| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX GenTree XX |
| 9 | XX XX |
| 10 | XX This is the node in the semantic tree graph. It represents the operation XX |
| 11 | XX corresponding to the node, and other information during code-gen. XX |
| 12 | XX XX |
| 13 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 14 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 15 | */ |
| 16 | |
| 17 | /*****************************************************************************/ |
| 18 | #ifndef _GENTREE_H_ |
| 19 | #define _GENTREE_H_ |
| 20 | /*****************************************************************************/ |
| 21 | |
| 22 | #include "vartype.h" // For "var_types" |
| 23 | #include "target.h" // For "regNumber" |
| 24 | #include "ssaconfig.h" // For "SsaConfig::RESERVED_SSA_NUM" |
| 25 | #include "reglist.h" |
| 26 | #include "valuenumtype.h" |
| 27 | #include "jitstd.h" |
| 28 | #include "jithashtable.h" |
| 29 | #include "simd.h" |
| 30 | #include "namedintrinsiclist.h" |
| 31 | |
| 32 | // Debugging GenTree is much easier if we add a magic virtual function to make the debugger able to figure out what type |
| 33 | // it's got. This is enabled by default in DEBUG. To enable it in RET builds (temporarily!), you need to change the |
| 34 | // build to define DEBUGGABLE_GENTREE=1, as well as pass /OPT:NOICF to the linker (or else all the vtables get merged, |
| 35 | // making the debugging value supplied by them useless). See protojit.nativeproj for a commented example of setting the |
| 36 | // build flags correctly. |
| 37 | #ifndef DEBUGGABLE_GENTREE |
| 38 | #ifdef DEBUG |
| 39 | #define DEBUGGABLE_GENTREE 1 |
| 40 | #else // !DEBUG |
| 41 | #define DEBUGGABLE_GENTREE 0 |
| 42 | #endif // !DEBUG |
| 43 | #endif // !DEBUGGABLE_GENTREE |
| 44 | |
| 45 | // The SpecialCodeKind enum is used to indicate the type of special (unique) |
| 46 | // target block that will be targeted by an instruction. |
| 47 | // These are used by: |
| 48 | // GenTreeBoundsChk nodes (SCK_RNGCHK_FAIL, SCK_ARG_EXCPN, SCK_ARG_RNG_EXCPN) |
| 49 | // - these nodes have a field (gtThrowKind) to indicate which kind |
| 50 | // GenTreeOps nodes, for which codegen will generate the branch |
| 51 | // - it will use the appropriate kind based on the opcode, though it's not |
| 52 | // clear why SCK_OVERFLOW == SCK_ARITH_EXCPN |
| 53 | // SCK_PAUSE_EXEC is not currently used. |
| 54 | // |
| 55 | enum SpecialCodeKind |
| 56 | { |
| 57 | SCK_NONE, |
| 58 | SCK_RNGCHK_FAIL, // target when range check fails |
| 59 | SCK_PAUSE_EXEC, // target to stop (e.g. to allow GC) |
| 60 | SCK_DIV_BY_ZERO, // target for divide by zero (Not used on X86/X64) |
| 61 | SCK_ARITH_EXCPN, // target on arithmetic exception |
| 62 | SCK_OVERFLOW = SCK_ARITH_EXCPN, // target on overflow |
| 63 | SCK_ARG_EXCPN, // target on ArgumentException (currently used only for SIMD intrinsics) |
| 64 | SCK_ARG_RNG_EXCPN, // target on ArgumentOutOfRangeException (currently used only for SIMD intrinsics) |
| 65 | SCK_COUNT |
| 66 | }; |
| 67 | |
| 68 | /*****************************************************************************/ |
| 69 | |
| 70 | enum genTreeOps : BYTE |
| 71 | { |
| 72 | #define GTNODE(en, st, cm, ok) GT_##en, |
| 73 | #include "gtlist.h" |
| 74 | |
| 75 | GT_COUNT, |
| 76 | |
| 77 | #ifdef _TARGET_64BIT_ |
| 78 | // GT_CNS_NATIVELONG is the gtOper symbol for GT_CNS_LNG or GT_CNS_INT, depending on the target. |
| 79 | // For the 64-bit targets we will only use GT_CNS_INT as it used to represent all the possible sizes |
| 80 | GT_CNS_NATIVELONG = GT_CNS_INT, |
| 81 | #else |
| 82 | // For the 32-bit targets we use a GT_CNS_LNG to hold a 64-bit integer constant and GT_CNS_INT for all others. |
| 83 | // In the future when we retarget the JIT for x86 we should consider eliminating GT_CNS_LNG |
| 84 | GT_CNS_NATIVELONG = GT_CNS_LNG, |
| 85 | #endif |
| 86 | }; |
| 87 | |
| 88 | /***************************************************************************** |
| 89 | * |
| 90 | * The following enum defines a set of bit flags that can be used |
| 91 | * to classify expression tree nodes. Note that some operators will |
| 92 | * have more than one bit set, as follows: |
| 93 | * |
| 94 | * GTK_CONST implies GTK_LEAF |
| 95 | * GTK_RELOP implies GTK_BINOP |
| 96 | * GTK_LOGOP implies GTK_BINOP |
| 97 | */ |
| 98 | |
| 99 | enum genTreeKinds |
| 100 | { |
| 101 | GTK_SPECIAL = 0x0000, // unclassified operator (special handling reqd) |
| 102 | |
| 103 | GTK_CONST = 0x0001, // constant operator |
| 104 | GTK_LEAF = 0x0002, // leaf operator |
| 105 | GTK_UNOP = 0x0004, // unary operator |
| 106 | GTK_BINOP = 0x0008, // binary operator |
| 107 | GTK_RELOP = 0x0010, // comparison operator |
| 108 | GTK_LOGOP = 0x0020, // logical operator |
| 109 | |
| 110 | GTK_KINDMASK = 0x007F, // operator kind mask |
| 111 | |
| 112 | GTK_COMMUTE = 0x0080, // commutative operator |
| 113 | |
| 114 | GTK_EXOP = 0x0100, // Indicates that an oper for a node type that extends GenTreeOp (or GenTreeUnOp) |
| 115 | // by adding non-node fields to unary or binary operator. |
| 116 | |
| 117 | GTK_LOCAL = 0x0200, // is a local access (load, store, phi) |
| 118 | |
| 119 | GTK_NOVALUE = 0x0400, // node does not produce a value |
| 120 | GTK_NOTLIR = 0x0800, // node is not allowed in LIR |
| 121 | |
| 122 | GTK_NOCONTAIN = 0x1000, // this node is a value, but may not be contained |
| 123 | |
| 124 | /* Define composite value(s) */ |
| 125 | |
| 126 | GTK_SMPOP = (GTK_UNOP | GTK_BINOP | GTK_RELOP | GTK_LOGOP) |
| 127 | }; |
| 128 | |
| 129 | /*****************************************************************************/ |
| 130 | |
| 131 | #define SMALL_TREE_NODES 1 |
| 132 | |
| 133 | /*****************************************************************************/ |
| 134 | |
| 135 | enum gtCallTypes : BYTE |
| 136 | { |
| 137 | CT_USER_FUNC, // User function |
| 138 | CT_HELPER, // Jit-helper |
| 139 | CT_INDIRECT, // Indirect call |
| 140 | |
| 141 | CT_COUNT // fake entry (must be last) |
| 142 | }; |
| 143 | |
| 144 | /*****************************************************************************/ |
| 145 | |
| 146 | struct BasicBlock; |
| 147 | struct InlineCandidateInfo; |
| 148 | struct GuardedDevirtualizationCandidateInfo; |
| 149 | |
| 150 | typedef unsigned short AssertionIndex; |
| 151 | |
| 152 | static const AssertionIndex NO_ASSERTION_INDEX = 0; |
| 153 | |
| 154 | //------------------------------------------------------------------------ |
| 155 | // GetAssertionIndex: return 1-based AssertionIndex from 0-based int index. |
| 156 | // |
| 157 | // Arguments: |
| 158 | // index - 0-based index |
| 159 | // Return Value: |
| 160 | // 1-based AssertionIndex. |
| 161 | inline AssertionIndex GetAssertionIndex(unsigned index) |
| 162 | { |
| 163 | return (AssertionIndex)(index + 1); |
| 164 | } |
| 165 | |
| 166 | class AssertionInfo |
| 167 | { |
| 168 | // true if the assertion holds on the bbNext edge instead of the bbJumpDest edge (for GT_JTRUE nodes) |
| 169 | unsigned short m_isNextEdgeAssertion : 1; |
| 170 | // 1-based index of the assertion |
| 171 | unsigned short m_assertionIndex : 15; |
| 172 | |
| 173 | AssertionInfo(bool isNextEdgeAssertion, AssertionIndex assertionIndex) |
| 174 | : m_isNextEdgeAssertion(isNextEdgeAssertion), m_assertionIndex(assertionIndex) |
| 175 | { |
| 176 | assert(m_assertionIndex == assertionIndex); |
| 177 | } |
| 178 | |
| 179 | public: |
| 180 | AssertionInfo() : AssertionInfo(false, 0) |
| 181 | { |
| 182 | } |
| 183 | |
| 184 | AssertionInfo(AssertionIndex assertionIndex) : AssertionInfo(false, assertionIndex) |
| 185 | { |
| 186 | } |
| 187 | |
| 188 | static AssertionInfo ForNextEdge(AssertionIndex assertionIndex) |
| 189 | { |
| 190 | // Ignore the edge information if there's no assertion |
| 191 | bool isNextEdge = (assertionIndex != NO_ASSERTION_INDEX); |
| 192 | return AssertionInfo(isNextEdge, assertionIndex); |
| 193 | } |
| 194 | |
| 195 | void Clear() |
| 196 | { |
| 197 | m_isNextEdgeAssertion = 0; |
| 198 | m_assertionIndex = NO_ASSERTION_INDEX; |
| 199 | } |
| 200 | |
| 201 | bool HasAssertion() const |
| 202 | { |
| 203 | return m_assertionIndex != NO_ASSERTION_INDEX; |
| 204 | } |
| 205 | |
| 206 | AssertionIndex GetAssertionIndex() const |
| 207 | { |
| 208 | return m_assertionIndex; |
| 209 | } |
| 210 | |
| 211 | bool IsNextEdgeAssertion() const |
| 212 | { |
| 213 | return m_isNextEdgeAssertion; |
| 214 | } |
| 215 | }; |
| 216 | |
| 217 | /*****************************************************************************/ |
| 218 | |
| 219 | // GT_FIELD nodes will be lowered into more "code-gen-able" representations, like |
| 220 | // GT_IND's of addresses, or GT_LCL_FLD nodes. We'd like to preserve the more abstract |
| 221 | // information, and will therefore annotate such lowered nodes with FieldSeq's. A FieldSeq |
| 222 | // represents a (possibly) empty sequence of fields. The fields are in the order |
| 223 | // in which they are dereferenced. The first field may be an object field or a struct field; |
| 224 | // all subsequent fields must be struct fields. |
| 225 | struct FieldSeqNode |
| 226 | { |
| 227 | CORINFO_FIELD_HANDLE m_fieldHnd; |
| 228 | FieldSeqNode* m_next; |
| 229 | |
| 230 | FieldSeqNode(CORINFO_FIELD_HANDLE fieldHnd, FieldSeqNode* next) : m_fieldHnd(fieldHnd), m_next(next) |
| 231 | { |
| 232 | } |
| 233 | |
| 234 | // returns true when this is the pseudo #FirstElem field sequence |
| 235 | bool IsFirstElemFieldSeq(); |
| 236 | |
| 237 | // returns true when this is the pseudo #ConstantIndex field sequence |
| 238 | bool IsConstantIndexFieldSeq(); |
| 239 | |
| 240 | // returns true when this is the the pseudo #FirstElem field sequence or the pseudo #ConstantIndex field sequence |
| 241 | bool IsPseudoField(); |
| 242 | |
| 243 | // Make sure this provides methods that allow it to be used as a KeyFuncs type in SimplerHash. |
| 244 | static int GetHashCode(FieldSeqNode fsn) |
| 245 | { |
| 246 | return static_cast<int>(reinterpret_cast<intptr_t>(fsn.m_fieldHnd)) ^ |
| 247 | static_cast<int>(reinterpret_cast<intptr_t>(fsn.m_next)); |
| 248 | } |
| 249 | |
| 250 | static bool Equals(FieldSeqNode fsn1, FieldSeqNode fsn2) |
| 251 | { |
| 252 | return fsn1.m_fieldHnd == fsn2.m_fieldHnd && fsn1.m_next == fsn2.m_next; |
| 253 | } |
| 254 | }; |
| 255 | |
| 256 | // This class canonicalizes field sequences. |
| 257 | class FieldSeqStore |
| 258 | { |
| 259 | typedef JitHashTable<FieldSeqNode, /*KeyFuncs*/ FieldSeqNode, FieldSeqNode*> FieldSeqNodeCanonMap; |
| 260 | |
| 261 | CompAllocator m_alloc; |
| 262 | FieldSeqNodeCanonMap* m_canonMap; |
| 263 | |
| 264 | static FieldSeqNode s_notAField; // No value, just exists to provide an address. |
| 265 | |
| 266 | // Dummy variables to provide the addresses for the "pseudo field handle" statics below. |
| 267 | static int FirstElemPseudoFieldStruct; |
| 268 | static int ConstantIndexPseudoFieldStruct; |
| 269 | |
| 270 | public: |
| 271 | FieldSeqStore(CompAllocator alloc); |
| 272 | |
| 273 | // Returns the (canonical in the store) singleton field sequence for the given handle. |
| 274 | FieldSeqNode* CreateSingleton(CORINFO_FIELD_HANDLE fieldHnd); |
| 275 | |
| 276 | // This is a special distinguished FieldSeqNode indicating that a constant does *not* |
| 277 | // represent a valid field sequence. This is "infectious", in the sense that appending it |
| 278 | // (on either side) to any field sequence yields the "NotAField()" sequence. |
| 279 | static FieldSeqNode* NotAField() |
| 280 | { |
| 281 | return &s_notAField; |
| 282 | } |
| 283 | |
| 284 | // Returns the (canonical in the store) field sequence representing the concatenation of |
| 285 | // the sequences represented by "a" and "b". Assumes that "a" and "b" are canonical; that is, |
| 286 | // they are the results of CreateSingleton, NotAField, or Append calls. If either of the arguments |
| 287 | // are the "NotAField" value, so is the result. |
| 288 | FieldSeqNode* Append(FieldSeqNode* a, FieldSeqNode* b); |
| 289 | |
| 290 | // We have a few "pseudo" field handles: |
| 291 | |
| 292 | // This treats the constant offset of the first element of something as if it were a field. |
| 293 | // Works for method table offsets of boxed structs, or first elem offset of arrays/strings. |
| 294 | static CORINFO_FIELD_HANDLE FirstElemPseudoField; |
| 295 | |
| 296 | // If there is a constant index, we make a psuedo field to correspond to the constant added to |
| 297 | // offset of the indexed field. This keeps the field sequence structure "normalized", especially in the |
| 298 | // case where the element type is a struct, so we might add a further struct field offset. |
| 299 | static CORINFO_FIELD_HANDLE ConstantIndexPseudoField; |
| 300 | |
| 301 | static bool IsPseudoField(CORINFO_FIELD_HANDLE hnd) |
| 302 | { |
| 303 | return hnd == FirstElemPseudoField || hnd == ConstantIndexPseudoField; |
| 304 | } |
| 305 | }; |
| 306 | |
| 307 | class GenTreeUseEdgeIterator; |
| 308 | class GenTreeOperandIterator; |
| 309 | |
| 310 | /*****************************************************************************/ |
| 311 | |
| 312 | // Forward declarations of the subtypes |
| 313 | #define GTSTRUCT_0(fn, en) struct GenTree##fn; |
| 314 | #define GTSTRUCT_1(fn, en) struct GenTree##fn; |
| 315 | #define GTSTRUCT_2(fn, en, en2) struct GenTree##fn; |
| 316 | #define GTSTRUCT_3(fn, en, en2, en3) struct GenTree##fn; |
| 317 | #define GTSTRUCT_4(fn, en, en2, en3, en4) struct GenTree##fn; |
| 318 | #define GTSTRUCT_N(fn, ...) struct GenTree##fn; |
| 319 | #define GTSTRUCT_2_SPECIAL(fn, en, en2) GTSTRUCT_2(fn, en, en2) |
| 320 | #define GTSTRUCT_3_SPECIAL(fn, en, en2, en3) GTSTRUCT_3(fn, en, en2, en3) |
| 321 | #include "gtstructs.h" |
| 322 | |
| 323 | /*****************************************************************************/ |
| 324 | |
| 325 | #ifndef _HOST_64BIT_ |
| 326 | #include <pshpack4.h> |
| 327 | #endif |
| 328 | |
| 329 | struct GenTree |
| 330 | { |
| 331 | // We use GT_STRUCT_0 only for the category of simple ops. |
| 332 | #define GTSTRUCT_0(fn, en) \ |
| 333 | GenTree##fn* As##fn() \ |
| 334 | { \ |
| 335 | assert(OperIsSimple()); \ |
| 336 | return reinterpret_cast<GenTree##fn*>(this); \ |
| 337 | } \ |
| 338 | const GenTree##fn* As##fn() const \ |
| 339 | { \ |
| 340 | assert(OperIsSimple()); \ |
| 341 | return reinterpret_cast<const GenTree##fn*>(this); \ |
| 342 | } \ |
| 343 | GenTree##fn& As##fn##Ref() \ |
| 344 | { \ |
| 345 | return *As##fn(); \ |
| 346 | } \ |
| 347 | __declspec(property(get = As##fn##Ref)) GenTree##fn& gt##fn; |
| 348 | |
| 349 | #define GTSTRUCT_N(fn, ...) \ |
| 350 | GenTree##fn* As##fn() \ |
| 351 | { \ |
| 352 | assert(OperIs(__VA_ARGS__)); \ |
| 353 | return reinterpret_cast<GenTree##fn*>(this); \ |
| 354 | } \ |
| 355 | const GenTree##fn* As##fn() const \ |
| 356 | { \ |
| 357 | assert(OperIs(__VA_ARGS__)); \ |
| 358 | return reinterpret_cast<const GenTree##fn*>(this); \ |
| 359 | } \ |
| 360 | GenTree##fn& As##fn##Ref() \ |
| 361 | { \ |
| 362 | return *As##fn(); \ |
| 363 | } \ |
| 364 | __declspec(property(get = As##fn##Ref)) GenTree##fn& gt##fn; |
| 365 | |
| 366 | #define GTSTRUCT_1(fn, en) GTSTRUCT_N(fn, en) |
| 367 | #define GTSTRUCT_2(fn, en, en2) GTSTRUCT_N(fn, en, en2) |
| 368 | #define GTSTRUCT_3(fn, en, en2, en3) GTSTRUCT_N(fn, en, en2, en3) |
| 369 | #define GTSTRUCT_4(fn, en, en2, en3, en4) GTSTRUCT_N(fn, en, en2, en3, en4) |
| 370 | #define GTSTRUCT_2_SPECIAL(fn, en, en2) GTSTRUCT_2(fn, en, en2) |
| 371 | #define GTSTRUCT_3_SPECIAL(fn, en, en2, en3) GTSTRUCT_3(fn, en, en2, en3) |
| 372 | |
| 373 | #include "gtstructs.h" |
| 374 | |
| 375 | genTreeOps gtOper; // enum subtype BYTE |
| 376 | var_types gtType; // enum subtype BYTE |
| 377 | |
| 378 | genTreeOps OperGet() const |
| 379 | { |
| 380 | return gtOper; |
| 381 | } |
| 382 | var_types TypeGet() const |
| 383 | { |
| 384 | return gtType; |
| 385 | } |
| 386 | |
| 387 | #ifdef DEBUG |
| 388 | genTreeOps gtOperSave; // Only used to save gtOper when we destroy a node, to aid debugging. |
| 389 | #endif |
| 390 | |
| 391 | #if FEATURE_ANYCSE |
| 392 | |
| 393 | #define NO_CSE (0) |
| 394 | |
| 395 | #define IS_CSE_INDEX(x) (x != 0) |
| 396 | #define IS_CSE_USE(x) (x > 0) |
| 397 | #define IS_CSE_DEF(x) (x < 0) |
| 398 | #define GET_CSE_INDEX(x) ((x > 0) ? x : -x) |
| 399 | #define TO_CSE_DEF(x) (-x) |
| 400 | |
| 401 | signed char gtCSEnum; // 0 or the CSE index (negated if def) |
| 402 | // valid only for CSE expressions |
| 403 | |
| 404 | #endif // FEATURE_ANYCSE |
| 405 | |
| 406 | unsigned char gtLIRFlags; // Used for nodes that are in LIR. See LIR::Flags in lir.h for the various flags. |
| 407 | |
| 408 | #if ASSERTION_PROP |
| 409 | AssertionInfo gtAssertionInfo; // valid only for non-GT_STMT nodes |
| 410 | |
| 411 | bool GeneratesAssertion() const |
| 412 | { |
| 413 | return gtAssertionInfo.HasAssertion(); |
| 414 | } |
| 415 | |
| 416 | void ClearAssertion() |
| 417 | { |
| 418 | gtAssertionInfo.Clear(); |
| 419 | } |
| 420 | |
| 421 | AssertionInfo GetAssertionInfo() const |
| 422 | { |
| 423 | return gtAssertionInfo; |
| 424 | } |
| 425 | |
| 426 | void SetAssertionInfo(AssertionInfo info) |
| 427 | { |
| 428 | gtAssertionInfo = info; |
| 429 | } |
| 430 | #endif |
| 431 | |
| 432 | // |
| 433 | // Cost metrics on the node. Don't allow direct access to the variable for setting. |
| 434 | // |
| 435 | |
| 436 | public: |
| 437 | #ifdef DEBUG |
| 438 | // You are not allowed to read the cost values before they have been set in gtSetEvalOrder(). |
| 439 | // Keep track of whether the costs have been initialized, and assert if they are read before being initialized. |
| 440 | // Obviously, this information does need to be initialized when a node is created. |
| 441 | // This is public so the dumpers can see it. |
| 442 | |
| 443 | bool gtCostsInitialized; |
| 444 | #endif // DEBUG |
| 445 | |
| 446 | #define MAX_COST UCHAR_MAX |
| 447 | #define IND_COST_EX 3 // execution cost for an indirection |
| 448 | |
| 449 | __declspec(property(get = GetCostEx)) unsigned char gtCostEx; // estimate of expression execution cost |
| 450 | |
| 451 | __declspec(property(get = GetCostSz)) unsigned char gtCostSz; // estimate of expression code size cost |
| 452 | |
| 453 | unsigned char GetCostEx() const |
| 454 | { |
| 455 | assert(gtCostsInitialized); |
| 456 | return _gtCostEx; |
| 457 | } |
| 458 | unsigned char GetCostSz() const |
| 459 | { |
| 460 | assert(gtCostsInitialized); |
| 461 | return _gtCostSz; |
| 462 | } |
| 463 | |
| 464 | // Set the costs. They are always both set at the same time. |
| 465 | // Don't use the "put" property: force calling this function, to make it more obvious in the few places |
| 466 | // that set the values. |
| 467 | // Note that costs are only set in gtSetEvalOrder() and its callees. |
| 468 | void SetCosts(unsigned costEx, unsigned costSz) |
| 469 | { |
| 470 | assert(costEx != (unsigned)-1); // looks bogus |
| 471 | assert(costSz != (unsigned)-1); // looks bogus |
| 472 | INDEBUG(gtCostsInitialized = true;) |
| 473 | |
| 474 | _gtCostEx = (costEx > MAX_COST) ? MAX_COST : (unsigned char)costEx; |
| 475 | _gtCostSz = (costSz > MAX_COST) ? MAX_COST : (unsigned char)costSz; |
| 476 | } |
| 477 | |
| 478 | // Opimized copy function, to avoid the SetCosts() function comparisons, and make it more clear that a node copy is |
| 479 | // happening. |
| 480 | void CopyCosts(const GenTree* const tree) |
| 481 | { |
| 482 | // If the 'tree' costs aren't initialized, we'll hit an assert below. |
| 483 | INDEBUG(gtCostsInitialized = tree->gtCostsInitialized;) |
| 484 | _gtCostEx = tree->gtCostEx; |
| 485 | _gtCostSz = tree->gtCostSz; |
| 486 | } |
| 487 | |
| 488 | // Same as CopyCosts, but avoids asserts if the costs we are copying have not been initialized. |
| 489 | // This is because the importer, for example, clones nodes, before these costs have been initialized. |
| 490 | // Note that we directly access the 'tree' costs, not going through the accessor functions (either |
| 491 | // directly or through the properties). |
| 492 | void CopyRawCosts(const GenTree* const tree) |
| 493 | { |
| 494 | INDEBUG(gtCostsInitialized = tree->gtCostsInitialized;) |
| 495 | _gtCostEx = tree->_gtCostEx; |
| 496 | _gtCostSz = tree->_gtCostSz; |
| 497 | } |
| 498 | |
| 499 | private: |
| 500 | unsigned char _gtCostEx; // estimate of expression execution cost |
| 501 | unsigned char _gtCostSz; // estimate of expression code size cost |
| 502 | |
| 503 | // |
| 504 | // Register or register pair number of the node. |
| 505 | // |
| 506 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 507 | |
| 508 | #ifdef DEBUG |
| 509 | |
| 510 | public: |
| 511 | enum genRegTag |
| 512 | { |
| 513 | GT_REGTAG_NONE, // Nothing has been assigned to _gtRegNum |
| 514 | GT_REGTAG_REG // _gtRegNum has been assigned |
| 515 | }; |
| 516 | genRegTag GetRegTag() const |
| 517 | { |
| 518 | assert(gtRegTag == GT_REGTAG_NONE || gtRegTag == GT_REGTAG_REG); |
| 519 | return gtRegTag; |
| 520 | } |
| 521 | |
| 522 | private: |
| 523 | genRegTag gtRegTag; // What is in _gtRegNum? |
| 524 | |
| 525 | #endif // DEBUG |
| 526 | |
| 527 | private: |
| 528 | // This stores the register assigned to the node. If a register is not assigned, _gtRegNum is set to REG_NA. |
| 529 | regNumberSmall _gtRegNum; |
| 530 | |
| 531 | public: |
| 532 | // The register number is stored in a small format (8 bits), but the getters return and the setters take |
| 533 | // a full-size (unsigned) format, to localize the casts here. |
| 534 | |
| 535 | __declspec(property(get = GetRegNum, put = SetRegNum)) regNumber gtRegNum; |
| 536 | |
| 537 | bool canBeContained() const; |
| 538 | |
| 539 | // for codegen purposes, is this node a subnode of its parent |
| 540 | bool isContained() const; |
| 541 | |
| 542 | bool isContainedIndir() const; |
| 543 | |
| 544 | bool isIndirAddrMode(); |
| 545 | |
| 546 | bool isIndir() const; |
| 547 | |
| 548 | bool isContainedIntOrIImmed() const |
| 549 | { |
| 550 | return isContained() && IsCnsIntOrI() && !isUsedFromSpillTemp(); |
| 551 | } |
| 552 | |
| 553 | bool isContainedFltOrDblImmed() const |
| 554 | { |
| 555 | return isContained() && (OperGet() == GT_CNS_DBL); |
| 556 | } |
| 557 | |
| 558 | bool isLclField() const |
| 559 | { |
| 560 | return OperGet() == GT_LCL_FLD || OperGet() == GT_STORE_LCL_FLD; |
| 561 | } |
| 562 | |
| 563 | bool isUsedFromSpillTemp() const; |
| 564 | |
| 565 | // Indicates whether it is a memory op. |
| 566 | // Right now it includes Indir and LclField ops. |
| 567 | bool isMemoryOp() const |
| 568 | { |
| 569 | return isIndir() || isLclField(); |
| 570 | } |
| 571 | |
| 572 | bool isUsedFromMemory() const |
| 573 | { |
| 574 | return ((isContained() && (isMemoryOp() || (OperGet() == GT_LCL_VAR) || (OperGet() == GT_CNS_DBL))) || |
| 575 | isUsedFromSpillTemp()); |
| 576 | } |
| 577 | |
| 578 | bool isLclVarUsedFromMemory() const |
| 579 | { |
| 580 | return (OperGet() == GT_LCL_VAR) && (isContained() || isUsedFromSpillTemp()); |
| 581 | } |
| 582 | |
| 583 | bool isLclFldUsedFromMemory() const |
| 584 | { |
| 585 | return isLclField() && (isContained() || isUsedFromSpillTemp()); |
| 586 | } |
| 587 | |
| 588 | bool isUsedFromReg() const |
| 589 | { |
| 590 | return !isContained() && !isUsedFromSpillTemp(); |
| 591 | } |
| 592 | |
| 593 | regNumber GetRegNum() const |
| 594 | { |
| 595 | assert((gtRegTag == GT_REGTAG_REG) || (gtRegTag == GT_REGTAG_NONE)); // TODO-Cleanup: get rid of the NONE case, |
| 596 | // and fix everyplace that reads undefined |
| 597 | // values |
| 598 | regNumber reg = (regNumber)_gtRegNum; |
| 599 | assert((gtRegTag == GT_REGTAG_NONE) || // TODO-Cleanup: get rid of the NONE case, and fix everyplace that reads |
| 600 | // undefined values |
| 601 | (reg >= REG_FIRST && reg <= REG_COUNT)); |
| 602 | return reg; |
| 603 | } |
| 604 | |
| 605 | void SetRegNum(regNumber reg) |
| 606 | { |
| 607 | assert(reg >= REG_FIRST && reg <= REG_COUNT); |
| 608 | _gtRegNum = (regNumberSmall)reg; |
| 609 | INDEBUG(gtRegTag = GT_REGTAG_REG;) |
| 610 | assert(_gtRegNum == reg); |
| 611 | } |
| 612 | |
| 613 | // Copy the _gtRegNum/gtRegTag fields |
| 614 | void CopyReg(GenTree* from); |
| 615 | bool gtHasReg() const; |
| 616 | |
| 617 | int GetRegisterDstCount() const; |
| 618 | |
| 619 | regMaskTP gtGetRegMask() const; |
| 620 | |
| 621 | unsigned gtFlags; // see GTF_xxxx below |
| 622 | |
| 623 | #if defined(DEBUG) |
| 624 | unsigned gtDebugFlags; // see GTF_DEBUG_xxx below |
| 625 | #endif // defined(DEBUG) |
| 626 | |
| 627 | ValueNumPair gtVNPair; |
| 628 | |
| 629 | regMaskSmall gtRsvdRegs; // set of fixed trashed registers |
| 630 | |
| 631 | unsigned AvailableTempRegCount(regMaskTP mask = (regMaskTP)-1) const; |
| 632 | regNumber GetSingleTempReg(regMaskTP mask = (regMaskTP)-1); |
| 633 | regNumber (regMaskTP mask = (regMaskTP)-1); |
| 634 | |
| 635 | void SetVNsFromNode(GenTree* tree) |
| 636 | { |
| 637 | gtVNPair = tree->gtVNPair; |
| 638 | } |
| 639 | |
| 640 | ValueNum GetVN(ValueNumKind vnk) const |
| 641 | { |
| 642 | if (vnk == VNK_Liberal) |
| 643 | { |
| 644 | return gtVNPair.GetLiberal(); |
| 645 | } |
| 646 | else |
| 647 | { |
| 648 | assert(vnk == VNK_Conservative); |
| 649 | return gtVNPair.GetConservative(); |
| 650 | } |
| 651 | } |
| 652 | void SetVN(ValueNumKind vnk, ValueNum vn) |
| 653 | { |
| 654 | if (vnk == VNK_Liberal) |
| 655 | { |
| 656 | return gtVNPair.SetLiberal(vn); |
| 657 | } |
| 658 | else |
| 659 | { |
| 660 | assert(vnk == VNK_Conservative); |
| 661 | return gtVNPair.SetConservative(vn); |
| 662 | } |
| 663 | } |
| 664 | void SetVNs(ValueNumPair vnp) |
| 665 | { |
| 666 | gtVNPair = vnp; |
| 667 | } |
| 668 | void ClearVN() |
| 669 | { |
| 670 | gtVNPair = ValueNumPair(); // Initializes both elements to "NoVN". |
| 671 | } |
| 672 | |
| 673 | // clang-format off |
| 674 | |
| 675 | //--------------------------------------------------------------------- |
| 676 | // |
| 677 | // GenTree flags stored in gtFlags. |
| 678 | // |
| 679 | //--------------------------------------------------------------------- |
| 680 | |
| 681 | //--------------------------------------------------------------------- |
| 682 | // The first set of flags can be used with a large set of nodes, and |
| 683 | // thus they must all have distinct values. That is, one can test any |
| 684 | // expression node for one of these flags. |
| 685 | //--------------------------------------------------------------------- |
| 686 | |
| 687 | #define GTF_ASG 0x00000001 // sub-expression contains an assignment |
| 688 | #define GTF_CALL 0x00000002 // sub-expression contains a func. call |
| 689 | #define GTF_EXCEPT 0x00000004 // sub-expression might throw an exception |
| 690 | #define GTF_GLOB_REF 0x00000008 // sub-expression uses global variable(s) |
| 691 | #define GTF_ORDER_SIDEEFF 0x00000010 // sub-expression has a re-ordering side effect |
| 692 | |
| 693 | // If you set these flags, make sure that code:gtExtractSideEffList knows how to find the tree, |
| 694 | // otherwise the C# (run csc /o-) code: |
| 695 | // var v = side_eff_operation |
| 696 | // with no use of v will drop your tree on the floor. |
| 697 | #define GTF_PERSISTENT_SIDE_EFFECTS (GTF_ASG | GTF_CALL) |
| 698 | #define GTF_SIDE_EFFECT (GTF_PERSISTENT_SIDE_EFFECTS | GTF_EXCEPT) |
| 699 | #define GTF_GLOB_EFFECT (GTF_SIDE_EFFECT | GTF_GLOB_REF) |
| 700 | #define GTF_ALL_EFFECT (GTF_GLOB_EFFECT | GTF_ORDER_SIDEEFF) |
| 701 | |
| 702 | // The extra flag GTF_IS_IN_CSE is used to tell the consumer of these flags |
| 703 | // that we are calling in the context of performing a CSE, thus we |
| 704 | // should allow the run-once side effects of running a class constructor. |
| 705 | // |
| 706 | // The only requirement of this flag is that it not overlap any of the |
| 707 | // side-effect flags. The actual bit used is otherwise arbitrary. |
| 708 | #define GTF_IS_IN_CSE GTF_BOOLEAN |
| 709 | |
| 710 | // Can any side-effects be observed externally, say by a caller method? |
| 711 | // For assignments, only assignments to global memory can be observed |
| 712 | // externally, whereas simple assignments to local variables can not. |
| 713 | // |
| 714 | // Be careful when using this inside a "try" protected region as the |
| 715 | // order of assignments to local variables would need to be preserved |
| 716 | // wrt side effects if the variables are alive on entry to the |
| 717 | // "catch/finally" region. In such cases, even assignments to locals |
| 718 | // will have to be restricted. |
| 719 | #define GTF_GLOBALLY_VISIBLE_SIDE_EFFECTS(flags) \ |
| 720 | (((flags) & (GTF_CALL | GTF_EXCEPT)) || (((flags) & (GTF_ASG | GTF_GLOB_REF)) == (GTF_ASG | GTF_GLOB_REF))) |
| 721 | |
| 722 | #define GTF_REVERSE_OPS 0x00000020 // operand op2 should be evaluated before op1 (normally, op1 is evaluated first and op2 is evaluated second) |
| 723 | #define GTF_CONTAINED 0x00000040 // This node is contained (executed as part of its parent) |
| 724 | #define GTF_SPILLED 0x00000080 // the value has been spilled |
| 725 | |
| 726 | #define GTF_NOREG_AT_USE 0x00000100 // tree node is in memory at the point of use |
| 727 | |
| 728 | #define GTF_SET_FLAGS 0x00000800 // Requires that codegen for this node set the flags. Use gtSetFlags() to check this flag. |
| 729 | #define GTF_USE_FLAGS 0x00001000 // Indicates that this node uses the flags bits. |
| 730 | |
| 731 | #define GTF_MAKE_CSE 0x00002000 // Hoisted expression: try hard to make this into CSE (see optPerformHoistExpr) |
| 732 | #define GTF_DONT_CSE 0x00004000 // Don't bother CSE'ing this expr |
| 733 | #define GTF_COLON_COND 0x00008000 // This node is conditionally executed (part of ? :) |
| 734 | |
| 735 | #define GTF_NODE_MASK (GTF_COLON_COND) |
| 736 | |
| 737 | #define GTF_BOOLEAN 0x00040000 // value is known to be 0/1 |
| 738 | |
| 739 | #define GTF_UNSIGNED 0x00100000 // With GT_CAST: the source operand is an unsigned type |
| 740 | // With operators: the specified node is an unsigned operator |
| 741 | #define GTF_LATE_ARG 0x00200000 // The specified node is evaluated to a temp in the arg list, and this temp is added to gtCallLateArgs. |
| 742 | #define GTF_SPILL 0x00400000 // Needs to be spilled here |
| 743 | |
| 744 | #define GTF_COMMON_MASK 0x007FFFFF // mask of all the flags above |
| 745 | |
| 746 | #define GTF_REUSE_REG_VAL 0x00800000 // This is set by the register allocator on nodes whose value already exists in the |
| 747 | // register assigned to this node, so the code generator does not have to generate |
| 748 | // code to produce the value. It is currently used only on constant nodes. |
| 749 | // It CANNOT be set on var (GT_LCL*) nodes, or on indir (GT_IND or GT_STOREIND) nodes, since |
| 750 | // it is not needed for lclVars and is highly unlikely to be useful for indir nodes. |
| 751 | |
| 752 | //--------------------------------------------------------------------- |
| 753 | // The following flags can be used only with a small set of nodes, and |
| 754 | // thus their values need not be distinct (other than within the set |
| 755 | // that goes with a particular node/nodes, of course). That is, one can |
| 756 | // only test for one of these flags if the 'gtOper' value is tested as |
| 757 | // well to make sure it's the right operator for the particular flag. |
| 758 | //--------------------------------------------------------------------- |
| 759 | |
| 760 | // NB: GTF_VAR_* and GTF_REG_* share the same namespace of flags. |
| 761 | // These flags are also used by GT_LCL_FLD. |
| 762 | #define GTF_VAR_DEF 0x80000000 // GT_LCL_VAR -- this is a definition |
| 763 | #define GTF_VAR_USEASG 0x40000000 // GT_LCL_VAR -- this is a partial definition, a use of the previous definition is implied |
| 764 | // A partial definition usually occurs when a struct field is assigned to (s.f = ...) or |
| 765 | // when a scalar typed variable is assigned to via a narrow store (*((byte*)&i) = ...). |
| 766 | #define GTF_VAR_CAST 0x10000000 // GT_LCL_VAR -- has been explictly cast (variable node may not be type of local) |
| 767 | #define GTF_VAR_ITERATOR 0x08000000 // GT_LCL_VAR -- this is a iterator reference in the loop condition |
| 768 | #define GTF_VAR_CLONED 0x01000000 // GT_LCL_VAR -- this node has been cloned or is a clone |
| 769 | // Relevant for inlining optimizations (see fgInlinePrependStatements) |
| 770 | |
| 771 | // TODO-Cleanup: Currently, GTF_REG_BIRTH is used only by stackfp |
| 772 | // We should consider using it more generally for VAR_BIRTH, instead of |
| 773 | // GTF_VAR_DEF && !GTF_VAR_USEASG |
| 774 | #define GTF_REG_BIRTH 0x04000000 // GT_LCL_VAR, -- enregistered variable born here |
| 775 | #define GTF_VAR_DEATH 0x02000000 // GT_LCL_VAR, -- variable dies here (last use) |
| 776 | |
| 777 | #define GTF_VAR_ARR_INDEX 0x00000020 // The variable is part of (the index portion of) an array index expression. |
| 778 | // Shares a value with GTF_REVERSE_OPS, which is meaningless for local var. |
| 779 | |
| 780 | #define GTF_LIVENESS_MASK (GTF_VAR_DEF | GTF_VAR_USEASG | GTF_REG_BIRTH | GTF_VAR_DEATH) |
| 781 | |
| 782 | // For additional flags for GT_CALL node see GTF_CALL_M_* |
| 783 | |
| 784 | #define GTF_CALL_UNMANAGED 0x80000000 // GT_CALL -- direct call to unmanaged code |
| 785 | #define GTF_CALL_INLINE_CANDIDATE 0x40000000 // GT_CALL -- this call has been marked as an inline candidate |
| 786 | |
| 787 | #define GTF_CALL_VIRT_KIND_MASK 0x30000000 // GT_CALL -- mask of the below call kinds |
| 788 | #define GTF_CALL_NONVIRT 0x00000000 // GT_CALL -- a non virtual call |
| 789 | #define GTF_CALL_VIRT_STUB 0x10000000 // GT_CALL -- a stub-dispatch virtual call |
| 790 | #define GTF_CALL_VIRT_VTABLE 0x20000000 // GT_CALL -- a vtable-based virtual call |
| 791 | |
| 792 | #define GTF_CALL_NULLCHECK 0x08000000 // GT_CALL -- must check instance pointer for null |
| 793 | #define GTF_CALL_POP_ARGS 0x04000000 // GT_CALL -- caller pop arguments? |
| 794 | #define GTF_CALL_HOISTABLE 0x02000000 // GT_CALL -- call is hoistable |
| 795 | |
| 796 | #define GTF_NOP_DEATH 0x40000000 // GT_NOP -- operand dies here |
| 797 | |
| 798 | #define GTF_FLD_VOLATILE 0x40000000 // GT_FIELD/GT_CLS_VAR -- same as GTF_IND_VOLATILE |
| 799 | #define GTF_FLD_INITCLASS 0x20000000 // GT_FIELD/GT_CLS_VAR -- field access requires preceding class/static init helper |
| 800 | |
| 801 | #define GTF_INX_RNGCHK 0x80000000 // GT_INDEX/GT_INDEX_ADDR -- the array reference should be range-checked. |
| 802 | #define GTF_INX_REFARR_LAYOUT 0x20000000 // GT_INDEX |
| 803 | #define GTF_INX_STRING_LAYOUT 0x40000000 // GT_INDEX -- this uses the special string array layout |
| 804 | |
| 805 | #define GTF_IND_VOLATILE 0x40000000 // GT_IND -- the load or store must use volatile sematics (this is a nop on X86) |
| 806 | #define GTF_IND_NONFAULTING 0x20000000 // Operations for which OperIsIndir() is true -- An indir that cannot fault. |
| 807 | // Same as GTF_ARRLEN_NONFAULTING. |
| 808 | #define GTF_IND_TGTANYWHERE 0x10000000 // GT_IND -- the target could be anywhere |
| 809 | #define GTF_IND_TLS_REF 0x08000000 // GT_IND -- the target is accessed via TLS |
| 810 | #define GTF_IND_ASG_LHS 0x04000000 // GT_IND -- this GT_IND node is (the effective val) of the LHS of an |
| 811 | // assignment; don't evaluate it independently. |
| 812 | #define GTF_IND_REQ_ADDR_IN_REG GTF_IND_ASG_LHS // GT_IND -- requires its addr operand to be evaluated |
| 813 | // into a register. This flag is useful in cases where it |
| 814 | // is required to generate register indirect addressing mode. |
| 815 | // One such case is virtual stub calls on xarch. This is only |
| 816 | // valid in the backend, where GTF_IND_ASG_LHS is not necessary |
| 817 | // (all such indirections will be lowered to GT_STOREIND). |
| 818 | #define GTF_IND_UNALIGNED 0x02000000 // GT_IND -- the load or store is unaligned (we assume worst case |
| 819 | // alignment of 1 byte) |
| 820 | #define GTF_IND_INVARIANT 0x01000000 // GT_IND -- the target is invariant (a prejit indirection) |
| 821 | #define GTF_IND_ARR_INDEX 0x00800000 // GT_IND -- the indirection represents an (SZ) array index |
| 822 | |
| 823 | #define GTF_IND_FLAGS \ |
| 824 | (GTF_IND_VOLATILE | GTF_IND_TGTANYWHERE | GTF_IND_NONFAULTING | GTF_IND_TLS_REF | \ |
| 825 | GTF_IND_UNALIGNED | GTF_IND_INVARIANT | GTF_IND_ARR_INDEX) |
| 826 | |
| 827 | #define GTF_CLS_VAR_VOLATILE 0x40000000 // GT_FIELD/GT_CLS_VAR -- same as GTF_IND_VOLATILE |
| 828 | #define GTF_CLS_VAR_INITCLASS 0x20000000 // GT_FIELD/GT_CLS_VAR -- same as GTF_FLD_INITCLASS |
| 829 | #define GTF_CLS_VAR_ASG_LHS 0x04000000 // GT_CLS_VAR -- this GT_CLS_VAR node is (the effective val) of the LHS |
| 830 | // of an assignment; don't evaluate it independently. |
| 831 | |
| 832 | #define GTF_ADDR_ONSTACK 0x80000000 // GT_ADDR -- this expression is guaranteed to be on the stack |
| 833 | |
| 834 | #define GTF_ADDRMODE_NO_CSE 0x80000000 // GT_ADD/GT_MUL/GT_LSH -- Do not CSE this node only, forms complex |
| 835 | // addressing mode |
| 836 | |
| 837 | #define GTF_MUL_64RSLT 0x40000000 // GT_MUL -- produce 64-bit result |
| 838 | |
| 839 | #define GTF_RELOP_NAN_UN 0x80000000 // GT_<relop> -- Is branch taken if ops are NaN? |
| 840 | #define GTF_RELOP_JMP_USED 0x40000000 // GT_<relop> -- result of compare used for jump or ?: |
| 841 | #define GTF_RELOP_QMARK 0x20000000 // GT_<relop> -- the node is the condition for ?: |
| 842 | #define GTF_RELOP_ZTT 0x08000000 // GT_<relop> -- Loop test cloned for converting while-loops into do-while |
| 843 | // with explicit "loop test" in the header block. |
| 844 | |
| 845 | #define GTF_JCMP_EQ 0x80000000 // GTF_JCMP_EQ -- Branch on equal rather than not equal |
| 846 | #define GTF_JCMP_TST 0x40000000 // GTF_JCMP_TST -- Use bit test instruction rather than compare against zero instruction |
| 847 | |
| 848 | #define GTF_RET_MERGED 0x80000000 // GT_RETURN -- This is a return generated during epilog merging. |
| 849 | |
| 850 | #define GTF_QMARK_CAST_INSTOF 0x80000000 // GT_QMARK -- Is this a top (not nested) level qmark created for |
| 851 | // castclass or instanceof? |
| 852 | |
| 853 | #define GTF_BOX_VALUE 0x80000000 // GT_BOX -- "box" is on a value type |
| 854 | |
| 855 | #define GTF_ICON_HDL_MASK 0xF0000000 // Bits used by handle types below |
| 856 | #define GTF_ICON_SCOPE_HDL 0x10000000 // GT_CNS_INT -- constant is a scope handle |
| 857 | #define GTF_ICON_CLASS_HDL 0x20000000 // GT_CNS_INT -- constant is a class handle |
| 858 | #define GTF_ICON_METHOD_HDL 0x30000000 // GT_CNS_INT -- constant is a method handle |
| 859 | #define GTF_ICON_FIELD_HDL 0x40000000 // GT_CNS_INT -- constant is a field handle |
| 860 | #define GTF_ICON_STATIC_HDL 0x50000000 // GT_CNS_INT -- constant is a handle to static data |
| 861 | #define GTF_ICON_STR_HDL 0x60000000 // GT_CNS_INT -- constant is a string handle |
| 862 | #define GTF_ICON_PSTR_HDL 0x70000000 // GT_CNS_INT -- constant is a ptr to a string handle |
| 863 | #define GTF_ICON_PTR_HDL 0x80000000 // GT_CNS_INT -- constant is a ldptr handle |
| 864 | #define GTF_ICON_VARG_HDL 0x90000000 // GT_CNS_INT -- constant is a var arg cookie handle |
| 865 | #define GTF_ICON_PINVKI_HDL 0xA0000000 // GT_CNS_INT -- constant is a pinvoke calli handle |
| 866 | #define GTF_ICON_TOKEN_HDL 0xB0000000 // GT_CNS_INT -- constant is a token handle |
| 867 | #define GTF_ICON_TLS_HDL 0xC0000000 // GT_CNS_INT -- constant is a TLS ref with offset |
| 868 | #define GTF_ICON_FTN_ADDR 0xD0000000 // GT_CNS_INT -- constant is a function address |
| 869 | #define GTF_ICON_CIDMID_HDL 0xE0000000 // GT_CNS_INT -- constant is a class ID or a module ID |
| 870 | #define GTF_ICON_BBC_PTR 0xF0000000 // GT_CNS_INT -- constant is a basic block count pointer |
| 871 | |
| 872 | #define GTF_ICON_FIELD_OFF 0x08000000 // GT_CNS_INT -- constant is a field offset |
| 873 | #define GTF_ICON_SIMD_COUNT 0x04000000 // GT_CNS_INT -- constant is Vector<T>.Count |
| 874 | |
| 875 | #define GTF_ICON_INITCLASS 0x02000000 // GT_CNS_INT -- Constant is used to access a static that requires preceding |
| 876 | // class/static init helper. In some cases, the constant is |
| 877 | // the address of the static field itself, and in other cases |
| 878 | // there's an extra layer of indirection and it is the address |
| 879 | // of the cell that the runtime will fill in with the address |
| 880 | // of the static field; in both of those cases, the constant |
| 881 | // is what gets flagged. |
| 882 | |
| 883 | #define GTF_BLK_VOLATILE GTF_IND_VOLATILE // GT_ASG, GT_STORE_BLK, GT_STORE_OBJ, GT_STORE_DYNBLK -- is a volatile block operation |
| 884 | #define GTF_BLK_UNALIGNED GTF_IND_UNALIGNED // GT_ASG, GT_STORE_BLK, GT_STORE_OBJ, GT_STORE_DYNBLK -- is an unaligned block operation |
| 885 | |
| 886 | #define GTF_OVERFLOW 0x10000000 // Supported for: GT_ADD, GT_SUB, GT_MUL and GT_CAST. |
| 887 | // Requires an overflow check. Use gtOverflow(Ex)() to check this flag. |
| 888 | |
| 889 | #define GTF_ARR_BOUND_INBND 0x80000000 // GT_ARR_BOUNDS_CHECK -- have proved this check is always in-bounds |
| 890 | |
| 891 | #define GTF_ARRLEN_ARR_IDX 0x80000000 // GT_ARR_LENGTH -- Length which feeds into an array index expression |
| 892 | #define GTF_ARRLEN_NONFAULTING 0x20000000 // GT_ARR_LENGTH -- An array length operation that cannot fault. Same as GT_IND_NONFAULTING. |
| 893 | |
| 894 | #define GTF_FIELD_LIST_HEAD 0x80000000 // GT_FIELD_LIST -- Indicates that this is the first field in a list of |
| 895 | // struct fields constituting a single call argument. |
| 896 | |
| 897 | #define GTF_SIMD12_OP 0x80000000 // GT_SIMD -- Indicates that the operands need to be handled as SIMD12 |
| 898 | // even if they have been retyped as SIMD16. |
| 899 | |
| 900 | #define GTF_STMT_CMPADD 0x80000000 // GT_STMT -- added by compiler |
| 901 | #define GTF_STMT_HAS_CSE 0x40000000 // GT_STMT -- CSE def or use was subsituted |
| 902 | |
| 903 | //--------------------------------------------------------------------- |
| 904 | // |
| 905 | // GenTree flags stored in gtDebugFlags. |
| 906 | // |
| 907 | //--------------------------------------------------------------------- |
| 908 | |
| 909 | #if defined(DEBUG) |
| 910 | #define GTF_DEBUG_NONE 0x00000000 // No debug flags. |
| 911 | |
| 912 | #define GTF_DEBUG_NODE_MORPHED 0x00000001 // the node has been morphed (in the global morphing phase) |
| 913 | #define GTF_DEBUG_NODE_SMALL 0x00000002 |
| 914 | #define GTF_DEBUG_NODE_LARGE 0x00000004 |
| 915 | #define GTF_DEBUG_NODE_CG_PRODUCED 0x00000008 // genProduceReg has been called on this node |
| 916 | #define GTF_DEBUG_NODE_CG_CONSUMED 0x00000010 // genConsumeReg has been called on this node |
| 917 | #define GTF_DEBUG_NODE_LSRA_ADDED 0x00000020 // This node was added by LSRA |
| 918 | |
| 919 | #define GTF_DEBUG_NODE_MASK 0x0000003F // These flags are all node (rather than operation) properties. |
| 920 | |
| 921 | #define GTF_DEBUG_VAR_CSE_REF 0x00800000 // GT_LCL_VAR -- This is a CSE LCL_VAR node |
| 922 | #endif // defined(DEBUG) |
| 923 | |
| 924 | //--------------------------------------------------------------------- |
| 925 | // |
| 926 | // end of GenTree flags definitions |
| 927 | // |
| 928 | //--------------------------------------------------------------------- |
| 929 | |
| 930 | // clang-format on |
| 931 | |
| 932 | GenTree* gtNext; |
| 933 | GenTree* gtPrev; |
| 934 | |
| 935 | #ifdef DEBUG |
| 936 | unsigned gtTreeID; |
| 937 | unsigned gtSeqNum; // liveness traversal order within the current statement |
| 938 | |
| 939 | int gtUseNum; // use-ordered traversal within the function |
| 940 | #endif |
| 941 | |
| 942 | static const unsigned short gtOperKindTable[]; |
| 943 | |
| 944 | static unsigned OperKind(unsigned gtOper) |
| 945 | { |
| 946 | assert(gtOper < GT_COUNT); |
| 947 | |
| 948 | return gtOperKindTable[gtOper]; |
| 949 | } |
| 950 | |
| 951 | unsigned OperKind() const |
| 952 | { |
| 953 | assert(gtOper < GT_COUNT); |
| 954 | |
| 955 | return gtOperKindTable[gtOper]; |
| 956 | } |
| 957 | |
| 958 | static bool IsExOp(unsigned opKind) |
| 959 | { |
| 960 | return (opKind & GTK_EXOP) != 0; |
| 961 | } |
| 962 | // Returns the operKind with the GTK_EX_OP bit removed (the |
| 963 | // kind of operator, unary or binary, that is extended). |
| 964 | static unsigned StripExOp(unsigned opKind) |
| 965 | { |
| 966 | return opKind & ~GTK_EXOP; |
| 967 | } |
| 968 | |
| 969 | bool IsValue() const |
| 970 | { |
| 971 | if ((OperKind(gtOper) & GTK_NOVALUE) != 0) |
| 972 | { |
| 973 | return false; |
| 974 | } |
| 975 | |
| 976 | if (gtType == TYP_VOID) |
| 977 | { |
| 978 | // These are the only operators which can produce either VOID or non-VOID results. |
| 979 | assert(OperIs(GT_NOP, GT_CALL, GT_FIELD_LIST, GT_COMMA) || OperIsCompare() || OperIsLong() || |
| 980 | OperIsSIMD() || OperIsHWIntrinsic()); |
| 981 | return false; |
| 982 | } |
| 983 | |
| 984 | if (gtOper == GT_FIELD_LIST) |
| 985 | { |
| 986 | return (gtFlags & GTF_FIELD_LIST_HEAD) != 0; |
| 987 | } |
| 988 | |
| 989 | return true; |
| 990 | } |
| 991 | |
| 992 | bool IsLIR() const |
| 993 | { |
| 994 | if ((OperKind(gtOper) & GTK_NOTLIR) != 0) |
| 995 | { |
| 996 | return false; |
| 997 | } |
| 998 | |
| 999 | switch (gtOper) |
| 1000 | { |
| 1001 | case GT_NOP: |
| 1002 | // NOPs may only be present in LIR if they do not produce a value. |
| 1003 | return IsNothingNode(); |
| 1004 | |
| 1005 | case GT_LIST: |
| 1006 | // LIST nodes may not be present in a block's LIR sequence, but they may |
| 1007 | // be present as children of an LIR node. |
| 1008 | return (gtNext == nullptr) && (gtPrev == nullptr); |
| 1009 | |
| 1010 | case GT_FIELD_LIST: |
| 1011 | // Only the head of the FIELD_LIST is present in the block's LIR sequence. |
| 1012 | return (((gtFlags & GTF_FIELD_LIST_HEAD) != 0) || ((gtNext == nullptr) && (gtPrev == nullptr))); |
| 1013 | |
| 1014 | case GT_ADDR: |
| 1015 | { |
| 1016 | // ADDR ndoes may only be present in LIR if the location they refer to is not a |
| 1017 | // local, class variable, or IND node. |
| 1018 | GenTree* location = gtGetOp1(); |
| 1019 | genTreeOps locationOp = location->OperGet(); |
| 1020 | return !location->IsLocal() && (locationOp != GT_CLS_VAR) && (locationOp != GT_IND); |
| 1021 | } |
| 1022 | |
| 1023 | default: |
| 1024 | // All other nodes are assumed to be correct. |
| 1025 | return true; |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | // LIR flags |
| 1030 | // These helper methods, along with the flag values they manipulate, are defined in lir.h |
| 1031 | // |
| 1032 | // UnusedValue indicates that, although this node produces a value, it is unused. |
| 1033 | inline void SetUnusedValue(); |
| 1034 | inline void ClearUnusedValue(); |
| 1035 | inline bool IsUnusedValue() const; |
| 1036 | // RegOptional indicates that codegen can still generate code even if it isn't allocated a register. |
| 1037 | inline bool IsRegOptional() const; |
| 1038 | inline void SetRegOptional(); |
| 1039 | inline void ClearRegOptional(); |
| 1040 | #ifdef DEBUG |
| 1041 | void dumpLIRFlags(); |
| 1042 | #endif |
| 1043 | |
| 1044 | bool OperIs(genTreeOps oper) const |
| 1045 | { |
| 1046 | return OperGet() == oper; |
| 1047 | } |
| 1048 | |
| 1049 | template <typename... T> |
| 1050 | bool OperIs(genTreeOps oper, T... rest) const |
| 1051 | { |
| 1052 | return OperIs(oper) || OperIs(rest...); |
| 1053 | } |
| 1054 | |
| 1055 | static bool OperIsConst(genTreeOps gtOper) |
| 1056 | { |
| 1057 | return (OperKind(gtOper) & GTK_CONST) != 0; |
| 1058 | } |
| 1059 | |
| 1060 | bool OperIsConst() const |
| 1061 | { |
| 1062 | return (OperKind(gtOper) & GTK_CONST) != 0; |
| 1063 | } |
| 1064 | |
| 1065 | static bool OperIsLeaf(genTreeOps gtOper) |
| 1066 | { |
| 1067 | return (OperKind(gtOper) & GTK_LEAF) != 0; |
| 1068 | } |
| 1069 | |
| 1070 | bool OperIsLeaf() const |
| 1071 | { |
| 1072 | return (OperKind(gtOper) & GTK_LEAF) != 0; |
| 1073 | } |
| 1074 | |
| 1075 | static bool OperIsCompare(genTreeOps gtOper) |
| 1076 | { |
| 1077 | return (OperKind(gtOper) & GTK_RELOP) != 0; |
| 1078 | } |
| 1079 | |
| 1080 | static bool OperIsLocal(genTreeOps gtOper) |
| 1081 | { |
| 1082 | bool result = (OperKind(gtOper) & GTK_LOCAL) != 0; |
| 1083 | assert(result == (gtOper == GT_LCL_VAR || gtOper == GT_PHI_ARG || gtOper == GT_LCL_FLD || |
| 1084 | gtOper == GT_STORE_LCL_VAR || gtOper == GT_STORE_LCL_FLD)); |
| 1085 | return result; |
| 1086 | } |
| 1087 | |
| 1088 | static bool OperIsLocalAddr(genTreeOps gtOper) |
| 1089 | { |
| 1090 | return (gtOper == GT_LCL_VAR_ADDR || gtOper == GT_LCL_FLD_ADDR); |
| 1091 | } |
| 1092 | |
| 1093 | static bool OperIsLocalField(genTreeOps gtOper) |
| 1094 | { |
| 1095 | return (gtOper == GT_LCL_FLD || gtOper == GT_LCL_FLD_ADDR || gtOper == GT_STORE_LCL_FLD); |
| 1096 | } |
| 1097 | |
| 1098 | inline bool OperIsLocalField() const |
| 1099 | { |
| 1100 | return OperIsLocalField(gtOper); |
| 1101 | } |
| 1102 | |
| 1103 | static bool OperIsScalarLocal(genTreeOps gtOper) |
| 1104 | { |
| 1105 | return (gtOper == GT_LCL_VAR || gtOper == GT_STORE_LCL_VAR); |
| 1106 | } |
| 1107 | |
| 1108 | static bool OperIsNonPhiLocal(genTreeOps gtOper) |
| 1109 | { |
| 1110 | return OperIsLocal(gtOper) && (gtOper != GT_PHI_ARG); |
| 1111 | } |
| 1112 | |
| 1113 | static bool OperIsLocalRead(genTreeOps gtOper) |
| 1114 | { |
| 1115 | return (OperIsLocal(gtOper) && !OperIsLocalStore(gtOper)); |
| 1116 | } |
| 1117 | |
| 1118 | static bool OperIsLocalStore(genTreeOps gtOper) |
| 1119 | { |
| 1120 | return (gtOper == GT_STORE_LCL_VAR || gtOper == GT_STORE_LCL_FLD); |
| 1121 | } |
| 1122 | |
| 1123 | static bool OperIsAddrMode(genTreeOps gtOper) |
| 1124 | { |
| 1125 | return (gtOper == GT_LEA); |
| 1126 | } |
| 1127 | |
| 1128 | static bool OperIsInitVal(genTreeOps gtOper) |
| 1129 | { |
| 1130 | return (gtOper == GT_INIT_VAL); |
| 1131 | } |
| 1132 | |
| 1133 | bool OperIsInitVal() const |
| 1134 | { |
| 1135 | return OperIsInitVal(OperGet()); |
| 1136 | } |
| 1137 | |
| 1138 | bool IsConstInitVal() |
| 1139 | { |
| 1140 | return (gtOper == GT_CNS_INT) || (OperIsInitVal() && (gtGetOp1()->gtOper == GT_CNS_INT)); |
| 1141 | } |
| 1142 | |
| 1143 | bool OperIsBlkOp(); |
| 1144 | bool OperIsCopyBlkOp(); |
| 1145 | bool OperIsInitBlkOp(); |
| 1146 | bool OperIsDynBlkOp(); |
| 1147 | |
| 1148 | static bool OperIsBlk(genTreeOps gtOper) |
| 1149 | { |
| 1150 | return ((gtOper == GT_BLK) || (gtOper == GT_OBJ) || (gtOper == GT_DYN_BLK) || (gtOper == GT_STORE_BLK) || |
| 1151 | (gtOper == GT_STORE_OBJ) || (gtOper == GT_STORE_DYN_BLK)); |
| 1152 | } |
| 1153 | |
| 1154 | bool OperIsBlk() const |
| 1155 | { |
| 1156 | return OperIsBlk(OperGet()); |
| 1157 | } |
| 1158 | |
| 1159 | static bool OperIsDynBlk(genTreeOps gtOper) |
| 1160 | { |
| 1161 | return ((gtOper == GT_DYN_BLK) || (gtOper == GT_STORE_DYN_BLK)); |
| 1162 | } |
| 1163 | |
| 1164 | bool OperIsDynBlk() const |
| 1165 | { |
| 1166 | return OperIsDynBlk(OperGet()); |
| 1167 | } |
| 1168 | |
| 1169 | static bool OperIsStoreBlk(genTreeOps gtOper) |
| 1170 | { |
| 1171 | return ((gtOper == GT_STORE_BLK) || (gtOper == GT_STORE_OBJ) || (gtOper == GT_STORE_DYN_BLK)); |
| 1172 | } |
| 1173 | |
| 1174 | bool OperIsStoreBlk() const |
| 1175 | { |
| 1176 | return OperIsStoreBlk(OperGet()); |
| 1177 | } |
| 1178 | |
| 1179 | bool OperIsPutArgSplit() const |
| 1180 | { |
| 1181 | #if FEATURE_ARG_SPLIT |
| 1182 | return gtOper == GT_PUTARG_SPLIT; |
| 1183 | #else // !FEATURE_ARG_SPLIT |
| 1184 | return false; |
| 1185 | #endif |
| 1186 | } |
| 1187 | |
| 1188 | bool OperIsPutArgStk() const |
| 1189 | { |
| 1190 | return gtOper == GT_PUTARG_STK; |
| 1191 | } |
| 1192 | |
| 1193 | bool OperIsPutArgStkOrSplit() const |
| 1194 | { |
| 1195 | return OperIsPutArgStk() || OperIsPutArgSplit(); |
| 1196 | } |
| 1197 | |
| 1198 | bool OperIsPutArgReg() const |
| 1199 | { |
| 1200 | return gtOper == GT_PUTARG_REG; |
| 1201 | } |
| 1202 | |
| 1203 | bool OperIsPutArg() const |
| 1204 | { |
| 1205 | return OperIsPutArgStk() || OperIsPutArgReg() || OperIsPutArgSplit(); |
| 1206 | } |
| 1207 | |
| 1208 | bool OperIsMultiRegOp() const |
| 1209 | { |
| 1210 | #if !defined(_TARGET_64BIT_) |
| 1211 | if (OperIs(GT_MUL_LONG)) |
| 1212 | { |
| 1213 | return true; |
| 1214 | } |
| 1215 | #if defined(_TARGET_ARM_) |
| 1216 | if (OperIs(GT_PUTARG_REG, GT_BITCAST)) |
| 1217 | { |
| 1218 | return true; |
| 1219 | } |
| 1220 | #endif // _TARGET_ARM_ |
| 1221 | #endif // _TARGET_64BIT_ |
| 1222 | return false; |
| 1223 | } |
| 1224 | |
| 1225 | bool OperIsAddrMode() const |
| 1226 | { |
| 1227 | return OperIsAddrMode(OperGet()); |
| 1228 | } |
| 1229 | |
| 1230 | bool OperIsLocal() const |
| 1231 | { |
| 1232 | return OperIsLocal(OperGet()); |
| 1233 | } |
| 1234 | |
| 1235 | bool OperIsLocalAddr() const |
| 1236 | { |
| 1237 | return OperIsLocalAddr(OperGet()); |
| 1238 | } |
| 1239 | |
| 1240 | bool OperIsScalarLocal() const |
| 1241 | { |
| 1242 | return OperIsScalarLocal(OperGet()); |
| 1243 | } |
| 1244 | |
| 1245 | bool OperIsNonPhiLocal() const |
| 1246 | { |
| 1247 | return OperIsNonPhiLocal(OperGet()); |
| 1248 | } |
| 1249 | |
| 1250 | bool OperIsLocalStore() const |
| 1251 | { |
| 1252 | return OperIsLocalStore(OperGet()); |
| 1253 | } |
| 1254 | |
| 1255 | bool OperIsLocalRead() const |
| 1256 | { |
| 1257 | return OperIsLocalRead(OperGet()); |
| 1258 | } |
| 1259 | |
| 1260 | bool OperIsCompare() const |
| 1261 | { |
| 1262 | return (OperKind(gtOper) & GTK_RELOP) != 0; |
| 1263 | } |
| 1264 | |
| 1265 | static bool OperIsLogical(genTreeOps gtOper) |
| 1266 | { |
| 1267 | return (OperKind(gtOper) & GTK_LOGOP) != 0; |
| 1268 | } |
| 1269 | |
| 1270 | bool OperIsLogical() const |
| 1271 | { |
| 1272 | return (OperKind(gtOper) & GTK_LOGOP) != 0; |
| 1273 | } |
| 1274 | |
| 1275 | static bool OperIsShift(genTreeOps gtOper) |
| 1276 | { |
| 1277 | return (gtOper == GT_LSH) || (gtOper == GT_RSH) || (gtOper == GT_RSZ); |
| 1278 | } |
| 1279 | |
| 1280 | bool OperIsShift() const |
| 1281 | { |
| 1282 | return OperIsShift(OperGet()); |
| 1283 | } |
| 1284 | |
| 1285 | static bool OperIsShiftLong(genTreeOps gtOper) |
| 1286 | { |
| 1287 | #ifdef _TARGET_64BIT_ |
| 1288 | return false; |
| 1289 | #else |
| 1290 | return (gtOper == GT_LSH_HI) || (gtOper == GT_RSH_LO); |
| 1291 | #endif |
| 1292 | } |
| 1293 | |
| 1294 | bool OperIsShiftLong() const |
| 1295 | { |
| 1296 | return OperIsShiftLong(OperGet()); |
| 1297 | } |
| 1298 | |
| 1299 | static bool OperIsRotate(genTreeOps gtOper) |
| 1300 | { |
| 1301 | return (gtOper == GT_ROL) || (gtOper == GT_ROR); |
| 1302 | } |
| 1303 | |
| 1304 | bool OperIsRotate() const |
| 1305 | { |
| 1306 | return OperIsRotate(OperGet()); |
| 1307 | } |
| 1308 | |
| 1309 | static bool OperIsShiftOrRotate(genTreeOps gtOper) |
| 1310 | { |
| 1311 | return OperIsShift(gtOper) || OperIsRotate(gtOper) || OperIsShiftLong(gtOper); |
| 1312 | } |
| 1313 | |
| 1314 | bool OperIsShiftOrRotate() const |
| 1315 | { |
| 1316 | return OperIsShiftOrRotate(OperGet()); |
| 1317 | } |
| 1318 | |
| 1319 | static bool OperIsMul(genTreeOps gtOper) |
| 1320 | { |
| 1321 | return (gtOper == GT_MUL) || (gtOper == GT_MULHI) |
| 1322 | #if !defined(_TARGET_64BIT_) |
| 1323 | || (gtOper == GT_MUL_LONG) |
| 1324 | #endif |
| 1325 | ; |
| 1326 | } |
| 1327 | |
| 1328 | bool OperIsMul() const |
| 1329 | { |
| 1330 | return OperIsMul(gtOper); |
| 1331 | } |
| 1332 | |
| 1333 | bool OperIsArithmetic() const |
| 1334 | { |
| 1335 | genTreeOps op = OperGet(); |
| 1336 | return op == GT_ADD || op == GT_SUB || op == GT_MUL || op == GT_DIV || op == GT_MOD |
| 1337 | |
| 1338 | || op == GT_UDIV || op == GT_UMOD |
| 1339 | |
| 1340 | || op == GT_OR || op == GT_XOR || op == GT_AND |
| 1341 | |
| 1342 | || OperIsShiftOrRotate(op); |
| 1343 | } |
| 1344 | |
| 1345 | #ifdef _TARGET_XARCH_ |
| 1346 | static bool OperIsRMWMemOp(genTreeOps gtOper) |
| 1347 | { |
| 1348 | // Return if binary op is one of the supported operations for RMW of memory. |
| 1349 | return (gtOper == GT_ADD || gtOper == GT_SUB || gtOper == GT_AND || gtOper == GT_OR || gtOper == GT_XOR || |
| 1350 | gtOper == GT_NOT || gtOper == GT_NEG || OperIsShiftOrRotate(gtOper)); |
| 1351 | } |
| 1352 | bool OperIsRMWMemOp() const |
| 1353 | { |
| 1354 | // Return if binary op is one of the supported operations for RMW of memory. |
| 1355 | return OperIsRMWMemOp(gtOper); |
| 1356 | } |
| 1357 | #endif // _TARGET_XARCH_ |
| 1358 | |
| 1359 | static bool OperIsUnary(genTreeOps gtOper) |
| 1360 | { |
| 1361 | return (OperKind(gtOper) & GTK_UNOP) != 0; |
| 1362 | } |
| 1363 | |
| 1364 | bool OperIsUnary() const |
| 1365 | { |
| 1366 | return OperIsUnary(gtOper); |
| 1367 | } |
| 1368 | |
| 1369 | static bool OperIsBinary(genTreeOps gtOper) |
| 1370 | { |
| 1371 | return (OperKind(gtOper) & GTK_BINOP) != 0; |
| 1372 | } |
| 1373 | |
| 1374 | bool OperIsBinary() const |
| 1375 | { |
| 1376 | return OperIsBinary(gtOper); |
| 1377 | } |
| 1378 | |
| 1379 | static bool OperIsSimple(genTreeOps gtOper) |
| 1380 | { |
| 1381 | return (OperKind(gtOper) & GTK_SMPOP) != 0; |
| 1382 | } |
| 1383 | |
| 1384 | static bool OperIsSpecial(genTreeOps gtOper) |
| 1385 | { |
| 1386 | return ((OperKind(gtOper) & GTK_KINDMASK) == GTK_SPECIAL); |
| 1387 | } |
| 1388 | |
| 1389 | bool OperIsSimple() const |
| 1390 | { |
| 1391 | return OperIsSimple(gtOper); |
| 1392 | } |
| 1393 | |
| 1394 | #ifdef FEATURE_SIMD |
| 1395 | bool isCommutativeSIMDIntrinsic(); |
| 1396 | #else // ! |
| 1397 | bool isCommutativeSIMDIntrinsic() |
| 1398 | { |
| 1399 | return false; |
| 1400 | } |
| 1401 | #endif // FEATURE_SIMD |
| 1402 | |
| 1403 | #ifdef FEATURE_HW_INTRINSICS |
| 1404 | bool isCommutativeHWIntrinsic() const; |
| 1405 | bool isContainableHWIntrinsic() const; |
| 1406 | bool isRMWHWIntrinsic(Compiler* comp); |
| 1407 | #else |
| 1408 | bool isCommutativeHWIntrinsic() const |
| 1409 | { |
| 1410 | return false; |
| 1411 | } |
| 1412 | |
| 1413 | bool isContainableHWIntrinsic() const |
| 1414 | { |
| 1415 | return false; |
| 1416 | } |
| 1417 | |
| 1418 | bool isRMWHWIntrinsic(Compiler* comp) |
| 1419 | { |
| 1420 | return false; |
| 1421 | } |
| 1422 | #endif // FEATURE_HW_INTRINSICS |
| 1423 | |
| 1424 | static bool OperIsCommutative(genTreeOps gtOper) |
| 1425 | { |
| 1426 | return (OperKind(gtOper) & GTK_COMMUTE) != 0; |
| 1427 | } |
| 1428 | |
| 1429 | bool OperIsCommutative() |
| 1430 | { |
| 1431 | return OperIsCommutative(gtOper) || (OperIsSIMD(gtOper) && isCommutativeSIMDIntrinsic()) || |
| 1432 | (OperIsHWIntrinsic(gtOper) && isCommutativeHWIntrinsic()); |
| 1433 | } |
| 1434 | |
| 1435 | static bool OperMayOverflow(genTreeOps gtOper) |
| 1436 | { |
| 1437 | return ((gtOper == GT_ADD) || (gtOper == GT_SUB) || (gtOper == GT_MUL) || (gtOper == GT_CAST) |
| 1438 | #if !defined(_TARGET_64BIT_) |
| 1439 | || (gtOper == GT_ADD_HI) || (gtOper == GT_SUB_HI) |
| 1440 | #endif |
| 1441 | ); |
| 1442 | } |
| 1443 | |
| 1444 | bool OperMayOverflow() const |
| 1445 | { |
| 1446 | return OperMayOverflow(gtOper); |
| 1447 | } |
| 1448 | |
| 1449 | static bool OperIsIndir(genTreeOps gtOper) |
| 1450 | { |
| 1451 | return gtOper == GT_IND || gtOper == GT_STOREIND || gtOper == GT_NULLCHECK || OperIsBlk(gtOper); |
| 1452 | } |
| 1453 | |
| 1454 | static bool OperIsIndirOrArrLength(genTreeOps gtOper) |
| 1455 | { |
| 1456 | return OperIsIndir(gtOper) || (gtOper == GT_ARR_LENGTH); |
| 1457 | } |
| 1458 | |
| 1459 | bool OperIsIndir() const |
| 1460 | { |
| 1461 | return OperIsIndir(gtOper); |
| 1462 | } |
| 1463 | |
| 1464 | bool OperIsIndirOrArrLength() const |
| 1465 | { |
| 1466 | return OperIsIndirOrArrLength(gtOper); |
| 1467 | } |
| 1468 | |
| 1469 | bool OperIsImplicitIndir() const; |
| 1470 | |
| 1471 | static bool OperIsAtomicOp(genTreeOps gtOper) |
| 1472 | { |
| 1473 | return (gtOper == GT_XADD || gtOper == GT_XCHG || gtOper == GT_LOCKADD || gtOper == GT_CMPXCHG); |
| 1474 | } |
| 1475 | |
| 1476 | bool OperIsAtomicOp() const |
| 1477 | { |
| 1478 | return OperIsAtomicOp(gtOper); |
| 1479 | } |
| 1480 | |
| 1481 | bool OperIsStore() const |
| 1482 | { |
| 1483 | return OperIsStore(gtOper); |
| 1484 | } |
| 1485 | |
| 1486 | static bool OperIsStore(genTreeOps gtOper) |
| 1487 | { |
| 1488 | return (gtOper == GT_STOREIND || gtOper == GT_STORE_LCL_VAR || gtOper == GT_STORE_LCL_FLD || |
| 1489 | OperIsStoreBlk(gtOper) || OperIsAtomicOp(gtOper)); |
| 1490 | } |
| 1491 | |
| 1492 | // This is here for cleaner FEATURE_SIMD #ifdefs. |
| 1493 | static bool OperIsSIMD(genTreeOps gtOper) |
| 1494 | { |
| 1495 | #ifdef FEATURE_SIMD |
| 1496 | return gtOper == GT_SIMD; |
| 1497 | #else // !FEATURE_SIMD |
| 1498 | return false; |
| 1499 | #endif // !FEATURE_SIMD |
| 1500 | } |
| 1501 | |
| 1502 | bool OperIsSIMD() const |
| 1503 | { |
| 1504 | return OperIsSIMD(gtOper); |
| 1505 | } |
| 1506 | |
| 1507 | static bool OperIsHWIntrinsic(genTreeOps gtOper) |
| 1508 | { |
| 1509 | #ifdef FEATURE_HW_INTRINSICS |
| 1510 | return gtOper == GT_HWIntrinsic; |
| 1511 | #else |
| 1512 | return false; |
| 1513 | #endif // FEATURE_HW_INTRINSICS |
| 1514 | } |
| 1515 | |
| 1516 | bool OperIsHWIntrinsic() const |
| 1517 | { |
| 1518 | return OperIsHWIntrinsic(gtOper); |
| 1519 | } |
| 1520 | |
| 1521 | #ifdef FEATURE_HW_INTRINSICS |
| 1522 | inline bool OperIsSimdHWIntrinsic() const; |
| 1523 | #else |
| 1524 | inline bool OperIsSimdHWIntrinsic() const |
| 1525 | { |
| 1526 | return false; |
| 1527 | } |
| 1528 | #endif |
| 1529 | |
| 1530 | bool OperIsSIMDorSimdHWintrinsic() const |
| 1531 | { |
| 1532 | return OperIsSIMD() || OperIsSimdHWIntrinsic(); |
| 1533 | } |
| 1534 | |
| 1535 | // This is here for cleaner GT_LONG #ifdefs. |
| 1536 | static bool OperIsLong(genTreeOps gtOper) |
| 1537 | { |
| 1538 | #if defined(_TARGET_64BIT_) |
| 1539 | return false; |
| 1540 | #else |
| 1541 | return gtOper == GT_LONG; |
| 1542 | #endif |
| 1543 | } |
| 1544 | |
| 1545 | bool OperIsLong() const |
| 1546 | { |
| 1547 | return OperIsLong(gtOper); |
| 1548 | } |
| 1549 | |
| 1550 | bool OperIsFieldListHead() |
| 1551 | { |
| 1552 | return (gtOper == GT_FIELD_LIST) && ((gtFlags & GTF_FIELD_LIST_HEAD) != 0); |
| 1553 | } |
| 1554 | |
| 1555 | bool OperIsConditionalJump() const |
| 1556 | { |
| 1557 | return (gtOper == GT_JTRUE) || (gtOper == GT_JCMP) || (gtOper == GT_JCC); |
| 1558 | } |
| 1559 | |
| 1560 | static bool OperIsBoundsCheck(genTreeOps op) |
| 1561 | { |
| 1562 | if (op == GT_ARR_BOUNDS_CHECK) |
| 1563 | { |
| 1564 | return true; |
| 1565 | } |
| 1566 | #ifdef FEATURE_SIMD |
| 1567 | if (op == GT_SIMD_CHK) |
| 1568 | { |
| 1569 | return true; |
| 1570 | } |
| 1571 | #endif // FEATURE_SIMD |
| 1572 | #ifdef FEATURE_HW_INTRINSICS |
| 1573 | if (op == GT_HW_INTRINSIC_CHK) |
| 1574 | { |
| 1575 | return true; |
| 1576 | } |
| 1577 | #endif // FEATURE_HW_INTRINSICS |
| 1578 | return false; |
| 1579 | } |
| 1580 | |
| 1581 | bool OperIsBoundsCheck() const |
| 1582 | { |
| 1583 | return OperIsBoundsCheck(OperGet()); |
| 1584 | } |
| 1585 | |
| 1586 | #ifdef DEBUG |
| 1587 | bool NullOp1Legal() const |
| 1588 | { |
| 1589 | assert(OperIsSimple(gtOper)); |
| 1590 | switch (gtOper) |
| 1591 | { |
| 1592 | case GT_PHI: |
| 1593 | case GT_LEA: |
| 1594 | case GT_RETFILT: |
| 1595 | case GT_NOP: |
| 1596 | #ifdef FEATURE_HW_INTRINSICS |
| 1597 | case GT_HWIntrinsic: |
| 1598 | #endif // FEATURE_HW_INTRINSICS |
| 1599 | return true; |
| 1600 | case GT_RETURN: |
| 1601 | return gtType == TYP_VOID; |
| 1602 | default: |
| 1603 | return false; |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | bool NullOp2Legal() const |
| 1608 | { |
| 1609 | assert(OperIsSimple(gtOper) || OperIsBlk(gtOper)); |
| 1610 | if (!OperIsBinary(gtOper)) |
| 1611 | { |
| 1612 | return true; |
| 1613 | } |
| 1614 | switch (gtOper) |
| 1615 | { |
| 1616 | case GT_LIST: |
| 1617 | case GT_FIELD_LIST: |
| 1618 | case GT_INTRINSIC: |
| 1619 | case GT_LEA: |
| 1620 | #ifdef FEATURE_SIMD |
| 1621 | case GT_SIMD: |
| 1622 | #endif // !FEATURE_SIMD |
| 1623 | |
| 1624 | #ifdef FEATURE_HW_INTRINSICS |
| 1625 | case GT_HWIntrinsic: |
| 1626 | #endif // FEATURE_HW_INTRINSICS |
| 1627 | |
| 1628 | #if defined(_TARGET_ARM_) |
| 1629 | case GT_PUTARG_REG: |
| 1630 | #endif // defined(_TARGET_ARM_) |
| 1631 | |
| 1632 | return true; |
| 1633 | default: |
| 1634 | return false; |
| 1635 | } |
| 1636 | } |
| 1637 | |
| 1638 | static inline bool RequiresNonNullOp2(genTreeOps oper); |
| 1639 | bool IsValidCallArgument(); |
| 1640 | #endif // DEBUG |
| 1641 | |
| 1642 | inline bool IsFPZero(); |
| 1643 | inline bool IsIntegralConst(ssize_t constVal); |
| 1644 | inline bool IsIntegralConstVector(ssize_t constVal); |
| 1645 | |
| 1646 | inline bool IsBoxedValue(); |
| 1647 | |
| 1648 | inline bool IsSIMDEqualityOrInequality() const; |
| 1649 | |
| 1650 | static bool OperIsList(genTreeOps gtOper) |
| 1651 | { |
| 1652 | return gtOper == GT_LIST; |
| 1653 | } |
| 1654 | |
| 1655 | bool OperIsList() const |
| 1656 | { |
| 1657 | return OperIsList(gtOper); |
| 1658 | } |
| 1659 | |
| 1660 | static bool OperIsFieldList(genTreeOps gtOper) |
| 1661 | { |
| 1662 | return gtOper == GT_FIELD_LIST; |
| 1663 | } |
| 1664 | |
| 1665 | bool OperIsFieldList() const |
| 1666 | { |
| 1667 | return OperIsFieldList(gtOper); |
| 1668 | } |
| 1669 | |
| 1670 | static bool OperIsAnyList(genTreeOps gtOper) |
| 1671 | { |
| 1672 | return OperIsList(gtOper) || OperIsFieldList(gtOper); |
| 1673 | } |
| 1674 | |
| 1675 | bool OperIsAnyList() const |
| 1676 | { |
| 1677 | return OperIsAnyList(gtOper); |
| 1678 | } |
| 1679 | |
| 1680 | inline GenTree* MoveNext(); |
| 1681 | |
| 1682 | inline GenTree* Current(); |
| 1683 | |
| 1684 | inline GenTree** pCurrent(); |
| 1685 | |
| 1686 | inline GenTree* gtGetOp1() const; |
| 1687 | |
| 1688 | // Directly return op2. Asserts the node is binary. Might return nullptr if the binary node allows |
| 1689 | // a nullptr op2, such as GT_LIST. This is more efficient than gtGetOp2IfPresent() if you know what |
| 1690 | // node type you have. |
| 1691 | inline GenTree* gtGetOp2() const; |
| 1692 | |
| 1693 | // The returned pointer might be nullptr if the node is not binary, or if non-null op2 is not required. |
| 1694 | inline GenTree* gtGetOp2IfPresent() const; |
| 1695 | |
| 1696 | // Given a tree node, if this is a child of that node, return the pointer to the child node so that it |
| 1697 | // can be modified; otherwise, return null. |
| 1698 | GenTree** gtGetChildPointer(GenTree* parent) const; |
| 1699 | |
| 1700 | // Given a tree node, if this node uses that node, return the use as an out parameter and return true. |
| 1701 | // Otherwise, return false. |
| 1702 | bool TryGetUse(GenTree* def, GenTree*** use); |
| 1703 | |
| 1704 | private: |
| 1705 | bool TryGetUseList(GenTree* def, GenTree*** use); |
| 1706 | |
| 1707 | bool TryGetUseBinOp(GenTree* def, GenTree*** use); |
| 1708 | |
| 1709 | public: |
| 1710 | // Get the parent of this node, and optionally capture the pointer to the child so that it can be modified. |
| 1711 | GenTree* gtGetParent(GenTree*** parentChildPtrPtr) const; |
| 1712 | |
| 1713 | void ReplaceOperand(GenTree** useEdge, GenTree* replacement); |
| 1714 | |
| 1715 | inline GenTree* gtEffectiveVal(bool commaOnly = false); |
| 1716 | |
| 1717 | // Tunnel through any GT_RET_EXPRs |
| 1718 | inline GenTree* gtRetExprVal(); |
| 1719 | |
| 1720 | // Return the child of this node if it is a GT_RELOAD or GT_COPY; otherwise simply return the node itself |
| 1721 | inline GenTree* gtSkipReloadOrCopy(); |
| 1722 | |
| 1723 | // Returns true if it is a call node returning its value in more than one register |
| 1724 | inline bool IsMultiRegCall() const; |
| 1725 | |
| 1726 | // Returns true if it is a node returning its value in more than one register |
| 1727 | inline bool IsMultiRegNode() const; |
| 1728 | |
| 1729 | // Returns the number of registers defined by a multireg node. |
| 1730 | unsigned GetMultiRegCount(); |
| 1731 | |
| 1732 | // Returns the regIndex'th register defined by a possibly-multireg node. |
| 1733 | regNumber GetRegByIndex(int regIndex); |
| 1734 | |
| 1735 | // Returns the type of the regIndex'th register defined by a multi-reg node. |
| 1736 | var_types GetRegTypeByIndex(int regIndex); |
| 1737 | |
| 1738 | // Returns true if it is a GT_COPY or GT_RELOAD node |
| 1739 | inline bool IsCopyOrReload() const; |
| 1740 | |
| 1741 | // Returns true if it is a GT_COPY or GT_RELOAD of a multi-reg call node |
| 1742 | inline bool IsCopyOrReloadOfMultiRegCall() const; |
| 1743 | |
| 1744 | bool OperRequiresAsgFlag(); |
| 1745 | |
| 1746 | bool OperRequiresCallFlag(Compiler* comp); |
| 1747 | |
| 1748 | bool OperMayThrow(Compiler* comp); |
| 1749 | |
| 1750 | unsigned GetScaleIndexMul(); |
| 1751 | unsigned GetScaleIndexShf(); |
| 1752 | unsigned GetScaledIndex(); |
| 1753 | |
| 1754 | // Returns true if "addr" is a GT_ADD node, at least one of whose arguments is an integer |
| 1755 | // (<= 32 bit) constant. If it returns true, it sets "*offset" to (one of the) constant value(s), and |
| 1756 | // "*addr" to the other argument. |
| 1757 | bool IsAddWithI32Const(GenTree** addr, int* offset); |
| 1758 | |
| 1759 | public: |
| 1760 | #if SMALL_TREE_NODES |
| 1761 | static unsigned char s_gtNodeSizes[]; |
| 1762 | #if NODEBASH_STATS || MEASURE_NODE_SIZE || COUNT_AST_OPERS |
| 1763 | static unsigned char s_gtTrueSizes[]; |
| 1764 | #endif |
| 1765 | #if COUNT_AST_OPERS |
| 1766 | static LONG s_gtNodeCounts[]; |
| 1767 | #endif |
| 1768 | #endif // SMALL_TREE_NODES |
| 1769 | |
| 1770 | static void InitNodeSize(); |
| 1771 | |
| 1772 | size_t GetNodeSize() const; |
| 1773 | |
| 1774 | bool IsNodeProperlySized() const; |
| 1775 | |
| 1776 | void ReplaceWith(GenTree* src, Compiler* comp); |
| 1777 | |
| 1778 | static genTreeOps ReverseRelop(genTreeOps relop); |
| 1779 | |
| 1780 | static genTreeOps SwapRelop(genTreeOps relop); |
| 1781 | |
| 1782 | //--------------------------------------------------------------------- |
| 1783 | |
| 1784 | static bool Compare(GenTree* op1, GenTree* op2, bool swapOK = false); |
| 1785 | |
| 1786 | //--------------------------------------------------------------------- |
| 1787 | |
| 1788 | #if defined(DEBUG) || NODEBASH_STATS || MEASURE_NODE_SIZE || COUNT_AST_OPERS |
| 1789 | static const char* OpName(genTreeOps op); |
| 1790 | #endif |
| 1791 | |
| 1792 | #if MEASURE_NODE_SIZE && SMALL_TREE_NODES |
| 1793 | static const char* OpStructName(genTreeOps op); |
| 1794 | #endif |
| 1795 | |
| 1796 | //--------------------------------------------------------------------- |
| 1797 | |
| 1798 | bool IsNothingNode() const; |
| 1799 | void gtBashToNOP(); |
| 1800 | |
| 1801 | // Value number update action enumeration |
| 1802 | enum ValueNumberUpdate |
| 1803 | { |
| 1804 | CLEAR_VN, // Clear value number |
| 1805 | PRESERVE_VN // Preserve value number |
| 1806 | }; |
| 1807 | |
| 1808 | void SetOper(genTreeOps oper, ValueNumberUpdate vnUpdate = CLEAR_VN); // set gtOper |
| 1809 | void SetOperResetFlags(genTreeOps oper); // set gtOper and reset flags |
| 1810 | |
| 1811 | void ChangeOperConst(genTreeOps oper); // ChangeOper(constOper) |
| 1812 | // set gtOper and only keep GTF_COMMON_MASK flags |
| 1813 | void ChangeOper(genTreeOps oper, ValueNumberUpdate vnUpdate = CLEAR_VN); |
| 1814 | void ChangeOperUnchecked(genTreeOps oper); |
| 1815 | void SetOperRaw(genTreeOps oper); |
| 1816 | |
| 1817 | void ChangeType(var_types newType) |
| 1818 | { |
| 1819 | var_types oldType = gtType; |
| 1820 | gtType = newType; |
| 1821 | GenTree* node = this; |
| 1822 | while (node->gtOper == GT_COMMA) |
| 1823 | { |
| 1824 | node = node->gtGetOp2(); |
| 1825 | assert(node->gtType == oldType); |
| 1826 | node->gtType = newType; |
| 1827 | } |
| 1828 | } |
| 1829 | |
| 1830 | #if SMALL_TREE_NODES |
| 1831 | #if NODEBASH_STATS |
| 1832 | static void RecordOperBashing(genTreeOps operOld, genTreeOps operNew); |
| 1833 | static void ReportOperBashing(FILE* fp); |
| 1834 | #else |
| 1835 | static void RecordOperBashing(genTreeOps operOld, genTreeOps operNew) |
| 1836 | { /* do nothing */ |
| 1837 | } |
| 1838 | static void ReportOperBashing(FILE* fp) |
| 1839 | { /* do nothing */ |
| 1840 | } |
| 1841 | #endif |
| 1842 | #endif |
| 1843 | |
| 1844 | bool IsLocal() const |
| 1845 | { |
| 1846 | return OperIsLocal(OperGet()); |
| 1847 | } |
| 1848 | |
| 1849 | // Returns "true" iff 'this' is a GT_LCL_FLD or GT_STORE_LCL_FLD on which the type |
| 1850 | // is not the same size as the type of the GT_LCL_VAR. |
| 1851 | bool IsPartialLclFld(Compiler* comp); |
| 1852 | |
| 1853 | // Returns "true" iff "this" defines a local variable. Requires "comp" to be the |
| 1854 | // current compilation. If returns "true", sets "*pLclVarTree" to the |
| 1855 | // tree for the local that is defined, and, if "pIsEntire" is non-null, sets "*pIsEntire" to |
| 1856 | // true or false, depending on whether the assignment writes to the entirety of the local |
| 1857 | // variable, or just a portion of it. |
| 1858 | bool DefinesLocal(Compiler* comp, GenTreeLclVarCommon** pLclVarTree, bool* pIsEntire = nullptr); |
| 1859 | |
| 1860 | // Returns true if "this" represents the address of a local, or a field of a local. If returns true, sets |
| 1861 | // "*pLclVarTree" to the node indicating the local variable. If the address is that of a field of this node, |
| 1862 | // sets "*pFldSeq" to the field sequence representing that field, else null. |
| 1863 | bool IsLocalAddrExpr(Compiler* comp, GenTreeLclVarCommon** pLclVarTree, FieldSeqNode** pFldSeq); |
| 1864 | |
| 1865 | // Simpler variant of the above which just returns the local node if this is an expression that |
| 1866 | // yields an address into a local |
| 1867 | GenTreeLclVarCommon* IsLocalAddrExpr(); |
| 1868 | |
| 1869 | // Determine if this is a LclVarCommon node and return some additional info about it in the |
| 1870 | // two out parameters. |
| 1871 | bool IsLocalExpr(Compiler* comp, GenTreeLclVarCommon** pLclVarTree, FieldSeqNode** pFldSeq); |
| 1872 | |
| 1873 | // Determine whether this is an assignment tree of the form X = X (op) Y, |
| 1874 | // where Y is an arbitrary tree, and X is a lclVar. |
| 1875 | unsigned IsLclVarUpdateTree(GenTree** otherTree, genTreeOps* updateOper); |
| 1876 | |
| 1877 | // If returns "true", "this" may represent the address of a static or instance field |
| 1878 | // (or a field of such a field, in the case of an object field of type struct). |
| 1879 | // If returns "true", then either "*pObj" is set to the object reference, |
| 1880 | // or "*pStatic" is set to the baseAddr or offset to be added to the "*pFldSeq" |
| 1881 | // Only one of "*pObj" or "*pStatic" will be set, the other one will be null. |
| 1882 | // The boolean return value only indicates that "this" *may* be a field address |
| 1883 | // -- the field sequence must also be checked. |
| 1884 | // If it is a field address, the field sequence will be a sequence of length >= 1, |
| 1885 | // starting with an instance or static field, and optionally continuing with struct fields. |
| 1886 | bool IsFieldAddr(Compiler* comp, GenTree** pObj, GenTree** pStatic, FieldSeqNode** pFldSeq); |
| 1887 | |
| 1888 | // Requires "this" to be the address of an array (the child of a GT_IND labeled with GTF_IND_ARR_INDEX). |
| 1889 | // Sets "pArr" to the node representing the array (either an array object pointer, or perhaps a byref to the some |
| 1890 | // element). |
| 1891 | // Sets "*pArrayType" to the class handle for the array type. |
| 1892 | // Sets "*inxVN" to the value number inferred for the array index. |
| 1893 | // Sets "*pFldSeq" to the sequence, if any, of struct fields used to index into the array element. |
| 1894 | void ParseArrayAddress( |
| 1895 | Compiler* comp, struct ArrayInfo* arrayInfo, GenTree** pArr, ValueNum* pInxVN, FieldSeqNode** pFldSeq); |
| 1896 | |
| 1897 | // Helper method for the above. |
| 1898 | void ParseArrayAddressWork(Compiler* comp, |
| 1899 | target_ssize_t inputMul, |
| 1900 | GenTree** pArr, |
| 1901 | ValueNum* pInxVN, |
| 1902 | target_ssize_t* pOffset, |
| 1903 | FieldSeqNode** pFldSeq); |
| 1904 | |
| 1905 | // Requires "this" to be a GT_IND. Requires the outermost caller to set "*pFldSeq" to nullptr. |
| 1906 | // Returns true if it is an array index expression, or access to a (sequence of) struct field(s) |
| 1907 | // within a struct array element. If it returns true, sets *arrayInfo to the array information, and sets *pFldSeq |
| 1908 | // to the sequence of struct field accesses. |
| 1909 | bool ParseArrayElemForm(Compiler* comp, ArrayInfo* arrayInfo, FieldSeqNode** pFldSeq); |
| 1910 | |
| 1911 | // Requires "this" to be the address of a (possible) array element (or struct field within that). |
| 1912 | // If it is, sets "*arrayInfo" to the array access info, "*pFldSeq" to the sequence of struct fields |
| 1913 | // accessed within the array element, and returns true. If not, returns "false". |
| 1914 | bool ParseArrayElemAddrForm(Compiler* comp, ArrayInfo* arrayInfo, FieldSeqNode** pFldSeq); |
| 1915 | |
| 1916 | // Requires "this" to be an int expression. If it is a sequence of one or more integer constants added together, |
| 1917 | // returns true and sets "*pFldSeq" to the sequence of fields with which those constants are annotated. |
| 1918 | bool ParseOffsetForm(Compiler* comp, FieldSeqNode** pFldSeq); |
| 1919 | |
| 1920 | // Labels "*this" as an array index expression: label all constants and variables that could contribute, as part of |
| 1921 | // an affine expression, to the value of the of the index. |
| 1922 | void LabelIndex(Compiler* comp, bool isConst = true); |
| 1923 | |
| 1924 | // Assumes that "this" occurs in a context where it is being dereferenced as the LHS of an assignment-like |
| 1925 | // statement (assignment, initblk, or copyblk). The "width" should be the number of bytes copied by the |
| 1926 | // operation. Returns "true" if "this" is an address of (or within) |
| 1927 | // a local variable; sets "*pLclVarTree" to that local variable instance; and, if "pIsEntire" is non-null, |
| 1928 | // sets "*pIsEntire" to true if this assignment writes the full width of the local. |
| 1929 | bool DefinesLocalAddr(Compiler* comp, unsigned width, GenTreeLclVarCommon** pLclVarTree, bool* pIsEntire); |
| 1930 | |
| 1931 | // These are only used for dumping. |
| 1932 | // The gtRegNum is only valid in LIR, but the dumping methods are not easily |
| 1933 | // modified to check this. |
| 1934 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 1935 | |
| 1936 | #ifdef DEBUG |
| 1937 | bool InReg() const |
| 1938 | { |
| 1939 | return (GetRegTag() != GT_REGTAG_NONE) ? true : false; |
| 1940 | } |
| 1941 | regNumber GetReg() const |
| 1942 | { |
| 1943 | return (GetRegTag() != GT_REGTAG_NONE) ? gtRegNum : REG_NA; |
| 1944 | } |
| 1945 | #endif |
| 1946 | |
| 1947 | static bool IsContained(unsigned flags) |
| 1948 | { |
| 1949 | return ((flags & GTF_CONTAINED) != 0); |
| 1950 | } |
| 1951 | |
| 1952 | void SetContained() |
| 1953 | { |
| 1954 | assert(IsValue()); |
| 1955 | gtFlags |= GTF_CONTAINED; |
| 1956 | assert(isContained()); |
| 1957 | } |
| 1958 | |
| 1959 | void ClearContained() |
| 1960 | { |
| 1961 | assert(IsValue()); |
| 1962 | gtFlags &= ~GTF_CONTAINED; |
| 1963 | ClearRegOptional(); |
| 1964 | } |
| 1965 | |
| 1966 | bool IsRegVarDeath() const |
| 1967 | { |
| 1968 | unreached(); |
| 1969 | return (gtFlags & GTF_VAR_DEATH) ? true : false; |
| 1970 | } |
| 1971 | bool IsRegVarBirth() const |
| 1972 | { |
| 1973 | unreached(); |
| 1974 | return (gtFlags & GTF_REG_BIRTH) ? true : false; |
| 1975 | } |
| 1976 | |
| 1977 | bool IsReverseOp() const |
| 1978 | { |
| 1979 | return (gtFlags & GTF_REVERSE_OPS) ? true : false; |
| 1980 | } |
| 1981 | |
| 1982 | bool IsUnsigned() const |
| 1983 | { |
| 1984 | return ((gtFlags & GTF_UNSIGNED) != 0); |
| 1985 | } |
| 1986 | |
| 1987 | inline bool IsCnsIntOrI() const; |
| 1988 | |
| 1989 | inline bool IsIntegralConst() const; |
| 1990 | |
| 1991 | inline bool IsIntCnsFitsInI32(); // Constant fits in INT32 |
| 1992 | |
| 1993 | inline bool IsCnsFltOrDbl() const; |
| 1994 | |
| 1995 | inline bool IsCnsNonZeroFltOrDbl(); |
| 1996 | |
| 1997 | bool IsIconHandle() const |
| 1998 | { |
| 1999 | assert(gtOper == GT_CNS_INT); |
| 2000 | return (gtFlags & GTF_ICON_HDL_MASK) ? true : false; |
| 2001 | } |
| 2002 | |
| 2003 | bool IsIconHandle(unsigned handleType) const |
| 2004 | { |
| 2005 | assert(gtOper == GT_CNS_INT); |
| 2006 | assert((handleType & GTF_ICON_HDL_MASK) != 0); // check that handleType is one of the valid GTF_ICON_* values |
| 2007 | assert((handleType & ~GTF_ICON_HDL_MASK) == 0); |
| 2008 | return (gtFlags & GTF_ICON_HDL_MASK) == handleType; |
| 2009 | } |
| 2010 | |
| 2011 | // Return just the part of the flags corresponding to the GTF_ICON_*_HDL flag. For example, |
| 2012 | // GTF_ICON_SCOPE_HDL. The tree node must be a const int, but it might not be a handle, in which |
| 2013 | // case we'll return zero. |
| 2014 | unsigned GetIconHandleFlag() const |
| 2015 | { |
| 2016 | assert(gtOper == GT_CNS_INT); |
| 2017 | return (gtFlags & GTF_ICON_HDL_MASK); |
| 2018 | } |
| 2019 | |
| 2020 | // Mark this node as no longer being a handle; clear its GTF_ICON_*_HDL bits. |
| 2021 | void ClearIconHandleMask() |
| 2022 | { |
| 2023 | assert(gtOper == GT_CNS_INT); |
| 2024 | gtFlags &= ~GTF_ICON_HDL_MASK; |
| 2025 | } |
| 2026 | |
| 2027 | // Return true if the two GT_CNS_INT trees have the same handle flag (GTF_ICON_*_HDL). |
| 2028 | static bool SameIconHandleFlag(GenTree* t1, GenTree* t2) |
| 2029 | { |
| 2030 | return t1->GetIconHandleFlag() == t2->GetIconHandleFlag(); |
| 2031 | } |
| 2032 | |
| 2033 | bool IsArgPlaceHolderNode() const |
| 2034 | { |
| 2035 | return OperGet() == GT_ARGPLACE; |
| 2036 | } |
| 2037 | bool IsCall() const |
| 2038 | { |
| 2039 | return OperGet() == GT_CALL; |
| 2040 | } |
| 2041 | bool IsStatement() const |
| 2042 | { |
| 2043 | return OperGet() == GT_STMT; |
| 2044 | } |
| 2045 | inline bool IsHelperCall(); |
| 2046 | |
| 2047 | bool IsVarAddr() const; |
| 2048 | bool gtOverflow() const; |
| 2049 | bool gtOverflowEx() const; |
| 2050 | bool gtSetFlags() const; |
| 2051 | bool gtRequestSetFlags(); |
| 2052 | |
| 2053 | #ifdef DEBUG |
| 2054 | bool gtIsValid64RsltMul(); |
| 2055 | static int gtDispFlags(unsigned flags, unsigned debugFlags); |
| 2056 | #endif |
| 2057 | |
| 2058 | // cast operations |
| 2059 | inline var_types CastFromType(); |
| 2060 | inline var_types& CastToType(); |
| 2061 | |
| 2062 | // Returns "true" iff "this" is a phi-related node (i.e. a GT_PHI_ARG, GT_PHI, or a PhiDefn). |
| 2063 | bool IsPhiNode(); |
| 2064 | |
| 2065 | // Returns "true" iff "*this" is an assignment (GT_ASG) tree that defines an SSA name (lcl = phi(...)); |
| 2066 | bool IsPhiDefn(); |
| 2067 | |
| 2068 | // Returns "true" iff "*this" is a statement containing an assignment that defines an SSA name (lcl = phi(...)); |
| 2069 | bool IsPhiDefnStmt(); |
| 2070 | |
| 2071 | // Because of the fact that we hid the assignment operator of "BitSet" (in DEBUG), |
| 2072 | // we can't synthesize an assignment operator. |
| 2073 | // TODO-Cleanup: Could change this w/o liveset on tree nodes |
| 2074 | // (This is also necessary for the VTable trick.) |
| 2075 | GenTree() |
| 2076 | { |
| 2077 | } |
| 2078 | |
| 2079 | // Returns the number of children of the current node. |
| 2080 | unsigned NumChildren(); |
| 2081 | |
| 2082 | // Requires "childNum < NumChildren()". Returns the "n"th child of "this." |
| 2083 | GenTree* GetChild(unsigned childNum); |
| 2084 | |
| 2085 | // Returns an iterator that will produce the use edge to each operand of this node. Differs |
| 2086 | // from the sequence of nodes produced by a loop over `GetChild` in its handling of call, phi, |
| 2087 | // and block op nodes. |
| 2088 | GenTreeUseEdgeIterator UseEdgesBegin(); |
| 2089 | GenTreeUseEdgeIterator UseEdgesEnd(); |
| 2090 | |
| 2091 | IteratorPair<GenTreeUseEdgeIterator> UseEdges(); |
| 2092 | |
| 2093 | // Returns an iterator that will produce each operand of this node. Differs from the sequence |
| 2094 | // of nodes produced by a loop over `GetChild` in its handling of call, phi, and block op |
| 2095 | // nodes. |
| 2096 | GenTreeOperandIterator OperandsBegin(); |
| 2097 | GenTreeOperandIterator OperandsEnd(); |
| 2098 | |
| 2099 | // Returns a range that will produce the operands of this node in use order. |
| 2100 | IteratorPair<GenTreeOperandIterator> Operands(); |
| 2101 | |
| 2102 | enum class VisitResult |
| 2103 | { |
| 2104 | Abort = false, |
| 2105 | Continue = true |
| 2106 | }; |
| 2107 | |
| 2108 | // Visits each operand of this node. The operand must be either a lambda, function, or functor with the signature |
| 2109 | // `GenTree::VisitResult VisitorFunction(GenTree* operand)`. Here is a simple example: |
| 2110 | // |
| 2111 | // unsigned operandCount = 0; |
| 2112 | // node->VisitOperands([&](GenTree* operand) -> GenTree::VisitResult) |
| 2113 | // { |
| 2114 | // operandCount++; |
| 2115 | // return GenTree::VisitResult::Continue; |
| 2116 | // }); |
| 2117 | // |
| 2118 | // This function is generally more efficient that the operand iterator and should be preferred over that API for |
| 2119 | // hot code, as it affords better opportunities for inlining and acheives shorter dynamic path lengths when |
| 2120 | // deciding how operands need to be accessed. |
| 2121 | // |
| 2122 | // Note that this function does not respect `GTF_REVERSE_OPS` and `gtEvalSizeFirst`. This is always safe in LIR, |
| 2123 | // but may be dangerous in HIR if for some reason you need to visit operands in the order in which they will |
| 2124 | // execute. |
| 2125 | template <typename TVisitor> |
| 2126 | void VisitOperands(TVisitor visitor); |
| 2127 | |
| 2128 | private: |
| 2129 | template <typename TVisitor> |
| 2130 | VisitResult VisitListOperands(TVisitor visitor); |
| 2131 | |
| 2132 | template <typename TVisitor> |
| 2133 | void VisitBinOpOperands(TVisitor visitor); |
| 2134 | |
| 2135 | public: |
| 2136 | bool Precedes(GenTree* other); |
| 2137 | |
| 2138 | // The maximum possible # of children of any node. |
| 2139 | static const int MAX_CHILDREN = 6; |
| 2140 | |
| 2141 | bool IsReuseRegVal() const |
| 2142 | { |
| 2143 | // This can be extended to non-constant nodes, but not to local or indir nodes. |
| 2144 | if (OperIsConst() && ((gtFlags & GTF_REUSE_REG_VAL) != 0)) |
| 2145 | { |
| 2146 | return true; |
| 2147 | } |
| 2148 | return false; |
| 2149 | } |
| 2150 | void SetReuseRegVal() |
| 2151 | { |
| 2152 | assert(OperIsConst()); |
| 2153 | gtFlags |= GTF_REUSE_REG_VAL; |
| 2154 | } |
| 2155 | void ResetReuseRegVal() |
| 2156 | { |
| 2157 | assert(OperIsConst()); |
| 2158 | gtFlags &= ~GTF_REUSE_REG_VAL; |
| 2159 | } |
| 2160 | |
| 2161 | void SetIndirExceptionFlags(Compiler* comp) |
| 2162 | { |
| 2163 | assert(OperIsIndirOrArrLength()); |
| 2164 | gtFlags |= OperMayThrow(comp) ? GTF_EXCEPT : GTF_IND_NONFAULTING; |
| 2165 | } |
| 2166 | |
| 2167 | #if MEASURE_NODE_SIZE |
| 2168 | static void DumpNodeSizes(FILE* fp); |
| 2169 | #endif |
| 2170 | |
| 2171 | #ifdef DEBUG |
| 2172 | |
| 2173 | private: |
| 2174 | GenTree& operator=(const GenTree& gt) |
| 2175 | { |
| 2176 | assert(!"Don't copy" ); |
| 2177 | return *this; |
| 2178 | } |
| 2179 | #endif // DEBUG |
| 2180 | |
| 2181 | #if DEBUGGABLE_GENTREE |
| 2182 | // In DEBUG builds, add a dummy virtual method, to give the debugger run-time type information. |
| 2183 | virtual void DummyVirt() |
| 2184 | { |
| 2185 | } |
| 2186 | |
| 2187 | typedef void* VtablePtr; |
| 2188 | |
| 2189 | VtablePtr GetVtableForOper(genTreeOps oper); |
| 2190 | void SetVtableForOper(genTreeOps oper); |
| 2191 | |
| 2192 | static VtablePtr s_vtablesForOpers[GT_COUNT]; |
| 2193 | static VtablePtr s_vtableForOp; |
| 2194 | #endif // DEBUGGABLE_GENTREE |
| 2195 | |
| 2196 | public: |
| 2197 | inline void* operator new(size_t sz, class Compiler*, genTreeOps oper); |
| 2198 | |
| 2199 | inline GenTree(genTreeOps oper, var_types type DEBUGARG(bool largeNode = false)); |
| 2200 | }; |
| 2201 | |
| 2202 | //------------------------------------------------------------------------ |
| 2203 | // GenTreeUseEdgeIterator: an iterator that will produce each use edge of a GenTree node in the order in which |
| 2204 | // they are used. |
| 2205 | // |
| 2206 | // The use edges of a node may not correspond exactly to the nodes on the other ends of its use edges: in |
| 2207 | // particular, GT_LIST nodes are expanded into their component parts. This differs from the behavior of |
| 2208 | // GenTree::GetChildPointer(), which does not expand lists. |
| 2209 | // |
| 2210 | // Operand iteration is common enough in the back end of the compiler that the implementation of this type has |
| 2211 | // traded some simplicity for speed: |
| 2212 | // - As much work as is reasonable is done in the constructor rather than during operand iteration |
| 2213 | // - Node-specific functionality is handled by a small class of "advance" functions called by operator++ |
| 2214 | // rather than making operator++ itself handle all nodes |
| 2215 | // - Some specialization has been performed for specific node types/shapes (e.g. the advance function for |
| 2216 | // binary nodes is specialized based on whether or not the node has the GTF_REVERSE_OPS flag set) |
| 2217 | // |
| 2218 | // Valid values of this type may be obtained by calling `GenTree::UseEdgesBegin` and `GenTree::UseEdgesEnd`. |
| 2219 | // |
| 2220 | class GenTreeUseEdgeIterator final |
| 2221 | { |
| 2222 | friend class GenTreeOperandIterator; |
| 2223 | friend GenTreeUseEdgeIterator GenTree::UseEdgesBegin(); |
| 2224 | friend GenTreeUseEdgeIterator GenTree::UseEdgesEnd(); |
| 2225 | |
| 2226 | enum |
| 2227 | { |
| 2228 | CALL_INSTANCE = 0, |
| 2229 | CALL_ARGS = 1, |
| 2230 | CALL_LATE_ARGS = 2, |
| 2231 | CALL_CONTROL_EXPR = 3, |
| 2232 | CALL_COOKIE = 4, |
| 2233 | CALL_ADDRESS = 5, |
| 2234 | CALL_TERMINAL = 6, |
| 2235 | }; |
| 2236 | |
| 2237 | typedef void (GenTreeUseEdgeIterator::*AdvanceFn)(); |
| 2238 | |
| 2239 | AdvanceFn m_advance; |
| 2240 | GenTree* m_node; |
| 2241 | GenTree** m_edge; |
| 2242 | GenTree* m_argList; |
| 2243 | int m_state; |
| 2244 | |
| 2245 | GenTreeUseEdgeIterator(GenTree* node); |
| 2246 | |
| 2247 | // Advance functions for special nodes |
| 2248 | void AdvanceCmpXchg(); |
| 2249 | void AdvanceBoundsChk(); |
| 2250 | void AdvanceArrElem(); |
| 2251 | void AdvanceArrOffset(); |
| 2252 | void AdvanceDynBlk(); |
| 2253 | void AdvanceStoreDynBlk(); |
| 2254 | |
| 2255 | template <bool ReverseOperands> |
| 2256 | void AdvanceBinOp(); |
| 2257 | void SetEntryStateForBinOp(); |
| 2258 | |
| 2259 | // An advance function for list-like nodes (Phi, SIMDIntrinsicInitN, FieldList) |
| 2260 | void AdvanceList(); |
| 2261 | void SetEntryStateForList(GenTree* list); |
| 2262 | |
| 2263 | // The advance function for call nodes |
| 2264 | template <int state> |
| 2265 | void AdvanceCall(); |
| 2266 | |
| 2267 | void Terminate(); |
| 2268 | |
| 2269 | public: |
| 2270 | GenTreeUseEdgeIterator(); |
| 2271 | |
| 2272 | inline GenTree** operator*() |
| 2273 | { |
| 2274 | assert(m_state != -1); |
| 2275 | return m_edge; |
| 2276 | } |
| 2277 | |
| 2278 | inline GenTree** operator->() |
| 2279 | { |
| 2280 | assert(m_state != -1); |
| 2281 | return m_edge; |
| 2282 | } |
| 2283 | |
| 2284 | inline bool operator==(const GenTreeUseEdgeIterator& other) const |
| 2285 | { |
| 2286 | if (m_state == -1 || other.m_state == -1) |
| 2287 | { |
| 2288 | return m_state == other.m_state; |
| 2289 | } |
| 2290 | |
| 2291 | return (m_node == other.m_node) && (m_edge == other.m_edge) && (m_argList == other.m_argList) && |
| 2292 | (m_state == other.m_state); |
| 2293 | } |
| 2294 | |
| 2295 | inline bool operator!=(const GenTreeUseEdgeIterator& other) const |
| 2296 | { |
| 2297 | return !(operator==(other)); |
| 2298 | } |
| 2299 | |
| 2300 | GenTreeUseEdgeIterator& operator++(); |
| 2301 | }; |
| 2302 | |
| 2303 | //------------------------------------------------------------------------ |
| 2304 | // GenTreeOperandIterator: an iterator that will produce each operand of a |
| 2305 | // GenTree node in the order in which they are |
| 2306 | // used. This uses `GenTreeUseEdgeIterator` under |
| 2307 | // the covers and comes with the same caveats |
| 2308 | // w.r.t. `GetChild`. |
| 2309 | // |
| 2310 | // Note: valid values of this type may be obtained by calling |
| 2311 | // `GenTree::OperandsBegin` and `GenTree::OperandsEnd`. |
| 2312 | class GenTreeOperandIterator final |
| 2313 | { |
| 2314 | friend GenTreeOperandIterator GenTree::OperandsBegin(); |
| 2315 | friend GenTreeOperandIterator GenTree::OperandsEnd(); |
| 2316 | |
| 2317 | GenTreeUseEdgeIterator m_useEdges; |
| 2318 | |
| 2319 | GenTreeOperandIterator(GenTree* node) : m_useEdges(node) |
| 2320 | { |
| 2321 | } |
| 2322 | |
| 2323 | public: |
| 2324 | GenTreeOperandIterator() : m_useEdges() |
| 2325 | { |
| 2326 | } |
| 2327 | |
| 2328 | inline GenTree* operator*() |
| 2329 | { |
| 2330 | return *(*m_useEdges); |
| 2331 | } |
| 2332 | |
| 2333 | inline GenTree* operator->() |
| 2334 | { |
| 2335 | return *(*m_useEdges); |
| 2336 | } |
| 2337 | |
| 2338 | inline bool operator==(const GenTreeOperandIterator& other) const |
| 2339 | { |
| 2340 | return m_useEdges == other.m_useEdges; |
| 2341 | } |
| 2342 | |
| 2343 | inline bool operator!=(const GenTreeOperandIterator& other) const |
| 2344 | { |
| 2345 | return !(operator==(other)); |
| 2346 | } |
| 2347 | |
| 2348 | inline GenTreeOperandIterator& operator++() |
| 2349 | { |
| 2350 | ++m_useEdges; |
| 2351 | return *this; |
| 2352 | } |
| 2353 | }; |
| 2354 | |
| 2355 | /*****************************************************************************/ |
| 2356 | // In the current design, we never instantiate GenTreeUnOp: it exists only to be |
| 2357 | // used as a base class. For unary operators, we instantiate GenTreeOp, with a NULL second |
| 2358 | // argument. We check that this is true dynamically. We could tighten this and get static |
| 2359 | // checking, but that would entail accessing the first child of a unary operator via something |
| 2360 | // like gtUnOp.gtOp1 instead of gtOp.gtOp1. |
| 2361 | struct GenTreeUnOp : public GenTree |
| 2362 | { |
| 2363 | GenTree* gtOp1; |
| 2364 | |
| 2365 | protected: |
| 2366 | GenTreeUnOp(genTreeOps oper, var_types type DEBUGARG(bool largeNode = false)) |
| 2367 | : GenTree(oper, type DEBUGARG(largeNode)), gtOp1(nullptr) |
| 2368 | { |
| 2369 | } |
| 2370 | |
| 2371 | GenTreeUnOp(genTreeOps oper, var_types type, GenTree* op1 DEBUGARG(bool largeNode = false)) |
| 2372 | : GenTree(oper, type DEBUGARG(largeNode)), gtOp1(op1) |
| 2373 | { |
| 2374 | assert(op1 != nullptr || NullOp1Legal()); |
| 2375 | if (op1 != nullptr) |
| 2376 | { // Propagate effects flags from child. |
| 2377 | gtFlags |= op1->gtFlags & GTF_ALL_EFFECT; |
| 2378 | } |
| 2379 | } |
| 2380 | |
| 2381 | #if DEBUGGABLE_GENTREE |
| 2382 | GenTreeUnOp() : GenTree(), gtOp1(nullptr) |
| 2383 | { |
| 2384 | } |
| 2385 | #endif |
| 2386 | }; |
| 2387 | |
| 2388 | struct GenTreeOp : public GenTreeUnOp |
| 2389 | { |
| 2390 | GenTree* gtOp2; |
| 2391 | |
| 2392 | GenTreeOp(genTreeOps oper, var_types type, GenTree* op1, GenTree* op2 DEBUGARG(bool largeNode = false)) |
| 2393 | : GenTreeUnOp(oper, type, op1 DEBUGARG(largeNode)), gtOp2(op2) |
| 2394 | { |
| 2395 | // comparisons are always integral types |
| 2396 | assert(!GenTree::OperIsCompare(oper) || varTypeIsIntegral(type)); |
| 2397 | // Binary operators, with a few exceptions, require a non-nullptr |
| 2398 | // second argument. |
| 2399 | assert(op2 != nullptr || NullOp2Legal()); |
| 2400 | // Unary operators, on the other hand, require a null second argument. |
| 2401 | assert(!OperIsUnary(oper) || op2 == nullptr); |
| 2402 | // Propagate effects flags from child. (UnOp handled this for first child.) |
| 2403 | if (op2 != nullptr) |
| 2404 | { |
| 2405 | gtFlags |= op2->gtFlags & GTF_ALL_EFFECT; |
| 2406 | } |
| 2407 | } |
| 2408 | |
| 2409 | // A small set of types are unary operators with optional arguments. We use |
| 2410 | // this constructor to build those. |
| 2411 | GenTreeOp(genTreeOps oper, var_types type DEBUGARG(bool largeNode = false)) |
| 2412 | : GenTreeUnOp(oper, type DEBUGARG(largeNode)), gtOp2(nullptr) |
| 2413 | { |
| 2414 | // Unary operators with optional arguments: |
| 2415 | assert(oper == GT_NOP || oper == GT_RETURN || oper == GT_RETFILT || OperIsBlk(oper)); |
| 2416 | } |
| 2417 | |
| 2418 | #if DEBUGGABLE_GENTREE |
| 2419 | GenTreeOp() : GenTreeUnOp(), gtOp2(nullptr) |
| 2420 | { |
| 2421 | } |
| 2422 | #endif |
| 2423 | }; |
| 2424 | |
| 2425 | struct GenTreeVal : public GenTree |
| 2426 | { |
| 2427 | size_t gtVal1; |
| 2428 | |
| 2429 | GenTreeVal(genTreeOps oper, var_types type, ssize_t val) : GenTree(oper, type), gtVal1(val) |
| 2430 | { |
| 2431 | } |
| 2432 | #if DEBUGGABLE_GENTREE |
| 2433 | GenTreeVal() : GenTree() |
| 2434 | { |
| 2435 | } |
| 2436 | #endif |
| 2437 | }; |
| 2438 | |
| 2439 | struct GenTreeIntConCommon : public GenTree |
| 2440 | { |
| 2441 | inline INT64 LngValue(); |
| 2442 | inline void SetLngValue(INT64 val); |
| 2443 | inline ssize_t IconValue(); |
| 2444 | inline void SetIconValue(ssize_t val); |
| 2445 | inline INT64 IntegralValue(); |
| 2446 | |
| 2447 | GenTreeIntConCommon(genTreeOps oper, var_types type DEBUGARG(bool largeNode = false)) |
| 2448 | : GenTree(oper, type DEBUGARG(largeNode)) |
| 2449 | { |
| 2450 | } |
| 2451 | |
| 2452 | bool FitsInI8() // IconValue() fits into 8-bit signed storage |
| 2453 | { |
| 2454 | return FitsInI8(IconValue()); |
| 2455 | } |
| 2456 | |
| 2457 | static bool FitsInI8(ssize_t val) // Constant fits into 8-bit signed storage |
| 2458 | { |
| 2459 | return (int8_t)val == val; |
| 2460 | } |
| 2461 | |
| 2462 | bool FitsInI32() // IconValue() fits into 32-bit signed storage |
| 2463 | { |
| 2464 | return FitsInI32(IconValue()); |
| 2465 | } |
| 2466 | |
| 2467 | static bool FitsInI32(ssize_t val) // Constant fits into 32-bit signed storage |
| 2468 | { |
| 2469 | #ifdef _TARGET_64BIT_ |
| 2470 | return (int32_t)val == val; |
| 2471 | #else |
| 2472 | return true; |
| 2473 | #endif |
| 2474 | } |
| 2475 | |
| 2476 | bool ImmedValNeedsReloc(Compiler* comp); |
| 2477 | bool ImmedValCanBeFolded(Compiler* comp, genTreeOps op); |
| 2478 | |
| 2479 | #ifdef _TARGET_XARCH_ |
| 2480 | bool FitsInAddrBase(Compiler* comp); |
| 2481 | bool AddrNeedsReloc(Compiler* comp); |
| 2482 | #endif |
| 2483 | |
| 2484 | #if DEBUGGABLE_GENTREE |
| 2485 | GenTreeIntConCommon() : GenTree() |
| 2486 | { |
| 2487 | } |
| 2488 | #endif |
| 2489 | }; |
| 2490 | |
| 2491 | // node representing a read from a physical register |
| 2492 | struct GenTreePhysReg : public GenTree |
| 2493 | { |
| 2494 | // physregs need a field beyond gtRegNum because |
| 2495 | // gtRegNum indicates the destination (and can be changed) |
| 2496 | // whereas reg indicates the source |
| 2497 | regNumber gtSrcReg; |
| 2498 | GenTreePhysReg(regNumber r, var_types type = TYP_I_IMPL) : GenTree(GT_PHYSREG, type), gtSrcReg(r) |
| 2499 | { |
| 2500 | } |
| 2501 | #if DEBUGGABLE_GENTREE |
| 2502 | GenTreePhysReg() : GenTree() |
| 2503 | { |
| 2504 | } |
| 2505 | #endif |
| 2506 | }; |
| 2507 | |
| 2508 | // gtJumpTable - Switch Jump Table |
| 2509 | // |
| 2510 | // This node stores a DWORD constant that represents the |
| 2511 | // absolute address of a jump table for switches. The code |
| 2512 | // generator uses this table to code the destination for every case |
| 2513 | // in an array of addresses which starting position is stored in |
| 2514 | // this constant. |
| 2515 | struct GenTreeJumpTable : public GenTreeIntConCommon |
| 2516 | { |
| 2517 | ssize_t gtJumpTableAddr; |
| 2518 | |
| 2519 | GenTreeJumpTable(var_types type DEBUGARG(bool largeNode = false)) |
| 2520 | : GenTreeIntConCommon(GT_JMPTABLE, type DEBUGARG(largeNode)) |
| 2521 | { |
| 2522 | } |
| 2523 | #if DEBUGGABLE_GENTREE |
| 2524 | GenTreeJumpTable() : GenTreeIntConCommon() |
| 2525 | { |
| 2526 | } |
| 2527 | #endif // DEBUG |
| 2528 | }; |
| 2529 | |
| 2530 | /* gtIntCon -- integer constant (GT_CNS_INT) */ |
| 2531 | struct GenTreeIntCon : public GenTreeIntConCommon |
| 2532 | { |
| 2533 | /* |
| 2534 | * This is the GT_CNS_INT struct definition. |
| 2535 | * It's used to hold for both int constants and pointer handle constants. |
| 2536 | * For the 64-bit targets we will only use GT_CNS_INT as it used to represent all the possible sizes |
| 2537 | * For the 32-bit targets we use a GT_CNS_LNG to hold a 64-bit integer constant and GT_CNS_INT for all others. |
| 2538 | * In the future when we retarget the JIT for x86 we should consider eliminating GT_CNS_LNG |
| 2539 | */ |
| 2540 | ssize_t gtIconVal; // Must overlap and have the same offset with the gtIconVal field in GenTreeLngCon below. |
| 2541 | |
| 2542 | /* The InitializeArray intrinsic needs to go back to the newarray statement |
| 2543 | to find the class handle of the array so that we can get its size. However, |
| 2544 | in ngen mode, the handle in that statement does not correspond to the compile |
| 2545 | time handle (rather it lets you get a handle at run-time). In that case, we also |
| 2546 | need to store a compile time handle, which goes in this gtCompileTimeHandle field. |
| 2547 | */ |
| 2548 | ssize_t gtCompileTimeHandle; |
| 2549 | |
| 2550 | // TODO-Cleanup: It's not clear what characterizes the cases where the field |
| 2551 | // above is used. It may be that its uses and those of the "gtFieldSeq" field below |
| 2552 | // are mutually exclusive, and they could be put in a union. Or else we should separate |
| 2553 | // this type into three subtypes. |
| 2554 | |
| 2555 | // If this constant represents the offset of one or more fields, "gtFieldSeq" represents that |
| 2556 | // sequence of fields. |
| 2557 | FieldSeqNode* gtFieldSeq; |
| 2558 | |
| 2559 | GenTreeIntCon(var_types type, ssize_t value DEBUGARG(bool largeNode = false)) |
| 2560 | : GenTreeIntConCommon(GT_CNS_INT, type DEBUGARG(largeNode)) |
| 2561 | , gtIconVal(value) |
| 2562 | , gtCompileTimeHandle(0) |
| 2563 | , gtFieldSeq(FieldSeqStore::NotAField()) |
| 2564 | { |
| 2565 | } |
| 2566 | |
| 2567 | GenTreeIntCon(var_types type, ssize_t value, FieldSeqNode* fields DEBUGARG(bool largeNode = false)) |
| 2568 | : GenTreeIntConCommon(GT_CNS_INT, type DEBUGARG(largeNode)) |
| 2569 | , gtIconVal(value) |
| 2570 | , gtCompileTimeHandle(0) |
| 2571 | , gtFieldSeq(fields) |
| 2572 | { |
| 2573 | assert(fields != nullptr); |
| 2574 | } |
| 2575 | |
| 2576 | void FixupInitBlkValue(var_types asgType); |
| 2577 | |
| 2578 | #ifdef _TARGET_64BIT_ |
| 2579 | void TruncateOrSignExtend32() |
| 2580 | { |
| 2581 | if (gtFlags & GTF_UNSIGNED) |
| 2582 | { |
| 2583 | gtIconVal = UINT32(gtIconVal); |
| 2584 | } |
| 2585 | else |
| 2586 | { |
| 2587 | gtIconVal = INT32(gtIconVal); |
| 2588 | } |
| 2589 | } |
| 2590 | #endif // _TARGET_64BIT_ |
| 2591 | |
| 2592 | #if DEBUGGABLE_GENTREE |
| 2593 | GenTreeIntCon() : GenTreeIntConCommon() |
| 2594 | { |
| 2595 | } |
| 2596 | #endif |
| 2597 | }; |
| 2598 | |
| 2599 | /* gtLngCon -- long constant (GT_CNS_LNG) */ |
| 2600 | |
| 2601 | struct GenTreeLngCon : public GenTreeIntConCommon |
| 2602 | { |
| 2603 | INT64 gtLconVal; // Must overlap and have the same offset with the gtIconVal field in GenTreeIntCon above. |
| 2604 | INT32 LoVal() |
| 2605 | { |
| 2606 | return (INT32)(gtLconVal & 0xffffffff); |
| 2607 | } |
| 2608 | |
| 2609 | INT32 HiVal() |
| 2610 | { |
| 2611 | return (INT32)(gtLconVal >> 32); |
| 2612 | } |
| 2613 | |
| 2614 | GenTreeLngCon(INT64 val) : GenTreeIntConCommon(GT_CNS_NATIVELONG, TYP_LONG) |
| 2615 | { |
| 2616 | SetLngValue(val); |
| 2617 | } |
| 2618 | #if DEBUGGABLE_GENTREE |
| 2619 | GenTreeLngCon() : GenTreeIntConCommon() |
| 2620 | { |
| 2621 | } |
| 2622 | #endif |
| 2623 | }; |
| 2624 | |
| 2625 | inline INT64 GenTreeIntConCommon::LngValue() |
| 2626 | { |
| 2627 | #ifndef _TARGET_64BIT_ |
| 2628 | assert(gtOper == GT_CNS_LNG); |
| 2629 | return AsLngCon()->gtLconVal; |
| 2630 | #else |
| 2631 | return IconValue(); |
| 2632 | #endif |
| 2633 | } |
| 2634 | |
| 2635 | inline void GenTreeIntConCommon::SetLngValue(INT64 val) |
| 2636 | { |
| 2637 | #ifndef _TARGET_64BIT_ |
| 2638 | assert(gtOper == GT_CNS_LNG); |
| 2639 | AsLngCon()->gtLconVal = val; |
| 2640 | #else |
| 2641 | // Compile time asserts that these two fields overlap and have the same offsets: gtIconVal and gtLconVal |
| 2642 | C_ASSERT(offsetof(GenTreeLngCon, gtLconVal) == offsetof(GenTreeIntCon, gtIconVal)); |
| 2643 | C_ASSERT(sizeof(AsLngCon()->gtLconVal) == sizeof(AsIntCon()->gtIconVal)); |
| 2644 | |
| 2645 | SetIconValue(ssize_t(val)); |
| 2646 | #endif |
| 2647 | } |
| 2648 | |
| 2649 | inline ssize_t GenTreeIntConCommon::IconValue() |
| 2650 | { |
| 2651 | assert(gtOper == GT_CNS_INT); // We should never see a GT_CNS_LNG for a 64-bit target! |
| 2652 | return AsIntCon()->gtIconVal; |
| 2653 | } |
| 2654 | |
| 2655 | inline void GenTreeIntConCommon::SetIconValue(ssize_t val) |
| 2656 | { |
| 2657 | assert(gtOper == GT_CNS_INT); // We should never see a GT_CNS_LNG for a 64-bit target! |
| 2658 | AsIntCon()->gtIconVal = val; |
| 2659 | } |
| 2660 | |
| 2661 | inline INT64 GenTreeIntConCommon::IntegralValue() |
| 2662 | { |
| 2663 | #ifdef _TARGET_64BIT_ |
| 2664 | return LngValue(); |
| 2665 | #else |
| 2666 | return gtOper == GT_CNS_LNG ? LngValue() : (INT64)IconValue(); |
| 2667 | #endif // _TARGET_64BIT_ |
| 2668 | } |
| 2669 | |
| 2670 | /* gtDblCon -- double constant (GT_CNS_DBL) */ |
| 2671 | |
| 2672 | struct GenTreeDblCon : public GenTree |
| 2673 | { |
| 2674 | double gtDconVal; |
| 2675 | |
| 2676 | bool isBitwiseEqual(GenTreeDblCon* other) |
| 2677 | { |
| 2678 | unsigned __int64 bits = *(unsigned __int64*)(>DconVal); |
| 2679 | unsigned __int64 otherBits = *(unsigned __int64*)(&(other->gtDconVal)); |
| 2680 | return (bits == otherBits); |
| 2681 | } |
| 2682 | |
| 2683 | GenTreeDblCon(double val) : GenTree(GT_CNS_DBL, TYP_DOUBLE), gtDconVal(val) |
| 2684 | { |
| 2685 | } |
| 2686 | #if DEBUGGABLE_GENTREE |
| 2687 | GenTreeDblCon() : GenTree() |
| 2688 | { |
| 2689 | } |
| 2690 | #endif |
| 2691 | }; |
| 2692 | |
| 2693 | /* gtStrCon -- string constant (GT_CNS_STR) */ |
| 2694 | |
| 2695 | struct GenTreeStrCon : public GenTree |
| 2696 | { |
| 2697 | unsigned gtSconCPX; |
| 2698 | CORINFO_MODULE_HANDLE gtScpHnd; |
| 2699 | |
| 2700 | // Because this node can come from an inlined method we need to |
| 2701 | // have the scope handle, since it will become a helper call. |
| 2702 | GenTreeStrCon(unsigned sconCPX, CORINFO_MODULE_HANDLE mod DEBUGARG(bool largeNode = false)) |
| 2703 | : GenTree(GT_CNS_STR, TYP_REF DEBUGARG(largeNode)), gtSconCPX(sconCPX), gtScpHnd(mod) |
| 2704 | { |
| 2705 | } |
| 2706 | #if DEBUGGABLE_GENTREE |
| 2707 | GenTreeStrCon() : GenTree() |
| 2708 | { |
| 2709 | } |
| 2710 | #endif |
| 2711 | }; |
| 2712 | |
| 2713 | // Common supertype of LCL_VAR, LCL_FLD, REG_VAR, PHI_ARG |
| 2714 | // This inherits from UnOp because lclvar stores are Unops |
| 2715 | struct GenTreeLclVarCommon : public GenTreeUnOp |
| 2716 | { |
| 2717 | private: |
| 2718 | unsigned _gtLclNum; // The local number. An index into the Compiler::lvaTable array. |
| 2719 | unsigned _gtSsaNum; // The SSA number. |
| 2720 | |
| 2721 | public: |
| 2722 | GenTreeLclVarCommon(genTreeOps oper, var_types type, unsigned lclNum DEBUGARG(bool largeNode = false)) |
| 2723 | : GenTreeUnOp(oper, type DEBUGARG(largeNode)) |
| 2724 | { |
| 2725 | SetLclNum(lclNum); |
| 2726 | } |
| 2727 | |
| 2728 | unsigned GetLclNum() const |
| 2729 | { |
| 2730 | return _gtLclNum; |
| 2731 | } |
| 2732 | __declspec(property(get = GetLclNum)) unsigned gtLclNum; |
| 2733 | |
| 2734 | void SetLclNum(unsigned lclNum) |
| 2735 | { |
| 2736 | _gtLclNum = lclNum; |
| 2737 | _gtSsaNum = SsaConfig::RESERVED_SSA_NUM; |
| 2738 | } |
| 2739 | |
| 2740 | unsigned GetSsaNum() const |
| 2741 | { |
| 2742 | return _gtSsaNum; |
| 2743 | } |
| 2744 | __declspec(property(get = GetSsaNum)) unsigned gtSsaNum; |
| 2745 | |
| 2746 | void SetSsaNum(unsigned ssaNum) |
| 2747 | { |
| 2748 | _gtSsaNum = ssaNum; |
| 2749 | } |
| 2750 | |
| 2751 | bool HasSsaName() |
| 2752 | { |
| 2753 | return (gtSsaNum != SsaConfig::RESERVED_SSA_NUM); |
| 2754 | } |
| 2755 | |
| 2756 | #if DEBUGGABLE_GENTREE |
| 2757 | GenTreeLclVarCommon() : GenTreeUnOp() |
| 2758 | { |
| 2759 | } |
| 2760 | #endif |
| 2761 | }; |
| 2762 | |
| 2763 | // gtLclVar -- load/store/addr of local variable |
| 2764 | |
| 2765 | struct GenTreeLclVar : public GenTreeLclVarCommon |
| 2766 | { |
| 2767 | IL_OFFSET gtLclILoffs; // instr offset of ref (only for debug info) |
| 2768 | |
| 2769 | GenTreeLclVar(var_types type, unsigned lclNum, IL_OFFSET ilOffs DEBUGARG(bool largeNode = false)) |
| 2770 | : GenTreeLclVarCommon(GT_LCL_VAR, type, lclNum DEBUGARG(largeNode)), gtLclILoffs(ilOffs) |
| 2771 | { |
| 2772 | } |
| 2773 | |
| 2774 | GenTreeLclVar(genTreeOps oper, var_types type, unsigned lclNum, IL_OFFSET ilOffs DEBUGARG(bool largeNode = false)) |
| 2775 | : GenTreeLclVarCommon(oper, type, lclNum DEBUGARG(largeNode)), gtLclILoffs(ilOffs) |
| 2776 | { |
| 2777 | assert(OperIsLocal(oper) || OperIsLocalAddr(oper)); |
| 2778 | } |
| 2779 | |
| 2780 | #if DEBUGGABLE_GENTREE |
| 2781 | GenTreeLclVar() : GenTreeLclVarCommon() |
| 2782 | { |
| 2783 | } |
| 2784 | #endif |
| 2785 | }; |
| 2786 | |
| 2787 | // gtLclFld -- load/store/addr of local variable field |
| 2788 | |
| 2789 | struct GenTreeLclFld : public GenTreeLclVarCommon |
| 2790 | { |
| 2791 | unsigned gtLclOffs; // offset into the variable to access |
| 2792 | |
| 2793 | FieldSeqNode* gtFieldSeq; // This LclFld node represents some sequences of accesses. |
| 2794 | |
| 2795 | // old/FE style constructor where load/store/addr share same opcode |
| 2796 | GenTreeLclFld(var_types type, unsigned lclNum, unsigned lclOffs) |
| 2797 | : GenTreeLclVarCommon(GT_LCL_FLD, type, lclNum), gtLclOffs(lclOffs), gtFieldSeq(nullptr) |
| 2798 | { |
| 2799 | assert(sizeof(*this) <= s_gtNodeSizes[GT_LCL_FLD]); |
| 2800 | } |
| 2801 | |
| 2802 | GenTreeLclFld(genTreeOps oper, var_types type, unsigned lclNum, unsigned lclOffs) |
| 2803 | : GenTreeLclVarCommon(oper, type, lclNum), gtLclOffs(lclOffs), gtFieldSeq(nullptr) |
| 2804 | { |
| 2805 | assert(sizeof(*this) <= s_gtNodeSizes[GT_LCL_FLD]); |
| 2806 | } |
| 2807 | #if DEBUGGABLE_GENTREE |
| 2808 | GenTreeLclFld() : GenTreeLclVarCommon() |
| 2809 | { |
| 2810 | } |
| 2811 | #endif |
| 2812 | }; |
| 2813 | |
| 2814 | /* gtCast -- conversion to a different type (GT_CAST) */ |
| 2815 | |
| 2816 | struct GenTreeCast : public GenTreeOp |
| 2817 | { |
| 2818 | GenTree*& CastOp() |
| 2819 | { |
| 2820 | return gtOp1; |
| 2821 | } |
| 2822 | var_types gtCastType; |
| 2823 | |
| 2824 | GenTreeCast(var_types type, GenTree* op, bool fromUnsigned, var_types castType DEBUGARG(bool largeNode = false)) |
| 2825 | : GenTreeOp(GT_CAST, type, op, nullptr DEBUGARG(largeNode)), gtCastType(castType) |
| 2826 | { |
| 2827 | gtFlags |= fromUnsigned ? GTF_UNSIGNED : 0; |
| 2828 | } |
| 2829 | #if DEBUGGABLE_GENTREE |
| 2830 | GenTreeCast() : GenTreeOp() |
| 2831 | { |
| 2832 | } |
| 2833 | #endif |
| 2834 | }; |
| 2835 | |
| 2836 | // GT_BOX nodes are place markers for boxed values. The "real" tree |
| 2837 | // for most purposes is in gtBoxOp. |
| 2838 | struct GenTreeBox : public GenTreeUnOp |
| 2839 | { |
| 2840 | // An expanded helper call to implement the "box" if we don't get |
| 2841 | // rid of it any other way. Must be in same position as op1. |
| 2842 | |
| 2843 | GenTree*& BoxOp() |
| 2844 | { |
| 2845 | return gtOp1; |
| 2846 | } |
| 2847 | // This is the statement that contains the assignment tree when the node is an inlined GT_BOX on a value |
| 2848 | // type |
| 2849 | GenTree* gtAsgStmtWhenInlinedBoxValue; |
| 2850 | // And this is the statement that copies from the value being boxed to the box payload |
| 2851 | GenTree* gtCopyStmtWhenInlinedBoxValue; |
| 2852 | |
| 2853 | GenTreeBox(var_types type, |
| 2854 | GenTree* boxOp, |
| 2855 | GenTree* asgStmtWhenInlinedBoxValue, |
| 2856 | GenTree* copyStmtWhenInlinedBoxValue) |
| 2857 | : GenTreeUnOp(GT_BOX, type, boxOp) |
| 2858 | , gtAsgStmtWhenInlinedBoxValue(asgStmtWhenInlinedBoxValue) |
| 2859 | , gtCopyStmtWhenInlinedBoxValue(copyStmtWhenInlinedBoxValue) |
| 2860 | { |
| 2861 | } |
| 2862 | #if DEBUGGABLE_GENTREE |
| 2863 | GenTreeBox() : GenTreeUnOp() |
| 2864 | { |
| 2865 | } |
| 2866 | #endif |
| 2867 | }; |
| 2868 | |
| 2869 | /* gtField -- data member ref (GT_FIELD) */ |
| 2870 | |
| 2871 | struct GenTreeField : public GenTree |
| 2872 | { |
| 2873 | GenTree* gtFldObj; |
| 2874 | CORINFO_FIELD_HANDLE gtFldHnd; |
| 2875 | DWORD gtFldOffset; |
| 2876 | bool gtFldMayOverlap; |
| 2877 | #ifdef FEATURE_READYTORUN_COMPILER |
| 2878 | CORINFO_CONST_LOOKUP gtFieldLookup; |
| 2879 | #endif |
| 2880 | |
| 2881 | GenTreeField(var_types type, GenTree* obj, CORINFO_FIELD_HANDLE fldHnd, DWORD offs) |
| 2882 | : GenTree(GT_FIELD, type), gtFldObj(obj), gtFldHnd(fldHnd), gtFldOffset(offs), gtFldMayOverlap(false) |
| 2883 | { |
| 2884 | if (obj != nullptr) |
| 2885 | { |
| 2886 | gtFlags |= (obj->gtFlags & GTF_ALL_EFFECT); |
| 2887 | } |
| 2888 | |
| 2889 | #ifdef FEATURE_READYTORUN_COMPILER |
| 2890 | gtFieldLookup.addr = nullptr; |
| 2891 | #endif |
| 2892 | } |
| 2893 | #if DEBUGGABLE_GENTREE |
| 2894 | GenTreeField() : GenTree() |
| 2895 | { |
| 2896 | } |
| 2897 | #endif |
| 2898 | }; |
| 2899 | |
| 2900 | // Represents the Argument list of a call node, as a Lisp-style linked list. |
| 2901 | // (Originally I had hoped that this could have *only* the m_arg/m_rest fields, but it turns out |
| 2902 | // that enough of the GenTree mechanism is used that it makes sense just to make it a subtype. But |
| 2903 | // note that in many ways, this is *not* a "real" node of the tree, but rather a mechanism for |
| 2904 | // giving call nodes a flexible number of children. GenTreeArgListNodes never evaluate to registers, |
| 2905 | // for example.) |
| 2906 | |
| 2907 | // Note that while this extends GenTreeOp, it is *not* an EXOP. We don't add any new fields, and one |
| 2908 | // is free to allocate a GenTreeOp of type GT_LIST. If you use this type, you get the convenient Current/Rest |
| 2909 | // method names for the arguments. |
| 2910 | struct GenTreeArgList : public GenTreeOp |
| 2911 | { |
| 2912 | GenTree*& Current() |
| 2913 | { |
| 2914 | return gtOp1; |
| 2915 | } |
| 2916 | GenTreeArgList*& Rest() |
| 2917 | { |
| 2918 | assert(gtOp2 == nullptr || gtOp2->OperIsAnyList()); |
| 2919 | return *reinterpret_cast<GenTreeArgList**>(>Op2); |
| 2920 | } |
| 2921 | |
| 2922 | #if DEBUGGABLE_GENTREE |
| 2923 | GenTreeArgList() : GenTreeOp() |
| 2924 | { |
| 2925 | } |
| 2926 | #endif |
| 2927 | |
| 2928 | GenTreeArgList(GenTree* arg) : GenTreeArgList(arg, nullptr) |
| 2929 | { |
| 2930 | } |
| 2931 | |
| 2932 | GenTreeArgList(GenTree* arg, GenTreeArgList* rest) : GenTreeArgList(GT_LIST, arg, rest) |
| 2933 | { |
| 2934 | } |
| 2935 | |
| 2936 | GenTreeArgList(genTreeOps oper, GenTree* arg, GenTreeArgList* rest) : GenTreeOp(oper, TYP_VOID, arg, rest) |
| 2937 | { |
| 2938 | assert(OperIsAnyList(oper)); |
| 2939 | assert((arg != nullptr) && arg->IsValidCallArgument()); |
| 2940 | gtFlags |= arg->gtFlags & GTF_ALL_EFFECT; |
| 2941 | if (rest != nullptr) |
| 2942 | { |
| 2943 | gtFlags |= rest->gtFlags & GTF_ALL_EFFECT; |
| 2944 | } |
| 2945 | } |
| 2946 | }; |
| 2947 | |
| 2948 | // Represents a list of fields constituting a struct, when it is passed as an argument. |
| 2949 | // The first field of the struct is marked with the GTF_FIELD_LIST_HEAD flag, and |
| 2950 | // in LIR form it is the only member of the list that is threaded into the execution |
| 2951 | // order. |
| 2952 | // It differs from the GenTreeArgList in a couple of ways: |
| 2953 | // - The entire list represents a single argument. |
| 2954 | // - It contains additional fields to provide the offset and type of the field. |
| 2955 | // |
| 2956 | struct GenTreeFieldList : public GenTreeArgList |
| 2957 | { |
| 2958 | unsigned gtFieldOffset; |
| 2959 | var_types gtFieldType; |
| 2960 | |
| 2961 | bool IsFieldListHead() const |
| 2962 | { |
| 2963 | return (gtFlags & GTF_FIELD_LIST_HEAD) != 0; |
| 2964 | } |
| 2965 | |
| 2966 | #if DEBUGGABLE_GENTREE |
| 2967 | GenTreeFieldList() : GenTreeArgList() |
| 2968 | { |
| 2969 | } |
| 2970 | #endif |
| 2971 | |
| 2972 | GenTreeFieldList*& Rest() |
| 2973 | { |
| 2974 | assert(gtOp2 == nullptr || gtOp2->OperGet() == GT_FIELD_LIST); |
| 2975 | return *reinterpret_cast<GenTreeFieldList**>(>Op2); |
| 2976 | } |
| 2977 | |
| 2978 | GenTreeFieldList(GenTree* arg, unsigned fieldOffset, var_types fieldType, GenTreeFieldList* prevList) |
| 2979 | : GenTreeArgList(GT_FIELD_LIST, arg, nullptr) |
| 2980 | { |
| 2981 | // While GT_FIELD_LIST can be in a GT_LIST, GT_FIELD_LISTs cannot be nested or have GT_LISTs. |
| 2982 | assert(!arg->OperIsAnyList()); |
| 2983 | gtFieldOffset = fieldOffset; |
| 2984 | gtFieldType = fieldType; |
| 2985 | gtType = fieldType; |
| 2986 | if (prevList == nullptr) |
| 2987 | { |
| 2988 | gtFlags |= GTF_FIELD_LIST_HEAD; |
| 2989 | |
| 2990 | // A GT_FIELD_LIST head is always contained. Other nodes return false from IsValue() |
| 2991 | // and should not be marked as contained. |
| 2992 | SetContained(); |
| 2993 | } |
| 2994 | else |
| 2995 | { |
| 2996 | prevList->gtOp2 = this; |
| 2997 | } |
| 2998 | } |
| 2999 | }; |
| 3000 | |
| 3001 | // There was quite a bit of confusion in the code base about which of gtOp1 and gtOp2 was the |
| 3002 | // 'then' and 'else' clause of a colon node. Adding these accessors, while not enforcing anything, |
| 3003 | // at least *allows* the programmer to be obviously correct. |
| 3004 | // However, these conventions seem backward. |
| 3005 | // TODO-Cleanup: If we could get these accessors used everywhere, then we could switch them. |
| 3006 | struct GenTreeColon : public GenTreeOp |
| 3007 | { |
| 3008 | GenTree*& ThenNode() |
| 3009 | { |
| 3010 | return gtOp2; |
| 3011 | } |
| 3012 | GenTree*& ElseNode() |
| 3013 | { |
| 3014 | return gtOp1; |
| 3015 | } |
| 3016 | |
| 3017 | #if DEBUGGABLE_GENTREE |
| 3018 | GenTreeColon() : GenTreeOp() |
| 3019 | { |
| 3020 | } |
| 3021 | #endif |
| 3022 | |
| 3023 | GenTreeColon(var_types typ, GenTree* thenNode, GenTree* elseNode) : GenTreeOp(GT_COLON, typ, elseNode, thenNode) |
| 3024 | { |
| 3025 | } |
| 3026 | }; |
| 3027 | |
| 3028 | // gtCall -- method call (GT_CALL) |
| 3029 | enum class InlineObservation; |
| 3030 | |
| 3031 | // Return type descriptor of a GT_CALL node. |
| 3032 | // x64 Unix, Arm64, Arm32 and x86 allow a value to be returned in multiple |
| 3033 | // registers. For such calls this struct provides the following info |
| 3034 | // on their return type |
| 3035 | // - type of value returned in each return register |
| 3036 | // - ABI return register numbers in which the value is returned |
| 3037 | // - count of return registers in which the value is returned |
| 3038 | // |
| 3039 | // TODO-ARM: Update this to meet the needs of Arm64 and Arm32 |
| 3040 | // |
| 3041 | // TODO-AllArch: Right now it is used for describing multi-reg returned types. |
| 3042 | // Eventually we would want to use it for describing even single-reg |
| 3043 | // returned types (e.g. structs returned in single register x64/arm). |
| 3044 | // This would allow us not to lie or normalize single struct return |
| 3045 | // values in importer/morph. |
| 3046 | struct ReturnTypeDesc |
| 3047 | { |
| 3048 | private: |
| 3049 | var_types m_regType[MAX_RET_REG_COUNT]; |
| 3050 | bool m_isEnclosingType; |
| 3051 | |
| 3052 | #ifdef DEBUG |
| 3053 | bool m_inited; |
| 3054 | #endif |
| 3055 | |
| 3056 | public: |
| 3057 | ReturnTypeDesc() |
| 3058 | { |
| 3059 | Reset(); |
| 3060 | } |
| 3061 | |
| 3062 | // Initialize the Return Type Descriptor for a method that returns a struct type |
| 3063 | void InitializeStructReturnType(Compiler* comp, CORINFO_CLASS_HANDLE retClsHnd); |
| 3064 | |
| 3065 | // Initialize the Return Type Descriptor for a method that returns a TYP_LONG |
| 3066 | // Only needed for X86 |
| 3067 | void InitializeLongReturnType(Compiler* comp); |
| 3068 | |
| 3069 | // Reset type descriptor to defaults |
| 3070 | void Reset() |
| 3071 | { |
| 3072 | for (unsigned i = 0; i < MAX_RET_REG_COUNT; ++i) |
| 3073 | { |
| 3074 | m_regType[i] = TYP_UNKNOWN; |
| 3075 | } |
| 3076 | m_isEnclosingType = false; |
| 3077 | #ifdef DEBUG |
| 3078 | m_inited = false; |
| 3079 | #endif |
| 3080 | } |
| 3081 | |
| 3082 | #ifdef DEBUG |
| 3083 | // NOTE: we only use this function when writing out IR dumps. These dumps may take place before the ReturnTypeDesc |
| 3084 | // has been initialized. |
| 3085 | unsigned TryGetReturnRegCount() const |
| 3086 | { |
| 3087 | return m_inited ? GetReturnRegCount() : 0; |
| 3088 | } |
| 3089 | #endif // DEBUG |
| 3090 | |
| 3091 | //-------------------------------------------------------------------------------------------- |
| 3092 | // GetReturnRegCount: Get the count of return registers in which the return value is returned. |
| 3093 | // |
| 3094 | // Arguments: |
| 3095 | // None |
| 3096 | // |
| 3097 | // Return Value: |
| 3098 | // Count of return registers. |
| 3099 | // Returns 0 if the return type is not returned in registers. |
| 3100 | unsigned GetReturnRegCount() const |
| 3101 | { |
| 3102 | assert(m_inited); |
| 3103 | |
| 3104 | int regCount = 0; |
| 3105 | for (unsigned i = 0; i < MAX_RET_REG_COUNT; ++i) |
| 3106 | { |
| 3107 | if (m_regType[i] == TYP_UNKNOWN) |
| 3108 | { |
| 3109 | break; |
| 3110 | } |
| 3111 | // otherwise |
| 3112 | regCount++; |
| 3113 | } |
| 3114 | |
| 3115 | #ifdef DEBUG |
| 3116 | // Any remaining elements in m_regTypes[] should also be TYP_UNKNOWN |
| 3117 | for (unsigned i = regCount + 1; i < MAX_RET_REG_COUNT; ++i) |
| 3118 | { |
| 3119 | assert(m_regType[i] == TYP_UNKNOWN); |
| 3120 | } |
| 3121 | #endif |
| 3122 | |
| 3123 | return regCount; |
| 3124 | } |
| 3125 | |
| 3126 | //----------------------------------------------------------------------- |
| 3127 | // IsMultiRegRetType: check whether the type is returned in multiple |
| 3128 | // return registers. |
| 3129 | // |
| 3130 | // Arguments: |
| 3131 | // None |
| 3132 | // |
| 3133 | // Return Value: |
| 3134 | // Returns true if the type is returned in multiple return registers. |
| 3135 | // False otherwise. |
| 3136 | // Note that we only have to examine the first two values to determine this |
| 3137 | // |
| 3138 | bool IsMultiRegRetType() const |
| 3139 | { |
| 3140 | if (MAX_RET_REG_COUNT < 2) |
| 3141 | { |
| 3142 | return false; |
| 3143 | } |
| 3144 | else |
| 3145 | { |
| 3146 | return ((m_regType[0] != TYP_UNKNOWN) && (m_regType[1] != TYP_UNKNOWN)); |
| 3147 | } |
| 3148 | } |
| 3149 | |
| 3150 | //-------------------------------------------------------------------------- |
| 3151 | // GetReturnRegType: Get var_type of the return register specified by index. |
| 3152 | // |
| 3153 | // Arguments: |
| 3154 | // index - Index of the return register. |
| 3155 | // First return register will have an index 0 and so on. |
| 3156 | // |
| 3157 | // Return Value: |
| 3158 | // var_type of the return register specified by its index. |
| 3159 | // asserts if the index does not have a valid register return type. |
| 3160 | |
| 3161 | var_types GetReturnRegType(unsigned index) |
| 3162 | { |
| 3163 | var_types result = m_regType[index]; |
| 3164 | assert(result != TYP_UNKNOWN); |
| 3165 | |
| 3166 | return result; |
| 3167 | } |
| 3168 | |
| 3169 | // True if this value is returned in integer register |
| 3170 | // that is larger than the type itself. |
| 3171 | bool IsEnclosingType() const |
| 3172 | { |
| 3173 | return m_isEnclosingType; |
| 3174 | } |
| 3175 | |
| 3176 | // Get ith ABI return register |
| 3177 | regNumber GetABIReturnReg(unsigned idx); |
| 3178 | |
| 3179 | // Get reg mask of ABI return registers |
| 3180 | regMaskTP GetABIReturnRegs(); |
| 3181 | }; |
| 3182 | |
| 3183 | class fgArgInfo; |
| 3184 | |
| 3185 | struct GenTreeCall final : public GenTree |
| 3186 | { |
| 3187 | GenTree* gtCallObjp; // The instance argument ('this' pointer) |
| 3188 | GenTreeArgList* gtCallArgs; // The list of arguments in original evaluation order |
| 3189 | GenTreeArgList* gtCallLateArgs; // On x86: The register arguments in an optimal order |
| 3190 | // On ARM/x64: - also includes any outgoing arg space arguments |
| 3191 | // - that were evaluated into a temp LclVar |
| 3192 | fgArgInfo* fgArgInfo; |
| 3193 | |
| 3194 | #if !FEATURE_FIXED_OUT_ARGS |
| 3195 | int regArgListCount; |
| 3196 | regList regArgList; |
| 3197 | #endif |
| 3198 | |
| 3199 | // TODO-Throughput: Revisit this (this used to be only defined if |
| 3200 | // FEATURE_FIXED_OUT_ARGS was enabled, so this makes GenTreeCall 4 bytes bigger on x86). |
| 3201 | CORINFO_SIG_INFO* callSig; // Used by tail calls and to register callsites with the EE |
| 3202 | |
| 3203 | #if FEATURE_MULTIREG_RET |
| 3204 | |
| 3205 | // State required to support multi-reg returning call nodes. |
| 3206 | // For now it is enabled only for x64 unix. |
| 3207 | // |
| 3208 | // TODO-AllArch: enable for all call nodes to unify single-reg and multi-reg returns. |
| 3209 | ReturnTypeDesc gtReturnTypeDesc; |
| 3210 | |
| 3211 | // gtRegNum would always be the first return reg. |
| 3212 | // The following array holds the other reg numbers of multi-reg return. |
| 3213 | regNumberSmall gtOtherRegs[MAX_RET_REG_COUNT - 1]; |
| 3214 | |
| 3215 | // GTF_SPILL or GTF_SPILLED flag on a multi-reg call node indicates that one or |
| 3216 | // more of its result regs are in that state. The spill flag of each of the |
| 3217 | // return register is stored here. We only need 2 bits per returned register, |
| 3218 | // so this is treated as a 2-bit array. No architecture needs more than 8 bits. |
| 3219 | |
| 3220 | static const unsigned PACKED_GTF_SPILL = 1; |
| 3221 | static const unsigned PACKED_GTF_SPILLED = 2; |
| 3222 | unsigned char gtSpillFlags; |
| 3223 | |
| 3224 | #endif // FEATURE_MULTIREG_RET |
| 3225 | |
| 3226 | //----------------------------------------------------------------------- |
| 3227 | // GetReturnTypeDesc: get the type descriptor of return value of the call |
| 3228 | // |
| 3229 | // Arguments: |
| 3230 | // None |
| 3231 | // |
| 3232 | // Returns |
| 3233 | // Type descriptor of the value returned by call |
| 3234 | // |
| 3235 | // Note: |
| 3236 | // Right now implemented only for x64 unix and yet to be |
| 3237 | // implemented for other multi-reg target arch (Arm64/Arm32/x86). |
| 3238 | // |
| 3239 | // TODO-AllArch: enable for all call nodes to unify single-reg and multi-reg returns. |
| 3240 | ReturnTypeDesc* GetReturnTypeDesc() |
| 3241 | { |
| 3242 | #if FEATURE_MULTIREG_RET |
| 3243 | return >ReturnTypeDesc; |
| 3244 | #else |
| 3245 | return nullptr; |
| 3246 | #endif |
| 3247 | } |
| 3248 | |
| 3249 | //--------------------------------------------------------------------------- |
| 3250 | // GetRegNumByIdx: get ith return register allocated to this call node. |
| 3251 | // |
| 3252 | // Arguments: |
| 3253 | // idx - index of the return register |
| 3254 | // |
| 3255 | // Return Value: |
| 3256 | // Return regNumber of ith return register of call node. |
| 3257 | // Returns REG_NA if there is no valid return register for the given index. |
| 3258 | // |
| 3259 | regNumber GetRegNumByIdx(unsigned idx) const |
| 3260 | { |
| 3261 | assert(idx < MAX_RET_REG_COUNT); |
| 3262 | |
| 3263 | if (idx == 0) |
| 3264 | { |
| 3265 | return gtRegNum; |
| 3266 | } |
| 3267 | |
| 3268 | #if FEATURE_MULTIREG_RET |
| 3269 | return (regNumber)gtOtherRegs[idx - 1]; |
| 3270 | #else |
| 3271 | return REG_NA; |
| 3272 | #endif |
| 3273 | } |
| 3274 | |
| 3275 | //---------------------------------------------------------------------- |
| 3276 | // SetRegNumByIdx: set ith return register of this call node |
| 3277 | // |
| 3278 | // Arguments: |
| 3279 | // reg - reg number |
| 3280 | // idx - index of the return register |
| 3281 | // |
| 3282 | // Return Value: |
| 3283 | // None |
| 3284 | // |
| 3285 | void SetRegNumByIdx(regNumber reg, unsigned idx) |
| 3286 | { |
| 3287 | assert(idx < MAX_RET_REG_COUNT); |
| 3288 | |
| 3289 | if (idx == 0) |
| 3290 | { |
| 3291 | gtRegNum = reg; |
| 3292 | } |
| 3293 | #if FEATURE_MULTIREG_RET |
| 3294 | else |
| 3295 | { |
| 3296 | gtOtherRegs[idx - 1] = (regNumberSmall)reg; |
| 3297 | assert(gtOtherRegs[idx - 1] == reg); |
| 3298 | } |
| 3299 | #else |
| 3300 | unreached(); |
| 3301 | #endif |
| 3302 | } |
| 3303 | |
| 3304 | //---------------------------------------------------------------------------- |
| 3305 | // ClearOtherRegs: clear multi-reg state to indicate no regs are allocated |
| 3306 | // |
| 3307 | // Arguments: |
| 3308 | // None |
| 3309 | // |
| 3310 | // Return Value: |
| 3311 | // None |
| 3312 | // |
| 3313 | void ClearOtherRegs() |
| 3314 | { |
| 3315 | #if FEATURE_MULTIREG_RET |
| 3316 | for (unsigned i = 0; i < MAX_RET_REG_COUNT - 1; ++i) |
| 3317 | { |
| 3318 | gtOtherRegs[i] = REG_NA; |
| 3319 | } |
| 3320 | #endif |
| 3321 | } |
| 3322 | |
| 3323 | //---------------------------------------------------------------------------- |
| 3324 | // CopyOtherRegs: copy multi-reg state from the given call node to this node |
| 3325 | // |
| 3326 | // Arguments: |
| 3327 | // fromCall - GenTreeCall node from which to copy multi-reg state |
| 3328 | // |
| 3329 | // Return Value: |
| 3330 | // None |
| 3331 | // |
| 3332 | void CopyOtherRegs(GenTreeCall* fromCall) |
| 3333 | { |
| 3334 | #if FEATURE_MULTIREG_RET |
| 3335 | for (unsigned i = 0; i < MAX_RET_REG_COUNT - 1; ++i) |
| 3336 | { |
| 3337 | this->gtOtherRegs[i] = fromCall->gtOtherRegs[i]; |
| 3338 | } |
| 3339 | #endif |
| 3340 | } |
| 3341 | |
| 3342 | // Get reg mask of all the valid registers of gtOtherRegs array |
| 3343 | regMaskTP GetOtherRegMask() const; |
| 3344 | |
| 3345 | //---------------------------------------------------------------------- |
| 3346 | // GetRegSpillFlagByIdx: get spill flag associated with the return register |
| 3347 | // specified by its index. |
| 3348 | // |
| 3349 | // Arguments: |
| 3350 | // idx - Position or index of the return register |
| 3351 | // |
| 3352 | // Return Value: |
| 3353 | // Returns GTF_* flags associated with the register. Only GTF_SPILL and GTF_SPILLED are considered. |
| 3354 | // |
| 3355 | unsigned GetRegSpillFlagByIdx(unsigned idx) const |
| 3356 | { |
| 3357 | static_assert_no_msg(MAX_RET_REG_COUNT * 2 <= sizeof(unsigned char) * BITS_PER_BYTE); |
| 3358 | assert(idx < MAX_RET_REG_COUNT); |
| 3359 | |
| 3360 | #if FEATURE_MULTIREG_RET |
| 3361 | unsigned bits = gtSpillFlags >> (idx * 2); // It doesn't matter that we possibly leave other high bits here. |
| 3362 | unsigned spillFlags = 0; |
| 3363 | if (bits & PACKED_GTF_SPILL) |
| 3364 | { |
| 3365 | spillFlags |= GTF_SPILL; |
| 3366 | } |
| 3367 | if (bits & PACKED_GTF_SPILLED) |
| 3368 | { |
| 3369 | spillFlags |= GTF_SPILLED; |
| 3370 | } |
| 3371 | return spillFlags; |
| 3372 | #else |
| 3373 | assert(!"unreached" ); |
| 3374 | return 0; |
| 3375 | #endif |
| 3376 | } |
| 3377 | |
| 3378 | //---------------------------------------------------------------------- |
| 3379 | // SetRegSpillFlagByIdx: set spill flags for the return register |
| 3380 | // specified by its index. |
| 3381 | // |
| 3382 | // Arguments: |
| 3383 | // flags - GTF_* flags. Only GTF_SPILL and GTF_SPILLED are allowed. |
| 3384 | // idx - Position or index of the return register |
| 3385 | // |
| 3386 | // Return Value: |
| 3387 | // None |
| 3388 | // |
| 3389 | void SetRegSpillFlagByIdx(unsigned flags, unsigned idx) |
| 3390 | { |
| 3391 | static_assert_no_msg(MAX_RET_REG_COUNT * 2 <= sizeof(unsigned char) * BITS_PER_BYTE); |
| 3392 | assert(idx < MAX_RET_REG_COUNT); |
| 3393 | |
| 3394 | #if FEATURE_MULTIREG_RET |
| 3395 | unsigned bits = 0; |
| 3396 | if (flags & GTF_SPILL) |
| 3397 | { |
| 3398 | bits |= PACKED_GTF_SPILL; |
| 3399 | } |
| 3400 | if (flags & GTF_SPILLED) |
| 3401 | { |
| 3402 | bits |= PACKED_GTF_SPILLED; |
| 3403 | } |
| 3404 | |
| 3405 | const unsigned char packedFlags = PACKED_GTF_SPILL | PACKED_GTF_SPILLED; |
| 3406 | |
| 3407 | // Clear anything that was already there by masking out the bits before 'or'ing in what we want there. |
| 3408 | gtSpillFlags = (unsigned char)((gtSpillFlags & ~(packedFlags << (idx * 2))) | (bits << (idx * 2))); |
| 3409 | #else |
| 3410 | unreached(); |
| 3411 | #endif |
| 3412 | } |
| 3413 | |
| 3414 | //------------------------------------------------------------------- |
| 3415 | // clearOtherRegFlags: clear GTF_* flags associated with gtOtherRegs |
| 3416 | // |
| 3417 | // Arguments: |
| 3418 | // None |
| 3419 | // |
| 3420 | // Return Value: |
| 3421 | // None |
| 3422 | void ClearOtherRegFlags() |
| 3423 | { |
| 3424 | #if FEATURE_MULTIREG_RET |
| 3425 | gtSpillFlags = 0; |
| 3426 | #endif |
| 3427 | } |
| 3428 | |
| 3429 | //------------------------------------------------------------------------- |
| 3430 | // CopyOtherRegFlags: copy GTF_* flags associated with gtOtherRegs from |
| 3431 | // the given call node. |
| 3432 | // |
| 3433 | // Arguments: |
| 3434 | // fromCall - GenTreeCall node from which to copy |
| 3435 | // |
| 3436 | // Return Value: |
| 3437 | // None |
| 3438 | // |
| 3439 | void CopyOtherRegFlags(GenTreeCall* fromCall) |
| 3440 | { |
| 3441 | #if FEATURE_MULTIREG_RET |
| 3442 | this->gtSpillFlags = fromCall->gtSpillFlags; |
| 3443 | #endif |
| 3444 | } |
| 3445 | |
| 3446 | // clang-format off |
| 3447 | |
| 3448 | #define GTF_CALL_M_EXPLICIT_TAILCALL 0x00000001 // GT_CALL -- the call is "tail" prefixed and |
| 3449 | // importer has performed tail call checks |
| 3450 | #define GTF_CALL_M_TAILCALL 0x00000002 // GT_CALL -- the call is a tailcall |
| 3451 | #define GTF_CALL_M_VARARGS 0x00000004 // GT_CALL -- the call uses varargs ABI |
| 3452 | #define GTF_CALL_M_RETBUFFARG 0x00000008 // GT_CALL -- first parameter is the return buffer argument |
| 3453 | #define GTF_CALL_M_DELEGATE_INV 0x00000010 // GT_CALL -- call to Delegate.Invoke |
| 3454 | #define GTF_CALL_M_NOGCCHECK 0x00000020 // GT_CALL -- not a call for computing full interruptability |
| 3455 | #define GTF_CALL_M_SPECIAL_INTRINSIC 0x00000040 // GT_CALL -- function that could be optimized as an intrinsic |
| 3456 | // in special cases. Used to optimize fast way out in morphing |
| 3457 | #define GTF_CALL_M_UNMGD_THISCALL 0x00000080 // GT_CALL -- "this" pointer (first argument) |
| 3458 | // should be enregistered (only for GTF_CALL_UNMANAGED) |
| 3459 | #define GTF_CALL_M_VIRTSTUB_REL_INDIRECT 0x00000080 // the virtstub is indirected through |
| 3460 | // a relative address (only for GTF_CALL_VIRT_STUB) |
| 3461 | #define GTF_CALL_M_NONVIRT_SAME_THIS 0x00000080 // GT_CALL -- callee "this" pointer is |
| 3462 | // equal to caller this pointer (only for GTF_CALL_NONVIRT) |
| 3463 | #define GTF_CALL_M_FRAME_VAR_DEATH 0x00000100 // GT_CALL -- the compLvFrameListRoot variable dies here (last use) |
| 3464 | #define GTF_CALL_M_TAILCALL_VIA_HELPER 0x00000200 // GT_CALL -- call is a tail call dispatched via tail call JIT helper. |
| 3465 | |
| 3466 | #if FEATURE_TAILCALL_OPT |
| 3467 | #define GTF_CALL_M_IMPLICIT_TAILCALL 0x00000400 // GT_CALL -- call is an opportunistic |
| 3468 | // tail call and importer has performed tail call checks |
| 3469 | #define GTF_CALL_M_TAILCALL_TO_LOOP 0x00000800 // GT_CALL -- call is a fast recursive tail call |
| 3470 | // that can be converted into a loop |
| 3471 | #endif |
| 3472 | |
| 3473 | #define GTF_CALL_M_PINVOKE 0x00001000 // GT_CALL -- call is a pinvoke. This mirrors VM flag CORINFO_FLG_PINVOKE. |
| 3474 | // A call marked as Pinvoke is not necessarily a GT_CALL_UNMANAGED. For e.g. |
| 3475 | // an IL Stub dynamically generated for a PInvoke declaration is flagged as |
| 3476 | // a Pinvoke but not as an unmanaged call. See impCheckForPInvokeCall() to |
| 3477 | // know when these flags are set. |
| 3478 | |
| 3479 | #define GTF_CALL_M_R2R_REL_INDIRECT 0x00002000 // GT_CALL -- ready to run call is indirected through a relative address |
| 3480 | #define GTF_CALL_M_DOES_NOT_RETURN 0x00004000 // GT_CALL -- call does not return |
| 3481 | #define GTF_CALL_M_SECURE_DELEGATE_INV 0x00008000 // GT_CALL -- call is in secure delegate |
| 3482 | #define GTF_CALL_M_FAT_POINTER_CHECK 0x00010000 // GT_CALL -- CoreRT managed calli needs transformation, that checks |
| 3483 | // special bit in calli address. If it is set, then it is necessary |
| 3484 | // to restore real function address and load hidden argument |
| 3485 | // as the first argument for calli. It is CoreRT replacement for instantiating |
| 3486 | // stubs, because executable code cannot be generated at runtime. |
| 3487 | #define GTF_CALL_M_HELPER_SPECIAL_DCE 0x00020000 // GT_CALL -- this helper call can be removed if it is part of a comma and |
| 3488 | // the comma result is unused. |
| 3489 | #define GTF_CALL_M_DEVIRTUALIZED 0x00040000 // GT_CALL -- this call was devirtualized |
| 3490 | #define GTF_CALL_M_UNBOXED 0x00080000 // GT_CALL -- this call was optimized to use the unboxed entry point |
| 3491 | #define GTF_CALL_M_GUARDED_DEVIRT 0x00100000 // GT_CALL -- this call is a candidate for guarded devirtualization |
| 3492 | #define GTF_CALL_M_GUARDED 0x00200000 // GT_CALL -- this call was transformed by guarded devirtualization |
| 3493 | #define GTF_CALL_M_ALLOC_SIDE_EFFECTS 0x00400000 // GT_CALL -- this is a call to an allocator with side effects |
| 3494 | |
| 3495 | // clang-format on |
| 3496 | |
| 3497 | bool IsUnmanaged() const |
| 3498 | { |
| 3499 | return (gtFlags & GTF_CALL_UNMANAGED) != 0; |
| 3500 | } |
| 3501 | bool NeedsNullCheck() const |
| 3502 | { |
| 3503 | return (gtFlags & GTF_CALL_NULLCHECK) != 0; |
| 3504 | } |
| 3505 | bool CallerPop() const |
| 3506 | { |
| 3507 | return (gtFlags & GTF_CALL_POP_ARGS) != 0; |
| 3508 | } |
| 3509 | bool IsVirtual() const |
| 3510 | { |
| 3511 | return (gtFlags & GTF_CALL_VIRT_KIND_MASK) != GTF_CALL_NONVIRT; |
| 3512 | } |
| 3513 | bool IsVirtualStub() const |
| 3514 | { |
| 3515 | return (gtFlags & GTF_CALL_VIRT_KIND_MASK) == GTF_CALL_VIRT_STUB; |
| 3516 | } |
| 3517 | bool IsVirtualVtable() const |
| 3518 | { |
| 3519 | return (gtFlags & GTF_CALL_VIRT_KIND_MASK) == GTF_CALL_VIRT_VTABLE; |
| 3520 | } |
| 3521 | bool IsInlineCandidate() const |
| 3522 | { |
| 3523 | return (gtFlags & GTF_CALL_INLINE_CANDIDATE) != 0; |
| 3524 | } |
| 3525 | |
| 3526 | bool HasNonStandardAddedArgs(Compiler* compiler) const; |
| 3527 | int GetNonStandardAddedArgCount(Compiler* compiler) const; |
| 3528 | |
| 3529 | // Returns true if this call uses a retBuf argument and its calling convention |
| 3530 | bool HasRetBufArg() const |
| 3531 | { |
| 3532 | return (gtCallMoreFlags & GTF_CALL_M_RETBUFFARG) != 0; |
| 3533 | } |
| 3534 | |
| 3535 | //------------------------------------------------------------------------- |
| 3536 | // TreatAsHasRetBufArg: |
| 3537 | // |
| 3538 | // Arguments: |
| 3539 | // compiler, the compiler instance so that we can call eeGetHelperNum |
| 3540 | // |
| 3541 | // Return Value: |
| 3542 | // Returns true if we treat the call as if it has a retBuf argument |
| 3543 | // This method may actually have a retBuf argument |
| 3544 | // or it could be a JIT helper that we are still transforming during |
| 3545 | // the importer phase. |
| 3546 | // |
| 3547 | // Notes: |
| 3548 | // On ARM64 marking the method with the GTF_CALL_M_RETBUFFARG flag |
| 3549 | // will make HasRetBufArg() return true, but will also force the |
| 3550 | // use of register x8 to pass the RetBuf argument. |
| 3551 | // |
| 3552 | bool TreatAsHasRetBufArg(Compiler* compiler) const; |
| 3553 | |
| 3554 | //----------------------------------------------------------------------------------------- |
| 3555 | // HasMultiRegRetVal: whether the call node returns its value in multiple return registers. |
| 3556 | // |
| 3557 | // Arguments: |
| 3558 | // None |
| 3559 | // |
| 3560 | // Return Value: |
| 3561 | // True if the call is returning a multi-reg return value. False otherwise. |
| 3562 | // |
| 3563 | bool HasMultiRegRetVal() const |
| 3564 | { |
| 3565 | #if defined(_TARGET_X86_) |
| 3566 | return varTypeIsLong(gtType); |
| 3567 | #elif FEATURE_MULTIREG_RET && defined(_TARGET_ARM_) |
| 3568 | return varTypeIsLong(gtType) || (varTypeIsStruct(gtType) && !HasRetBufArg()); |
| 3569 | #elif FEATURE_MULTIREG_RET |
| 3570 | return varTypeIsStruct(gtType) && !HasRetBufArg(); |
| 3571 | #else |
| 3572 | return false; |
| 3573 | #endif |
| 3574 | } |
| 3575 | |
| 3576 | // Returns true if VM has flagged this method as CORINFO_FLG_PINVOKE. |
| 3577 | bool IsPInvoke() const |
| 3578 | { |
| 3579 | return (gtCallMoreFlags & GTF_CALL_M_PINVOKE) != 0; |
| 3580 | } |
| 3581 | |
| 3582 | // Note that the distinction of whether tail prefixed or an implicit tail call |
| 3583 | // is maintained on a call node till fgMorphCall() after which it will be |
| 3584 | // either a tail call (i.e. IsTailCall() is true) or a non-tail call. |
| 3585 | bool IsTailPrefixedCall() const |
| 3586 | { |
| 3587 | return (gtCallMoreFlags & GTF_CALL_M_EXPLICIT_TAILCALL) != 0; |
| 3588 | } |
| 3589 | |
| 3590 | // This method returning "true" implies that tail call flowgraph morhphing has |
| 3591 | // performed final checks and committed to making a tail call. |
| 3592 | bool IsTailCall() const |
| 3593 | { |
| 3594 | return (gtCallMoreFlags & GTF_CALL_M_TAILCALL) != 0; |
| 3595 | } |
| 3596 | |
| 3597 | // This method returning "true" implies that importer has performed tail call checks |
| 3598 | // and providing a hint that this can be converted to a tail call. |
| 3599 | bool CanTailCall() const |
| 3600 | { |
| 3601 | return IsTailPrefixedCall() || IsImplicitTailCall(); |
| 3602 | } |
| 3603 | |
| 3604 | bool IsTailCallViaHelper() const |
| 3605 | { |
| 3606 | return IsTailCall() && (gtCallMoreFlags & GTF_CALL_M_TAILCALL_VIA_HELPER); |
| 3607 | } |
| 3608 | |
| 3609 | #if FEATURE_FASTTAILCALL |
| 3610 | bool IsFastTailCall() const |
| 3611 | { |
| 3612 | return IsTailCall() && !(gtCallMoreFlags & GTF_CALL_M_TAILCALL_VIA_HELPER); |
| 3613 | } |
| 3614 | #else // !FEATURE_FASTTAILCALL |
| 3615 | bool IsFastTailCall() const |
| 3616 | { |
| 3617 | return false; |
| 3618 | } |
| 3619 | #endif // !FEATURE_FASTTAILCALL |
| 3620 | |
| 3621 | #if FEATURE_TAILCALL_OPT |
| 3622 | // Returns true if this is marked for opportunistic tail calling. |
| 3623 | // That is, can be tail called though not explicitly prefixed with "tail" prefix. |
| 3624 | bool IsImplicitTailCall() const |
| 3625 | { |
| 3626 | return (gtCallMoreFlags & GTF_CALL_M_IMPLICIT_TAILCALL) != 0; |
| 3627 | } |
| 3628 | bool IsTailCallConvertibleToLoop() const |
| 3629 | { |
| 3630 | return (gtCallMoreFlags & GTF_CALL_M_TAILCALL_TO_LOOP) != 0; |
| 3631 | } |
| 3632 | #else // !FEATURE_TAILCALL_OPT |
| 3633 | bool IsImplicitTailCall() const |
| 3634 | { |
| 3635 | return false; |
| 3636 | } |
| 3637 | bool IsTailCallConvertibleToLoop() const |
| 3638 | { |
| 3639 | return false; |
| 3640 | } |
| 3641 | #endif // !FEATURE_TAILCALL_OPT |
| 3642 | |
| 3643 | bool IsSameThis() const |
| 3644 | { |
| 3645 | return (gtCallMoreFlags & GTF_CALL_M_NONVIRT_SAME_THIS) != 0; |
| 3646 | } |
| 3647 | bool IsDelegateInvoke() const |
| 3648 | { |
| 3649 | return (gtCallMoreFlags & GTF_CALL_M_DELEGATE_INV) != 0; |
| 3650 | } |
| 3651 | bool IsVirtualStubRelativeIndir() const |
| 3652 | { |
| 3653 | return (gtCallMoreFlags & GTF_CALL_M_VIRTSTUB_REL_INDIRECT) != 0; |
| 3654 | } |
| 3655 | |
| 3656 | #ifdef FEATURE_READYTORUN_COMPILER |
| 3657 | bool IsR2RRelativeIndir() const |
| 3658 | { |
| 3659 | return (gtCallMoreFlags & GTF_CALL_M_R2R_REL_INDIRECT) != 0; |
| 3660 | } |
| 3661 | void setEntryPoint(CORINFO_CONST_LOOKUP entryPoint) |
| 3662 | { |
| 3663 | gtEntryPoint = entryPoint; |
| 3664 | if (gtEntryPoint.accessType == IAT_PVALUE) |
| 3665 | { |
| 3666 | gtCallMoreFlags |= GTF_CALL_M_R2R_REL_INDIRECT; |
| 3667 | } |
| 3668 | } |
| 3669 | #endif // FEATURE_READYTORUN_COMPILER |
| 3670 | |
| 3671 | bool IsVarargs() const |
| 3672 | { |
| 3673 | return (gtCallMoreFlags & GTF_CALL_M_VARARGS) != 0; |
| 3674 | } |
| 3675 | |
| 3676 | bool IsNoReturn() const |
| 3677 | { |
| 3678 | return (gtCallMoreFlags & GTF_CALL_M_DOES_NOT_RETURN) != 0; |
| 3679 | } |
| 3680 | |
| 3681 | bool IsFatPointerCandidate() const |
| 3682 | { |
| 3683 | return (gtCallMoreFlags & GTF_CALL_M_FAT_POINTER_CHECK) != 0; |
| 3684 | } |
| 3685 | |
| 3686 | bool IsGuardedDevirtualizationCandidate() const |
| 3687 | { |
| 3688 | return (gtCallMoreFlags & GTF_CALL_M_GUARDED_DEVIRT) != 0; |
| 3689 | } |
| 3690 | |
| 3691 | bool IsPure(Compiler* compiler) const; |
| 3692 | |
| 3693 | bool HasSideEffects(Compiler* compiler, bool ignoreExceptions = false, bool ignoreCctors = false) const; |
| 3694 | |
| 3695 | void ClearFatPointerCandidate() |
| 3696 | { |
| 3697 | gtCallMoreFlags &= ~GTF_CALL_M_FAT_POINTER_CHECK; |
| 3698 | } |
| 3699 | |
| 3700 | void SetFatPointerCandidate() |
| 3701 | { |
| 3702 | gtCallMoreFlags |= GTF_CALL_M_FAT_POINTER_CHECK; |
| 3703 | } |
| 3704 | |
| 3705 | bool IsDevirtualized() const |
| 3706 | { |
| 3707 | return (gtCallMoreFlags & GTF_CALL_M_DEVIRTUALIZED) != 0; |
| 3708 | } |
| 3709 | |
| 3710 | bool IsGuarded() const |
| 3711 | { |
| 3712 | return (gtCallMoreFlags & GTF_CALL_M_GUARDED) != 0; |
| 3713 | } |
| 3714 | |
| 3715 | bool IsUnboxed() const |
| 3716 | { |
| 3717 | return (gtCallMoreFlags & GTF_CALL_M_UNBOXED) != 0; |
| 3718 | } |
| 3719 | |
| 3720 | void ClearGuardedDevirtualizationCandidate() |
| 3721 | { |
| 3722 | gtCallMoreFlags &= ~GTF_CALL_M_GUARDED_DEVIRT; |
| 3723 | } |
| 3724 | |
| 3725 | void SetGuardedDevirtualizationCandidate() |
| 3726 | { |
| 3727 | gtCallMoreFlags |= GTF_CALL_M_GUARDED_DEVIRT; |
| 3728 | } |
| 3729 | |
| 3730 | void SetIsGuarded() |
| 3731 | { |
| 3732 | gtCallMoreFlags |= GTF_CALL_M_GUARDED; |
| 3733 | } |
| 3734 | |
| 3735 | unsigned gtCallMoreFlags; // in addition to gtFlags |
| 3736 | |
| 3737 | unsigned char gtCallType : 3; // value from the gtCallTypes enumeration |
| 3738 | unsigned char gtReturnType : 5; // exact return type |
| 3739 | |
| 3740 | CORINFO_CLASS_HANDLE gtRetClsHnd; // The return type handle of the call if it is a struct; always available |
| 3741 | |
| 3742 | union { |
| 3743 | // only used for CALLI unmanaged calls (CT_INDIRECT) |
| 3744 | GenTree* gtCallCookie; |
| 3745 | // gtInlineCandidateInfo is only used when inlining methods |
| 3746 | InlineCandidateInfo* gtInlineCandidateInfo; |
| 3747 | GuardedDevirtualizationCandidateInfo* gtGuardedDevirtualizationCandidateInfo; |
| 3748 | void* gtStubCallStubAddr; // GTF_CALL_VIRT_STUB - these are never inlined |
| 3749 | CORINFO_GENERIC_HANDLE compileTimeHelperArgumentHandle; // Used to track type handle argument of dynamic helpers |
| 3750 | void* gtDirectCallAddress; // Used to pass direct call address between lower and codegen |
| 3751 | }; |
| 3752 | |
| 3753 | // expression evaluated after args are placed which determines the control target |
| 3754 | GenTree* gtControlExpr; |
| 3755 | |
| 3756 | union { |
| 3757 | CORINFO_METHOD_HANDLE gtCallMethHnd; // CT_USER_FUNC |
| 3758 | GenTree* gtCallAddr; // CT_INDIRECT |
| 3759 | }; |
| 3760 | |
| 3761 | #ifdef FEATURE_READYTORUN_COMPILER |
| 3762 | // Call target lookup info for method call from a Ready To Run module |
| 3763 | CORINFO_CONST_LOOKUP gtEntryPoint; |
| 3764 | #endif |
| 3765 | |
| 3766 | #if defined(DEBUG) || defined(INLINE_DATA) |
| 3767 | // For non-inline candidates, track the first observation |
| 3768 | // that blocks candidacy. |
| 3769 | InlineObservation gtInlineObservation; |
| 3770 | |
| 3771 | // IL offset of the call wrt its parent method. |
| 3772 | IL_OFFSET gtRawILOffset; |
| 3773 | #endif // defined(DEBUG) || defined(INLINE_DATA) |
| 3774 | |
| 3775 | bool IsHelperCall() const |
| 3776 | { |
| 3777 | return gtCallType == CT_HELPER; |
| 3778 | } |
| 3779 | |
| 3780 | bool IsHelperCall(CORINFO_METHOD_HANDLE callMethHnd) const |
| 3781 | { |
| 3782 | return IsHelperCall() && (callMethHnd == gtCallMethHnd); |
| 3783 | } |
| 3784 | |
| 3785 | bool IsHelperCall(Compiler* compiler, unsigned helper) const; |
| 3786 | |
| 3787 | void ReplaceCallOperand(GenTree** operandUseEdge, GenTree* replacement); |
| 3788 | |
| 3789 | bool AreArgsComplete() const; |
| 3790 | |
| 3791 | GenTreeCall(var_types type) : GenTree(GT_CALL, type) |
| 3792 | { |
| 3793 | fgArgInfo = nullptr; |
| 3794 | } |
| 3795 | #if DEBUGGABLE_GENTREE |
| 3796 | GenTreeCall() : GenTree() |
| 3797 | { |
| 3798 | } |
| 3799 | #endif |
| 3800 | }; |
| 3801 | |
| 3802 | struct GenTreeCmpXchg : public GenTree |
| 3803 | { |
| 3804 | GenTree* gtOpLocation; |
| 3805 | GenTree* gtOpValue; |
| 3806 | GenTree* gtOpComparand; |
| 3807 | |
| 3808 | GenTreeCmpXchg(var_types type, GenTree* loc, GenTree* val, GenTree* comparand) |
| 3809 | : GenTree(GT_CMPXCHG, type), gtOpLocation(loc), gtOpValue(val), gtOpComparand(comparand) |
| 3810 | { |
| 3811 | // There's no reason to do a compare-exchange on a local location, so we'll assume that all of these |
| 3812 | // have global effects. |
| 3813 | gtFlags |= (GTF_GLOB_REF | GTF_ASG); |
| 3814 | |
| 3815 | // Merge in flags from operands |
| 3816 | gtFlags |= gtOpLocation->gtFlags & GTF_ALL_EFFECT; |
| 3817 | gtFlags |= gtOpValue->gtFlags & GTF_ALL_EFFECT; |
| 3818 | gtFlags |= gtOpComparand->gtFlags & GTF_ALL_EFFECT; |
| 3819 | } |
| 3820 | #if DEBUGGABLE_GENTREE |
| 3821 | GenTreeCmpXchg() : GenTree() |
| 3822 | { |
| 3823 | } |
| 3824 | #endif |
| 3825 | }; |
| 3826 | |
| 3827 | #if !defined(_TARGET_64BIT_) |
| 3828 | struct GenTreeMultiRegOp : public GenTreeOp |
| 3829 | { |
| 3830 | regNumber gtOtherReg; |
| 3831 | |
| 3832 | // GTF_SPILL or GTF_SPILLED flag on a multi-reg node indicates that one or |
| 3833 | // more of its result regs are in that state. The spill flag of each of the |
| 3834 | // return register is stored here. We only need 2 bits per returned register, |
| 3835 | // so this is treated as a 2-bit array. No architecture needs more than 8 bits. |
| 3836 | |
| 3837 | static const unsigned PACKED_GTF_SPILL = 1; |
| 3838 | static const unsigned PACKED_GTF_SPILLED = 2; |
| 3839 | unsigned char gtSpillFlags; |
| 3840 | |
| 3841 | GenTreeMultiRegOp(genTreeOps oper, var_types type, GenTree* op1, GenTree* op2) |
| 3842 | : GenTreeOp(oper, type, op1, op2), gtOtherReg(REG_NA) |
| 3843 | { |
| 3844 | ClearOtherRegFlags(); |
| 3845 | } |
| 3846 | |
| 3847 | unsigned GetRegCount() const |
| 3848 | { |
| 3849 | if (gtRegNum == REG_NA || gtRegNum == REG_STK) |
| 3850 | { |
| 3851 | return 0; |
| 3852 | } |
| 3853 | return (gtOtherReg == REG_NA || gtOtherReg == REG_STK) ? 1 : 2; |
| 3854 | } |
| 3855 | |
| 3856 | //--------------------------------------------------------------------------- |
| 3857 | // GetRegNumByIdx: get ith register allocated to this struct argument. |
| 3858 | // |
| 3859 | // Arguments: |
| 3860 | // idx - index of the register |
| 3861 | // |
| 3862 | // Return Value: |
| 3863 | // Return regNumber of ith register of this register argument |
| 3864 | // |
| 3865 | regNumber GetRegNumByIdx(unsigned idx) const |
| 3866 | { |
| 3867 | assert(idx < 2); |
| 3868 | |
| 3869 | if (idx == 0) |
| 3870 | { |
| 3871 | return gtRegNum; |
| 3872 | } |
| 3873 | |
| 3874 | return gtOtherReg; |
| 3875 | } |
| 3876 | |
| 3877 | //---------------------------------------------------------------------- |
| 3878 | // GetRegSpillFlagByIdx: get spill flag associated with the register |
| 3879 | // specified by its index. |
| 3880 | // |
| 3881 | // Arguments: |
| 3882 | // idx - Position or index of the register |
| 3883 | // |
| 3884 | // Return Value: |
| 3885 | // Returns GTF_* flags associated with the register. Only GTF_SPILL and GTF_SPILLED are considered. |
| 3886 | // |
| 3887 | unsigned GetRegSpillFlagByIdx(unsigned idx) const |
| 3888 | { |
| 3889 | assert(idx < MAX_REG_ARG); |
| 3890 | |
| 3891 | unsigned bits = gtSpillFlags >> (idx * 2); // It doesn't matter that we possibly leave other high bits here. |
| 3892 | unsigned spillFlags = 0; |
| 3893 | if (bits & PACKED_GTF_SPILL) |
| 3894 | { |
| 3895 | spillFlags |= GTF_SPILL; |
| 3896 | } |
| 3897 | if (bits & PACKED_GTF_SPILLED) |
| 3898 | { |
| 3899 | spillFlags |= GTF_SPILLED; |
| 3900 | } |
| 3901 | |
| 3902 | return spillFlags; |
| 3903 | } |
| 3904 | |
| 3905 | //---------------------------------------------------------------------- |
| 3906 | // SetRegSpillFlagByIdx: set spill flags for the register |
| 3907 | // specified by its index. |
| 3908 | // |
| 3909 | // Arguments: |
| 3910 | // flags - GTF_* flags. Only GTF_SPILL and GTF_SPILLED are allowed. |
| 3911 | // idx - Position or index of the register |
| 3912 | // |
| 3913 | // Return Value: |
| 3914 | // None |
| 3915 | // |
| 3916 | void SetRegSpillFlagByIdx(unsigned flags, unsigned idx) |
| 3917 | { |
| 3918 | assert(idx < MAX_REG_ARG); |
| 3919 | |
| 3920 | unsigned bits = 0; |
| 3921 | if (flags & GTF_SPILL) |
| 3922 | { |
| 3923 | bits |= PACKED_GTF_SPILL; |
| 3924 | } |
| 3925 | if (flags & GTF_SPILLED) |
| 3926 | { |
| 3927 | bits |= PACKED_GTF_SPILLED; |
| 3928 | } |
| 3929 | |
| 3930 | const unsigned char packedFlags = PACKED_GTF_SPILL | PACKED_GTF_SPILLED; |
| 3931 | |
| 3932 | // Clear anything that was already there by masking out the bits before 'or'ing in what we want there. |
| 3933 | gtSpillFlags = (unsigned char)((gtSpillFlags & ~(packedFlags << (idx * 2))) | (bits << (idx * 2))); |
| 3934 | } |
| 3935 | |
| 3936 | //-------------------------------------------------------------------------- |
| 3937 | // GetRegType: Get var_type of the register specified by index. |
| 3938 | // |
| 3939 | // Arguments: |
| 3940 | // index - Index of the register. |
| 3941 | // First register will have an index 0 and so on. |
| 3942 | // |
| 3943 | // Return Value: |
| 3944 | // var_type of the register specified by its index. |
| 3945 | |
| 3946 | var_types GetRegType(unsigned index) |
| 3947 | { |
| 3948 | assert(index < 2); |
| 3949 | // The type of register is usually the same as GenTree type, since GenTreeMultiRegOp usually defines a single |
| 3950 | // reg. |
| 3951 | // The special case is when we have TYP_LONG, which may be a MUL_LONG, or a DOUBLE arg passed as LONG, |
| 3952 | // in which case we need to separate them into int for each index. |
| 3953 | var_types result = TypeGet(); |
| 3954 | if (result == TYP_LONG) |
| 3955 | { |
| 3956 | result = TYP_INT; |
| 3957 | } |
| 3958 | return result; |
| 3959 | } |
| 3960 | |
| 3961 | //------------------------------------------------------------------- |
| 3962 | // clearOtherRegFlags: clear GTF_* flags associated with gtOtherRegs |
| 3963 | // |
| 3964 | // Arguments: |
| 3965 | // None |
| 3966 | // |
| 3967 | // Return Value: |
| 3968 | // None |
| 3969 | // |
| 3970 | void ClearOtherRegFlags() |
| 3971 | { |
| 3972 | gtSpillFlags = 0; |
| 3973 | } |
| 3974 | |
| 3975 | #if DEBUGGABLE_GENTREE |
| 3976 | GenTreeMultiRegOp() : GenTreeOp() |
| 3977 | { |
| 3978 | } |
| 3979 | #endif |
| 3980 | }; |
| 3981 | #endif // !defined(_TARGET_64BIT_) |
| 3982 | |
| 3983 | struct GenTreeFptrVal : public GenTree |
| 3984 | { |
| 3985 | CORINFO_METHOD_HANDLE gtFptrMethod; |
| 3986 | |
| 3987 | #ifdef FEATURE_READYTORUN_COMPILER |
| 3988 | CORINFO_CONST_LOOKUP gtEntryPoint; |
| 3989 | #endif |
| 3990 | |
| 3991 | GenTreeFptrVal(var_types type, CORINFO_METHOD_HANDLE meth) : GenTree(GT_FTN_ADDR, type), gtFptrMethod(meth) |
| 3992 | { |
| 3993 | } |
| 3994 | #if DEBUGGABLE_GENTREE |
| 3995 | GenTreeFptrVal() : GenTree() |
| 3996 | { |
| 3997 | } |
| 3998 | #endif |
| 3999 | }; |
| 4000 | |
| 4001 | /* gtQmark */ |
| 4002 | struct GenTreeQmark : public GenTreeOp |
| 4003 | { |
| 4004 | // The "Compiler*" argument is not a DEBUGARG here because we use it to keep track of the set of |
| 4005 | // (possible) QMark nodes. |
| 4006 | GenTreeQmark(var_types type, GenTree* cond, GenTree* colonOp, class Compiler* comp); |
| 4007 | |
| 4008 | #if DEBUGGABLE_GENTREE |
| 4009 | GenTreeQmark() : GenTreeOp(GT_QMARK, TYP_INT, nullptr, nullptr) |
| 4010 | { |
| 4011 | } |
| 4012 | #endif |
| 4013 | }; |
| 4014 | |
| 4015 | /* gtIntrinsic -- intrinsic (possibly-binary op [NULL op2 is allowed] with an additional field) */ |
| 4016 | |
| 4017 | struct GenTreeIntrinsic : public GenTreeOp |
| 4018 | { |
| 4019 | CorInfoIntrinsics gtIntrinsicId; |
| 4020 | CORINFO_METHOD_HANDLE gtMethodHandle; // Method handle of the method which is treated as an intrinsic. |
| 4021 | |
| 4022 | #ifdef FEATURE_READYTORUN_COMPILER |
| 4023 | // Call target lookup info for method call from a Ready To Run module |
| 4024 | CORINFO_CONST_LOOKUP gtEntryPoint; |
| 4025 | #endif |
| 4026 | |
| 4027 | GenTreeIntrinsic(var_types type, GenTree* op1, CorInfoIntrinsics intrinsicId, CORINFO_METHOD_HANDLE methodHandle) |
| 4028 | : GenTreeOp(GT_INTRINSIC, type, op1, nullptr), gtIntrinsicId(intrinsicId), gtMethodHandle(methodHandle) |
| 4029 | { |
| 4030 | } |
| 4031 | |
| 4032 | GenTreeIntrinsic( |
| 4033 | var_types type, GenTree* op1, GenTree* op2, CorInfoIntrinsics intrinsicId, CORINFO_METHOD_HANDLE methodHandle) |
| 4034 | : GenTreeOp(GT_INTRINSIC, type, op1, op2), gtIntrinsicId(intrinsicId), gtMethodHandle(methodHandle) |
| 4035 | { |
| 4036 | } |
| 4037 | |
| 4038 | #if DEBUGGABLE_GENTREE |
| 4039 | GenTreeIntrinsic() : GenTreeOp() |
| 4040 | { |
| 4041 | } |
| 4042 | #endif |
| 4043 | }; |
| 4044 | |
| 4045 | struct GenTreeJitIntrinsic : public GenTreeOp |
| 4046 | { |
| 4047 | var_types gtSIMDBaseType; // SIMD vector base type |
| 4048 | unsigned gtSIMDSize; // SIMD vector size in bytes, use 0 for scalar intrinsics |
| 4049 | |
| 4050 | GenTreeJitIntrinsic(genTreeOps oper, var_types type, GenTree* op1, GenTree* op2, var_types baseType, unsigned size) |
| 4051 | : GenTreeOp(oper, type, op1, op2), gtSIMDBaseType(baseType), gtSIMDSize(size) |
| 4052 | { |
| 4053 | } |
| 4054 | |
| 4055 | bool isSIMD() const |
| 4056 | { |
| 4057 | return gtSIMDSize != 0; |
| 4058 | } |
| 4059 | |
| 4060 | #if DEBUGGABLE_GENTREE |
| 4061 | GenTreeJitIntrinsic() : GenTreeOp() |
| 4062 | { |
| 4063 | } |
| 4064 | #endif |
| 4065 | }; |
| 4066 | |
| 4067 | #ifdef FEATURE_SIMD |
| 4068 | |
| 4069 | /* gtSIMD -- SIMD intrinsic (possibly-binary op [NULL op2 is allowed] with additional fields) */ |
| 4070 | struct GenTreeSIMD : public GenTreeJitIntrinsic |
| 4071 | { |
| 4072 | SIMDIntrinsicID gtSIMDIntrinsicID; // operation Id |
| 4073 | |
| 4074 | GenTreeSIMD(var_types type, GenTree* op1, SIMDIntrinsicID simdIntrinsicID, var_types baseType, unsigned size) |
| 4075 | : GenTreeJitIntrinsic(GT_SIMD, type, op1, nullptr, baseType, size), gtSIMDIntrinsicID(simdIntrinsicID) |
| 4076 | { |
| 4077 | } |
| 4078 | |
| 4079 | GenTreeSIMD( |
| 4080 | var_types type, GenTree* op1, GenTree* op2, SIMDIntrinsicID simdIntrinsicID, var_types baseType, unsigned size) |
| 4081 | : GenTreeJitIntrinsic(GT_SIMD, type, op1, op2, baseType, size), gtSIMDIntrinsicID(simdIntrinsicID) |
| 4082 | { |
| 4083 | } |
| 4084 | |
| 4085 | #if DEBUGGABLE_GENTREE |
| 4086 | GenTreeSIMD() : GenTreeJitIntrinsic() |
| 4087 | { |
| 4088 | } |
| 4089 | #endif |
| 4090 | }; |
| 4091 | #endif // FEATURE_SIMD |
| 4092 | |
| 4093 | #ifdef FEATURE_HW_INTRINSICS |
| 4094 | struct GenTreeHWIntrinsic : public GenTreeJitIntrinsic |
| 4095 | { |
| 4096 | NamedIntrinsic gtHWIntrinsicId; |
| 4097 | var_types gtIndexBaseType; // for AVX2 Gather* intrinsics |
| 4098 | |
| 4099 | GenTreeHWIntrinsic(var_types type, NamedIntrinsic hwIntrinsicID, var_types baseType, unsigned size) |
| 4100 | : GenTreeJitIntrinsic(GT_HWIntrinsic, type, nullptr, nullptr, baseType, size) |
| 4101 | , gtHWIntrinsicId(hwIntrinsicID) |
| 4102 | , gtIndexBaseType(TYP_UNKNOWN) |
| 4103 | { |
| 4104 | } |
| 4105 | |
| 4106 | GenTreeHWIntrinsic(var_types type, GenTree* op1, NamedIntrinsic hwIntrinsicID, var_types baseType, unsigned size) |
| 4107 | : GenTreeJitIntrinsic(GT_HWIntrinsic, type, op1, nullptr, baseType, size) |
| 4108 | , gtHWIntrinsicId(hwIntrinsicID) |
| 4109 | , gtIndexBaseType(TYP_UNKNOWN) |
| 4110 | { |
| 4111 | } |
| 4112 | |
| 4113 | GenTreeHWIntrinsic( |
| 4114 | var_types type, GenTree* op1, GenTree* op2, NamedIntrinsic hwIntrinsicID, var_types baseType, unsigned size) |
| 4115 | : GenTreeJitIntrinsic(GT_HWIntrinsic, type, op1, op2, baseType, size) |
| 4116 | , gtHWIntrinsicId(hwIntrinsicID) |
| 4117 | , gtIndexBaseType(TYP_UNKNOWN) |
| 4118 | { |
| 4119 | } |
| 4120 | |
| 4121 | // Note that HW Instrinsic instructions are a sub class of GenTreeOp which only supports two operands |
| 4122 | // However there are HW Instrinsic instructions that have 3 or even 4 operands and this is |
| 4123 | // supported using a single op1 and using an ArgList for it: gtNewArgList(op1, op2, op3) |
| 4124 | |
| 4125 | bool OperIsMemoryLoad(); // Returns true for the HW Instrinsic instructions that have MemoryLoad semantics, |
| 4126 | // false otherwise |
| 4127 | bool OperIsMemoryStore(); // Returns true for the HW Instrinsic instructions that have MemoryStore semantics, |
| 4128 | // false otherwise |
| 4129 | bool OperIsMemoryLoadOrStore(); // Returns true for the HW Instrinsic instructions that have MemoryLoad or |
| 4130 | // MemoryStore semantics, false otherwise |
| 4131 | |
| 4132 | #if DEBUGGABLE_GENTREE |
| 4133 | GenTreeHWIntrinsic() : GenTreeJitIntrinsic() |
| 4134 | { |
| 4135 | } |
| 4136 | #endif |
| 4137 | }; |
| 4138 | |
| 4139 | inline bool GenTree::OperIsSimdHWIntrinsic() const |
| 4140 | { |
| 4141 | if (gtOper == GT_HWIntrinsic) |
| 4142 | { |
| 4143 | return this->AsHWIntrinsic()->isSIMD(); |
| 4144 | } |
| 4145 | return false; |
| 4146 | } |
| 4147 | #endif // FEATURE_HW_INTRINSICS |
| 4148 | |
| 4149 | /* gtIndex -- array access */ |
| 4150 | |
| 4151 | struct GenTreeIndex : public GenTreeOp |
| 4152 | { |
| 4153 | GenTree*& Arr() |
| 4154 | { |
| 4155 | return gtOp1; |
| 4156 | } |
| 4157 | GenTree*& Index() |
| 4158 | { |
| 4159 | return gtOp2; |
| 4160 | } |
| 4161 | |
| 4162 | unsigned gtIndElemSize; // size of elements in the array |
| 4163 | CORINFO_CLASS_HANDLE gtStructElemClass; // If the element type is a struct, this is the struct type. |
| 4164 | |
| 4165 | GenTreeIndex(var_types type, GenTree* arr, GenTree* ind, unsigned indElemSize) |
| 4166 | : GenTreeOp(GT_INDEX, type, arr, ind) |
| 4167 | , gtIndElemSize(indElemSize) |
| 4168 | , gtStructElemClass(nullptr) // We always initialize this after construction. |
| 4169 | { |
| 4170 | #ifdef DEBUG |
| 4171 | if (JitConfig.JitSkipArrayBoundCheck() == 1) |
| 4172 | { |
| 4173 | // Skip bounds check |
| 4174 | } |
| 4175 | else |
| 4176 | #endif |
| 4177 | { |
| 4178 | // Do bounds check |
| 4179 | gtFlags |= GTF_INX_RNGCHK; |
| 4180 | } |
| 4181 | |
| 4182 | if (type == TYP_REF) |
| 4183 | { |
| 4184 | gtFlags |= GTF_INX_REFARR_LAYOUT; |
| 4185 | } |
| 4186 | |
| 4187 | gtFlags |= GTF_EXCEPT | GTF_GLOB_REF; |
| 4188 | } |
| 4189 | #if DEBUGGABLE_GENTREE |
| 4190 | GenTreeIndex() : GenTreeOp() |
| 4191 | { |
| 4192 | } |
| 4193 | #endif |
| 4194 | }; |
| 4195 | |
| 4196 | // gtIndexAddr: given an array object and an index, checks that the index is within the bounds of the array if |
| 4197 | // necessary and produces the address of the value at that index of the array. |
| 4198 | struct GenTreeIndexAddr : public GenTreeOp |
| 4199 | { |
| 4200 | GenTree*& Arr() |
| 4201 | { |
| 4202 | return gtOp1; |
| 4203 | } |
| 4204 | GenTree*& Index() |
| 4205 | { |
| 4206 | return gtOp2; |
| 4207 | } |
| 4208 | |
| 4209 | CORINFO_CLASS_HANDLE gtStructElemClass; // If the element type is a struct, this is the struct type. |
| 4210 | |
| 4211 | GenTree* gtIndRngFailBB; // Label to jump to for array-index-out-of-range |
| 4212 | |
| 4213 | var_types gtElemType; // The element type of the array. |
| 4214 | unsigned gtElemSize; // size of elements in the array |
| 4215 | unsigned gtLenOffset; // The offset from the array's base address to its length. |
| 4216 | unsigned gtElemOffset; // The offset from the array's base address to its first element. |
| 4217 | |
| 4218 | GenTreeIndexAddr(GenTree* arr, |
| 4219 | GenTree* ind, |
| 4220 | var_types elemType, |
| 4221 | CORINFO_CLASS_HANDLE structElemClass, |
| 4222 | unsigned elemSize, |
| 4223 | unsigned lenOffset, |
| 4224 | unsigned elemOffset) |
| 4225 | : GenTreeOp(GT_INDEX_ADDR, TYP_BYREF, arr, ind) |
| 4226 | , gtStructElemClass(structElemClass) |
| 4227 | , gtIndRngFailBB(nullptr) |
| 4228 | , gtElemType(elemType) |
| 4229 | , gtElemSize(elemSize) |
| 4230 | , gtLenOffset(lenOffset) |
| 4231 | , gtElemOffset(elemOffset) |
| 4232 | { |
| 4233 | #ifdef DEBUG |
| 4234 | if (JitConfig.JitSkipArrayBoundCheck() == 1) |
| 4235 | { |
| 4236 | // Skip bounds check |
| 4237 | } |
| 4238 | else |
| 4239 | #endif |
| 4240 | { |
| 4241 | // Do bounds check |
| 4242 | gtFlags |= GTF_INX_RNGCHK; |
| 4243 | } |
| 4244 | |
| 4245 | gtFlags |= GTF_EXCEPT | GTF_GLOB_REF; |
| 4246 | } |
| 4247 | |
| 4248 | #if DEBUGGABLE_GENTREE |
| 4249 | GenTreeIndexAddr() : GenTreeOp() |
| 4250 | { |
| 4251 | } |
| 4252 | #endif |
| 4253 | }; |
| 4254 | |
| 4255 | /* gtArrLen -- array length (GT_ARR_LENGTH) |
| 4256 | GT_ARR_LENGTH is used for "arr.length" */ |
| 4257 | |
| 4258 | struct GenTreeArrLen : public GenTreeUnOp |
| 4259 | { |
| 4260 | GenTree*& ArrRef() |
| 4261 | { |
| 4262 | return gtOp1; |
| 4263 | } // the array address node |
| 4264 | private: |
| 4265 | int gtArrLenOffset; // constant to add to "gtArrRef" to get the address of the array length. |
| 4266 | |
| 4267 | public: |
| 4268 | inline int ArrLenOffset() |
| 4269 | { |
| 4270 | return gtArrLenOffset; |
| 4271 | } |
| 4272 | |
| 4273 | GenTreeArrLen(var_types type, GenTree* arrRef, int lenOffset) |
| 4274 | : GenTreeUnOp(GT_ARR_LENGTH, type, arrRef), gtArrLenOffset(lenOffset) |
| 4275 | { |
| 4276 | } |
| 4277 | |
| 4278 | #if DEBUGGABLE_GENTREE |
| 4279 | GenTreeArrLen() : GenTreeUnOp() |
| 4280 | { |
| 4281 | } |
| 4282 | #endif |
| 4283 | }; |
| 4284 | |
| 4285 | // This takes: |
| 4286 | // - a comparison value (generally an array length), |
| 4287 | // - an index value, and |
| 4288 | // - the label to jump to if the index is out of range. |
| 4289 | // - the "kind" of the throw block to branch to on failure |
| 4290 | // It generates no result. |
| 4291 | |
| 4292 | struct GenTreeBoundsChk : public GenTree |
| 4293 | { |
| 4294 | GenTree* gtIndex; // The index expression. |
| 4295 | GenTree* gtArrLen; // An expression for the length of the array being indexed. |
| 4296 | |
| 4297 | GenTree* gtIndRngFailBB; // Label to jump to for array-index-out-of-range |
| 4298 | SpecialCodeKind gtThrowKind; // Kind of throw block to branch to on failure |
| 4299 | |
| 4300 | GenTreeBoundsChk(genTreeOps oper, var_types type, GenTree* index, GenTree* arrLen, SpecialCodeKind kind) |
| 4301 | : GenTree(oper, type), gtIndex(index), gtArrLen(arrLen), gtIndRngFailBB(nullptr), gtThrowKind(kind) |
| 4302 | { |
| 4303 | // Effects flags propagate upwards. |
| 4304 | gtFlags |= (index->gtFlags & GTF_ALL_EFFECT); |
| 4305 | gtFlags |= (arrLen->gtFlags & GTF_ALL_EFFECT); |
| 4306 | gtFlags |= GTF_EXCEPT; |
| 4307 | } |
| 4308 | #if DEBUGGABLE_GENTREE |
| 4309 | GenTreeBoundsChk() : GenTree() |
| 4310 | { |
| 4311 | } |
| 4312 | #endif |
| 4313 | |
| 4314 | // If the gtArrLen is really an array length, returns array reference, else "NULL". |
| 4315 | GenTree* GetArray() |
| 4316 | { |
| 4317 | if (gtArrLen->OperGet() == GT_ARR_LENGTH) |
| 4318 | { |
| 4319 | return gtArrLen->gtArrLen.ArrRef(); |
| 4320 | } |
| 4321 | else |
| 4322 | { |
| 4323 | return nullptr; |
| 4324 | } |
| 4325 | } |
| 4326 | }; |
| 4327 | |
| 4328 | // gtArrElem -- general array element (GT_ARR_ELEM), for non "SZ_ARRAYS" |
| 4329 | // -- multidimensional arrays, or 1-d arrays with non-zero lower bounds. |
| 4330 | |
| 4331 | struct GenTreeArrElem : public GenTree |
| 4332 | { |
| 4333 | GenTree* gtArrObj; |
| 4334 | |
| 4335 | #define GT_ARR_MAX_RANK 3 |
| 4336 | GenTree* gtArrInds[GT_ARR_MAX_RANK]; // Indices |
| 4337 | unsigned char gtArrRank; // Rank of the array |
| 4338 | |
| 4339 | unsigned char gtArrElemSize; // !!! Caution, this is an "unsigned char", it is used only |
| 4340 | // on the optimization path of array intrisics. |
| 4341 | // It stores the size of array elements WHEN it can fit |
| 4342 | // into an "unsigned char". |
| 4343 | // This has caused VSW 571394. |
| 4344 | var_types gtArrElemType; // The array element type |
| 4345 | |
| 4346 | // Requires that "inds" is a pointer to an array of "rank" GenTreePtrs for the indices. |
| 4347 | GenTreeArrElem( |
| 4348 | var_types type, GenTree* arr, unsigned char rank, unsigned char elemSize, var_types elemType, GenTree** inds) |
| 4349 | : GenTree(GT_ARR_ELEM, type), gtArrObj(arr), gtArrRank(rank), gtArrElemSize(elemSize), gtArrElemType(elemType) |
| 4350 | { |
| 4351 | gtFlags |= (arr->gtFlags & GTF_ALL_EFFECT); |
| 4352 | for (unsigned char i = 0; i < rank; i++) |
| 4353 | { |
| 4354 | gtArrInds[i] = inds[i]; |
| 4355 | gtFlags |= (inds[i]->gtFlags & GTF_ALL_EFFECT); |
| 4356 | } |
| 4357 | gtFlags |= GTF_EXCEPT; |
| 4358 | } |
| 4359 | #if DEBUGGABLE_GENTREE |
| 4360 | GenTreeArrElem() : GenTree() |
| 4361 | { |
| 4362 | } |
| 4363 | #endif |
| 4364 | }; |
| 4365 | |
| 4366 | //-------------------------------------------- |
| 4367 | // |
| 4368 | // GenTreeArrIndex (gtArrIndex): Expression to bounds-check the index for one dimension of a |
| 4369 | // multi-dimensional or non-zero-based array., and compute the effective index |
| 4370 | // (i.e. subtracting the lower bound). |
| 4371 | // |
| 4372 | // Notes: |
| 4373 | // This node is similar in some ways to GenTreeBoundsChk, which ONLY performs the check. |
| 4374 | // The reason that this node incorporates the check into the effective index computation is |
| 4375 | // to avoid duplicating the codegen, as the effective index is required to compute the |
| 4376 | // offset anyway. |
| 4377 | // TODO-CQ: Enable optimization of the lower bound and length by replacing this: |
| 4378 | // /--* <arrObj> |
| 4379 | // +--* <index0> |
| 4380 | // +--* ArrIndex[i, ] |
| 4381 | // with something like: |
| 4382 | // /--* <arrObj> |
| 4383 | // /--* ArrLowerBound[i, ] |
| 4384 | // | /--* <arrObj> |
| 4385 | // +--* ArrLen[i, ] (either generalize GT_ARR_LENGTH or add a new node) |
| 4386 | // +--* <index0> |
| 4387 | // +--* ArrIndex[i, ] |
| 4388 | // Which could, for example, be optimized to the following when known to be within bounds: |
| 4389 | // /--* TempForLowerBoundDim0 |
| 4390 | // +--* <index0> |
| 4391 | // +--* - (GT_SUB) |
| 4392 | // |
| 4393 | struct GenTreeArrIndex : public GenTreeOp |
| 4394 | { |
| 4395 | // The array object - may be any expression producing an Array reference, but is likely to be a lclVar. |
| 4396 | GenTree*& ArrObj() |
| 4397 | { |
| 4398 | return gtOp1; |
| 4399 | } |
| 4400 | // The index expression - may be any integral expression. |
| 4401 | GenTree*& IndexExpr() |
| 4402 | { |
| 4403 | return gtOp2; |
| 4404 | } |
| 4405 | unsigned char gtCurrDim; // The current dimension |
| 4406 | unsigned char gtArrRank; // Rank of the array |
| 4407 | var_types gtArrElemType; // The array element type |
| 4408 | |
| 4409 | GenTreeArrIndex(var_types type, |
| 4410 | GenTree* arrObj, |
| 4411 | GenTree* indexExpr, |
| 4412 | unsigned char currDim, |
| 4413 | unsigned char arrRank, |
| 4414 | var_types elemType) |
| 4415 | : GenTreeOp(GT_ARR_INDEX, type, arrObj, indexExpr) |
| 4416 | , gtCurrDim(currDim) |
| 4417 | , gtArrRank(arrRank) |
| 4418 | , gtArrElemType(elemType) |
| 4419 | { |
| 4420 | gtFlags |= GTF_EXCEPT; |
| 4421 | } |
| 4422 | #if DEBUGGABLE_GENTREE |
| 4423 | protected: |
| 4424 | friend GenTree; |
| 4425 | // Used only for GenTree::GetVtableForOper() |
| 4426 | GenTreeArrIndex() : GenTreeOp() |
| 4427 | { |
| 4428 | } |
| 4429 | #endif |
| 4430 | }; |
| 4431 | |
| 4432 | //-------------------------------------------- |
| 4433 | // |
| 4434 | // GenTreeArrOffset (gtArrOffset): Expression to compute the accumulated offset for the address |
| 4435 | // of an element of a multi-dimensional or non-zero-based array. |
| 4436 | // |
| 4437 | // Notes: |
| 4438 | // The result of this expression is (gtOffset * dimSize) + gtIndex |
| 4439 | // where dimSize is the length/stride/size of the dimension, and is obtained from gtArrObj. |
| 4440 | // This node is generated in conjunction with the GenTreeArrIndex node, which computes the |
| 4441 | // effective index for a single dimension. The sub-trees can be separately optimized, e.g. |
| 4442 | // within a loop body where the expression for the 0th dimension may be invariant. |
| 4443 | // |
| 4444 | // Here is an example of how the tree might look for a two-dimension array reference: |
| 4445 | // /--* const 0 |
| 4446 | // | /--* <arrObj> |
| 4447 | // | +--* <index0> |
| 4448 | // +--* ArrIndex[i, ] |
| 4449 | // +--* <arrObj> |
| 4450 | // /--| arrOffs[i, ] |
| 4451 | // | +--* <arrObj> |
| 4452 | // | +--* <index1> |
| 4453 | // +--* ArrIndex[*,j] |
| 4454 | // +--* <arrObj> |
| 4455 | // /--| arrOffs[*,j] |
| 4456 | // TODO-CQ: see comment on GenTreeArrIndex for how its representation may change. When that |
| 4457 | // is done, we will also want to replace the <arrObj> argument to arrOffs with the |
| 4458 | // ArrLen as for GenTreeArrIndex. |
| 4459 | // |
| 4460 | struct GenTreeArrOffs : public GenTree |
| 4461 | { |
| 4462 | GenTree* gtOffset; // The accumulated offset for lower dimensions - must be TYP_I_IMPL, and |
| 4463 | // will either be a CSE temp, the constant 0, or another GenTreeArrOffs node. |
| 4464 | GenTree* gtIndex; // The effective index for the current dimension - must be non-negative |
| 4465 | // and can be any expression (though it is likely to be either a GenTreeArrIndex, |
| 4466 | // node, a lclVar, or a constant). |
| 4467 | GenTree* gtArrObj; // The array object - may be any expression producing an Array reference, |
| 4468 | // but is likely to be a lclVar. |
| 4469 | unsigned char gtCurrDim; // The current dimension |
| 4470 | unsigned char gtArrRank; // Rank of the array |
| 4471 | var_types gtArrElemType; // The array element type |
| 4472 | |
| 4473 | GenTreeArrOffs(var_types type, |
| 4474 | GenTree* offset, |
| 4475 | GenTree* index, |
| 4476 | GenTree* arrObj, |
| 4477 | unsigned char currDim, |
| 4478 | unsigned char rank, |
| 4479 | var_types elemType) |
| 4480 | : GenTree(GT_ARR_OFFSET, type) |
| 4481 | , gtOffset(offset) |
| 4482 | , gtIndex(index) |
| 4483 | , gtArrObj(arrObj) |
| 4484 | , gtCurrDim(currDim) |
| 4485 | , gtArrRank(rank) |
| 4486 | , gtArrElemType(elemType) |
| 4487 | { |
| 4488 | assert(index->gtFlags & GTF_EXCEPT); |
| 4489 | gtFlags |= GTF_EXCEPT; |
| 4490 | } |
| 4491 | #if DEBUGGABLE_GENTREE |
| 4492 | GenTreeArrOffs() : GenTree() |
| 4493 | { |
| 4494 | } |
| 4495 | #endif |
| 4496 | }; |
| 4497 | |
| 4498 | /* gtAddrMode -- Target-specific canonicalized addressing expression (GT_LEA) */ |
| 4499 | |
| 4500 | struct GenTreeAddrMode : public GenTreeOp |
| 4501 | { |
| 4502 | // Address is Base + Index*Scale + Offset. |
| 4503 | // These are the legal patterns: |
| 4504 | // |
| 4505 | // Base // Base != nullptr && Index == nullptr && Scale == 0 && Offset == 0 |
| 4506 | // Base + Index*Scale // Base != nullptr && Index != nullptr && Scale != 0 && Offset == 0 |
| 4507 | // Base + Offset // Base != nullptr && Index == nullptr && Scale == 0 && Offset != 0 |
| 4508 | // Base + Index*Scale + Offset // Base != nullptr && Index != nullptr && Scale != 0 && Offset != 0 |
| 4509 | // Index*Scale // Base == nullptr && Index != nullptr && Scale > 1 && Offset == 0 |
| 4510 | // Index*Scale + Offset // Base == nullptr && Index != nullptr && Scale > 1 && Offset != 0 |
| 4511 | // Offset // Base == nullptr && Index == nullptr && Scale == 0 && Offset != 0 |
| 4512 | // |
| 4513 | // So, for example: |
| 4514 | // 1. Base + Index is legal with Scale==1 |
| 4515 | // 2. If Index is null, Scale should be zero (or unintialized / unused) |
| 4516 | // 3. If Scale==1, then we should have "Base" instead of "Index*Scale", and "Base + Offset" instead of |
| 4517 | // "Index*Scale + Offset". |
| 4518 | |
| 4519 | // First operand is base address/pointer |
| 4520 | bool HasBase() const |
| 4521 | { |
| 4522 | return gtOp1 != nullptr; |
| 4523 | } |
| 4524 | GenTree*& Base() |
| 4525 | { |
| 4526 | return gtOp1; |
| 4527 | } |
| 4528 | |
| 4529 | // Second operand is scaled index value |
| 4530 | bool HasIndex() const |
| 4531 | { |
| 4532 | return gtOp2 != nullptr; |
| 4533 | } |
| 4534 | GenTree*& Index() |
| 4535 | { |
| 4536 | return gtOp2; |
| 4537 | } |
| 4538 | |
| 4539 | int Offset() |
| 4540 | { |
| 4541 | return static_cast<int>(gtOffset); |
| 4542 | } |
| 4543 | |
| 4544 | unsigned gtScale; // The scale factor |
| 4545 | |
| 4546 | private: |
| 4547 | ssize_t gtOffset; // The offset to add |
| 4548 | |
| 4549 | public: |
| 4550 | GenTreeAddrMode(var_types type, GenTree* base, GenTree* index, unsigned scale, ssize_t offset) |
| 4551 | : GenTreeOp(GT_LEA, type, base, index) |
| 4552 | { |
| 4553 | assert(base != nullptr || index != nullptr); |
| 4554 | gtScale = scale; |
| 4555 | gtOffset = offset; |
| 4556 | } |
| 4557 | #if DEBUGGABLE_GENTREE |
| 4558 | protected: |
| 4559 | friend GenTree; |
| 4560 | // Used only for GenTree::GetVtableForOper() |
| 4561 | GenTreeAddrMode() : GenTreeOp() |
| 4562 | { |
| 4563 | } |
| 4564 | #endif |
| 4565 | }; |
| 4566 | |
| 4567 | // Indir is just an op, no additional data, but some additional abstractions |
| 4568 | struct GenTreeIndir : public GenTreeOp |
| 4569 | { |
| 4570 | // The address for the indirection. |
| 4571 | // Since GenTreeDynBlk derives from this, but is an "EXOP" (i.e. it has extra fields), |
| 4572 | // we can't access Op1 and Op2 in the normal manner if we may have a DynBlk. |
| 4573 | GenTree*& Addr() |
| 4574 | { |
| 4575 | return gtOp1; |
| 4576 | } |
| 4577 | |
| 4578 | // these methods provide an interface to the indirection node which |
| 4579 | bool HasBase(); |
| 4580 | bool HasIndex(); |
| 4581 | GenTree* Base(); |
| 4582 | GenTree* Index(); |
| 4583 | unsigned Scale(); |
| 4584 | ssize_t Offset(); |
| 4585 | |
| 4586 | GenTreeIndir(genTreeOps oper, var_types type, GenTree* addr, GenTree* data) : GenTreeOp(oper, type, addr, data) |
| 4587 | { |
| 4588 | } |
| 4589 | |
| 4590 | #if DEBUGGABLE_GENTREE |
| 4591 | protected: |
| 4592 | friend GenTree; |
| 4593 | // Used only for GenTree::GetVtableForOper() |
| 4594 | GenTreeIndir() : GenTreeOp() |
| 4595 | { |
| 4596 | } |
| 4597 | #endif |
| 4598 | }; |
| 4599 | |
| 4600 | // gtBlk -- 'block' (GT_BLK, GT_STORE_BLK). |
| 4601 | // |
| 4602 | // This is the base type for all of the nodes that represent block or struct |
| 4603 | // values. |
| 4604 | // Since it can be a store, it includes gtBlkOpKind to specify the type of |
| 4605 | // code generation that will be used for the block operation. |
| 4606 | |
| 4607 | struct GenTreeBlk : public GenTreeIndir |
| 4608 | { |
| 4609 | public: |
| 4610 | // The data to be stored (null for GT_BLK) |
| 4611 | GenTree*& Data() |
| 4612 | { |
| 4613 | return gtOp2; |
| 4614 | } |
| 4615 | void SetData(GenTree* dataNode) |
| 4616 | { |
| 4617 | gtOp2 = dataNode; |
| 4618 | } |
| 4619 | |
| 4620 | // The size of the buffer to be copied. |
| 4621 | unsigned Size() const |
| 4622 | { |
| 4623 | return gtBlkSize; |
| 4624 | } |
| 4625 | |
| 4626 | unsigned gtBlkSize; |
| 4627 | |
| 4628 | // Return true iff the object being copied contains one or more GC pointers. |
| 4629 | bool HasGCPtr(); |
| 4630 | |
| 4631 | // True if this BlkOpNode is a volatile memory operation. |
| 4632 | bool IsVolatile() const |
| 4633 | { |
| 4634 | return (gtFlags & GTF_BLK_VOLATILE) != 0; |
| 4635 | } |
| 4636 | |
| 4637 | // True if this BlkOpNode is an unaligned memory operation. |
| 4638 | bool IsUnaligned() const |
| 4639 | { |
| 4640 | return (gtFlags & GTF_BLK_UNALIGNED) != 0; |
| 4641 | } |
| 4642 | |
| 4643 | // Instruction selection: during codegen time, what code sequence we will be using |
| 4644 | // to encode this operation. |
| 4645 | enum |
| 4646 | { |
| 4647 | BlkOpKindInvalid, |
| 4648 | BlkOpKindHelper, |
| 4649 | BlkOpKindRepInstr, |
| 4650 | BlkOpKindUnroll, |
| 4651 | } gtBlkOpKind; |
| 4652 | |
| 4653 | bool gtBlkOpGcUnsafe; |
| 4654 | |
| 4655 | GenTreeBlk(genTreeOps oper, var_types type, GenTree* addr, unsigned size) |
| 4656 | : GenTreeIndir(oper, type, addr, nullptr) |
| 4657 | , gtBlkSize(size) |
| 4658 | , gtBlkOpKind(BlkOpKindInvalid) |
| 4659 | , gtBlkOpGcUnsafe(false) |
| 4660 | { |
| 4661 | assert(OperIsBlk(oper)); |
| 4662 | gtFlags |= (addr->gtFlags & GTF_ALL_EFFECT); |
| 4663 | } |
| 4664 | |
| 4665 | GenTreeBlk(genTreeOps oper, var_types type, GenTree* addr, GenTree* data, unsigned size) |
| 4666 | : GenTreeIndir(oper, type, addr, data), gtBlkSize(size), gtBlkOpKind(BlkOpKindInvalid), gtBlkOpGcUnsafe(false) |
| 4667 | { |
| 4668 | assert(OperIsBlk(oper)); |
| 4669 | gtFlags |= (addr->gtFlags & GTF_ALL_EFFECT); |
| 4670 | gtFlags |= (data->gtFlags & GTF_ALL_EFFECT); |
| 4671 | } |
| 4672 | |
| 4673 | #if DEBUGGABLE_GENTREE |
| 4674 | protected: |
| 4675 | friend GenTree; |
| 4676 | GenTreeBlk() : GenTreeIndir() |
| 4677 | { |
| 4678 | } |
| 4679 | #endif // DEBUGGABLE_GENTREE |
| 4680 | }; |
| 4681 | |
| 4682 | // gtObj -- 'object' (GT_OBJ). |
| 4683 | // |
| 4684 | // This node is used for block values that may have GC pointers. |
| 4685 | |
| 4686 | struct GenTreeObj : public GenTreeBlk |
| 4687 | { |
| 4688 | CORINFO_CLASS_HANDLE gtClass; // the class of the object |
| 4689 | |
| 4690 | // If non-null, this array represents the gc-layout of the class. |
| 4691 | // This may be simply copied when cloning this node, because it is not changed once computed. |
| 4692 | BYTE* gtGcPtrs; |
| 4693 | |
| 4694 | // If non-zero, this is the number of slots in the class layout that |
| 4695 | // contain gc-pointers. |
| 4696 | __declspec(property(get = GetGcPtrCount)) unsigned gtGcPtrCount; |
| 4697 | unsigned GetGcPtrCount() const |
| 4698 | { |
| 4699 | assert(_gtGcPtrCount != UINT32_MAX); |
| 4700 | return _gtGcPtrCount; |
| 4701 | } |
| 4702 | unsigned _gtGcPtrCount; |
| 4703 | |
| 4704 | // If non-zero, the number of pointer-sized slots that constitutes the class token. |
| 4705 | unsigned gtSlots; |
| 4706 | |
| 4707 | bool IsGCInfoInitialized() |
| 4708 | { |
| 4709 | return (_gtGcPtrCount != UINT32_MAX); |
| 4710 | } |
| 4711 | |
| 4712 | void SetGCInfo(BYTE* gcPtrs, unsigned gcPtrCount, unsigned slots) |
| 4713 | { |
| 4714 | gtGcPtrs = gcPtrs; |
| 4715 | _gtGcPtrCount = gcPtrCount; |
| 4716 | gtSlots = slots; |
| 4717 | if (gtGcPtrCount != 0) |
| 4718 | { |
| 4719 | // We assume that we cannot have a struct with GC pointers that is not a multiple |
| 4720 | // of the register size. |
| 4721 | // The EE currently does not allow this, but it could change. |
| 4722 | // Let's assert it just to be safe. |
| 4723 | noway_assert(roundUp(gtBlkSize, REGSIZE_BYTES) == gtBlkSize); |
| 4724 | } |
| 4725 | else |
| 4726 | { |
| 4727 | genTreeOps newOper = GT_BLK; |
| 4728 | if (gtOper == GT_STORE_OBJ) |
| 4729 | { |
| 4730 | newOper = GT_STORE_BLK; |
| 4731 | } |
| 4732 | else |
| 4733 | { |
| 4734 | assert(gtOper == GT_OBJ); |
| 4735 | } |
| 4736 | SetOper(newOper); |
| 4737 | } |
| 4738 | } |
| 4739 | |
| 4740 | void CopyGCInfo(GenTreeObj* srcObj) |
| 4741 | { |
| 4742 | if (srcObj->IsGCInfoInitialized()) |
| 4743 | { |
| 4744 | gtGcPtrs = srcObj->gtGcPtrs; |
| 4745 | _gtGcPtrCount = srcObj->gtGcPtrCount; |
| 4746 | gtSlots = srcObj->gtSlots; |
| 4747 | } |
| 4748 | } |
| 4749 | |
| 4750 | GenTreeObj(var_types type, GenTree* addr, CORINFO_CLASS_HANDLE cls, unsigned size) |
| 4751 | : GenTreeBlk(GT_OBJ, type, addr, size), gtClass(cls) |
| 4752 | { |
| 4753 | // By default, an OBJ is assumed to be a global reference. |
| 4754 | gtFlags |= GTF_GLOB_REF; |
| 4755 | noway_assert(cls != NO_CLASS_HANDLE); |
| 4756 | _gtGcPtrCount = UINT32_MAX; |
| 4757 | } |
| 4758 | |
| 4759 | GenTreeObj(var_types type, GenTree* addr, GenTree* data, CORINFO_CLASS_HANDLE cls, unsigned size) |
| 4760 | : GenTreeBlk(GT_STORE_OBJ, type, addr, data, size), gtClass(cls) |
| 4761 | { |
| 4762 | // By default, an OBJ is assumed to be a global reference. |
| 4763 | gtFlags |= GTF_GLOB_REF; |
| 4764 | noway_assert(cls != NO_CLASS_HANDLE); |
| 4765 | _gtGcPtrCount = UINT32_MAX; |
| 4766 | } |
| 4767 | |
| 4768 | #if DEBUGGABLE_GENTREE |
| 4769 | GenTreeObj() : GenTreeBlk() |
| 4770 | { |
| 4771 | } |
| 4772 | #endif |
| 4773 | }; |
| 4774 | |
| 4775 | // gtDynBlk -- 'dynamic block' (GT_DYN_BLK). |
| 4776 | // |
| 4777 | // This node is used for block values that have a dynamic size. |
| 4778 | // Note that such a value can never have GC pointers. |
| 4779 | |
| 4780 | struct GenTreeDynBlk : public GenTreeBlk |
| 4781 | { |
| 4782 | public: |
| 4783 | GenTree* gtDynamicSize; |
| 4784 | bool gtEvalSizeFirst; |
| 4785 | |
| 4786 | GenTreeDynBlk(GenTree* addr, GenTree* dynamicSize) |
| 4787 | : GenTreeBlk(GT_DYN_BLK, TYP_STRUCT, addr, 0), gtDynamicSize(dynamicSize), gtEvalSizeFirst(false) |
| 4788 | { |
| 4789 | // Conservatively the 'addr' could be null or point into the global heap. |
| 4790 | gtFlags |= GTF_EXCEPT | GTF_GLOB_REF; |
| 4791 | gtFlags |= (dynamicSize->gtFlags & GTF_ALL_EFFECT); |
| 4792 | } |
| 4793 | |
| 4794 | #if DEBUGGABLE_GENTREE |
| 4795 | protected: |
| 4796 | friend GenTree; |
| 4797 | GenTreeDynBlk() : GenTreeBlk() |
| 4798 | { |
| 4799 | } |
| 4800 | #endif // DEBUGGABLE_GENTREE |
| 4801 | }; |
| 4802 | |
| 4803 | // Read-modify-write status of a RMW memory op rooted at a storeInd |
| 4804 | enum RMWStatus |
| 4805 | { |
| 4806 | STOREIND_RMW_STATUS_UNKNOWN, // RMW status of storeInd unknown |
| 4807 | // Default status unless modified by IsRMWMemOpRootedAtStoreInd() |
| 4808 | |
| 4809 | // One of these denote storeind is a RMW memory operation. |
| 4810 | STOREIND_RMW_DST_IS_OP1, // StoreInd is known to be a RMW memory op and dst candidate is op1 |
| 4811 | STOREIND_RMW_DST_IS_OP2, // StoreInd is known to be a RMW memory op and dst candidate is op2 |
| 4812 | |
| 4813 | // One of these denote the reason for storeind is marked as non-RMW operation |
| 4814 | STOREIND_RMW_UNSUPPORTED_ADDR, // Addr mode is not yet supported for RMW memory |
| 4815 | STOREIND_RMW_UNSUPPORTED_OPER, // Operation is not supported for RMW memory |
| 4816 | STOREIND_RMW_UNSUPPORTED_TYPE, // Type is not supported for RMW memory |
| 4817 | STOREIND_RMW_INDIR_UNEQUAL // Indir to read value is not equivalent to indir that writes the value |
| 4818 | }; |
| 4819 | |
| 4820 | // StoreInd is just a BinOp, with additional RMW status |
| 4821 | struct GenTreeStoreInd : public GenTreeIndir |
| 4822 | { |
| 4823 | #if !CPU_LOAD_STORE_ARCH |
| 4824 | // The below flag is set and used during lowering |
| 4825 | RMWStatus gtRMWStatus; |
| 4826 | |
| 4827 | bool IsRMWStatusUnknown() |
| 4828 | { |
| 4829 | return gtRMWStatus == STOREIND_RMW_STATUS_UNKNOWN; |
| 4830 | } |
| 4831 | bool IsNonRMWMemoryOp() |
| 4832 | { |
| 4833 | return gtRMWStatus == STOREIND_RMW_UNSUPPORTED_ADDR || gtRMWStatus == STOREIND_RMW_UNSUPPORTED_OPER || |
| 4834 | gtRMWStatus == STOREIND_RMW_UNSUPPORTED_TYPE || gtRMWStatus == STOREIND_RMW_INDIR_UNEQUAL; |
| 4835 | } |
| 4836 | bool IsRMWMemoryOp() |
| 4837 | { |
| 4838 | return gtRMWStatus == STOREIND_RMW_DST_IS_OP1 || gtRMWStatus == STOREIND_RMW_DST_IS_OP2; |
| 4839 | } |
| 4840 | bool IsRMWDstOp1() |
| 4841 | { |
| 4842 | return gtRMWStatus == STOREIND_RMW_DST_IS_OP1; |
| 4843 | } |
| 4844 | bool IsRMWDstOp2() |
| 4845 | { |
| 4846 | return gtRMWStatus == STOREIND_RMW_DST_IS_OP2; |
| 4847 | } |
| 4848 | #endif //! CPU_LOAD_STORE_ARCH |
| 4849 | |
| 4850 | RMWStatus GetRMWStatus() |
| 4851 | { |
| 4852 | #if !CPU_LOAD_STORE_ARCH |
| 4853 | return gtRMWStatus; |
| 4854 | #else |
| 4855 | return STOREIND_RMW_STATUS_UNKNOWN; |
| 4856 | #endif |
| 4857 | } |
| 4858 | |
| 4859 | void SetRMWStatusDefault() |
| 4860 | { |
| 4861 | #if !CPU_LOAD_STORE_ARCH |
| 4862 | gtRMWStatus = STOREIND_RMW_STATUS_UNKNOWN; |
| 4863 | #endif |
| 4864 | } |
| 4865 | |
| 4866 | void SetRMWStatus(RMWStatus status) |
| 4867 | { |
| 4868 | #if !CPU_LOAD_STORE_ARCH |
| 4869 | gtRMWStatus = status; |
| 4870 | #endif |
| 4871 | } |
| 4872 | |
| 4873 | GenTree*& Data() |
| 4874 | { |
| 4875 | return gtOp2; |
| 4876 | } |
| 4877 | |
| 4878 | GenTreeStoreInd(var_types type, GenTree* destPtr, GenTree* data) : GenTreeIndir(GT_STOREIND, type, destPtr, data) |
| 4879 | { |
| 4880 | SetRMWStatusDefault(); |
| 4881 | } |
| 4882 | |
| 4883 | #if DEBUGGABLE_GENTREE |
| 4884 | protected: |
| 4885 | friend GenTree; |
| 4886 | // Used only for GenTree::GetVtableForOper() |
| 4887 | GenTreeStoreInd() : GenTreeIndir() |
| 4888 | { |
| 4889 | SetRMWStatusDefault(); |
| 4890 | } |
| 4891 | #endif |
| 4892 | }; |
| 4893 | |
| 4894 | /* gtRetExp -- Place holder for the return expression from an inline candidate (GT_RET_EXPR) */ |
| 4895 | |
| 4896 | struct GenTreeRetExpr : public GenTree |
| 4897 | { |
| 4898 | GenTree* gtInlineCandidate; |
| 4899 | |
| 4900 | CORINFO_CLASS_HANDLE gtRetClsHnd; |
| 4901 | |
| 4902 | GenTreeRetExpr(var_types type) : GenTree(GT_RET_EXPR, type) |
| 4903 | { |
| 4904 | } |
| 4905 | #if DEBUGGABLE_GENTREE |
| 4906 | GenTreeRetExpr() : GenTree() |
| 4907 | { |
| 4908 | } |
| 4909 | #endif |
| 4910 | }; |
| 4911 | |
| 4912 | /* gtStmt -- 'statement expr' (GT_STMT) */ |
| 4913 | |
| 4914 | class InlineContext; |
| 4915 | |
| 4916 | struct GenTreeStmt : public GenTree |
| 4917 | { |
| 4918 | GenTree* gtStmtExpr; // root of the expression tree |
| 4919 | GenTree* gtStmtList; // first node (for forward walks) |
| 4920 | InlineContext* gtInlineContext; // The inline context for this statement. |
| 4921 | IL_OFFSETX gtStmtILoffsx; // instr offset (if available) |
| 4922 | |
| 4923 | #ifdef DEBUG |
| 4924 | IL_OFFSET gtStmtLastILoffs; // instr offset at end of stmt |
| 4925 | #endif |
| 4926 | |
| 4927 | __declspec(property(get = getNextStmt)) GenTreeStmt* gtNextStmt; |
| 4928 | |
| 4929 | __declspec(property(get = getPrevStmt)) GenTreeStmt* gtPrevStmt; |
| 4930 | |
| 4931 | GenTreeStmt* getNextStmt() |
| 4932 | { |
| 4933 | if (gtNext == nullptr) |
| 4934 | { |
| 4935 | return nullptr; |
| 4936 | } |
| 4937 | else |
| 4938 | { |
| 4939 | return gtNext->AsStmt(); |
| 4940 | } |
| 4941 | } |
| 4942 | |
| 4943 | GenTreeStmt* getPrevStmt() |
| 4944 | { |
| 4945 | if (gtPrev == nullptr) |
| 4946 | { |
| 4947 | return nullptr; |
| 4948 | } |
| 4949 | else |
| 4950 | { |
| 4951 | return gtPrev->AsStmt(); |
| 4952 | } |
| 4953 | } |
| 4954 | |
| 4955 | GenTreeStmt(GenTree* expr, IL_OFFSETX offset) |
| 4956 | : GenTree(GT_STMT, TYP_VOID) |
| 4957 | , gtStmtExpr(expr) |
| 4958 | , gtStmtList(nullptr) |
| 4959 | , gtInlineContext(nullptr) |
| 4960 | , gtStmtILoffsx(offset) |
| 4961 | #ifdef DEBUG |
| 4962 | , gtStmtLastILoffs(BAD_IL_OFFSET) |
| 4963 | #endif |
| 4964 | { |
| 4965 | // Statements can't have statements as part of their expression tree. |
| 4966 | assert(expr->gtOper != GT_STMT); |
| 4967 | |
| 4968 | // Set the statement to have the same costs as the top node of the tree. |
| 4969 | // This is used long before costs have been assigned, so we need to copy |
| 4970 | // the raw costs. |
| 4971 | CopyRawCosts(expr); |
| 4972 | } |
| 4973 | |
| 4974 | #if DEBUGGABLE_GENTREE |
| 4975 | GenTreeStmt() : GenTree(GT_STMT, TYP_VOID) |
| 4976 | { |
| 4977 | } |
| 4978 | #endif |
| 4979 | }; |
| 4980 | |
| 4981 | /* NOTE: Any tree nodes that are larger than 8 bytes (two ints or |
| 4982 | pointers) must be flagged as 'large' in GenTree::InitNodeSize(). |
| 4983 | */ |
| 4984 | |
| 4985 | /* gtClsVar -- 'static data member' (GT_CLS_VAR) */ |
| 4986 | |
| 4987 | struct GenTreeClsVar : public GenTree |
| 4988 | { |
| 4989 | CORINFO_FIELD_HANDLE gtClsVarHnd; |
| 4990 | FieldSeqNode* gtFieldSeq; |
| 4991 | |
| 4992 | GenTreeClsVar(var_types type, CORINFO_FIELD_HANDLE clsVarHnd, FieldSeqNode* fldSeq) |
| 4993 | : GenTree(GT_CLS_VAR, type), gtClsVarHnd(clsVarHnd), gtFieldSeq(fldSeq) |
| 4994 | { |
| 4995 | gtFlags |= GTF_GLOB_REF; |
| 4996 | } |
| 4997 | #if DEBUGGABLE_GENTREE |
| 4998 | GenTreeClsVar() : GenTree() |
| 4999 | { |
| 5000 | } |
| 5001 | #endif |
| 5002 | }; |
| 5003 | |
| 5004 | /* gtArgPlace -- 'register argument placeholder' (GT_ARGPLACE) */ |
| 5005 | |
| 5006 | struct GenTreeArgPlace : public GenTree |
| 5007 | { |
| 5008 | CORINFO_CLASS_HANDLE gtArgPlaceClsHnd; // Needed when we have a TYP_STRUCT argument |
| 5009 | |
| 5010 | GenTreeArgPlace(var_types type, CORINFO_CLASS_HANDLE clsHnd) : GenTree(GT_ARGPLACE, type), gtArgPlaceClsHnd(clsHnd) |
| 5011 | { |
| 5012 | } |
| 5013 | #if DEBUGGABLE_GENTREE |
| 5014 | GenTreeArgPlace() : GenTree() |
| 5015 | { |
| 5016 | } |
| 5017 | #endif |
| 5018 | }; |
| 5019 | |
| 5020 | /* gtLabel -- code label target (GT_LABEL) */ |
| 5021 | |
| 5022 | struct GenTreeLabel : public GenTree |
| 5023 | { |
| 5024 | BasicBlock* gtLabBB; |
| 5025 | |
| 5026 | GenTreeLabel(BasicBlock* bb) : GenTree(GT_LABEL, TYP_VOID), gtLabBB(bb) |
| 5027 | { |
| 5028 | } |
| 5029 | #if DEBUGGABLE_GENTREE |
| 5030 | GenTreeLabel() : GenTree() |
| 5031 | { |
| 5032 | } |
| 5033 | #endif |
| 5034 | }; |
| 5035 | |
| 5036 | /* gtPhiArg -- phi node rhs argument, var = phi(phiarg, phiarg, phiarg...); GT_PHI_ARG */ |
| 5037 | struct GenTreePhiArg : public GenTreeLclVarCommon |
| 5038 | { |
| 5039 | BasicBlock* gtPredBB; |
| 5040 | |
| 5041 | GenTreePhiArg(var_types type, unsigned lclNum, unsigned snum, BasicBlock* block) |
| 5042 | : GenTreeLclVarCommon(GT_PHI_ARG, type, lclNum), gtPredBB(block) |
| 5043 | { |
| 5044 | SetSsaNum(snum); |
| 5045 | } |
| 5046 | |
| 5047 | #if DEBUGGABLE_GENTREE |
| 5048 | GenTreePhiArg() : GenTreeLclVarCommon() |
| 5049 | { |
| 5050 | } |
| 5051 | #endif |
| 5052 | }; |
| 5053 | |
| 5054 | /* gtPutArgStk -- Argument passed on stack (GT_PUTARG_STK) */ |
| 5055 | |
| 5056 | struct GenTreePutArgStk : public GenTreeUnOp |
| 5057 | { |
| 5058 | unsigned gtSlotNum; // Slot number of the argument to be passed on stack |
| 5059 | #if defined(UNIX_X86_ABI) |
| 5060 | unsigned gtPadAlign; // Number of padding slots for stack alignment |
| 5061 | #endif |
| 5062 | |
| 5063 | // Don't let clang-format mess with the GenTreePutArgStk constructor. |
| 5064 | // clang-format off |
| 5065 | |
| 5066 | GenTreePutArgStk(genTreeOps oper, |
| 5067 | var_types type, |
| 5068 | GenTree* op1, |
| 5069 | unsigned slotNum |
| 5070 | PUT_STRUCT_ARG_STK_ONLY_ARG(unsigned numSlots), |
| 5071 | bool putInIncomingArgArea = false, |
| 5072 | GenTreeCall* callNode = nullptr) |
| 5073 | : GenTreeUnOp(oper, type, op1 DEBUGARG(/*largeNode*/ false)) |
| 5074 | , gtSlotNum(slotNum) |
| 5075 | #if defined(UNIX_X86_ABI) |
| 5076 | , gtPadAlign(0) |
| 5077 | #endif |
| 5078 | #if FEATURE_FASTTAILCALL |
| 5079 | , gtPutInIncomingArgArea(putInIncomingArgArea) |
| 5080 | #endif // FEATURE_FASTTAILCALL |
| 5081 | #ifdef FEATURE_PUT_STRUCT_ARG_STK |
| 5082 | , gtPutArgStkKind(Kind::Invalid) |
| 5083 | , gtNumSlots(numSlots) |
| 5084 | , gtNumberReferenceSlots(0) |
| 5085 | , gtGcPtrs(nullptr) |
| 5086 | #endif // FEATURE_PUT_STRUCT_ARG_STK |
| 5087 | #if defined(DEBUG) || defined(UNIX_X86_ABI) |
| 5088 | , gtCall(callNode) |
| 5089 | #endif |
| 5090 | { |
| 5091 | } |
| 5092 | |
| 5093 | // clang-format on |
| 5094 | |
| 5095 | #if FEATURE_FASTTAILCALL |
| 5096 | |
| 5097 | bool gtPutInIncomingArgArea; // Whether this arg needs to be placed in incoming arg area. |
| 5098 | // By default this is false and will be placed in out-going arg area. |
| 5099 | // Fast tail calls set this to true. |
| 5100 | // In future if we need to add more such bool fields consider bit fields. |
| 5101 | |
| 5102 | bool putInIncomingArgArea() const |
| 5103 | { |
| 5104 | return gtPutInIncomingArgArea; |
| 5105 | } |
| 5106 | |
| 5107 | #else // !FEATURE_FASTTAILCALL |
| 5108 | |
| 5109 | bool putInIncomingArgArea() const |
| 5110 | { |
| 5111 | return false; |
| 5112 | } |
| 5113 | |
| 5114 | #endif // !FEATURE_FASTTAILCALL |
| 5115 | |
| 5116 | unsigned getArgOffset() |
| 5117 | { |
| 5118 | return gtSlotNum * TARGET_POINTER_SIZE; |
| 5119 | } |
| 5120 | |
| 5121 | #if defined(UNIX_X86_ABI) |
| 5122 | unsigned getArgPadding() |
| 5123 | { |
| 5124 | return gtPadAlign; |
| 5125 | } |
| 5126 | |
| 5127 | void setArgPadding(unsigned padAlign) |
| 5128 | { |
| 5129 | gtPadAlign = padAlign; |
| 5130 | } |
| 5131 | #endif |
| 5132 | |
| 5133 | #ifdef FEATURE_PUT_STRUCT_ARG_STK |
| 5134 | |
| 5135 | unsigned getArgSize() |
| 5136 | { |
| 5137 | return gtNumSlots * TARGET_POINTER_SIZE; |
| 5138 | } |
| 5139 | |
| 5140 | // Return true if this is a PutArgStk of a SIMD12 struct. |
| 5141 | // This is needed because such values are re-typed to SIMD16, and the type of PutArgStk is VOID. |
| 5142 | unsigned isSIMD12() |
| 5143 | { |
| 5144 | return (varTypeIsSIMD(gtOp1) && (gtNumSlots == 3)); |
| 5145 | } |
| 5146 | |
| 5147 | //------------------------------------------------------------------------ |
| 5148 | // setGcPointers: Sets the number of references and the layout of the struct object returned by the VM. |
| 5149 | // |
| 5150 | // Arguments: |
| 5151 | // numPointers - Number of pointer references. |
| 5152 | // pointers - layout of the struct (with pointers marked.) |
| 5153 | // |
| 5154 | // Return Value: |
| 5155 | // None |
| 5156 | // |
| 5157 | // Notes: |
| 5158 | // This data is used in the codegen for GT_PUTARG_STK to decide how to copy the struct to the stack by value. |
| 5159 | // If no pointer references are used, block copying instructions are used. |
| 5160 | // Otherwise the pointer reference slots are copied atomically in a way that gcinfo is emitted. |
| 5161 | // Any non pointer references between the pointer reference slots are copied in block fashion. |
| 5162 | // |
| 5163 | void setGcPointers(unsigned numPointers, BYTE* pointers) |
| 5164 | { |
| 5165 | gtNumberReferenceSlots = numPointers; |
| 5166 | gtGcPtrs = pointers; |
| 5167 | } |
| 5168 | |
| 5169 | // Instruction selection: during codegen time, what code sequence we will be using |
| 5170 | // to encode this operation. |
| 5171 | // TODO-Throughput: The following information should be obtained from the child |
| 5172 | // block node. |
| 5173 | |
| 5174 | enum class Kind : __int8{ |
| 5175 | Invalid, RepInstr, Unroll, Push, PushAllSlots, |
| 5176 | }; |
| 5177 | |
| 5178 | Kind gtPutArgStkKind; |
| 5179 | bool isPushKind() |
| 5180 | { |
| 5181 | return (gtPutArgStkKind == Kind::Push) || (gtPutArgStkKind == Kind::PushAllSlots); |
| 5182 | } |
| 5183 | |
| 5184 | unsigned gtNumSlots; // Number of slots for the argument to be passed on stack |
| 5185 | unsigned gtNumberReferenceSlots; // Number of reference slots. |
| 5186 | BYTE* gtGcPtrs; // gcPointers |
| 5187 | |
| 5188 | #else // !FEATURE_PUT_STRUCT_ARG_STK |
| 5189 | unsigned getArgSize(); |
| 5190 | #endif // !FEATURE_PUT_STRUCT_ARG_STK |
| 5191 | |
| 5192 | #if defined(DEBUG) || defined(UNIX_X86_ABI) |
| 5193 | GenTreeCall* gtCall; // the call node to which this argument belongs |
| 5194 | #endif |
| 5195 | |
| 5196 | #if DEBUGGABLE_GENTREE |
| 5197 | GenTreePutArgStk() : GenTreeUnOp() |
| 5198 | { |
| 5199 | } |
| 5200 | #endif |
| 5201 | }; |
| 5202 | |
| 5203 | #if FEATURE_ARG_SPLIT |
| 5204 | // Represent the struct argument: split value in register(s) and stack |
| 5205 | struct GenTreePutArgSplit : public GenTreePutArgStk |
| 5206 | { |
| 5207 | unsigned gtNumRegs; |
| 5208 | |
| 5209 | GenTreePutArgSplit(GenTree* op1, |
| 5210 | unsigned slotNum PUT_STRUCT_ARG_STK_ONLY_ARG(unsigned numSlots), |
| 5211 | unsigned numRegs, |
| 5212 | bool putIncomingArgArea = false, |
| 5213 | GenTreeCall* callNode = nullptr) |
| 5214 | : GenTreePutArgStk(GT_PUTARG_SPLIT, |
| 5215 | TYP_STRUCT, |
| 5216 | op1, |
| 5217 | slotNum PUT_STRUCT_ARG_STK_ONLY_ARG(numSlots), |
| 5218 | putIncomingArgArea, |
| 5219 | callNode) |
| 5220 | , gtNumRegs(numRegs) |
| 5221 | { |
| 5222 | ClearOtherRegs(); |
| 5223 | ClearOtherRegFlags(); |
| 5224 | } |
| 5225 | |
| 5226 | // Type required to support multi-reg struct arg. |
| 5227 | var_types m_regType[MAX_REG_ARG]; |
| 5228 | |
| 5229 | // First reg of struct is always given by gtRegNum. |
| 5230 | // gtOtherRegs holds the other reg numbers of struct. |
| 5231 | regNumberSmall gtOtherRegs[MAX_REG_ARG - 1]; |
| 5232 | |
| 5233 | // GTF_SPILL or GTF_SPILLED flag on a multi-reg struct node indicates that one or |
| 5234 | // more of its result regs are in that state. The spill flag of each of the |
| 5235 | // return register is stored here. We only need 2 bits per register, |
| 5236 | // so this is treated as a 2-bit array. |
| 5237 | static const unsigned PACKED_GTF_SPILL = 1; |
| 5238 | static const unsigned PACKED_GTF_SPILLED = 2; |
| 5239 | unsigned char gtSpillFlags; |
| 5240 | |
| 5241 | //--------------------------------------------------------------------------- |
| 5242 | // GetRegNumByIdx: get ith register allocated to this struct argument. |
| 5243 | // |
| 5244 | // Arguments: |
| 5245 | // idx - index of the struct |
| 5246 | // |
| 5247 | // Return Value: |
| 5248 | // Return regNumber of ith register of this struct argument |
| 5249 | // |
| 5250 | regNumber GetRegNumByIdx(unsigned idx) const |
| 5251 | { |
| 5252 | assert(idx < MAX_REG_ARG); |
| 5253 | |
| 5254 | if (idx == 0) |
| 5255 | { |
| 5256 | return gtRegNum; |
| 5257 | } |
| 5258 | |
| 5259 | return (regNumber)gtOtherRegs[idx - 1]; |
| 5260 | } |
| 5261 | |
| 5262 | //---------------------------------------------------------------------- |
| 5263 | // SetRegNumByIdx: set ith register of this struct argument |
| 5264 | // |
| 5265 | // Arguments: |
| 5266 | // reg - reg number |
| 5267 | // idx - index of the struct |
| 5268 | // |
| 5269 | // Return Value: |
| 5270 | // None |
| 5271 | // |
| 5272 | void SetRegNumByIdx(regNumber reg, unsigned idx) |
| 5273 | { |
| 5274 | assert(idx < MAX_REG_ARG); |
| 5275 | if (idx == 0) |
| 5276 | { |
| 5277 | gtRegNum = reg; |
| 5278 | } |
| 5279 | else |
| 5280 | { |
| 5281 | gtOtherRegs[idx - 1] = (regNumberSmall)reg; |
| 5282 | assert(gtOtherRegs[idx - 1] == reg); |
| 5283 | } |
| 5284 | } |
| 5285 | |
| 5286 | //---------------------------------------------------------------------------- |
| 5287 | // ClearOtherRegs: clear multi-reg state to indicate no regs are allocated |
| 5288 | // |
| 5289 | // Arguments: |
| 5290 | // None |
| 5291 | // |
| 5292 | // Return Value: |
| 5293 | // None |
| 5294 | // |
| 5295 | void ClearOtherRegs() |
| 5296 | { |
| 5297 | for (unsigned i = 0; i < MAX_REG_ARG - 1; ++i) |
| 5298 | { |
| 5299 | gtOtherRegs[i] = REG_NA; |
| 5300 | } |
| 5301 | } |
| 5302 | |
| 5303 | //---------------------------------------------------------------------- |
| 5304 | // GetRegSpillFlagByIdx: get spill flag associated with the register |
| 5305 | // specified by its index. |
| 5306 | // |
| 5307 | // Arguments: |
| 5308 | // idx - Position or index of the register |
| 5309 | // |
| 5310 | // Return Value: |
| 5311 | // Returns GTF_* flags associated with the register. Only GTF_SPILL and GTF_SPILLED are considered. |
| 5312 | // |
| 5313 | unsigned GetRegSpillFlagByIdx(unsigned idx) const |
| 5314 | { |
| 5315 | assert(idx < MAX_REG_ARG); |
| 5316 | |
| 5317 | unsigned bits = gtSpillFlags >> (idx * 2); // It doesn't matter that we possibly leave other high bits here. |
| 5318 | unsigned spillFlags = 0; |
| 5319 | if (bits & PACKED_GTF_SPILL) |
| 5320 | { |
| 5321 | spillFlags |= GTF_SPILL; |
| 5322 | } |
| 5323 | if (bits & PACKED_GTF_SPILLED) |
| 5324 | { |
| 5325 | spillFlags |= GTF_SPILLED; |
| 5326 | } |
| 5327 | |
| 5328 | return spillFlags; |
| 5329 | } |
| 5330 | |
| 5331 | //---------------------------------------------------------------------- |
| 5332 | // SetRegSpillFlagByIdx: set spill flags for the register |
| 5333 | // specified by its index. |
| 5334 | // |
| 5335 | // Arguments: |
| 5336 | // flags - GTF_* flags. Only GTF_SPILL and GTF_SPILLED are allowed. |
| 5337 | // idx - Position or index of the register |
| 5338 | // |
| 5339 | // Return Value: |
| 5340 | // None |
| 5341 | // |
| 5342 | void SetRegSpillFlagByIdx(unsigned flags, unsigned idx) |
| 5343 | { |
| 5344 | assert(idx < MAX_REG_ARG); |
| 5345 | |
| 5346 | unsigned bits = 0; |
| 5347 | if (flags & GTF_SPILL) |
| 5348 | { |
| 5349 | bits |= PACKED_GTF_SPILL; |
| 5350 | } |
| 5351 | if (flags & GTF_SPILLED) |
| 5352 | { |
| 5353 | bits |= PACKED_GTF_SPILLED; |
| 5354 | } |
| 5355 | |
| 5356 | const unsigned char packedFlags = PACKED_GTF_SPILL | PACKED_GTF_SPILLED; |
| 5357 | |
| 5358 | // Clear anything that was already there by masking out the bits before 'or'ing in what we want there. |
| 5359 | gtSpillFlags = (unsigned char)((gtSpillFlags & ~(packedFlags << (idx * 2))) | (bits << (idx * 2))); |
| 5360 | } |
| 5361 | |
| 5362 | //-------------------------------------------------------------------------- |
| 5363 | // GetRegType: Get var_type of the register specified by index. |
| 5364 | // |
| 5365 | // Arguments: |
| 5366 | // index - Index of the register. |
| 5367 | // First register will have an index 0 and so on. |
| 5368 | // |
| 5369 | // Return Value: |
| 5370 | // var_type of the register specified by its index. |
| 5371 | |
| 5372 | var_types GetRegType(unsigned index) |
| 5373 | { |
| 5374 | assert(index < gtNumRegs); |
| 5375 | var_types result = m_regType[index]; |
| 5376 | return result; |
| 5377 | } |
| 5378 | |
| 5379 | //------------------------------------------------------------------- |
| 5380 | // clearOtherRegFlags: clear GTF_* flags associated with gtOtherRegs |
| 5381 | // |
| 5382 | // Arguments: |
| 5383 | // None |
| 5384 | // |
| 5385 | // Return Value: |
| 5386 | // None |
| 5387 | // |
| 5388 | void ClearOtherRegFlags() |
| 5389 | { |
| 5390 | gtSpillFlags = 0; |
| 5391 | } |
| 5392 | |
| 5393 | #ifdef FEATURE_PUT_STRUCT_ARG_STK |
| 5394 | unsigned getArgSize() |
| 5395 | { |
| 5396 | return (gtNumSlots + gtNumRegs) * TARGET_POINTER_SIZE; |
| 5397 | } |
| 5398 | #endif // FEATURE_PUT_STRUCT_ARG_STK |
| 5399 | |
| 5400 | #if DEBUGGABLE_GENTREE |
| 5401 | GenTreePutArgSplit() : GenTreePutArgStk() |
| 5402 | { |
| 5403 | } |
| 5404 | #endif |
| 5405 | }; |
| 5406 | #endif // FEATURE_ARG_SPLIT |
| 5407 | |
| 5408 | // Represents GT_COPY or GT_RELOAD node |
| 5409 | // |
| 5410 | // As it turns out, these are only needed on targets that happen to have multi-reg returns. |
| 5411 | // However, they are actually needed on any target that has any multi-reg ops. It is just |
| 5412 | // coincidence that those are the same (and there isn't a FEATURE_MULTIREG_OPS). |
| 5413 | // |
| 5414 | struct GenTreeCopyOrReload : public GenTreeUnOp |
| 5415 | { |
| 5416 | #if FEATURE_MULTIREG_RET |
| 5417 | // State required to support copy/reload of a multi-reg call node. |
| 5418 | // The first register is always given by gtRegNum. |
| 5419 | // |
| 5420 | regNumberSmall gtOtherRegs[MAX_RET_REG_COUNT - 1]; |
| 5421 | #endif |
| 5422 | |
| 5423 | //---------------------------------------------------------- |
| 5424 | // ClearOtherRegs: set gtOtherRegs to REG_NA. |
| 5425 | // |
| 5426 | // Arguments: |
| 5427 | // None |
| 5428 | // |
| 5429 | // Return Value: |
| 5430 | // None |
| 5431 | // |
| 5432 | void ClearOtherRegs() |
| 5433 | { |
| 5434 | #if FEATURE_MULTIREG_RET |
| 5435 | for (unsigned i = 0; i < MAX_RET_REG_COUNT - 1; ++i) |
| 5436 | { |
| 5437 | gtOtherRegs[i] = REG_NA; |
| 5438 | } |
| 5439 | #endif |
| 5440 | } |
| 5441 | |
| 5442 | //----------------------------------------------------------- |
| 5443 | // GetRegNumByIdx: Get regNumber of ith position. |
| 5444 | // |
| 5445 | // Arguments: |
| 5446 | // idx - register position. |
| 5447 | // |
| 5448 | // Return Value: |
| 5449 | // Returns regNumber assigned to ith position. |
| 5450 | // |
| 5451 | regNumber GetRegNumByIdx(unsigned idx) const |
| 5452 | { |
| 5453 | assert(idx < MAX_RET_REG_COUNT); |
| 5454 | |
| 5455 | if (idx == 0) |
| 5456 | { |
| 5457 | return gtRegNum; |
| 5458 | } |
| 5459 | |
| 5460 | #if FEATURE_MULTIREG_RET |
| 5461 | return (regNumber)gtOtherRegs[idx - 1]; |
| 5462 | #else |
| 5463 | return REG_NA; |
| 5464 | #endif |
| 5465 | } |
| 5466 | |
| 5467 | //----------------------------------------------------------- |
| 5468 | // SetRegNumByIdx: Set the regNumber for ith position. |
| 5469 | // |
| 5470 | // Arguments: |
| 5471 | // reg - reg number |
| 5472 | // idx - register position. |
| 5473 | // |
| 5474 | // Return Value: |
| 5475 | // None. |
| 5476 | // |
| 5477 | void SetRegNumByIdx(regNumber reg, unsigned idx) |
| 5478 | { |
| 5479 | assert(idx < MAX_RET_REG_COUNT); |
| 5480 | |
| 5481 | if (idx == 0) |
| 5482 | { |
| 5483 | gtRegNum = reg; |
| 5484 | } |
| 5485 | #if FEATURE_MULTIREG_RET |
| 5486 | else |
| 5487 | { |
| 5488 | gtOtherRegs[idx - 1] = (regNumberSmall)reg; |
| 5489 | assert(gtOtherRegs[idx - 1] == reg); |
| 5490 | } |
| 5491 | #else |
| 5492 | else |
| 5493 | { |
| 5494 | unreached(); |
| 5495 | } |
| 5496 | #endif |
| 5497 | } |
| 5498 | |
| 5499 | //---------------------------------------------------------------------------- |
| 5500 | // CopyOtherRegs: copy multi-reg state from the given copy/reload node to this |
| 5501 | // node. |
| 5502 | // |
| 5503 | // Arguments: |
| 5504 | // from - GenTree node from which to copy multi-reg state |
| 5505 | // |
| 5506 | // Return Value: |
| 5507 | // None |
| 5508 | // |
| 5509 | // TODO-ARM: Implement this routine for Arm64 and Arm32 |
| 5510 | // TODO-X86: Implement this routine for x86 |
| 5511 | void CopyOtherRegs(GenTreeCopyOrReload* from) |
| 5512 | { |
| 5513 | assert(OperGet() == from->OperGet()); |
| 5514 | |
| 5515 | #ifdef UNIX_AMD64_ABI |
| 5516 | for (unsigned i = 0; i < MAX_RET_REG_COUNT - 1; ++i) |
| 5517 | { |
| 5518 | gtOtherRegs[i] = from->gtOtherRegs[i]; |
| 5519 | } |
| 5520 | #endif |
| 5521 | } |
| 5522 | |
| 5523 | unsigned GetRegCount() |
| 5524 | { |
| 5525 | #if FEATURE_MULTIREG_RET |
| 5526 | // We need to return the highest index for which we have a valid register. |
| 5527 | // Note that the gtOtherRegs array is off by one (the 0th register is gtRegNum). |
| 5528 | // If there's no valid register in gtOtherRegs, gtRegNum must be valid. |
| 5529 | // Note that for most nodes, the set of valid registers must be contiguous, |
| 5530 | // but for COPY or RELOAD there is only a valid register for the register positions |
| 5531 | // that must be copied or reloaded. |
| 5532 | // |
| 5533 | for (unsigned i = MAX_RET_REG_COUNT; i > 1; i--) |
| 5534 | { |
| 5535 | if (gtOtherRegs[i - 2] != REG_NA) |
| 5536 | { |
| 5537 | return i; |
| 5538 | } |
| 5539 | } |
| 5540 | #endif |
| 5541 | // We should never have a COPY or RELOAD with no valid registers. |
| 5542 | assert(gtRegNum != REG_NA); |
| 5543 | return 1; |
| 5544 | } |
| 5545 | |
| 5546 | GenTreeCopyOrReload(genTreeOps oper, var_types type, GenTree* op1) : GenTreeUnOp(oper, type, op1) |
| 5547 | { |
| 5548 | gtRegNum = REG_NA; |
| 5549 | ClearOtherRegs(); |
| 5550 | } |
| 5551 | |
| 5552 | #if DEBUGGABLE_GENTREE |
| 5553 | GenTreeCopyOrReload() : GenTreeUnOp() |
| 5554 | { |
| 5555 | } |
| 5556 | #endif |
| 5557 | }; |
| 5558 | |
| 5559 | // Represents GT_ALLOCOBJ node |
| 5560 | |
| 5561 | struct GenTreeAllocObj final : public GenTreeUnOp |
| 5562 | { |
| 5563 | unsigned int gtNewHelper; // Value returned by ICorJitInfo::getNewHelper |
| 5564 | bool gtHelperHasSideEffects; |
| 5565 | CORINFO_CLASS_HANDLE gtAllocObjClsHnd; |
| 5566 | #ifdef FEATURE_READYTORUN_COMPILER |
| 5567 | CORINFO_CONST_LOOKUP gtEntryPoint; |
| 5568 | #endif |
| 5569 | |
| 5570 | GenTreeAllocObj( |
| 5571 | var_types type, unsigned int helper, bool helperHasSideEffects, CORINFO_CLASS_HANDLE clsHnd, GenTree* op) |
| 5572 | : GenTreeUnOp(GT_ALLOCOBJ, type, op DEBUGARG(/*largeNode*/ TRUE)) |
| 5573 | , // This node in most cases will be changed to a call node |
| 5574 | gtNewHelper(helper) |
| 5575 | , gtHelperHasSideEffects(helperHasSideEffects) |
| 5576 | , gtAllocObjClsHnd(clsHnd) |
| 5577 | { |
| 5578 | #ifdef FEATURE_READYTORUN_COMPILER |
| 5579 | gtEntryPoint.addr = nullptr; |
| 5580 | #endif |
| 5581 | } |
| 5582 | #if DEBUGGABLE_GENTREE |
| 5583 | GenTreeAllocObj() : GenTreeUnOp() |
| 5584 | { |
| 5585 | } |
| 5586 | #endif |
| 5587 | }; |
| 5588 | |
| 5589 | // Represents GT_RUNTIMELOOKUP node |
| 5590 | |
| 5591 | struct GenTreeRuntimeLookup final : public GenTreeUnOp |
| 5592 | { |
| 5593 | CORINFO_GENERIC_HANDLE gtHnd; |
| 5594 | CorInfoGenericHandleType gtHndType; |
| 5595 | |
| 5596 | GenTreeRuntimeLookup(CORINFO_GENERIC_HANDLE hnd, CorInfoGenericHandleType hndTyp, GenTree* tree) |
| 5597 | : GenTreeUnOp(GT_RUNTIMELOOKUP, tree->gtType, tree DEBUGARG(/*largeNode*/ FALSE)), gtHnd(hnd), gtHndType(hndTyp) |
| 5598 | { |
| 5599 | assert(hnd != nullptr); |
| 5600 | } |
| 5601 | #if DEBUGGABLE_GENTREE |
| 5602 | GenTreeRuntimeLookup() : GenTreeUnOp() |
| 5603 | { |
| 5604 | } |
| 5605 | #endif |
| 5606 | |
| 5607 | // Return reference to the actual tree that does the lookup |
| 5608 | GenTree*& Lookup() |
| 5609 | { |
| 5610 | return gtOp1; |
| 5611 | } |
| 5612 | |
| 5613 | bool IsClassHandle() const |
| 5614 | { |
| 5615 | return gtHndType == CORINFO_HANDLETYPE_CLASS; |
| 5616 | } |
| 5617 | bool IsMethodHandle() const |
| 5618 | { |
| 5619 | return gtHndType == CORINFO_HANDLETYPE_METHOD; |
| 5620 | } |
| 5621 | bool IsFieldHandle() const |
| 5622 | { |
| 5623 | return gtHndType == CORINFO_HANDLETYPE_FIELD; |
| 5624 | } |
| 5625 | |
| 5626 | // Note these operations describe the handle that is input to the |
| 5627 | // lookup, not the handle produced by the lookup. |
| 5628 | CORINFO_CLASS_HANDLE GetClassHandle() const |
| 5629 | { |
| 5630 | assert(IsClassHandle()); |
| 5631 | return (CORINFO_CLASS_HANDLE)gtHnd; |
| 5632 | } |
| 5633 | CORINFO_METHOD_HANDLE GetMethodHandle() const |
| 5634 | { |
| 5635 | assert(IsMethodHandle()); |
| 5636 | return (CORINFO_METHOD_HANDLE)gtHnd; |
| 5637 | } |
| 5638 | CORINFO_FIELD_HANDLE GetFieldHandle() const |
| 5639 | { |
| 5640 | assert(IsMethodHandle()); |
| 5641 | return (CORINFO_FIELD_HANDLE)gtHnd; |
| 5642 | } |
| 5643 | }; |
| 5644 | |
| 5645 | // Represents a GT_JCC or GT_SETCC node. |
| 5646 | |
| 5647 | struct GenTreeCC final : public GenTree |
| 5648 | { |
| 5649 | genTreeOps gtCondition; // any relop |
| 5650 | |
| 5651 | GenTreeCC(genTreeOps oper, genTreeOps condition, var_types type = TYP_VOID) |
| 5652 | : GenTree(oper, type DEBUGARG(/*largeNode*/ FALSE)), gtCondition(condition) |
| 5653 | { |
| 5654 | assert(OperIs(GT_JCC, GT_SETCC)); |
| 5655 | assert(OperIsCompare(condition)); |
| 5656 | } |
| 5657 | |
| 5658 | #if DEBUGGABLE_GENTREE |
| 5659 | GenTreeCC() : GenTree() |
| 5660 | { |
| 5661 | } |
| 5662 | #endif // DEBUGGABLE_GENTREE |
| 5663 | }; |
| 5664 | |
| 5665 | //------------------------------------------------------------------------ |
| 5666 | // Deferred inline functions of GenTree -- these need the subtypes above to |
| 5667 | // be defined already. |
| 5668 | //------------------------------------------------------------------------ |
| 5669 | |
| 5670 | inline bool GenTree::OperIsBlkOp() |
| 5671 | { |
| 5672 | return ((gtOper == GT_ASG) && varTypeIsStruct(gtOp.gtOp1)) || (OperIsBlk() && (AsBlk()->Data() != nullptr)); |
| 5673 | } |
| 5674 | |
| 5675 | inline bool GenTree::OperIsDynBlkOp() |
| 5676 | { |
| 5677 | if (gtOper == GT_ASG) |
| 5678 | { |
| 5679 | return gtGetOp1()->OperGet() == GT_DYN_BLK; |
| 5680 | } |
| 5681 | else if (gtOper == GT_STORE_DYN_BLK) |
| 5682 | { |
| 5683 | return true; |
| 5684 | } |
| 5685 | return false; |
| 5686 | } |
| 5687 | |
| 5688 | inline bool GenTree::OperIsInitBlkOp() |
| 5689 | { |
| 5690 | if (!OperIsBlkOp()) |
| 5691 | { |
| 5692 | return false; |
| 5693 | } |
| 5694 | GenTree* src; |
| 5695 | if (gtOper == GT_ASG) |
| 5696 | { |
| 5697 | src = gtGetOp2(); |
| 5698 | } |
| 5699 | else |
| 5700 | { |
| 5701 | src = AsBlk()->Data()->gtSkipReloadOrCopy(); |
| 5702 | } |
| 5703 | return src->OperIsInitVal() || src->OperIsConst(); |
| 5704 | } |
| 5705 | |
| 5706 | inline bool GenTree::OperIsCopyBlkOp() |
| 5707 | { |
| 5708 | return OperIsBlkOp() && !OperIsInitBlkOp(); |
| 5709 | } |
| 5710 | |
| 5711 | //------------------------------------------------------------------------ |
| 5712 | // IsFPZero: Checks whether this is a floating point constant with value 0.0 |
| 5713 | // |
| 5714 | // Return Value: |
| 5715 | // Returns true iff the tree is an GT_CNS_DBL, with value of 0.0. |
| 5716 | |
| 5717 | inline bool GenTree::IsFPZero() |
| 5718 | { |
| 5719 | if ((gtOper == GT_CNS_DBL) && (gtDblCon.gtDconVal == 0.0)) |
| 5720 | { |
| 5721 | return true; |
| 5722 | } |
| 5723 | return false; |
| 5724 | } |
| 5725 | |
| 5726 | //------------------------------------------------------------------------ |
| 5727 | // IsIntegralConst: Checks whether this is a constant node with the given value |
| 5728 | // |
| 5729 | // Arguments: |
| 5730 | // constVal - the value of interest |
| 5731 | // |
| 5732 | // Return Value: |
| 5733 | // Returns true iff the tree is an integral constant opcode, with |
| 5734 | // the given value. |
| 5735 | // |
| 5736 | // Notes: |
| 5737 | // Like gtIconVal, the argument is of ssize_t, so cannot check for |
| 5738 | // long constants in a target-independent way. |
| 5739 | |
| 5740 | inline bool GenTree::IsIntegralConst(ssize_t constVal) |
| 5741 | |
| 5742 | { |
| 5743 | if ((gtOper == GT_CNS_INT) && (gtIntConCommon.IconValue() == constVal)) |
| 5744 | { |
| 5745 | return true; |
| 5746 | } |
| 5747 | |
| 5748 | if ((gtOper == GT_CNS_LNG) && (gtIntConCommon.LngValue() == constVal)) |
| 5749 | { |
| 5750 | return true; |
| 5751 | } |
| 5752 | |
| 5753 | return false; |
| 5754 | } |
| 5755 | |
| 5756 | //------------------------------------------------------------------- |
| 5757 | // IsIntegralConstVector: returns true if this this is a SIMD vector |
| 5758 | // with all its elements equal to an integral constant. |
| 5759 | // |
| 5760 | // Arguments: |
| 5761 | // constVal - const value of vector element |
| 5762 | // |
| 5763 | // Returns: |
| 5764 | // True if this represents an integral const SIMD vector. |
| 5765 | // |
| 5766 | inline bool GenTree::IsIntegralConstVector(ssize_t constVal) |
| 5767 | { |
| 5768 | #ifdef FEATURE_SIMD |
| 5769 | // SIMDIntrinsicInit intrinsic with a const value as initializer |
| 5770 | // represents a const vector. |
| 5771 | if ((gtOper == GT_SIMD) && (gtSIMD.gtSIMDIntrinsicID == SIMDIntrinsicInit) && gtGetOp1()->IsIntegralConst(constVal)) |
| 5772 | { |
| 5773 | assert(varTypeIsIntegral(gtSIMD.gtSIMDBaseType)); |
| 5774 | assert(gtGetOp2IfPresent() == nullptr); |
| 5775 | return true; |
| 5776 | } |
| 5777 | #endif |
| 5778 | |
| 5779 | return false; |
| 5780 | } |
| 5781 | |
| 5782 | inline bool GenTree::IsBoxedValue() |
| 5783 | { |
| 5784 | assert(gtOper != GT_BOX || gtBox.BoxOp() != nullptr); |
| 5785 | return (gtOper == GT_BOX) && (gtFlags & GTF_BOX_VALUE); |
| 5786 | } |
| 5787 | |
| 5788 | inline bool GenTree::IsSIMDEqualityOrInequality() const |
| 5789 | { |
| 5790 | #ifdef FEATURE_SIMD |
| 5791 | if (gtOper == GT_SIMD) |
| 5792 | { |
| 5793 | SIMDIntrinsicID id = AsSIMD()->gtSIMDIntrinsicID; |
| 5794 | return (id == SIMDIntrinsicOpEquality) || (id == SIMDIntrinsicOpInEquality); |
| 5795 | } |
| 5796 | #endif |
| 5797 | |
| 5798 | return false; |
| 5799 | } |
| 5800 | |
| 5801 | inline GenTree* GenTree::MoveNext() |
| 5802 | { |
| 5803 | assert(OperIsAnyList()); |
| 5804 | return gtOp.gtOp2; |
| 5805 | } |
| 5806 | |
| 5807 | #ifdef DEBUG |
| 5808 | //------------------------------------------------------------------------ |
| 5809 | // IsValidCallArgument: Given an GenTree node that represents an argument |
| 5810 | // enforce (or don't enforce) the following invariant. |
| 5811 | // |
| 5812 | // Arguments: |
| 5813 | // instance method for a GenTree node |
| 5814 | // |
| 5815 | // Return values: |
| 5816 | // true: the GenTree node is accepted as a valid argument |
| 5817 | // false: the GenTree node is not accepted as a valid argumeny |
| 5818 | // |
| 5819 | // Notes: |
| 5820 | // For targets that don't support arguments as a list of fields, we do not support GT_FIELD_LIST. |
| 5821 | // |
| 5822 | // Currently for AMD64 UNIX we allow a limited case where a GT_FIELD_LIST is |
| 5823 | // allowed but every element must be a GT_LCL_FLD. |
| 5824 | // |
| 5825 | // For the future targets that allow for Multireg args (and this includes the current ARM64 target), |
| 5826 | // or that allow for passing promoted structs, we allow a GT_FIELD_LIST of arbitrary nodes. |
| 5827 | // These would typically start out as GT_LCL_VARs or GT_LCL_FLDS or GT_INDs, |
| 5828 | // but could be changed into constants or GT_COMMA trees by the later |
| 5829 | // optimization phases. |
| 5830 | |
| 5831 | inline bool GenTree::IsValidCallArgument() |
| 5832 | { |
| 5833 | if (OperIsList()) |
| 5834 | { |
| 5835 | // GT_FIELD_LIST is the only list allowed. |
| 5836 | return false; |
| 5837 | } |
| 5838 | if (OperIsFieldList()) |
| 5839 | { |
| 5840 | #if !FEATURE_MULTIREG_ARGS && !FEATURE_PUT_STRUCT_ARG_STK |
| 5841 | |
| 5842 | return false; |
| 5843 | |
| 5844 | #else // FEATURE_MULTIREG_ARGS or FEATURE_PUT_STRUCT_ARG_STK |
| 5845 | |
| 5846 | // We allow this GT_FIELD_LIST as an argument |
| 5847 | return true; |
| 5848 | |
| 5849 | #endif // FEATURE_MULTIREG_ARGS or FEATURE_PUT_STRUCT_ARG_STK |
| 5850 | } |
| 5851 | // We don't have either kind of list, so it satisfies the invariant. |
| 5852 | return true; |
| 5853 | } |
| 5854 | #endif // DEBUG |
| 5855 | |
| 5856 | inline GenTree* GenTree::Current() |
| 5857 | { |
| 5858 | assert(OperIsAnyList()); |
| 5859 | return gtOp.gtOp1; |
| 5860 | } |
| 5861 | |
| 5862 | inline GenTree** GenTree::pCurrent() |
| 5863 | { |
| 5864 | assert(OperIsAnyList()); |
| 5865 | return &(gtOp.gtOp1); |
| 5866 | } |
| 5867 | |
| 5868 | inline GenTree* GenTree::gtGetOp1() const |
| 5869 | { |
| 5870 | return AsOp()->gtOp1; |
| 5871 | } |
| 5872 | |
| 5873 | #ifdef DEBUG |
| 5874 | /* static */ |
| 5875 | inline bool GenTree::RequiresNonNullOp2(genTreeOps oper) |
| 5876 | { |
| 5877 | switch (oper) |
| 5878 | { |
| 5879 | case GT_ADD: |
| 5880 | case GT_SUB: |
| 5881 | case GT_MUL: |
| 5882 | case GT_DIV: |
| 5883 | case GT_MOD: |
| 5884 | case GT_UDIV: |
| 5885 | case GT_UMOD: |
| 5886 | case GT_OR: |
| 5887 | case GT_XOR: |
| 5888 | case GT_AND: |
| 5889 | case GT_LSH: |
| 5890 | case GT_RSH: |
| 5891 | case GT_RSZ: |
| 5892 | case GT_ROL: |
| 5893 | case GT_ROR: |
| 5894 | case GT_INDEX: |
| 5895 | case GT_ASG: |
| 5896 | case GT_EQ: |
| 5897 | case GT_NE: |
| 5898 | case GT_LT: |
| 5899 | case GT_LE: |
| 5900 | case GT_GE: |
| 5901 | case GT_GT: |
| 5902 | case GT_COMMA: |
| 5903 | case GT_QMARK: |
| 5904 | case GT_COLON: |
| 5905 | case GT_MKREFANY: |
| 5906 | return true; |
| 5907 | default: |
| 5908 | return false; |
| 5909 | } |
| 5910 | } |
| 5911 | #endif // DEBUG |
| 5912 | |
| 5913 | inline GenTree* GenTree::gtGetOp2() const |
| 5914 | { |
| 5915 | assert(OperIsBinary()); |
| 5916 | |
| 5917 | GenTree* op2 = AsOp()->gtOp2; |
| 5918 | |
| 5919 | // Only allow null op2 if the node type allows it, e.g. GT_LIST. |
| 5920 | assert((op2 != nullptr) || !RequiresNonNullOp2(gtOper)); |
| 5921 | |
| 5922 | return op2; |
| 5923 | } |
| 5924 | |
| 5925 | inline GenTree* GenTree::gtGetOp2IfPresent() const |
| 5926 | { |
| 5927 | /* gtOp.gtOp2 is only valid for GTK_BINOP nodes. */ |
| 5928 | |
| 5929 | GenTree* op2 = OperIsBinary() ? AsOp()->gtOp2 : nullptr; |
| 5930 | |
| 5931 | // This documents the genTreeOps for which gtOp.gtOp2 cannot be nullptr. |
| 5932 | // This helps prefix in its analysis of code which calls gtGetOp2() |
| 5933 | |
| 5934 | assert((op2 != nullptr) || !RequiresNonNullOp2(gtOper)); |
| 5935 | |
| 5936 | return op2; |
| 5937 | } |
| 5938 | |
| 5939 | inline GenTree* GenTree::gtEffectiveVal(bool commaOnly) |
| 5940 | { |
| 5941 | GenTree* effectiveVal = this; |
| 5942 | for (;;) |
| 5943 | { |
| 5944 | if (effectiveVal->gtOper == GT_COMMA) |
| 5945 | { |
| 5946 | effectiveVal = effectiveVal->gtOp.gtOp2; |
| 5947 | } |
| 5948 | else if (!commaOnly && (effectiveVal->gtOper == GT_NOP) && (effectiveVal->gtOp.gtOp1 != nullptr)) |
| 5949 | { |
| 5950 | effectiveVal = effectiveVal->gtOp.gtOp1; |
| 5951 | } |
| 5952 | else |
| 5953 | { |
| 5954 | return effectiveVal; |
| 5955 | } |
| 5956 | } |
| 5957 | } |
| 5958 | |
| 5959 | //------------------------------------------------------------------------- |
| 5960 | // gtRetExprVal - walk back through GT_RET_EXPRs |
| 5961 | // |
| 5962 | // Returns: |
| 5963 | // tree representing return value from a successful inline, |
| 5964 | // or original call for failed or yet to be determined inline. |
| 5965 | // |
| 5966 | // Notes: |
| 5967 | // Multi-level inlines can form chains of GT_RET_EXPRs. |
| 5968 | // This method walks back to the root of the chain. |
| 5969 | |
| 5970 | inline GenTree* GenTree::gtRetExprVal() |
| 5971 | { |
| 5972 | GenTree* retExprVal = this; |
| 5973 | for (;;) |
| 5974 | { |
| 5975 | if (retExprVal->gtOper == GT_RET_EXPR) |
| 5976 | { |
| 5977 | retExprVal = retExprVal->gtRetExpr.gtInlineCandidate; |
| 5978 | } |
| 5979 | else |
| 5980 | { |
| 5981 | return retExprVal; |
| 5982 | } |
| 5983 | } |
| 5984 | } |
| 5985 | |
| 5986 | inline GenTree* GenTree::gtSkipReloadOrCopy() |
| 5987 | { |
| 5988 | // There can be only one reload or copy (we can't have a reload/copy of a reload/copy) |
| 5989 | if (gtOper == GT_RELOAD || gtOper == GT_COPY) |
| 5990 | { |
| 5991 | assert(gtGetOp1()->OperGet() != GT_RELOAD && gtGetOp1()->OperGet() != GT_COPY); |
| 5992 | return gtGetOp1(); |
| 5993 | } |
| 5994 | return this; |
| 5995 | } |
| 5996 | |
| 5997 | //----------------------------------------------------------------------------------- |
| 5998 | // IsMultiRegCall: whether a call node returning its value in more than one register |
| 5999 | // |
| 6000 | // Arguments: |
| 6001 | // None |
| 6002 | // |
| 6003 | // Return Value: |
| 6004 | // Returns true if this GenTree is a multi register returning call |
| 6005 | inline bool GenTree::IsMultiRegCall() const |
| 6006 | { |
| 6007 | if (this->IsCall()) |
| 6008 | { |
| 6009 | // We cannot use AsCall() as it is not declared const |
| 6010 | const GenTreeCall* call = reinterpret_cast<const GenTreeCall*>(this); |
| 6011 | return call->HasMultiRegRetVal(); |
| 6012 | } |
| 6013 | |
| 6014 | return false; |
| 6015 | } |
| 6016 | |
| 6017 | //----------------------------------------------------------------------------------- |
| 6018 | // IsMultiRegNode: whether a node returning its value in more than one register |
| 6019 | // |
| 6020 | // Arguments: |
| 6021 | // None |
| 6022 | // |
| 6023 | // Return Value: |
| 6024 | // Returns true if this GenTree is a multi-reg node. |
| 6025 | // |
| 6026 | // Notes: |
| 6027 | // All targets that support multi-reg ops of any kind also support multi-reg return |
| 6028 | // values for calls. Should that change with a future target, this method will need |
| 6029 | // to change accordingly. |
| 6030 | // |
| 6031 | inline bool GenTree::IsMultiRegNode() const |
| 6032 | { |
| 6033 | #if FEATURE_MULTIREG_RET |
| 6034 | if (IsMultiRegCall()) |
| 6035 | { |
| 6036 | return true; |
| 6037 | } |
| 6038 | |
| 6039 | #if FEATURE_ARG_SPLIT |
| 6040 | if (OperIsPutArgSplit()) |
| 6041 | { |
| 6042 | return true; |
| 6043 | } |
| 6044 | #endif |
| 6045 | |
| 6046 | #if !defined(_TARGET_64BIT_) |
| 6047 | if (OperIsMultiRegOp()) |
| 6048 | { |
| 6049 | return true; |
| 6050 | } |
| 6051 | #endif |
| 6052 | |
| 6053 | if (OperIs(GT_COPY, GT_RELOAD)) |
| 6054 | { |
| 6055 | return true; |
| 6056 | } |
| 6057 | #endif // FEATURE_MULTIREG_RET |
| 6058 | return false; |
| 6059 | } |
| 6060 | //----------------------------------------------------------------------------------- |
| 6061 | // GetMultiRegCount: Return the register count for a multi-reg node. |
| 6062 | // |
| 6063 | // Arguments: |
| 6064 | // None |
| 6065 | // |
| 6066 | // Return Value: |
| 6067 | // Returns the number of registers defined by this node. |
| 6068 | // |
| 6069 | // Notes: |
| 6070 | // All targets that support multi-reg ops of any kind also support multi-reg return |
| 6071 | // values for calls. Should that change with a future target, this method will need |
| 6072 | // to change accordingly. |
| 6073 | // |
| 6074 | inline unsigned GenTree::GetMultiRegCount() |
| 6075 | { |
| 6076 | #if FEATURE_MULTIREG_RET |
| 6077 | if (IsMultiRegCall()) |
| 6078 | { |
| 6079 | return AsCall()->GetReturnTypeDesc()->GetReturnRegCount(); |
| 6080 | } |
| 6081 | |
| 6082 | #if FEATURE_ARG_SPLIT |
| 6083 | if (OperIsPutArgSplit()) |
| 6084 | { |
| 6085 | return AsPutArgSplit()->gtNumRegs; |
| 6086 | } |
| 6087 | #endif |
| 6088 | |
| 6089 | #if !defined(_TARGET_64BIT_) |
| 6090 | if (OperIsMultiRegOp()) |
| 6091 | { |
| 6092 | return AsMultiRegOp()->GetRegCount(); |
| 6093 | } |
| 6094 | #endif |
| 6095 | |
| 6096 | if (OperIs(GT_COPY, GT_RELOAD)) |
| 6097 | { |
| 6098 | return AsCopyOrReload()->GetRegCount(); |
| 6099 | } |
| 6100 | #endif // FEATURE_MULTIREG_RET |
| 6101 | assert(!"GetMultiRegCount called with non-multireg node" ); |
| 6102 | return 1; |
| 6103 | } |
| 6104 | |
| 6105 | //----------------------------------------------------------------------------------- |
| 6106 | // GetRegByIndex: Get a specific register, based on regIndex, that is produced |
| 6107 | // by this node. |
| 6108 | // |
| 6109 | // Arguments: |
| 6110 | // regIndex - which register to return (must be 0 for non-multireg nodes) |
| 6111 | // |
| 6112 | // Return Value: |
| 6113 | // The register, if any, assigned to this index for this node. |
| 6114 | // |
| 6115 | // Notes: |
| 6116 | // All targets that support multi-reg ops of any kind also support multi-reg return |
| 6117 | // values for calls. Should that change with a future target, this method will need |
| 6118 | // to change accordingly. |
| 6119 | // |
| 6120 | inline regNumber GenTree::GetRegByIndex(int regIndex) |
| 6121 | { |
| 6122 | if (regIndex == 0) |
| 6123 | { |
| 6124 | return gtRegNum; |
| 6125 | } |
| 6126 | |
| 6127 | #if FEATURE_MULTIREG_RET |
| 6128 | |
| 6129 | if (IsMultiRegCall()) |
| 6130 | { |
| 6131 | return AsCall()->GetRegNumByIdx(regIndex); |
| 6132 | } |
| 6133 | |
| 6134 | #if FEATURE_ARG_SPLIT |
| 6135 | if (OperIsPutArgSplit()) |
| 6136 | { |
| 6137 | return AsPutArgSplit()->GetRegNumByIdx(regIndex); |
| 6138 | } |
| 6139 | #endif |
| 6140 | #if !defined(_TARGET_64BIT_) |
| 6141 | if (OperIsMultiRegOp()) |
| 6142 | { |
| 6143 | return AsMultiRegOp()->GetRegNumByIdx(regIndex); |
| 6144 | } |
| 6145 | #endif |
| 6146 | |
| 6147 | if (OperIs(GT_COPY, GT_RELOAD)) |
| 6148 | { |
| 6149 | return AsCopyOrReload()->GetRegNumByIdx(regIndex); |
| 6150 | } |
| 6151 | #endif // FEATURE_MULTIREG_RET |
| 6152 | |
| 6153 | assert(!"Invalid regIndex for GetRegFromMultiRegNode" ); |
| 6154 | return REG_NA; |
| 6155 | } |
| 6156 | |
| 6157 | //----------------------------------------------------------------------------------- |
| 6158 | // GetRegTypeByIndex: Get a specific register's type, based on regIndex, that is produced |
| 6159 | // by this multi-reg node. |
| 6160 | // |
| 6161 | // Arguments: |
| 6162 | // regIndex - which register type to return |
| 6163 | // |
| 6164 | // Return Value: |
| 6165 | // The register type assigned to this index for this node. |
| 6166 | // |
| 6167 | // Notes: |
| 6168 | // This must be a multireg node that is *not* a copy or reload (which must retrieve the |
| 6169 | // type from its source), and 'regIndex' must be a valid index for this node. |
| 6170 | // |
| 6171 | // All targets that support multi-reg ops of any kind also support multi-reg return |
| 6172 | // values for calls. Should that change with a future target, this method will need |
| 6173 | // to change accordingly. |
| 6174 | // |
| 6175 | inline var_types GenTree::GetRegTypeByIndex(int regIndex) |
| 6176 | { |
| 6177 | #if FEATURE_MULTIREG_RET |
| 6178 | if (IsMultiRegCall()) |
| 6179 | { |
| 6180 | return AsCall()->AsCall()->GetReturnTypeDesc()->GetReturnRegType(regIndex); |
| 6181 | } |
| 6182 | |
| 6183 | #if FEATURE_ARG_SPLIT |
| 6184 | if (OperIsPutArgSplit()) |
| 6185 | { |
| 6186 | return AsPutArgSplit()->GetRegType(regIndex); |
| 6187 | } |
| 6188 | #endif |
| 6189 | #if !defined(_TARGET_64BIT_) |
| 6190 | if (OperIsMultiRegOp()) |
| 6191 | { |
| 6192 | return AsMultiRegOp()->GetRegType(regIndex); |
| 6193 | } |
| 6194 | #endif |
| 6195 | |
| 6196 | #endif // FEATURE_MULTIREG_RET |
| 6197 | assert(!"Invalid node type for GetRegTypeByIndex" ); |
| 6198 | return TYP_UNDEF; |
| 6199 | } |
| 6200 | |
| 6201 | //------------------------------------------------------------------------- |
| 6202 | // IsCopyOrReload: whether this is a GT_COPY or GT_RELOAD node. |
| 6203 | // |
| 6204 | // Arguments: |
| 6205 | // None |
| 6206 | // |
| 6207 | // Return Value: |
| 6208 | // Returns true if this GenTree is a copy or reload node. |
| 6209 | inline bool GenTree::IsCopyOrReload() const |
| 6210 | { |
| 6211 | return (gtOper == GT_COPY || gtOper == GT_RELOAD); |
| 6212 | } |
| 6213 | |
| 6214 | //----------------------------------------------------------------------------------- |
| 6215 | // IsCopyOrReloadOfMultiRegCall: whether this is a GT_COPY or GT_RELOAD of a multi-reg |
| 6216 | // call node. |
| 6217 | // |
| 6218 | // Arguments: |
| 6219 | // None |
| 6220 | // |
| 6221 | // Return Value: |
| 6222 | // Returns true if this GenTree is a copy or reload of multi-reg call node. |
| 6223 | inline bool GenTree::IsCopyOrReloadOfMultiRegCall() const |
| 6224 | { |
| 6225 | if (IsCopyOrReload()) |
| 6226 | { |
| 6227 | return gtGetOp1()->IsMultiRegCall(); |
| 6228 | } |
| 6229 | |
| 6230 | return false; |
| 6231 | } |
| 6232 | |
| 6233 | inline bool GenTree::IsCnsIntOrI() const |
| 6234 | { |
| 6235 | return (gtOper == GT_CNS_INT); |
| 6236 | } |
| 6237 | |
| 6238 | inline bool GenTree::IsIntegralConst() const |
| 6239 | { |
| 6240 | #ifdef _TARGET_64BIT_ |
| 6241 | return IsCnsIntOrI(); |
| 6242 | #else // !_TARGET_64BIT_ |
| 6243 | return ((gtOper == GT_CNS_INT) || (gtOper == GT_CNS_LNG)); |
| 6244 | #endif // !_TARGET_64BIT_ |
| 6245 | } |
| 6246 | |
| 6247 | // Is this node an integer constant that fits in a 32-bit signed integer (INT32) |
| 6248 | inline bool GenTree::IsIntCnsFitsInI32() |
| 6249 | { |
| 6250 | #ifdef _TARGET_64BIT_ |
| 6251 | return IsCnsIntOrI() && AsIntCon()->FitsInI32(); |
| 6252 | #else // !_TARGET_64BIT_ |
| 6253 | return IsCnsIntOrI(); |
| 6254 | #endif // !_TARGET_64BIT_ |
| 6255 | } |
| 6256 | |
| 6257 | inline bool GenTree::IsCnsFltOrDbl() const |
| 6258 | { |
| 6259 | return OperGet() == GT_CNS_DBL; |
| 6260 | } |
| 6261 | |
| 6262 | inline bool GenTree::IsCnsNonZeroFltOrDbl() |
| 6263 | { |
| 6264 | if (OperGet() == GT_CNS_DBL) |
| 6265 | { |
| 6266 | double constValue = gtDblCon.gtDconVal; |
| 6267 | return *(__int64*)&constValue != 0; |
| 6268 | } |
| 6269 | |
| 6270 | return false; |
| 6271 | } |
| 6272 | |
| 6273 | inline bool GenTree::IsHelperCall() |
| 6274 | { |
| 6275 | return OperGet() == GT_CALL && gtCall.gtCallType == CT_HELPER; |
| 6276 | } |
| 6277 | |
| 6278 | inline var_types GenTree::CastFromType() |
| 6279 | { |
| 6280 | return this->gtCast.CastOp()->TypeGet(); |
| 6281 | } |
| 6282 | inline var_types& GenTree::CastToType() |
| 6283 | { |
| 6284 | return this->gtCast.gtCastType; |
| 6285 | } |
| 6286 | |
| 6287 | //----------------------------------------------------------------------------------- |
| 6288 | // HasGCPtr: determine whether this block op involves GC pointers |
| 6289 | // |
| 6290 | // Arguments: |
| 6291 | // None |
| 6292 | // |
| 6293 | // Return Value: |
| 6294 | // Returns true iff the object being copied contains one or more GC pointers. |
| 6295 | // |
| 6296 | // Notes: |
| 6297 | // Of the block nodes, only GT_OBJ and ST_STORE_OBJ are allowed to have GC pointers. |
| 6298 | // |
| 6299 | inline bool GenTreeBlk::HasGCPtr() |
| 6300 | { |
| 6301 | if ((gtOper == GT_OBJ) || (gtOper == GT_STORE_OBJ)) |
| 6302 | { |
| 6303 | return (AsObj()->gtGcPtrCount != 0); |
| 6304 | } |
| 6305 | return false; |
| 6306 | } |
| 6307 | |
| 6308 | inline bool GenTree::isUsedFromSpillTemp() const |
| 6309 | { |
| 6310 | // If spilled and no reg at use, then it is used from the spill temp location rather than being reloaded. |
| 6311 | if (((gtFlags & GTF_SPILLED) != 0) && ((gtFlags & GTF_NOREG_AT_USE) != 0)) |
| 6312 | { |
| 6313 | return true; |
| 6314 | } |
| 6315 | |
| 6316 | return false; |
| 6317 | } |
| 6318 | |
| 6319 | /*****************************************************************************/ |
| 6320 | |
| 6321 | #ifndef _HOST_64BIT_ |
| 6322 | #include <poppack.h> |
| 6323 | #endif |
| 6324 | |
| 6325 | /*****************************************************************************/ |
| 6326 | |
| 6327 | #if SMALL_TREE_NODES |
| 6328 | |
| 6329 | // In debug, on some platforms (e.g., when LATE_DISASM is defined), GenTreeIntCon is bigger than GenTreeLclFld. |
| 6330 | const size_t TREE_NODE_SZ_SMALL = max(sizeof(GenTreeIntCon), sizeof(GenTreeLclFld)); |
| 6331 | |
| 6332 | #endif // SMALL_TREE_NODES |
| 6333 | |
| 6334 | const size_t TREE_NODE_SZ_LARGE = sizeof(GenTreeCall); |
| 6335 | |
| 6336 | enum varRefKinds |
| 6337 | { |
| 6338 | VR_INVARIANT = 0x00, // an invariant value |
| 6339 | VR_NONE = 0x00, |
| 6340 | VR_IND_REF = 0x01, // an object reference |
| 6341 | VR_IND_SCL = 0x02, // a non-object reference |
| 6342 | VR_GLB_VAR = 0x04, // a global (clsVar) |
| 6343 | }; |
| 6344 | |
| 6345 | /*****************************************************************************/ |
| 6346 | #endif // !GENTREE_H |
| 6347 | /*****************************************************************************/ |
| 6348 | |