| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX LoopCloning XX |
| 9 | XX XX |
| 10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | |
| 13 | Loop cloning optimizations comprise of the following steps: |
| 14 | - Loop detection logic which is existing logic in the JIT that records |
| 15 | loop information with loop flags. |
| 16 | - The next step is to identify loop optimization candidates. This is done |
| 17 | by optObtainLoopCloningOpts. The loop context variable is updated with |
| 18 | all the necessary information (for ex: block, stmt, tree information) |
| 19 | to do the optimization later. |
| 20 | a) This involves checking if the loop is well-formed with respect to |
| 21 | the optimization being performed. |
| 22 | b) In array bounds check case, reconstructing the morphed GT_INDEX |
| 23 | nodes back to their array representation. |
| 24 | i) The array index is stored in the "context" variable with |
| 25 | additional block, tree, stmt info. |
| 26 | - Once the optimization candidates are identified, we derive cloning conditions |
| 27 | For ex: to clone a simple "for (i=0; i<n; ++i) { a[i] }" loop, we need the |
| 28 | following conditions: |
| 29 | (a != null) && ((n >= 0) & (n <= a.length) & (stride > 0)) |
| 30 | a) Note the short circuit AND for (a != null). These are called block |
| 31 | conditions or deref-conditions since these conditions need to be in their |
| 32 | own blocks to be able to short-circuit. |
| 33 | i) For a doubly nested loop on i, j, we would then have |
| 34 | conditions like |
| 35 | (a != null) && (i < a.len) && (a[i] != null) && (j < a[i].len) |
| 36 | all short-circuiting creating blocks. |
| 37 | |
| 38 | Advantage: |
| 39 | All conditions are checked before we enter the fast path. So fast |
| 40 | path gets as fast as it can be. |
| 41 | |
| 42 | Disadvantage: |
| 43 | Creation of blocks. |
| 44 | |
| 45 | Heuristic: |
| 46 | Therefore we will not clone if we exceed creating 4 blocks. |
| 47 | |
| 48 | b) The other conditions called cloning conditions are transformed into LC_Condition |
| 49 | structs which are then optimized. |
| 50 | i) Optimization of conditions involves removing redundant condition checks. |
| 51 | ii) If some conditions evaluate to true statically, then they are removed. |
| 52 | iii) If any condition evaluates to false statically, then loop cloning is |
| 53 | aborted for that loop. |
| 54 | - Then the block splitting occurs and loop cloning conditions is transformed into |
| 55 | GenTree and added to the loop cloning choice block. |
| 56 | |
| 57 | Preconditions |
| 58 | - Loop detection should have completed and the loop table should be |
| 59 | populated with the loop dscs. |
| 60 | - The loops that will be considered are the ones with the LPFLG_ITER |
| 61 | marked on them. |
| 62 | |
| 63 | Limitations |
| 64 | - For array based optimizations the loop choice condition is checked |
| 65 | before the loop body. This implies that the loop initializer statement |
| 66 | has not executed at the time of the check. So any loop cloning condition |
| 67 | involving the initial value of the loop counter cannot be condition checked |
| 68 | as it hasn't been assigned yet at the time of condition checking. Therefore |
| 69 | the initial value has to be statically known. This can be fixed with further |
| 70 | effort. |
| 71 | |
| 72 | Assumption |
| 73 | - The assumption is that the optimization candidates collected during the |
| 74 | identification phase will be the ones that will be optimized. In other words, |
| 75 | the loop that is present originally will be the fast path. Explicitly, the cloned |
| 76 | path will be the slow path and will be unoptimized. This allows us to |
| 77 | collect additional information at the same time of identifying the optimization |
| 78 | candidates. This later helps us to perform the optimizations during actual cloning. |
| 79 | - All loop cloning choice conditions will automatically be "AND"-ed. These are |
| 80 | bitwise AND operations. |
| 81 | - Perform short circuit AND for (array != null) side effect check |
| 82 | before hoisting (limit <= a.length) check. |
| 83 | For ex: to clone a simple "for (i=0; i<n; ++i) { a[i] }" loop, we need the |
| 84 | following conditions: |
| 85 | (a != null) && ((n >= 0) & (n <= a.length) & (stride > 0)) |
| 86 | |
| 87 | */ |
| 88 | #pragma once |
| 89 | |
| 90 | class Compiler; |
| 91 | |
| 92 | /** |
| 93 | * |
| 94 | * Represents an array access and associated bounds checks. |
| 95 | * Array access is required have the array and indices in local variables. |
| 96 | * This struct is constructed using a GT_INDEX node that is broken into |
| 97 | * its sub trees. |
| 98 | * |
| 99 | */ |
| 100 | struct ArrIndex |
| 101 | { |
| 102 | unsigned arrLcl; // The array base local num |
| 103 | JitExpandArrayStack<unsigned> indLcls; // The indices local nums |
| 104 | JitExpandArrayStack<GenTree*> bndsChks; // The bounds checks nodes along each dimension. |
| 105 | unsigned rank; // Rank of the array |
| 106 | BasicBlock* useBlock; // Block where the [] occurs |
| 107 | |
| 108 | ArrIndex(CompAllocator alloc) : arrLcl(BAD_VAR_NUM), indLcls(alloc), bndsChks(alloc), rank(0), useBlock(nullptr) |
| 109 | { |
| 110 | } |
| 111 | |
| 112 | #ifdef DEBUG |
| 113 | void Print(unsigned dim = -1) |
| 114 | { |
| 115 | printf("V%02d" , arrLcl); |
| 116 | for (unsigned i = 0; i < ((dim == -1) ? rank : dim); ++i) |
| 117 | { |
| 118 | printf("[V%02d]" , indLcls.GetRef(i)); |
| 119 | } |
| 120 | } |
| 121 | #endif |
| 122 | }; |
| 123 | |
| 124 | // Forward declarations |
| 125 | #define LC_OPT(en) struct en##OptInfo; |
| 126 | #include "loopcloningopts.h" |
| 127 | |
| 128 | /** |
| 129 | * |
| 130 | * LcOptInfo represents the optimization information for loop cloning, |
| 131 | * other classes are supposed to derive from this base class. |
| 132 | * |
| 133 | * Example usage: |
| 134 | * LcMdArrayOptInfo is multi-dimensional array optimization for which the |
| 135 | * loop can be cloned. |
| 136 | * LcArrIndexOptInfo is a jagged array optimization for which the loop |
| 137 | * can be cloned. |
| 138 | * |
| 139 | * So LcOptInfo represents any type of optimization opportunity that |
| 140 | * occurs in a loop and the metadata for the optimization is stored in |
| 141 | * this class. |
| 142 | */ |
| 143 | struct LcOptInfo |
| 144 | { |
| 145 | enum OptType |
| 146 | { |
| 147 | #undef LC_OPT |
| 148 | #define LC_OPT(en) en, |
| 149 | #include "loopcloningopts.h" |
| 150 | }; |
| 151 | |
| 152 | void* optInfo; |
| 153 | OptType optType; |
| 154 | LcOptInfo(void* optInfo, OptType optType) : optInfo(optInfo), optType(optType) |
| 155 | { |
| 156 | } |
| 157 | |
| 158 | OptType GetOptType() |
| 159 | { |
| 160 | return optType; |
| 161 | } |
| 162 | #undef LC_OPT |
| 163 | #define LC_OPT(en) \ |
| 164 | en##OptInfo* As##en##OptInfo() \ |
| 165 | { \ |
| 166 | assert(optType == en); \ |
| 167 | return reinterpret_cast<en##OptInfo*>(this); \ |
| 168 | } |
| 169 | #include "loopcloningopts.h" |
| 170 | }; |
| 171 | |
| 172 | /** |
| 173 | * |
| 174 | * Optimization info for a multi-dimensional array. |
| 175 | */ |
| 176 | struct LcMdArrayOptInfo : public LcOptInfo |
| 177 | { |
| 178 | GenTreeArrElem* arrElem; // "arrElem" node of an MD array. |
| 179 | unsigned dim; // "dim" represents upto what level of the rank this optimization applies to. |
| 180 | // For example, a[i,j,k] could be the MD array "arrElem" but if "dim" is 2, |
| 181 | // then this node is treated as though it were a[i,j] |
| 182 | ArrIndex* index; // "index" cached computation in the form of an ArrIndex representation. |
| 183 | |
| 184 | LcMdArrayOptInfo(GenTreeArrElem* arrElem, unsigned dim) |
| 185 | : LcOptInfo(this, LcMdArray), arrElem(arrElem), dim(dim), index(nullptr) |
| 186 | { |
| 187 | } |
| 188 | |
| 189 | ArrIndex* GetArrIndexForDim(CompAllocator alloc) |
| 190 | { |
| 191 | if (index == nullptr) |
| 192 | { |
| 193 | index = new (alloc) ArrIndex(alloc); |
| 194 | index->rank = arrElem->gtArrRank; |
| 195 | for (unsigned i = 0; i < dim; ++i) |
| 196 | { |
| 197 | index->indLcls.Push(arrElem->gtArrInds[i]->gtLclVarCommon.gtLclNum); |
| 198 | } |
| 199 | index->arrLcl = arrElem->gtArrObj->gtLclVarCommon.gtLclNum; |
| 200 | } |
| 201 | return index; |
| 202 | } |
| 203 | }; |
| 204 | |
| 205 | /** |
| 206 | * |
| 207 | * Optimization info for a jagged array. |
| 208 | */ |
| 209 | struct LcJaggedArrayOptInfo : public LcOptInfo |
| 210 | { |
| 211 | unsigned dim; // "dim" represents upto what level of the rank this optimization applies to. |
| 212 | // For example, a[i][j][k] could be the jagged array but if "dim" is 2, |
| 213 | // then this node is treated as though it were a[i][j] |
| 214 | ArrIndex arrIndex; // ArrIndex representation of the array. |
| 215 | GenTree* stmt; // "stmt" where the optimization opportunity occurs. |
| 216 | |
| 217 | LcJaggedArrayOptInfo(ArrIndex& arrIndex, unsigned dim, GenTree* stmt) |
| 218 | : LcOptInfo(this, LcJaggedArray), dim(dim), arrIndex(arrIndex), stmt(stmt) |
| 219 | { |
| 220 | } |
| 221 | }; |
| 222 | |
| 223 | /** |
| 224 | * |
| 225 | * Symbolic representation of a.length, or a[i][j].length or a[i,j].length and so on. |
| 226 | * OperType decides whether "arrLength" is invoked on the array or if it is just an array. |
| 227 | */ |
| 228 | struct LC_Array |
| 229 | { |
| 230 | enum ArrType |
| 231 | { |
| 232 | Invalid, |
| 233 | Jagged, |
| 234 | MdArray |
| 235 | }; |
| 236 | |
| 237 | enum OperType |
| 238 | { |
| 239 | None, |
| 240 | ArrLen, |
| 241 | }; |
| 242 | |
| 243 | ArrType type; // The type of the array on which to invoke length operator. |
| 244 | ArrIndex* arrIndex; // ArrIndex representation of this array. |
| 245 | |
| 246 | OperType oper; |
| 247 | |
| 248 | #ifdef DEBUG |
| 249 | void Print() |
| 250 | { |
| 251 | arrIndex->Print(dim); |
| 252 | if (oper == ArrLen) |
| 253 | { |
| 254 | printf(".Length" ); |
| 255 | } |
| 256 | } |
| 257 | #endif |
| 258 | |
| 259 | int dim; // "dim" = which index to invoke arrLen on, if -1 invoke on the whole array |
| 260 | // Example 1: a[0][1][2] and dim = 2 implies a[0][1].length |
| 261 | // Example 2: a[0][1][2] and dim = -1 implies a[0][1][2].length |
| 262 | LC_Array() : type(Invalid), dim(-1) |
| 263 | { |
| 264 | } |
| 265 | LC_Array(ArrType type, ArrIndex* arrIndex, int dim, OperType oper) |
| 266 | : type(type), arrIndex(arrIndex), oper(oper), dim(dim) |
| 267 | { |
| 268 | } |
| 269 | |
| 270 | LC_Array(ArrType type, ArrIndex* arrIndex, OperType oper) : type(type), arrIndex(arrIndex), oper(oper), dim(-1) |
| 271 | { |
| 272 | } |
| 273 | |
| 274 | // Equality operator |
| 275 | bool operator==(const LC_Array& that) const |
| 276 | { |
| 277 | assert(type != Invalid && that.type != Invalid); |
| 278 | |
| 279 | // Types match and the array base matches. |
| 280 | if (type != that.type || arrIndex->arrLcl != that.arrIndex->arrLcl || oper != that.oper) |
| 281 | { |
| 282 | return false; |
| 283 | } |
| 284 | |
| 285 | // If the dim ranks are not matching, quit. |
| 286 | int rank1 = GetDimRank(); |
| 287 | int rank2 = that.GetDimRank(); |
| 288 | if (rank1 != rank2) |
| 289 | { |
| 290 | return false; |
| 291 | } |
| 292 | |
| 293 | // Check for the indices. |
| 294 | for (int i = 0; i < rank1; ++i) |
| 295 | { |
| 296 | if (arrIndex->indLcls[i] != that.arrIndex->indLcls[i]) |
| 297 | { |
| 298 | return false; |
| 299 | } |
| 300 | } |
| 301 | return true; |
| 302 | } |
| 303 | |
| 304 | // The max dim on which length is invoked. |
| 305 | int GetDimRank() const |
| 306 | { |
| 307 | return (dim < 0) ? (int)arrIndex->rank : dim; |
| 308 | } |
| 309 | |
| 310 | // Get a tree representation for this symbolic a.length |
| 311 | GenTree* ToGenTree(Compiler* comp); |
| 312 | }; |
| 313 | |
| 314 | /** |
| 315 | * |
| 316 | * Symbolic representation of either a constant like 1, 2 or a variable V02, V03 etc. or an "LC_Array" or the null |
| 317 | * constant. |
| 318 | */ |
| 319 | struct LC_Ident |
| 320 | { |
| 321 | enum IdentType |
| 322 | { |
| 323 | Invalid, |
| 324 | Const, |
| 325 | Var, |
| 326 | ArrLen, |
| 327 | Null, |
| 328 | }; |
| 329 | |
| 330 | unsigned constant; // The constant value if this node is of type "Const", or the lcl num if "Var" |
| 331 | LC_Array arrLen; // The LC_Array if the type is "ArrLen" |
| 332 | IdentType type; // The type of this object |
| 333 | |
| 334 | // Equality operator |
| 335 | bool operator==(const LC_Ident& that) const |
| 336 | { |
| 337 | switch (type) |
| 338 | { |
| 339 | case Const: |
| 340 | case Var: |
| 341 | return (type == that.type) && constant == that.constant; |
| 342 | case ArrLen: |
| 343 | return (type == that.type) && (arrLen == that.arrLen); |
| 344 | case Null: |
| 345 | return (type == that.type); |
| 346 | default: |
| 347 | assert(!"Unknown LC_Ident type" ); |
| 348 | unreached(); |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | #ifdef DEBUG |
| 353 | void Print() |
| 354 | { |
| 355 | switch (type) |
| 356 | { |
| 357 | case Const: |
| 358 | printf("%u" , constant); |
| 359 | break; |
| 360 | case Var: |
| 361 | printf("V%02d" , constant); |
| 362 | break; |
| 363 | case ArrLen: |
| 364 | arrLen.Print(); |
| 365 | break; |
| 366 | case Null: |
| 367 | printf("null" ); |
| 368 | break; |
| 369 | default: |
| 370 | assert(false); |
| 371 | break; |
| 372 | } |
| 373 | } |
| 374 | #endif |
| 375 | |
| 376 | LC_Ident() : type(Invalid) |
| 377 | { |
| 378 | } |
| 379 | LC_Ident(unsigned constant, IdentType type) : constant(constant), type(type) |
| 380 | { |
| 381 | } |
| 382 | explicit LC_Ident(IdentType type) : type(type) |
| 383 | { |
| 384 | } |
| 385 | explicit LC_Ident(const LC_Array& arrLen) : arrLen(arrLen), type(ArrLen) |
| 386 | { |
| 387 | } |
| 388 | |
| 389 | // Convert this symbolic representation into a tree node. |
| 390 | GenTree* ToGenTree(Compiler* comp); |
| 391 | }; |
| 392 | |
| 393 | /** |
| 394 | * |
| 395 | * Symbolic representation of an expr that involves an "LC_Ident" |
| 396 | */ |
| 397 | struct LC_Expr |
| 398 | { |
| 399 | enum ExprType |
| 400 | { |
| 401 | Invalid, |
| 402 | Ident, |
| 403 | }; |
| 404 | |
| 405 | LC_Ident ident; |
| 406 | ExprType type; |
| 407 | |
| 408 | // Equality operator |
| 409 | bool operator==(const LC_Expr& that) const |
| 410 | { |
| 411 | assert(type != Invalid && that.type != Invalid); |
| 412 | |
| 413 | // If the types don't match quit. |
| 414 | if (type != that.type) |
| 415 | { |
| 416 | return false; |
| 417 | } |
| 418 | |
| 419 | // Check if the ident match. |
| 420 | return (ident == that.ident); |
| 421 | } |
| 422 | |
| 423 | #ifdef DEBUG |
| 424 | void Print() |
| 425 | { |
| 426 | if (type == Ident) |
| 427 | { |
| 428 | ident.Print(); |
| 429 | } |
| 430 | } |
| 431 | #endif |
| 432 | |
| 433 | LC_Expr() : type(Invalid) |
| 434 | { |
| 435 | } |
| 436 | explicit LC_Expr(const LC_Ident& ident) : ident(ident), type(Ident) |
| 437 | { |
| 438 | } |
| 439 | |
| 440 | // Convert LC_Expr into a tree node. |
| 441 | GenTree* ToGenTree(Compiler* comp); |
| 442 | }; |
| 443 | |
| 444 | /** |
| 445 | * |
| 446 | * Symbolic representation of a conditional operation involving two "LC_Expr": |
| 447 | * LC_Expr < LC_Expr, for example: i > 0, i < a.length |
| 448 | */ |
| 449 | struct LC_Condition |
| 450 | { |
| 451 | LC_Expr op1; |
| 452 | LC_Expr op2; |
| 453 | genTreeOps oper; |
| 454 | |
| 455 | #ifdef DEBUG |
| 456 | void Print() |
| 457 | { |
| 458 | op1.Print(); |
| 459 | printf(" %s " , GenTree::OpName(oper)); |
| 460 | op2.Print(); |
| 461 | } |
| 462 | #endif |
| 463 | |
| 464 | // Check if the condition evaluates statically to true or false, i < i => false, a.length > 0 => true |
| 465 | // The result is put in "pResult" parameter and is valid if the method returns "true". Otherwise, the |
| 466 | // condition could not be evaluated. |
| 467 | bool Evaluates(bool* pResult); |
| 468 | |
| 469 | // Check if two conditions can be combined to yield one condition. |
| 470 | bool Combines(const LC_Condition& cond, LC_Condition* newCond); |
| 471 | |
| 472 | LC_Condition() |
| 473 | { |
| 474 | } |
| 475 | LC_Condition(genTreeOps oper, const LC_Expr& op1, const LC_Expr& op2) : op1(op1), op2(op2), oper(oper) |
| 476 | { |
| 477 | } |
| 478 | |
| 479 | // Convert this conditional operation into a GenTree. |
| 480 | GenTree* ToGenTree(Compiler* comp); |
| 481 | }; |
| 482 | |
| 483 | /** |
| 484 | * A deref tree of an array expression. |
| 485 | * a[i][j][k], b[i] and a[i][y][k] are the occurrences in the loop, then, the tree would be: |
| 486 | * a => { |
| 487 | * i => { |
| 488 | * j => { |
| 489 | * k => {} |
| 490 | * }, |
| 491 | * y => { |
| 492 | * k => {} |
| 493 | * }, |
| 494 | * } |
| 495 | * }, |
| 496 | * b => { |
| 497 | * i => {} |
| 498 | * } |
| 499 | */ |
| 500 | struct LC_Deref |
| 501 | { |
| 502 | const LC_Array array; |
| 503 | JitExpandArrayStack<LC_Deref*>* children; |
| 504 | |
| 505 | unsigned level; |
| 506 | |
| 507 | LC_Deref(const LC_Array& array, unsigned level) : array(array), children(nullptr), level(level) |
| 508 | { |
| 509 | } |
| 510 | |
| 511 | LC_Deref* Find(unsigned lcl); |
| 512 | |
| 513 | unsigned Lcl(); |
| 514 | |
| 515 | bool HasChildren(); |
| 516 | void EnsureChildren(CompAllocator alloc); |
| 517 | static LC_Deref* Find(JitExpandArrayStack<LC_Deref*>* children, unsigned lcl); |
| 518 | |
| 519 | void DeriveLevelConditions(JitExpandArrayStack<JitExpandArrayStack<LC_Condition>*>* len); |
| 520 | #ifdef DEBUG |
| 521 | void Print(unsigned indent = 0) |
| 522 | { |
| 523 | unsigned tab = 4 * indent; |
| 524 | printf("%*s%d,%d => {" , tab, "" , Lcl(), level); |
| 525 | if (children != nullptr) |
| 526 | { |
| 527 | for (unsigned i = 0; i < children->Size(); ++i) |
| 528 | { |
| 529 | if (i > 0) |
| 530 | { |
| 531 | printf("," ); |
| 532 | } |
| 533 | printf("\n" ); |
| 534 | #ifdef _MSC_VER |
| 535 | (*children)[i]->Print(indent + 1); |
| 536 | #else // _MSC_VER |
| 537 | (*((JitExpandArray<LC_Deref*>*)children))[i]->Print(indent + 1); |
| 538 | #endif // _MSC_VER |
| 539 | } |
| 540 | } |
| 541 | printf("\n%*s}" , tab, "" ); |
| 542 | } |
| 543 | #endif |
| 544 | }; |
| 545 | |
| 546 | /** |
| 547 | * |
| 548 | * The "context" represents data that is used for making loop-cloning decisions. |
| 549 | * - The data is the collection of optimization opportunities |
| 550 | * - and the conditions (LC_Condition) that decide between the fast |
| 551 | * path or the slow path. |
| 552 | * |
| 553 | * BNF for LC_Condition: |
| 554 | * LC_Condition : LC_Expr genTreeOps LC_Expr |
| 555 | * LC_Expr : LC_Ident | LC_Ident + Constant |
| 556 | * LC_Ident : Constant | Var | LC_Array |
| 557 | * LC_Array : . |
| 558 | * genTreeOps : GT_GE | GT_LE | GT_GT | GT_LT |
| 559 | * |
| 560 | */ |
| 561 | struct LoopCloneContext |
| 562 | { |
| 563 | CompAllocator alloc; // The allocator |
| 564 | JitExpandArrayStack<LcOptInfo*>** optInfo; // The array of optimization opportunities found in each loop. (loop x |
| 565 | // optimization-opportunities) |
| 566 | JitExpandArrayStack<LC_Condition>** conditions; // The array of conditions that influence which path to take for |
| 567 | // each |
| 568 | // loop. (loop x cloning-conditions) |
| 569 | JitExpandArrayStack<LC_Array>** derefs; // The array of dereference conditions found in each loop. (loop x |
| 570 | // deref-conditions) |
| 571 | JitExpandArrayStack<JitExpandArrayStack<LC_Condition>*>** blockConditions; // The array of block levels of |
| 572 | // conditions for |
| 573 | // each loop. (loop x level x conditions) |
| 574 | |
| 575 | LoopCloneContext(unsigned loopCount, CompAllocator alloc) : alloc(alloc) |
| 576 | { |
| 577 | optInfo = new (alloc) JitExpandArrayStack<LcOptInfo*>*[loopCount]; |
| 578 | conditions = new (alloc) JitExpandArrayStack<LC_Condition>*[loopCount]; |
| 579 | derefs = new (alloc) JitExpandArrayStack<LC_Array>*[loopCount]; |
| 580 | blockConditions = new (alloc) JitExpandArrayStack<JitExpandArrayStack<LC_Condition>*>*[loopCount]; |
| 581 | for (unsigned i = 0; i < loopCount; ++i) |
| 582 | { |
| 583 | optInfo[i] = nullptr; |
| 584 | conditions[i] = nullptr; |
| 585 | derefs[i] = nullptr; |
| 586 | blockConditions[i] = nullptr; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | // Evaluate conditions into a JTRUE stmt and put it in the block. Reverse condition if 'reverse' is true. |
| 591 | void CondToStmtInBlock(Compiler* comp, JitExpandArrayStack<LC_Condition>& conds, BasicBlock* block, bool reverse); |
| 592 | |
| 593 | // Get all the optimization information for loop "loopNum"; This information is held in "optInfo" array. |
| 594 | // If NULL this allocates the optInfo[loopNum] array for "loopNum" |
| 595 | JitExpandArrayStack<LcOptInfo*>* EnsureLoopOptInfo(unsigned loopNum); |
| 596 | |
| 597 | // Get all the optimization information for loop "loopNum"; This information is held in "optInfo" array. |
| 598 | // If NULL this does not allocate the optInfo[loopNum] array for "loopNum" |
| 599 | JitExpandArrayStack<LcOptInfo*>* GetLoopOptInfo(unsigned loopNum); |
| 600 | |
| 601 | // Cancel all optimizations for loop "loopNum" by clearing out the "conditions" member if non-null |
| 602 | // and setting the optInfo to "null.", If "null", then the user of this class is not supposed to |
| 603 | // clone this loop. |
| 604 | void CancelLoopOptInfo(unsigned loopNum); |
| 605 | |
| 606 | // Get the conditions that decide which loop to take for "loopNum." If NULL allocate an empty array. |
| 607 | JitExpandArrayStack<LC_Condition>* EnsureConditions(unsigned loopNum); |
| 608 | |
| 609 | // Get the conditions for loop. No allocation is performed. |
| 610 | JitExpandArrayStack<LC_Condition>* GetConditions(unsigned loopNum); |
| 611 | |
| 612 | // Ensure that the "deref" conditions array is allocated. |
| 613 | JitExpandArrayStack<LC_Array>* EnsureDerefs(unsigned loopNum); |
| 614 | |
| 615 | // Get block conditions for each loop, no allocation is performed. |
| 616 | JitExpandArrayStack<JitExpandArrayStack<LC_Condition>*>* GetBlockConditions(unsigned loopNum); |
| 617 | |
| 618 | // Ensure that the block condition is present, if not allocate space. |
| 619 | JitExpandArrayStack<JitExpandArrayStack<LC_Condition>*>* EnsureBlockConditions(unsigned loopNum, |
| 620 | unsigned totalBlocks); |
| 621 | |
| 622 | // Print the block conditions for the loop. |
| 623 | void PrintBlockConditions(unsigned loopNum); |
| 624 | |
| 625 | // Does the loop have block conditions? |
| 626 | bool HasBlockConditions(unsigned loopNum); |
| 627 | |
| 628 | // Evaluate the conditions for "loopNum" and indicate if they are either all true or any of them are false. |
| 629 | // "pAllTrue" implies all the conditions are statically known to be true. |
| 630 | // "pAnyFalse" implies at least one condition is statically known to be false. |
| 631 | // If neither of them are true, then some conditions' evaluations are statically unknown. |
| 632 | // |
| 633 | // If all conditions yield true, then the caller doesn't need to clone the loop, but it can perform |
| 634 | // fast path optimizations. |
| 635 | // If any condition yields false, then the caller needs to abort cloning the loop (neither clone nor |
| 636 | // fast path optimizations.) |
| 637 | // |
| 638 | // Assumes the conditions involve an AND join operator. |
| 639 | void EvaluateConditions(unsigned loopNum, bool* pAllTrue, bool* pAnyFalse DEBUGARG(bool verbose)); |
| 640 | |
| 641 | private: |
| 642 | void OptimizeConditions(JitExpandArrayStack<LC_Condition>& conds); |
| 643 | |
| 644 | public: |
| 645 | // Optimize conditions to remove redundant conditions. |
| 646 | void OptimizeConditions(unsigned loopNum DEBUGARG(bool verbose)); |
| 647 | |
| 648 | void OptimizeBlockConditions(unsigned loopNum DEBUGARG(bool verbose)); |
| 649 | |
| 650 | #ifdef DEBUG |
| 651 | void PrintConditions(unsigned loopNum); |
| 652 | #endif |
| 653 | }; |
| 654 | |