 normEpilogSize = NORMALIZE_CODE_OFFSET(m_CodeLength) - NORMALIZE_CODE_OFFSET(intersectionEnd); |
1064 | _ASSERTE(normPrologSize > 0 && normPrologSize < m_CodeLength); |
1065 | _ASSERTE(normEpilogSize < m_CodeLength); |
1066 | |
1067 | GCINFO_WRITE_VARL_U(m_Info1, normPrologSize-1, NORM_PROLOG_SIZE_ENCBASE, ProEpilogSize); |
1068 | GCINFO_WRITE_VARL_U(m_Info1, normEpilogSize, NORM_EPILOG_SIZE_ENCBASE, ProEpilogSize); |
1069 | } |
1070 | else if (hasSecurityObject || hasContextParamType) |
1071 | { |
1072 | _ASSERTE(!slimHeader); |
1073 | // Save the prolog size, to be used for determining when it is not safe |
1074 | // to report generics param context and the security object |
1075 | _ASSERTE(m_GSCookieValidRangeStart > 0 && m_GSCookieValidRangeStart < m_CodeLength); |
1076 | UINT32 normPrologSize = NORMALIZE_CODE_OFFSET(m_GSCookieValidRangeStart); |
1077 | _ASSERTE(normPrologSize > 0 && normPrologSize < m_CodeLength); |
1078 | |
1079 | GCINFO_WRITE_VARL_U(m_Info1, normPrologSize-1, NORM_PROLOG_SIZE_ENCBASE, ProEpilogSize); |
1080 | } |
1081 | |
1082 | // Encode the offset to the security object. |
1083 | if(hasSecurityObject) |
1084 | { |
1085 | _ASSERTE(!slimHeader); |
1086 | #ifdef _DEBUG |
1087 | LOG((LF_GCINFO, LL_INFO1000, "Security object at " FMT_STK "\n" , |
1088 | DBG_STK(m_SecurityObjectStackSlot) |
1089 | )); |
1090 | #endif |
1091 | |
1092 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_SecurityObjectStackSlot), SECURITY_OBJECT_STACK_SLOT_ENCBASE, SecObjSize); |
1093 | } |
1094 | |
1095 | // Encode the offset to the GS cookie. |
1096 | if(hasGSCookie) |
1097 | { |
1098 | _ASSERTE(!slimHeader); |
1099 | #ifdef _DEBUG |
1100 | LOG((LF_GCINFO, LL_INFO1000, "GS cookie at " FMT_STK "\n" , |
1101 | DBG_STK(m_GSCookieStackSlot) |
1102 | )); |
1103 | #endif |
1104 | |
1105 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_GSCookieStackSlot), GS_COOKIE_STACK_SLOT_ENCBASE, GsCookieSize); |
1106 | |
1107 | } |
1108 | |
1109 | // Encode the offset to the PSPSym. |
1110 | // The PSPSym is relative to the caller SP on IA64 and the initial stack pointer before stack allocations on X64. |
1111 | if(m_PSPSymStackSlot != NO_PSP_SYM) |
1112 | { |
1113 | _ASSERTE(!slimHeader); |
1114 | #ifdef _DEBUG |
1115 | LOG((LF_GCINFO, LL_INFO1000, "Parent PSP at " FMT_STK "\n" , DBG_STK(m_PSPSymStackSlot))); |
1116 | #endif |
1117 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_PSPSymStackSlot), PSP_SYM_STACK_SLOT_ENCBASE, PspSymSize); |
1118 | } |
1119 | |
1120 | // Encode the offset to the generics type context. |
1121 | if(m_GenericsInstContextStackSlot != NO_GENERICS_INST_CONTEXT) |
1122 | { |
1123 | _ASSERTE(!slimHeader); |
1124 | #ifdef _DEBUG |
1125 | LOG((LF_GCINFO, LL_INFO1000, "Generics instantiation context at " FMT_STK "\n" , |
1126 | DBG_STK(m_GenericsInstContextStackSlot) |
1127 | )); |
1128 | #endif |
1129 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_GenericsInstContextStackSlot), GENERICS_INST_CONTEXT_STACK_SLOT_ENCBASE, GenericsCtxSize); |
1130 | } |
1131 | |
1132 | if(!slimHeader && (m_StackBaseRegister != NO_STACK_BASE_REGISTER)) |
1133 | { |
1134 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_STACK_BASE_REGISTER(m_StackBaseRegister), STACK_BASE_REGISTER_ENCBASE, StackBaseSize); |
1135 | } |
1136 | |
1137 | if (m_SizeOfEditAndContinuePreservedArea != NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA) |
1138 | { |
1139 | GCINFO_WRITE_VARL_U(m_Info1, m_SizeOfEditAndContinuePreservedArea, SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA_ENCBASE, EncPreservedSlots); |
1140 | } |
1141 | |
1142 | if (hasReversePInvokeFrame) |
1143 | { |
1144 | _ASSERTE(!slimHeader); |
1145 | GCINFO_WRITE_VARL_S(m_Info1, NORMALIZE_STACK_SLOT(m_ReversePInvokeFrameSlot), REVERSE_PINVOKE_FRAME_ENCBASE, ReversePInvokeFrameSize); |
1146 | } |
1147 | |
1148 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
1149 | if (!slimHeader) |
1150 | { |
1151 | _ASSERTE( m_SizeOfStackOutgoingAndScratchArea != (UINT32)-1 ); |
1152 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_SIZE_OF_STACK_AREA(m_SizeOfStackOutgoingAndScratchArea), SIZE_OF_STACK_AREA_ENCBASE, FixedAreaSize); |
1153 | } |
1154 | #endif // FIXED_STACK_PARAMETER_SCRATCH_AREA |
1155 | |
1156 | UINT32 numInterruptibleRanges = (UINT32) m_InterruptibleRanges.Count(); |
1157 | |
1158 | InterruptibleRange *pRanges = NULL; |
1159 | if(numInterruptibleRanges) |
1160 | { |
1161 | pRanges = (InterruptibleRange*) m_pAllocator->Alloc(numInterruptibleRanges * sizeof(InterruptibleRange)); |
1162 | m_InterruptibleRanges.CopyTo(pRanges); |
1163 | } |
1164 | |
1165 | BitArray liveState(m_pAllocator, m_NumSlots); |
1166 | BitArray couldBeLive(m_pAllocator, m_NumSlots); |
1167 | liveState.ClearAll(); |
1168 | couldBeLive.ClearAll(); |
1169 | |
1170 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1171 | _ASSERTE(m_NumCallSites == 0 || m_pCallSites != NULL); |
1172 | |
1173 | /////////////////////////////////////////////////////////////////////// |
1174 | // Normalize call sites |
1175 | // Eliminate call sites that fall inside interruptible ranges |
1176 | /////////////////////////////////////////////////////////////////////// |
1177 | |
1178 | UINT32 numCallSites = 0; |
1179 | for(UINT32 callSiteIndex = 0; callSiteIndex < m_NumCallSites; callSiteIndex++) |
1180 | { |
1181 | UINT32 callSite = m_pCallSites[callSiteIndex]; |
1182 | // There's a contract with the EE that says for non-leaf stack frames, where the |
1183 | // method is stopped at a call site, the EE will not query with the return PC, but |
1184 | // rather the return PC *minus 1*. |
1185 | // The reason is that variable/register liveness may change at the instruction immediately after the |
1186 | // call, so we want such frames to appear as if they are "within" the call. |
1187 | // Since we use "callSite" as the "key" when we search for the matching descriptor, also subtract 1 here |
1188 | // (after, of course, adding the size of the call instruction to get the return PC). |
1189 | callSite += m_pCallSiteSizes[callSiteIndex] - 1; |
1190 | |
1191 | _ASSERTE(DENORMALIZE_CODE_OFFSET(NORMALIZE_CODE_OFFSET(callSite)) == callSite); |
1192 | UINT32 normOffset = NORMALIZE_CODE_OFFSET(callSite); |
1193 | |
1194 | BOOL keepIt = TRUE; |
1195 | |
1196 | for(UINT32 intRangeIndex = 0; intRangeIndex < numInterruptibleRanges; intRangeIndex++) |
1197 | { |
1198 | InterruptibleRange *pRange = &pRanges[intRangeIndex]; |
1199 | if(pRange->NormStopOffset > normOffset) |
1200 | { |
1201 | if(pRange->NormStartOffset <= normOffset) |
1202 | { |
1203 | keepIt = FALSE; |
1204 | } |
1205 | break; |
1206 | } |
1207 | } |
1208 | |
1209 | if(keepIt) |
1210 | m_pCallSites[numCallSites++] = normOffset; |
1211 | } |
1212 | |
1213 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_NUM_SAFE_POINTS(numCallSites), NUM_SAFE_POINTS_ENCBASE, NumCallSitesSize); |
1214 | m_NumCallSites = numCallSites; |
1215 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1216 | |
1217 | if (slimHeader) |
1218 | { |
1219 | _ASSERTE(numInterruptibleRanges == 0); |
1220 | } |
1221 | else |
1222 | { |
1223 | GCINFO_WRITE_VARL_U(m_Info1, NORMALIZE_NUM_INTERRUPTIBLE_RANGES(numInterruptibleRanges), NUM_INTERRUPTIBLE_RANGES_ENCBASE, NumRangesSize); |
1224 | } |
1225 | |
1226 | |
1227 | |
1228 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1229 | /////////////////////////////////////////////////////////////////////// |
1230 | // Encode call site offsets |
1231 | /////////////////////////////////////////////////////////////////////// |
1232 | |
1233 | UINT32 numBitsPerOffset = CeilOfLog2(NORMALIZE_CODE_OFFSET(m_CodeLength)); |
1234 | |
1235 | for(UINT32 callSiteIndex = 0; callSiteIndex < m_NumCallSites; callSiteIndex++) |
1236 | { |
1237 | UINT32 normOffset = m_pCallSites[callSiteIndex]; |
1238 | |
1239 | _ASSERTE(normOffset < (UINT32)1 << (numBitsPerOffset+1)); |
1240 | GCINFO_WRITE(m_Info1, normOffset, numBitsPerOffset, CallSitePosSize); |
1241 | } |
1242 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1243 | |
1244 | |
1245 | /////////////////////////////////////////////////////////////////////// |
1246 | // Encode fully-interruptible ranges |
1247 | /////////////////////////////////////////////////////////////////////// |
1248 | |
1249 | if(numInterruptibleRanges) |
1250 | { |
1251 | UINT32 lastStopOffset = 0; |
1252 | |
1253 | for(UINT32 i = 0; i < numInterruptibleRanges; i++) |
1254 | { |
1255 | UINT32 normStartOffset = pRanges[i].NormStartOffset; |
1256 | UINT32 normStopOffset = pRanges[i].NormStopOffset; |
1257 | |
1258 | size_t normStartDelta = normStartOffset - lastStopOffset; |
1259 | size_t normStopDelta = normStopOffset - normStartOffset; |
1260 | _ASSERTE(normStopDelta > 0); |
1261 | |
1262 | lastStopOffset = normStopOffset; |
1263 | |
1264 | GCINFO_WRITE_VARL_U(m_Info1, normStartDelta, INTERRUPTIBLE_RANGE_DELTA1_ENCBASE, RangeSize); |
1265 | |
1266 | GCINFO_WRITE_VARL_U(m_Info1, normStopDelta-1, INTERRUPTIBLE_RANGE_DELTA2_ENCBASE, RangeSize); |
1267 | } |
1268 | } |
1269 | |
1270 | |
1271 | /////////////////////////////////////////////////////////////////////// |
1272 | // Pre-process transitions |
1273 | /////////////////////////////////////////////////////////////////////// |
1274 | |
1275 | |
1276 | size_t numTransitions = m_LifetimeTransitions.Count(); |
1277 | LifetimeTransition *pTransitions = (LifetimeTransition*)m_pAllocator->Alloc(numTransitions * sizeof(LifetimeTransition)); |
1278 | m_LifetimeTransitions.CopyTo(pTransitions); |
1279 | |
1280 | LifetimeTransition* pEndTransitions = pTransitions + numTransitions; |
1281 | LifetimeTransition* pCurrent; |
1282 | |
1283 | //----------------------------------------------------------------- |
1284 | // Sort the lifetime transitions by offset (then by slot id). |
1285 | //----------------------------------------------------------------- |
1286 | |
1287 | // Don't use the CQuickSort algorithm, it's prone to stack overflows |
1288 | qsort( |
1289 | pTransitions, |
1290 | numTransitions, |
1291 | sizeof(LifetimeTransition), |
1292 | CompareLifetimeTransitionsByOffsetThenSlot |
1293 | ); |
1294 | |
1295 | // Eliminate transitions outside the method |
1296 | while(pEndTransitions > pTransitions) |
1297 | { |
1298 | LifetimeTransition *pPrev = pEndTransitions - 1; |
1299 | if(pPrev->CodeOffset < m_CodeLength) |
1300 | break; |
1301 | |
1302 | _ASSERTE(pPrev->CodeOffset == m_CodeLength && !pPrev->BecomesLive); |
1303 | pEndTransitions = pPrev; |
1304 | } |
1305 | |
1306 | // Now eliminate any pairs of dead/live transitions for the same slot at the same offset. |
1307 | EliminateRedundantLiveDeadPairs(&pTransitions, &numTransitions, &pEndTransitions); |
1308 | |
1309 | #ifdef _DEBUG |
1310 | numTransitions = -1; |
1311 | #endif |
1312 | /////////////////////////////////////////////////////////////////////// |
1313 | // Sort the slot table |
1314 | /////////////////////////////////////////////////////////////////////// |
1315 | |
1316 | { |
1317 | GcSlotDescAndId* sortedSlots = (GcSlotDescAndId*) m_pAllocator->Alloc(m_NumSlots * sizeof(GcSlotDescAndId)); |
1318 | UINT32* sortOrder = (UINT32*) m_pAllocator->Alloc(m_NumSlots * sizeof(UINT32)); |
1319 | |
1320 | for(UINT32 i = 0; i < m_NumSlots; i++) |
1321 | { |
1322 | sortedSlots[i].m_SlotDesc = m_SlotTable[i]; |
1323 | sortedSlots[i].m_SlotId = i; |
1324 | } |
1325 | |
1326 | qsort(sortedSlots, m_NumSlots, sizeof(GcSlotDescAndId), CompareSlotDescAndIdBySlotDesc); |
1327 | |
1328 | for(UINT32 i = 0; i < m_NumSlots; i++) |
1329 | { |
1330 | sortOrder[sortedSlots[i].m_SlotId] = i; |
1331 | } |
1332 | |
1333 | // Re-order the slot table |
1334 | for(UINT32 i = 0; i < m_NumSlots; i++) |
1335 | { |
1336 | m_SlotTable[i] = sortedSlots[i].m_SlotDesc; |
1337 | } |
1338 | |
1339 | // Update transitions to assign new slot ids |
1340 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
1341 | { |
1342 | UINT32 newSlotId = sortOrder[pCurrent->SlotId]; |
1343 | pCurrent->SlotId = newSlotId; |
1344 | } |
1345 | |
1346 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
1347 | m_pAllocator->Free( sortedSlots ); |
1348 | m_pAllocator->Free( sortOrder ); |
1349 | #endif |
1350 | } |
1351 | |
1352 | #if CODE_OFFSETS_NEED_NORMALIZATION |
1353 | // Do a pass to normalize transition offsets |
1354 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
1355 | { |
1356 | _ASSERTE(pCurrent->CodeOffset <= m_CodeLength); |
1357 | pCurrent->CodeOffset = NORMALIZE_CODE_OFFSET(pCurrent->CodeOffset); |
1358 | } |
1359 | #endif |
1360 | |
1361 | /////////////////////////////////////////////////////////////////// |
1362 | // Find out which slots are really used |
1363 | /////////////////////////////////////////////////////////////////// |
1364 | |
1365 | couldBeLive.ClearAll(); |
1366 | |
1367 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1368 | if(m_NumCallSites) |
1369 | { |
1370 | _ASSERTE(m_pCallSites != NULL); |
1371 | liveState.ClearAll(); |
1372 | |
1373 | UINT32 callSiteIndex = 0; |
1374 | UINT32 callSite = m_pCallSites[0]; |
1375 | |
1376 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
1377 | { |
1378 | if(pCurrent->CodeOffset > callSite) |
1379 | { |
1380 | couldBeLive |= liveState; |
1381 | |
1382 | if(++callSiteIndex == m_NumCallSites) |
1383 | break; |
1384 | |
1385 | callSite = m_pCallSites[callSiteIndex]; |
1386 | } |
1387 | else |
1388 | { |
1389 | UINT32 slotIndex = pCurrent->SlotId; |
1390 | if(!IsAlwaysScratch(m_SlotTable[slotIndex])) |
1391 | { |
1392 | BYTE becomesLive = pCurrent->BecomesLive; |
1393 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
1394 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
1395 | |
1396 | liveState.WriteBit(slotIndex, becomesLive); |
1397 | } |
1398 | pCurrent++; |
1399 | } |
1400 | } |
1401 | // There could be call sites after the last transition |
1402 | if(callSiteIndex < m_NumCallSites) |
1403 | { |
1404 | couldBeLive |= liveState; |
1405 | } |
1406 | } |
1407 | |
1408 | if(numInterruptibleRanges) |
1409 | { |
1410 | liveState.ClearAll(); |
1411 | |
1412 | InterruptibleRange *pCurrentRange = pRanges; |
1413 | InterruptibleRange *pEndRanges = pRanges + numInterruptibleRanges; |
1414 | |
1415 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
1416 | { |
1417 | // Find the first transition at offset > of the start of the current range |
1418 | LifetimeTransition *pFirstAfterStart = pCurrent; |
1419 | while(pFirstAfterStart->CodeOffset <= pCurrentRange->NormStartOffset) |
1420 | { |
1421 | UINT32 slotIndex = (UINT32) (pFirstAfterStart->SlotId); |
1422 | BYTE becomesLive = pFirstAfterStart->BecomesLive; |
1423 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
1424 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
1425 | liveState.WriteBit(slotIndex, becomesLive); |
1426 | |
1427 | if(++pFirstAfterStart == pEndTransitions) |
1428 | break; |
1429 | } |
1430 | |
1431 | couldBeLive |= liveState; |
1432 | |
1433 | // Now iterate through all the remaining transitions in the range, |
1434 | // making the offset range-relative, and tracking live state |
1435 | UINT32 rangeStop = pCurrentRange->NormStopOffset; |
1436 | |
1437 | for(pCurrent = pFirstAfterStart; pCurrent < pEndTransitions && pCurrent->CodeOffset < rangeStop; pCurrent++) |
1438 | { |
1439 | UINT32 slotIndex = (UINT32) (pCurrent->SlotId); |
1440 | BYTE becomesLive = pCurrent->BecomesLive; |
1441 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
1442 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
1443 | liveState.WriteBit(slotIndex, becomesLive); |
1444 | couldBeLive.SetBit(slotIndex); |
1445 | } |
1446 | |
1447 | // Move to the next range |
1448 | if(pCurrentRange < pEndRanges - 1) |
1449 | { |
1450 | pCurrentRange++; |
1451 | } |
1452 | else |
1453 | { |
1454 | break; |
1455 | } |
1456 | } |
1457 | } |
1458 | |
1459 | //----------------------------------------------------------------- |
1460 | // Mark unneeded slots as deleted |
1461 | //----------------------------------------------------------------- |
1462 | |
1463 | UINT32 numUsedSlots = 0; |
1464 | for(UINT32 i = 0; i < m_NumSlots; i++) |
1465 | { |
1466 | if(!(m_SlotTable[i].IsUntracked()) && (couldBeLive.ReadBit(i) == 0)) |
1467 | { |
1468 | m_SlotTable[i].MarkDeleted(); |
1469 | } |
1470 | else |
1471 | numUsedSlots++; |
1472 | } |
1473 | |
1474 | if(numUsedSlots < m_NumSlots) |
1475 | { |
1476 | // Delete transitions on unused slots |
1477 | LifetimeTransition *pNextFree = pTransitions; |
1478 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
1479 | { |
1480 | UINT32 slotId = pCurrent->SlotId; |
1481 | if(!m_SlotTable[slotId].IsDeleted()) |
1482 | { |
1483 | if(pCurrent > pNextFree) |
1484 | { |
1485 | *pNextFree = *pCurrent; |
1486 | } |
1487 | pNextFree++; |
1488 | } |
1489 | } |
1490 | pEndTransitions = pNextFree; |
1491 | } |
1492 | |
1493 | #else // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1494 | |
1495 | UINT32 numUsedSlots = m_NumSlots; |
1496 | |
1497 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1498 | |
1499 | |
1500 | /////////////////////////////////////////////////////////////////////// |
1501 | // Encode slot table |
1502 | /////////////////////////////////////////////////////////////////////// |
1503 | |
1504 | //------------------------------------------------------------------ |
1505 | // Count registers and stack slots |
1506 | //------------------------------------------------------------------ |
1507 | |
1508 | UINT32 numRegisters; |
1509 | UINT32 numUntrackedSlots; |
1510 | UINT32 numStackSlots; |
1511 | |
1512 | { |
1513 | UINT32 numDeleted = 0; |
1514 | UINT32 i; |
1515 | for(i = 0; i < m_NumSlots && m_SlotTable[i].IsRegister(); i++) |
1516 | { |
1517 | if(m_SlotTable[i].IsDeleted()) |
1518 | { |
1519 | numDeleted++; |
1520 | } |
1521 | } |
1522 | numRegisters = i - numDeleted; |
1523 | |
1524 | for(; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
1525 | { |
1526 | if(m_SlotTable[i].IsDeleted()) |
1527 | { |
1528 | numDeleted++; |
1529 | } |
1530 | } |
1531 | numStackSlots = i - (numRegisters + numDeleted); |
1532 | } |
1533 | numUntrackedSlots = numUsedSlots - (numRegisters + numStackSlots); |
1534 | |
1535 | // Common case: nothing, or a few registers |
1536 | if (numRegisters) |
1537 | { |
1538 | GCINFO_WRITE(m_Info1, 1, 1, FlagsSize); |
1539 | GCINFO_WRITE_VARL_U(m_Info1, numRegisters, NUM_REGISTERS_ENCBASE, NumRegsSize); |
1540 | } |
1541 | else |
1542 | { |
1543 | GCINFO_WRITE(m_Info1, 0, 1, FlagsSize); |
1544 | } |
1545 | if (numStackSlots || numUntrackedSlots) |
1546 | { |
1547 | GCINFO_WRITE(m_Info1, 1, 1, FlagsSize); |
1548 | GCINFO_WRITE_VARL_U(m_Info1, numStackSlots, NUM_STACK_SLOTS_ENCBASE, NumStackSize); |
1549 | GCINFO_WRITE_VARL_U(m_Info1, numUntrackedSlots, NUM_UNTRACKED_SLOTS_ENCBASE, NumUntrackedSize); |
1550 | } |
1551 | else |
1552 | { |
1553 | GCINFO_WRITE(m_Info1, 0, 1, FlagsSize); |
1554 | } |
1555 | |
1556 | UINT32 currentSlot = 0; |
1557 | |
1558 | if(numUsedSlots == 0) |
1559 | goto lExitSuccess; |
1560 | |
1561 | if(numRegisters > 0) |
1562 | { |
1563 | GcSlotDesc *pSlotDesc; |
1564 | do |
1565 | { |
1566 | _ASSERTE(currentSlot < m_NumSlots); |
1567 | pSlotDesc = &m_SlotTable[currentSlot++]; |
1568 | } |
1569 | while(pSlotDesc->IsDeleted()); |
1570 | _ASSERTE(pSlotDesc->IsRegister()); |
1571 | |
1572 | // Encode slot identification |
1573 | UINT32 currentNormRegNum = NORMALIZE_REGISTER(pSlotDesc->Slot.RegisterNumber); |
1574 | GCINFO_WRITE_VARL_U(m_Info1, currentNormRegNum, REGISTER_ENCBASE, RegSlotSize); |
1575 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, RegSlotSize); |
1576 | |
1577 | for(UINT32 j = 1; j < numRegisters; j++) |
1578 | { |
1579 | UINT32 lastNormRegNum = currentNormRegNum; |
1580 | GcSlotFlags lastFlags = pSlotDesc->Flags; |
1581 | |
1582 | do |
1583 | { |
1584 | _ASSERTE(currentSlot < m_NumSlots); |
1585 | pSlotDesc = &m_SlotTable[currentSlot++]; |
1586 | } |
1587 | while(pSlotDesc->IsDeleted()); |
1588 | _ASSERTE(pSlotDesc->IsRegister()); |
1589 | |
1590 | currentNormRegNum = NORMALIZE_REGISTER(pSlotDesc->Slot.RegisterNumber); |
1591 | |
1592 | if(lastFlags != GC_SLOT_IS_REGISTER) |
1593 | { |
1594 | GCINFO_WRITE_VARL_U(m_Info1, currentNormRegNum, REGISTER_ENCBASE, RegSlotSize); |
1595 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, RegSlotSize); |
1596 | } |
1597 | else |
1598 | { |
1599 | _ASSERTE(pSlotDesc->Flags == GC_SLOT_IS_REGISTER); |
1600 | GCINFO_WRITE_VARL_U(m_Info1, currentNormRegNum - lastNormRegNum - 1, REGISTER_DELTA_ENCBASE, RegSlotSize); |
1601 | } |
1602 | } |
1603 | } |
1604 | |
1605 | if(numStackSlots > 0) |
1606 | { |
1607 | GcSlotDesc *pSlotDesc; |
1608 | do |
1609 | { |
1610 | _ASSERTE(currentSlot < m_NumSlots); |
1611 | pSlotDesc = &m_SlotTable[currentSlot++]; |
1612 | } |
1613 | while(pSlotDesc->IsDeleted()); |
1614 | _ASSERTE(!pSlotDesc->IsRegister()); |
1615 | _ASSERTE(!pSlotDesc->IsUntracked()); |
1616 | |
1617 | // Encode slot identification |
1618 | _ASSERTE((pSlotDesc->Slot.Stack.Base & ~3) == 0); |
1619 | GCINFO_WRITE(m_Info1, pSlotDesc->Slot.Stack.Base, 2, StackSlotSize); |
1620 | INT32 currentNormStackSlot = NORMALIZE_STACK_SLOT(pSlotDesc->Slot.Stack.SpOffset); |
1621 | GCINFO_WRITE_VARL_S(m_Info1, currentNormStackSlot, STACK_SLOT_ENCBASE, StackSlotSize); |
1622 | |
1623 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, StackSlotSize); |
1624 | |
1625 | for(UINT32 j = 1; j < numStackSlots; j++) |
1626 | { |
1627 | INT32 lastNormStackSlot = currentNormStackSlot; |
1628 | GcSlotFlags lastFlags = pSlotDesc->Flags; |
1629 | |
1630 | do |
1631 | { |
1632 | _ASSERTE(currentSlot < m_NumSlots); |
1633 | pSlotDesc = &m_SlotTable[currentSlot++]; |
1634 | } |
1635 | while(pSlotDesc->IsDeleted()); |
1636 | _ASSERTE(!pSlotDesc->IsRegister()); |
1637 | _ASSERTE(!pSlotDesc->IsUntracked()); |
1638 | |
1639 | currentNormStackSlot = NORMALIZE_STACK_SLOT(pSlotDesc->Slot.Stack.SpOffset); |
1640 | |
1641 | _ASSERTE((pSlotDesc->Slot.Stack.Base & ~3) == 0); |
1642 | GCINFO_WRITE(m_Info1, pSlotDesc->Slot.Stack.Base, 2, StackSlotSize); |
1643 | |
1644 | if(lastFlags != GC_SLOT_BASE) |
1645 | { |
1646 | GCINFO_WRITE_VARL_S(m_Info1, currentNormStackSlot, STACK_SLOT_ENCBASE, StackSlotSize); |
1647 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, StackSlotSize); |
1648 | } |
1649 | else |
1650 | { |
1651 | _ASSERTE(pSlotDesc->Flags == GC_SLOT_BASE); |
1652 | GCINFO_WRITE_VARL_U(m_Info1, currentNormStackSlot - lastNormStackSlot, STACK_SLOT_DELTA_ENCBASE, StackSlotSize); |
1653 | } |
1654 | } |
1655 | } |
1656 | |
1657 | if(numUntrackedSlots > 0) |
1658 | { |
1659 | GcSlotDesc *pSlotDesc; |
1660 | do |
1661 | { |
1662 | _ASSERTE(currentSlot < m_NumSlots); |
1663 | pSlotDesc = &m_SlotTable[currentSlot++]; |
1664 | } |
1665 | while(pSlotDesc->IsDeleted()); |
1666 | _ASSERTE(!pSlotDesc->IsRegister()); |
1667 | _ASSERTE(pSlotDesc->IsUntracked()); |
1668 | |
1669 | // Encode slot identification |
1670 | _ASSERTE((pSlotDesc->Slot.Stack.Base & ~3) == 0); |
1671 | GCINFO_WRITE(m_Info1, pSlotDesc->Slot.Stack.Base, 2, UntrackedSlotSize); |
1672 | INT32 currentNormStackSlot = NORMALIZE_STACK_SLOT(pSlotDesc->Slot.Stack.SpOffset); |
1673 | GCINFO_WRITE_VARL_S(m_Info1, currentNormStackSlot, STACK_SLOT_ENCBASE, UntrackedSlotSize); |
1674 | |
1675 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, UntrackedSlotSize); |
1676 | |
1677 | for(UINT32 j = 1; j < numUntrackedSlots; j++) |
1678 | { |
1679 | INT32 lastNormStackSlot = currentNormStackSlot; |
1680 | GcSlotFlags lastFlags = pSlotDesc->Flags; |
1681 | |
1682 | do |
1683 | { |
1684 | _ASSERTE(currentSlot < m_NumSlots); |
1685 | pSlotDesc = &m_SlotTable[currentSlot++]; |
1686 | } |
1687 | while(pSlotDesc->IsDeleted()); |
1688 | _ASSERTE(!pSlotDesc->IsRegister()); |
1689 | _ASSERTE(pSlotDesc->IsUntracked()); |
1690 | |
1691 | currentNormStackSlot = NORMALIZE_STACK_SLOT(pSlotDesc->Slot.Stack.SpOffset); |
1692 | |
1693 | _ASSERTE((pSlotDesc->Slot.Stack.Base & ~3) == 0); |
1694 | GCINFO_WRITE(m_Info1, pSlotDesc->Slot.Stack.Base, 2, UntrackedSlotSize); |
1695 | |
1696 | if(lastFlags != GC_SLOT_UNTRACKED) |
1697 | { |
1698 | GCINFO_WRITE_VARL_S(m_Info1, currentNormStackSlot, STACK_SLOT_ENCBASE, UntrackedSlotSize); |
1699 | GCINFO_WRITE(m_Info1, pSlotDesc->Flags, 2, UntrackedSlotSize); |
1700 | } |
1701 | else |
1702 | { |
1703 | _ASSERTE(pSlotDesc->Flags == GC_SLOT_UNTRACKED); |
1704 | GCINFO_WRITE_VARL_U(m_Info1, currentNormStackSlot - lastNormStackSlot, STACK_SLOT_DELTA_ENCBASE, UntrackedSlotSize); |
1705 | } |
1706 | } |
1707 | } |
1708 | |
1709 | |
1710 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1711 | //----------------------------------------------------------------- |
1712 | // Encode GC info at call sites |
1713 | //----------------------------------------------------------------- |
1714 | |
1715 | if(m_NumCallSites) |
1716 | { |
1717 | |
1718 | _ASSERTE(m_pCallSites != NULL); |
1719 | |
1720 | liveState.ClearAll(); |
1721 | |
1722 | UINT32 callSiteIndex = 0; |
1723 | UINT32 callSite = m_pCallSites[0]; |
1724 | |
1725 | // Create a hash table for storing the locations of the live sets |
1726 | LiveStateHashTable hashMap(m_pAllocator); |
1727 | |
1728 | bool outOfMemory = false; |
1729 | try |
1730 | { |
1731 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
1732 | { |
1733 | if(pCurrent->CodeOffset > callSite) |
1734 | { |
1735 | // Time to record the call site |
1736 | |
1737 | // Add it to the table if it doesn't exist |
1738 | UINT32 liveStateOffset = 0; |
1739 | if (!hashMap.Lookup(&liveState, &liveStateOffset)) |
1740 | { |
1741 | BitArray * newLiveState = new (m_pAllocator) BitArray(m_pAllocator, m_NumSlots); |
1742 | *newLiveState = liveState; |
1743 | hashMap.Set(newLiveState, (UINT32)(-1)); |
1744 | } |
1745 | |
1746 | |
1747 | if(++callSiteIndex == m_NumCallSites) |
1748 | break; |
1749 | |
1750 | callSite = m_pCallSites[callSiteIndex]; |
1751 | } |
1752 | else |
1753 | { |
1754 | UINT32 slotIndex = pCurrent->SlotId; |
1755 | BYTE becomesLive = pCurrent->BecomesLive; |
1756 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
1757 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
1758 | liveState.WriteBit(slotIndex, becomesLive); |
1759 | pCurrent++; |
1760 | } |
1761 | } |
1762 | |
1763 | // Check for call sites at offsets past the last transition |
1764 | if (callSiteIndex < m_NumCallSites) |
1765 | { |
1766 | UINT32 liveStateOffset = 0; |
1767 | if (!hashMap.Lookup(&liveState, &liveStateOffset)) |
1768 | { |
1769 | BitArray * newLiveState = new (m_pAllocator) BitArray(m_pAllocator, m_NumSlots); |
1770 | *newLiveState = liveState; |
1771 | hashMap.Set(newLiveState, (UINT32)(-1)); |
1772 | } |
1773 | } |
1774 | } |
1775 | catch (GcInfoNoMemoryException&) |
1776 | { |
1777 | outOfMemory = true; |
1778 | } |
1779 | |
1780 | if (outOfMemory) |
1781 | { |
1782 | m_pNoMem(); |
1783 | } |
1784 | |
1785 | // Figure out the largest offset, and total size of the sets |
1786 | // Be sure to figure out the largest offset in the order that we will be emitting |
1787 | // them in and not the order of their appearances in the safe point array. |
1788 | // TODO: we should sort this to improve locality (the more frequent ones at the beginning) |
1789 | // and to improve the indirection size (if the largest one is last, we *might* be able |
1790 | // so use 1 less bit for each indirection for the offset encoding). |
1791 | UINT32 largestSetOffset = 0; |
1792 | UINT32 sizeofSets = 0; |
1793 | for (LiveStateHashTable::KeyIterator iter = hashMap.Begin(), end = hashMap.End(); !iter.Equal(end); iter.Next()) |
1794 | { |
1795 | largestSetOffset = sizeofSets; |
1796 | sizeofSets += SizeofSlotStateVarLengthVector(*iter.Get(), LIVESTATE_RLE_SKIP_ENCBASE, LIVESTATE_RLE_RUN_ENCBASE); |
1797 | } |
1798 | |
1799 | // Now that we know the largest offset, we can figure out how much the indirection |
1800 | // will cost us and commit |
1801 | UINT32 numBitsPerPointer = ((largestSetOffset < 2) ? 1 : CeilOfLog2(largestSetOffset + 1)); |
1802 | const size_t sizeofEncodedNumBitsPerPointer = BitStreamWriter::SizeofVarLengthUnsigned(numBitsPerPointer, POINTER_SIZE_ENCBASE); |
1803 | const size_t sizeofNoIndirection = m_NumCallSites * (numRegisters + numStackSlots); |
1804 | const size_t sizeofIndirection = sizeofEncodedNumBitsPerPointer // Encode the pointer sizes |
1805 | + (m_NumCallSites * numBitsPerPointer) // Encoe the pointers |
1806 | + 7 // Up to 7 bits of alignment padding |
1807 | + sizeofSets; // Encode the actual live sets |
1808 | |
1809 | liveState.ClearAll(); |
1810 | |
1811 | callSiteIndex = 0; |
1812 | callSite = m_pCallSites[0]; |
1813 | |
1814 | if (sizeofIndirection < sizeofNoIndirection) |
1815 | { |
1816 | // we are using an indirection |
1817 | GCINFO_WRITE(m_Info1, 1, 1, FlagsSize); |
1818 | GCINFO_WRITE_VARL_U(m_Info1, numBitsPerPointer - 1, POINTER_SIZE_ENCBASE, CallSiteStateSize); |
1819 | |
1820 | // Now encode the live sets and record the real offset |
1821 | for (LiveStateHashTable::KeyIterator iter = hashMap.Begin(), end = hashMap.End(); !iter.Equal(end); iter.Next()) |
1822 | { |
1823 | _ASSERTE(FitsIn<UINT32>(m_Info2.GetBitCount())); |
1824 | iter.SetValue((UINT32)m_Info2.GetBitCount()); |
1825 | GCINFO_WRITE_VAR_VECTOR(m_Info2, *iter.Get(), LIVESTATE_RLE_SKIP_ENCBASE, LIVESTATE_RLE_RUN_ENCBASE, CallSiteStateSize); |
1826 | } |
1827 | |
1828 | _ASSERTE(sizeofSets == m_Info2.GetBitCount()); |
1829 | |
1830 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
1831 | { |
1832 | if(pCurrent->CodeOffset > callSite) |
1833 | { |
1834 | // Time to encode the call site |
1835 | |
1836 | // Find the match and emit it |
1837 | UINT32 liveStateOffset; |
1838 | bool found = hashMap.Lookup(&liveState, &liveStateOffset); |
1839 | _ASSERTE(found); |
1840 | (void)found; |
1841 | GCINFO_WRITE(m_Info1, liveStateOffset, numBitsPerPointer, CallSiteStateSize); |
1842 | |
1843 | |
1844 | if(++callSiteIndex == m_NumCallSites) |
1845 | break; |
1846 | |
1847 | callSite = m_pCallSites[callSiteIndex]; |
1848 | } |
1849 | else |
1850 | { |
1851 | UINT32 slotIndex = pCurrent->SlotId; |
1852 | BYTE becomesLive = pCurrent->BecomesLive; |
1853 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
1854 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
1855 | liveState.WriteBit(slotIndex, becomesLive); |
1856 | pCurrent++; |
1857 | } |
1858 | } |
1859 | |
1860 | // Encode call sites at offsets past the last transition |
1861 | { |
1862 | UINT32 liveStateOffset; |
1863 | bool found = hashMap.Lookup(&liveState, &liveStateOffset); |
1864 | _ASSERTE(found); |
1865 | (void)found; |
1866 | for( ; callSiteIndex < m_NumCallSites; callSiteIndex++) |
1867 | { |
1868 | GCINFO_WRITE(m_Info1, liveStateOffset, numBitsPerPointer, CallSiteStateSize); |
1869 | } |
1870 | } |
1871 | } |
1872 | else |
1873 | { |
1874 | // we are not using an indirection |
1875 | GCINFO_WRITE(m_Info1, 0, 1, FlagsSize); |
1876 | |
1877 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
1878 | { |
1879 | if(pCurrent->CodeOffset > callSite) |
1880 | { |
1881 | // Time to encode the call site |
1882 | GCINFO_WRITE_VECTOR(m_Info1, liveState, CallSiteStateSize); |
1883 | |
1884 | if(++callSiteIndex == m_NumCallSites) |
1885 | break; |
1886 | |
1887 | callSite = m_pCallSites[callSiteIndex]; |
1888 | } |
1889 | else |
1890 | { |
1891 | UINT32 slotIndex = pCurrent->SlotId; |
1892 | BYTE becomesLive = pCurrent->BecomesLive; |
1893 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
1894 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
1895 | liveState.WriteBit(slotIndex, becomesLive); |
1896 | pCurrent++; |
1897 | } |
1898 | } |
1899 | |
1900 | // Encode call sites at offsets past the last transition |
1901 | for( ; callSiteIndex < m_NumCallSites; callSiteIndex++) |
1902 | { |
1903 | GCINFO_WRITE_VECTOR(m_Info1, liveState, CallSiteStateSize); |
1904 | } |
1905 | } |
1906 | |
1907 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
1908 | // Cleanup |
1909 | for (LiveStateHashTable::KeyIterator iter = hashMap.Begin(), end = hashMap.End(); !iter.Equal(end); iter.Next()) |
1910 | { |
1911 | m_pAllocator->Free((LPVOID)iter.Get()); |
1912 | } |
1913 | #endif // MUST_CALL_JITALLOCATOR_FREE |
1914 | |
1915 | } |
1916 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1917 | |
1918 | |
1919 | /////////////////////////////////////////////////////////////////////// |
1920 | // Fully-interruptible: Encode lifetime transitions |
1921 | /////////////////////////////////////////////////////////////////////// |
1922 | |
1923 | if(numInterruptibleRanges) |
1924 | { |
1925 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
1926 | //----------------------------------------------------- |
1927 | // Under partially-interruptible, make the transition |
1928 | // offsets relative to the interruptible regions |
1929 | //----------------------------------------------------- |
1930 | |
1931 | // Compute total length of interruptible ranges |
1932 | UINT32 totalInterruptibleLength = 0; |
1933 | for(UINT32 i = 0; i < numInterruptibleRanges; i++) |
1934 | { |
1935 | InterruptibleRange *pRange = &pRanges[i]; |
1936 | totalInterruptibleLength += pRange->NormStopOffset - pRange->NormStartOffset; |
1937 | } |
1938 | _ASSERTE(totalInterruptibleLength <= NORMALIZE_CODE_OFFSET(m_CodeLength)); |
1939 | |
1940 | liveState.ClearAll(); |
1941 | // Re-use couldBeLive |
1942 | BitArray& liveStateAtPrevRange = couldBeLive; |
1943 | liveStateAtPrevRange.ClearAll(); |
1944 | |
1945 | InterruptibleRange *pCurrentRange = pRanges; |
1946 | InterruptibleRange *pEndRanges = pRanges + numInterruptibleRanges; |
1947 | UINT32 cumInterruptibleLength = 0; |
1948 | |
1949 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
1950 | { |
1951 | _ASSERTE(!m_SlotTable[pCurrent->SlotId].IsDeleted()); |
1952 | |
1953 | // Find the first transition at offset > of the start of the current range |
1954 | LifetimeTransition *pFirstAfterStart = pCurrent; |
1955 | while(pFirstAfterStart->CodeOffset <= pCurrentRange->NormStartOffset) |
1956 | { |
1957 | UINT32 slotIndex = (UINT32) (pFirstAfterStart->SlotId); |
1958 | BYTE becomesLive = pFirstAfterStart->BecomesLive; |
1959 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
1960 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
1961 | liveState.WriteBit(slotIndex, becomesLive); |
1962 | |
1963 | if(++pFirstAfterStart == pEndTransitions) |
1964 | break; |
1965 | } |
1966 | |
1967 | // Now compare the liveState with liveStateAtPrevRange |
1968 | LifetimeTransition *pFirstPreserved = pFirstAfterStart; |
1969 | for(UINT32 slotIndex = 0; slotIndex < m_NumSlots; slotIndex++) |
1970 | { |
1971 | uint32_t isLive = liveState.ReadBit(slotIndex); |
1972 | if(isLive != liveStateAtPrevRange.ReadBit(slotIndex)) |
1973 | { |
1974 | pFirstPreserved--; |
1975 | _ASSERTE(pFirstPreserved >= pCurrent); |
1976 | pFirstPreserved->CodeOffset = cumInterruptibleLength; |
1977 | pFirstPreserved->SlotId = slotIndex; |
1978 | pFirstPreserved->BecomesLive = (isLive) ? 1 : 0; |
1979 | _ASSERTE(!pFirstPreserved->IsDeleted); |
1980 | } |
1981 | } |
1982 | |
1983 | // Mark all the other transitions since last range as deleted |
1984 | _ASSERTE(pCurrent <= pFirstPreserved); |
1985 | while(pCurrent < pFirstPreserved) |
1986 | { |
1987 | (pCurrent++)->IsDeleted = TRUE; |
1988 | } |
1989 | |
1990 | // Now iterate through all the remaining transitions in the range, |
1991 | // making the offset range-relative, and tracking live state |
1992 | UINT32 rangeStop = pCurrentRange->NormStopOffset; |
1993 | |
1994 | for(pCurrent = pFirstAfterStart; pCurrent < pEndTransitions && pCurrent->CodeOffset < rangeStop; pCurrent++) |
1995 | { |
1996 | pCurrent->CodeOffset = |
1997 | pCurrent->CodeOffset - |
1998 | pCurrentRange->NormStartOffset + |
1999 | cumInterruptibleLength; |
2000 | |
2001 | UINT32 slotIndex = (UINT32) (pCurrent->SlotId); |
2002 | BYTE becomesLive = pCurrent->BecomesLive; |
2003 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
2004 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
2005 | liveState.WriteBit(slotIndex, becomesLive); |
2006 | } |
2007 | |
2008 | // Move to the next range |
2009 | if(pCurrentRange < pEndRanges - 1) |
2010 | { |
2011 | cumInterruptibleLength += pCurrentRange->NormStopOffset - pCurrentRange->NormStartOffset; |
2012 | pCurrentRange++; |
2013 | |
2014 | liveStateAtPrevRange = liveState; |
2015 | } |
2016 | else |
2017 | { |
2018 | pEndTransitions = pCurrent; |
2019 | break; |
2020 | } |
2021 | } |
2022 | |
2023 | // Make another pass, deleting everything that's marked as deleted |
2024 | LifetimeTransition *pNextFree = pTransitions; |
2025 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
2026 | { |
2027 | if(!pCurrent->IsDeleted) |
2028 | { |
2029 | if(pCurrent > pNextFree) |
2030 | { |
2031 | *pNextFree = *pCurrent; |
2032 | } |
2033 | pNextFree++; |
2034 | } |
2035 | } |
2036 | pEndTransitions = pNextFree; |
2037 | |
2038 | #else |
2039 | UINT32 totalInterruptibleLength = NORMALIZE_CODE_OFFSET(m_CodeLength); |
2040 | |
2041 | #endif //PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
2042 | |
2043 | // |
2044 | // Initialize chunk pointers |
2045 | // |
2046 | UINT32 numChunks = (totalInterruptibleLength + NUM_NORM_CODE_OFFSETS_PER_CHUNK - 1) / NUM_NORM_CODE_OFFSETS_PER_CHUNK; |
2047 | _ASSERTE(numChunks > 0); |
2048 | |
2049 | size_t* pChunkPointers = (size_t*) m_pAllocator->Alloc(numChunks*sizeof(size_t)); |
2050 | ZeroMemory(pChunkPointers, numChunks*sizeof(size_t)); |
2051 | |
2052 | //------------------------------------------------------------------ |
2053 | // Encode transitions |
2054 | //------------------------------------------------------------------ |
2055 | |
2056 | LOG((LF_GCINFO, LL_INFO1000, "Encoding %i lifetime transitions.\n" , pEndTransitions - pTransitions)); |
2057 | |
2058 | |
2059 | liveState.ClearAll(); |
2060 | couldBeLive.ClearAll(); |
2061 | |
2062 | for(pCurrent = pTransitions; pCurrent < pEndTransitions; ) |
2063 | { |
2064 | _ASSERTE(pCurrent->CodeOffset < m_CodeLength); |
2065 | |
2066 | UINT32 currentChunk = GetNormCodeOffsetChunk(pCurrent->CodeOffset); |
2067 | _ASSERTE(currentChunk < numChunks); |
2068 | UINT32 numTransitionsInCurrentChunk = 1; |
2069 | |
2070 | for(;;) |
2071 | { |
2072 | UINT32 slotIndex = (UINT32) (pCurrent->SlotId); |
2073 | BYTE becomesLive = pCurrent->BecomesLive; |
2074 | _ASSERTE((liveState.ReadBit(slotIndex) && !becomesLive) |
2075 | || (!liveState.ReadBit(slotIndex) && becomesLive)); |
2076 | liveState.WriteBit(slotIndex, becomesLive); |
2077 | couldBeLive.SetBit(slotIndex); |
2078 | |
2079 | pCurrent++; |
2080 | if(pCurrent == pEndTransitions || GetNormCodeOffsetChunk(pCurrent->CodeOffset) != currentChunk) |
2081 | break; |
2082 | |
2083 | numTransitionsInCurrentChunk++; |
2084 | } |
2085 | |
2086 | //----------------------------------------------------- |
2087 | // Time to encode the chunk |
2088 | //----------------------------------------------------- |
2089 | |
2090 | _ASSERTE(numTransitionsInCurrentChunk > 0); |
2091 | |
2092 | // Sort the transitions in this chunk by slot |
2093 | qsort( |
2094 | pCurrent - numTransitionsInCurrentChunk, |
2095 | numTransitionsInCurrentChunk, |
2096 | sizeof(LifetimeTransition), |
2097 | CompareLifetimeTransitionsBySlot |
2098 | ); |
2099 | |
2100 | // Save chunk pointer |
2101 | pChunkPointers[currentChunk] = m_Info2.GetBitCount() + 1; |
2102 | |
2103 | // Write couldBeLive slot map |
2104 | GCINFO_WRITE_VAR_VECTOR(m_Info2, couldBeLive, LIVESTATE_RLE_SKIP_ENCBASE, LIVESTATE_RLE_RUN_ENCBASE, ChunkMaskSize); |
2105 | |
2106 | LOG((LF_GCINFO, LL_INFO100000, |
2107 | "Chunk %d couldBeLive (%04x-%04x):\n" , currentChunk, |
2108 | currentChunk * NUM_NORM_CODE_OFFSETS_PER_CHUNK, |
2109 | ((currentChunk + 1) * NUM_NORM_CODE_OFFSETS_PER_CHUNK) - 1 |
2110 | )); |
2111 | |
2112 | // Write final state |
2113 | // For all the bits set in couldBeLive. |
2114 | UINT32 i; |
2115 | for (BitArrayIterator iter(&couldBeLive); !iter.end(); iter++) |
2116 | { |
2117 | i = *iter; |
2118 | { |
2119 | _ASSERTE(!m_SlotTable[i].IsDeleted()); |
2120 | _ASSERTE(!m_SlotTable[i].IsUntracked()); |
2121 | GCINFO_WRITE( m_Info2, |
2122 | liveState.ReadBit(i) ? 1 : 0, |
2123 | 1, |
2124 | ChunkFinalStateSize |
2125 | ); |
2126 | |
2127 | LOG((LF_GCINFO, LL_INFO100000, |
2128 | "\t" LOG_GCSLOTDESC_FMT " %s at end of chunk.\n" , |
2129 | LOG_GCSLOTDESC_ARGS(&m_SlotTable[i]), |
2130 | liveState.ReadBit(i) ? "live" : "dead" )); |
2131 | } |
2132 | } |
2133 | |
2134 | // Write transitions offsets |
2135 | UINT32 normChunkBaseCodeOffset = currentChunk * NUM_NORM_CODE_OFFSETS_PER_CHUNK; |
2136 | |
2137 | LifetimeTransition* pT = pCurrent - numTransitionsInCurrentChunk; |
2138 | |
2139 | for (BitArrayIterator iter(&couldBeLive); !iter.end(); iter++) |
2140 | { |
2141 | i = *iter; |
2142 | |
2143 | while(pT < pCurrent) |
2144 | { |
2145 | GcSlotId slotId = pT->SlotId; |
2146 | if(slotId != i) |
2147 | break; |
2148 | |
2149 | _ASSERTE(couldBeLive.ReadBit(slotId)); |
2150 | |
2151 | LOG((LF_GCINFO, LL_INFO100000, |
2152 | "\tTransition " LOG_GCSLOTDESC_FMT " going %s at offset %04x.\n" , |
2153 | LOG_GCSLOTDESC_ARGS(&m_SlotTable[pT->SlotId]), |
2154 | pT->BecomesLive ? "live" : "dead" , |
2155 | (int) pT->CodeOffset )); |
2156 | |
2157 | // Write code offset delta |
2158 | UINT32 normCodeOffset = pT->CodeOffset; |
2159 | UINT32 normCodeOffsetDelta = normCodeOffset - normChunkBaseCodeOffset; |
2160 | |
2161 | // Don't encode transitions at offset 0 as they are useless |
2162 | if(normCodeOffsetDelta) |
2163 | { |
2164 | _ASSERTE(normCodeOffsetDelta < NUM_NORM_CODE_OFFSETS_PER_CHUNK); |
2165 | |
2166 | GCINFO_WRITE(m_Info2, 1, 1, ChunkTransitionSize); |
2167 | GCINFO_WRITE(m_Info2, normCodeOffsetDelta, NUM_NORM_CODE_OFFSETS_PER_CHUNK_LOG2, ChunkTransitionSize); |
2168 | |
2169 | #ifdef MEASURE_GCINFO |
2170 | m_CurrentMethodSize.NumTransitions++; |
2171 | #endif |
2172 | } |
2173 | |
2174 | pT++; |
2175 | } |
2176 | |
2177 | // Write terminator |
2178 | GCINFO_WRITE(m_Info2, 0, 1, ChunkTransitionSize); |
2179 | |
2180 | } |
2181 | _ASSERTE(pT == pCurrent); |
2182 | |
2183 | couldBeLive = liveState; |
2184 | } |
2185 | |
2186 | //--------------------------------------------------------------------- |
2187 | // The size of chunk encodings is now known. Write the chunk pointers. |
2188 | //--------------------------------------------------------------------- |
2189 | |
2190 | |
2191 | // Find the largest pointer |
2192 | size_t largestPointer = 0; |
2193 | for(int i = numChunks - 1; i >=0; i--) |
2194 | { |
2195 | largestPointer = pChunkPointers[i]; |
2196 | if(largestPointer > 0) |
2197 | break; |
2198 | } |
2199 | |
2200 | UINT32 numBitsPerPointer = CeilOfLog2(largestPointer + 1); |
2201 | GCINFO_WRITE_VARL_U(m_Info1, numBitsPerPointer, POINTER_SIZE_ENCBASE, ChunkPtrSize); |
2202 | |
2203 | if(numBitsPerPointer) |
2204 | { |
2205 | for(UINT32 i = 0; i < numChunks; i++) |
2206 | { |
2207 | GCINFO_WRITE(m_Info1, pChunkPointers[i], numBitsPerPointer, ChunkPtrSize); |
2208 | } |
2209 | } |
2210 | |
2211 | //------------------------------------------------------------------- |
2212 | // Cleanup |
2213 | //------------------------------------------------------------------- |
2214 | |
2215 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
2216 | m_pAllocator->Free(pRanges); |
2217 | m_pAllocator->Free(pChunkPointers); |
2218 | #endif |
2219 | } |
2220 | |
2221 | |
2222 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
2223 | m_pAllocator->Free(pTransitions); |
2224 | #endif |
2225 | |
2226 | |
2227 | lExitSuccess:; |
2228 | |
2229 | //------------------------------------------------------------------- |
2230 | // Update global stats |
2231 | //------------------------------------------------------------------- |
2232 | |
2233 | #ifdef MEASURE_GCINFO |
2234 | if (slimHeader) |
2235 | { |
2236 | g_NumSlimHeaders++; |
2237 | } |
2238 | else |
2239 | { |
2240 | g_NumFatHeaders++; |
2241 | } |
2242 | |
2243 | m_CurrentMethodSize.NumMethods = 1; |
2244 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
2245 | m_CurrentMethodSize.NumCallSites = m_NumCallSites; |
2246 | #endif |
2247 | m_CurrentMethodSize.NumRanges = numInterruptibleRanges; |
2248 | m_CurrentMethodSize.NumRegs = numRegisters; |
2249 | m_CurrentMethodSize.NumStack = numStackSlots; |
2250 | m_CurrentMethodSize.NumUntracked = numUntrackedSlots; |
2251 | m_CurrentMethodSize.SizeOfCode = m_CodeLength; |
2252 | if(numInterruptibleRanges) |
2253 | { |
2254 | g_FiGcInfoSize += m_CurrentMethodSize; |
2255 | m_CurrentMethodSize.Log(LL_INFO100, "=== FullyInterruptible method breakdown ===\r\n" ); |
2256 | g_FiGcInfoSize.Log(LL_INFO10, "=== FullyInterruptible global breakdown ===\r\n" ); |
2257 | } |
2258 | else |
2259 | { |
2260 | g_PiGcInfoSize += m_CurrentMethodSize; |
2261 | m_CurrentMethodSize.Log(LL_INFO100, "=== PartiallyInterruptible method breakdown ===\r\n" ); |
2262 | g_PiGcInfoSize.Log(LL_INFO10, "=== PartiallyInterruptible global breakdown ===\r\n" ); |
2263 | } |
2264 | LogSpew(LF_GCINFO, LL_INFO10, "Total SlimHeaders: %Iu\n" , g_NumSlimHeaders); |
2265 | LogSpew(LF_GCINFO, LL_INFO10, "NumMethods: %Iu\n" , g_NumFatHeaders); |
2266 | #endif |
2267 | } |
2268 | |
2269 | void GcInfoEncoder::SizeofSlotStateVarLengthVector(const BitArray &vector, |
2270 | UINT32 baseSkip, |
2271 | UINT32 baseRun, |
2272 | UINT32 *pSizeofSimple, |
2273 | UINT32 *pSizeofRLE, |
2274 | UINT32 *pSizeofRLENeg) |
2275 | { |
2276 | // Try 3 different encodings |
2277 | UINT32 sizeofSimple = 1; |
2278 | UINT32 sizeofRLE; |
2279 | UINT32 sizeofRLENeg; |
2280 | for(UINT32 i = 0; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
2281 | { |
2282 | if(!m_SlotTable[i].IsDeleted()) |
2283 | sizeofSimple++; |
2284 | } |
2285 | |
2286 | if (sizeofSimple <= 2 + baseSkip + 1 + baseRun + 1) |
2287 | { |
2288 | // simple encoding is smaller than the smallest of the others |
2289 | // without even trying |
2290 | sizeofRLE = sizeofSimple + 1; |
2291 | sizeofRLENeg = sizeofSimple + 1; |
2292 | } |
2293 | else |
2294 | { |
2295 | sizeofRLE = 2; // For the header |
2296 | sizeofRLENeg = 2; |
2297 | |
2298 | UINT32 rleStart = 0; |
2299 | bool fPrev = false; |
2300 | UINT32 i; |
2301 | for(i = 0; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
2302 | { |
2303 | if(!m_SlotTable[i].IsDeleted()) |
2304 | { |
2305 | if (vector.ReadBit(i)) |
2306 | { |
2307 | if (!fPrev) |
2308 | { |
2309 | // Skipping is done |
2310 | sizeofRLE += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, baseSkip); |
2311 | sizeofRLENeg += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, baseRun); |
2312 | rleStart = i + 1; |
2313 | fPrev = true; |
2314 | } |
2315 | } |
2316 | else |
2317 | { |
2318 | if (fPrev) |
2319 | { |
2320 | // Run is done |
2321 | sizeofRLE += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, baseRun); |
2322 | sizeofRLENeg += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, baseSkip); |
2323 | rleStart = i + 1; |
2324 | fPrev = false; |
2325 | } |
2326 | } |
2327 | } |
2328 | else |
2329 | { |
2330 | rleStart++; |
2331 | } |
2332 | } |
2333 | |
2334 | _ASSERTE(i >= rleStart); |
2335 | sizeofRLE += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, fPrev ? baseRun : baseSkip); |
2336 | sizeofRLENeg += BitStreamWriter::SizeofVarLengthUnsigned(i - rleStart, fPrev ? baseSkip : baseRun); |
2337 | } |
2338 | |
2339 | *pSizeofSimple = sizeofSimple; |
2340 | *pSizeofRLE = sizeofRLE; |
2341 | *pSizeofRLENeg = sizeofRLENeg; |
2342 | } |
2343 | |
2344 | UINT32 GcInfoEncoder::SizeofSlotStateVarLengthVector(const BitArray &vector, |
2345 | UINT32 baseSkip, |
2346 | UINT32 baseRun) |
2347 | { |
2348 | // Try 3 different encodings |
2349 | UINT32 sizeofSimple; |
2350 | UINT32 sizeofRLE; |
2351 | UINT32 sizeofRLENeg; |
2352 | SizeofSlotStateVarLengthVector(vector, baseSkip, baseRun, &sizeofSimple, &sizeofRLE, &sizeofRLENeg); |
2353 | |
2354 | if (sizeofSimple <= sizeofRLE && sizeofSimple <= sizeofRLENeg) |
2355 | return sizeofSimple; |
2356 | if (sizeofRLE <= sizeofRLENeg) |
2357 | return sizeofRLE; |
2358 | return sizeofRLENeg; |
2359 | } |
2360 | |
2361 | UINT32 GcInfoEncoder::WriteSlotStateVarLengthVector(BitStreamWriter &writer, |
2362 | const BitArray &vector, |
2363 | UINT32 baseSkip, |
2364 | UINT32 baseRun) |
2365 | { |
2366 | // Try 3 different encodings |
2367 | UINT32 sizeofSimple; |
2368 | UINT32 sizeofRLE; |
2369 | UINT32 sizeofRLENeg; |
2370 | SizeofSlotStateVarLengthVector(vector, baseSkip, baseRun, &sizeofSimple, &sizeofRLE, &sizeofRLENeg); |
2371 | UINT32 result; |
2372 | |
2373 | #ifdef _DEBUG |
2374 | size_t initial = writer.GetBitCount(); |
2375 | #endif // _DEBUG |
2376 | |
2377 | if (sizeofSimple <= sizeofRLE && sizeofSimple <= sizeofRLENeg) |
2378 | { |
2379 | // Simple encoding is smallest |
2380 | writer.Write(0, 1); |
2381 | WriteSlotStateVector(writer, vector); |
2382 | result = sizeofSimple; |
2383 | } |
2384 | else |
2385 | { |
2386 | // One of the RLE encodings is the smallest |
2387 | writer.Write(1, 1); |
2388 | |
2389 | if (sizeofRLENeg < sizeofRLE) |
2390 | { |
2391 | writer.Write(1, 1); |
2392 | UINT32 swap = baseSkip; |
2393 | baseSkip = baseRun; |
2394 | baseRun = swap; |
2395 | result = sizeofRLENeg; |
2396 | } |
2397 | else |
2398 | { |
2399 | writer.Write(0, 1); |
2400 | result = sizeofRLE; |
2401 | } |
2402 | |
2403 | |
2404 | UINT32 rleStart = 0; |
2405 | UINT32 i; |
2406 | bool fPrev = false; |
2407 | for(i = 0; i < m_NumSlots && !m_SlotTable[i].IsUntracked(); i++) |
2408 | { |
2409 | if(!m_SlotTable[i].IsDeleted()) |
2410 | { |
2411 | |
2412 | if (vector.ReadBit(i)) |
2413 | { |
2414 | if (!fPrev) |
2415 | { |
2416 | // Skipping is done |
2417 | writer.EncodeVarLengthUnsigned(i - rleStart, baseSkip); |
2418 | rleStart = i + 1; |
2419 | fPrev = true; |
2420 | } |
2421 | } |
2422 | else |
2423 | { |
2424 | if (fPrev) |
2425 | { |
2426 | // Run is done |
2427 | writer.EncodeVarLengthUnsigned(i - rleStart, baseRun); |
2428 | rleStart = i + 1; |
2429 | fPrev = false; |
2430 | } |
2431 | } |
2432 | } |
2433 | else |
2434 | { |
2435 | rleStart++; |
2436 | } |
2437 | } |
2438 | |
2439 | _ASSERTE(i >= rleStart); |
2440 | writer.EncodeVarLengthUnsigned(i - rleStart, fPrev ? baseRun : baseSkip); |
2441 | } |
2442 | |
2443 | #ifdef _DEBUG |
2444 | _ASSERTE(result + initial == writer.GetBitCount()); |
2445 | #endif // _DEBUG |
2446 | |
2447 | return result; |
2448 | } |
2449 | |
2450 | |
2451 | void GcInfoEncoder::EliminateRedundantLiveDeadPairs(LifetimeTransition** ppTransitions, |
2452 | size_t* pNumTransitions, |
2453 | LifetimeTransition** ppEndTransitions) |
2454 | { |
2455 | LifetimeTransition* pTransitions = *ppTransitions; |
2456 | LifetimeTransition* pEndTransitions = *ppEndTransitions; |
2457 | |
2458 | LifetimeTransition* pNewTransitions = NULL; |
2459 | LifetimeTransition* pNewTransitionsCopyPtr = NULL; |
2460 | for (LifetimeTransition* pCurrent = pTransitions; pCurrent < pEndTransitions; pCurrent++) |
2461 | { |
2462 | // Is pCurrent the first of a dead/live pair? |
2463 | LifetimeTransition* pNext = pCurrent + 1; |
2464 | if (pNext < pEndTransitions && |
2465 | pCurrent->CodeOffset == pNext->CodeOffset && |
2466 | pCurrent->SlotId == pNext->SlotId && |
2467 | pCurrent->IsDeleted == pNext->IsDeleted && |
2468 | pCurrent->BecomesLive != pNext->BecomesLive) |
2469 | { |
2470 | // They are a pair we want to delete. If this is the first pair we've encountered, allocate |
2471 | // the new array: |
2472 | if (pNewTransitions == NULL) |
2473 | { |
2474 | pNewTransitions = (LifetimeTransition*)m_pAllocator->Alloc((*pNumTransitions) * sizeof(LifetimeTransition)); |
2475 | pNewTransitionsCopyPtr = pNewTransitions; |
2476 | // Copy from the start up to (but not including) pCurrent... |
2477 | for (LifetimeTransition* pCopyPtr = pTransitions; pCopyPtr < pCurrent; pCopyPtr++, pNewTransitionsCopyPtr++) |
2478 | *pNewTransitionsCopyPtr = *pCopyPtr; |
2479 | } |
2480 | pCurrent++; |
2481 | } |
2482 | else |
2483 | { |
2484 | // pCurrent is not part of a pair. If we're copying, copy. |
2485 | if (pNewTransitionsCopyPtr != NULL) |
2486 | { |
2487 | *pNewTransitionsCopyPtr++ = *pCurrent; |
2488 | } |
2489 | } |
2490 | } |
2491 | // If we deleted any pairs, substitute the new array for the old. |
2492 | if (pNewTransitions != NULL) |
2493 | { |
2494 | m_pAllocator->Free(pTransitions); |
2495 | *ppTransitions = pNewTransitions; |
2496 | assert(pNewTransitionsCopyPtr != NULL); |
2497 | *ppEndTransitions = pNewTransitionsCopyPtr; |
2498 | *pNumTransitions = (*ppEndTransitions) - (*ppTransitions); |
2499 | } |
2500 | } |
2501 | |
2502 | // |
2503 | // Write encoded information to its final destination and frees temporary buffers. |
2504 | // The encoder shouldn't be used anymore after calling this method. |
2505 | // |
2506 | BYTE* GcInfoEncoder::Emit() |
2507 | { |
2508 | size_t cbGcInfoSize = m_Info1.GetByteCount() + |
2509 | m_Info2.GetByteCount(); |
2510 | |
2511 | LOG((LF_GCINFO, LL_INFO100, "GcInfoEncoder::Emit(): Size of GC info is %u bytes, code size %u bytes.\n" , (unsigned)cbGcInfoSize, m_CodeLength )); |
2512 | |
2513 | BYTE* destBuffer = (BYTE *)eeAllocGCInfo(cbGcInfoSize); |
2514 | // Allocator will throw an exception on failure. |
2515 | // NOTE: the returned pointer may not be aligned during ngen. |
2516 | _ASSERTE( destBuffer ); |
2517 | |
2518 | BYTE* ptr = destBuffer; |
2519 | |
2520 | m_Info1.CopyTo( ptr ); |
2521 | ptr += m_Info1.GetByteCount(); |
2522 | m_Info1.Dispose(); |
2523 | |
2524 | m_Info2.CopyTo( ptr ); |
2525 | ptr += m_Info2.GetByteCount(); |
2526 | m_Info2.Dispose(); |
2527 | |
2528 | #ifdef MUST_CALL_JITALLOCATOR_FREE |
2529 | m_pAllocator->Free( m_SlotTable ); |
2530 | #endif |
2531 | |
2532 | return destBuffer; |
2533 | } |
2534 | |
2535 | void * GcInfoEncoder::eeAllocGCInfo (size_t blockSize) |
2536 | { |
2537 | return m_pCorJitInfo->allocGCInfo(blockSize); |
2538 | } |
2539 | |
2540 | |
2541 | BitStreamWriter::BitStreamWriter( IAllocator* pAllocator ) |
2542 | { |
2543 | m_pAllocator = pAllocator; |
2544 | m_BitCount = 0; |
2545 | #ifdef _DEBUG |
2546 | m_MemoryBlocksCount = 0; |
2547 | #endif |
2548 | |
2549 | // Allocate memory blocks lazily |
2550 | m_OutOfBlockSlot = m_pCurrentSlot = (size_t*) NULL; |
2551 | m_FreeBitsInCurrentSlot = 0; |
2552 | } |
2553 | |
2554 | // |
2555 | // bit 0 is the least significative bit |
2556 | // The stream encodes the first come bit in the least significant bit of each byte |
2557 | // |
2558 | void BitStreamWriter::Write( size_t data, UINT32 count ) |
2559 | { |
2560 | _ASSERT(count <= BITS_PER_SIZE_T); |
2561 | |
2562 | if(count) |
2563 | { |
2564 | // Increment it now as we change count later on |
2565 | m_BitCount += count; |
2566 | |
2567 | if( count > m_FreeBitsInCurrentSlot ) |
2568 | { |
2569 | if( m_FreeBitsInCurrentSlot > 0 ) |
2570 | { |
2571 | _ASSERTE(m_FreeBitsInCurrentSlot < BITS_PER_SIZE_T); |
2572 | WriteInCurrentSlot( data, m_FreeBitsInCurrentSlot ); |
2573 | count -= m_FreeBitsInCurrentSlot; |
2574 | data >>= m_FreeBitsInCurrentSlot; |
2575 | } |
2576 | |
2577 | _ASSERTE( count > 0 ); |
2578 | |
2579 | // Initialize the next slot |
2580 | if( ++m_pCurrentSlot >= m_OutOfBlockSlot ) |
2581 | { |
2582 | // Get a new memory block |
2583 | AllocMemoryBlock(); |
2584 | } |
2585 | |
2586 | InitCurrentSlot(); |
2587 | |
2588 | // Write the remainder |
2589 | WriteInCurrentSlot( data, count ); |
2590 | m_FreeBitsInCurrentSlot -= count; |
2591 | } |
2592 | else |
2593 | { |
2594 | WriteInCurrentSlot( data, count ); |
2595 | m_FreeBitsInCurrentSlot -= count; |
2596 | // if m_FreeBitsInCurrentSlot becomes 0 a nwe slot will initialized on the next request |
2597 | } |
2598 | } |
2599 | } |
2600 | |
2601 | |
2602 | void BitStreamWriter::CopyTo( BYTE* buffer ) |
2603 | { |
2604 | int i,c; |
2605 | BYTE* source = NULL; |
2606 | |
2607 | MemoryBlock* pMemBlock = m_MemoryBlocks.Head(); |
2608 | if( pMemBlock == NULL ) |
2609 | return; |
2610 | |
2611 | while (pMemBlock->Next() != NULL) |
2612 | { |
2613 | source = (BYTE*) pMemBlock->Contents; |
2614 | // @TODO: use memcpy instead |
2615 | for( i = 0; i < m_MemoryBlockSize; i++ ) |
2616 | { |
2617 | *( buffer++ ) = *( source++ ); |
2618 | } |
2619 | |
2620 | pMemBlock = pMemBlock->Next(); |
2621 | } |
2622 | |
2623 | source = (BYTE*) pMemBlock->Contents; |
2624 | // The number of bytes to copy in the last block |
2625 | c = (int) ((BYTE*) ( m_pCurrentSlot + 1 ) - source - m_FreeBitsInCurrentSlot/8); |
2626 | _ASSERTE( c >= 0 ); |
2627 | // @TODO: use memcpy instead |
2628 | for( i = 0; i < c; i++ ) |
2629 | { |
2630 | *( buffer++ ) = *( source++ ); |
2631 | } |
2632 | |
2633 | } |
2634 | |
2635 | void BitStreamWriter::Dispose() |
2636 | { |
2637 | m_MemoryBlocks.Dispose(m_pAllocator); |
2638 | } |
2639 | |
2640 | int BitStreamWriter::SizeofVarLengthUnsigned( size_t n, UINT32 base) |
2641 | { |
2642 | // If a value gets so big we are probably doing something wrong |
2643 | _ASSERTE(((INT32)(UINT32)n) >= 0); |
2644 | _ASSERTE((base > 0) && (base < BITS_PER_SIZE_T)); |
2645 | size_t numEncodings = size_t{ 1 } << base; |
2646 | int bitsUsed; |
2647 | for(bitsUsed = base+1; ; bitsUsed += base+1) |
2648 | { |
2649 | if( n < numEncodings ) |
2650 | { |
2651 | return bitsUsed; |
2652 | } |
2653 | else |
2654 | { |
2655 | n >>= base; |
2656 | } |
2657 | } |
2658 | return bitsUsed; |
2659 | } |
2660 | |
2661 | int BitStreamWriter::EncodeVarLengthUnsigned( size_t n, UINT32 base) |
2662 | { |
2663 | // If a value gets so big we are probably doing something wrong |
2664 | _ASSERTE(((INT32)(UINT32)n) >= 0); |
2665 | _ASSERTE((base > 0) && (base < BITS_PER_SIZE_T)); |
2666 | size_t numEncodings = size_t{ 1 } << base; |
2667 | int bitsUsed; |
2668 | for(bitsUsed = base+1; ; bitsUsed += base+1) |
2669 | { |
2670 | if( n < numEncodings ) |
2671 | { |
2672 | Write( n, base+1 ); // This sets the extension bit to zero |
2673 | return bitsUsed; |
2674 | } |
2675 | else |
2676 | { |
2677 | size_t currentChunk = n & (numEncodings-1); |
2678 | Write( currentChunk | numEncodings, base+1 ); |
2679 | n >>= base; |
2680 | } |
2681 | } |
2682 | return bitsUsed; |
2683 | } |
2684 | |
2685 | int BitStreamWriter::EncodeVarLengthSigned( SSIZE_T n, UINT32 base ) |
2686 | { |
2687 | _ASSERTE((base > 0) && (base < BITS_PER_SIZE_T)); |
2688 | size_t numEncodings = size_t{ 1 } << base; |
2689 | for(int bitsUsed = base+1; ; bitsUsed += base+1) |
2690 | { |
2691 | size_t currentChunk = ((size_t) n) & (numEncodings-1); |
2692 | size_t topmostBit = currentChunk & (numEncodings >> 1); |
2693 | n >>= base; // signed arithmetic shift |
2694 | if((topmostBit && (n == (SSIZE_T)-1)) || (!topmostBit && (n == 0))) |
2695 | { |
2696 | // The topmost bit correctly represents the sign |
2697 | Write( currentChunk, base+1 ); // This sets the extension bit to zero |
2698 | return bitsUsed; |
2699 | } |
2700 | else |
2701 | { |
2702 | Write( currentChunk | numEncodings, base+1 ); |
2703 | } |
2704 | } |
2705 | } |
2706 | |
2707 | |