| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX Compiler XX |
| 9 | XX XX |
| 10 | XX Represents the method data we are currently JIT-compiling. XX |
| 11 | XX An instance of this class is created for every method we JIT. XX |
| 12 | XX This contains all the info needed for the method. So allocating a XX |
| 13 | XX a new instance per method makes it thread-safe. XX |
| 14 | XX It should be used to do all the memory management for the compiler run. XX |
| 15 | XX XX |
| 16 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 17 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 18 | */ |
| 19 | |
| 20 | /*****************************************************************************/ |
| 21 | #ifndef _COMPILER_H_ |
| 22 | #define _COMPILER_H_ |
| 23 | /*****************************************************************************/ |
| 24 | |
| 25 | #include "jit.h" |
| 26 | #include "opcode.h" |
| 27 | #include "varset.h" |
| 28 | #include "jitstd.h" |
| 29 | #include "jithashtable.h" |
| 30 | #include "gentree.h" |
| 31 | #include "lir.h" |
| 32 | #include "block.h" |
| 33 | #include "inline.h" |
| 34 | #include "jiteh.h" |
| 35 | #include "instr.h" |
| 36 | #include "regalloc.h" |
| 37 | #include "sm.h" |
| 38 | #include "cycletimer.h" |
| 39 | #include "blockset.h" |
| 40 | #include "arraystack.h" |
| 41 | #include "hashbv.h" |
| 42 | #include "jitexpandarray.h" |
| 43 | #include "tinyarray.h" |
| 44 | #include "valuenum.h" |
| 45 | #include "reglist.h" |
| 46 | #include "jittelemetry.h" |
| 47 | #include "namedintrinsiclist.h" |
| 48 | #ifdef LATE_DISASM |
| 49 | #include "disasm.h" |
| 50 | #endif |
| 51 | |
| 52 | #include "codegeninterface.h" |
| 53 | #include "regset.h" |
| 54 | #include "jitgcinfo.h" |
| 55 | |
| 56 | #if DUMP_GC_TABLES && defined(JIT32_GCENCODER) |
| 57 | #include "gcdump.h" |
| 58 | #endif |
| 59 | |
| 60 | #include "emit.h" |
| 61 | |
| 62 | #include "hwintrinsic.h" |
| 63 | #include "simd.h" |
| 64 | |
| 65 | // This is only used locally in the JIT to indicate that |
| 66 | // a verification block should be inserted |
| 67 | #define SEH_VERIFICATION_EXCEPTION 0xe0564552 // VER |
| 68 | |
| 69 | /***************************************************************************** |
| 70 | * Forward declarations |
| 71 | */ |
| 72 | |
| 73 | struct InfoHdr; // defined in GCInfo.h |
| 74 | struct escapeMapping_t; // defined in flowgraph.cpp |
| 75 | class emitter; // defined in emit.h |
| 76 | struct ShadowParamVarInfo; // defined in GSChecks.cpp |
| 77 | struct InitVarDscInfo; // defined in register_arg_convention.h |
| 78 | class FgStack; // defined in flowgraph.cpp |
| 79 | #if FEATURE_ANYCSE |
| 80 | class CSE_DataFlow; // defined in OptCSE.cpp |
| 81 | #endif |
| 82 | #ifdef DEBUG |
| 83 | struct IndentStack; |
| 84 | #endif |
| 85 | |
| 86 | class Lowering; // defined in lower.h |
| 87 | |
| 88 | // The following are defined in this file, Compiler.h |
| 89 | |
| 90 | class Compiler; |
| 91 | |
| 92 | /***************************************************************************** |
| 93 | * Unwind info |
| 94 | */ |
| 95 | |
| 96 | #include "unwind.h" |
| 97 | |
| 98 | /*****************************************************************************/ |
| 99 | |
| 100 | // |
| 101 | // Declare global operator new overloads that use the compiler's arena allocator |
| 102 | // |
| 103 | |
| 104 | // I wanted to make the second argument optional, with default = CMK_Unknown, but that |
| 105 | // caused these to be ambiguous with the global placement new operators. |
| 106 | void* __cdecl operator new(size_t n, Compiler* context, CompMemKind cmk); |
| 107 | void* __cdecl operator new[](size_t n, Compiler* context, CompMemKind cmk); |
| 108 | void* __cdecl operator new(size_t n, void* p, const jitstd::placement_t& syntax_difference); |
| 109 | |
| 110 | // Requires the definitions of "operator new" so including "LoopCloning.h" after the definitions. |
| 111 | #include "loopcloning.h" |
| 112 | |
| 113 | /*****************************************************************************/ |
| 114 | |
| 115 | /* This is included here and not earlier as it needs the definition of "CSE" |
| 116 | * which is defined in the section above */ |
| 117 | |
| 118 | /*****************************************************************************/ |
| 119 | |
| 120 | unsigned genLog2(unsigned value); |
| 121 | unsigned genLog2(unsigned __int64 value); |
| 122 | |
| 123 | var_types genActualType(var_types type); |
| 124 | var_types genUnsignedType(var_types type); |
| 125 | var_types genSignedType(var_types type); |
| 126 | |
| 127 | unsigned ReinterpretHexAsDecimal(unsigned); |
| 128 | |
| 129 | /*****************************************************************************/ |
| 130 | |
| 131 | const unsigned FLG_CCTOR = (CORINFO_FLG_CONSTRUCTOR | CORINFO_FLG_STATIC); |
| 132 | |
| 133 | #ifdef DEBUG |
| 134 | const int BAD_STK_OFFS = 0xBAADF00D; // for LclVarDsc::lvStkOffs |
| 135 | #endif |
| 136 | |
| 137 | // The following holds the Local var info (scope information) |
| 138 | typedef const char* VarName; // Actual ASCII string |
| 139 | struct VarScopeDsc |
| 140 | { |
| 141 | IL_OFFSET vsdLifeBeg; // instr offset of beg of life |
| 142 | IL_OFFSET vsdLifeEnd; // instr offset of end of life |
| 143 | unsigned vsdVarNum; // (remapped) LclVarDsc number |
| 144 | |
| 145 | #ifdef DEBUG |
| 146 | VarName vsdName; // name of the var |
| 147 | #endif |
| 148 | |
| 149 | unsigned vsdLVnum; // 'which' in eeGetLVinfo(). |
| 150 | // Also, it is the index of this entry in the info.compVarScopes array, |
| 151 | // which is useful since the array is also accessed via the |
| 152 | // compEnterScopeList and compExitScopeList sorted arrays. |
| 153 | }; |
| 154 | |
| 155 | // This is the location of a SSA definition. |
| 156 | struct DefLoc |
| 157 | { |
| 158 | BasicBlock* m_blk; |
| 159 | GenTree* m_tree; |
| 160 | |
| 161 | DefLoc() : m_blk(nullptr), m_tree(nullptr) |
| 162 | { |
| 163 | } |
| 164 | |
| 165 | DefLoc(BasicBlock* block, GenTree* tree) : m_blk(block), m_tree(tree) |
| 166 | { |
| 167 | } |
| 168 | }; |
| 169 | |
| 170 | // This class stores information associated with a LclVar SSA definition. |
| 171 | class LclSsaVarDsc |
| 172 | { |
| 173 | public: |
| 174 | LclSsaVarDsc() |
| 175 | { |
| 176 | } |
| 177 | |
| 178 | LclSsaVarDsc(BasicBlock* block, GenTree* tree) : m_defLoc(block, tree) |
| 179 | { |
| 180 | } |
| 181 | |
| 182 | ValueNumPair m_vnPair; |
| 183 | DefLoc m_defLoc; |
| 184 | }; |
| 185 | |
| 186 | // This class stores information associated with a memory SSA definition. |
| 187 | class SsaMemDef |
| 188 | { |
| 189 | public: |
| 190 | ValueNumPair m_vnPair; |
| 191 | }; |
| 192 | |
| 193 | //------------------------------------------------------------------------ |
| 194 | // SsaDefArray: A resizable array of SSA definitions. |
| 195 | // |
| 196 | // Unlike an ordinary resizable array implementation, this allows only element |
| 197 | // addition (by calling AllocSsaNum) and has special handling for RESERVED_SSA_NUM |
| 198 | // (basically it's a 1-based array). The array doesn't impose any particular |
| 199 | // requirements on the elements it stores and AllocSsaNum forwards its arguments |
| 200 | // to the array element constructor, this way the array supports both LclSsaVarDsc |
| 201 | // and SsaMemDef elements. |
| 202 | // |
| 203 | template <typename T> |
| 204 | class SsaDefArray |
| 205 | { |
| 206 | T* m_array; |
| 207 | unsigned m_arraySize; |
| 208 | unsigned m_count; |
| 209 | |
| 210 | static_assert_no_msg(SsaConfig::RESERVED_SSA_NUM == 0); |
| 211 | static_assert_no_msg(SsaConfig::FIRST_SSA_NUM == 1); |
| 212 | |
| 213 | // Get the minimum valid SSA number. |
| 214 | unsigned GetMinSsaNum() const |
| 215 | { |
| 216 | return SsaConfig::FIRST_SSA_NUM; |
| 217 | } |
| 218 | |
| 219 | // Increase (double) the size of the array. |
| 220 | void GrowArray(CompAllocator alloc) |
| 221 | { |
| 222 | unsigned oldSize = m_arraySize; |
| 223 | unsigned newSize = max(2, oldSize * 2); |
| 224 | |
| 225 | T* newArray = alloc.allocate<T>(newSize); |
| 226 | |
| 227 | for (unsigned i = 0; i < oldSize; i++) |
| 228 | { |
| 229 | newArray[i] = m_array[i]; |
| 230 | } |
| 231 | |
| 232 | m_array = newArray; |
| 233 | m_arraySize = newSize; |
| 234 | } |
| 235 | |
| 236 | public: |
| 237 | // Construct an empty SsaDefArray. |
| 238 | SsaDefArray() : m_array(nullptr), m_arraySize(0), m_count(0) |
| 239 | { |
| 240 | } |
| 241 | |
| 242 | // Reset the array (used only if the SSA form is reconstructed). |
| 243 | void Reset() |
| 244 | { |
| 245 | m_count = 0; |
| 246 | } |
| 247 | |
| 248 | // Allocate a new SSA number (starting with SsaConfig::FIRST_SSA_NUM). |
| 249 | template <class... Args> |
| 250 | unsigned AllocSsaNum(CompAllocator alloc, Args&&... args) |
| 251 | { |
| 252 | if (m_count == m_arraySize) |
| 253 | { |
| 254 | GrowArray(alloc); |
| 255 | } |
| 256 | |
| 257 | unsigned ssaNum = GetMinSsaNum() + m_count; |
| 258 | m_array[m_count++] = T(jitstd::forward<Args>(args)...); |
| 259 | |
| 260 | // Ensure that the first SSA number we allocate is SsaConfig::FIRST_SSA_NUM |
| 261 | assert((ssaNum == SsaConfig::FIRST_SSA_NUM) || (m_count > 1)); |
| 262 | |
| 263 | return ssaNum; |
| 264 | } |
| 265 | |
| 266 | // Get the number of SSA definitions in the array. |
| 267 | unsigned GetCount() const |
| 268 | { |
| 269 | return m_count; |
| 270 | } |
| 271 | |
| 272 | // Get a pointer to the SSA definition at the specified index. |
| 273 | T* GetSsaDefByIndex(unsigned index) |
| 274 | { |
| 275 | assert(index < m_count); |
| 276 | return &m_array[index]; |
| 277 | } |
| 278 | |
| 279 | // Check if the specified SSA number is valid. |
| 280 | bool IsValidSsaNum(unsigned ssaNum) const |
| 281 | { |
| 282 | return (GetMinSsaNum() <= ssaNum) && (ssaNum < (GetMinSsaNum() + m_count)); |
| 283 | } |
| 284 | |
| 285 | // Get a pointer to the SSA definition associated with the specified SSA number. |
| 286 | T* GetSsaDef(unsigned ssaNum) |
| 287 | { |
| 288 | assert(ssaNum != SsaConfig::RESERVED_SSA_NUM); |
| 289 | return GetSsaDefByIndex(ssaNum - GetMinSsaNum()); |
| 290 | } |
| 291 | }; |
| 292 | |
| 293 | enum RefCountState |
| 294 | { |
| 295 | RCS_INVALID, // not valid to get/set ref counts |
| 296 | RCS_EARLY, // early counts for struct promotion and struct passing |
| 297 | RCS_NORMAL, // normal ref counts (from lvaMarkRefs onward) |
| 298 | }; |
| 299 | |
| 300 | class LclVarDsc |
| 301 | { |
| 302 | public: |
| 303 | // The constructor. Most things can just be zero'ed. |
| 304 | // |
| 305 | // Initialize the ArgRegs to REG_STK. |
| 306 | // Morph will update if this local is passed in a register. |
| 307 | LclVarDsc() |
| 308 | : _lvArgReg(REG_STK) |
| 309 | , |
| 310 | #if FEATURE_MULTIREG_ARGS |
| 311 | _lvOtherArgReg(REG_STK) |
| 312 | , |
| 313 | #endif // FEATURE_MULTIREG_ARGS |
| 314 | #if ASSERTION_PROP |
| 315 | lvRefBlks(BlockSetOps::UninitVal()) |
| 316 | , |
| 317 | #endif // ASSERTION_PROP |
| 318 | lvPerSsaData() |
| 319 | { |
| 320 | } |
| 321 | |
| 322 | // note this only packs because var_types is a typedef of unsigned char |
| 323 | var_types lvType : 5; // TYP_INT/LONG/FLOAT/DOUBLE/REF |
| 324 | |
| 325 | unsigned char lvIsParam : 1; // is this a parameter? |
| 326 | unsigned char lvIsRegArg : 1; // is this a register argument? |
| 327 | unsigned char lvFramePointerBased : 1; // 0 = off of REG_SPBASE (e.g., ESP), 1 = off of REG_FPBASE (e.g., EBP) |
| 328 | |
| 329 | unsigned char lvStructGcCount : 3; // if struct, how many GC pointer (stop counting at 7). The only use of values >1 |
| 330 | // is to help determine whether to use block init in the prolog. |
| 331 | unsigned char lvOnFrame : 1; // (part of) the variable lives on the frame |
| 332 | unsigned char lvRegister : 1; // assigned to live in a register? For RyuJIT backend, this is only set if the |
| 333 | // variable is in the same register for the entire function. |
| 334 | unsigned char lvTracked : 1; // is this a tracked variable? |
| 335 | bool lvTrackedNonStruct() |
| 336 | { |
| 337 | return lvTracked && lvType != TYP_STRUCT; |
| 338 | } |
| 339 | unsigned char lvPinned : 1; // is this a pinned variable? |
| 340 | |
| 341 | unsigned char lvMustInit : 1; // must be initialized |
| 342 | unsigned char lvAddrExposed : 1; // The address of this variable is "exposed" -- passed as an argument, stored in a |
| 343 | // global location, etc. |
| 344 | // We cannot reason reliably about the value of the variable. |
| 345 | unsigned char lvDoNotEnregister : 1; // Do not enregister this variable. |
| 346 | unsigned char lvFieldAccessed : 1; // The var is a struct local, and a field of the variable is accessed. Affects |
| 347 | // struct promotion. |
| 348 | |
| 349 | unsigned char lvInSsa : 1; // The variable is in SSA form (set by SsaBuilder) |
| 350 | |
| 351 | #ifdef DEBUG |
| 352 | // These further document the reasons for setting "lvDoNotEnregister". (Note that "lvAddrExposed" is one of the |
| 353 | // reasons; |
| 354 | // also, lvType == TYP_STRUCT prevents enregistration. At least one of the reasons should be true. |
| 355 | unsigned char lvVMNeedsStackAddr : 1; // The VM may have access to a stack-relative address of the variable, and |
| 356 | // read/write its value. |
| 357 | unsigned char lvLiveInOutOfHndlr : 1; // The variable was live in or out of an exception handler, and this required |
| 358 | // the variable to be |
| 359 | // in the stack (at least at those boundaries.) |
| 360 | unsigned char lvLclFieldExpr : 1; // The variable is not a struct, but was accessed like one (e.g., reading a |
| 361 | // particular byte from an int). |
| 362 | unsigned char lvLclBlockOpAddr : 1; // The variable was written to via a block operation that took its address. |
| 363 | unsigned char lvLiveAcrossUCall : 1; // The variable is live across an unmanaged call. |
| 364 | #endif |
| 365 | unsigned char lvIsCSE : 1; // Indicates if this LclVar is a CSE variable. |
| 366 | unsigned char lvHasLdAddrOp : 1; // has ldloca or ldarga opcode on this local. |
| 367 | unsigned char lvStackByref : 1; // This is a compiler temporary of TYP_BYREF that is known to point into our local |
| 368 | // stack frame. |
| 369 | |
| 370 | unsigned char lvHasILStoreOp : 1; // there is at least one STLOC or STARG on this local |
| 371 | unsigned char lvHasMultipleILStoreOp : 1; // there is more than one STLOC on this local |
| 372 | |
| 373 | unsigned char lvIsTemp : 1; // Short-lifetime compiler temp (if lvIsParam is false), or implicit byref parameter |
| 374 | // (if lvIsParam is true) |
| 375 | #if OPT_BOOL_OPS |
| 376 | unsigned char lvIsBoolean : 1; // set if variable is boolean |
| 377 | #endif |
| 378 | unsigned char lvSingleDef : 1; // variable has a single def |
| 379 | // before lvaMarkLocalVars: identifies ref type locals that can get type updates |
| 380 | // after lvaMarkLocalVars: identifies locals that are suitable for optAddCopies |
| 381 | |
| 382 | #if ASSERTION_PROP |
| 383 | unsigned char lvDisqualify : 1; // variable is no longer OK for add copy optimization |
| 384 | unsigned char lvVolatileHint : 1; // hint for AssertionProp |
| 385 | #endif |
| 386 | |
| 387 | #ifndef _TARGET_64BIT_ |
| 388 | unsigned char lvStructDoubleAlign : 1; // Must we double align this struct? |
| 389 | #endif // !_TARGET_64BIT_ |
| 390 | #ifdef _TARGET_64BIT_ |
| 391 | unsigned char lvQuirkToLong : 1; // Quirk to allocate this LclVar as a 64-bit long |
| 392 | #endif |
| 393 | #ifdef DEBUG |
| 394 | unsigned char lvKeepType : 1; // Don't change the type of this variable |
| 395 | unsigned char lvNoLclFldStress : 1; // Can't apply local field stress on this one |
| 396 | #endif |
| 397 | unsigned char lvIsPtr : 1; // Might this be used in an address computation? (used by buffer overflow security |
| 398 | // checks) |
| 399 | unsigned char lvIsUnsafeBuffer : 1; // Does this contain an unsafe buffer requiring buffer overflow security checks? |
| 400 | unsigned char lvPromoted : 1; // True when this local is a promoted struct, a normed struct, or a "split" long on a |
| 401 | // 32-bit target. For implicit byref parameters, this gets hijacked between |
| 402 | // fgRetypeImplicitByRefArgs and fgMarkDemotedImplicitByRefArgs to indicate whether |
| 403 | // references to the arg are being rewritten as references to a promoted shadow local. |
| 404 | unsigned char lvIsStructField : 1; // Is this local var a field of a promoted struct local? |
| 405 | unsigned char lvOverlappingFields : 1; // True when we have a struct with possibly overlapping fields |
| 406 | unsigned char lvContainsHoles : 1; // True when we have a promoted struct that contains holes |
| 407 | unsigned char lvCustomLayout : 1; // True when this struct has "CustomLayout" |
| 408 | |
| 409 | unsigned char lvIsMultiRegArg : 1; // true if this is a multireg LclVar struct used in an argument context |
| 410 | unsigned char lvIsMultiRegRet : 1; // true if this is a multireg LclVar struct assigned from a multireg call |
| 411 | |
| 412 | #ifdef FEATURE_HFA |
| 413 | unsigned char _lvIsHfa : 1; // Is this a struct variable who's class handle is an HFA type |
| 414 | unsigned char _lvIsHfaRegArg : 1; // Is this a HFA argument variable? // TODO-CLEANUP: Remove this and replace |
| 415 | // with (lvIsRegArg && lvIsHfa()) |
| 416 | unsigned char _lvHfaTypeIsFloat : 1; // Is the HFA type float or double? |
| 417 | #endif // FEATURE_HFA |
| 418 | |
| 419 | #ifdef DEBUG |
| 420 | // TODO-Cleanup: See the note on lvSize() - this flag is only in use by asserts that are checking for struct |
| 421 | // types, and is needed because of cases where TYP_STRUCT is bashed to an integral type. |
| 422 | // Consider cleaning this up so this workaround is not required. |
| 423 | unsigned char lvUnusedStruct : 1; // All references to this promoted struct are through its field locals. |
| 424 | // I.e. there is no longer any reference to the struct directly. |
| 425 | // In this case we can simply remove this struct local. |
| 426 | #endif |
| 427 | |
| 428 | unsigned char lvLRACandidate : 1; // Tracked for linear scan register allocation purposes |
| 429 | |
| 430 | #ifdef FEATURE_SIMD |
| 431 | // Note that both SIMD vector args and locals are marked as lvSIMDType = true, but the |
| 432 | // type of an arg node is TYP_BYREF and a local node is TYP_SIMD*. |
| 433 | unsigned char lvSIMDType : 1; // This is a SIMD struct |
| 434 | unsigned char lvUsedInSIMDIntrinsic : 1; // This tells lclvar is used for simd intrinsic |
| 435 | var_types lvBaseType : 5; // Note: this only packs because var_types is a typedef of unsigned char |
| 436 | #endif // FEATURE_SIMD |
| 437 | unsigned char lvRegStruct : 1; // This is a reg-sized non-field-addressed struct. |
| 438 | |
| 439 | unsigned char lvClassIsExact : 1; // lvClassHandle is the exact type |
| 440 | |
| 441 | #ifdef DEBUG |
| 442 | unsigned char lvClassInfoUpdated : 1; // true if this var has updated class handle or exactness |
| 443 | #endif |
| 444 | |
| 445 | unsigned char lvImplicitlyReferenced : 1; // true if there are non-IR references to this local (prolog, epilog, gc, |
| 446 | // eh) |
| 447 | |
| 448 | union { |
| 449 | unsigned lvFieldLclStart; // The index of the local var representing the first field in the promoted struct |
| 450 | // local. For implicit byref parameters, this gets hijacked between |
| 451 | // fgRetypeImplicitByRefArgs and fgMarkDemotedImplicitByRefArgs to point to the |
| 452 | // struct local created to model the parameter's struct promotion, if any. |
| 453 | unsigned lvParentLcl; // The index of the local var representing the parent (i.e. the promoted struct local). |
| 454 | // Valid on promoted struct local fields. |
| 455 | }; |
| 456 | |
| 457 | unsigned char lvFieldCnt; // Number of fields in the promoted VarDsc. |
| 458 | unsigned char lvFldOffset; |
| 459 | unsigned char lvFldOrdinal; |
| 460 | |
| 461 | #if FEATURE_MULTIREG_ARGS |
| 462 | regNumber lvRegNumForSlot(unsigned slotNum) |
| 463 | { |
| 464 | if (slotNum == 0) |
| 465 | { |
| 466 | return lvArgReg; |
| 467 | } |
| 468 | else if (slotNum == 1) |
| 469 | { |
| 470 | return lvOtherArgReg; |
| 471 | } |
| 472 | else |
| 473 | { |
| 474 | assert(false && "Invalid slotNum!" ); |
| 475 | } |
| 476 | |
| 477 | unreached(); |
| 478 | } |
| 479 | #endif // FEATURE_MULTIREG_ARGS |
| 480 | |
| 481 | bool lvIsHfa() const |
| 482 | { |
| 483 | #ifdef FEATURE_HFA |
| 484 | return _lvIsHfa; |
| 485 | #else |
| 486 | return false; |
| 487 | #endif |
| 488 | } |
| 489 | |
| 490 | void lvSetIsHfa() |
| 491 | { |
| 492 | #ifdef FEATURE_HFA |
| 493 | _lvIsHfa = true; |
| 494 | #endif |
| 495 | } |
| 496 | |
| 497 | bool lvIsHfaRegArg() const |
| 498 | { |
| 499 | #ifdef FEATURE_HFA |
| 500 | return _lvIsHfaRegArg; |
| 501 | #else |
| 502 | return false; |
| 503 | #endif |
| 504 | } |
| 505 | |
| 506 | void lvSetIsHfaRegArg(bool value = true) |
| 507 | { |
| 508 | #ifdef FEATURE_HFA |
| 509 | _lvIsHfaRegArg = value; |
| 510 | #endif |
| 511 | } |
| 512 | |
| 513 | bool lvHfaTypeIsFloat() const |
| 514 | { |
| 515 | #ifdef FEATURE_HFA |
| 516 | return _lvHfaTypeIsFloat; |
| 517 | #else |
| 518 | return false; |
| 519 | #endif |
| 520 | } |
| 521 | |
| 522 | void lvSetHfaTypeIsFloat(bool value) |
| 523 | { |
| 524 | #ifdef FEATURE_HFA |
| 525 | _lvHfaTypeIsFloat = value; |
| 526 | #endif |
| 527 | } |
| 528 | |
| 529 | // on Arm64 - Returns 1-4 indicating the number of register slots used by the HFA |
| 530 | // on Arm32 - Returns the total number of single FP register slots used by the HFA, max is 8 |
| 531 | // |
| 532 | unsigned lvHfaSlots() const |
| 533 | { |
| 534 | assert(lvIsHfa()); |
| 535 | assert(varTypeIsStruct(lvType)); |
| 536 | #ifdef _TARGET_ARM_ |
| 537 | return lvExactSize / sizeof(float); |
| 538 | #else // _TARGET_ARM64_ |
| 539 | if (lvHfaTypeIsFloat()) |
| 540 | { |
| 541 | return lvExactSize / sizeof(float); |
| 542 | } |
| 543 | else |
| 544 | { |
| 545 | return lvExactSize / sizeof(double); |
| 546 | } |
| 547 | #endif // _TARGET_ARM64_ |
| 548 | } |
| 549 | |
| 550 | // lvIsMultiRegArgOrRet() |
| 551 | // returns true if this is a multireg LclVar struct used in an argument context |
| 552 | // or if this is a multireg LclVar struct assigned from a multireg call |
| 553 | bool lvIsMultiRegArgOrRet() |
| 554 | { |
| 555 | return lvIsMultiRegArg || lvIsMultiRegRet; |
| 556 | } |
| 557 | |
| 558 | private: |
| 559 | regNumberSmall _lvRegNum; // Used to store the register this variable is in (or, the low register of a |
| 560 | // register pair). It is set during codegen any time the |
| 561 | // variable is enregistered (lvRegister is only set |
| 562 | // to non-zero if the variable gets the same register assignment for its entire |
| 563 | // lifetime). |
| 564 | #if !defined(_TARGET_64BIT_) |
| 565 | regNumberSmall _lvOtherReg; // Used for "upper half" of long var. |
| 566 | #endif // !defined(_TARGET_64BIT_) |
| 567 | |
| 568 | regNumberSmall _lvArgReg; // The register in which this argument is passed. |
| 569 | |
| 570 | #if FEATURE_MULTIREG_ARGS |
| 571 | regNumberSmall _lvOtherArgReg; // Used for the second part of the struct passed in a register. |
| 572 | // Note this is defined but not used by ARM32 |
| 573 | #endif // FEATURE_MULTIREG_ARGS |
| 574 | |
| 575 | regNumberSmall _lvArgInitReg; // the register into which the argument is moved at entry |
| 576 | |
| 577 | public: |
| 578 | // The register number is stored in a small format (8 bits), but the getters return and the setters take |
| 579 | // a full-size (unsigned) format, to localize the casts here. |
| 580 | |
| 581 | ///////////////////// |
| 582 | |
| 583 | __declspec(property(get = GetRegNum, put = SetRegNum)) regNumber lvRegNum; |
| 584 | |
| 585 | regNumber GetRegNum() const |
| 586 | { |
| 587 | return (regNumber)_lvRegNum; |
| 588 | } |
| 589 | |
| 590 | void SetRegNum(regNumber reg) |
| 591 | { |
| 592 | _lvRegNum = (regNumberSmall)reg; |
| 593 | assert(_lvRegNum == reg); |
| 594 | } |
| 595 | |
| 596 | ///////////////////// |
| 597 | |
| 598 | #if defined(_TARGET_64BIT_) |
| 599 | __declspec(property(get = GetOtherReg, put = SetOtherReg)) regNumber lvOtherReg; |
| 600 | |
| 601 | regNumber GetOtherReg() const |
| 602 | { |
| 603 | assert(!"shouldn't get here" ); // can't use "unreached();" because it's NORETURN, which causes C4072 |
| 604 | // "unreachable code" warnings |
| 605 | return REG_NA; |
| 606 | } |
| 607 | |
| 608 | void SetOtherReg(regNumber reg) |
| 609 | { |
| 610 | assert(!"shouldn't get here" ); // can't use "unreached();" because it's NORETURN, which causes C4072 |
| 611 | // "unreachable code" warnings |
| 612 | } |
| 613 | #else // !_TARGET_64BIT_ |
| 614 | __declspec(property(get = GetOtherReg, put = SetOtherReg)) regNumber lvOtherReg; |
| 615 | |
| 616 | regNumber GetOtherReg() const |
| 617 | { |
| 618 | return (regNumber)_lvOtherReg; |
| 619 | } |
| 620 | |
| 621 | void SetOtherReg(regNumber reg) |
| 622 | { |
| 623 | _lvOtherReg = (regNumberSmall)reg; |
| 624 | assert(_lvOtherReg == reg); |
| 625 | } |
| 626 | #endif // !_TARGET_64BIT_ |
| 627 | |
| 628 | ///////////////////// |
| 629 | |
| 630 | __declspec(property(get = GetArgReg, put = SetArgReg)) regNumber lvArgReg; |
| 631 | |
| 632 | regNumber GetArgReg() const |
| 633 | { |
| 634 | return (regNumber)_lvArgReg; |
| 635 | } |
| 636 | |
| 637 | void SetArgReg(regNumber reg) |
| 638 | { |
| 639 | _lvArgReg = (regNumberSmall)reg; |
| 640 | assert(_lvArgReg == reg); |
| 641 | } |
| 642 | |
| 643 | #if FEATURE_MULTIREG_ARGS |
| 644 | __declspec(property(get = GetOtherArgReg, put = SetOtherArgReg)) regNumber lvOtherArgReg; |
| 645 | |
| 646 | regNumber GetOtherArgReg() const |
| 647 | { |
| 648 | return (regNumber)_lvOtherArgReg; |
| 649 | } |
| 650 | |
| 651 | void SetOtherArgReg(regNumber reg) |
| 652 | { |
| 653 | _lvOtherArgReg = (regNumberSmall)reg; |
| 654 | assert(_lvOtherArgReg == reg); |
| 655 | } |
| 656 | #endif // FEATURE_MULTIREG_ARGS |
| 657 | |
| 658 | #ifdef FEATURE_SIMD |
| 659 | // Is this is a SIMD struct? |
| 660 | bool lvIsSIMDType() const |
| 661 | { |
| 662 | return lvSIMDType; |
| 663 | } |
| 664 | |
| 665 | // Is this is a SIMD struct which is used for SIMD intrinsic? |
| 666 | bool lvIsUsedInSIMDIntrinsic() const |
| 667 | { |
| 668 | return lvUsedInSIMDIntrinsic; |
| 669 | } |
| 670 | #else |
| 671 | // If feature_simd not enabled, return false |
| 672 | bool lvIsSIMDType() const |
| 673 | { |
| 674 | return false; |
| 675 | } |
| 676 | bool lvIsUsedInSIMDIntrinsic() const |
| 677 | { |
| 678 | return false; |
| 679 | } |
| 680 | #endif |
| 681 | |
| 682 | ///////////////////// |
| 683 | |
| 684 | __declspec(property(get = GetArgInitReg, put = SetArgInitReg)) regNumber lvArgInitReg; |
| 685 | |
| 686 | regNumber GetArgInitReg() const |
| 687 | { |
| 688 | return (regNumber)_lvArgInitReg; |
| 689 | } |
| 690 | |
| 691 | void SetArgInitReg(regNumber reg) |
| 692 | { |
| 693 | _lvArgInitReg = (regNumberSmall)reg; |
| 694 | assert(_lvArgInitReg == reg); |
| 695 | } |
| 696 | |
| 697 | ///////////////////// |
| 698 | |
| 699 | bool lvIsRegCandidate() const |
| 700 | { |
| 701 | return lvLRACandidate != 0; |
| 702 | } |
| 703 | |
| 704 | bool lvIsInReg() const |
| 705 | { |
| 706 | return lvIsRegCandidate() && (lvRegNum != REG_STK); |
| 707 | } |
| 708 | |
| 709 | regMaskTP lvRegMask() const |
| 710 | { |
| 711 | regMaskTP regMask = RBM_NONE; |
| 712 | if (varTypeIsFloating(TypeGet())) |
| 713 | { |
| 714 | if (lvRegNum != REG_STK) |
| 715 | { |
| 716 | regMask = genRegMaskFloat(lvRegNum, TypeGet()); |
| 717 | } |
| 718 | } |
| 719 | else |
| 720 | { |
| 721 | if (lvRegNum != REG_STK) |
| 722 | { |
| 723 | regMask = genRegMask(lvRegNum); |
| 724 | } |
| 725 | } |
| 726 | return regMask; |
| 727 | } |
| 728 | |
| 729 | unsigned short lvVarIndex; // variable tracking index |
| 730 | |
| 731 | private: |
| 732 | unsigned short m_lvRefCnt; // unweighted (real) reference count. For implicit by reference |
| 733 | // parameters, this gets hijacked from fgMarkImplicitByRefArgs |
| 734 | // through fgMarkDemotedImplicitByRefArgs, to provide a static |
| 735 | // appearance count (computed during address-exposed analysis) |
| 736 | // that fgMakeOutgoingStructArgCopy consults during global morph |
| 737 | // to determine if eliding its copy is legal. |
| 738 | |
| 739 | BasicBlock::weight_t m_lvRefCntWtd; // weighted reference count |
| 740 | |
| 741 | public: |
| 742 | unsigned short lvRefCnt(RefCountState state = RCS_NORMAL) const; |
| 743 | void incLvRefCnt(unsigned short delta, RefCountState state = RCS_NORMAL); |
| 744 | void setLvRefCnt(unsigned short newValue, RefCountState state = RCS_NORMAL); |
| 745 | |
| 746 | BasicBlock::weight_t lvRefCntWtd(RefCountState state = RCS_NORMAL) const; |
| 747 | void incLvRefCntWtd(BasicBlock::weight_t delta, RefCountState state = RCS_NORMAL); |
| 748 | void setLvRefCntWtd(BasicBlock::weight_t newValue, RefCountState state = RCS_NORMAL); |
| 749 | |
| 750 | int lvStkOffs; // stack offset of home |
| 751 | unsigned lvExactSize; // (exact) size of the type in bytes |
| 752 | |
| 753 | // Is this a promoted struct? |
| 754 | // This method returns true only for structs (including SIMD structs), not for |
| 755 | // locals that are split on a 32-bit target. |
| 756 | // It is only necessary to use this: |
| 757 | // 1) if only structs are wanted, and |
| 758 | // 2) if Lowering has already been done. |
| 759 | // Otherwise lvPromoted is valid. |
| 760 | bool lvPromotedStruct() |
| 761 | { |
| 762 | #if !defined(_TARGET_64BIT_) |
| 763 | return (lvPromoted && !varTypeIsLong(lvType)); |
| 764 | #else // defined(_TARGET_64BIT_) |
| 765 | return lvPromoted; |
| 766 | #endif // defined(_TARGET_64BIT_) |
| 767 | } |
| 768 | |
| 769 | unsigned lvSize() const // Size needed for storage representation. Only used for structs or TYP_BLK. |
| 770 | { |
| 771 | // TODO-Review: Sometimes we get called on ARM with HFA struct variables that have been promoted, |
| 772 | // where the struct itself is no longer used because all access is via its member fields. |
| 773 | // When that happens, the struct is marked as unused and its type has been changed to |
| 774 | // TYP_INT (to keep the GC tracking code from looking at it). |
| 775 | // See Compiler::raAssignVars() for details. For example: |
| 776 | // N002 ( 4, 3) [00EA067C] ------------- return struct $346 |
| 777 | // N001 ( 3, 2) [00EA0628] ------------- lclVar struct(U) V03 loc2 |
| 778 | // float V03.f1 (offs=0x00) -> V12 tmp7 |
| 779 | // f8 (last use) (last use) $345 |
| 780 | // Here, the "struct(U)" shows that the "V03 loc2" variable is unused. Not shown is that V03 |
| 781 | // is now TYP_INT in the local variable table. It's not really unused, because it's in the tree. |
| 782 | |
| 783 | assert(varTypeIsStruct(lvType) || (lvType == TYP_BLK) || (lvPromoted && lvUnusedStruct)); |
| 784 | |
| 785 | #if defined(FEATURE_SIMD) && !defined(_TARGET_64BIT_) |
| 786 | // For 32-bit architectures, we make local variable SIMD12 types 16 bytes instead of just 12. We can't do |
| 787 | // this for arguments, which must be passed according the defined ABI. We don't want to do this for |
| 788 | // dependently promoted struct fields, but we don't know that here. See lvaMapSimd12ToSimd16(). |
| 789 | // (Note that for 64-bits, we are already rounding up to 16.) |
| 790 | if ((lvType == TYP_SIMD12) && !lvIsParam) |
| 791 | { |
| 792 | assert(lvExactSize == 12); |
| 793 | return 16; |
| 794 | } |
| 795 | #endif // defined(FEATURE_SIMD) && !defined(_TARGET_64BIT_) |
| 796 | |
| 797 | return roundUp(lvExactSize, TARGET_POINTER_SIZE); |
| 798 | } |
| 799 | |
| 800 | size_t lvArgStackSize() const; |
| 801 | |
| 802 | unsigned lvSlotNum; // original slot # (if remapped) |
| 803 | |
| 804 | typeInfo lvVerTypeInfo; // type info needed for verification |
| 805 | |
| 806 | CORINFO_CLASS_HANDLE lvClassHnd; // class handle for the local, or null if not known |
| 807 | |
| 808 | CORINFO_FIELD_HANDLE lvFieldHnd; // field handle for promoted struct fields |
| 809 | |
| 810 | BYTE* lvGcLayout; // GC layout info for structs |
| 811 | |
| 812 | #if ASSERTION_PROP |
| 813 | BlockSet lvRefBlks; // Set of blocks that contain refs |
| 814 | GenTree* lvDefStmt; // Pointer to the statement with the single definition |
| 815 | void lvaDisqualifyVar(); // Call to disqualify a local variable from use in optAddCopies |
| 816 | #endif |
| 817 | var_types TypeGet() const |
| 818 | { |
| 819 | return (var_types)lvType; |
| 820 | } |
| 821 | bool lvStackAligned() const |
| 822 | { |
| 823 | assert(lvIsStructField); |
| 824 | return ((lvFldOffset % TARGET_POINTER_SIZE) == 0); |
| 825 | } |
| 826 | bool lvNormalizeOnLoad() const |
| 827 | { |
| 828 | return varTypeIsSmall(TypeGet()) && |
| 829 | // lvIsStructField is treated the same as the aliased local, see fgDoNormalizeOnStore. |
| 830 | (lvIsParam || lvAddrExposed || lvIsStructField); |
| 831 | } |
| 832 | |
| 833 | bool lvNormalizeOnStore() |
| 834 | { |
| 835 | return varTypeIsSmall(TypeGet()) && |
| 836 | // lvIsStructField is treated the same as the aliased local, see fgDoNormalizeOnStore. |
| 837 | !(lvIsParam || lvAddrExposed || lvIsStructField); |
| 838 | } |
| 839 | |
| 840 | void incRefCnts(BasicBlock::weight_t weight, |
| 841 | Compiler* pComp, |
| 842 | RefCountState state = RCS_NORMAL, |
| 843 | bool propagate = true); |
| 844 | bool IsFloatRegType() const |
| 845 | { |
| 846 | return isFloatRegType(lvType) || lvIsHfaRegArg(); |
| 847 | } |
| 848 | var_types GetHfaType() const |
| 849 | { |
| 850 | return lvIsHfa() ? (lvHfaTypeIsFloat() ? TYP_FLOAT : TYP_DOUBLE) : TYP_UNDEF; |
| 851 | } |
| 852 | void SetHfaType(var_types type) |
| 853 | { |
| 854 | assert(varTypeIsFloating(type)); |
| 855 | lvSetHfaTypeIsFloat(type == TYP_FLOAT); |
| 856 | } |
| 857 | |
| 858 | var_types lvaArgType(); |
| 859 | |
| 860 | SsaDefArray<LclSsaVarDsc> ; |
| 861 | |
| 862 | // Returns the address of the per-Ssa data for the given ssaNum (which is required |
| 863 | // not to be the SsaConfig::RESERVED_SSA_NUM, which indicates that the variable is |
| 864 | // not an SSA variable). |
| 865 | LclSsaVarDsc* (unsigned ssaNum) |
| 866 | { |
| 867 | return lvPerSsaData.GetSsaDef(ssaNum); |
| 868 | } |
| 869 | |
| 870 | #ifdef DEBUG |
| 871 | public: |
| 872 | const char* lvReason; |
| 873 | |
| 874 | void PrintVarReg() const |
| 875 | { |
| 876 | printf("%s" , getRegName(lvRegNum)); |
| 877 | } |
| 878 | #endif // DEBUG |
| 879 | |
| 880 | }; // class LclVarDsc |
| 881 | |
| 882 | /* |
| 883 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 884 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 885 | XX XX |
| 886 | XX TempsInfo XX |
| 887 | XX XX |
| 888 | XX The temporary lclVars allocated by the compiler for code generation XX |
| 889 | XX XX |
| 890 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 891 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 892 | */ |
| 893 | |
| 894 | /***************************************************************************** |
| 895 | * |
| 896 | * The following keeps track of temporaries allocated in the stack frame |
| 897 | * during code-generation (after register allocation). These spill-temps are |
| 898 | * only used if we run out of registers while evaluating a tree. |
| 899 | * |
| 900 | * These are different from the more common temps allocated by lvaGrabTemp(). |
| 901 | */ |
| 902 | |
| 903 | class TempDsc |
| 904 | { |
| 905 | public: |
| 906 | TempDsc* tdNext; |
| 907 | |
| 908 | private: |
| 909 | int tdOffs; |
| 910 | #ifdef DEBUG |
| 911 | static const int BAD_TEMP_OFFSET = 0xDDDDDDDD; // used as a sentinel "bad value" for tdOffs in DEBUG |
| 912 | #endif // DEBUG |
| 913 | |
| 914 | int tdNum; |
| 915 | BYTE tdSize; |
| 916 | var_types tdType; |
| 917 | |
| 918 | public: |
| 919 | TempDsc(int _tdNum, unsigned _tdSize, var_types _tdType) : tdNum(_tdNum), tdSize((BYTE)_tdSize), tdType(_tdType) |
| 920 | { |
| 921 | #ifdef DEBUG |
| 922 | assert(tdNum < |
| 923 | 0); // temps must have a negative number (so they have a different number from all local variables) |
| 924 | tdOffs = BAD_TEMP_OFFSET; |
| 925 | #endif // DEBUG |
| 926 | if (tdNum != _tdNum) |
| 927 | { |
| 928 | IMPL_LIMITATION("too many spill temps" ); |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | #ifdef DEBUG |
| 933 | bool tdLegalOffset() const |
| 934 | { |
| 935 | return tdOffs != BAD_TEMP_OFFSET; |
| 936 | } |
| 937 | #endif // DEBUG |
| 938 | |
| 939 | int tdTempOffs() const |
| 940 | { |
| 941 | assert(tdLegalOffset()); |
| 942 | return tdOffs; |
| 943 | } |
| 944 | void tdSetTempOffs(int offs) |
| 945 | { |
| 946 | tdOffs = offs; |
| 947 | assert(tdLegalOffset()); |
| 948 | } |
| 949 | void tdAdjustTempOffs(int offs) |
| 950 | { |
| 951 | tdOffs += offs; |
| 952 | assert(tdLegalOffset()); |
| 953 | } |
| 954 | |
| 955 | int tdTempNum() const |
| 956 | { |
| 957 | assert(tdNum < 0); |
| 958 | return tdNum; |
| 959 | } |
| 960 | unsigned tdTempSize() const |
| 961 | { |
| 962 | return tdSize; |
| 963 | } |
| 964 | var_types tdTempType() const |
| 965 | { |
| 966 | return tdType; |
| 967 | } |
| 968 | }; |
| 969 | |
| 970 | // interface to hide linearscan implementation from rest of compiler |
| 971 | class LinearScanInterface |
| 972 | { |
| 973 | public: |
| 974 | virtual void doLinearScan() = 0; |
| 975 | virtual void recordVarLocationsAtStartOfBB(BasicBlock* bb) = 0; |
| 976 | virtual bool willEnregisterLocalVars() const = 0; |
| 977 | }; |
| 978 | |
| 979 | LinearScanInterface* getLinearScanAllocator(Compiler* comp); |
| 980 | |
| 981 | // Information about arrays: their element type and size, and the offset of the first element. |
| 982 | // We label GT_IND's that are array indices with GTF_IND_ARR_INDEX, and, for such nodes, |
| 983 | // associate an array info via the map retrieved by GetArrayInfoMap(). This information is used, |
| 984 | // for example, in value numbering of array index expressions. |
| 985 | struct ArrayInfo |
| 986 | { |
| 987 | var_types m_elemType; |
| 988 | CORINFO_CLASS_HANDLE m_elemStructType; |
| 989 | unsigned m_elemSize; |
| 990 | unsigned m_elemOffset; |
| 991 | |
| 992 | ArrayInfo() : m_elemType(TYP_UNDEF), m_elemStructType(nullptr), m_elemSize(0), m_elemOffset(0) |
| 993 | { |
| 994 | } |
| 995 | |
| 996 | ArrayInfo(var_types elemType, unsigned elemSize, unsigned elemOffset, CORINFO_CLASS_HANDLE elemStructType) |
| 997 | : m_elemType(elemType), m_elemStructType(elemStructType), m_elemSize(elemSize), m_elemOffset(elemOffset) |
| 998 | { |
| 999 | } |
| 1000 | }; |
| 1001 | |
| 1002 | // This enumeration names the phases into which we divide compilation. The phases should completely |
| 1003 | // partition a compilation. |
| 1004 | enum Phases |
| 1005 | { |
| 1006 | #define CompPhaseNameMacro(enum_nm, string_nm, short_nm, hasChildren, parent, measureIR) enum_nm, |
| 1007 | #include "compphases.h" |
| 1008 | PHASE_NUMBER_OF |
| 1009 | }; |
| 1010 | |
| 1011 | extern const char* PhaseNames[]; |
| 1012 | extern const char* PhaseEnums[]; |
| 1013 | extern const LPCWSTR PhaseShortNames[]; |
| 1014 | |
| 1015 | // The following enum provides a simple 1:1 mapping to CLR API's |
| 1016 | enum API_ICorJitInfo_Names |
| 1017 | { |
| 1018 | #define DEF_CLR_API(name) API_##name, |
| 1019 | #include "ICorJitInfo_API_names.h" |
| 1020 | API_COUNT |
| 1021 | }; |
| 1022 | |
| 1023 | //--------------------------------------------------------------- |
| 1024 | // Compilation time. |
| 1025 | // |
| 1026 | |
| 1027 | // A "CompTimeInfo" is a structure for tracking the compilation time of one or more methods. |
| 1028 | // We divide a compilation into a sequence of contiguous phases, and track the total (per-thread) cycles |
| 1029 | // of the compilation, as well as the cycles for each phase. We also track the number of bytecodes. |
| 1030 | // If there is a failure in reading a timer at any point, the "CompTimeInfo" becomes invalid, as indicated |
| 1031 | // by "m_timerFailure" being true. |
| 1032 | // If FEATURE_JIT_METHOD_PERF is not set, we define a minimal form of this, enough to let other code compile. |
| 1033 | struct CompTimeInfo |
| 1034 | { |
| 1035 | #ifdef FEATURE_JIT_METHOD_PERF |
| 1036 | // The string names of the phases. |
| 1037 | static const char* PhaseNames[]; |
| 1038 | |
| 1039 | static bool PhaseHasChildren[]; |
| 1040 | static int PhaseParent[]; |
| 1041 | static bool PhaseReportsIRSize[]; |
| 1042 | |
| 1043 | unsigned m_byteCodeBytes; |
| 1044 | unsigned __int64 m_totalCycles; |
| 1045 | unsigned __int64 m_invokesByPhase[PHASE_NUMBER_OF]; |
| 1046 | unsigned __int64 m_cyclesByPhase[PHASE_NUMBER_OF]; |
| 1047 | #if MEASURE_CLRAPI_CALLS |
| 1048 | unsigned __int64 m_CLRinvokesByPhase[PHASE_NUMBER_OF]; |
| 1049 | unsigned __int64 m_CLRcyclesByPhase[PHASE_NUMBER_OF]; |
| 1050 | #endif |
| 1051 | |
| 1052 | unsigned m_nodeCountAfterPhase[PHASE_NUMBER_OF]; |
| 1053 | |
| 1054 | // For better documentation, we call EndPhase on |
| 1055 | // non-leaf phases. We should also call EndPhase on the |
| 1056 | // last leaf subphase; obviously, the elapsed cycles between the EndPhase |
| 1057 | // for the last leaf subphase and the EndPhase for an ancestor should be very small. |
| 1058 | // We add all such "redundant end phase" intervals to this variable below; we print |
| 1059 | // it out in a report, so we can verify that it is, indeed, very small. If it ever |
| 1060 | // isn't, this means that we're doing something significant between the end of the last |
| 1061 | // declared subphase and the end of its parent. |
| 1062 | unsigned __int64 m_parentPhaseEndSlop; |
| 1063 | bool m_timerFailure; |
| 1064 | |
| 1065 | #if MEASURE_CLRAPI_CALLS |
| 1066 | // The following measures the time spent inside each individual CLR API call. |
| 1067 | unsigned m_allClrAPIcalls; |
| 1068 | unsigned m_perClrAPIcalls[API_ICorJitInfo_Names::API_COUNT]; |
| 1069 | unsigned __int64 m_allClrAPIcycles; |
| 1070 | unsigned __int64 m_perClrAPIcycles[API_ICorJitInfo_Names::API_COUNT]; |
| 1071 | unsigned __int32 m_maxClrAPIcycles[API_ICorJitInfo_Names::API_COUNT]; |
| 1072 | #endif // MEASURE_CLRAPI_CALLS |
| 1073 | |
| 1074 | CompTimeInfo(unsigned byteCodeBytes); |
| 1075 | #endif |
| 1076 | }; |
| 1077 | |
| 1078 | #ifdef FEATURE_JIT_METHOD_PERF |
| 1079 | |
| 1080 | #if MEASURE_CLRAPI_CALLS |
| 1081 | struct WrapICorJitInfo; |
| 1082 | #endif |
| 1083 | |
| 1084 | // This class summarizes the JIT time information over the course of a run: the number of methods compiled, |
| 1085 | // and the total and maximum timings. (These are instances of the "CompTimeInfo" type described above). |
| 1086 | // The operation of adding a single method's timing to the summary may be performed concurrently by several |
| 1087 | // threads, so it is protected by a lock. |
| 1088 | // This class is intended to be used as a singleton type, with only a single instance. |
| 1089 | class CompTimeSummaryInfo |
| 1090 | { |
| 1091 | // This lock protects the fields of all CompTimeSummaryInfo(s) (of which we expect there to be one). |
| 1092 | static CritSecObject s_compTimeSummaryLock; |
| 1093 | |
| 1094 | int m_numMethods; |
| 1095 | int m_totMethods; |
| 1096 | CompTimeInfo m_total; |
| 1097 | CompTimeInfo m_maximum; |
| 1098 | |
| 1099 | int m_numFilteredMethods; |
| 1100 | CompTimeInfo m_filtered; |
| 1101 | |
| 1102 | // This can use what ever data you want to determine if the value to be added |
| 1103 | // belongs in the filtered section (it's always included in the unfiltered section) |
| 1104 | bool IncludedInFilteredData(CompTimeInfo& info); |
| 1105 | |
| 1106 | public: |
| 1107 | // This is the unique CompTimeSummaryInfo object for this instance of the runtime. |
| 1108 | static CompTimeSummaryInfo s_compTimeSummary; |
| 1109 | |
| 1110 | CompTimeSummaryInfo() |
| 1111 | : m_numMethods(0), m_totMethods(0), m_total(0), m_maximum(0), m_numFilteredMethods(0), m_filtered(0) |
| 1112 | { |
| 1113 | } |
| 1114 | |
| 1115 | // Assumes that "info" is a completed CompTimeInfo for a compilation; adds it to the summary. |
| 1116 | // This is thread safe. |
| 1117 | void AddInfo(CompTimeInfo& info, bool includePhases); |
| 1118 | |
| 1119 | // Print the summary information to "f". |
| 1120 | // This is not thread-safe; assumed to be called by only one thread. |
| 1121 | void Print(FILE* f); |
| 1122 | }; |
| 1123 | |
| 1124 | // A JitTimer encapsulates a CompTimeInfo for a single compilation. It also tracks the start of compilation, |
| 1125 | // and when the current phase started. This is intended to be part of a Compilation object. This is |
| 1126 | // disabled (FEATURE_JIT_METHOD_PERF not defined) when FEATURE_CORECLR is set, or on non-windows platforms. |
| 1127 | // |
| 1128 | class JitTimer |
| 1129 | { |
| 1130 | unsigned __int64 m_start; // Start of the compilation. |
| 1131 | unsigned __int64 m_curPhaseStart; // Start of the current phase. |
| 1132 | #if MEASURE_CLRAPI_CALLS |
| 1133 | unsigned __int64 m_CLRcallStart; // Start of the current CLR API call (if any). |
| 1134 | unsigned __int64 m_CLRcallInvokes; // CLR API invokes under current outer so far |
| 1135 | unsigned __int64 m_CLRcallCycles; // CLR API cycles under current outer so far. |
| 1136 | int m_CLRcallAPInum; // The enum/index of the current CLR API call (or -1). |
| 1137 | static double s_cyclesPerSec; // Cached for speedier measurements |
| 1138 | #endif |
| 1139 | #ifdef DEBUG |
| 1140 | Phases m_lastPhase; // The last phase that was completed (or (Phases)-1 to start). |
| 1141 | #endif |
| 1142 | CompTimeInfo m_info; // The CompTimeInfo for this compilation. |
| 1143 | |
| 1144 | static CritSecObject s_csvLock; // Lock to protect the time log file. |
| 1145 | void PrintCsvMethodStats(Compiler* comp); |
| 1146 | |
| 1147 | private: |
| 1148 | void* operator new(size_t); |
| 1149 | void* operator new[](size_t); |
| 1150 | void operator delete(void*); |
| 1151 | void operator delete[](void*); |
| 1152 | |
| 1153 | public: |
| 1154 | // Initialized the timer instance |
| 1155 | JitTimer(unsigned byteCodeSize); |
| 1156 | |
| 1157 | static JitTimer* Create(Compiler* comp, unsigned byteCodeSize) |
| 1158 | { |
| 1159 | return ::new (comp, CMK_Unknown) JitTimer(byteCodeSize); |
| 1160 | } |
| 1161 | |
| 1162 | static void (); |
| 1163 | |
| 1164 | // Ends the current phase (argument is for a redundant check). |
| 1165 | void EndPhase(Compiler* compiler, Phases phase); |
| 1166 | |
| 1167 | #if MEASURE_CLRAPI_CALLS |
| 1168 | // Start and end a timed CLR API call. |
| 1169 | void CLRApiCallEnter(unsigned apix); |
| 1170 | void CLRApiCallLeave(unsigned apix); |
| 1171 | #endif // MEASURE_CLRAPI_CALLS |
| 1172 | |
| 1173 | // Completes the timing of the current method, which is assumed to have "byteCodeBytes" bytes of bytecode, |
| 1174 | // and adds it to "sum". |
| 1175 | void Terminate(Compiler* comp, CompTimeSummaryInfo& sum, bool includePhases); |
| 1176 | |
| 1177 | // Attempts to query the cycle counter of the current thread. If successful, returns "true" and sets |
| 1178 | // *cycles to the cycle counter value. Otherwise, returns false and sets the "m_timerFailure" flag of |
| 1179 | // "m_info" to true. |
| 1180 | bool GetThreadCycles(unsigned __int64* cycles) |
| 1181 | { |
| 1182 | bool res = CycleTimer::GetThreadCyclesS(cycles); |
| 1183 | if (!res) |
| 1184 | { |
| 1185 | m_info.m_timerFailure = true; |
| 1186 | } |
| 1187 | return res; |
| 1188 | } |
| 1189 | }; |
| 1190 | #endif // FEATURE_JIT_METHOD_PERF |
| 1191 | |
| 1192 | //------------------- Function/Funclet info ------------------------------- |
| 1193 | enum FuncKind : BYTE |
| 1194 | { |
| 1195 | FUNC_ROOT, // The main/root function (always id==0) |
| 1196 | FUNC_HANDLER, // a funclet associated with an EH handler (finally, fault, catch, filter handler) |
| 1197 | FUNC_FILTER, // a funclet associated with an EH filter |
| 1198 | FUNC_COUNT |
| 1199 | }; |
| 1200 | |
| 1201 | class emitLocation; |
| 1202 | |
| 1203 | struct FuncInfoDsc |
| 1204 | { |
| 1205 | FuncKind funKind; |
| 1206 | BYTE funFlags; // Currently unused, just here for padding |
| 1207 | unsigned short funEHIndex; // index, into the ebd table, of innermost EH clause corresponding to this |
| 1208 | // funclet. It is only valid if funKind field indicates this is a |
| 1209 | // EH-related funclet: FUNC_HANDLER or FUNC_FILTER |
| 1210 | |
| 1211 | #if defined(_TARGET_AMD64_) |
| 1212 | |
| 1213 | // TODO-AMD64-Throughput: make the AMD64 info more like the ARM info to avoid having this large static array. |
| 1214 | emitLocation* startLoc; |
| 1215 | emitLocation* endLoc; |
| 1216 | emitLocation* coldStartLoc; // locations for the cold section, if there is one. |
| 1217 | emitLocation* coldEndLoc; |
| 1218 | UNWIND_INFO ; |
| 1219 | // Maximum of 255 UNWIND_CODE 'nodes' and then the unwind header. If there are an odd |
| 1220 | // number of codes, the VM or Zapper will 4-byte align the whole thing. |
| 1221 | BYTE unwindCodes[offsetof(UNWIND_INFO, UnwindCode) + (0xFF * sizeof(UNWIND_CODE))]; |
| 1222 | unsigned unwindCodeSlot; |
| 1223 | |
| 1224 | #elif defined(_TARGET_X86_) |
| 1225 | |
| 1226 | #if defined(_TARGET_UNIX_) |
| 1227 | emitLocation* startLoc; |
| 1228 | emitLocation* endLoc; |
| 1229 | emitLocation* coldStartLoc; // locations for the cold section, if there is one. |
| 1230 | emitLocation* coldEndLoc; |
| 1231 | #endif // _TARGET_UNIX_ |
| 1232 | |
| 1233 | #elif defined(_TARGET_ARMARCH_) |
| 1234 | |
| 1235 | UnwindInfo uwi; // Unwind information for this function/funclet's hot section |
| 1236 | UnwindInfo* uwiCold; // Unwind information for this function/funclet's cold section |
| 1237 | // Note: we only have a pointer here instead of the actual object, |
| 1238 | // to save memory in the JIT case (compared to the NGEN case), |
| 1239 | // where we don't have any cold section. |
| 1240 | // Note 2: we currently don't support hot/cold splitting in functions |
| 1241 | // with EH, so uwiCold will be NULL for all funclets. |
| 1242 | |
| 1243 | #if defined(_TARGET_UNIX_) |
| 1244 | emitLocation* startLoc; |
| 1245 | emitLocation* endLoc; |
| 1246 | emitLocation* coldStartLoc; // locations for the cold section, if there is one. |
| 1247 | emitLocation* coldEndLoc; |
| 1248 | #endif // _TARGET_UNIX_ |
| 1249 | |
| 1250 | #endif // _TARGET_ARMARCH_ |
| 1251 | |
| 1252 | #if defined(_TARGET_UNIX_) |
| 1253 | jitstd::vector<CFI_CODE>* cfiCodes; |
| 1254 | #endif // _TARGET_UNIX_ |
| 1255 | |
| 1256 | // Eventually we may want to move rsModifiedRegsMask, lvaOutgoingArgSize, and anything else |
| 1257 | // that isn't shared between the main function body and funclets. |
| 1258 | }; |
| 1259 | |
| 1260 | struct fgArgTabEntry |
| 1261 | { |
| 1262 | GenTree* node; // Initially points at the Op1 field of 'parent', but if the argument is replaced with an GT_ASG or |
| 1263 | // placeholder it will point at the actual argument in the gtCallLateArgs list. |
| 1264 | GenTree* parent; // Points at the GT_LIST node in the gtCallArgs for this argument |
| 1265 | |
| 1266 | unsigned argNum; // The original argument number, also specifies the required argument evaluation order from the IL |
| 1267 | |
| 1268 | private: |
| 1269 | regNumberSmall regNums[MAX_ARG_REG_COUNT]; // The registers to use when passing this argument, set to REG_STK for |
| 1270 | // arguments passed on the stack |
| 1271 | public: |
| 1272 | unsigned numRegs; // Count of number of registers that this argument uses. |
| 1273 | // Note that on ARM, if we have a double hfa, this reflects the number |
| 1274 | // of DOUBLE registers. |
| 1275 | |
| 1276 | // A slot is a pointer sized region in the OutArg area. |
| 1277 | unsigned slotNum; // When an argument is passed in the OutArg area this is the slot number in the OutArg area |
| 1278 | unsigned numSlots; // Count of number of slots that this argument uses |
| 1279 | |
| 1280 | unsigned alignment; // 1 or 2 (slots/registers) |
| 1281 | private: |
| 1282 | unsigned _lateArgInx; // index into gtCallLateArgs list; UINT_MAX if this is not a late arg. |
| 1283 | public: |
| 1284 | unsigned tmpNum; // the LclVar number if we had to force evaluation of this arg |
| 1285 | |
| 1286 | var_types argType; // The type used to pass this argument. This is generally the original argument type, but when a |
| 1287 | // struct is passed as a scalar type, this is that type. |
| 1288 | // Note that if a struct is passed by reference, this will still be the struct type. |
| 1289 | |
| 1290 | bool needTmp : 1; // True when we force this argument's evaluation into a temp LclVar |
| 1291 | bool needPlace : 1; // True when we must replace this argument with a placeholder node |
| 1292 | bool isTmp : 1; // True when we setup a temp LclVar for this argument due to size issues with the struct |
| 1293 | bool processed : 1; // True when we have decided the evaluation order for this argument in the gtCallLateArgs |
| 1294 | bool isBackFilled : 1; // True when the argument fills a register slot skipped due to alignment requirements of |
| 1295 | // previous arguments. |
| 1296 | bool isNonStandard : 1; // True if it is an arg that is passed in a reg other than a standard arg reg, or is forced |
| 1297 | // to be on the stack despite its arg list position. |
| 1298 | bool isStruct : 1; // True if this is a struct arg |
| 1299 | bool _isVararg : 1; // True if the argument is in a vararg context. |
| 1300 | bool passedByRef : 1; // True iff the argument is passed by reference. |
| 1301 | #ifdef FEATURE_ARG_SPLIT |
| 1302 | bool _isSplit : 1; // True when this argument is split between the registers and OutArg area |
| 1303 | #endif // FEATURE_ARG_SPLIT |
| 1304 | #ifdef FEATURE_HFA |
| 1305 | bool _isHfaArg : 1; // True when the argument is an HFA type. |
| 1306 | bool _isDoubleHfa : 1; // True when the argument is an HFA, with an element type of DOUBLE. |
| 1307 | #endif |
| 1308 | |
| 1309 | bool isLateArg() |
| 1310 | { |
| 1311 | bool isLate = (_lateArgInx != UINT_MAX); |
| 1312 | return isLate; |
| 1313 | } |
| 1314 | |
| 1315 | __declspec(property(get = getLateArgInx, put = setLateArgInx)) unsigned lateArgInx; |
| 1316 | unsigned getLateArgInx() |
| 1317 | { |
| 1318 | assert(isLateArg()); |
| 1319 | return _lateArgInx; |
| 1320 | } |
| 1321 | void setLateArgInx(unsigned inx) |
| 1322 | { |
| 1323 | _lateArgInx = inx; |
| 1324 | } |
| 1325 | __declspec(property(get = getRegNum)) regNumber regNum; |
| 1326 | regNumber getRegNum() |
| 1327 | { |
| 1328 | return (regNumber)regNums[0]; |
| 1329 | } |
| 1330 | __declspec(property(get = getOtherRegNum)) regNumber otherRegNum; |
| 1331 | regNumber getOtherRegNum() |
| 1332 | { |
| 1333 | return (regNumber)regNums[1]; |
| 1334 | } |
| 1335 | |
| 1336 | #if defined(UNIX_AMD64_ABI) |
| 1337 | SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR structDesc; |
| 1338 | #endif |
| 1339 | |
| 1340 | void setRegNum(unsigned int i, regNumber regNum) |
| 1341 | { |
| 1342 | assert(i < MAX_ARG_REG_COUNT); |
| 1343 | regNums[i] = (regNumberSmall)regNum; |
| 1344 | } |
| 1345 | regNumber getRegNum(unsigned int i) |
| 1346 | { |
| 1347 | assert(i < MAX_ARG_REG_COUNT); |
| 1348 | return (regNumber)regNums[i]; |
| 1349 | } |
| 1350 | |
| 1351 | __declspec(property(get = getIsSplit, put = setIsSplit)) bool isSplit; |
| 1352 | bool getIsSplit() |
| 1353 | { |
| 1354 | #ifdef FEATURE_ARG_SPLIT |
| 1355 | return _isSplit; |
| 1356 | #else // FEATURE_ARG_SPLIT |
| 1357 | return false; |
| 1358 | #endif |
| 1359 | } |
| 1360 | void setIsSplit(bool value) |
| 1361 | { |
| 1362 | #ifdef FEATURE_ARG_SPLIT |
| 1363 | _isSplit = value; |
| 1364 | #endif |
| 1365 | } |
| 1366 | |
| 1367 | __declspec(property(get = getIsVararg, put = setIsVararg)) bool isVararg; |
| 1368 | bool getIsVararg() |
| 1369 | { |
| 1370 | #ifdef FEATURE_VARARG |
| 1371 | return _isVararg; |
| 1372 | #else |
| 1373 | return false; |
| 1374 | #endif |
| 1375 | } |
| 1376 | void setIsVararg(bool value) |
| 1377 | { |
| 1378 | #ifdef FEATURE_VARARG |
| 1379 | _isVararg = value; |
| 1380 | #endif // FEATURE_VARARG |
| 1381 | } |
| 1382 | |
| 1383 | __declspec(property(get = getIsHfaArg)) bool isHfaArg; |
| 1384 | bool getIsHfaArg() |
| 1385 | { |
| 1386 | #ifdef FEATURE_HFA |
| 1387 | return _isHfaArg; |
| 1388 | #else |
| 1389 | return false; |
| 1390 | #endif |
| 1391 | } |
| 1392 | |
| 1393 | __declspec(property(get = getIsHfaRegArg)) bool isHfaRegArg; |
| 1394 | bool getIsHfaRegArg() |
| 1395 | { |
| 1396 | #ifdef FEATURE_HFA |
| 1397 | return _isHfaArg && isPassedInRegisters(); |
| 1398 | #else |
| 1399 | return false; |
| 1400 | #endif |
| 1401 | } |
| 1402 | |
| 1403 | __declspec(property(get = getHfaType)) var_types hfaType; |
| 1404 | var_types getHfaType() |
| 1405 | { |
| 1406 | #ifdef FEATURE_HFA |
| 1407 | return _isHfaArg ? (_isDoubleHfa ? TYP_DOUBLE : TYP_FLOAT) : TYP_UNDEF; |
| 1408 | #else |
| 1409 | return TYP_UNDEF; |
| 1410 | #endif |
| 1411 | } |
| 1412 | |
| 1413 | void setHfaType(var_types type, unsigned hfaSlots) |
| 1414 | { |
| 1415 | #ifdef FEATURE_HFA |
| 1416 | if (type != TYP_UNDEF) |
| 1417 | { |
| 1418 | // We must already have set the passing mode. |
| 1419 | assert(numRegs != 0 || numSlots != 0); |
| 1420 | // We originally set numRegs according to the size of the struct, but if the size of the |
| 1421 | // hfaType is not the same as the pointer size, we need to correct it. |
| 1422 | // Note that hfaSlots is the number of registers we will use. For ARM, that is twice |
| 1423 | // the number of "double registers". |
| 1424 | unsigned numHfaRegs = hfaSlots; |
| 1425 | if (isPassedInRegisters()) |
| 1426 | { |
| 1427 | #ifdef _TARGET_ARM_ |
| 1428 | if (type == TYP_DOUBLE) |
| 1429 | { |
| 1430 | // Must be an even number of registers. |
| 1431 | assert((numRegs & 1) == 0); |
| 1432 | numHfaRegs = hfaSlots / 2; |
| 1433 | } |
| 1434 | #endif // _TARGET_ARM_ |
| 1435 | if (_isHfaArg) |
| 1436 | { |
| 1437 | // This should already be set correctly. |
| 1438 | assert(numRegs == numHfaRegs); |
| 1439 | assert(_isDoubleHfa == (type == TYP_DOUBLE)); |
| 1440 | } |
| 1441 | else |
| 1442 | { |
| 1443 | numRegs = numHfaRegs; |
| 1444 | } |
| 1445 | } |
| 1446 | _isDoubleHfa = (type == TYP_DOUBLE); |
| 1447 | _isHfaArg = true; |
| 1448 | } |
| 1449 | #endif // FEATURE_HFA |
| 1450 | } |
| 1451 | |
| 1452 | #ifdef _TARGET_ARM_ |
| 1453 | void SetIsBackFilled(bool backFilled) |
| 1454 | { |
| 1455 | isBackFilled = backFilled; |
| 1456 | } |
| 1457 | |
| 1458 | bool IsBackFilled() const |
| 1459 | { |
| 1460 | return isBackFilled; |
| 1461 | } |
| 1462 | #else // !_TARGET_ARM_ |
| 1463 | void SetIsBackFilled(bool backFilled) |
| 1464 | { |
| 1465 | } |
| 1466 | |
| 1467 | bool IsBackFilled() const |
| 1468 | { |
| 1469 | return false; |
| 1470 | } |
| 1471 | #endif // !_TARGET_ARM_ |
| 1472 | |
| 1473 | bool isPassedInRegisters() |
| 1474 | { |
| 1475 | return !isSplit && (numRegs != 0); |
| 1476 | } |
| 1477 | |
| 1478 | bool isPassedInFloatRegisters() |
| 1479 | { |
| 1480 | #ifdef _TARGET_X86 |
| 1481 | return false; |
| 1482 | #else |
| 1483 | return isValidFloatArgReg(regNum); |
| 1484 | #endif |
| 1485 | } |
| 1486 | |
| 1487 | bool isSingleRegOrSlot() |
| 1488 | { |
| 1489 | return !isSplit && ((numRegs == 1) || (numSlots == 1)); |
| 1490 | } |
| 1491 | |
| 1492 | // Returns the number of "slots" used, where for this purpose a |
| 1493 | // register counts as a slot. |
| 1494 | unsigned getSlotCount() |
| 1495 | { |
| 1496 | if (isBackFilled) |
| 1497 | { |
| 1498 | assert(isPassedInRegisters()); |
| 1499 | assert(numRegs == 1); |
| 1500 | } |
| 1501 | else if (regNum == REG_STK) |
| 1502 | { |
| 1503 | assert(!isPassedInRegisters()); |
| 1504 | assert(numRegs == 0); |
| 1505 | } |
| 1506 | else |
| 1507 | { |
| 1508 | assert(numRegs > 0); |
| 1509 | } |
| 1510 | return numSlots + numRegs; |
| 1511 | } |
| 1512 | |
| 1513 | // Returns the size as a multiple of pointer-size. |
| 1514 | // For targets without HFAs, this is the same as getSlotCount(). |
| 1515 | unsigned getSize() |
| 1516 | { |
| 1517 | unsigned size = getSlotCount(); |
| 1518 | #ifdef FEATURE_HFA |
| 1519 | #ifdef _TARGET_ARM_ |
| 1520 | // We counted the number of regs, but if they are DOUBLE hfa regs we have to double the size. |
| 1521 | if (isHfaRegArg && (hfaType == TYP_DOUBLE)) |
| 1522 | { |
| 1523 | assert(!isSplit); |
| 1524 | size <<= 1; |
| 1525 | } |
| 1526 | #elif defined(_TARGET_ARM64_) |
| 1527 | // We counted the number of regs, but if they are FLOAT hfa regs we have to halve the size. |
| 1528 | if (isHfaRegArg && (hfaType == TYP_FLOAT)) |
| 1529 | { |
| 1530 | // Round up in case of odd HFA count. |
| 1531 | size = (size + 1) >> 1; |
| 1532 | } |
| 1533 | #endif // _TARGET_ARM64_ |
| 1534 | #endif |
| 1535 | return size; |
| 1536 | } |
| 1537 | |
| 1538 | // Set the register numbers for a multireg argument. |
| 1539 | // There's nothing to do on x64/Ux because the structDesc has already been used to set the |
| 1540 | // register numbers. |
| 1541 | void SetMultiRegNums() |
| 1542 | { |
| 1543 | #if FEATURE_MULTIREG_ARGS && !defined(UNIX_AMD64_ABI) |
| 1544 | if (numRegs == 1) |
| 1545 | { |
| 1546 | return; |
| 1547 | } |
| 1548 | |
| 1549 | regNumber argReg = getRegNum(0); |
| 1550 | #ifdef _TARGET_ARM_ |
| 1551 | unsigned int regSize = (hfaType == TYP_DOUBLE) ? 2 : 1; |
| 1552 | #else |
| 1553 | unsigned int regSize = 1; |
| 1554 | #endif |
| 1555 | for (unsigned int regIndex = 1; regIndex < numRegs; regIndex++) |
| 1556 | { |
| 1557 | argReg = (regNumber)(argReg + regSize); |
| 1558 | setRegNum(regIndex, argReg); |
| 1559 | } |
| 1560 | #endif // FEATURE_MULTIREG_ARGS && !defined(UNIX_AMD64_ABI) |
| 1561 | } |
| 1562 | |
| 1563 | // Check that the value of 'isStruct' is consistent. |
| 1564 | // A struct arg must be one of the following: |
| 1565 | // - A node of struct type, |
| 1566 | // - A GT_FIELD_LIST, or |
| 1567 | // - A node of a scalar type, passed in a single register or slot |
| 1568 | // (or two slots in the case of a struct pass on the stack as TYP_DOUBLE). |
| 1569 | // |
| 1570 | void checkIsStruct() |
| 1571 | { |
| 1572 | if (isStruct) |
| 1573 | { |
| 1574 | if (!varTypeIsStruct(node) && !node->OperIs(GT_FIELD_LIST)) |
| 1575 | { |
| 1576 | // This is the case where we are passing a struct as a primitive type. |
| 1577 | // On most targets, this is always a single register or slot. |
| 1578 | // However, on ARM this could be two slots if it is TYP_DOUBLE. |
| 1579 | bool isPassedAsPrimitiveType = ((numRegs == 1) || ((numRegs == 0) && (numSlots == 1))); |
| 1580 | #ifdef _TARGET_ARM_ |
| 1581 | if (!isPassedAsPrimitiveType) |
| 1582 | { |
| 1583 | if (node->TypeGet() == TYP_DOUBLE && numRegs == 0 && (numSlots == 2)) |
| 1584 | { |
| 1585 | isPassedAsPrimitiveType = true; |
| 1586 | } |
| 1587 | } |
| 1588 | #endif // _TARGET_ARM_ |
| 1589 | assert(isPassedAsPrimitiveType); |
| 1590 | } |
| 1591 | } |
| 1592 | else |
| 1593 | { |
| 1594 | assert(!varTypeIsStruct(node)); |
| 1595 | } |
| 1596 | } |
| 1597 | |
| 1598 | #ifdef DEBUG |
| 1599 | void Dump(); |
| 1600 | #endif |
| 1601 | }; |
| 1602 | |
| 1603 | //------------------------------------------------------------------------- |
| 1604 | // |
| 1605 | // The class fgArgInfo is used to handle the arguments |
| 1606 | // when morphing a GT_CALL node. |
| 1607 | // |
| 1608 | |
| 1609 | class fgArgInfo |
| 1610 | { |
| 1611 | Compiler* compiler; // Back pointer to the compiler instance so that we can allocate memory |
| 1612 | GenTreeCall* callTree; // Back pointer to the GT_CALL node for this fgArgInfo |
| 1613 | unsigned argCount; // Updatable arg count value |
| 1614 | unsigned nextSlotNum; // Updatable slot count value |
| 1615 | unsigned stkLevel; // Stack depth when we make this call (for x86) |
| 1616 | |
| 1617 | #if defined(UNIX_X86_ABI) |
| 1618 | bool alignmentDone; // Updateable flag, set to 'true' after we've done any required alignment. |
| 1619 | unsigned stkSizeBytes; // Size of stack used by this call, in bytes. Calculated during fgMorphArgs(). |
| 1620 | unsigned padStkAlign; // Stack alignment in bytes required before arguments are pushed for this call. |
| 1621 | // Computed dynamically during codegen, based on stkSizeBytes and the current |
| 1622 | // stack level (genStackLevel) when the first stack adjustment is made for |
| 1623 | // this call. |
| 1624 | #endif |
| 1625 | |
| 1626 | #if FEATURE_FIXED_OUT_ARGS |
| 1627 | unsigned outArgSize; // Size of the out arg area for the call, will be at least MIN_ARG_AREA_FOR_CALL |
| 1628 | #endif |
| 1629 | |
| 1630 | unsigned argTableSize; // size of argTable array (equal to the argCount when done with fgMorphArgs) |
| 1631 | bool hasRegArgs; // true if we have one or more register arguments |
| 1632 | bool hasStackArgs; // true if we have one or more stack arguments |
| 1633 | bool argsComplete; // marker for state |
| 1634 | bool argsSorted; // marker for state |
| 1635 | fgArgTabEntry** argTable; // variable sized array of per argument descrption: (i.e. argTable[argTableSize]) |
| 1636 | |
| 1637 | private: |
| 1638 | void AddArg(fgArgTabEntry* curArgTabEntry); |
| 1639 | |
| 1640 | public: |
| 1641 | fgArgInfo(Compiler* comp, GenTreeCall* call, unsigned argCount); |
| 1642 | fgArgInfo(GenTreeCall* newCall, GenTreeCall* oldCall); |
| 1643 | |
| 1644 | fgArgTabEntry* AddRegArg(unsigned argNum, |
| 1645 | GenTree* node, |
| 1646 | GenTree* parent, |
| 1647 | regNumber regNum, |
| 1648 | unsigned numRegs, |
| 1649 | unsigned alignment, |
| 1650 | bool isStruct, |
| 1651 | bool isVararg = false); |
| 1652 | |
| 1653 | #ifdef UNIX_AMD64_ABI |
| 1654 | fgArgTabEntry* AddRegArg(unsigned argNum, |
| 1655 | GenTree* node, |
| 1656 | GenTree* parent, |
| 1657 | regNumber regNum, |
| 1658 | unsigned numRegs, |
| 1659 | unsigned alignment, |
| 1660 | const bool isStruct, |
| 1661 | const bool isVararg, |
| 1662 | const regNumber otherRegNum, |
| 1663 | const SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR* const structDescPtr = nullptr); |
| 1664 | #endif // UNIX_AMD64_ABI |
| 1665 | |
| 1666 | fgArgTabEntry* AddStkArg(unsigned argNum, |
| 1667 | GenTree* node, |
| 1668 | GenTree* parent, |
| 1669 | unsigned numSlots, |
| 1670 | unsigned alignment, |
| 1671 | bool isStruct, |
| 1672 | bool isVararg = false); |
| 1673 | |
| 1674 | void RemorphReset(); |
| 1675 | void UpdateRegArg(fgArgTabEntry* argEntry, GenTree* node, bool reMorphing); |
| 1676 | void UpdateStkArg(fgArgTabEntry* argEntry, GenTree* node, bool reMorphing); |
| 1677 | |
| 1678 | void SplitArg(unsigned argNum, unsigned numRegs, unsigned numSlots); |
| 1679 | |
| 1680 | void EvalToTmp(fgArgTabEntry* curArgTabEntry, unsigned tmpNum, GenTree* newNode); |
| 1681 | |
| 1682 | void ArgsComplete(); |
| 1683 | |
| 1684 | void SortArgs(); |
| 1685 | |
| 1686 | void EvalArgsToTemps(); |
| 1687 | |
| 1688 | unsigned ArgCount() |
| 1689 | { |
| 1690 | return argCount; |
| 1691 | } |
| 1692 | fgArgTabEntry** ArgTable() |
| 1693 | { |
| 1694 | return argTable; |
| 1695 | } |
| 1696 | unsigned GetNextSlotNum() |
| 1697 | { |
| 1698 | return nextSlotNum; |
| 1699 | } |
| 1700 | bool HasRegArgs() |
| 1701 | { |
| 1702 | return hasRegArgs; |
| 1703 | } |
| 1704 | bool HasStackArgs() |
| 1705 | { |
| 1706 | return hasStackArgs; |
| 1707 | } |
| 1708 | bool AreArgsComplete() const |
| 1709 | { |
| 1710 | return argsComplete; |
| 1711 | } |
| 1712 | #if FEATURE_FIXED_OUT_ARGS |
| 1713 | unsigned GetOutArgSize() const |
| 1714 | { |
| 1715 | return outArgSize; |
| 1716 | } |
| 1717 | void SetOutArgSize(unsigned newVal) |
| 1718 | { |
| 1719 | outArgSize = newVal; |
| 1720 | } |
| 1721 | #endif // FEATURE_FIXED_OUT_ARGS |
| 1722 | |
| 1723 | #if defined(UNIX_X86_ABI) |
| 1724 | void ComputeStackAlignment(unsigned curStackLevelInBytes) |
| 1725 | { |
| 1726 | padStkAlign = AlignmentPad(curStackLevelInBytes, STACK_ALIGN); |
| 1727 | } |
| 1728 | |
| 1729 | unsigned GetStkAlign() |
| 1730 | { |
| 1731 | return padStkAlign; |
| 1732 | } |
| 1733 | |
| 1734 | void SetStkSizeBytes(unsigned newStkSizeBytes) |
| 1735 | { |
| 1736 | stkSizeBytes = newStkSizeBytes; |
| 1737 | } |
| 1738 | |
| 1739 | unsigned GetStkSizeBytes() const |
| 1740 | { |
| 1741 | return stkSizeBytes; |
| 1742 | } |
| 1743 | |
| 1744 | bool IsStkAlignmentDone() const |
| 1745 | { |
| 1746 | return alignmentDone; |
| 1747 | } |
| 1748 | |
| 1749 | void SetStkAlignmentDone() |
| 1750 | { |
| 1751 | alignmentDone = true; |
| 1752 | } |
| 1753 | #endif // defined(UNIX_X86_ABI) |
| 1754 | |
| 1755 | // Get the fgArgTabEntry for the arg at position argNum. |
| 1756 | fgArgTabEntry* GetArgEntry(unsigned argNum, bool reMorphing = true) |
| 1757 | { |
| 1758 | fgArgTabEntry* curArgTabEntry = nullptr; |
| 1759 | |
| 1760 | if (!reMorphing) |
| 1761 | { |
| 1762 | // The arg table has not yet been sorted. |
| 1763 | curArgTabEntry = argTable[argNum]; |
| 1764 | assert(curArgTabEntry->argNum == argNum); |
| 1765 | return curArgTabEntry; |
| 1766 | } |
| 1767 | |
| 1768 | for (unsigned i = 0; i < argCount; i++) |
| 1769 | { |
| 1770 | curArgTabEntry = argTable[i]; |
| 1771 | if (curArgTabEntry->argNum == argNum) |
| 1772 | { |
| 1773 | return curArgTabEntry; |
| 1774 | } |
| 1775 | } |
| 1776 | noway_assert(!"GetArgEntry: argNum not found" ); |
| 1777 | return nullptr; |
| 1778 | } |
| 1779 | |
| 1780 | // Get the node for the arg at position argIndex. |
| 1781 | // Caller must ensure that this index is a valid arg index. |
| 1782 | GenTree* GetArgNode(unsigned argIndex) |
| 1783 | { |
| 1784 | return GetArgEntry(argIndex)->node; |
| 1785 | } |
| 1786 | |
| 1787 | void Dump(Compiler* compiler); |
| 1788 | }; |
| 1789 | |
| 1790 | #ifdef DEBUG |
| 1791 | // XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1792 | // We have the ability to mark source expressions with "Test Labels." |
| 1793 | // These drive assertions within the JIT, or internal JIT testing. For example, we could label expressions |
| 1794 | // that should be CSE defs, and other expressions that should uses of those defs, with a shared label. |
| 1795 | |
| 1796 | enum TestLabel // This must be kept identical to System.Runtime.CompilerServices.JitTestLabel.TestLabel. |
| 1797 | { |
| 1798 | TL_SsaName, |
| 1799 | TL_VN, // Defines a "VN equivalence class". (For full VN, including exceptions thrown). |
| 1800 | TL_VNNorm, // Like above, but uses the non-exceptional value of the expression. |
| 1801 | TL_CSE_Def, // This must be identified in the JIT as a CSE def |
| 1802 | TL_CSE_Use, // This must be identified in the JIT as a CSE use |
| 1803 | TL_LoopHoist, // Expression must (or must not) be hoisted out of the loop. |
| 1804 | }; |
| 1805 | |
| 1806 | struct TestLabelAndNum |
| 1807 | { |
| 1808 | TestLabel m_tl; |
| 1809 | ssize_t m_num; |
| 1810 | |
| 1811 | TestLabelAndNum() : m_tl(TestLabel(0)), m_num(0) |
| 1812 | { |
| 1813 | } |
| 1814 | }; |
| 1815 | |
| 1816 | typedef JitHashTable<GenTree*, JitPtrKeyFuncs<GenTree>, TestLabelAndNum> NodeToTestDataMap; |
| 1817 | |
| 1818 | // XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1819 | #endif // DEBUG |
| 1820 | |
| 1821 | /* |
| 1822 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1823 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1824 | XX XX |
| 1825 | XX The big guy. The sections are currently organized as : XX |
| 1826 | XX XX |
| 1827 | XX o GenTree and BasicBlock XX |
| 1828 | XX o LclVarsInfo XX |
| 1829 | XX o Importer XX |
| 1830 | XX o FlowGraph XX |
| 1831 | XX o Optimizer XX |
| 1832 | XX o RegAlloc XX |
| 1833 | XX o EEInterface XX |
| 1834 | XX o TempsInfo XX |
| 1835 | XX o RegSet XX |
| 1836 | XX o GCInfo XX |
| 1837 | XX o Instruction XX |
| 1838 | XX o ScopeInfo XX |
| 1839 | XX o PrologScopeInfo XX |
| 1840 | XX o CodeGenerator XX |
| 1841 | XX o UnwindInfo XX |
| 1842 | XX o Compiler XX |
| 1843 | XX o typeInfo XX |
| 1844 | XX XX |
| 1845 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1846 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1847 | */ |
| 1848 | |
| 1849 | struct HWIntrinsicInfo; |
| 1850 | |
| 1851 | class Compiler |
| 1852 | { |
| 1853 | friend class emitter; |
| 1854 | friend class UnwindInfo; |
| 1855 | friend class UnwindFragmentInfo; |
| 1856 | friend class UnwindEpilogInfo; |
| 1857 | friend class JitTimer; |
| 1858 | friend class LinearScan; |
| 1859 | friend class fgArgInfo; |
| 1860 | friend class Rationalizer; |
| 1861 | friend class Phase; |
| 1862 | friend class Lowering; |
| 1863 | friend class CSE_DataFlow; |
| 1864 | friend class CSE_Heuristic; |
| 1865 | friend class CodeGenInterface; |
| 1866 | friend class CodeGen; |
| 1867 | friend class LclVarDsc; |
| 1868 | friend class TempDsc; |
| 1869 | friend class LIR; |
| 1870 | friend class ObjectAllocator; |
| 1871 | friend class LocalAddressVisitor; |
| 1872 | friend struct GenTree; |
| 1873 | |
| 1874 | #ifdef FEATURE_HW_INTRINSICS |
| 1875 | friend struct HWIntrinsicInfo; |
| 1876 | #endif // FEATURE_HW_INTRINSICS |
| 1877 | |
| 1878 | #ifndef _TARGET_64BIT_ |
| 1879 | friend class DecomposeLongs; |
| 1880 | #endif // !_TARGET_64BIT_ |
| 1881 | |
| 1882 | /* |
| 1883 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1884 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1885 | XX XX |
| 1886 | XX Misc structs definitions XX |
| 1887 | XX XX |
| 1888 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1889 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1890 | */ |
| 1891 | |
| 1892 | public: |
| 1893 | hashBvGlobalData hbvGlobalData; // Used by the hashBv bitvector package. |
| 1894 | |
| 1895 | #ifdef DEBUG |
| 1896 | bool verbose; |
| 1897 | bool dumpIR; |
| 1898 | bool dumpIRNodes; |
| 1899 | bool dumpIRTypes; |
| 1900 | bool dumpIRKinds; |
| 1901 | bool dumpIRLocals; |
| 1902 | bool dumpIRRegs; |
| 1903 | bool ; |
| 1904 | bool dumpIRValnums; |
| 1905 | bool dumpIRCosts; |
| 1906 | bool dumpIRFlags; |
| 1907 | bool dumpIRNoLists; |
| 1908 | bool dumpIRNoLeafs; |
| 1909 | bool dumpIRNoStmts; |
| 1910 | bool dumpIRTrees; |
| 1911 | bool dumpIRLinear; |
| 1912 | bool dumpIRDataflow; |
| 1913 | bool ; |
| 1914 | bool dumpIRExit; |
| 1915 | LPCWSTR dumpIRPhase; |
| 1916 | LPCWSTR dumpIRFormat; |
| 1917 | bool verboseTrees; |
| 1918 | bool shouldUseVerboseTrees(); |
| 1919 | bool asciiTrees; // If true, dump trees using only ASCII characters |
| 1920 | bool shouldDumpASCIITrees(); |
| 1921 | bool verboseSsa; // If true, produce especially verbose dump output in SSA construction. |
| 1922 | bool shouldUseVerboseSsa(); |
| 1923 | bool treesBeforeAfterMorph; // If true, print trees before/after morphing (paired by an intra-compilation id: |
| 1924 | int morphNum; // This counts the the trees that have been morphed, allowing us to label each uniquely. |
| 1925 | |
| 1926 | const char* VarNameToStr(VarName name) |
| 1927 | { |
| 1928 | return name; |
| 1929 | } |
| 1930 | |
| 1931 | DWORD expensiveDebugCheckLevel; |
| 1932 | #endif |
| 1933 | |
| 1934 | #if FEATURE_MULTIREG_RET |
| 1935 | GenTree* impAssignMultiRegTypeToVar(GenTree* op, CORINFO_CLASS_HANDLE hClass); |
| 1936 | #endif // FEATURE_MULTIREG_RET |
| 1937 | |
| 1938 | GenTree* impAssignSmallStructTypeToVar(GenTree* op, CORINFO_CLASS_HANDLE hClass); |
| 1939 | |
| 1940 | #ifdef ARM_SOFTFP |
| 1941 | bool isSingleFloat32Struct(CORINFO_CLASS_HANDLE hClass); |
| 1942 | #endif // ARM_SOFTFP |
| 1943 | |
| 1944 | //------------------------------------------------------------------------- |
| 1945 | // Functions to handle homogeneous floating-point aggregates (HFAs) in ARM. |
| 1946 | // HFAs are one to four element structs where each element is the same |
| 1947 | // type, either all float or all double. They are treated specially |
| 1948 | // in the ARM Procedure Call Standard, specifically, they are passed in |
| 1949 | // floating-point registers instead of the general purpose registers. |
| 1950 | // |
| 1951 | |
| 1952 | bool IsHfa(CORINFO_CLASS_HANDLE hClass); |
| 1953 | bool IsHfa(GenTree* tree); |
| 1954 | |
| 1955 | var_types GetHfaType(GenTree* tree); |
| 1956 | unsigned GetHfaCount(GenTree* tree); |
| 1957 | |
| 1958 | var_types GetHfaType(CORINFO_CLASS_HANDLE hClass); |
| 1959 | unsigned GetHfaCount(CORINFO_CLASS_HANDLE hClass); |
| 1960 | |
| 1961 | bool IsMultiRegReturnedType(CORINFO_CLASS_HANDLE hClass); |
| 1962 | |
| 1963 | //------------------------------------------------------------------------- |
| 1964 | // The following is used for validating format of EH table |
| 1965 | // |
| 1966 | |
| 1967 | struct EHNodeDsc; |
| 1968 | typedef struct EHNodeDsc* pEHNodeDsc; |
| 1969 | |
| 1970 | EHNodeDsc* ehnTree; // root of the tree comprising the EHnodes. |
| 1971 | EHNodeDsc* ehnNext; // root of the tree comprising the EHnodes. |
| 1972 | |
| 1973 | struct EHNodeDsc |
| 1974 | { |
| 1975 | enum EHBlockType |
| 1976 | { |
| 1977 | TryNode, |
| 1978 | FilterNode, |
| 1979 | HandlerNode, |
| 1980 | FinallyNode, |
| 1981 | FaultNode |
| 1982 | }; |
| 1983 | |
| 1984 | EHBlockType ehnBlockType; // kind of EH block |
| 1985 | IL_OFFSET ehnStartOffset; // IL offset of start of the EH block |
| 1986 | IL_OFFSET ehnEndOffset; // IL offset past end of the EH block. (TODO: looks like verInsertEhNode() sets this to |
| 1987 | // the last IL offset, not "one past the last one", i.e., the range Start to End is |
| 1988 | // inclusive). |
| 1989 | pEHNodeDsc ehnNext; // next (non-nested) block in sequential order |
| 1990 | pEHNodeDsc ehnChild; // leftmost nested block |
| 1991 | union { |
| 1992 | pEHNodeDsc ehnTryNode; // for filters and handlers, the corresponding try node |
| 1993 | pEHNodeDsc ehnHandlerNode; // for a try node, the corresponding handler node |
| 1994 | }; |
| 1995 | pEHNodeDsc ehnFilterNode; // if this is a try node and has a filter, otherwise 0 |
| 1996 | pEHNodeDsc ehnEquivalent; // if blockType=tryNode, start offset and end offset is same, |
| 1997 | |
| 1998 | void ehnSetTryNodeType() |
| 1999 | { |
| 2000 | ehnBlockType = TryNode; |
| 2001 | } |
| 2002 | void ehnSetFilterNodeType() |
| 2003 | { |
| 2004 | ehnBlockType = FilterNode; |
| 2005 | } |
| 2006 | void ehnSetHandlerNodeType() |
| 2007 | { |
| 2008 | ehnBlockType = HandlerNode; |
| 2009 | } |
| 2010 | void ehnSetFinallyNodeType() |
| 2011 | { |
| 2012 | ehnBlockType = FinallyNode; |
| 2013 | } |
| 2014 | void ehnSetFaultNodeType() |
| 2015 | { |
| 2016 | ehnBlockType = FaultNode; |
| 2017 | } |
| 2018 | |
| 2019 | BOOL ehnIsTryBlock() |
| 2020 | { |
| 2021 | return ehnBlockType == TryNode; |
| 2022 | } |
| 2023 | BOOL ehnIsFilterBlock() |
| 2024 | { |
| 2025 | return ehnBlockType == FilterNode; |
| 2026 | } |
| 2027 | BOOL ehnIsHandlerBlock() |
| 2028 | { |
| 2029 | return ehnBlockType == HandlerNode; |
| 2030 | } |
| 2031 | BOOL ehnIsFinallyBlock() |
| 2032 | { |
| 2033 | return ehnBlockType == FinallyNode; |
| 2034 | } |
| 2035 | BOOL ehnIsFaultBlock() |
| 2036 | { |
| 2037 | return ehnBlockType == FaultNode; |
| 2038 | } |
| 2039 | |
| 2040 | // returns true if there is any overlap between the two nodes |
| 2041 | static BOOL ehnIsOverlap(pEHNodeDsc node1, pEHNodeDsc node2) |
| 2042 | { |
| 2043 | if (node1->ehnStartOffset < node2->ehnStartOffset) |
| 2044 | { |
| 2045 | return (node1->ehnEndOffset >= node2->ehnStartOffset); |
| 2046 | } |
| 2047 | else |
| 2048 | { |
| 2049 | return (node1->ehnStartOffset <= node2->ehnEndOffset); |
| 2050 | } |
| 2051 | } |
| 2052 | |
| 2053 | // fails with BADCODE if inner is not completely nested inside outer |
| 2054 | static BOOL ehnIsNested(pEHNodeDsc inner, pEHNodeDsc outer) |
| 2055 | { |
| 2056 | return ((inner->ehnStartOffset >= outer->ehnStartOffset) && (inner->ehnEndOffset <= outer->ehnEndOffset)); |
| 2057 | } |
| 2058 | }; |
| 2059 | |
| 2060 | //------------------------------------------------------------------------- |
| 2061 | // Exception handling functions |
| 2062 | // |
| 2063 | |
| 2064 | #if !FEATURE_EH_FUNCLETS |
| 2065 | |
| 2066 | bool ehNeedsShadowSPslots() |
| 2067 | { |
| 2068 | return (info.compXcptnsCount || opts.compDbgEnC); |
| 2069 | } |
| 2070 | |
| 2071 | // 0 for methods with no EH |
| 2072 | // 1 for methods with non-nested EH, or where only the try blocks are nested |
| 2073 | // 2 for a method with a catch within a catch |
| 2074 | // etc. |
| 2075 | unsigned ehMaxHndNestingCount; |
| 2076 | |
| 2077 | #endif // !FEATURE_EH_FUNCLETS |
| 2078 | |
| 2079 | static bool jitIsBetween(unsigned value, unsigned start, unsigned end); |
| 2080 | static bool jitIsBetweenInclusive(unsigned value, unsigned start, unsigned end); |
| 2081 | |
| 2082 | bool bbInCatchHandlerILRange(BasicBlock* blk); |
| 2083 | bool bbInFilterILRange(BasicBlock* blk); |
| 2084 | bool bbInTryRegions(unsigned regionIndex, BasicBlock* blk); |
| 2085 | bool bbInExnFlowRegions(unsigned regionIndex, BasicBlock* blk); |
| 2086 | bool bbInHandlerRegions(unsigned regionIndex, BasicBlock* blk); |
| 2087 | bool bbInCatchHandlerRegions(BasicBlock* tryBlk, BasicBlock* hndBlk); |
| 2088 | unsigned short bbFindInnermostCommonTryRegion(BasicBlock* bbOne, BasicBlock* bbTwo); |
| 2089 | |
| 2090 | unsigned short bbFindInnermostTryRegionContainingHandlerRegion(unsigned handlerIndex); |
| 2091 | unsigned short bbFindInnermostHandlerRegionContainingTryRegion(unsigned tryIndex); |
| 2092 | |
| 2093 | // Returns true if "block" is the start of a try region. |
| 2094 | bool bbIsTryBeg(BasicBlock* block); |
| 2095 | |
| 2096 | // Returns true if "block" is the start of a handler or filter region. |
| 2097 | bool bbIsHandlerBeg(BasicBlock* block); |
| 2098 | |
| 2099 | // Returns true iff "block" is where control flows if an exception is raised in the |
| 2100 | // try region, and sets "*regionIndex" to the index of the try for the handler. |
| 2101 | // Differs from "IsHandlerBeg" in the case of filters, where this is true for the first |
| 2102 | // block of the filter, but not for the filter's handler. |
| 2103 | bool bbIsExFlowBlock(BasicBlock* block, unsigned* regionIndex); |
| 2104 | |
| 2105 | bool ehHasCallableHandlers(); |
| 2106 | |
| 2107 | // Return the EH descriptor for the given region index. |
| 2108 | EHblkDsc* ehGetDsc(unsigned regionIndex); |
| 2109 | |
| 2110 | // Return the EH index given a region descriptor. |
| 2111 | unsigned ehGetIndex(EHblkDsc* ehDsc); |
| 2112 | |
| 2113 | // Return the EH descriptor index of the enclosing try, for the given region index. |
| 2114 | unsigned ehGetEnclosingTryIndex(unsigned regionIndex); |
| 2115 | |
| 2116 | // Return the EH descriptor index of the enclosing handler, for the given region index. |
| 2117 | unsigned ehGetEnclosingHndIndex(unsigned regionIndex); |
| 2118 | |
| 2119 | // Return the EH descriptor for the most nested 'try' region this BasicBlock is a member of (or nullptr if this |
| 2120 | // block is not in a 'try' region). |
| 2121 | EHblkDsc* ehGetBlockTryDsc(BasicBlock* block); |
| 2122 | |
| 2123 | // Return the EH descriptor for the most nested filter or handler region this BasicBlock is a member of (or nullptr |
| 2124 | // if this block is not in a filter or handler region). |
| 2125 | EHblkDsc* ehGetBlockHndDsc(BasicBlock* block); |
| 2126 | |
| 2127 | // Return the EH descriptor for the most nested region that may handle exceptions raised in this BasicBlock (or |
| 2128 | // nullptr if this block's exceptions propagate to caller). |
| 2129 | EHblkDsc* ehGetBlockExnFlowDsc(BasicBlock* block); |
| 2130 | |
| 2131 | EHblkDsc* ehIsBlockTryLast(BasicBlock* block); |
| 2132 | EHblkDsc* ehIsBlockHndLast(BasicBlock* block); |
| 2133 | bool ehIsBlockEHLast(BasicBlock* block); |
| 2134 | |
| 2135 | bool ehBlockHasExnFlowDsc(BasicBlock* block); |
| 2136 | |
| 2137 | // Return the region index of the most nested EH region this block is in. |
| 2138 | unsigned ehGetMostNestedRegionIndex(BasicBlock* block, bool* inTryRegion); |
| 2139 | |
| 2140 | // Find the true enclosing try index, ignoring 'mutual protect' try. Uses IL ranges to check. |
| 2141 | unsigned ehTrueEnclosingTryIndexIL(unsigned regionIndex); |
| 2142 | |
| 2143 | // Return the index of the most nested enclosing region for a particular EH region. Returns NO_ENCLOSING_INDEX |
| 2144 | // if there is no enclosing region. If the returned index is not NO_ENCLOSING_INDEX, then '*inTryRegion' |
| 2145 | // is set to 'true' if the enclosing region is a 'try', or 'false' if the enclosing region is a handler. |
| 2146 | // (It can never be a filter.) |
| 2147 | unsigned ehGetEnclosingRegionIndex(unsigned regionIndex, bool* inTryRegion); |
| 2148 | |
| 2149 | // A block has been deleted. Update the EH table appropriately. |
| 2150 | void ehUpdateForDeletedBlock(BasicBlock* block); |
| 2151 | |
| 2152 | // Determine whether a block can be deleted while preserving the EH normalization rules. |
| 2153 | bool ehCanDeleteEmptyBlock(BasicBlock* block); |
| 2154 | |
| 2155 | // Update the 'last' pointers in the EH table to reflect new or deleted blocks in an EH region. |
| 2156 | void ehUpdateLastBlocks(BasicBlock* oldLast, BasicBlock* newLast); |
| 2157 | |
| 2158 | // For a finally handler, find the region index that the BBJ_CALLFINALLY lives in that calls the handler, |
| 2159 | // or NO_ENCLOSING_INDEX if the BBJ_CALLFINALLY lives in the main function body. Normally, the index |
| 2160 | // is the same index as the handler (and the BBJ_CALLFINALLY lives in the 'try' region), but for AMD64 the |
| 2161 | // BBJ_CALLFINALLY lives in the enclosing try or handler region, whichever is more nested, or the main function |
| 2162 | // body. If the returned index is not NO_ENCLOSING_INDEX, then '*inTryRegion' is set to 'true' if the |
| 2163 | // BBJ_CALLFINALLY lives in the returned index's 'try' region, or 'false' if lives in the handler region. (It never |
| 2164 | // lives in a filter.) |
| 2165 | unsigned ehGetCallFinallyRegionIndex(unsigned finallyIndex, bool* inTryRegion); |
| 2166 | |
| 2167 | // Find the range of basic blocks in which all BBJ_CALLFINALLY will be found that target the 'finallyIndex' region's |
| 2168 | // handler. Set begBlk to the first block, and endBlk to the block after the last block of the range |
| 2169 | // (nullptr if the last block is the last block in the program). |
| 2170 | // Precondition: 'finallyIndex' is the EH region of a try/finally clause. |
| 2171 | void ehGetCallFinallyBlockRange(unsigned finallyIndex, BasicBlock** begBlk, BasicBlock** endBlk); |
| 2172 | |
| 2173 | #ifdef DEBUG |
| 2174 | // Given a BBJ_CALLFINALLY block and the EH region index of the finally it is calling, return |
| 2175 | // 'true' if the BBJ_CALLFINALLY is in the correct EH region. |
| 2176 | bool ehCallFinallyInCorrectRegion(BasicBlock* blockCallFinally, unsigned finallyIndex); |
| 2177 | #endif // DEBUG |
| 2178 | |
| 2179 | #if FEATURE_EH_FUNCLETS |
| 2180 | // Do we need a PSPSym in the main function? For codegen purposes, we only need one |
| 2181 | // if there is a filter that protects a region with a nested EH clause (such as a |
| 2182 | // try/catch nested in the 'try' body of a try/filter/filter-handler). See |
| 2183 | // genFuncletProlog() for more details. However, the VM seems to use it for more |
| 2184 | // purposes, maybe including debugging. Until we are sure otherwise, always create |
| 2185 | // a PSPSym for functions with any EH. |
| 2186 | bool ehNeedsPSPSym() const |
| 2187 | { |
| 2188 | #ifdef _TARGET_X86_ |
| 2189 | return false; |
| 2190 | #else // _TARGET_X86_ |
| 2191 | return compHndBBtabCount > 0; |
| 2192 | #endif // _TARGET_X86_ |
| 2193 | } |
| 2194 | |
| 2195 | bool ehAnyFunclets(); // Are there any funclets in this function? |
| 2196 | unsigned ehFuncletCount(); // Return the count of funclets in the function |
| 2197 | |
| 2198 | unsigned bbThrowIndex(BasicBlock* blk); // Get the index to use as the cache key for sharing throw blocks |
| 2199 | #else // !FEATURE_EH_FUNCLETS |
| 2200 | bool ehAnyFunclets() |
| 2201 | { |
| 2202 | return false; |
| 2203 | } |
| 2204 | unsigned ehFuncletCount() |
| 2205 | { |
| 2206 | return 0; |
| 2207 | } |
| 2208 | |
| 2209 | unsigned bbThrowIndex(BasicBlock* blk) |
| 2210 | { |
| 2211 | return blk->bbTryIndex; |
| 2212 | } // Get the index to use as the cache key for sharing throw blocks |
| 2213 | #endif // !FEATURE_EH_FUNCLETS |
| 2214 | |
| 2215 | // Returns a flowList representing the "EH predecessors" of "blk". These are the normal predecessors of |
| 2216 | // "blk", plus one special case: if "blk" is the first block of a handler, considers the predecessor(s) of the first |
| 2217 | // first block of the corresponding try region to be "EH predecessors". (If there is a single such predecessor, |
| 2218 | // for example, we want to consider that the immediate dominator of the catch clause start block, so it's |
| 2219 | // convenient to also consider it a predecessor.) |
| 2220 | flowList* BlockPredsWithEH(BasicBlock* blk); |
| 2221 | |
| 2222 | // This table is useful for memoization of the method above. |
| 2223 | typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, flowList*> BlockToFlowListMap; |
| 2224 | BlockToFlowListMap* m_blockToEHPreds; |
| 2225 | BlockToFlowListMap* GetBlockToEHPreds() |
| 2226 | { |
| 2227 | if (m_blockToEHPreds == nullptr) |
| 2228 | { |
| 2229 | m_blockToEHPreds = new (getAllocator()) BlockToFlowListMap(getAllocator()); |
| 2230 | } |
| 2231 | return m_blockToEHPreds; |
| 2232 | } |
| 2233 | |
| 2234 | void* ehEmitCookie(BasicBlock* block); |
| 2235 | UNATIVE_OFFSET ehCodeOffset(BasicBlock* block); |
| 2236 | |
| 2237 | EHblkDsc* ehInitHndRange(BasicBlock* src, IL_OFFSET* hndBeg, IL_OFFSET* hndEnd, bool* inFilter); |
| 2238 | |
| 2239 | EHblkDsc* ehInitTryRange(BasicBlock* src, IL_OFFSET* tryBeg, IL_OFFSET* tryEnd); |
| 2240 | |
| 2241 | EHblkDsc* ehInitHndBlockRange(BasicBlock* blk, BasicBlock** hndBeg, BasicBlock** hndLast, bool* inFilter); |
| 2242 | |
| 2243 | EHblkDsc* ehInitTryBlockRange(BasicBlock* blk, BasicBlock** tryBeg, BasicBlock** tryLast); |
| 2244 | |
| 2245 | void fgSetTryEnd(EHblkDsc* handlerTab, BasicBlock* newTryLast); |
| 2246 | |
| 2247 | void fgSetHndEnd(EHblkDsc* handlerTab, BasicBlock* newHndLast); |
| 2248 | |
| 2249 | void fgSkipRmvdBlocks(EHblkDsc* handlerTab); |
| 2250 | |
| 2251 | void fgAllocEHTable(); |
| 2252 | |
| 2253 | void fgRemoveEHTableEntry(unsigned XTnum); |
| 2254 | |
| 2255 | #if FEATURE_EH_FUNCLETS |
| 2256 | |
| 2257 | EHblkDsc* fgAddEHTableEntry(unsigned XTnum); |
| 2258 | |
| 2259 | #endif // FEATURE_EH_FUNCLETS |
| 2260 | |
| 2261 | #if !FEATURE_EH |
| 2262 | void fgRemoveEH(); |
| 2263 | #endif // !FEATURE_EH |
| 2264 | |
| 2265 | void fgSortEHTable(); |
| 2266 | |
| 2267 | // Causes the EH table to obey some well-formedness conditions, by inserting |
| 2268 | // empty BB's when necessary: |
| 2269 | // * No block is both the first block of a handler and the first block of a try. |
| 2270 | // * No block is the first block of multiple 'try' regions. |
| 2271 | // * No block is the last block of multiple EH regions. |
| 2272 | void fgNormalizeEH(); |
| 2273 | bool fgNormalizeEHCase1(); |
| 2274 | bool fgNormalizeEHCase2(); |
| 2275 | bool fgNormalizeEHCase3(); |
| 2276 | |
| 2277 | #ifdef DEBUG |
| 2278 | void dispIncomingEHClause(unsigned num, const CORINFO_EH_CLAUSE& clause); |
| 2279 | void dispOutgoingEHClause(unsigned num, const CORINFO_EH_CLAUSE& clause); |
| 2280 | void fgVerifyHandlerTab(); |
| 2281 | void fgDispHandlerTab(); |
| 2282 | #endif // DEBUG |
| 2283 | |
| 2284 | bool fgNeedToSortEHTable; |
| 2285 | |
| 2286 | void verInitEHTree(unsigned numEHClauses); |
| 2287 | void verInsertEhNode(CORINFO_EH_CLAUSE* clause, EHblkDsc* handlerTab); |
| 2288 | void verInsertEhNodeInTree(EHNodeDsc** ppRoot, EHNodeDsc* node); |
| 2289 | void verInsertEhNodeParent(EHNodeDsc** ppRoot, EHNodeDsc* node); |
| 2290 | void verCheckNestingLevel(EHNodeDsc* initRoot); |
| 2291 | |
| 2292 | /* |
| 2293 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 2294 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 2295 | XX XX |
| 2296 | XX GenTree and BasicBlock XX |
| 2297 | XX XX |
| 2298 | XX Functions to allocate and display the GenTrees and BasicBlocks XX |
| 2299 | XX XX |
| 2300 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 2301 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 2302 | */ |
| 2303 | |
| 2304 | // Functions to create nodes |
| 2305 | GenTreeStmt* gtNewStmt(GenTree* expr = nullptr, IL_OFFSETX offset = BAD_IL_OFFSET); |
| 2306 | |
| 2307 | // For unary opers. |
| 2308 | GenTree* gtNewOperNode(genTreeOps oper, var_types type, GenTree* op1, bool doSimplifications = TRUE); |
| 2309 | |
| 2310 | // For binary opers. |
| 2311 | GenTree* gtNewOperNode(genTreeOps oper, var_types type, GenTree* op1, GenTree* op2); |
| 2312 | |
| 2313 | GenTree* gtNewQmarkNode(var_types type, GenTree* cond, GenTree* colon); |
| 2314 | |
| 2315 | GenTree* gtNewLargeOperNode(genTreeOps oper, |
| 2316 | var_types type = TYP_I_IMPL, |
| 2317 | GenTree* op1 = nullptr, |
| 2318 | GenTree* op2 = nullptr); |
| 2319 | |
| 2320 | GenTreeIntCon* gtNewIconNode(ssize_t value, var_types type = TYP_INT); |
| 2321 | |
| 2322 | GenTree* gtNewPhysRegNode(regNumber reg, var_types type); |
| 2323 | |
| 2324 | GenTree* gtNewJmpTableNode(); |
| 2325 | |
| 2326 | GenTree* gtNewIndOfIconHandleNode(var_types indType, size_t value, unsigned iconFlags, bool isInvariant); |
| 2327 | |
| 2328 | GenTree* gtNewIconHandleNode(size_t value, unsigned flags, FieldSeqNode* fields = nullptr); |
| 2329 | |
| 2330 | unsigned gtTokenToIconFlags(unsigned token); |
| 2331 | |
| 2332 | GenTree* gtNewIconEmbHndNode(void* value, void* pValue, unsigned flags, void* compileTimeHandle); |
| 2333 | |
| 2334 | GenTree* gtNewIconEmbScpHndNode(CORINFO_MODULE_HANDLE scpHnd); |
| 2335 | GenTree* gtNewIconEmbClsHndNode(CORINFO_CLASS_HANDLE clsHnd); |
| 2336 | GenTree* gtNewIconEmbMethHndNode(CORINFO_METHOD_HANDLE methHnd); |
| 2337 | GenTree* gtNewIconEmbFldHndNode(CORINFO_FIELD_HANDLE fldHnd); |
| 2338 | |
| 2339 | GenTree* gtNewStringLiteralNode(InfoAccessType iat, void* pValue); |
| 2340 | |
| 2341 | GenTree* gtNewLconNode(__int64 value); |
| 2342 | |
| 2343 | GenTree* gtNewDconNode(double value); |
| 2344 | |
| 2345 | GenTree* gtNewSconNode(int CPX, CORINFO_MODULE_HANDLE scpHandle); |
| 2346 | |
| 2347 | GenTree* gtNewZeroConNode(var_types type); |
| 2348 | |
| 2349 | GenTree* gtNewOneConNode(var_types type); |
| 2350 | |
| 2351 | #ifdef FEATURE_SIMD |
| 2352 | GenTree* gtNewSIMDVectorZero(var_types simdType, var_types baseType, unsigned size); |
| 2353 | GenTree* gtNewSIMDVectorOne(var_types simdType, var_types baseType, unsigned size); |
| 2354 | #endif |
| 2355 | |
| 2356 | GenTree* gtNewBlkOpNode(GenTree* dst, GenTree* srcOrFillVal, unsigned size, bool isVolatile, bool isCopyBlock); |
| 2357 | |
| 2358 | GenTree* gtNewPutArgReg(var_types type, GenTree* arg, regNumber argReg); |
| 2359 | |
| 2360 | GenTree* gtNewBitCastNode(var_types type, GenTree* arg); |
| 2361 | |
| 2362 | protected: |
| 2363 | void gtBlockOpInit(GenTree* result, GenTree* dst, GenTree* srcOrFillVal, bool isVolatile); |
| 2364 | |
| 2365 | public: |
| 2366 | GenTree* gtNewObjNode(CORINFO_CLASS_HANDLE structHnd, GenTree* addr); |
| 2367 | void gtSetObjGcInfo(GenTreeObj* objNode); |
| 2368 | GenTree* gtNewStructVal(CORINFO_CLASS_HANDLE structHnd, GenTree* addr); |
| 2369 | GenTree* gtNewBlockVal(GenTree* addr, unsigned size); |
| 2370 | |
| 2371 | GenTree* gtNewCpObjNode(GenTree* dst, GenTree* src, CORINFO_CLASS_HANDLE structHnd, bool isVolatile); |
| 2372 | |
| 2373 | GenTreeArgList* gtNewListNode(GenTree* op1, GenTreeArgList* op2); |
| 2374 | |
| 2375 | GenTreeCall* gtNewCallNode(gtCallTypes callType, |
| 2376 | CORINFO_METHOD_HANDLE handle, |
| 2377 | var_types type, |
| 2378 | GenTreeArgList* args, |
| 2379 | IL_OFFSETX ilOffset = BAD_IL_OFFSET); |
| 2380 | |
| 2381 | GenTreeCall* gtNewIndCallNode(GenTree* addr, |
| 2382 | var_types type, |
| 2383 | GenTreeArgList* args, |
| 2384 | IL_OFFSETX ilOffset = BAD_IL_OFFSET); |
| 2385 | |
| 2386 | GenTreeCall* gtNewHelperCallNode(unsigned helper, var_types type, GenTreeArgList* args = nullptr); |
| 2387 | |
| 2388 | GenTree* gtNewLclvNode(unsigned lnum, var_types type, IL_OFFSETX ILoffs = BAD_IL_OFFSET); |
| 2389 | |
| 2390 | #ifdef FEATURE_SIMD |
| 2391 | GenTreeSIMD* gtNewSIMDNode( |
| 2392 | var_types type, GenTree* op1, SIMDIntrinsicID simdIntrinsicID, var_types baseType, unsigned size); |
| 2393 | GenTreeSIMD* gtNewSIMDNode( |
| 2394 | var_types type, GenTree* op1, GenTree* op2, SIMDIntrinsicID simdIntrinsicID, var_types baseType, unsigned size); |
| 2395 | void SetOpLclRelatedToSIMDIntrinsic(GenTree* op); |
| 2396 | #endif |
| 2397 | |
| 2398 | #ifdef FEATURE_HW_INTRINSICS |
| 2399 | GenTreeHWIntrinsic* gtNewSimdHWIntrinsicNode(var_types type, |
| 2400 | NamedIntrinsic hwIntrinsicID, |
| 2401 | var_types baseType, |
| 2402 | unsigned size); |
| 2403 | GenTreeHWIntrinsic* gtNewSimdHWIntrinsicNode( |
| 2404 | var_types type, GenTree* op1, NamedIntrinsic hwIntrinsicID, var_types baseType, unsigned size); |
| 2405 | GenTreeHWIntrinsic* gtNewSimdHWIntrinsicNode( |
| 2406 | var_types type, GenTree* op1, GenTree* op2, NamedIntrinsic hwIntrinsicID, var_types baseType, unsigned size); |
| 2407 | GenTreeHWIntrinsic* gtNewSimdHWIntrinsicNode(var_types type, |
| 2408 | GenTree* op1, |
| 2409 | GenTree* op2, |
| 2410 | GenTree* op3, |
| 2411 | NamedIntrinsic hwIntrinsicID, |
| 2412 | var_types baseType, |
| 2413 | unsigned size); |
| 2414 | GenTreeHWIntrinsic* gtNewSimdHWIntrinsicNode(var_types type, |
| 2415 | GenTree* op1, |
| 2416 | GenTree* op2, |
| 2417 | GenTree* op3, |
| 2418 | GenTree* op4, |
| 2419 | NamedIntrinsic hwIntrinsicID, |
| 2420 | var_types baseType, |
| 2421 | unsigned size); |
| 2422 | GenTreeHWIntrinsic* gtNewScalarHWIntrinsicNode(var_types type, GenTree* op1, NamedIntrinsic hwIntrinsicID); |
| 2423 | GenTreeHWIntrinsic* gtNewScalarHWIntrinsicNode(var_types type, |
| 2424 | GenTree* op1, |
| 2425 | GenTree* op2, |
| 2426 | NamedIntrinsic hwIntrinsicID); |
| 2427 | GenTreeHWIntrinsic* gtNewScalarHWIntrinsicNode( |
| 2428 | var_types type, GenTree* op1, GenTree* op2, GenTree* op3, NamedIntrinsic hwIntrinsicID); |
| 2429 | GenTree* gtNewMustThrowException(unsigned helper, var_types type, CORINFO_CLASS_HANDLE clsHnd); |
| 2430 | CORINFO_CLASS_HANDLE gtGetStructHandleForHWSIMD(var_types simdType, var_types simdBaseType); |
| 2431 | #endif // FEATURE_HW_INTRINSICS |
| 2432 | |
| 2433 | GenTree* gtNewLclLNode(unsigned lnum, var_types type, IL_OFFSETX ILoffs = BAD_IL_OFFSET); |
| 2434 | GenTreeLclFld* gtNewLclFldNode(unsigned lnum, var_types type, unsigned offset); |
| 2435 | GenTree* gtNewInlineCandidateReturnExpr(GenTree* inlineCandidate, var_types type); |
| 2436 | |
| 2437 | GenTree* gtNewCodeRef(BasicBlock* block); |
| 2438 | |
| 2439 | GenTree* gtNewFieldRef(var_types typ, CORINFO_FIELD_HANDLE fldHnd, GenTree* obj = nullptr, DWORD offset = 0); |
| 2440 | |
| 2441 | GenTree* gtNewIndexRef(var_types typ, GenTree* arrayOp, GenTree* indexOp); |
| 2442 | |
| 2443 | GenTreeArrLen* gtNewArrLen(var_types typ, GenTree* arrayOp, int lenOffset); |
| 2444 | |
| 2445 | GenTree* gtNewIndir(var_types typ, GenTree* addr); |
| 2446 | |
| 2447 | GenTreeArgList* gtNewArgList(GenTree* op); |
| 2448 | GenTreeArgList* gtNewArgList(GenTree* op1, GenTree* op2); |
| 2449 | GenTreeArgList* gtNewArgList(GenTree* op1, GenTree* op2, GenTree* op3); |
| 2450 | GenTreeArgList* gtNewArgList(GenTree* op1, GenTree* op2, GenTree* op3, GenTree* op4); |
| 2451 | |
| 2452 | static fgArgTabEntry* gtArgEntryByArgNum(GenTreeCall* call, unsigned argNum); |
| 2453 | static fgArgTabEntry* gtArgEntryByNode(GenTreeCall* call, GenTree* node); |
| 2454 | fgArgTabEntry* gtArgEntryByLateArgIndex(GenTreeCall* call, unsigned lateArgInx); |
| 2455 | static GenTree* gtArgNodeByLateArgInx(GenTreeCall* call, unsigned lateArgInx); |
| 2456 | bool gtArgIsThisPtr(fgArgTabEntry* argEntry); |
| 2457 | |
| 2458 | GenTree* gtNewAssignNode(GenTree* dst, GenTree* src); |
| 2459 | |
| 2460 | GenTree* gtNewTempAssign(unsigned tmp, |
| 2461 | GenTree* val, |
| 2462 | GenTree** pAfterStmt = nullptr, |
| 2463 | IL_OFFSETX ilOffset = BAD_IL_OFFSET, |
| 2464 | BasicBlock* block = nullptr); |
| 2465 | |
| 2466 | GenTree* gtNewRefCOMfield(GenTree* objPtr, |
| 2467 | CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 2468 | CORINFO_ACCESS_FLAGS access, |
| 2469 | CORINFO_FIELD_INFO* pFieldInfo, |
| 2470 | var_types lclTyp, |
| 2471 | CORINFO_CLASS_HANDLE structType, |
| 2472 | GenTree* assg); |
| 2473 | |
| 2474 | GenTree* gtNewNothingNode(); |
| 2475 | |
| 2476 | GenTree* gtNewArgPlaceHolderNode(var_types type, CORINFO_CLASS_HANDLE clsHnd); |
| 2477 | |
| 2478 | GenTree* gtUnusedValNode(GenTree* expr); |
| 2479 | |
| 2480 | GenTreeCast* gtNewCastNode(var_types typ, GenTree* op1, bool fromUnsigned, var_types castType); |
| 2481 | |
| 2482 | GenTreeCast* gtNewCastNodeL(var_types typ, GenTree* op1, bool fromUnsigned, var_types castType); |
| 2483 | |
| 2484 | GenTreeAllocObj* gtNewAllocObjNode( |
| 2485 | unsigned int helper, bool helperHasSideEffects, CORINFO_CLASS_HANDLE clsHnd, var_types type, GenTree* op1); |
| 2486 | |
| 2487 | GenTreeAllocObj* gtNewAllocObjNode(CORINFO_RESOLVED_TOKEN* pResolvedToken, BOOL useParent); |
| 2488 | |
| 2489 | GenTree* gtNewRuntimeLookup(CORINFO_GENERIC_HANDLE hnd, CorInfoGenericHandleType hndTyp, GenTree* lookupTree); |
| 2490 | |
| 2491 | //------------------------------------------------------------------------ |
| 2492 | // Other GenTree functions |
| 2493 | |
| 2494 | GenTree* gtClone(GenTree* tree, bool complexOK = false); |
| 2495 | |
| 2496 | // If `tree` is a lclVar with lclNum `varNum`, return an IntCns with value `varVal`; otherwise, |
| 2497 | // create a copy of `tree`, adding specified flags, replacing uses of lclVar `deepVarNum` with |
| 2498 | // IntCnses with value `deepVarVal`. |
| 2499 | GenTree* gtCloneExpr( |
| 2500 | GenTree* tree, unsigned addFlags, unsigned varNum, int varVal, unsigned deepVarNum, int deepVarVal); |
| 2501 | |
| 2502 | // Create a copy of `tree`, optionally adding specifed flags, and optionally mapping uses of local |
| 2503 | // `varNum` to int constants with value `varVal`. |
| 2504 | GenTree* gtCloneExpr(GenTree* tree, unsigned addFlags = 0, unsigned varNum = BAD_VAR_NUM, int varVal = 0) |
| 2505 | { |
| 2506 | return gtCloneExpr(tree, addFlags, varNum, varVal, varNum, varVal); |
| 2507 | } |
| 2508 | |
| 2509 | // Internal helper for cloning a call |
| 2510 | GenTreeCall* gtCloneExprCallHelper(GenTreeCall* call, |
| 2511 | unsigned addFlags = 0, |
| 2512 | unsigned deepVarNum = BAD_VAR_NUM, |
| 2513 | int deepVarVal = 0); |
| 2514 | |
| 2515 | // Create copy of an inline or guarded devirtualization candidate tree. |
| 2516 | GenTreeCall* gtCloneCandidateCall(GenTreeCall* call); |
| 2517 | |
| 2518 | GenTree* gtReplaceTree(GenTree* stmt, GenTree* tree, GenTree* replacementTree); |
| 2519 | |
| 2520 | void gtUpdateSideEffects(GenTree* stmt, GenTree* tree); |
| 2521 | |
| 2522 | void (GenTree* tree); |
| 2523 | |
| 2524 | void gtUpdateStmtSideEffects(GenTree* stmt); |
| 2525 | |
| 2526 | void gtUpdateNodeSideEffects(GenTree* tree); |
| 2527 | |
| 2528 | void gtUpdateNodeOperSideEffects(GenTree* tree); |
| 2529 | |
| 2530 | // Returns "true" iff the complexity (not formally defined, but first interpretation |
| 2531 | // is #of nodes in subtree) of "tree" is greater than "limit". |
| 2532 | // (This is somewhat redundant with the "gtCostEx/gtCostSz" fields, but can be used |
| 2533 | // before they have been set.) |
| 2534 | bool gtComplexityExceeds(GenTree** tree, unsigned limit); |
| 2535 | |
| 2536 | bool gtCompareTree(GenTree* op1, GenTree* op2); |
| 2537 | |
| 2538 | GenTree* gtReverseCond(GenTree* tree); |
| 2539 | |
| 2540 | bool gtHasRef(GenTree* tree, ssize_t lclNum, bool defOnly); |
| 2541 | |
| 2542 | bool gtHasLocalsWithAddrOp(GenTree* tree); |
| 2543 | |
| 2544 | unsigned gtSetListOrder(GenTree* list, bool regs, bool isListCallArgs); |
| 2545 | |
| 2546 | void gtWalkOp(GenTree** op1, GenTree** op2, GenTree* base, bool constOnly); |
| 2547 | |
| 2548 | #ifdef DEBUG |
| 2549 | unsigned gtHashValue(GenTree* tree); |
| 2550 | |
| 2551 | GenTree* gtWalkOpEffectiveVal(GenTree* op); |
| 2552 | #endif |
| 2553 | |
| 2554 | void gtPrepareCost(GenTree* tree); |
| 2555 | bool gtIsLikelyRegVar(GenTree* tree); |
| 2556 | |
| 2557 | // Returns true iff the secondNode can be swapped with firstNode. |
| 2558 | bool gtCanSwapOrder(GenTree* firstNode, GenTree* secondNode); |
| 2559 | |
| 2560 | unsigned gtSetEvalOrder(GenTree* tree); |
| 2561 | |
| 2562 | void gtSetStmtInfo(GenTree* stmt); |
| 2563 | |
| 2564 | // Returns "true" iff "node" has any of the side effects in "flags". |
| 2565 | bool gtNodeHasSideEffects(GenTree* node, unsigned flags); |
| 2566 | |
| 2567 | // Returns "true" iff "tree" or its (transitive) children have any of the side effects in "flags". |
| 2568 | bool gtTreeHasSideEffects(GenTree* tree, unsigned flags); |
| 2569 | |
| 2570 | // Appends 'expr' in front of 'list' |
| 2571 | // 'list' will typically start off as 'nullptr' |
| 2572 | // when 'list' is non-null a GT_COMMA node is used to insert 'expr' |
| 2573 | GenTree* gtBuildCommaList(GenTree* list, GenTree* expr); |
| 2574 | |
| 2575 | void (GenTree* expr, |
| 2576 | GenTree** pList, |
| 2577 | unsigned flags = GTF_SIDE_EFFECT, |
| 2578 | bool ignoreRoot = false); |
| 2579 | |
| 2580 | GenTree* gtGetThisArg(GenTreeCall* call); |
| 2581 | |
| 2582 | // Static fields of struct types (and sometimes the types that those are reduced to) are represented by having the |
| 2583 | // static field contain an object pointer to the boxed struct. This simplifies the GC implementation...but |
| 2584 | // complicates the JIT somewhat. This predicate returns "true" iff a node with type "fieldNodeType", representing |
| 2585 | // the given "fldHnd", is such an object pointer. |
| 2586 | bool gtIsStaticFieldPtrToBoxedStruct(var_types fieldNodeType, CORINFO_FIELD_HANDLE fldHnd); |
| 2587 | |
| 2588 | // Return true if call is a recursive call; return false otherwise. |
| 2589 | // Note when inlining, this looks for calls back to the root method. |
| 2590 | bool gtIsRecursiveCall(GenTreeCall* call) |
| 2591 | { |
| 2592 | return gtIsRecursiveCall(call->gtCallMethHnd); |
| 2593 | } |
| 2594 | |
| 2595 | bool gtIsRecursiveCall(CORINFO_METHOD_HANDLE callMethodHandle) |
| 2596 | { |
| 2597 | return (callMethodHandle == impInlineRoot()->info.compMethodHnd); |
| 2598 | } |
| 2599 | |
| 2600 | //------------------------------------------------------------------------- |
| 2601 | |
| 2602 | GenTree* gtFoldExpr(GenTree* tree); |
| 2603 | GenTree* |
| 2604 | #ifdef __clang__ |
| 2605 | // TODO-Amd64-Unix: Remove this when the clang optimizer is fixed and/or the method implementation is |
| 2606 | // refactored in a simpler code. This is a workaround for a bug in the clang-3.5 optimizer. The issue is that in |
| 2607 | // release build the optimizer is mistyping (or just wrongly decides to use 32 bit operation for a corner case |
| 2608 | // of MIN_LONG) the args of the (ltemp / lval2) to int (it does a 32 bit div operation instead of 64 bit) - see |
| 2609 | // the implementation of the method in gentree.cpp. For the case of lval1 and lval2 equal to MIN_LONG |
| 2610 | // (0x8000000000000000) this results in raising a SIGFPE. The method implementation is rather complex. Disable |
| 2611 | // optimizations for now. |
| 2612 | __attribute__((optnone)) |
| 2613 | #endif // __clang__ |
| 2614 | gtFoldExprConst(GenTree* tree); |
| 2615 | GenTree* gtFoldExprSpecial(GenTree* tree); |
| 2616 | GenTree* gtFoldExprCompare(GenTree* tree); |
| 2617 | GenTree* gtCreateHandleCompare(genTreeOps oper, |
| 2618 | GenTree* op1, |
| 2619 | GenTree* op2, |
| 2620 | CorInfoInlineTypeCheck typeCheckInliningResult); |
| 2621 | GenTree* gtFoldExprCall(GenTreeCall* call); |
| 2622 | GenTree* gtFoldTypeCompare(GenTree* tree); |
| 2623 | GenTree* gtFoldTypeEqualityCall(CorInfoIntrinsics methodID, GenTree* op1, GenTree* op2); |
| 2624 | |
| 2625 | // Options to control behavior of gtTryRemoveBoxUpstreamEffects |
| 2626 | enum BoxRemovalOptions |
| 2627 | { |
| 2628 | BR_REMOVE_AND_NARROW, // remove effects, minimize remaining work, return possibly narrowed source tree |
| 2629 | BR_REMOVE_AND_NARROW_WANT_TYPE_HANDLE, // remove effects and minimize remaining work, return type handle tree |
| 2630 | BR_REMOVE_BUT_NOT_NARROW, // remove effects, return original source tree |
| 2631 | BR_DONT_REMOVE, // check if removal is possible, return copy source tree |
| 2632 | BR_DONT_REMOVE_WANT_TYPE_HANDLE, // check if removal is possible, return type handle tree |
| 2633 | BR_MAKE_LOCAL_COPY // revise box to copy to temp local and return local's address |
| 2634 | }; |
| 2635 | |
| 2636 | GenTree* gtTryRemoveBoxUpstreamEffects(GenTree* tree, BoxRemovalOptions options = BR_REMOVE_AND_NARROW); |
| 2637 | GenTree* gtOptimizeEnumHasFlag(GenTree* thisOp, GenTree* flagOp); |
| 2638 | |
| 2639 | //------------------------------------------------------------------------- |
| 2640 | // Get the handle, if any. |
| 2641 | CORINFO_CLASS_HANDLE gtGetStructHandleIfPresent(GenTree* tree); |
| 2642 | // Get the handle, and assert if not found. |
| 2643 | CORINFO_CLASS_HANDLE gtGetStructHandle(GenTree* tree); |
| 2644 | // Get the handle for a ref type. |
| 2645 | CORINFO_CLASS_HANDLE gtGetClassHandle(GenTree* tree, bool* pIsExact, bool* pIsNonNull); |
| 2646 | // Get the class handle for an helper call |
| 2647 | CORINFO_CLASS_HANDLE gtGetHelperCallClassHandle(GenTreeCall* call, bool* pIsExact, bool* pIsNonNull); |
| 2648 | // Get the element handle for an array of ref type. |
| 2649 | CORINFO_CLASS_HANDLE gtGetArrayElementClassHandle(GenTree* array); |
| 2650 | // Get a class handle from a helper call argument |
| 2651 | CORINFO_CLASS_HANDLE gtGetHelperArgClassHandle(GenTree* array, |
| 2652 | unsigned* runtimeLookupCount = nullptr, |
| 2653 | GenTree** handleTree = nullptr); |
| 2654 | // Get the class handle for a field |
| 2655 | CORINFO_CLASS_HANDLE gtGetFieldClassHandle(CORINFO_FIELD_HANDLE fieldHnd, bool* pIsExact, bool* pIsNonNull); |
| 2656 | // Check if this tree is a gc static base helper call |
| 2657 | bool gtIsStaticGCBaseHelperCall(GenTree* tree); |
| 2658 | |
| 2659 | //------------------------------------------------------------------------- |
| 2660 | // Functions to display the trees |
| 2661 | |
| 2662 | #ifdef DEBUG |
| 2663 | void gtDispNode(GenTree* tree, IndentStack* indentStack, __in_z const char* msg, bool isLIR); |
| 2664 | |
| 2665 | void gtDispVN(GenTree* tree); |
| 2666 | void gtDispConst(GenTree* tree); |
| 2667 | void gtDispLeaf(GenTree* tree, IndentStack* indentStack); |
| 2668 | void gtDispNodeName(GenTree* tree); |
| 2669 | void gtDispRegVal(GenTree* tree); |
| 2670 | |
| 2671 | enum IndentInfo |
| 2672 | { |
| 2673 | IINone, |
| 2674 | IIArc, |
| 2675 | IIArcTop, |
| 2676 | IIArcBottom, |
| 2677 | IIEmbedded, |
| 2678 | IIError, |
| 2679 | IndentInfoCount |
| 2680 | }; |
| 2681 | void gtDispChild(GenTree* child, |
| 2682 | IndentStack* indentStack, |
| 2683 | IndentInfo arcType, |
| 2684 | __in_opt const char* msg = nullptr, |
| 2685 | bool topOnly = false); |
| 2686 | void gtDispTree(GenTree* tree, |
| 2687 | IndentStack* indentStack = nullptr, |
| 2688 | __in_opt const char* msg = nullptr, |
| 2689 | bool topOnly = false, |
| 2690 | bool isLIR = false); |
| 2691 | void gtGetLclVarNameInfo(unsigned lclNum, const char** ilKindOut, const char** ilNameOut, unsigned* ilNumOut); |
| 2692 | int gtGetLclVarName(unsigned lclNum, char* buf, unsigned buf_remaining); |
| 2693 | char* gtGetLclVarName(unsigned lclNum); |
| 2694 | void gtDispLclVar(unsigned varNum, bool padForBiggestDisp = true); |
| 2695 | void gtDispTreeList(GenTree* tree, IndentStack* indentStack = nullptr); |
| 2696 | void gtGetArgMsg(GenTreeCall* call, GenTree* arg, unsigned argNum, int listCount, char* bufp, unsigned bufLength); |
| 2697 | void gtGetLateArgMsg(GenTreeCall* call, GenTree* arg, int argNum, int listCount, char* bufp, unsigned bufLength); |
| 2698 | void gtDispArgList(GenTreeCall* call, IndentStack* indentStack); |
| 2699 | void gtDispFieldSeq(FieldSeqNode* pfsn); |
| 2700 | |
| 2701 | void gtDispRange(LIR::ReadOnlyRange const& range); |
| 2702 | |
| 2703 | void gtDispTreeRange(LIR::Range& containingRange, GenTree* tree); |
| 2704 | |
| 2705 | void gtDispLIRNode(GenTree* node, const char* prefixMsg = nullptr); |
| 2706 | #endif |
| 2707 | |
| 2708 | // For tree walks |
| 2709 | |
| 2710 | enum fgWalkResult |
| 2711 | { |
| 2712 | WALK_CONTINUE, |
| 2713 | WALK_SKIP_SUBTREES, |
| 2714 | WALK_ABORT |
| 2715 | }; |
| 2716 | struct fgWalkData; |
| 2717 | typedef fgWalkResult(fgWalkPreFn)(GenTree** pTree, fgWalkData* data); |
| 2718 | typedef fgWalkResult(fgWalkPostFn)(GenTree** pTree, fgWalkData* data); |
| 2719 | |
| 2720 | #ifdef DEBUG |
| 2721 | static fgWalkPreFn gtAssertColonCond; |
| 2722 | #endif |
| 2723 | static fgWalkPreFn gtMarkColonCond; |
| 2724 | static fgWalkPreFn gtClearColonCond; |
| 2725 | |
| 2726 | GenTree** gtFindLink(GenTree* stmt, GenTree* node); |
| 2727 | bool gtHasCatchArg(GenTree* tree); |
| 2728 | |
| 2729 | typedef ArrayStack<GenTree*> GenTreeStack; |
| 2730 | |
| 2731 | static bool gtHasCallOnStack(GenTreeStack* parentStack); |
| 2732 | |
| 2733 | //========================================================================= |
| 2734 | // BasicBlock functions |
| 2735 | #ifdef DEBUG |
| 2736 | // This is a debug flag we will use to assert when creating block during codegen |
| 2737 | // as this interferes with procedure splitting. If you know what you're doing, set |
| 2738 | // it to true before creating the block. (DEBUG only) |
| 2739 | bool fgSafeBasicBlockCreation; |
| 2740 | #endif |
| 2741 | |
| 2742 | BasicBlock* bbNewBasicBlock(BBjumpKinds jumpKind); |
| 2743 | |
| 2744 | /* |
| 2745 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 2746 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 2747 | XX XX |
| 2748 | XX LclVarsInfo XX |
| 2749 | XX XX |
| 2750 | XX The variables to be used by the code generator. XX |
| 2751 | XX XX |
| 2752 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 2753 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 2754 | */ |
| 2755 | |
| 2756 | // |
| 2757 | // For both PROMOTION_TYPE_NONE and PROMOTION_TYPE_DEPENDENT the struct will |
| 2758 | // be placed in the stack frame and it's fields must be laid out sequentially. |
| 2759 | // |
| 2760 | // For PROMOTION_TYPE_INDEPENDENT each of the struct's fields is replaced by |
| 2761 | // a local variable that can be enregistered or placed in the stack frame. |
| 2762 | // The fields do not need to be laid out sequentially |
| 2763 | // |
| 2764 | enum lvaPromotionType |
| 2765 | { |
| 2766 | PROMOTION_TYPE_NONE, // The struct local is not promoted |
| 2767 | PROMOTION_TYPE_INDEPENDENT, // The struct local is promoted, |
| 2768 | // and its field locals are independent of its parent struct local. |
| 2769 | PROMOTION_TYPE_DEPENDENT // The struct local is promoted, |
| 2770 | // but its field locals depend on its parent struct local. |
| 2771 | }; |
| 2772 | |
| 2773 | static int __cdecl RefCntCmp(const void* op1, const void* op2); |
| 2774 | static int __cdecl WtdRefCntCmp(const void* op1, const void* op2); |
| 2775 | |
| 2776 | /*****************************************************************************/ |
| 2777 | |
| 2778 | enum FrameLayoutState |
| 2779 | { |
| 2780 | NO_FRAME_LAYOUT, |
| 2781 | INITIAL_FRAME_LAYOUT, |
| 2782 | PRE_REGALLOC_FRAME_LAYOUT, |
| 2783 | REGALLOC_FRAME_LAYOUT, |
| 2784 | TENTATIVE_FRAME_LAYOUT, |
| 2785 | FINAL_FRAME_LAYOUT |
| 2786 | }; |
| 2787 | |
| 2788 | public: |
| 2789 | RefCountState lvaRefCountState; // Current local ref count state |
| 2790 | |
| 2791 | bool lvaLocalVarRefCounted() const |
| 2792 | { |
| 2793 | return lvaRefCountState == RCS_NORMAL; |
| 2794 | } |
| 2795 | |
| 2796 | bool lvaTrackedFixed; // true: We cannot add new 'tracked' variable |
| 2797 | unsigned lvaCount; // total number of locals |
| 2798 | |
| 2799 | unsigned lvaRefCount; // total number of references to locals |
| 2800 | LclVarDsc* lvaTable; // variable descriptor table |
| 2801 | unsigned lvaTableCnt; // lvaTable size (>= lvaCount) |
| 2802 | |
| 2803 | LclVarDsc** lvaRefSorted; // table sorted by refcount |
| 2804 | |
| 2805 | unsigned short lvaTrackedCount; // actual # of locals being tracked |
| 2806 | unsigned lvaTrackedCountInSizeTUnits; // min # of size_t's sufficient to hold a bit for all the locals being tracked |
| 2807 | |
| 2808 | #ifdef DEBUG |
| 2809 | VARSET_TP lvaTrackedVars; // set of tracked variables |
| 2810 | #endif |
| 2811 | #ifndef _TARGET_64BIT_ |
| 2812 | VARSET_TP lvaLongVars; // set of long (64-bit) variables |
| 2813 | #endif |
| 2814 | VARSET_TP lvaFloatVars; // set of floating-point (32-bit and 64-bit) variables |
| 2815 | |
| 2816 | unsigned lvaCurEpoch; // VarSets are relative to a specific set of tracked var indices. |
| 2817 | // It that changes, this changes. VarSets from different epochs |
| 2818 | // cannot be meaningfully combined. |
| 2819 | |
| 2820 | unsigned GetCurLVEpoch() |
| 2821 | { |
| 2822 | return lvaCurEpoch; |
| 2823 | } |
| 2824 | |
| 2825 | // reverse map of tracked number to var number |
| 2826 | unsigned* lvaTrackedToVarNum; |
| 2827 | |
| 2828 | #if DOUBLE_ALIGN |
| 2829 | #ifdef DEBUG |
| 2830 | // # of procs compiled a with double-aligned stack |
| 2831 | static unsigned s_lvaDoubleAlignedProcsCount; |
| 2832 | #endif |
| 2833 | #endif |
| 2834 | |
| 2835 | // Getters and setters for address-exposed and do-not-enregister local var properties. |
| 2836 | bool lvaVarAddrExposed(unsigned varNum); |
| 2837 | void lvaSetVarAddrExposed(unsigned varNum); |
| 2838 | bool lvaVarDoNotEnregister(unsigned varNum); |
| 2839 | #ifdef DEBUG |
| 2840 | // Reasons why we can't enregister. Some of these correspond to debug properties of local vars. |
| 2841 | enum DoNotEnregisterReason |
| 2842 | { |
| 2843 | DNER_AddrExposed, |
| 2844 | DNER_IsStruct, |
| 2845 | DNER_LocalField, |
| 2846 | DNER_VMNeedsStackAddr, |
| 2847 | DNER_LiveInOutOfHandler, |
| 2848 | DNER_LiveAcrossUnmanagedCall, |
| 2849 | DNER_BlockOp, // Is read or written via a block operation that explicitly takes the address. |
| 2850 | DNER_IsStructArg, // Is a struct passed as an argument in a way that requires a stack location. |
| 2851 | DNER_DepField, // It is a field of a dependently promoted struct |
| 2852 | DNER_NoRegVars, // opts.compFlags & CLFLG_REGVAR is not set |
| 2853 | DNER_MinOptsGC, // It is a GC Ref and we are compiling MinOpts |
| 2854 | #if !defined(_TARGET_64BIT_) |
| 2855 | DNER_LongParamField, // It is a decomposed field of a long parameter. |
| 2856 | #endif |
| 2857 | #ifdef JIT32_GCENCODER |
| 2858 | DNER_PinningRef, |
| 2859 | #endif |
| 2860 | }; |
| 2861 | #endif |
| 2862 | void lvaSetVarDoNotEnregister(unsigned varNum DEBUGARG(DoNotEnregisterReason reason)); |
| 2863 | |
| 2864 | unsigned lvaVarargsHandleArg; |
| 2865 | #ifdef _TARGET_X86_ |
| 2866 | unsigned lvaVarargsBaseOfStkArgs; // Pointer (computed based on incoming varargs handle) to the start of the stack |
| 2867 | // arguments |
| 2868 | #endif // _TARGET_X86_ |
| 2869 | |
| 2870 | unsigned lvaInlinedPInvokeFrameVar; // variable representing the InlinedCallFrame |
| 2871 | unsigned lvaReversePInvokeFrameVar; // variable representing the reverse PInvoke frame |
| 2872 | #if FEATURE_FIXED_OUT_ARGS |
| 2873 | unsigned lvaPInvokeFrameRegSaveVar; // variable representing the RegSave for PInvoke inlining. |
| 2874 | #endif |
| 2875 | unsigned lvaMonAcquired; // boolean variable introduced into in synchronized methods |
| 2876 | // that tracks whether the lock has been taken |
| 2877 | |
| 2878 | unsigned lvaArg0Var; // The lclNum of arg0. Normally this will be info.compThisArg. |
| 2879 | // However, if there is a "ldarga 0" or "starg 0" in the IL, |
| 2880 | // we will redirect all "ldarg(a) 0" and "starg 0" to this temp. |
| 2881 | |
| 2882 | unsigned lvaInlineeReturnSpillTemp; // The temp to spill the non-VOID return expression |
| 2883 | // in case there are multiple BBJ_RETURN blocks in the inlinee |
| 2884 | // or if the inlinee has GC ref locals. |
| 2885 | |
| 2886 | #if FEATURE_FIXED_OUT_ARGS |
| 2887 | unsigned lvaOutgoingArgSpaceVar; // dummy TYP_LCLBLK var for fixed outgoing argument space |
| 2888 | PhasedVar<unsigned> lvaOutgoingArgSpaceSize; // size of fixed outgoing argument space |
| 2889 | #endif // FEATURE_FIXED_OUT_ARGS |
| 2890 | |
| 2891 | #ifdef _TARGET_ARM_ |
| 2892 | // On architectures whose ABIs allow structs to be passed in registers, struct promotion will sometimes |
| 2893 | // require us to "rematerialize" a struct from it's separate constituent field variables. Packing several sub-word |
| 2894 | // field variables into an argument register is a hard problem. It's easier to reserve a word of memory into which |
| 2895 | // such field can be copied, after which the assembled memory word can be read into the register. We will allocate |
| 2896 | // this variable to be this scratch word whenever struct promotion occurs. |
| 2897 | unsigned lvaPromotedStructAssemblyScratchVar; |
| 2898 | #endif // _TARGET_ARM_ |
| 2899 | |
| 2900 | #if defined(DEBUG) && defined(_TARGET_XARCH_) |
| 2901 | |
| 2902 | unsigned lvaReturnSpCheck; // Stores SP to confirm it is not corrupted on return. |
| 2903 | |
| 2904 | #endif // defined(DEBUG) && defined(_TARGET_XARCH_) |
| 2905 | |
| 2906 | #if defined(DEBUG) && defined(_TARGET_X86_) |
| 2907 | |
| 2908 | unsigned lvaCallSpCheck; // Stores SP to confirm it is not corrupted after every call. |
| 2909 | |
| 2910 | #endif // defined(DEBUG) && defined(_TARGET_X86_) |
| 2911 | |
| 2912 | unsigned lvaGenericsContextUseCount; |
| 2913 | |
| 2914 | bool lvaKeepAliveAndReportThis(); // Synchronized instance method of a reference type, or |
| 2915 | // CORINFO_GENERICS_CTXT_FROM_THIS? |
| 2916 | bool lvaReportParamTypeArg(); // Exceptions and CORINFO_GENERICS_CTXT_FROM_PARAMTYPEARG? |
| 2917 | |
| 2918 | //------------------------------------------------------------------------- |
| 2919 | // All these frame offsets are inter-related and must be kept in sync |
| 2920 | |
| 2921 | #if !FEATURE_EH_FUNCLETS |
| 2922 | // This is used for the callable handlers |
| 2923 | unsigned lvaShadowSPslotsVar; // TYP_BLK variable for all the shadow SP slots |
| 2924 | #endif // FEATURE_EH_FUNCLETS |
| 2925 | |
| 2926 | int lvaCachedGenericContextArgOffs; |
| 2927 | int lvaCachedGenericContextArgOffset(); // For CORINFO_CALLCONV_PARAMTYPE and if generic context is passed as |
| 2928 | // THIS pointer |
| 2929 | |
| 2930 | #ifdef JIT32_GCENCODER |
| 2931 | |
| 2932 | unsigned lvaLocAllocSPvar; // variable which stores the value of ESP after the the last alloca/localloc |
| 2933 | |
| 2934 | #endif // JIT32_GCENCODER |
| 2935 | |
| 2936 | unsigned lvaNewObjArrayArgs; // variable with arguments for new MD array helper |
| 2937 | |
| 2938 | // TODO-Review: Prior to reg predict we reserve 24 bytes for Spill temps. |
| 2939 | // after the reg predict we will use a computed maxTmpSize |
| 2940 | // which is based upon the number of spill temps predicted by reg predict |
| 2941 | // All this is necessary because if we under-estimate the size of the spill |
| 2942 | // temps we could fail when encoding instructions that reference stack offsets for ARM. |
| 2943 | // |
| 2944 | // Pre codegen max spill temp size. |
| 2945 | static const unsigned MAX_SPILL_TEMP_SIZE = 24; |
| 2946 | |
| 2947 | //------------------------------------------------------------------------- |
| 2948 | |
| 2949 | unsigned lvaGetMaxSpillTempSize(); |
| 2950 | #ifdef _TARGET_ARM_ |
| 2951 | bool lvaIsPreSpilled(unsigned lclNum, regMaskTP preSpillMask); |
| 2952 | #endif // _TARGET_ARM_ |
| 2953 | void lvaAssignFrameOffsets(FrameLayoutState curState); |
| 2954 | void lvaFixVirtualFrameOffsets(); |
| 2955 | void lvaUpdateArgsWithInitialReg(); |
| 2956 | void lvaAssignVirtualFrameOffsetsToArgs(); |
| 2957 | #ifdef UNIX_AMD64_ABI |
| 2958 | int lvaAssignVirtualFrameOffsetToArg(unsigned lclNum, unsigned argSize, int argOffs, int* callerArgOffset); |
| 2959 | #else // !UNIX_AMD64_ABI |
| 2960 | int lvaAssignVirtualFrameOffsetToArg(unsigned lclNum, unsigned argSize, int argOffs); |
| 2961 | #endif // !UNIX_AMD64_ABI |
| 2962 | void lvaAssignVirtualFrameOffsetsToLocals(); |
| 2963 | int lvaAllocLocalAndSetVirtualOffset(unsigned lclNum, unsigned size, int stkOffs); |
| 2964 | #ifdef _TARGET_AMD64_ |
| 2965 | // Returns true if compCalleeRegsPushed (including RBP if used as frame pointer) is even. |
| 2966 | bool lvaIsCalleeSavedIntRegCountEven(); |
| 2967 | #endif |
| 2968 | void lvaAlignFrame(); |
| 2969 | void lvaAssignFrameOffsetsToPromotedStructs(); |
| 2970 | int lvaAllocateTemps(int stkOffs, bool mustDoubleAlign); |
| 2971 | |
| 2972 | #ifdef DEBUG |
| 2973 | void lvaDumpRegLocation(unsigned lclNum); |
| 2974 | void lvaDumpFrameLocation(unsigned lclNum); |
| 2975 | void lvaDumpEntry(unsigned lclNum, FrameLayoutState curState, size_t refCntWtdWidth = 6); |
| 2976 | void lvaTableDump(FrameLayoutState curState = NO_FRAME_LAYOUT); // NO_FRAME_LAYOUT means use the current frame |
| 2977 | // layout state defined by lvaDoneFrameLayout |
| 2978 | #endif |
| 2979 | |
| 2980 | // Limit frames size to 1GB. The maximum is 2GB in theory - make it intentionally smaller |
| 2981 | // to avoid bugs from borderline cases. |
| 2982 | #define MAX_FrameSize 0x3FFFFFFF |
| 2983 | void lvaIncrementFrameSize(unsigned size); |
| 2984 | |
| 2985 | unsigned lvaFrameSize(FrameLayoutState curState); |
| 2986 | |
| 2987 | // Returns the caller-SP-relative offset for the SP/FP relative offset determined by FP based. |
| 2988 | int lvaToCallerSPRelativeOffset(int offs, bool isFpBased); |
| 2989 | |
| 2990 | // Returns the caller-SP-relative offset for the local variable "varNum." |
| 2991 | int lvaGetCallerSPRelativeOffset(unsigned varNum); |
| 2992 | |
| 2993 | // Returns the SP-relative offset for the local variable "varNum". Illegal to ask this for functions with localloc. |
| 2994 | int lvaGetSPRelativeOffset(unsigned varNum); |
| 2995 | |
| 2996 | int lvaToInitialSPRelativeOffset(unsigned offset, bool isFpBased); |
| 2997 | int lvaGetInitialSPRelativeOffset(unsigned varNum); |
| 2998 | |
| 2999 | //------------------------ For splitting types ---------------------------- |
| 3000 | |
| 3001 | void lvaInitTypeRef(); |
| 3002 | |
| 3003 | void lvaInitArgs(InitVarDscInfo* varDscInfo); |
| 3004 | void lvaInitThisPtr(InitVarDscInfo* varDscInfo); |
| 3005 | void lvaInitRetBuffArg(InitVarDscInfo* varDscInfo); |
| 3006 | void lvaInitUserArgs(InitVarDscInfo* varDscInfo); |
| 3007 | void lvaInitGenericsCtxt(InitVarDscInfo* varDscInfo); |
| 3008 | void lvaInitVarArgsHandle(InitVarDscInfo* varDscInfo); |
| 3009 | |
| 3010 | void lvaInitVarDsc(LclVarDsc* varDsc, |
| 3011 | unsigned varNum, |
| 3012 | CorInfoType corInfoType, |
| 3013 | CORINFO_CLASS_HANDLE typeHnd, |
| 3014 | CORINFO_ARG_LIST_HANDLE varList, |
| 3015 | CORINFO_SIG_INFO* varSig); |
| 3016 | |
| 3017 | static unsigned lvaTypeRefMask(var_types type); |
| 3018 | |
| 3019 | var_types lvaGetActualType(unsigned lclNum); |
| 3020 | var_types lvaGetRealType(unsigned lclNum); |
| 3021 | |
| 3022 | //------------------------------------------------------------------------- |
| 3023 | |
| 3024 | void lvaInit(); |
| 3025 | |
| 3026 | LclVarDsc* lvaGetDesc(unsigned lclNum) |
| 3027 | { |
| 3028 | assert(lclNum < lvaCount); |
| 3029 | return &lvaTable[lclNum]; |
| 3030 | } |
| 3031 | |
| 3032 | LclVarDsc* lvaGetDesc(GenTreeLclVarCommon* lclVar) |
| 3033 | { |
| 3034 | assert(lclVar->GetLclNum() < lvaCount); |
| 3035 | return &lvaTable[lclVar->GetLclNum()]; |
| 3036 | } |
| 3037 | |
| 3038 | unsigned lvaLclSize(unsigned varNum); |
| 3039 | unsigned lvaLclExactSize(unsigned varNum); |
| 3040 | |
| 3041 | bool lvaHaveManyLocals() const; |
| 3042 | |
| 3043 | unsigned lvaGrabTemp(bool shortLifetime DEBUGARG(const char* reason)); |
| 3044 | unsigned lvaGrabTemps(unsigned cnt DEBUGARG(const char* reason)); |
| 3045 | unsigned lvaGrabTempWithImplicitUse(bool shortLifetime DEBUGARG(const char* reason)); |
| 3046 | |
| 3047 | void lvaSortOnly(); |
| 3048 | void lvaSortByRefCount(); |
| 3049 | void lvaDumpRefCounts(); |
| 3050 | |
| 3051 | void lvaMarkLocalVars(); // Local variable ref-counting |
| 3052 | void lvaComputeRefCounts(bool isRecompute, bool setSlotNumbers); |
| 3053 | void lvaMarkLocalVars(BasicBlock* block, bool isRecompute); |
| 3054 | |
| 3055 | void lvaAllocOutgoingArgSpaceVar(); // Set up lvaOutgoingArgSpaceVar |
| 3056 | |
| 3057 | VARSET_VALRET_TP lvaStmtLclMask(GenTree* stmt); |
| 3058 | |
| 3059 | #ifdef DEBUG |
| 3060 | struct lvaStressLclFldArgs |
| 3061 | { |
| 3062 | Compiler* m_pCompiler; |
| 3063 | bool m_bFirstPass; |
| 3064 | }; |
| 3065 | |
| 3066 | static fgWalkPreFn lvaStressLclFldCB; |
| 3067 | void lvaStressLclFld(); |
| 3068 | |
| 3069 | void lvaDispVarSet(VARSET_VALARG_TP set, VARSET_VALARG_TP allVars); |
| 3070 | void lvaDispVarSet(VARSET_VALARG_TP set); |
| 3071 | |
| 3072 | #endif |
| 3073 | |
| 3074 | #ifdef _TARGET_ARM_ |
| 3075 | int lvaFrameAddress(int varNum, bool mustBeFPBased, regNumber* pBaseReg, int addrModeOffset, bool isFloatUsage); |
| 3076 | #else |
| 3077 | int lvaFrameAddress(int varNum, bool* pFPbased); |
| 3078 | #endif |
| 3079 | |
| 3080 | bool lvaIsParameter(unsigned varNum); |
| 3081 | bool lvaIsRegArgument(unsigned varNum); |
| 3082 | BOOL lvaIsOriginalThisArg(unsigned varNum); // Is this varNum the original this argument? |
| 3083 | BOOL lvaIsOriginalThisReadOnly(); // return TRUE if there is no place in the code |
| 3084 | // that writes to arg0 |
| 3085 | |
| 3086 | // Struct parameters that are passed by reference are marked as both lvIsParam and lvIsTemp |
| 3087 | // (this is an overload of lvIsTemp because there are no temp parameters). |
| 3088 | // For x64 this is 3, 5, 6, 7, >8 byte structs that are passed by reference. |
| 3089 | // For ARM64, this is structs larger than 16 bytes that are passed by reference. |
| 3090 | bool lvaIsImplicitByRefLocal(unsigned varNum) |
| 3091 | { |
| 3092 | #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_) |
| 3093 | LclVarDsc* varDsc = &(lvaTable[varNum]); |
| 3094 | if (varDsc->lvIsParam && varDsc->lvIsTemp) |
| 3095 | { |
| 3096 | assert(varTypeIsStruct(varDsc) || (varDsc->lvType == TYP_BYREF)); |
| 3097 | return true; |
| 3098 | } |
| 3099 | #endif // defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_) |
| 3100 | return false; |
| 3101 | } |
| 3102 | |
| 3103 | // Returns true if this local var is a multireg struct |
| 3104 | bool lvaIsMultiregStruct(LclVarDsc* varDsc, bool isVararg); |
| 3105 | |
| 3106 | // If the local is a TYP_STRUCT, get/set a class handle describing it |
| 3107 | CORINFO_CLASS_HANDLE lvaGetStruct(unsigned varNum); |
| 3108 | void lvaSetStruct(unsigned varNum, CORINFO_CLASS_HANDLE typeHnd, bool unsafeValueClsCheck, bool setTypeInfo = true); |
| 3109 | void lvaSetStructUsedAsVarArg(unsigned varNum); |
| 3110 | |
| 3111 | // If the local is TYP_REF, set or update the associated class information. |
| 3112 | void lvaSetClass(unsigned varNum, CORINFO_CLASS_HANDLE clsHnd, bool isExact = false); |
| 3113 | void lvaSetClass(unsigned varNum, GenTree* tree, CORINFO_CLASS_HANDLE stackHandle = nullptr); |
| 3114 | void lvaUpdateClass(unsigned varNum, CORINFO_CLASS_HANDLE clsHnd, bool isExact = false); |
| 3115 | void lvaUpdateClass(unsigned varNum, GenTree* tree, CORINFO_CLASS_HANDLE stackHandle = nullptr); |
| 3116 | |
| 3117 | #define MAX_NumOfFieldsInPromotableStruct 4 // Maximum number of fields in promotable struct |
| 3118 | |
| 3119 | // Info about struct type fields. |
| 3120 | struct lvaStructFieldInfo |
| 3121 | { |
| 3122 | CORINFO_FIELD_HANDLE fldHnd; |
| 3123 | unsigned char fldOffset; |
| 3124 | unsigned char fldOrdinal; |
| 3125 | var_types fldType; |
| 3126 | unsigned fldSize; |
| 3127 | CORINFO_CLASS_HANDLE fldTypeHnd; |
| 3128 | |
| 3129 | lvaStructFieldInfo() |
| 3130 | : fldHnd(nullptr), fldOffset(0), fldOrdinal(0), fldType(TYP_UNDEF), fldSize(0), fldTypeHnd(nullptr) |
| 3131 | { |
| 3132 | } |
| 3133 | }; |
| 3134 | |
| 3135 | // Info about a struct type, instances of which may be candidates for promotion. |
| 3136 | struct lvaStructPromotionInfo |
| 3137 | { |
| 3138 | CORINFO_CLASS_HANDLE typeHnd; |
| 3139 | bool canPromote; |
| 3140 | bool containsHoles; |
| 3141 | bool customLayout; |
| 3142 | bool fieldsSorted; |
| 3143 | unsigned char fieldCnt; |
| 3144 | lvaStructFieldInfo fields[MAX_NumOfFieldsInPromotableStruct]; |
| 3145 | |
| 3146 | lvaStructPromotionInfo(CORINFO_CLASS_HANDLE typeHnd = nullptr) |
| 3147 | : typeHnd(typeHnd) |
| 3148 | , canPromote(false) |
| 3149 | , containsHoles(false) |
| 3150 | , customLayout(false) |
| 3151 | , fieldsSorted(false) |
| 3152 | , fieldCnt(0) |
| 3153 | { |
| 3154 | } |
| 3155 | }; |
| 3156 | |
| 3157 | static int __cdecl lvaFieldOffsetCmp(const void* field1, const void* field2); |
| 3158 | |
| 3159 | // This class is responsible for checking validity and profitability of struct promotion. |
| 3160 | // If it is both legal and profitable, then TryPromoteStructVar promotes the struct and initializes |
| 3161 | // nessesary information for fgMorphStructField to use. |
| 3162 | class StructPromotionHelper |
| 3163 | { |
| 3164 | public: |
| 3165 | StructPromotionHelper(Compiler* compiler); |
| 3166 | |
| 3167 | bool CanPromoteStructType(CORINFO_CLASS_HANDLE typeHnd); |
| 3168 | bool TryPromoteStructVar(unsigned lclNum); |
| 3169 | |
| 3170 | #ifdef DEBUG |
| 3171 | void CheckRetypedAsScalar(CORINFO_FIELD_HANDLE fieldHnd, var_types requestedType); |
| 3172 | #endif // DEBUG |
| 3173 | |
| 3174 | #ifdef _TARGET_ARM_ |
| 3175 | bool GetRequiresScratchVar(); |
| 3176 | #endif // _TARGET_ARM_ |
| 3177 | |
| 3178 | private: |
| 3179 | bool CanPromoteStructVar(unsigned lclNum); |
| 3180 | bool ShouldPromoteStructVar(unsigned lclNum); |
| 3181 | void PromoteStructVar(unsigned lclNum); |
| 3182 | void SortStructFields(); |
| 3183 | |
| 3184 | lvaStructFieldInfo GetFieldInfo(CORINFO_FIELD_HANDLE fieldHnd, BYTE ordinal); |
| 3185 | bool TryPromoteStructField(lvaStructFieldInfo& outerFieldInfo); |
| 3186 | |
| 3187 | private: |
| 3188 | Compiler* compiler; |
| 3189 | lvaStructPromotionInfo structPromotionInfo; |
| 3190 | |
| 3191 | #ifdef _TARGET_ARM_ |
| 3192 | bool requiresScratchVar; |
| 3193 | #endif // _TARGET_ARM_ |
| 3194 | |
| 3195 | #ifdef DEBUG |
| 3196 | typedef JitHashTable<CORINFO_FIELD_HANDLE, JitPtrKeyFuncs<CORINFO_FIELD_STRUCT_>, var_types> |
| 3197 | RetypedAsScalarFieldsMap; |
| 3198 | RetypedAsScalarFieldsMap retypedFieldsMap; |
| 3199 | #endif // DEBUG |
| 3200 | }; |
| 3201 | |
| 3202 | StructPromotionHelper* structPromotionHelper; |
| 3203 | |
| 3204 | #if !defined(_TARGET_64BIT_) |
| 3205 | void lvaPromoteLongVars(); |
| 3206 | #endif // !defined(_TARGET_64BIT_) |
| 3207 | unsigned lvaGetFieldLocal(const LclVarDsc* varDsc, unsigned int fldOffset); |
| 3208 | lvaPromotionType lvaGetPromotionType(const LclVarDsc* varDsc); |
| 3209 | lvaPromotionType lvaGetPromotionType(unsigned varNum); |
| 3210 | lvaPromotionType lvaGetParentPromotionType(const LclVarDsc* varDsc); |
| 3211 | lvaPromotionType lvaGetParentPromotionType(unsigned varNum); |
| 3212 | bool lvaIsFieldOfDependentlyPromotedStruct(const LclVarDsc* varDsc); |
| 3213 | bool lvaIsGCTracked(const LclVarDsc* varDsc); |
| 3214 | |
| 3215 | #if defined(FEATURE_SIMD) |
| 3216 | bool lvaMapSimd12ToSimd16(const LclVarDsc* varDsc) |
| 3217 | { |
| 3218 | assert(varDsc->lvType == TYP_SIMD12); |
| 3219 | assert(varDsc->lvExactSize == 12); |
| 3220 | |
| 3221 | #if defined(_TARGET_64BIT_) |
| 3222 | assert(varDsc->lvSize() == 16); |
| 3223 | #endif // defined(_TARGET_64BIT_) |
| 3224 | |
| 3225 | // We make local variable SIMD12 types 16 bytes instead of just 12. lvSize() |
| 3226 | // already does this calculation. However, we also need to prevent mapping types if the var is a |
| 3227 | // dependently promoted struct field, which must remain its exact size within its parent struct. |
| 3228 | // However, we don't know this until late, so we may have already pretended the field is bigger |
| 3229 | // before that. |
| 3230 | if ((varDsc->lvSize() == 16) && !lvaIsFieldOfDependentlyPromotedStruct(varDsc)) |
| 3231 | { |
| 3232 | return true; |
| 3233 | } |
| 3234 | else |
| 3235 | { |
| 3236 | return false; |
| 3237 | } |
| 3238 | } |
| 3239 | #endif // defined(FEATURE_SIMD) |
| 3240 | |
| 3241 | BYTE* lvaGetGcLayout(unsigned varNum); |
| 3242 | bool lvaTypeIsGC(unsigned varNum); |
| 3243 | unsigned lvaGSSecurityCookie; // LclVar number |
| 3244 | bool lvaTempsHaveLargerOffsetThanVars(); |
| 3245 | |
| 3246 | // Returns "true" iff local variable "lclNum" is in SSA form. |
| 3247 | bool lvaInSsa(unsigned lclNum) |
| 3248 | { |
| 3249 | assert(lclNum < lvaCount); |
| 3250 | return lvaTable[lclNum].lvInSsa; |
| 3251 | } |
| 3252 | |
| 3253 | unsigned lvaSecurityObject; // variable representing the security object on the stack |
| 3254 | unsigned lvaStubArgumentVar; // variable representing the secret stub argument coming in EAX |
| 3255 | |
| 3256 | #if FEATURE_EH_FUNCLETS |
| 3257 | unsigned lvaPSPSym; // variable representing the PSPSym |
| 3258 | #endif |
| 3259 | |
| 3260 | InlineInfo* impInlineInfo; |
| 3261 | InlineStrategy* m_inlineStrategy; |
| 3262 | |
| 3263 | // The Compiler* that is the root of the inlining tree of which "this" is a member. |
| 3264 | Compiler* impInlineRoot(); |
| 3265 | |
| 3266 | #if defined(DEBUG) || defined(INLINE_DATA) |
| 3267 | unsigned __int64 getInlineCycleCount() |
| 3268 | { |
| 3269 | return m_compCycles; |
| 3270 | } |
| 3271 | #endif // defined(DEBUG) || defined(INLINE_DATA) |
| 3272 | |
| 3273 | bool fgNoStructPromotion; // Set to TRUE to turn off struct promotion for this method. |
| 3274 | bool fgNoStructParamPromotion; // Set to TRUE to turn off struct promotion for parameters this method. |
| 3275 | |
| 3276 | //========================================================================= |
| 3277 | // PROTECTED |
| 3278 | //========================================================================= |
| 3279 | |
| 3280 | protected: |
| 3281 | //---------------- Local variable ref-counting ---------------------------- |
| 3282 | |
| 3283 | void lvaMarkLclRefs(GenTree* tree, BasicBlock* block, GenTreeStmt* stmt, bool isRecompute); |
| 3284 | bool IsDominatedByExceptionalEntry(BasicBlock* block); |
| 3285 | void SetVolatileHint(LclVarDsc* varDsc); |
| 3286 | |
| 3287 | // Keeps the mapping from SSA #'s to VN's for the implicit memory variables. |
| 3288 | SsaDefArray<SsaMemDef> ; |
| 3289 | |
| 3290 | public: |
| 3291 | // Returns the address of the per-Ssa data for memory at the given ssaNum (which is required |
| 3292 | // not to be the SsaConfig::RESERVED_SSA_NUM, which indicates that the variable is |
| 3293 | // not an SSA variable). |
| 3294 | SsaMemDef* (unsigned ssaNum) |
| 3295 | { |
| 3296 | return lvMemoryPerSsaData.GetSsaDef(ssaNum); |
| 3297 | } |
| 3298 | |
| 3299 | /* |
| 3300 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3301 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3302 | XX XX |
| 3303 | XX Importer XX |
| 3304 | XX XX |
| 3305 | XX Imports the given method and converts it to semantic trees XX |
| 3306 | XX XX |
| 3307 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3308 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3309 | */ |
| 3310 | |
| 3311 | public: |
| 3312 | void impInit(); |
| 3313 | |
| 3314 | void impImport(BasicBlock* method); |
| 3315 | |
| 3316 | CORINFO_CLASS_HANDLE impGetRefAnyClass(); |
| 3317 | CORINFO_CLASS_HANDLE impGetRuntimeArgumentHandle(); |
| 3318 | CORINFO_CLASS_HANDLE impGetTypeHandleClass(); |
| 3319 | CORINFO_CLASS_HANDLE impGetStringClass(); |
| 3320 | CORINFO_CLASS_HANDLE impGetObjectClass(); |
| 3321 | |
| 3322 | // Returns underlying type of handles returned by ldtoken instruction |
| 3323 | var_types GetRuntimeHandleUnderlyingType() |
| 3324 | { |
| 3325 | // RuntimeTypeHandle is backed by raw pointer on CoreRT and by object reference on other runtimes |
| 3326 | return IsTargetAbi(CORINFO_CORERT_ABI) ? TYP_I_IMPL : TYP_REF; |
| 3327 | } |
| 3328 | |
| 3329 | void impDevirtualizeCall(GenTreeCall* call, |
| 3330 | CORINFO_METHOD_HANDLE* method, |
| 3331 | unsigned* methodFlags, |
| 3332 | CORINFO_CONTEXT_HANDLE* contextHandle, |
| 3333 | CORINFO_CONTEXT_HANDLE* exactContextHandle, |
| 3334 | bool isLateDevirtualization); |
| 3335 | |
| 3336 | //========================================================================= |
| 3337 | // PROTECTED |
| 3338 | //========================================================================= |
| 3339 | |
| 3340 | protected: |
| 3341 | //-------------------- Stack manipulation --------------------------------- |
| 3342 | |
| 3343 | unsigned impStkSize; // Size of the full stack |
| 3344 | |
| 3345 | #define SMALL_STACK_SIZE 16 // number of elements in impSmallStack |
| 3346 | |
| 3347 | struct SavedStack // used to save/restore stack contents. |
| 3348 | { |
| 3349 | unsigned ssDepth; // number of values on stack |
| 3350 | StackEntry* ssTrees; // saved tree values |
| 3351 | }; |
| 3352 | |
| 3353 | bool impIsPrimitive(CorInfoType type); |
| 3354 | bool impILConsumesAddr(const BYTE* codeAddr, CORINFO_METHOD_HANDLE fncHandle, CORINFO_MODULE_HANDLE scpHandle); |
| 3355 | |
| 3356 | void impResolveToken(const BYTE* addr, CORINFO_RESOLVED_TOKEN* pResolvedToken, CorInfoTokenKind kind); |
| 3357 | |
| 3358 | void impPushOnStack(GenTree* tree, typeInfo ti); |
| 3359 | void impPushNullObjRefOnStack(); |
| 3360 | StackEntry impPopStack(); |
| 3361 | StackEntry& impStackTop(unsigned n = 0); |
| 3362 | unsigned impStackHeight(); |
| 3363 | |
| 3364 | void impSaveStackState(SavedStack* savePtr, bool copy); |
| 3365 | void impRestoreStackState(SavedStack* savePtr); |
| 3366 | |
| 3367 | GenTree* impImportLdvirtftn(GenTree* thisPtr, CORINFO_RESOLVED_TOKEN* pResolvedToken, CORINFO_CALL_INFO* pCallInfo); |
| 3368 | |
| 3369 | void impImportAndPushBox(CORINFO_RESOLVED_TOKEN* pResolvedToken); |
| 3370 | |
| 3371 | void impImportNewObjArray(CORINFO_RESOLVED_TOKEN* pResolvedToken, CORINFO_CALL_INFO* pCallInfo); |
| 3372 | |
| 3373 | bool impCanPInvokeInline(); |
| 3374 | bool impCanPInvokeInlineCallSite(BasicBlock* block); |
| 3375 | void impCheckForPInvokeCall( |
| 3376 | GenTreeCall* call, CORINFO_METHOD_HANDLE methHnd, CORINFO_SIG_INFO* sig, unsigned mflags, BasicBlock* block); |
| 3377 | GenTreeCall* impImportIndirectCall(CORINFO_SIG_INFO* sig, IL_OFFSETX ilOffset = BAD_IL_OFFSET); |
| 3378 | void impPopArgsForUnmanagedCall(GenTree* call, CORINFO_SIG_INFO* sig); |
| 3379 | |
| 3380 | void impInsertHelperCall(CORINFO_HELPER_DESC* helperCall); |
| 3381 | void impHandleAccessAllowed(CorInfoIsAccessAllowedResult result, CORINFO_HELPER_DESC* helperCall); |
| 3382 | void impHandleAccessAllowedInternal(CorInfoIsAccessAllowedResult result, CORINFO_HELPER_DESC* helperCall); |
| 3383 | |
| 3384 | var_types impImportCall(OPCODE opcode, |
| 3385 | CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 3386 | CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken, // Is this a "constrained." call on a |
| 3387 | // type parameter? |
| 3388 | GenTree* newobjThis, |
| 3389 | int prefixFlags, |
| 3390 | CORINFO_CALL_INFO* callInfo, |
| 3391 | IL_OFFSET rawILOffset); |
| 3392 | |
| 3393 | CORINFO_CLASS_HANDLE impGetSpecialIntrinsicExactReturnType(CORINFO_METHOD_HANDLE specialIntrinsicHandle); |
| 3394 | |
| 3395 | bool impMethodInfo_hasRetBuffArg(CORINFO_METHOD_INFO* methInfo); |
| 3396 | |
| 3397 | GenTree* impFixupCallStructReturn(GenTreeCall* call, CORINFO_CLASS_HANDLE retClsHnd); |
| 3398 | |
| 3399 | GenTree* impFixupStructReturnType(GenTree* op, CORINFO_CLASS_HANDLE retClsHnd); |
| 3400 | |
| 3401 | #ifdef DEBUG |
| 3402 | var_types impImportJitTestLabelMark(int numArgs); |
| 3403 | #endif // DEBUG |
| 3404 | |
| 3405 | GenTree* impInitClass(CORINFO_RESOLVED_TOKEN* pResolvedToken); |
| 3406 | |
| 3407 | GenTree* impImportStaticReadOnlyField(void* fldAddr, var_types lclTyp); |
| 3408 | |
| 3409 | GenTree* impImportStaticFieldAccess(CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 3410 | CORINFO_ACCESS_FLAGS access, |
| 3411 | CORINFO_FIELD_INFO* pFieldInfo, |
| 3412 | var_types lclTyp); |
| 3413 | |
| 3414 | static void impBashVarAddrsToI(GenTree* tree1, GenTree* tree2 = nullptr); |
| 3415 | |
| 3416 | GenTree* impImplicitIorI4Cast(GenTree* tree, var_types dstTyp); |
| 3417 | |
| 3418 | GenTree* impImplicitR4orR8Cast(GenTree* tree, var_types dstTyp); |
| 3419 | |
| 3420 | void impImportLeave(BasicBlock* block); |
| 3421 | void impResetLeaveBlock(BasicBlock* block, unsigned jmpAddr); |
| 3422 | GenTree* impIntrinsic(GenTree* newobjThis, |
| 3423 | CORINFO_CLASS_HANDLE clsHnd, |
| 3424 | CORINFO_METHOD_HANDLE method, |
| 3425 | CORINFO_SIG_INFO* sig, |
| 3426 | unsigned methodFlags, |
| 3427 | int memberRef, |
| 3428 | bool readonlyCall, |
| 3429 | bool tailCall, |
| 3430 | CORINFO_RESOLVED_TOKEN* pContstrainedResolvedToken, |
| 3431 | CORINFO_THIS_TRANSFORM constraintCallThisTransform, |
| 3432 | CorInfoIntrinsics* pIntrinsicID, |
| 3433 | bool* isSpecialIntrinsic = nullptr); |
| 3434 | GenTree* impMathIntrinsic(CORINFO_METHOD_HANDLE method, |
| 3435 | CORINFO_SIG_INFO* sig, |
| 3436 | var_types callType, |
| 3437 | CorInfoIntrinsics intrinsicID, |
| 3438 | bool tailCall); |
| 3439 | NamedIntrinsic lookupNamedIntrinsic(CORINFO_METHOD_HANDLE method); |
| 3440 | |
| 3441 | #ifdef FEATURE_HW_INTRINSICS |
| 3442 | GenTree* impBaseIntrinsic(NamedIntrinsic intrinsic, |
| 3443 | CORINFO_CLASS_HANDLE clsHnd, |
| 3444 | CORINFO_METHOD_HANDLE method, |
| 3445 | CORINFO_SIG_INFO* sig); |
| 3446 | GenTree* impHWIntrinsic(NamedIntrinsic intrinsic, |
| 3447 | CORINFO_METHOD_HANDLE method, |
| 3448 | CORINFO_SIG_INFO* sig, |
| 3449 | bool mustExpand); |
| 3450 | GenTree* impUnsupportedHWIntrinsic(unsigned helper, |
| 3451 | CORINFO_METHOD_HANDLE method, |
| 3452 | CORINFO_SIG_INFO* sig, |
| 3453 | bool mustExpand); |
| 3454 | |
| 3455 | protected: |
| 3456 | bool compSupportsHWIntrinsic(InstructionSet isa); |
| 3457 | |
| 3458 | #ifdef _TARGET_XARCH_ |
| 3459 | GenTree* impSSEIntrinsic(NamedIntrinsic intrinsic, |
| 3460 | CORINFO_METHOD_HANDLE method, |
| 3461 | CORINFO_SIG_INFO* sig, |
| 3462 | bool mustExpand); |
| 3463 | GenTree* impSSE2Intrinsic(NamedIntrinsic intrinsic, |
| 3464 | CORINFO_METHOD_HANDLE method, |
| 3465 | CORINFO_SIG_INFO* sig, |
| 3466 | bool mustExpand); |
| 3467 | GenTree* impSSE42Intrinsic(NamedIntrinsic intrinsic, |
| 3468 | CORINFO_METHOD_HANDLE method, |
| 3469 | CORINFO_SIG_INFO* sig, |
| 3470 | bool mustExpand); |
| 3471 | GenTree* impAvxOrAvx2Intrinsic(NamedIntrinsic intrinsic, |
| 3472 | CORINFO_METHOD_HANDLE method, |
| 3473 | CORINFO_SIG_INFO* sig, |
| 3474 | bool mustExpand); |
| 3475 | GenTree* impAESIntrinsic(NamedIntrinsic intrinsic, |
| 3476 | CORINFO_METHOD_HANDLE method, |
| 3477 | CORINFO_SIG_INFO* sig, |
| 3478 | bool mustExpand); |
| 3479 | GenTree* impBMI1OrBMI2Intrinsic(NamedIntrinsic intrinsic, |
| 3480 | CORINFO_METHOD_HANDLE method, |
| 3481 | CORINFO_SIG_INFO* sig, |
| 3482 | bool mustExpand); |
| 3483 | GenTree* impFMAIntrinsic(NamedIntrinsic intrinsic, |
| 3484 | CORINFO_METHOD_HANDLE method, |
| 3485 | CORINFO_SIG_INFO* sig, |
| 3486 | bool mustExpand); |
| 3487 | GenTree* impLZCNTIntrinsic(NamedIntrinsic intrinsic, |
| 3488 | CORINFO_METHOD_HANDLE method, |
| 3489 | CORINFO_SIG_INFO* sig, |
| 3490 | bool mustExpand); |
| 3491 | GenTree* impPCLMULQDQIntrinsic(NamedIntrinsic intrinsic, |
| 3492 | CORINFO_METHOD_HANDLE method, |
| 3493 | CORINFO_SIG_INFO* sig, |
| 3494 | bool mustExpand); |
| 3495 | GenTree* impPOPCNTIntrinsic(NamedIntrinsic intrinsic, |
| 3496 | CORINFO_METHOD_HANDLE method, |
| 3497 | CORINFO_SIG_INFO* sig, |
| 3498 | bool mustExpand); |
| 3499 | |
| 3500 | protected: |
| 3501 | GenTree* getArgForHWIntrinsic(var_types argType, CORINFO_CLASS_HANDLE argClass); |
| 3502 | GenTree* impNonConstFallback(NamedIntrinsic intrinsic, var_types simdType, var_types baseType); |
| 3503 | GenTree* addRangeCheckIfNeeded(NamedIntrinsic intrinsic, GenTree* lastOp, bool mustExpand); |
| 3504 | #endif // _TARGET_XARCH_ |
| 3505 | #ifdef _TARGET_ARM64_ |
| 3506 | InstructionSet lookupHWIntrinsicISA(const char* className); |
| 3507 | NamedIntrinsic lookupHWIntrinsic(const char* className, const char* methodName); |
| 3508 | bool impCheckImmediate(GenTree* immediateOp, unsigned int max); |
| 3509 | #endif // _TARGET_ARM64_ |
| 3510 | #endif // FEATURE_HW_INTRINSICS |
| 3511 | GenTree* impArrayAccessIntrinsic(CORINFO_CLASS_HANDLE clsHnd, |
| 3512 | CORINFO_SIG_INFO* sig, |
| 3513 | int memberRef, |
| 3514 | bool readonlyCall, |
| 3515 | CorInfoIntrinsics intrinsicID); |
| 3516 | GenTree* impInitializeArrayIntrinsic(CORINFO_SIG_INFO* sig); |
| 3517 | |
| 3518 | GenTree* impMethodPointer(CORINFO_RESOLVED_TOKEN* pResolvedToken, CORINFO_CALL_INFO* pCallInfo); |
| 3519 | |
| 3520 | GenTree* impTransformThis(GenTree* thisPtr, |
| 3521 | CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken, |
| 3522 | CORINFO_THIS_TRANSFORM transform); |
| 3523 | |
| 3524 | //----------------- Manipulating the trees and stmts ---------------------- |
| 3525 | |
| 3526 | GenTree* impTreeList; // Trees for the BB being imported |
| 3527 | GenTree* impTreeLast; // The last tree for the current BB |
| 3528 | |
| 3529 | public: |
| 3530 | enum |
| 3531 | { |
| 3532 | CHECK_SPILL_ALL = -1, |
| 3533 | CHECK_SPILL_NONE = -2 |
| 3534 | }; |
| 3535 | |
| 3536 | void impBeginTreeList(); |
| 3537 | void impEndTreeList(BasicBlock* block, GenTree* firstStmt, GenTree* lastStmt); |
| 3538 | void impEndTreeList(BasicBlock* block); |
| 3539 | void impAppendStmtCheck(GenTree* stmt, unsigned chkLevel); |
| 3540 | void impAppendStmt(GenTree* stmt, unsigned chkLevel); |
| 3541 | void impInsertStmtBefore(GenTree* stmt, GenTree* stmtBefore); |
| 3542 | GenTree* impAppendTree(GenTree* tree, unsigned chkLevel, IL_OFFSETX offset); |
| 3543 | void impInsertTreeBefore(GenTree* tree, IL_OFFSETX offset, GenTree* stmtBefore); |
| 3544 | void impAssignTempGen(unsigned tmp, |
| 3545 | GenTree* val, |
| 3546 | unsigned curLevel, |
| 3547 | GenTree** pAfterStmt = nullptr, |
| 3548 | IL_OFFSETX ilOffset = BAD_IL_OFFSET, |
| 3549 | BasicBlock* block = nullptr); |
| 3550 | void impAssignTempGen(unsigned tmpNum, |
| 3551 | GenTree* val, |
| 3552 | CORINFO_CLASS_HANDLE structHnd, |
| 3553 | unsigned curLevel, |
| 3554 | GenTree** pAfterStmt = nullptr, |
| 3555 | IL_OFFSETX ilOffset = BAD_IL_OFFSET, |
| 3556 | BasicBlock* block = nullptr); |
| 3557 | GenTree* impCloneExpr(GenTree* tree, |
| 3558 | GenTree** clone, |
| 3559 | CORINFO_CLASS_HANDLE structHnd, |
| 3560 | unsigned curLevel, |
| 3561 | GenTree** pAfterStmt DEBUGARG(const char* reason)); |
| 3562 | GenTree* impAssignStruct(GenTree* dest, |
| 3563 | GenTree* src, |
| 3564 | CORINFO_CLASS_HANDLE structHnd, |
| 3565 | unsigned curLevel, |
| 3566 | GenTree** pAfterStmt = nullptr, |
| 3567 | IL_OFFSETX ilOffset = BAD_IL_OFFSET, |
| 3568 | BasicBlock* block = nullptr); |
| 3569 | GenTree* impAssignStructPtr(GenTree* dest, |
| 3570 | GenTree* src, |
| 3571 | CORINFO_CLASS_HANDLE structHnd, |
| 3572 | unsigned curLevel, |
| 3573 | GenTree** pAfterStmt = nullptr, |
| 3574 | IL_OFFSETX ilOffset = BAD_IL_OFFSET, |
| 3575 | BasicBlock* block = nullptr); |
| 3576 | |
| 3577 | GenTree* impGetStructAddr(GenTree* structVal, CORINFO_CLASS_HANDLE structHnd, unsigned curLevel, bool willDeref); |
| 3578 | |
| 3579 | var_types impNormStructType(CORINFO_CLASS_HANDLE structHnd, |
| 3580 | BYTE* gcLayout = nullptr, |
| 3581 | unsigned* numGCVars = nullptr, |
| 3582 | var_types* simdBaseType = nullptr); |
| 3583 | |
| 3584 | GenTree* impNormStructVal(GenTree* structVal, |
| 3585 | CORINFO_CLASS_HANDLE structHnd, |
| 3586 | unsigned curLevel, |
| 3587 | bool forceNormalization = false); |
| 3588 | |
| 3589 | GenTree* impTokenToHandle(CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 3590 | BOOL* pRuntimeLookup = nullptr, |
| 3591 | BOOL mustRestoreHandle = FALSE, |
| 3592 | BOOL importParent = FALSE); |
| 3593 | |
| 3594 | GenTree* impParentClassTokenToHandle(CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 3595 | BOOL* pRuntimeLookup = nullptr, |
| 3596 | BOOL mustRestoreHandle = FALSE) |
| 3597 | { |
| 3598 | return impTokenToHandle(pResolvedToken, pRuntimeLookup, mustRestoreHandle, TRUE); |
| 3599 | } |
| 3600 | |
| 3601 | GenTree* impLookupToTree(CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 3602 | CORINFO_LOOKUP* pLookup, |
| 3603 | unsigned flags, |
| 3604 | void* compileTimeHandle); |
| 3605 | |
| 3606 | GenTree* getRuntimeContextTree(CORINFO_RUNTIME_LOOKUP_KIND kind); |
| 3607 | |
| 3608 | GenTree* impRuntimeLookupToTree(CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 3609 | CORINFO_LOOKUP* pLookup, |
| 3610 | void* compileTimeHandle); |
| 3611 | |
| 3612 | GenTree* impReadyToRunLookupToTree(CORINFO_CONST_LOOKUP* pLookup, unsigned flags, void* compileTimeHandle); |
| 3613 | |
| 3614 | GenTreeCall* impReadyToRunHelperToTree(CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 3615 | CorInfoHelpFunc helper, |
| 3616 | var_types type, |
| 3617 | GenTreeArgList* arg = nullptr, |
| 3618 | CORINFO_LOOKUP_KIND* pGenericLookupKind = nullptr); |
| 3619 | |
| 3620 | GenTree* impCastClassOrIsInstToTree(GenTree* op1, |
| 3621 | GenTree* op2, |
| 3622 | CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 3623 | bool isCastClass); |
| 3624 | |
| 3625 | GenTree* impOptimizeCastClassOrIsInst(GenTree* op1, CORINFO_RESOLVED_TOKEN* pResolvedToken, bool isCastClass); |
| 3626 | |
| 3627 | bool VarTypeIsMultiByteAndCanEnreg( |
| 3628 | var_types type, CORINFO_CLASS_HANDLE typeClass, unsigned* typeSize, bool forReturn, bool isVarArg); |
| 3629 | |
| 3630 | bool IsIntrinsicImplementedByUserCall(CorInfoIntrinsics intrinsicId); |
| 3631 | bool IsTargetIntrinsic(CorInfoIntrinsics intrinsicId); |
| 3632 | bool IsMathIntrinsic(CorInfoIntrinsics intrinsicId); |
| 3633 | bool IsMathIntrinsic(GenTree* tree); |
| 3634 | |
| 3635 | private: |
| 3636 | //----------------- Importing the method ---------------------------------- |
| 3637 | |
| 3638 | CORINFO_CONTEXT_HANDLE impTokenLookupContextHandle; // The context used for looking up tokens. |
| 3639 | |
| 3640 | #ifdef DEBUG |
| 3641 | unsigned impCurOpcOffs; |
| 3642 | const char* impCurOpcName; |
| 3643 | bool impNestedStackSpill; |
| 3644 | |
| 3645 | // For displaying instrs with generated native code (-n:B) |
| 3646 | GenTree* impLastILoffsStmt; // oldest stmt added for which we did not gtStmtLastILoffs |
| 3647 | void impNoteLastILoffs(); |
| 3648 | #endif |
| 3649 | |
| 3650 | /* IL offset of the stmt currently being imported. It gets set to |
| 3651 | BAD_IL_OFFSET after it has been set in the appended trees. Then it gets |
| 3652 | updated at IL offsets for which we have to report mapping info. |
| 3653 | It also includes flag bits, so use jitGetILoffs() |
| 3654 | to get the actual IL offset value. |
| 3655 | */ |
| 3656 | |
| 3657 | IL_OFFSETX impCurStmtOffs; |
| 3658 | void impCurStmtOffsSet(IL_OFFSET offs); |
| 3659 | |
| 3660 | void impNoteBranchOffs(); |
| 3661 | |
| 3662 | unsigned impInitBlockLineInfo(); |
| 3663 | |
| 3664 | GenTree* impCheckForNullPointer(GenTree* obj); |
| 3665 | bool impIsThis(GenTree* obj); |
| 3666 | bool impIsLDFTN_TOKEN(const BYTE* delegateCreateStart, const BYTE* newobjCodeAddr); |
| 3667 | bool impIsDUP_LDVIRTFTN_TOKEN(const BYTE* delegateCreateStart, const BYTE* newobjCodeAddr); |
| 3668 | bool impIsAnySTLOC(OPCODE opcode) |
| 3669 | { |
| 3670 | return ((opcode == CEE_STLOC) || (opcode == CEE_STLOC_S) || |
| 3671 | ((opcode >= CEE_STLOC_0) && (opcode <= CEE_STLOC_3))); |
| 3672 | } |
| 3673 | |
| 3674 | GenTreeArgList* impPopList(unsigned count, CORINFO_SIG_INFO* sig, GenTreeArgList* prefixTree = nullptr); |
| 3675 | |
| 3676 | GenTreeArgList* impPopRevList(unsigned count, CORINFO_SIG_INFO* sig, unsigned skipReverseCount = 0); |
| 3677 | |
| 3678 | /* |
| 3679 | * Get current IL offset with stack-empty info incoporated |
| 3680 | */ |
| 3681 | IL_OFFSETX impCurILOffset(IL_OFFSET offs, bool callInstruction = false); |
| 3682 | |
| 3683 | //---------------- Spilling the importer stack ---------------------------- |
| 3684 | |
| 3685 | // The maximum number of bytes of IL processed without clean stack state. |
| 3686 | // It allows to limit the maximum tree size and depth. |
| 3687 | static const unsigned MAX_TREE_SIZE = 200; |
| 3688 | bool impCanSpillNow(OPCODE prevOpcode); |
| 3689 | |
| 3690 | struct PendingDsc |
| 3691 | { |
| 3692 | PendingDsc* pdNext; |
| 3693 | BasicBlock* pdBB; |
| 3694 | SavedStack pdSavedStack; |
| 3695 | ThisInitState pdThisPtrInit; |
| 3696 | }; |
| 3697 | |
| 3698 | PendingDsc* impPendingList; // list of BBs currently waiting to be imported. |
| 3699 | PendingDsc* impPendingFree; // Freed up dscs that can be reused |
| 3700 | |
| 3701 | // We keep a byte-per-block map (dynamically extended) in the top-level Compiler object of a compilation. |
| 3702 | JitExpandArray<BYTE> impPendingBlockMembers; |
| 3703 | |
| 3704 | // Return the byte for "b" (allocating/extending impPendingBlockMembers if necessary.) |
| 3705 | // Operates on the map in the top-level ancestor. |
| 3706 | BYTE impGetPendingBlockMember(BasicBlock* blk) |
| 3707 | { |
| 3708 | return impInlineRoot()->impPendingBlockMembers.Get(blk->bbInd()); |
| 3709 | } |
| 3710 | |
| 3711 | // Set the byte for "b" to "val" (allocating/extending impPendingBlockMembers if necessary.) |
| 3712 | // Operates on the map in the top-level ancestor. |
| 3713 | void impSetPendingBlockMember(BasicBlock* blk, BYTE val) |
| 3714 | { |
| 3715 | impInlineRoot()->impPendingBlockMembers.Set(blk->bbInd(), val); |
| 3716 | } |
| 3717 | |
| 3718 | bool impCanReimport; |
| 3719 | |
| 3720 | bool impSpillStackEntry(unsigned level, |
| 3721 | unsigned varNum |
| 3722 | #ifdef DEBUG |
| 3723 | , |
| 3724 | bool bAssertOnRecursion, |
| 3725 | const char* reason |
| 3726 | #endif |
| 3727 | ); |
| 3728 | |
| 3729 | void impSpillStackEnsure(bool spillLeaves = false); |
| 3730 | void impEvalSideEffects(); |
| 3731 | void impSpillSpecialSideEff(); |
| 3732 | void impSpillSideEffects(bool spillGlobEffects, unsigned chkLevel DEBUGARG(const char* reason)); |
| 3733 | void impSpillValueClasses(); |
| 3734 | void impSpillEvalStack(); |
| 3735 | static fgWalkPreFn impFindValueClasses; |
| 3736 | void impSpillLclRefs(ssize_t lclNum); |
| 3737 | |
| 3738 | BasicBlock* impPushCatchArgOnStack(BasicBlock* hndBlk, CORINFO_CLASS_HANDLE clsHnd, bool isSingleBlockFilter); |
| 3739 | |
| 3740 | void impImportBlockCode(BasicBlock* block); |
| 3741 | |
| 3742 | void impReimportMarkBlock(BasicBlock* block); |
| 3743 | void impReimportMarkSuccessors(BasicBlock* block); |
| 3744 | |
| 3745 | void impVerifyEHBlock(BasicBlock* block, bool isTryStart); |
| 3746 | |
| 3747 | void impImportBlockPending(BasicBlock* block); |
| 3748 | |
| 3749 | // Similar to impImportBlockPending, but assumes that block has already been imported once and is being |
| 3750 | // reimported for some reason. It specifically does *not* look at verCurrentState to set the EntryState |
| 3751 | // for the block, but instead, just re-uses the block's existing EntryState. |
| 3752 | void impReimportBlockPending(BasicBlock* block); |
| 3753 | |
| 3754 | var_types impGetByRefResultType(genTreeOps oper, bool fUnsigned, GenTree** pOp1, GenTree** pOp2); |
| 3755 | |
| 3756 | void impImportBlock(BasicBlock* block); |
| 3757 | |
| 3758 | // Assumes that "block" is a basic block that completes with a non-empty stack. We will assign the values |
| 3759 | // on the stack to local variables (the "spill temp" variables). The successor blocks will assume that |
| 3760 | // its incoming stack contents are in those locals. This requires "block" and its successors to agree on |
| 3761 | // the variables that will be used -- and for all the predecessors of those successors, and the |
| 3762 | // successors of those predecessors, etc. Call such a set of blocks closed under alternating |
| 3763 | // successor/predecessor edges a "spill clique." A block is a "predecessor" or "successor" member of the |
| 3764 | // clique (or, conceivably, both). Each block has a specified sequence of incoming and outgoing spill |
| 3765 | // temps. If "block" already has its outgoing spill temps assigned (they are always a contiguous series |
| 3766 | // of local variable numbers, so we represent them with the base local variable number), returns that. |
| 3767 | // Otherwise, picks a set of spill temps, and propagates this choice to all blocks in the spill clique of |
| 3768 | // which "block" is a member (asserting, in debug mode, that no block in this clique had its spill temps |
| 3769 | // chosen already. More precisely, that the incoming or outgoing spill temps are not chosen, depending |
| 3770 | // on which kind of member of the clique the block is). |
| 3771 | unsigned impGetSpillTmpBase(BasicBlock* block); |
| 3772 | |
| 3773 | // Assumes that "block" is a basic block that completes with a non-empty stack. We have previously |
| 3774 | // assigned the values on the stack to local variables (the "spill temp" variables). The successor blocks |
| 3775 | // will assume that its incoming stack contents are in those locals. This requires "block" and its |
| 3776 | // successors to agree on the variables and their types that will be used. The CLI spec allows implicit |
| 3777 | // conversions between 'int' and 'native int' or 'float' and 'double' stack types. So one predecessor can |
| 3778 | // push an int and another can push a native int. For 64-bit we have chosen to implement this by typing |
| 3779 | // the "spill temp" as native int, and then importing (or re-importing as needed) so that all the |
| 3780 | // predecessors in the "spill clique" push a native int (sign-extending if needed), and all the |
| 3781 | // successors receive a native int. Similarly float and double are unified to double. |
| 3782 | // This routine is called after a type-mismatch is detected, and it will walk the spill clique to mark |
| 3783 | // blocks for re-importation as appropriate (both successors, so they get the right incoming type, and |
| 3784 | // predecessors, so they insert an upcast if needed). |
| 3785 | void impReimportSpillClique(BasicBlock* block); |
| 3786 | |
| 3787 | // When we compute a "spill clique" (see above) these byte-maps are allocated to have a byte per basic |
| 3788 | // block, and represent the predecessor and successor members of the clique currently being computed. |
| 3789 | // *** Access to these will need to be locked in a parallel compiler. |
| 3790 | JitExpandArray<BYTE> impSpillCliquePredMembers; |
| 3791 | JitExpandArray<BYTE> impSpillCliqueSuccMembers; |
| 3792 | |
| 3793 | enum SpillCliqueDir |
| 3794 | { |
| 3795 | SpillCliquePred, |
| 3796 | SpillCliqueSucc |
| 3797 | }; |
| 3798 | |
| 3799 | // Abstract class for receiving a callback while walking a spill clique |
| 3800 | class SpillCliqueWalker |
| 3801 | { |
| 3802 | public: |
| 3803 | virtual void Visit(SpillCliqueDir predOrSucc, BasicBlock* blk) = 0; |
| 3804 | }; |
| 3805 | |
| 3806 | // This class is used for setting the bbStkTempsIn and bbStkTempsOut on the blocks within a spill clique |
| 3807 | class SetSpillTempsBase : public SpillCliqueWalker |
| 3808 | { |
| 3809 | unsigned m_baseTmp; |
| 3810 | |
| 3811 | public: |
| 3812 | SetSpillTempsBase(unsigned baseTmp) : m_baseTmp(baseTmp) |
| 3813 | { |
| 3814 | } |
| 3815 | virtual void Visit(SpillCliqueDir predOrSucc, BasicBlock* blk); |
| 3816 | }; |
| 3817 | |
| 3818 | // This class is used for implementing impReimportSpillClique part on each block within the spill clique |
| 3819 | class ReimportSpillClique : public SpillCliqueWalker |
| 3820 | { |
| 3821 | Compiler* m_pComp; |
| 3822 | |
| 3823 | public: |
| 3824 | ReimportSpillClique(Compiler* pComp) : m_pComp(pComp) |
| 3825 | { |
| 3826 | } |
| 3827 | virtual void Visit(SpillCliqueDir predOrSucc, BasicBlock* blk); |
| 3828 | }; |
| 3829 | |
| 3830 | // This is the heart of the algorithm for walking spill cliques. It invokes callback->Visit for each |
| 3831 | // predecessor or successor within the spill clique |
| 3832 | void impWalkSpillCliqueFromPred(BasicBlock* pred, SpillCliqueWalker* callback); |
| 3833 | |
| 3834 | // For a BasicBlock that has already been imported, the EntryState has an array of GenTrees for the |
| 3835 | // incoming locals. This walks that list an resets the types of the GenTrees to match the types of |
| 3836 | // the VarDscs. They get out of sync when we have int/native int issues (see impReimportSpillClique). |
| 3837 | void impRetypeEntryStateTemps(BasicBlock* blk); |
| 3838 | |
| 3839 | BYTE impSpillCliqueGetMember(SpillCliqueDir predOrSucc, BasicBlock* blk); |
| 3840 | void impSpillCliqueSetMember(SpillCliqueDir predOrSucc, BasicBlock* blk, BYTE val); |
| 3841 | |
| 3842 | void impPushVar(GenTree* op, typeInfo tiRetVal); |
| 3843 | void impLoadVar(unsigned lclNum, IL_OFFSET offset, typeInfo tiRetVal); |
| 3844 | void impLoadVar(unsigned lclNum, IL_OFFSET offset) |
| 3845 | { |
| 3846 | impLoadVar(lclNum, offset, lvaTable[lclNum].lvVerTypeInfo); |
| 3847 | } |
| 3848 | void impLoadArg(unsigned ilArgNum, IL_OFFSET offset); |
| 3849 | void impLoadLoc(unsigned ilLclNum, IL_OFFSET offset); |
| 3850 | bool impReturnInstruction(BasicBlock* block, int prefixFlags, OPCODE& opcode); |
| 3851 | |
| 3852 | #ifdef _TARGET_ARM_ |
| 3853 | void impMarkLclDstNotPromotable(unsigned tmpNum, GenTree* op, CORINFO_CLASS_HANDLE hClass); |
| 3854 | #endif |
| 3855 | |
| 3856 | // A free list of linked list nodes used to represent to-do stacks of basic blocks. |
| 3857 | struct BlockListNode |
| 3858 | { |
| 3859 | BasicBlock* m_blk; |
| 3860 | BlockListNode* m_next; |
| 3861 | BlockListNode(BasicBlock* blk, BlockListNode* next = nullptr) : m_blk(blk), m_next(next) |
| 3862 | { |
| 3863 | } |
| 3864 | void* operator new(size_t sz, Compiler* comp); |
| 3865 | }; |
| 3866 | BlockListNode* impBlockListNodeFreeList; |
| 3867 | |
| 3868 | void FreeBlockListNode(BlockListNode* node); |
| 3869 | |
| 3870 | bool impIsValueType(typeInfo* pTypeInfo); |
| 3871 | var_types mangleVarArgsType(var_types type); |
| 3872 | |
| 3873 | #if FEATURE_VARARG |
| 3874 | regNumber getCallArgIntRegister(regNumber floatReg); |
| 3875 | regNumber getCallArgFloatRegister(regNumber intReg); |
| 3876 | #endif // FEATURE_VARARG |
| 3877 | |
| 3878 | #if defined(DEBUG) |
| 3879 | static unsigned jitTotalMethodCompiled; |
| 3880 | #endif |
| 3881 | |
| 3882 | #ifdef DEBUG |
| 3883 | static LONG jitNestingLevel; |
| 3884 | #endif // DEBUG |
| 3885 | |
| 3886 | static BOOL impIsAddressInLocal(GenTree* tree, GenTree** lclVarTreeOut); |
| 3887 | |
| 3888 | void impMakeDiscretionaryInlineObservations(InlineInfo* pInlineInfo, InlineResult* inlineResult); |
| 3889 | |
| 3890 | // STATIC inlining decision based on the IL code. |
| 3891 | void impCanInlineIL(CORINFO_METHOD_HANDLE fncHandle, |
| 3892 | CORINFO_METHOD_INFO* methInfo, |
| 3893 | bool forceInline, |
| 3894 | InlineResult* inlineResult); |
| 3895 | |
| 3896 | void impCheckCanInline(GenTreeCall* call, |
| 3897 | CORINFO_METHOD_HANDLE fncHandle, |
| 3898 | unsigned methAttr, |
| 3899 | CORINFO_CONTEXT_HANDLE exactContextHnd, |
| 3900 | InlineCandidateInfo** ppInlineCandidateInfo, |
| 3901 | InlineResult* inlineResult); |
| 3902 | |
| 3903 | void impInlineRecordArgInfo(InlineInfo* pInlineInfo, |
| 3904 | GenTree* curArgVal, |
| 3905 | unsigned argNum, |
| 3906 | InlineResult* inlineResult); |
| 3907 | |
| 3908 | void impInlineInitVars(InlineInfo* pInlineInfo); |
| 3909 | |
| 3910 | unsigned impInlineFetchLocal(unsigned lclNum DEBUGARG(const char* reason)); |
| 3911 | |
| 3912 | GenTree* impInlineFetchArg(unsigned lclNum, InlArgInfo* inlArgInfo, InlLclVarInfo* lclTypeInfo); |
| 3913 | |
| 3914 | BOOL impInlineIsThis(GenTree* tree, InlArgInfo* inlArgInfo); |
| 3915 | |
| 3916 | BOOL impInlineIsGuaranteedThisDerefBeforeAnySideEffects(GenTree* additionalTreesToBeEvaluatedBefore, |
| 3917 | GenTree* variableBeingDereferenced, |
| 3918 | InlArgInfo* inlArgInfo); |
| 3919 | |
| 3920 | void impMarkInlineCandidate(GenTree* call, |
| 3921 | CORINFO_CONTEXT_HANDLE exactContextHnd, |
| 3922 | bool exactContextNeedsRuntimeLookup, |
| 3923 | CORINFO_CALL_INFO* callInfo); |
| 3924 | |
| 3925 | void impMarkInlineCandidateHelper(GenTreeCall* call, |
| 3926 | CORINFO_CONTEXT_HANDLE exactContextHnd, |
| 3927 | bool exactContextNeedsRuntimeLookup, |
| 3928 | CORINFO_CALL_INFO* callInfo); |
| 3929 | |
| 3930 | bool impTailCallRetTypeCompatible(var_types callerRetType, |
| 3931 | CORINFO_CLASS_HANDLE callerRetTypeClass, |
| 3932 | var_types calleeRetType, |
| 3933 | CORINFO_CLASS_HANDLE calleeRetTypeClass); |
| 3934 | |
| 3935 | bool impIsTailCallILPattern(bool tailPrefixed, |
| 3936 | OPCODE curOpcode, |
| 3937 | const BYTE* codeAddrOfNextOpcode, |
| 3938 | const BYTE* codeEnd, |
| 3939 | bool isRecursive, |
| 3940 | bool* IsCallPopRet = nullptr); |
| 3941 | |
| 3942 | bool impIsImplicitTailCallCandidate( |
| 3943 | OPCODE curOpcode, const BYTE* codeAddrOfNextOpcode, const BYTE* codeEnd, int prefixFlags, bool isRecursive); |
| 3944 | |
| 3945 | CORINFO_RESOLVED_TOKEN* impAllocateToken(CORINFO_RESOLVED_TOKEN token); |
| 3946 | |
| 3947 | /* |
| 3948 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3949 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3950 | XX XX |
| 3951 | XX FlowGraph XX |
| 3952 | XX XX |
| 3953 | XX Info about the basic-blocks, their contents and the flow analysis XX |
| 3954 | XX XX |
| 3955 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3956 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3957 | */ |
| 3958 | |
| 3959 | public: |
| 3960 | BasicBlock* fgFirstBB; // Beginning of the basic block list |
| 3961 | BasicBlock* fgLastBB; // End of the basic block list |
| 3962 | BasicBlock* fgFirstColdBlock; // First block to be placed in the cold section |
| 3963 | #if FEATURE_EH_FUNCLETS |
| 3964 | BasicBlock* fgFirstFuncletBB; // First block of outlined funclets (to allow block insertion before the funclets) |
| 3965 | #endif |
| 3966 | BasicBlock* fgFirstBBScratch; // Block inserted for initialization stuff. Is nullptr if no such block has been |
| 3967 | // created. |
| 3968 | BasicBlockList* fgReturnBlocks; // list of BBJ_RETURN blocks |
| 3969 | unsigned fgEdgeCount; // # of control flow edges between the BBs |
| 3970 | unsigned fgBBcount; // # of BBs in the method |
| 3971 | #ifdef DEBUG |
| 3972 | unsigned fgBBcountAtCodegen; // # of BBs in the method at the start of codegen |
| 3973 | #endif |
| 3974 | unsigned fgBBNumMax; // The max bbNum that has been assigned to basic blocks |
| 3975 | unsigned fgDomBBcount; // # of BBs for which we have dominator and reachability information |
| 3976 | BasicBlock** fgBBInvPostOrder; // The flow graph stored in an array sorted in topological order, needed to compute |
| 3977 | // dominance. Indexed by block number. Size: fgBBNumMax + 1. |
| 3978 | |
| 3979 | // After the dominance tree is computed, we cache a DFS preorder number and DFS postorder number to compute |
| 3980 | // dominance queries in O(1). fgDomTreePreOrder and fgDomTreePostOrder are arrays giving the block's preorder and |
| 3981 | // postorder number, respectively. The arrays are indexed by basic block number. (Note that blocks are numbered |
| 3982 | // starting from one. Thus, we always waste element zero. This makes debugging easier and makes the code less likely |
| 3983 | // to suffer from bugs stemming from forgetting to add or subtract one from the block number to form an array |
| 3984 | // index). The arrays are of size fgBBNumMax + 1. |
| 3985 | unsigned* fgDomTreePreOrder; |
| 3986 | unsigned* fgDomTreePostOrder; |
| 3987 | |
| 3988 | bool fgBBVarSetsInited; |
| 3989 | |
| 3990 | // Allocate array like T* a = new T[fgBBNumMax + 1]; |
| 3991 | // Using helper so we don't keep forgetting +1. |
| 3992 | template <typename T> |
| 3993 | T* fgAllocateTypeForEachBlk(CompMemKind cmk = CMK_Unknown) |
| 3994 | { |
| 3995 | return getAllocator(cmk).allocate<T>(fgBBNumMax + 1); |
| 3996 | } |
| 3997 | |
| 3998 | // BlockSets are relative to a specific set of BasicBlock numbers. If that changes |
| 3999 | // (if the blocks are renumbered), this changes. BlockSets from different epochs |
| 4000 | // cannot be meaningfully combined. Note that new blocks can be created with higher |
| 4001 | // block numbers without changing the basic block epoch. These blocks *cannot* |
| 4002 | // participate in a block set until the blocks are all renumbered, causing the epoch |
| 4003 | // to change. This is useful if continuing to use previous block sets is valuable. |
| 4004 | // If the epoch is zero, then it is uninitialized, and block sets can't be used. |
| 4005 | unsigned fgCurBBEpoch; |
| 4006 | |
| 4007 | unsigned GetCurBasicBlockEpoch() |
| 4008 | { |
| 4009 | return fgCurBBEpoch; |
| 4010 | } |
| 4011 | |
| 4012 | // The number of basic blocks in the current epoch. When the blocks are renumbered, |
| 4013 | // this is fgBBcount. As blocks are added, fgBBcount increases, fgCurBBEpochSize remains |
| 4014 | // the same, until a new BasicBlock epoch is created, such as when the blocks are all renumbered. |
| 4015 | unsigned fgCurBBEpochSize; |
| 4016 | |
| 4017 | // The number of "size_t" elements required to hold a bitset large enough for fgCurBBEpochSize |
| 4018 | // bits. This is precomputed to avoid doing math every time BasicBlockBitSetTraits::GetArrSize() is called. |
| 4019 | unsigned fgBBSetCountInSizeTUnits; |
| 4020 | |
| 4021 | void NewBasicBlockEpoch() |
| 4022 | { |
| 4023 | INDEBUG(unsigned oldEpochArrSize = fgBBSetCountInSizeTUnits); |
| 4024 | |
| 4025 | // We have a new epoch. Compute and cache the size needed for new BlockSets. |
| 4026 | fgCurBBEpoch++; |
| 4027 | fgCurBBEpochSize = fgBBNumMax + 1; |
| 4028 | fgBBSetCountInSizeTUnits = |
| 4029 | roundUp(fgCurBBEpochSize, (unsigned)(sizeof(size_t) * 8)) / unsigned(sizeof(size_t) * 8); |
| 4030 | |
| 4031 | #ifdef DEBUG |
| 4032 | // All BlockSet objects are now invalid! |
| 4033 | fgReachabilitySetsValid = false; // the bbReach sets are now invalid! |
| 4034 | fgEnterBlksSetValid = false; // the fgEnterBlks set is now invalid! |
| 4035 | |
| 4036 | if (verbose) |
| 4037 | { |
| 4038 | unsigned epochArrSize = BasicBlockBitSetTraits::GetArrSize(this, sizeof(size_t)); |
| 4039 | printf("\nNew BlockSet epoch %d, # of blocks (including unused BB00): %u, bitset array size: %u (%s)" , |
| 4040 | fgCurBBEpoch, fgCurBBEpochSize, epochArrSize, (epochArrSize <= 1) ? "short" : "long" ); |
| 4041 | if ((fgCurBBEpoch != 1) && ((oldEpochArrSize <= 1) != (epochArrSize <= 1))) |
| 4042 | { |
| 4043 | // If we're not just establishing the first epoch, and the epoch array size has changed such that we're |
| 4044 | // going to change our bitset representation from short (just a size_t bitset) to long (a pointer to an |
| 4045 | // array of size_t bitsets), then print that out. |
| 4046 | printf("; NOTE: BlockSet size was previously %s!" , (oldEpochArrSize <= 1) ? "short" : "long" ); |
| 4047 | } |
| 4048 | printf("\n" ); |
| 4049 | } |
| 4050 | #endif // DEBUG |
| 4051 | } |
| 4052 | |
| 4053 | void EnsureBasicBlockEpoch() |
| 4054 | { |
| 4055 | if (fgCurBBEpochSize != fgBBNumMax + 1) |
| 4056 | { |
| 4057 | NewBasicBlockEpoch(); |
| 4058 | } |
| 4059 | } |
| 4060 | |
| 4061 | BasicBlock* fgNewBasicBlock(BBjumpKinds jumpKind); |
| 4062 | void fgEnsureFirstBBisScratch(); |
| 4063 | bool fgFirstBBisScratch(); |
| 4064 | bool fgBBisScratch(BasicBlock* block); |
| 4065 | |
| 4066 | void fgExtendEHRegionBefore(BasicBlock* block); |
| 4067 | void fgExtendEHRegionAfter(BasicBlock* block); |
| 4068 | |
| 4069 | BasicBlock* fgNewBBbefore(BBjumpKinds jumpKind, BasicBlock* block, bool extendRegion); |
| 4070 | |
| 4071 | BasicBlock* fgNewBBafter(BBjumpKinds jumpKind, BasicBlock* block, bool extendRegion); |
| 4072 | |
| 4073 | BasicBlock* fgNewBBinRegion(BBjumpKinds jumpKind, |
| 4074 | unsigned tryIndex, |
| 4075 | unsigned hndIndex, |
| 4076 | BasicBlock* nearBlk, |
| 4077 | bool putInFilter = false, |
| 4078 | bool runRarely = false, |
| 4079 | bool insertAtEnd = false); |
| 4080 | |
| 4081 | BasicBlock* fgNewBBinRegion(BBjumpKinds jumpKind, |
| 4082 | BasicBlock* srcBlk, |
| 4083 | bool runRarely = false, |
| 4084 | bool insertAtEnd = false); |
| 4085 | |
| 4086 | BasicBlock* fgNewBBinRegion(BBjumpKinds jumpKind); |
| 4087 | |
| 4088 | BasicBlock* fgNewBBinRegionWorker(BBjumpKinds jumpKind, |
| 4089 | BasicBlock* afterBlk, |
| 4090 | unsigned xcptnIndex, |
| 4091 | bool putInTryRegion); |
| 4092 | |
| 4093 | void fgInsertBBbefore(BasicBlock* insertBeforeBlk, BasicBlock* newBlk); |
| 4094 | void fgInsertBBafter(BasicBlock* insertAfterBlk, BasicBlock* newBlk); |
| 4095 | void fgUnlinkBlock(BasicBlock* block); |
| 4096 | |
| 4097 | unsigned fgMeasureIR(); |
| 4098 | |
| 4099 | bool fgModified; // True if the flow graph has been modified recently |
| 4100 | bool fgComputePredsDone; // Have we computed the bbPreds list |
| 4101 | bool fgCheapPredsValid; // Is the bbCheapPreds list valid? |
| 4102 | bool fgDomsComputed; // Have we computed the dominator sets? |
| 4103 | bool fgOptimizedFinally; // Did we optimize any try-finallys? |
| 4104 | |
| 4105 | bool fgHasSwitch; // any BBJ_SWITCH jumps? |
| 4106 | |
| 4107 | BlockSet fgEnterBlks; // Set of blocks which have a special transfer of control; the "entry" blocks plus EH handler |
| 4108 | // begin blocks. |
| 4109 | |
| 4110 | #ifdef DEBUG |
| 4111 | bool fgReachabilitySetsValid; // Are the bbReach sets valid? |
| 4112 | bool fgEnterBlksSetValid; // Is the fgEnterBlks set valid? |
| 4113 | #endif // DEBUG |
| 4114 | |
| 4115 | bool fgRemoveRestOfBlock; // true if we know that we will throw |
| 4116 | bool fgStmtRemoved; // true if we remove statements -> need new DFA |
| 4117 | |
| 4118 | // There are two modes for ordering of the trees. |
| 4119 | // - In FGOrderTree, the dominant ordering is the tree order, and the nodes contained in |
| 4120 | // each tree and sub-tree are contiguous, and can be traversed (in gtNext/gtPrev order) |
| 4121 | // by traversing the tree according to the order of the operands. |
| 4122 | // - In FGOrderLinear, the dominant ordering is the linear order. |
| 4123 | |
| 4124 | enum FlowGraphOrder |
| 4125 | { |
| 4126 | FGOrderTree, |
| 4127 | FGOrderLinear |
| 4128 | }; |
| 4129 | FlowGraphOrder fgOrder; |
| 4130 | |
| 4131 | // The following are boolean flags that keep track of the state of internal data structures |
| 4132 | |
| 4133 | bool fgStmtListThreaded; // true if the node list is now threaded |
| 4134 | bool fgCanRelocateEHRegions; // true if we are allowed to relocate the EH regions |
| 4135 | bool fgEdgeWeightsComputed; // true after we have called fgComputeEdgeWeights |
| 4136 | bool fgHaveValidEdgeWeights; // true if we were successful in computing all of the edge weights |
| 4137 | bool fgSlopUsedInEdgeWeights; // true if their was some slop used when computing the edge weights |
| 4138 | bool fgRangeUsedInEdgeWeights; // true if some of the edgeWeight are expressed in Min..Max form |
| 4139 | bool fgNeedsUpdateFlowGraph; // true if we need to run fgUpdateFlowGraph |
| 4140 | BasicBlock::weight_t fgCalledCount; // count of the number of times this method was called |
| 4141 | // This is derived from the profile data |
| 4142 | // or is BB_UNITY_WEIGHT when we don't have profile data |
| 4143 | |
| 4144 | #if FEATURE_EH_FUNCLETS |
| 4145 | bool fgFuncletsCreated; // true if the funclet creation phase has been run |
| 4146 | #endif // FEATURE_EH_FUNCLETS |
| 4147 | |
| 4148 | bool fgGlobalMorph; // indicates if we are during the global morphing phase |
| 4149 | // since fgMorphTree can be called from several places |
| 4150 | |
| 4151 | bool impBoxTempInUse; // the temp below is valid and available |
| 4152 | unsigned impBoxTemp; // a temporary that is used for boxing |
| 4153 | |
| 4154 | #ifdef DEBUG |
| 4155 | bool jitFallbackCompile; // Are we doing a fallback compile? That is, have we executed a NO_WAY assert, |
| 4156 | // and we are trying to compile again in a "safer", minopts mode? |
| 4157 | #endif |
| 4158 | |
| 4159 | #if defined(DEBUG) |
| 4160 | unsigned impInlinedCodeSize; |
| 4161 | #endif |
| 4162 | |
| 4163 | //------------------------------------------------------------------------- |
| 4164 | |
| 4165 | void fgInit(); |
| 4166 | |
| 4167 | void fgImport(); |
| 4168 | |
| 4169 | void fgTransformIndirectCalls(); |
| 4170 | |
| 4171 | void fgInline(); |
| 4172 | |
| 4173 | void fgRemoveEmptyTry(); |
| 4174 | |
| 4175 | void fgRemoveEmptyFinally(); |
| 4176 | |
| 4177 | void fgMergeFinallyChains(); |
| 4178 | |
| 4179 | void fgCloneFinally(); |
| 4180 | |
| 4181 | void fgCleanupContinuation(BasicBlock* continuation); |
| 4182 | |
| 4183 | void fgUpdateFinallyTargetFlags(); |
| 4184 | |
| 4185 | void fgClearAllFinallyTargetBits(); |
| 4186 | |
| 4187 | void fgAddFinallyTargetFlags(); |
| 4188 | |
| 4189 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 4190 | // Sometimes we need to defer updating the BBF_FINALLY_TARGET bit. fgNeedToAddFinallyTargetBits signals |
| 4191 | // when this is necessary. |
| 4192 | bool fgNeedToAddFinallyTargetBits; |
| 4193 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 4194 | |
| 4195 | bool fgRetargetBranchesToCanonicalCallFinally(BasicBlock* block, |
| 4196 | BasicBlock* handler, |
| 4197 | BlockToBlockMap& continuationMap); |
| 4198 | |
| 4199 | GenTree* fgGetCritSectOfStaticMethod(); |
| 4200 | |
| 4201 | #if FEATURE_EH_FUNCLETS |
| 4202 | |
| 4203 | void fgAddSyncMethodEnterExit(); |
| 4204 | |
| 4205 | GenTree* fgCreateMonitorTree(unsigned lvaMonitorBool, unsigned lvaThisVar, BasicBlock* block, bool enter); |
| 4206 | |
| 4207 | void fgConvertSyncReturnToLeave(BasicBlock* block); |
| 4208 | |
| 4209 | #endif // FEATURE_EH_FUNCLETS |
| 4210 | |
| 4211 | void fgAddReversePInvokeEnterExit(); |
| 4212 | |
| 4213 | bool fgMoreThanOneReturnBlock(); |
| 4214 | |
| 4215 | // The number of separate return points in the method. |
| 4216 | unsigned fgReturnCount; |
| 4217 | |
| 4218 | void fgAddInternal(); |
| 4219 | |
| 4220 | bool fgFoldConditional(BasicBlock* block); |
| 4221 | |
| 4222 | void fgMorphStmts(BasicBlock* block, bool* lnot, bool* loadw); |
| 4223 | void fgMorphBlocks(); |
| 4224 | |
| 4225 | bool fgMorphBlockStmt(BasicBlock* block, GenTreeStmt* stmt DEBUGARG(const char* msg)); |
| 4226 | |
| 4227 | void fgSetOptions(); |
| 4228 | |
| 4229 | #ifdef DEBUG |
| 4230 | static fgWalkPreFn fgAssertNoQmark; |
| 4231 | void fgPreExpandQmarkChecks(GenTree* expr); |
| 4232 | void fgPostExpandQmarkChecks(); |
| 4233 | static void fgCheckQmarkAllowedForm(GenTree* tree); |
| 4234 | #endif |
| 4235 | |
| 4236 | IL_OFFSET fgFindBlockILOffset(BasicBlock* block); |
| 4237 | |
| 4238 | BasicBlock* fgSplitBlockAtBeginning(BasicBlock* curr); |
| 4239 | BasicBlock* fgSplitBlockAtEnd(BasicBlock* curr); |
| 4240 | BasicBlock* fgSplitBlockAfterStatement(BasicBlock* curr, GenTree* stmt); |
| 4241 | BasicBlock* fgSplitBlockAfterNode(BasicBlock* curr, GenTree* node); // for LIR |
| 4242 | BasicBlock* fgSplitEdge(BasicBlock* curr, BasicBlock* succ); |
| 4243 | |
| 4244 | GenTreeStmt* fgNewStmtFromTree(GenTree* tree, BasicBlock* block, IL_OFFSETX offs); |
| 4245 | GenTreeStmt* fgNewStmtFromTree(GenTree* tree); |
| 4246 | GenTreeStmt* fgNewStmtFromTree(GenTree* tree, BasicBlock* block); |
| 4247 | GenTreeStmt* fgNewStmtFromTree(GenTree* tree, IL_OFFSETX offs); |
| 4248 | |
| 4249 | GenTree* fgGetTopLevelQmark(GenTree* expr, GenTree** ppDst = nullptr); |
| 4250 | void fgExpandQmarkForCastInstOf(BasicBlock* block, GenTree* stmt); |
| 4251 | void fgExpandQmarkStmt(BasicBlock* block, GenTree* expr); |
| 4252 | void fgExpandQmarkNodes(); |
| 4253 | |
| 4254 | void fgMorph(); |
| 4255 | |
| 4256 | // Do "simple lowering." This functionality is (conceptually) part of "general" |
| 4257 | // lowering that is distributed between fgMorph and the lowering phase of LSRA. |
| 4258 | void fgSimpleLowering(); |
| 4259 | |
| 4260 | GenTree* fgInitThisClass(); |
| 4261 | |
| 4262 | GenTreeCall* fgGetStaticsCCtorHelper(CORINFO_CLASS_HANDLE cls, CorInfoHelpFunc helper); |
| 4263 | |
| 4264 | GenTreeCall* fgGetSharedCCtor(CORINFO_CLASS_HANDLE cls); |
| 4265 | |
| 4266 | bool backendRequiresLocalVarLifetimes() |
| 4267 | { |
| 4268 | return !opts.MinOpts() || m_pLinearScan->willEnregisterLocalVars(); |
| 4269 | } |
| 4270 | |
| 4271 | void fgLocalVarLiveness(); |
| 4272 | |
| 4273 | void fgLocalVarLivenessInit(); |
| 4274 | |
| 4275 | void fgPerNodeLocalVarLiveness(GenTree* node); |
| 4276 | void fgPerBlockLocalVarLiveness(); |
| 4277 | |
| 4278 | VARSET_VALRET_TP fgGetHandlerLiveVars(BasicBlock* block); |
| 4279 | |
| 4280 | void fgLiveVarAnalysis(bool updateInternalOnly = false); |
| 4281 | |
| 4282 | void fgComputeLifeCall(VARSET_TP& life, GenTreeCall* call); |
| 4283 | |
| 4284 | void fgComputeLifeTrackedLocalUse(VARSET_TP& life, LclVarDsc& varDsc, GenTreeLclVarCommon* node); |
| 4285 | bool fgComputeLifeTrackedLocalDef(VARSET_TP& life, |
| 4286 | VARSET_VALARG_TP keepAliveVars, |
| 4287 | LclVarDsc& varDsc, |
| 4288 | GenTreeLclVarCommon* node); |
| 4289 | void fgComputeLifeUntrackedLocal(VARSET_TP& life, |
| 4290 | VARSET_VALARG_TP keepAliveVars, |
| 4291 | LclVarDsc& varDsc, |
| 4292 | GenTreeLclVarCommon* lclVarNode); |
| 4293 | bool fgComputeLifeLocal(VARSET_TP& life, VARSET_VALARG_TP keepAliveVars, GenTree* lclVarNode); |
| 4294 | |
| 4295 | void fgComputeLife(VARSET_TP& life, |
| 4296 | GenTree* startNode, |
| 4297 | GenTree* endNode, |
| 4298 | VARSET_VALARG_TP volatileVars, |
| 4299 | bool* pStmtInfoDirty DEBUGARG(bool* treeModf)); |
| 4300 | |
| 4301 | void fgComputeLifeLIR(VARSET_TP& life, BasicBlock* block, VARSET_VALARG_TP volatileVars); |
| 4302 | |
| 4303 | bool fgRemoveDeadStore(GenTree** pTree, |
| 4304 | LclVarDsc* varDsc, |
| 4305 | VARSET_VALARG_TP life, |
| 4306 | bool* doAgain, |
| 4307 | bool* pStmtInfoDirty DEBUGARG(bool* treeModf)); |
| 4308 | |
| 4309 | // For updating liveset during traversal AFTER fgComputeLife has completed |
| 4310 | VARSET_VALRET_TP fgGetVarBits(GenTree* tree); |
| 4311 | VARSET_VALRET_TP fgUpdateLiveSet(VARSET_VALARG_TP liveSet, GenTree* tree); |
| 4312 | |
| 4313 | // Returns the set of live variables after endTree, |
| 4314 | // assuming that liveSet is the set of live variables BEFORE tree. |
| 4315 | // Requires that fgComputeLife has completed, and that tree is in the same |
| 4316 | // statement as endTree, and that it comes before endTree in execution order |
| 4317 | |
| 4318 | VARSET_VALRET_TP fgUpdateLiveSet(VARSET_VALARG_TP liveSet, GenTree* tree, GenTree* endTree) |
| 4319 | { |
| 4320 | VARSET_TP newLiveSet(VarSetOps::MakeCopy(this, liveSet)); |
| 4321 | while (tree != nullptr && tree != endTree->gtNext) |
| 4322 | { |
| 4323 | VarSetOps::AssignNoCopy(this, newLiveSet, fgUpdateLiveSet(newLiveSet, tree)); |
| 4324 | tree = tree->gtNext; |
| 4325 | } |
| 4326 | assert(tree == endTree->gtNext); |
| 4327 | return newLiveSet; |
| 4328 | } |
| 4329 | |
| 4330 | void fgInterBlockLocalVarLiveness(); |
| 4331 | |
| 4332 | // The presence of a partial definition presents some difficulties for SSA: this is both a use of some SSA name |
| 4333 | // of "x", and a def of a new SSA name for "x". The tree only has one local variable for "x", so it has to choose |
| 4334 | // whether to treat that as the use or def. It chooses the "use", and thus the old SSA name. This map allows us |
| 4335 | // to record/recover the "def" SSA number, given the lcl var node for "x" in such a tree. |
| 4336 | typedef JitHashTable<GenTree*, JitPtrKeyFuncs<GenTree>, unsigned> NodeToUnsignedMap; |
| 4337 | NodeToUnsignedMap* m_opAsgnVarDefSsaNums; |
| 4338 | NodeToUnsignedMap* GetOpAsgnVarDefSsaNums() |
| 4339 | { |
| 4340 | if (m_opAsgnVarDefSsaNums == nullptr) |
| 4341 | { |
| 4342 | m_opAsgnVarDefSsaNums = new (getAllocator()) NodeToUnsignedMap(getAllocator()); |
| 4343 | } |
| 4344 | return m_opAsgnVarDefSsaNums; |
| 4345 | } |
| 4346 | |
| 4347 | // Requires value numbering phase to have completed. Returns the value number ("gtVN") of the |
| 4348 | // "tree," EXCEPT in the case of GTF_VAR_USEASG, because the tree node's gtVN member is the |
| 4349 | // "use" VN. Performs a lookup into the map of (use asg tree -> def VN.) to return the "def's" |
| 4350 | // VN. |
| 4351 | inline ValueNum GetUseAsgDefVNOrTreeVN(GenTree* tree); |
| 4352 | |
| 4353 | // Requires that "lcl" has the GTF_VAR_DEF flag set. Returns the SSA number of "lcl". |
| 4354 | // Except: assumes that lcl is a def, and if it is |
| 4355 | // a partial def (GTF_VAR_USEASG), looks up and returns the SSA number for the "def", |
| 4356 | // rather than the "use" SSA number recorded in the tree "lcl". |
| 4357 | inline unsigned GetSsaNumForLocalVarDef(GenTree* lcl); |
| 4358 | |
| 4359 | // Performs SSA conversion. |
| 4360 | void fgSsaBuild(); |
| 4361 | |
| 4362 | // Reset any data structures to the state expected by "fgSsaBuild", so it can be run again. |
| 4363 | void (); |
| 4364 | |
| 4365 | unsigned fgSsaPassesCompleted; // Number of times fgSsaBuild has been run. |
| 4366 | |
| 4367 | // Returns "true" if a struct temp of the given type requires needs zero init in this block |
| 4368 | inline bool fgStructTempNeedsExplicitZeroInit(LclVarDsc* varDsc, BasicBlock* block); |
| 4369 | |
| 4370 | // The value numbers for this compilation. |
| 4371 | ValueNumStore* vnStore; |
| 4372 | |
| 4373 | public: |
| 4374 | ValueNumStore* GetValueNumStore() |
| 4375 | { |
| 4376 | return vnStore; |
| 4377 | } |
| 4378 | |
| 4379 | // Do value numbering (assign a value number to each |
| 4380 | // tree node). |
| 4381 | void fgValueNumber(); |
| 4382 | |
| 4383 | // Computes new GcHeap VN via the assignment H[elemTypeEq][arrVN][inx][fldSeq] = rhsVN. |
| 4384 | // Assumes that "elemTypeEq" is the (equivalence class rep) of the array element type. |
| 4385 | // The 'indType' is the indirection type of the lhs of the assignment and will typically |
| 4386 | // match the element type of the array or fldSeq. When this type doesn't match |
| 4387 | // or if the fldSeq is 'NotAField' we invalidate the array contents H[elemTypeEq][arrVN] |
| 4388 | // |
| 4389 | ValueNum fgValueNumberArrIndexAssign(CORINFO_CLASS_HANDLE elemTypeEq, |
| 4390 | ValueNum arrVN, |
| 4391 | ValueNum inxVN, |
| 4392 | FieldSeqNode* fldSeq, |
| 4393 | ValueNum rhsVN, |
| 4394 | var_types indType); |
| 4395 | |
| 4396 | // Requires that "tree" is a GT_IND marked as an array index, and that its address argument |
| 4397 | // has been parsed to yield the other input arguments. If evaluation of the address |
| 4398 | // can raise exceptions, those should be captured in the exception set "excVN." |
| 4399 | // Assumes that "elemTypeEq" is the (equivalence class rep) of the array element type. |
| 4400 | // Marks "tree" with the VN for H[elemTypeEq][arrVN][inx][fldSeq] (for the liberal VN; a new unique |
| 4401 | // VN for the conservative VN.) Also marks the tree's argument as the address of an array element. |
| 4402 | // The type tree->TypeGet() will typically match the element type of the array or fldSeq. |
| 4403 | // When this type doesn't match or if the fldSeq is 'NotAField' we return a new unique VN |
| 4404 | // |
| 4405 | ValueNum fgValueNumberArrIndexVal(GenTree* tree, |
| 4406 | CORINFO_CLASS_HANDLE elemTypeEq, |
| 4407 | ValueNum arrVN, |
| 4408 | ValueNum inxVN, |
| 4409 | ValueNum excVN, |
| 4410 | FieldSeqNode* fldSeq); |
| 4411 | |
| 4412 | // Requires "funcApp" to be a VNF_PtrToArrElem, and "addrXvn" to represent the exception set thrown |
| 4413 | // by evaluating the array index expression "tree". Returns the value number resulting from |
| 4414 | // dereferencing the array in the current GcHeap state. If "tree" is non-null, it must be the |
| 4415 | // "GT_IND" that does the dereference, and it is given the returned value number. |
| 4416 | ValueNum fgValueNumberArrIndexVal(GenTree* tree, struct VNFuncApp* funcApp, ValueNum addrXvn); |
| 4417 | |
| 4418 | // Compute the value number for a byref-exposed load of the given type via the given pointerVN. |
| 4419 | ValueNum fgValueNumberByrefExposedLoad(var_types type, ValueNum pointerVN); |
| 4420 | |
| 4421 | unsigned fgVNPassesCompleted; // Number of times fgValueNumber has been run. |
| 4422 | |
| 4423 | // Utility functions for fgValueNumber. |
| 4424 | |
| 4425 | // Perform value-numbering for the trees in "blk". |
| 4426 | void fgValueNumberBlock(BasicBlock* blk); |
| 4427 | |
| 4428 | // Requires that "entryBlock" is the entry block of loop "loopNum", and that "loopNum" is the |
| 4429 | // innermost loop of which "entryBlock" is the entry. Returns the value number that should be |
| 4430 | // assumed for the memoryKind at the start "entryBlk". |
| 4431 | ValueNum fgMemoryVNForLoopSideEffects(MemoryKind memoryKind, BasicBlock* entryBlock, unsigned loopNum); |
| 4432 | |
| 4433 | // Called when an operation (performed by "tree", described by "msg") may cause the GcHeap to be mutated. |
| 4434 | // As GcHeap is a subset of ByrefExposed, this will also annotate the ByrefExposed mutation. |
| 4435 | void fgMutateGcHeap(GenTree* tree DEBUGARG(const char* msg)); |
| 4436 | |
| 4437 | // Called when an operation (performed by "tree", described by "msg") may cause an address-exposed local to be |
| 4438 | // mutated. |
| 4439 | void fgMutateAddressExposedLocal(GenTree* tree DEBUGARG(const char* msg)); |
| 4440 | |
| 4441 | // For a GC heap store at curTree, record the new curMemoryVN's and update curTree's MemorySsaMap. |
| 4442 | // As GcHeap is a subset of ByrefExposed, this will also record the ByrefExposed store. |
| 4443 | void recordGcHeapStore(GenTree* curTree, ValueNum gcHeapVN DEBUGARG(const char* msg)); |
| 4444 | |
| 4445 | // For a store to an address-exposed local at curTree, record the new curMemoryVN and update curTree's MemorySsaMap. |
| 4446 | void recordAddressExposedLocalStore(GenTree* curTree, ValueNum memoryVN DEBUGARG(const char* msg)); |
| 4447 | |
| 4448 | // Tree caused an update in the current memory VN. If "tree" has an associated heap SSA #, record that |
| 4449 | // value in that SSA #. |
| 4450 | void fgValueNumberRecordMemorySsa(MemoryKind memoryKind, GenTree* tree); |
| 4451 | |
| 4452 | // The input 'tree' is a leaf node that is a constant |
| 4453 | // Assign the proper value number to the tree |
| 4454 | void fgValueNumberTreeConst(GenTree* tree); |
| 4455 | |
| 4456 | // Assumes that all inputs to "tree" have had value numbers assigned; assigns a VN to tree. |
| 4457 | // (With some exceptions: the VN of the lhs of an assignment is assigned as part of the |
| 4458 | // assignment.) |
| 4459 | void fgValueNumberTree(GenTree* tree); |
| 4460 | |
| 4461 | // Does value-numbering for a block assignment. |
| 4462 | void fgValueNumberBlockAssignment(GenTree* tree); |
| 4463 | |
| 4464 | // Does value-numbering for a cast tree. |
| 4465 | void fgValueNumberCastTree(GenTree* tree); |
| 4466 | |
| 4467 | // Does value-numbering for an intrinsic tree. |
| 4468 | void fgValueNumberIntrinsic(GenTree* tree); |
| 4469 | |
| 4470 | // Does value-numbering for a call. We interpret some helper calls. |
| 4471 | void fgValueNumberCall(GenTreeCall* call); |
| 4472 | |
| 4473 | // The VN of some nodes in "args" may have changed -- reassign VNs to the arg list nodes. |
| 4474 | void fgUpdateArgListVNs(GenTreeArgList* args); |
| 4475 | |
| 4476 | // Does value-numbering for a helper "call" that has a VN function symbol "vnf". |
| 4477 | void fgValueNumberHelperCallFunc(GenTreeCall* call, VNFunc vnf, ValueNumPair vnpExc); |
| 4478 | |
| 4479 | // Requires "helpCall" to be a helper call. Assigns it a value number; |
| 4480 | // we understand the semantics of some of the calls. Returns "true" if |
| 4481 | // the call may modify the heap (we assume arbitrary memory side effects if so). |
| 4482 | bool fgValueNumberHelperCall(GenTreeCall* helpCall); |
| 4483 | |
| 4484 | // Requires that "helpFunc" is one of the pure Jit Helper methods. |
| 4485 | // Returns the corresponding VNFunc to use for value numbering |
| 4486 | VNFunc fgValueNumberJitHelperMethodVNFunc(CorInfoHelpFunc helpFunc); |
| 4487 | |
| 4488 | // Adds the exception set for the current tree node which has a memory indirection operation |
| 4489 | void fgValueNumberAddExceptionSetForIndirection(GenTree* tree, GenTree* baseAddr); |
| 4490 | |
| 4491 | // Adds the exception sets for the current tree node which is performing a division or modulus operation |
| 4492 | void fgValueNumberAddExceptionSetForDivision(GenTree* tree); |
| 4493 | |
| 4494 | // Adds the exception set for the current tree node which is performing a overflow checking operation |
| 4495 | void fgValueNumberAddExceptionSetForOverflow(GenTree* tree); |
| 4496 | |
| 4497 | // Adds the exception set for the current tree node which is performing a ckfinite operation |
| 4498 | void fgValueNumberAddExceptionSetForCkFinite(GenTree* tree); |
| 4499 | |
| 4500 | // Adds the exception sets for the current tree node |
| 4501 | void fgValueNumberAddExceptionSet(GenTree* tree); |
| 4502 | |
| 4503 | // These are the current value number for the memory implicit variables while |
| 4504 | // doing value numbering. These are the value numbers under the "liberal" interpretation |
| 4505 | // of memory values; the "conservative" interpretation needs no VN, since every access of |
| 4506 | // memory yields an unknown value. |
| 4507 | ValueNum fgCurMemoryVN[MemoryKindCount]; |
| 4508 | |
| 4509 | // Return a "pseudo"-class handle for an array element type. If "elemType" is TYP_STRUCT, |
| 4510 | // requires "elemStructType" to be non-null (and to have a low-order zero). Otherwise, low order bit |
| 4511 | // is 1, and the rest is an encoding of "elemTyp". |
| 4512 | static CORINFO_CLASS_HANDLE EncodeElemType(var_types elemTyp, CORINFO_CLASS_HANDLE elemStructType) |
| 4513 | { |
| 4514 | if (elemStructType != nullptr) |
| 4515 | { |
| 4516 | assert(varTypeIsStruct(elemTyp) || elemTyp == TYP_REF || elemTyp == TYP_BYREF || |
| 4517 | varTypeIsIntegral(elemTyp)); |
| 4518 | assert((size_t(elemStructType) & 0x1) == 0x0); // Make sure the encoding below is valid. |
| 4519 | return elemStructType; |
| 4520 | } |
| 4521 | else |
| 4522 | { |
| 4523 | assert(elemTyp != TYP_STRUCT); |
| 4524 | elemTyp = varTypeUnsignedToSigned(elemTyp); |
| 4525 | return CORINFO_CLASS_HANDLE(size_t(elemTyp) << 1 | 0x1); |
| 4526 | } |
| 4527 | } |
| 4528 | // If "clsHnd" is the result of an "EncodePrim" call, returns true and sets "*pPrimType" to the |
| 4529 | // var_types it represents. Otherwise, returns TYP_STRUCT (on the assumption that "clsHnd" is |
| 4530 | // the struct type of the element). |
| 4531 | static var_types DecodeElemType(CORINFO_CLASS_HANDLE clsHnd) |
| 4532 | { |
| 4533 | size_t clsHndVal = size_t(clsHnd); |
| 4534 | if (clsHndVal & 0x1) |
| 4535 | { |
| 4536 | return var_types(clsHndVal >> 1); |
| 4537 | } |
| 4538 | else |
| 4539 | { |
| 4540 | return TYP_STRUCT; |
| 4541 | } |
| 4542 | } |
| 4543 | |
| 4544 | // Convert a BYTE which represents the VM's CorInfoGCtype to the JIT's var_types |
| 4545 | var_types getJitGCType(BYTE gcType); |
| 4546 | |
| 4547 | enum structPassingKind |
| 4548 | { |
| 4549 | SPK_Unknown, // Invalid value, never returned |
| 4550 | SPK_PrimitiveType, // The struct is passed/returned using a primitive type. |
| 4551 | SPK_EnclosingType, // Like SPK_Primitive type, but used for return types that |
| 4552 | // require a primitive type temp that is larger than the struct size. |
| 4553 | // Currently used for structs of size 3, 5, 6, or 7 bytes. |
| 4554 | SPK_ByValue, // The struct is passed/returned by value (using the ABI rules) |
| 4555 | // for ARM64 and UNIX_X64 in multiple registers. (when all of the |
| 4556 | // parameters registers are used, then the stack will be used) |
| 4557 | // for X86 passed on the stack, for ARM32 passed in registers |
| 4558 | // or the stack or split between registers and the stack. |
| 4559 | SPK_ByValueAsHfa, // The struct is passed/returned as an HFA in multiple registers. |
| 4560 | SPK_ByReference |
| 4561 | }; // The struct is passed/returned by reference to a copy/buffer. |
| 4562 | |
| 4563 | // Get the "primitive" type that is is used when we are given a struct of size 'structSize'. |
| 4564 | // For pointer sized structs the 'clsHnd' is used to determine if the struct contains GC ref. |
| 4565 | // A "primitive" type is one of the scalar types: byte, short, int, long, ref, float, double |
| 4566 | // If we can't or shouldn't use a "primitive" type then TYP_UNKNOWN is returned. |
| 4567 | // |
| 4568 | // isVarArg is passed for use on Windows Arm64 to change the decision returned regarding |
| 4569 | // hfa types. |
| 4570 | // |
| 4571 | var_types getPrimitiveTypeForStruct(unsigned structSize, CORINFO_CLASS_HANDLE clsHnd, bool isVarArg); |
| 4572 | |
| 4573 | // Get the type that is used to pass values of the given struct type. |
| 4574 | // isVarArg is passed for use on Windows Arm64 to change the decision returned regarding |
| 4575 | // hfa types. |
| 4576 | // |
| 4577 | var_types getArgTypeForStruct(CORINFO_CLASS_HANDLE clsHnd, |
| 4578 | structPassingKind* wbPassStruct, |
| 4579 | bool isVarArg, |
| 4580 | unsigned structSize); |
| 4581 | |
| 4582 | // Get the type that is used to return values of the given struct type. |
| 4583 | // If the size is unknown, pass 0 and it will be determined from 'clsHnd'. |
| 4584 | var_types getReturnTypeForStruct(CORINFO_CLASS_HANDLE clsHnd, |
| 4585 | structPassingKind* wbPassStruct = nullptr, |
| 4586 | unsigned structSize = 0); |
| 4587 | |
| 4588 | #ifdef DEBUG |
| 4589 | // Print a representation of "vnp" or "vn" on standard output. |
| 4590 | // If "level" is non-zero, we also print out a partial expansion of the value. |
| 4591 | void vnpPrint(ValueNumPair vnp, unsigned level); |
| 4592 | void vnPrint(ValueNum vn, unsigned level); |
| 4593 | #endif |
| 4594 | |
| 4595 | bool fgDominate(BasicBlock* b1, BasicBlock* b2); // Return true if b1 dominates b2 |
| 4596 | |
| 4597 | // Dominator computation member functions |
| 4598 | // Not exposed outside Compiler |
| 4599 | protected: |
| 4600 | bool fgReachable(BasicBlock* b1, BasicBlock* b2); // Returns true if block b1 can reach block b2 |
| 4601 | |
| 4602 | void fgComputeDoms(); // Computes the immediate dominators for each basic block in the |
| 4603 | // flow graph. We first assume the fields bbIDom on each |
| 4604 | // basic block are invalid. This computation is needed later |
| 4605 | // by fgBuildDomTree to build the dominance tree structure. |
| 4606 | // Based on: A Simple, Fast Dominance Algorithm |
| 4607 | // by Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy |
| 4608 | |
| 4609 | void fgCompDominatedByExceptionalEntryBlocks(); |
| 4610 | |
| 4611 | BlockSet_ValRet_T fgGetDominatorSet(BasicBlock* block); // Returns a set of blocks that dominate the given block. |
| 4612 | // Note: this is relatively slow compared to calling fgDominate(), |
| 4613 | // especially if dealing with a single block versus block check. |
| 4614 | |
| 4615 | void fgComputeReachabilitySets(); // Compute bbReach sets. (Also sets BBF_GC_SAFE_POINT flag on blocks.) |
| 4616 | |
| 4617 | void fgComputeEnterBlocksSet(); // Compute the set of entry blocks, 'fgEnterBlks'. |
| 4618 | |
| 4619 | bool fgRemoveUnreachableBlocks(); // Remove blocks determined to be unreachable by the bbReach sets. |
| 4620 | |
| 4621 | void fgComputeReachability(); // Perform flow graph node reachability analysis. |
| 4622 | |
| 4623 | BasicBlock* fgIntersectDom(BasicBlock* a, BasicBlock* b); // Intersect two immediate dominator sets. |
| 4624 | |
| 4625 | void fgDfsInvPostOrder(); // In order to compute dominance using fgIntersectDom, the flow graph nodes must be |
| 4626 | // processed in topological sort, this function takes care of that. |
| 4627 | |
| 4628 | void fgDfsInvPostOrderHelper(BasicBlock* block, BlockSet& visited, unsigned* count); |
| 4629 | |
| 4630 | BlockSet_ValRet_T fgDomFindStartNodes(); // Computes which basic blocks don't have incoming edges in the flow graph. |
| 4631 | // Returns this as a set. |
| 4632 | |
| 4633 | BlockSet_ValRet_T fgDomTreeEntryNodes(BasicBlockList** domTree); // Computes which nodes in the dominance forest are |
| 4634 | // root nodes. Returns this as a set. |
| 4635 | |
| 4636 | #ifdef DEBUG |
| 4637 | void fgDispDomTree(BasicBlockList** domTree); // Helper that prints out the Dominator Tree in debug builds. |
| 4638 | #endif // DEBUG |
| 4639 | |
| 4640 | void fgBuildDomTree(); // Once we compute all the immediate dominator sets for each node in the flow graph |
| 4641 | // (performed by fgComputeDoms), this procedure builds the dominance tree represented |
| 4642 | // adjacency lists. |
| 4643 | |
| 4644 | // In order to speed up the queries of the form 'Does A dominates B', we can perform a DFS preorder and postorder |
| 4645 | // traversal of the dominance tree and the dominance query will become A dominates B iif preOrder(A) <= preOrder(B) |
| 4646 | // && postOrder(A) >= postOrder(B) making the computation O(1). |
| 4647 | void fgTraverseDomTree(unsigned bbNum, BasicBlockList** domTree, unsigned* preNum, unsigned* postNum); |
| 4648 | |
| 4649 | // When the flow graph changes, we need to update the block numbers, predecessor lists, reachability sets, and |
| 4650 | // dominators. |
| 4651 | void fgUpdateChangedFlowGraph(); |
| 4652 | |
| 4653 | public: |
| 4654 | // Compute the predecessors of the blocks in the control flow graph. |
| 4655 | void fgComputePreds(); |
| 4656 | |
| 4657 | // Remove all predecessor information. |
| 4658 | void fgRemovePreds(); |
| 4659 | |
| 4660 | // Compute the cheap flow graph predecessors lists. This is used in some early phases |
| 4661 | // before the full predecessors lists are computed. |
| 4662 | void fgComputeCheapPreds(); |
| 4663 | |
| 4664 | private: |
| 4665 | void fgAddCheapPred(BasicBlock* block, BasicBlock* blockPred); |
| 4666 | |
| 4667 | void fgRemoveCheapPred(BasicBlock* block, BasicBlock* blockPred); |
| 4668 | |
| 4669 | public: |
| 4670 | enum GCPollType |
| 4671 | { |
| 4672 | GCPOLL_NONE, |
| 4673 | GCPOLL_CALL, |
| 4674 | GCPOLL_INLINE |
| 4675 | }; |
| 4676 | |
| 4677 | // Initialize the per-block variable sets (used for liveness analysis). |
| 4678 | void fgInitBlockVarSets(); |
| 4679 | |
| 4680 | // true if we've gone through and created GC Poll calls. |
| 4681 | bool fgGCPollsCreated; |
| 4682 | void fgMarkGCPollBlocks(); |
| 4683 | void fgCreateGCPolls(); |
| 4684 | bool fgCreateGCPoll(GCPollType pollType, BasicBlock* block); |
| 4685 | |
| 4686 | // Requires that "block" is a block that returns from |
| 4687 | // a finally. Returns the number of successors (jump targets of |
| 4688 | // of blocks in the covered "try" that did a "LEAVE".) |
| 4689 | unsigned fgNSuccsOfFinallyRet(BasicBlock* block); |
| 4690 | |
| 4691 | // Requires that "block" is a block that returns (in the sense of BBJ_EHFINALLYRET) from |
| 4692 | // a finally. Returns its "i"th successor (jump targets of |
| 4693 | // of blocks in the covered "try" that did a "LEAVE".) |
| 4694 | // Requires that "i" < fgNSuccsOfFinallyRet(block). |
| 4695 | BasicBlock* fgSuccOfFinallyRet(BasicBlock* block, unsigned i); |
| 4696 | |
| 4697 | private: |
| 4698 | // Factor out common portions of the impls of the methods above. |
| 4699 | void fgSuccOfFinallyRetWork(BasicBlock* block, unsigned i, BasicBlock** bres, unsigned* nres); |
| 4700 | |
| 4701 | public: |
| 4702 | // For many purposes, it is desirable to be able to enumerate the *distinct* targets of a switch statement, |
| 4703 | // skipping duplicate targets. (E.g., in flow analyses that are only interested in the set of possible targets.) |
| 4704 | // SwitchUniqueSuccSet contains the non-duplicated switch targets. |
| 4705 | // (Code that modifies the jump table of a switch has an obligation to call Compiler::UpdateSwitchTableTarget, |
| 4706 | // which in turn will call the "UpdateTarget" method of this type if a SwitchUniqueSuccSet has already |
| 4707 | // been computed for the switch block. If a switch block is deleted or is transformed into a non-switch, |
| 4708 | // we leave the entry associated with the block, but it will no longer be accessed.) |
| 4709 | struct SwitchUniqueSuccSet |
| 4710 | { |
| 4711 | unsigned numDistinctSuccs; // Number of distinct targets of the switch. |
| 4712 | BasicBlock** nonDuplicates; // Array of "numDistinctSuccs", containing all the distinct switch target |
| 4713 | // successors. |
| 4714 | |
| 4715 | // The switch block "switchBlk" just had an entry with value "from" modified to the value "to". |
| 4716 | // Update "this" as necessary: if "from" is no longer an element of the jump table of "switchBlk", |
| 4717 | // remove it from "this", and ensure that "to" is a member. Use "alloc" to do any required allocation. |
| 4718 | void UpdateTarget(CompAllocator alloc, BasicBlock* switchBlk, BasicBlock* from, BasicBlock* to); |
| 4719 | }; |
| 4720 | |
| 4721 | typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, SwitchUniqueSuccSet> BlockToSwitchDescMap; |
| 4722 | |
| 4723 | private: |
| 4724 | // Maps BasicBlock*'s that end in switch statements to SwitchUniqueSuccSets that allow |
| 4725 | // iteration over only the distinct successors. |
| 4726 | BlockToSwitchDescMap* m_switchDescMap; |
| 4727 | |
| 4728 | public: |
| 4729 | BlockToSwitchDescMap* GetSwitchDescMap(bool createIfNull = true) |
| 4730 | { |
| 4731 | if ((m_switchDescMap == nullptr) && createIfNull) |
| 4732 | { |
| 4733 | m_switchDescMap = new (getAllocator()) BlockToSwitchDescMap(getAllocator()); |
| 4734 | } |
| 4735 | return m_switchDescMap; |
| 4736 | } |
| 4737 | |
| 4738 | // Invalidate the map of unique switch block successors. For example, since the hash key of the map |
| 4739 | // depends on block numbers, we must invalidate the map when the blocks are renumbered, to ensure that |
| 4740 | // we don't accidentally look up and return the wrong switch data. |
| 4741 | void InvalidateUniqueSwitchSuccMap() |
| 4742 | { |
| 4743 | m_switchDescMap = nullptr; |
| 4744 | } |
| 4745 | |
| 4746 | // Requires "switchBlock" to be a block that ends in a switch. Returns |
| 4747 | // the corresponding SwitchUniqueSuccSet. |
| 4748 | SwitchUniqueSuccSet GetDescriptorForSwitch(BasicBlock* switchBlk); |
| 4749 | |
| 4750 | // The switch block "switchBlk" just had an entry with value "from" modified to the value "to". |
| 4751 | // Update "this" as necessary: if "from" is no longer an element of the jump table of "switchBlk", |
| 4752 | // remove it from "this", and ensure that "to" is a member. |
| 4753 | void UpdateSwitchTableTarget(BasicBlock* switchBlk, BasicBlock* from, BasicBlock* to); |
| 4754 | |
| 4755 | // Remove the "SwitchUniqueSuccSet" of "switchBlk" in the BlockToSwitchDescMap. |
| 4756 | void fgInvalidateSwitchDescMapEntry(BasicBlock* switchBlk); |
| 4757 | |
| 4758 | BasicBlock* fgFirstBlockOfHandler(BasicBlock* block); |
| 4759 | |
| 4760 | flowList* fgGetPredForBlock(BasicBlock* block, BasicBlock* blockPred); |
| 4761 | |
| 4762 | flowList* fgGetPredForBlock(BasicBlock* block, BasicBlock* blockPred, flowList*** ptrToPred); |
| 4763 | |
| 4764 | flowList* fgSpliceOutPred(BasicBlock* block, BasicBlock* blockPred); |
| 4765 | |
| 4766 | flowList* fgRemoveRefPred(BasicBlock* block, BasicBlock* blockPred); |
| 4767 | |
| 4768 | flowList* fgRemoveAllRefPreds(BasicBlock* block, BasicBlock* blockPred); |
| 4769 | |
| 4770 | flowList* fgRemoveAllRefPreds(BasicBlock* block, flowList** ptrToPred); |
| 4771 | |
| 4772 | void fgRemoveBlockAsPred(BasicBlock* block); |
| 4773 | |
| 4774 | void fgChangeSwitchBlock(BasicBlock* oldSwitchBlock, BasicBlock* newSwitchBlock); |
| 4775 | |
| 4776 | void fgReplaceSwitchJumpTarget(BasicBlock* blockSwitch, BasicBlock* newTarget, BasicBlock* oldTarget); |
| 4777 | |
| 4778 | void fgReplaceJumpTarget(BasicBlock* block, BasicBlock* newTarget, BasicBlock* oldTarget); |
| 4779 | |
| 4780 | void fgReplacePred(BasicBlock* block, BasicBlock* oldPred, BasicBlock* newPred); |
| 4781 | |
| 4782 | flowList* fgAddRefPred(BasicBlock* block, |
| 4783 | BasicBlock* blockPred, |
| 4784 | flowList* oldEdge = nullptr, |
| 4785 | bool initializingPreds = false); // Only set to 'true' when we are computing preds in |
| 4786 | // fgComputePreds() |
| 4787 | |
| 4788 | void fgFindBasicBlocks(); |
| 4789 | |
| 4790 | bool fgIsBetterFallThrough(BasicBlock* bCur, BasicBlock* bAlt); |
| 4791 | |
| 4792 | bool fgCheckEHCanInsertAfterBlock(BasicBlock* blk, unsigned regionIndex, bool putInTryRegion); |
| 4793 | |
| 4794 | BasicBlock* fgFindInsertPoint(unsigned regionIndex, |
| 4795 | bool putInTryRegion, |
| 4796 | BasicBlock* startBlk, |
| 4797 | BasicBlock* endBlk, |
| 4798 | BasicBlock* nearBlk, |
| 4799 | BasicBlock* jumpBlk, |
| 4800 | bool runRarely); |
| 4801 | |
| 4802 | unsigned fgGetNestingLevel(BasicBlock* block, unsigned* pFinallyNesting = nullptr); |
| 4803 | |
| 4804 | void fgRemoveEmptyBlocks(); |
| 4805 | |
| 4806 | void fgRemoveStmt(BasicBlock* block, GenTree* stmt); |
| 4807 | |
| 4808 | bool fgCheckRemoveStmt(BasicBlock* block, GenTree* stmt); |
| 4809 | |
| 4810 | void (unsigned lnum); |
| 4811 | |
| 4812 | void fgUnreachableBlock(BasicBlock* block); |
| 4813 | |
| 4814 | void fgRemoveConditionalJump(BasicBlock* block); |
| 4815 | |
| 4816 | BasicBlock* fgLastBBInMainFunction(); |
| 4817 | |
| 4818 | BasicBlock* fgEndBBAfterMainFunction(); |
| 4819 | |
| 4820 | void fgUnlinkRange(BasicBlock* bBeg, BasicBlock* bEnd); |
| 4821 | |
| 4822 | void fgRemoveBlock(BasicBlock* block, bool unreachable); |
| 4823 | |
| 4824 | bool fgCanCompactBlocks(BasicBlock* block, BasicBlock* bNext); |
| 4825 | |
| 4826 | void fgCompactBlocks(BasicBlock* block, BasicBlock* bNext); |
| 4827 | |
| 4828 | void fgUpdateLoopsAfterCompacting(BasicBlock* block, BasicBlock* bNext); |
| 4829 | |
| 4830 | BasicBlock* fgConnectFallThrough(BasicBlock* bSrc, BasicBlock* bDst); |
| 4831 | |
| 4832 | bool fgRenumberBlocks(); |
| 4833 | |
| 4834 | bool fgExpandRarelyRunBlocks(); |
| 4835 | |
| 4836 | bool fgEhAllowsMoveBlock(BasicBlock* bBefore, BasicBlock* bAfter); |
| 4837 | |
| 4838 | void fgMoveBlocksAfter(BasicBlock* bStart, BasicBlock* bEnd, BasicBlock* insertAfterBlk); |
| 4839 | |
| 4840 | enum FG_RELOCATE_TYPE |
| 4841 | { |
| 4842 | FG_RELOCATE_TRY, // relocate the 'try' region |
| 4843 | FG_RELOCATE_HANDLER // relocate the handler region (including the filter if necessary) |
| 4844 | }; |
| 4845 | BasicBlock* fgRelocateEHRange(unsigned regionIndex, FG_RELOCATE_TYPE relocateType); |
| 4846 | |
| 4847 | #if FEATURE_EH_FUNCLETS |
| 4848 | #if defined(_TARGET_ARM_) |
| 4849 | void fgClearFinallyTargetBit(BasicBlock* block); |
| 4850 | #endif // defined(_TARGET_ARM_) |
| 4851 | bool fgIsIntraHandlerPred(BasicBlock* predBlock, BasicBlock* block); |
| 4852 | bool fgAnyIntraHandlerPreds(BasicBlock* block); |
| 4853 | void fgInsertFuncletPrologBlock(BasicBlock* block); |
| 4854 | void fgCreateFuncletPrologBlocks(); |
| 4855 | void fgCreateFunclets(); |
| 4856 | #else // !FEATURE_EH_FUNCLETS |
| 4857 | bool fgRelocateEHRegions(); |
| 4858 | #endif // !FEATURE_EH_FUNCLETS |
| 4859 | |
| 4860 | bool fgOptimizeUncondBranchToSimpleCond(BasicBlock* block, BasicBlock* target); |
| 4861 | |
| 4862 | bool fgBlockEndFavorsTailDuplication(BasicBlock* block); |
| 4863 | |
| 4864 | bool fgBlockIsGoodTailDuplicationCandidate(BasicBlock* block); |
| 4865 | |
| 4866 | bool fgOptimizeEmptyBlock(BasicBlock* block); |
| 4867 | |
| 4868 | bool fgOptimizeBranchToEmptyUnconditional(BasicBlock* block, BasicBlock* bDest); |
| 4869 | |
| 4870 | bool fgOptimizeBranch(BasicBlock* bJump); |
| 4871 | |
| 4872 | bool fgOptimizeSwitchBranches(BasicBlock* block); |
| 4873 | |
| 4874 | bool fgOptimizeBranchToNext(BasicBlock* block, BasicBlock* bNext, BasicBlock* bPrev); |
| 4875 | |
| 4876 | bool fgOptimizeSwitchJumps(); |
| 4877 | #ifdef DEBUG |
| 4878 | void fgPrintEdgeWeights(); |
| 4879 | #endif |
| 4880 | void fgComputeBlockAndEdgeWeights(); |
| 4881 | BasicBlock::weight_t fgComputeMissingBlockWeights(); |
| 4882 | void fgComputeCalledCount(BasicBlock::weight_t returnWeight); |
| 4883 | void fgComputeEdgeWeights(); |
| 4884 | |
| 4885 | void fgReorderBlocks(); |
| 4886 | |
| 4887 | void fgDetermineFirstColdBlock(); |
| 4888 | |
| 4889 | bool fgIsForwardBranch(BasicBlock* bJump, BasicBlock* bSrc = nullptr); |
| 4890 | |
| 4891 | bool fgUpdateFlowGraph(bool doTailDup = false); |
| 4892 | |
| 4893 | void fgFindOperOrder(); |
| 4894 | |
| 4895 | // method that returns if you should split here |
| 4896 | typedef bool(fgSplitPredicate)(GenTree* tree, GenTree* parent, fgWalkData* data); |
| 4897 | |
| 4898 | void fgSetBlockOrder(); |
| 4899 | |
| 4900 | void fgRemoveReturnBlock(BasicBlock* block); |
| 4901 | |
| 4902 | /* Helper code that has been factored out */ |
| 4903 | inline void fgConvertBBToThrowBB(BasicBlock* block); |
| 4904 | |
| 4905 | bool fgCastNeeded(GenTree* tree, var_types toType); |
| 4906 | GenTree* fgDoNormalizeOnStore(GenTree* tree); |
| 4907 | GenTree* fgMakeTmpArgNode(fgArgTabEntry* curArgTabEntry); |
| 4908 | |
| 4909 | // The following check for loops that don't execute calls |
| 4910 | bool fgLoopCallMarked; |
| 4911 | |
| 4912 | void fgLoopCallTest(BasicBlock* srcBB, BasicBlock* dstBB); |
| 4913 | void fgLoopCallMark(); |
| 4914 | |
| 4915 | void fgMarkLoopHead(BasicBlock* block); |
| 4916 | |
| 4917 | unsigned fgGetCodeEstimate(BasicBlock* block); |
| 4918 | |
| 4919 | #if DUMP_FLOWGRAPHS |
| 4920 | const char* fgProcessEscapes(const char* nameIn, escapeMapping_t* map); |
| 4921 | FILE* fgOpenFlowGraphFile(bool* wbDontClose, Phases phase, LPCWSTR type); |
| 4922 | bool fgDumpFlowGraph(Phases phase); |
| 4923 | |
| 4924 | #endif // DUMP_FLOWGRAPHS |
| 4925 | |
| 4926 | #ifdef DEBUG |
| 4927 | void fgDispDoms(); |
| 4928 | void fgDispReach(); |
| 4929 | void fgDispBBLiveness(BasicBlock* block); |
| 4930 | void fgDispBBLiveness(); |
| 4931 | void fgTableDispBasicBlock(BasicBlock* block, int ibcColWidth = 0); |
| 4932 | void fgDispBasicBlocks(BasicBlock* firstBlock, BasicBlock* lastBlock, bool dumpTrees); |
| 4933 | void fgDispBasicBlocks(bool dumpTrees = false); |
| 4934 | void fgDumpStmtTree(GenTree* stmt, unsigned bbNum); |
| 4935 | void fgDumpBlock(BasicBlock* block); |
| 4936 | void fgDumpTrees(BasicBlock* firstBlock, BasicBlock* lastBlock); |
| 4937 | |
| 4938 | static fgWalkPreFn fgStress64RsltMulCB; |
| 4939 | void fgStress64RsltMul(); |
| 4940 | void fgDebugCheckUpdate(); |
| 4941 | void fgDebugCheckBBlist(bool checkBBNum = false, bool checkBBRefs = true); |
| 4942 | void fgDebugCheckBlockLinks(); |
| 4943 | void fgDebugCheckLinks(bool morphTrees = false); |
| 4944 | void fgDebugCheckStmtsList(BasicBlock* block, bool morphTrees); |
| 4945 | void fgDebugCheckNodeLinks(BasicBlock* block, GenTree* stmt); |
| 4946 | void fgDebugCheckNodesUniqueness(); |
| 4947 | |
| 4948 | void fgDebugCheckFlags(GenTree* tree); |
| 4949 | void fgDebugCheckFlagsHelper(GenTree* tree, unsigned treeFlags, unsigned chkFlags); |
| 4950 | void fgDebugCheckTryFinallyExits(); |
| 4951 | #endif |
| 4952 | |
| 4953 | static GenTree* fgGetFirstNode(GenTree* tree); |
| 4954 | |
| 4955 | //--------------------- Walking the trees in the IR ----------------------- |
| 4956 | |
| 4957 | struct fgWalkData |
| 4958 | { |
| 4959 | Compiler* compiler; |
| 4960 | fgWalkPreFn* wtprVisitorFn; |
| 4961 | fgWalkPostFn* wtpoVisitorFn; |
| 4962 | void* pCallbackData; // user-provided data |
| 4963 | bool wtprLclsOnly; // whether to only visit lclvar nodes |
| 4964 | GenTree* parent; // parent of current node, provided to callback |
| 4965 | GenTreeStack* parentStack; // stack of parent nodes, if asked for |
| 4966 | #ifdef DEBUG |
| 4967 | bool printModified; // callback can use this |
| 4968 | #endif |
| 4969 | }; |
| 4970 | |
| 4971 | fgWalkResult fgWalkTreePre(GenTree** pTree, |
| 4972 | fgWalkPreFn* visitor, |
| 4973 | void* pCallBackData = nullptr, |
| 4974 | bool lclVarsOnly = false, |
| 4975 | bool computeStack = false); |
| 4976 | |
| 4977 | fgWalkResult fgWalkTree(GenTree** pTree, |
| 4978 | fgWalkPreFn* preVisitor, |
| 4979 | fgWalkPostFn* postVisitor, |
| 4980 | void* pCallBackData = nullptr); |
| 4981 | |
| 4982 | void fgWalkAllTreesPre(fgWalkPreFn* visitor, void* pCallBackData); |
| 4983 | |
| 4984 | //----- Postorder |
| 4985 | |
| 4986 | fgWalkResult fgWalkTreePost(GenTree** pTree, |
| 4987 | fgWalkPostFn* visitor, |
| 4988 | void* pCallBackData = nullptr, |
| 4989 | bool computeStack = false); |
| 4990 | |
| 4991 | // An fgWalkPreFn that looks for expressions that have inline throws in |
| 4992 | // minopts mode. Basically it looks for tress with gtOverflowEx() or |
| 4993 | // GTF_IND_RNGCHK. It returns WALK_ABORT if one is found. It |
| 4994 | // returns WALK_SKIP_SUBTREES if GTF_EXCEPT is not set (assumes flags |
| 4995 | // properly propagated to parent trees). It returns WALK_CONTINUE |
| 4996 | // otherwise. |
| 4997 | static fgWalkResult fgChkThrowCB(GenTree** pTree, Compiler::fgWalkData* data); |
| 4998 | static fgWalkResult fgChkLocAllocCB(GenTree** pTree, Compiler::fgWalkData* data); |
| 4999 | static fgWalkResult fgChkQmarkCB(GenTree** pTree, Compiler::fgWalkData* data); |
| 5000 | |
| 5001 | /************************************************************************** |
| 5002 | * PROTECTED |
| 5003 | *************************************************************************/ |
| 5004 | |
| 5005 | protected: |
| 5006 | friend class SsaBuilder; |
| 5007 | friend struct ValueNumberState; |
| 5008 | |
| 5009 | //--------------------- Detect the basic blocks --------------------------- |
| 5010 | |
| 5011 | BasicBlock** fgBBs; // Table of pointers to the BBs |
| 5012 | |
| 5013 | void fgInitBBLookup(); |
| 5014 | BasicBlock* fgLookupBB(unsigned addr); |
| 5015 | |
| 5016 | void fgFindJumpTargets(const BYTE* codeAddr, IL_OFFSET codeSize, FixedBitVect* jumpTarget); |
| 5017 | |
| 5018 | void fgMarkBackwardJump(BasicBlock* startBlock, BasicBlock* endBlock); |
| 5019 | |
| 5020 | void fgLinkBasicBlocks(); |
| 5021 | |
| 5022 | unsigned fgMakeBasicBlocks(const BYTE* codeAddr, IL_OFFSET codeSize, FixedBitVect* jumpTarget); |
| 5023 | |
| 5024 | void fgCheckBasicBlockControlFlow(); |
| 5025 | |
| 5026 | void fgControlFlowPermitted(BasicBlock* blkSrc, |
| 5027 | BasicBlock* blkDest, |
| 5028 | BOOL IsLeave = false /* is the src a leave block */); |
| 5029 | |
| 5030 | bool fgFlowToFirstBlockOfInnerTry(BasicBlock* blkSrc, BasicBlock* blkDest, bool sibling); |
| 5031 | |
| 5032 | void fgObserveInlineConstants(OPCODE opcode, const FgStack& stack, bool isInlining); |
| 5033 | |
| 5034 | void fgAdjustForAddressExposedOrWrittenThis(); |
| 5035 | |
| 5036 | bool fgProfileData_ILSizeMismatch; |
| 5037 | ICorJitInfo::ProfileBuffer* fgProfileBuffer; |
| 5038 | ULONG fgProfileBufferCount; |
| 5039 | ULONG fgNumProfileRuns; |
| 5040 | |
| 5041 | unsigned fgStressBBProf() |
| 5042 | { |
| 5043 | #ifdef DEBUG |
| 5044 | unsigned result = JitConfig.JitStressBBProf(); |
| 5045 | if (result == 0) |
| 5046 | { |
| 5047 | if (compStressCompile(STRESS_BB_PROFILE, 15)) |
| 5048 | { |
| 5049 | result = 1; |
| 5050 | } |
| 5051 | } |
| 5052 | return result; |
| 5053 | #else |
| 5054 | return 0; |
| 5055 | #endif |
| 5056 | } |
| 5057 | |
| 5058 | bool fgHaveProfileData(); |
| 5059 | bool fgGetProfileWeightForBasicBlock(IL_OFFSET offset, unsigned* weight); |
| 5060 | void fgInstrumentMethod(); |
| 5061 | |
| 5062 | public: |
| 5063 | // fgIsUsingProfileWeights - returns true if we have real profile data for this method |
| 5064 | // or if we have some fake profile data for the stress mode |
| 5065 | bool fgIsUsingProfileWeights() |
| 5066 | { |
| 5067 | return (fgHaveProfileData() || fgStressBBProf()); |
| 5068 | } |
| 5069 | |
| 5070 | // fgProfileRunsCount - returns total number of scenario runs for the profile data |
| 5071 | // or BB_UNITY_WEIGHT when we aren't using profile data. |
| 5072 | unsigned fgProfileRunsCount() |
| 5073 | { |
| 5074 | return fgIsUsingProfileWeights() ? fgNumProfileRuns : BB_UNITY_WEIGHT; |
| 5075 | } |
| 5076 | |
| 5077 | //-------- Insert a statement at the start or end of a basic block -------- |
| 5078 | |
| 5079 | #ifdef DEBUG |
| 5080 | public: |
| 5081 | static bool fgBlockContainsStatementBounded(BasicBlock* block, GenTree* stmt, bool answerOnBoundExceeded = true); |
| 5082 | #endif |
| 5083 | |
| 5084 | public: |
| 5085 | GenTreeStmt* fgInsertStmtAtEnd(BasicBlock* block, GenTree* node); |
| 5086 | |
| 5087 | public: // Used by linear scan register allocation |
| 5088 | GenTreeStmt* fgInsertStmtNearEnd(BasicBlock* block, GenTree* node); |
| 5089 | |
| 5090 | private: |
| 5091 | GenTree* fgInsertStmtAtBeg(BasicBlock* block, GenTree* stmt); |
| 5092 | GenTree* fgInsertStmtAfter(BasicBlock* block, GenTree* insertionPoint, GenTree* stmt); |
| 5093 | |
| 5094 | public: // Used by linear scan register allocation |
| 5095 | GenTree* fgInsertStmtBefore(BasicBlock* block, GenTree* insertionPoint, GenTree* stmt); |
| 5096 | |
| 5097 | private: |
| 5098 | GenTree* fgInsertStmtListAfter(BasicBlock* block, GenTree* stmtAfter, GenTree* stmtList); |
| 5099 | |
| 5100 | // Create a new temporary variable to hold the result of *ppTree, |
| 5101 | // and transform the graph accordingly. |
| 5102 | GenTree* fgInsertCommaFormTemp(GenTree** ppTree, CORINFO_CLASS_HANDLE structType = nullptr); |
| 5103 | GenTree* fgMakeMultiUse(GenTree** ppTree); |
| 5104 | |
| 5105 | private: |
| 5106 | // Recognize a bitwise rotation pattern and convert into a GT_ROL or a GT_ROR node. |
| 5107 | GenTree* fgRecognizeAndMorphBitwiseRotation(GenTree* tree); |
| 5108 | bool fgOperIsBitwiseRotationRoot(genTreeOps oper); |
| 5109 | |
| 5110 | //-------- Determine the order in which the trees will be evaluated ------- |
| 5111 | |
| 5112 | unsigned fgTreeSeqNum; |
| 5113 | GenTree* fgTreeSeqLst; |
| 5114 | GenTree* fgTreeSeqBeg; |
| 5115 | |
| 5116 | GenTree* fgSetTreeSeq(GenTree* tree, GenTree* prev = nullptr, bool isLIR = false); |
| 5117 | void fgSetTreeSeqHelper(GenTree* tree, bool isLIR); |
| 5118 | void fgSetTreeSeqFinish(GenTree* tree, bool isLIR); |
| 5119 | void fgSetStmtSeq(GenTree* tree); |
| 5120 | void fgSetBlockOrder(BasicBlock* block); |
| 5121 | |
| 5122 | //------------------------- Morphing -------------------------------------- |
| 5123 | |
| 5124 | unsigned fgPtrArgCntMax; |
| 5125 | |
| 5126 | public: |
| 5127 | //------------------------------------------------------------------------ |
| 5128 | // fgGetPtrArgCntMax: Return the maximum number of pointer-sized stack arguments that calls inside this method |
| 5129 | // can push on the stack. This value is calculated during morph. |
| 5130 | // |
| 5131 | // Return Value: |
| 5132 | // Returns fgPtrArgCntMax, that is a private field. |
| 5133 | // |
| 5134 | unsigned fgGetPtrArgCntMax() const |
| 5135 | { |
| 5136 | return fgPtrArgCntMax; |
| 5137 | } |
| 5138 | |
| 5139 | //------------------------------------------------------------------------ |
| 5140 | // fgSetPtrArgCntMax: Set the maximum number of pointer-sized stack arguments that calls inside this method |
| 5141 | // can push on the stack. This function is used during StackLevelSetter to fix incorrect morph calculations. |
| 5142 | // |
| 5143 | void fgSetPtrArgCntMax(unsigned argCntMax) |
| 5144 | { |
| 5145 | fgPtrArgCntMax = argCntMax; |
| 5146 | } |
| 5147 | |
| 5148 | bool compCanEncodePtrArgCntMax(); |
| 5149 | |
| 5150 | private: |
| 5151 | hashBv* fgOutgoingArgTemps; |
| 5152 | hashBv* fgCurrentlyInUseArgTemps; |
| 5153 | |
| 5154 | void fgSetRngChkTarget(GenTree* tree, bool delay = true); |
| 5155 | |
| 5156 | BasicBlock* fgSetRngChkTargetInner(SpecialCodeKind kind, bool delay); |
| 5157 | |
| 5158 | #if REARRANGE_ADDS |
| 5159 | void fgMoveOpsLeft(GenTree* tree); |
| 5160 | #endif |
| 5161 | |
| 5162 | bool fgIsCommaThrow(GenTree* tree, bool forFolding = false); |
| 5163 | |
| 5164 | bool fgIsThrow(GenTree* tree); |
| 5165 | |
| 5166 | bool fgInDifferentRegions(BasicBlock* blk1, BasicBlock* blk2); |
| 5167 | bool fgIsBlockCold(BasicBlock* block); |
| 5168 | |
| 5169 | GenTree* fgMorphCastIntoHelper(GenTree* tree, int helper, GenTree* oper); |
| 5170 | |
| 5171 | GenTree* fgMorphIntoHelperCall(GenTree* tree, int helper, GenTreeArgList* args, bool morphArgs = true); |
| 5172 | |
| 5173 | GenTree* fgMorphStackArgForVarArgs(unsigned lclNum, var_types varType, unsigned lclOffs); |
| 5174 | |
| 5175 | // A "MorphAddrContext" carries information from the surrounding context. If we are evaluating a byref address, |
| 5176 | // it is useful to know whether the address will be immediately dereferenced, or whether the address value will |
| 5177 | // be used, perhaps by passing it as an argument to a called method. This affects how null checking is done: |
| 5178 | // for sufficiently small offsets, we can rely on OS page protection to implicitly null-check addresses that we |
| 5179 | // know will be dereferenced. To know that reliance on implicit null checking is sound, we must further know that |
| 5180 | // all offsets between the top-level indirection and the bottom are constant, and that their sum is sufficiently |
| 5181 | // small; hence the other fields of MorphAddrContext. |
| 5182 | enum MorphAddrContextKind |
| 5183 | { |
| 5184 | MACK_Ind, |
| 5185 | MACK_Addr, |
| 5186 | }; |
| 5187 | struct MorphAddrContext |
| 5188 | { |
| 5189 | MorphAddrContextKind m_kind; |
| 5190 | bool m_allConstantOffsets; // Valid only for "m_kind == MACK_Ind". True iff all offsets between |
| 5191 | // top-level indirection and here have been constants. |
| 5192 | size_t m_totalOffset; // Valid only for "m_kind == MACK_Ind", and if "m_allConstantOffsets" is true. |
| 5193 | // In that case, is the sum of those constant offsets. |
| 5194 | |
| 5195 | MorphAddrContext(MorphAddrContextKind kind) : m_kind(kind), m_allConstantOffsets(true), m_totalOffset(0) |
| 5196 | { |
| 5197 | } |
| 5198 | }; |
| 5199 | |
| 5200 | // A MACK_CopyBlock context is immutable, so we can just make one of these and share it. |
| 5201 | static MorphAddrContext s_CopyBlockMAC; |
| 5202 | |
| 5203 | #ifdef FEATURE_SIMD |
| 5204 | GenTree* getSIMDStructFromField(GenTree* tree, |
| 5205 | var_types* baseTypeOut, |
| 5206 | unsigned* indexOut, |
| 5207 | unsigned* simdSizeOut, |
| 5208 | bool ignoreUsedInSIMDIntrinsic = false); |
| 5209 | GenTree* fgMorphFieldAssignToSIMDIntrinsicSet(GenTree* tree); |
| 5210 | GenTree* fgMorphFieldToSIMDIntrinsicGet(GenTree* tree); |
| 5211 | bool fgMorphCombineSIMDFieldAssignments(BasicBlock* block, GenTree* stmt); |
| 5212 | void impMarkContiguousSIMDFieldAssignments(GenTree* stmt); |
| 5213 | |
| 5214 | // fgPreviousCandidateSIMDFieldAsgStmt is only used for tracking previous simd field assignment |
| 5215 | // in function: Complier::impMarkContiguousSIMDFieldAssignments. |
| 5216 | GenTree* fgPreviousCandidateSIMDFieldAsgStmt; |
| 5217 | |
| 5218 | #endif // FEATURE_SIMD |
| 5219 | GenTree* fgMorphArrayIndex(GenTree* tree); |
| 5220 | GenTree* fgMorphCast(GenTree* tree); |
| 5221 | GenTree* fgUnwrapProxy(GenTree* objRef); |
| 5222 | GenTreeFieldList* fgMorphLclArgToFieldlist(GenTreeLclVarCommon* lcl); |
| 5223 | void fgInitArgInfo(GenTreeCall* call); |
| 5224 | GenTreeCall* fgMorphArgs(GenTreeCall* call); |
| 5225 | GenTreeArgList* fgMorphArgList(GenTreeArgList* args, MorphAddrContext* mac); |
| 5226 | |
| 5227 | void fgMakeOutgoingStructArgCopy(GenTreeCall* call, |
| 5228 | GenTree* args, |
| 5229 | unsigned argIndex, |
| 5230 | CORINFO_CLASS_HANDLE copyBlkClass); |
| 5231 | |
| 5232 | void fgFixupStructReturn(GenTree* call); |
| 5233 | GenTree* fgMorphLocalVar(GenTree* tree, bool forceRemorph); |
| 5234 | |
| 5235 | public: |
| 5236 | bool fgAddrCouldBeNull(GenTree* addr); |
| 5237 | |
| 5238 | private: |
| 5239 | GenTree* fgMorphField(GenTree* tree, MorphAddrContext* mac); |
| 5240 | bool fgCanFastTailCall(GenTreeCall* call); |
| 5241 | bool fgCheckStmtAfterTailCall(); |
| 5242 | void fgMorphTailCall(GenTreeCall* call, void* pfnCopyArgs); |
| 5243 | GenTree* fgGetStubAddrArg(GenTreeCall* call); |
| 5244 | void fgMorphRecursiveFastTailCallIntoLoop(BasicBlock* block, GenTreeCall* recursiveTailCall); |
| 5245 | GenTree* fgAssignRecursiveCallArgToCallerParam(GenTree* arg, |
| 5246 | fgArgTabEntry* argTabEntry, |
| 5247 | BasicBlock* block, |
| 5248 | IL_OFFSETX callILOffset, |
| 5249 | GenTree* tmpAssignmentInsertionPoint, |
| 5250 | GenTree* paramAssignmentInsertionPoint); |
| 5251 | static int fgEstimateCallStackSize(GenTreeCall* call); |
| 5252 | GenTree* fgMorphCall(GenTreeCall* call); |
| 5253 | void fgMorphCallInline(GenTreeCall* call, InlineResult* result); |
| 5254 | void fgMorphCallInlineHelper(GenTreeCall* call, InlineResult* result); |
| 5255 | #if DEBUG |
| 5256 | void fgNoteNonInlineCandidate(GenTreeStmt* stmt, GenTreeCall* call); |
| 5257 | static fgWalkPreFn fgFindNonInlineCandidate; |
| 5258 | #endif |
| 5259 | GenTree* fgOptimizeDelegateConstructor(GenTreeCall* call, |
| 5260 | CORINFO_CONTEXT_HANDLE* ExactContextHnd, |
| 5261 | CORINFO_RESOLVED_TOKEN* ldftnToken); |
| 5262 | GenTree* fgMorphLeaf(GenTree* tree); |
| 5263 | void fgAssignSetVarDef(GenTree* tree); |
| 5264 | GenTree* fgMorphOneAsgBlockOp(GenTree* tree); |
| 5265 | GenTree* fgMorphInitBlock(GenTree* tree); |
| 5266 | GenTree* fgMorphBlkToInd(GenTreeBlk* tree, var_types type); |
| 5267 | GenTree* fgMorphGetStructAddr(GenTree** pTree, CORINFO_CLASS_HANDLE clsHnd, bool isRValue = false); |
| 5268 | GenTree* fgMorphBlkNode(GenTree* tree, bool isDest); |
| 5269 | GenTree* fgMorphBlockOperand(GenTree* tree, var_types asgType, unsigned blockWidth, bool isDest); |
| 5270 | void fgMorphUnsafeBlk(GenTreeObj* obj); |
| 5271 | GenTree* fgMorphCopyBlock(GenTree* tree); |
| 5272 | GenTree* fgMorphForRegisterFP(GenTree* tree); |
| 5273 | GenTree* fgMorphSmpOp(GenTree* tree, MorphAddrContext* mac = nullptr); |
| 5274 | GenTree* fgMorphModToSubMulDiv(GenTreeOp* tree); |
| 5275 | GenTree* fgMorphSmpOpOptional(GenTreeOp* tree); |
| 5276 | GenTree* fgMorphRecognizeBoxNullable(GenTree* compare); |
| 5277 | |
| 5278 | GenTree* fgMorphToEmulatedFP(GenTree* tree); |
| 5279 | GenTree* fgMorphConst(GenTree* tree); |
| 5280 | |
| 5281 | public: |
| 5282 | GenTree* fgMorphTree(GenTree* tree, MorphAddrContext* mac = nullptr); |
| 5283 | |
| 5284 | private: |
| 5285 | #if LOCAL_ASSERTION_PROP |
| 5286 | void fgKillDependentAssertionsSingle(unsigned lclNum DEBUGARG(GenTree* tree)); |
| 5287 | void fgKillDependentAssertions(unsigned lclNum DEBUGARG(GenTree* tree)); |
| 5288 | #endif |
| 5289 | void fgMorphTreeDone(GenTree* tree, GenTree* oldTree = nullptr DEBUGARG(int morphNum = 0)); |
| 5290 | |
| 5291 | GenTreeStmt* fgMorphStmt; |
| 5292 | |
| 5293 | unsigned fgGetBigOffsetMorphingTemp(var_types type); // We cache one temp per type to be |
| 5294 | // used when morphing big offset. |
| 5295 | |
| 5296 | //----------------------- Liveness analysis ------------------------------- |
| 5297 | |
| 5298 | VARSET_TP fgCurUseSet; // vars used by block (before an assignment) |
| 5299 | VARSET_TP fgCurDefSet; // vars assigned by block (before a use) |
| 5300 | |
| 5301 | MemoryKindSet fgCurMemoryUse; // True iff the current basic block uses memory. |
| 5302 | MemoryKindSet fgCurMemoryDef; // True iff the current basic block modifies memory. |
| 5303 | MemoryKindSet fgCurMemoryHavoc; // True if the current basic block is known to set memory to a "havoc" value. |
| 5304 | |
| 5305 | bool byrefStatesMatchGcHeapStates; // True iff GcHeap and ByrefExposed memory have all the same def points. |
| 5306 | |
| 5307 | void fgMarkUseDef(GenTreeLclVarCommon* tree); |
| 5308 | |
| 5309 | void fgBeginScopeLife(VARSET_TP* inScope, VarScopeDsc* var); |
| 5310 | void fgEndScopeLife(VARSET_TP* inScope, VarScopeDsc* var); |
| 5311 | |
| 5312 | void fgMarkInScope(BasicBlock* block, VARSET_VALARG_TP inScope); |
| 5313 | void fgUnmarkInScope(BasicBlock* block, VARSET_VALARG_TP unmarkScope); |
| 5314 | |
| 5315 | void fgExtendDbgScopes(); |
| 5316 | void fgExtendDbgLifetimes(); |
| 5317 | |
| 5318 | #ifdef DEBUG |
| 5319 | void fgDispDebugScopes(); |
| 5320 | #endif // DEBUG |
| 5321 | |
| 5322 | //------------------------------------------------------------------------- |
| 5323 | // |
| 5324 | // The following keeps track of any code we've added for things like array |
| 5325 | // range checking or explicit calls to enable GC, and so on. |
| 5326 | // |
| 5327 | public: |
| 5328 | struct AddCodeDsc |
| 5329 | { |
| 5330 | AddCodeDsc* acdNext; |
| 5331 | BasicBlock* acdDstBlk; // block to which we jump |
| 5332 | unsigned acdData; |
| 5333 | SpecialCodeKind acdKind; // what kind of a special block is this? |
| 5334 | #if !FEATURE_FIXED_OUT_ARGS |
| 5335 | bool acdStkLvlInit; // has acdStkLvl value been already set? |
| 5336 | unsigned acdStkLvl; |
| 5337 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 5338 | }; |
| 5339 | |
| 5340 | private: |
| 5341 | static unsigned acdHelper(SpecialCodeKind codeKind); |
| 5342 | |
| 5343 | AddCodeDsc* fgAddCodeList; |
| 5344 | bool fgAddCodeModf; |
| 5345 | bool fgRngChkThrowAdded; |
| 5346 | AddCodeDsc* fgExcptnTargetCache[SCK_COUNT]; |
| 5347 | |
| 5348 | BasicBlock* fgRngChkTarget(BasicBlock* block, SpecialCodeKind kind); |
| 5349 | |
| 5350 | BasicBlock* fgAddCodeRef(BasicBlock* srcBlk, unsigned refData, SpecialCodeKind kind); |
| 5351 | |
| 5352 | public: |
| 5353 | AddCodeDsc* fgFindExcptnTarget(SpecialCodeKind kind, unsigned refData); |
| 5354 | |
| 5355 | bool fgUseThrowHelperBlocks(); |
| 5356 | |
| 5357 | AddCodeDsc* fgGetAdditionalCodeDescriptors() |
| 5358 | { |
| 5359 | return fgAddCodeList; |
| 5360 | } |
| 5361 | |
| 5362 | private: |
| 5363 | bool fgIsCodeAdded(); |
| 5364 | |
| 5365 | bool fgIsThrowHlpBlk(BasicBlock* block); |
| 5366 | |
| 5367 | #if !FEATURE_FIXED_OUT_ARGS |
| 5368 | unsigned fgThrowHlpBlkStkLevel(BasicBlock* block); |
| 5369 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 5370 | |
| 5371 | unsigned fgBigOffsetMorphingTemps[TYP_COUNT]; |
| 5372 | |
| 5373 | unsigned fgCheckInlineDepthAndRecursion(InlineInfo* inlineInfo); |
| 5374 | void fgInvokeInlineeCompiler(GenTreeCall* call, InlineResult* result); |
| 5375 | void fgInsertInlineeBlocks(InlineInfo* pInlineInfo); |
| 5376 | GenTree* fgInlinePrependStatements(InlineInfo* inlineInfo); |
| 5377 | void fgInlineAppendStatements(InlineInfo* inlineInfo, BasicBlock* block, GenTree* stmt); |
| 5378 | |
| 5379 | #if FEATURE_MULTIREG_RET |
| 5380 | GenTree* fgGetStructAsStructPtr(GenTree* tree); |
| 5381 | GenTree* fgAssignStructInlineeToVar(GenTree* child, CORINFO_CLASS_HANDLE retClsHnd); |
| 5382 | void fgAttachStructInlineeToAsg(GenTree* tree, GenTree* child, CORINFO_CLASS_HANDLE retClsHnd); |
| 5383 | #endif // FEATURE_MULTIREG_RET |
| 5384 | |
| 5385 | static fgWalkPreFn fgUpdateInlineReturnExpressionPlaceHolder; |
| 5386 | static fgWalkPostFn fgLateDevirtualization; |
| 5387 | |
| 5388 | #ifdef DEBUG |
| 5389 | static fgWalkPreFn fgDebugCheckInlineCandidates; |
| 5390 | |
| 5391 | void CheckNoTransformableIndirectCallsRemain(); |
| 5392 | static fgWalkPreFn fgDebugCheckForTransformableIndirectCalls; |
| 5393 | #endif |
| 5394 | |
| 5395 | void fgPromoteStructs(); |
| 5396 | void fgMorphStructField(GenTree* tree, GenTree* parent); |
| 5397 | void fgMorphLocalField(GenTree* tree, GenTree* parent); |
| 5398 | |
| 5399 | // Identify which parameters are implicit byrefs, and flag their LclVarDscs. |
| 5400 | void fgMarkImplicitByRefArgs(); |
| 5401 | |
| 5402 | // Change implicit byrefs' types from struct to pointer, and for any that were |
| 5403 | // promoted, create new promoted struct temps. |
| 5404 | void fgRetypeImplicitByRefArgs(); |
| 5405 | |
| 5406 | // Rewrite appearances of implicit byrefs (manifest the implied additional level of indirection). |
| 5407 | bool fgMorphImplicitByRefArgs(GenTree* tree); |
| 5408 | GenTree* fgMorphImplicitByRefArgs(GenTree* tree, bool isAddr); |
| 5409 | |
| 5410 | // Clear up annotations for any struct promotion temps created for implicit byrefs. |
| 5411 | void fgMarkDemotedImplicitByRefArgs(); |
| 5412 | |
| 5413 | void fgMarkAddressExposedLocals(); |
| 5414 | |
| 5415 | static fgWalkPreFn fgUpdateSideEffectsPre; |
| 5416 | static fgWalkPostFn fgUpdateSideEffectsPost; |
| 5417 | |
| 5418 | // The given local variable, required to be a struct variable, is being assigned via |
| 5419 | // a "lclField", to make it masquerade as an integral type in the ABI. Make sure that |
| 5420 | // the variable is not enregistered, and is therefore not promoted independently. |
| 5421 | void fgLclFldAssign(unsigned lclNum); |
| 5422 | |
| 5423 | static fgWalkPreFn gtHasLocalsWithAddrOpCB; |
| 5424 | |
| 5425 | enum TypeProducerKind |
| 5426 | { |
| 5427 | TPK_Unknown = 0, // May not be a RuntimeType |
| 5428 | TPK_Handle = 1, // RuntimeType via handle |
| 5429 | TPK_GetType = 2, // RuntimeType via Object.get_Type() |
| 5430 | TPK_Null = 3, // Tree value is null |
| 5431 | TPK_Other = 4 // RuntimeType via other means |
| 5432 | }; |
| 5433 | |
| 5434 | TypeProducerKind gtGetTypeProducerKind(GenTree* tree); |
| 5435 | bool gtIsTypeHandleToRuntimeTypeHelper(GenTreeCall* call); |
| 5436 | bool gtIsTypeHandleToRuntimeTypeHandleHelper(GenTreeCall* call, CorInfoHelpFunc* pHelper = nullptr); |
| 5437 | bool gtIsActiveCSE_Candidate(GenTree* tree); |
| 5438 | |
| 5439 | #ifdef DEBUG |
| 5440 | bool fgPrintInlinedMethods; |
| 5441 | #endif |
| 5442 | |
| 5443 | bool fgIsBigOffset(size_t offset); |
| 5444 | |
| 5445 | bool fgNeedReturnSpillTemp(); |
| 5446 | |
| 5447 | /* |
| 5448 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 5449 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 5450 | XX XX |
| 5451 | XX Optimizer XX |
| 5452 | XX XX |
| 5453 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 5454 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 5455 | */ |
| 5456 | |
| 5457 | public: |
| 5458 | void optInit(); |
| 5459 | |
| 5460 | void optRemoveRangeCheck(GenTree* tree, GenTree* stmt); |
| 5461 | bool optIsRangeCheckRemovable(GenTree* tree); |
| 5462 | |
| 5463 | protected: |
| 5464 | static fgWalkPreFn optValidRangeCheckIndex; |
| 5465 | static fgWalkPreFn optRemoveTreeVisitor; // Helper passed to Compiler::fgWalkAllTreesPre() to decrement the LclVar |
| 5466 | // usage counts |
| 5467 | |
| 5468 | void optRemoveTree(GenTree* deadTree, GenTree* keepList); |
| 5469 | |
| 5470 | /************************************************************************** |
| 5471 | * |
| 5472 | *************************************************************************/ |
| 5473 | |
| 5474 | protected: |
| 5475 | // Do hoisting for all loops. |
| 5476 | void optHoistLoopCode(); |
| 5477 | |
| 5478 | // To represent sets of VN's that have already been hoisted in outer loops. |
| 5479 | typedef JitHashTable<ValueNum, JitSmallPrimitiveKeyFuncs<ValueNum>, bool> VNToBoolMap; |
| 5480 | typedef VNToBoolMap VNSet; |
| 5481 | |
| 5482 | struct LoopHoistContext |
| 5483 | { |
| 5484 | private: |
| 5485 | // The set of variables hoisted in the current loop (or nullptr if there are none). |
| 5486 | VNSet* m_pHoistedInCurLoop; |
| 5487 | |
| 5488 | public: |
| 5489 | // Value numbers of expressions that have been hoisted in parent loops in the loop nest. |
| 5490 | VNSet m_hoistedInParentLoops; |
| 5491 | // Value numbers of expressions that have been hoisted in the current (or most recent) loop in the nest. |
| 5492 | // Previous decisions on loop-invariance of value numbers in the current loop. |
| 5493 | VNToBoolMap m_curLoopVnInvariantCache; |
| 5494 | |
| 5495 | VNSet* GetHoistedInCurLoop(Compiler* comp) |
| 5496 | { |
| 5497 | if (m_pHoistedInCurLoop == nullptr) |
| 5498 | { |
| 5499 | m_pHoistedInCurLoop = new (comp->getAllocatorLoopHoist()) VNSet(comp->getAllocatorLoopHoist()); |
| 5500 | } |
| 5501 | return m_pHoistedInCurLoop; |
| 5502 | } |
| 5503 | |
| 5504 | VNSet* () |
| 5505 | { |
| 5506 | VNSet* res = m_pHoistedInCurLoop; |
| 5507 | m_pHoistedInCurLoop = nullptr; |
| 5508 | return res; |
| 5509 | } |
| 5510 | |
| 5511 | LoopHoistContext(Compiler* comp) |
| 5512 | : m_pHoistedInCurLoop(nullptr) |
| 5513 | , m_hoistedInParentLoops(comp->getAllocatorLoopHoist()) |
| 5514 | , m_curLoopVnInvariantCache(comp->getAllocatorLoopHoist()) |
| 5515 | { |
| 5516 | } |
| 5517 | }; |
| 5518 | |
| 5519 | // Do hoisting for loop "lnum" (an index into the optLoopTable), and all loops nested within it. |
| 5520 | // Tracks the expressions that have been hoisted by containing loops by temporary recording their |
| 5521 | // value numbers in "m_hoistedInParentLoops". This set is not modified by the call. |
| 5522 | void optHoistLoopNest(unsigned lnum, LoopHoistContext* hoistCtxt); |
| 5523 | |
| 5524 | // Do hoisting for a particular loop ("lnum" is an index into the optLoopTable.) |
| 5525 | // Assumes that expressions have been hoisted in containing loops if their value numbers are in |
| 5526 | // "m_hoistedInParentLoops". |
| 5527 | // |
| 5528 | void optHoistThisLoop(unsigned lnum, LoopHoistContext* hoistCtxt); |
| 5529 | |
| 5530 | // Hoist all expressions in "blk" that are invariant in loop "lnum" (an index into the optLoopTable) |
| 5531 | // outside of that loop. Exempt expressions whose value number is in "m_hoistedInParentLoops"; add VN's of hoisted |
| 5532 | // expressions to "hoistInLoop". |
| 5533 | void optHoistLoopExprsForBlock(BasicBlock* blk, unsigned lnum, LoopHoistContext* hoistCtxt); |
| 5534 | |
| 5535 | // Return true if the tree looks profitable to hoist out of loop 'lnum'. |
| 5536 | bool optIsProfitableToHoistableTree(GenTree* tree, unsigned lnum); |
| 5537 | |
| 5538 | // Hoist all proper sub-expressions of "tree" (which occurs in "stmt", which occurs in "blk") |
| 5539 | // that are invariant in loop "lnum" (an index into the optLoopTable) |
| 5540 | // outside of that loop. Exempt expressions whose value number is in "hoistedInParents"; add VN's of hoisted |
| 5541 | // expressions to "hoistInLoop". |
| 5542 | // Returns "true" iff "tree" is loop-invariant (wrt "lnum"). |
| 5543 | // Assumes that the value of "*firstBlockAndBeforeSideEffect" indicates that we're in the first block, and before |
| 5544 | // any possible globally visible side effects. Assume is called in evaluation order, and updates this. |
| 5545 | bool optHoistLoopExprsForTree(GenTree* tree, |
| 5546 | unsigned lnum, |
| 5547 | LoopHoistContext* hoistCtxt, |
| 5548 | bool* firstBlockAndBeforeSideEffect, |
| 5549 | bool* pHoistable, |
| 5550 | bool* pCctorDependent); |
| 5551 | |
| 5552 | // Performs the hoisting 'tree' into the PreHeader for loop 'lnum' |
| 5553 | void optHoistCandidate(GenTree* tree, unsigned lnum, LoopHoistContext* hoistCtxt); |
| 5554 | |
| 5555 | // Returns true iff the ValueNum "vn" represents a value that is loop-invariant in "lnum". |
| 5556 | // Constants and init values are always loop invariant. |
| 5557 | // VNPhi's connect VN's to the SSA definition, so we can know if the SSA def occurs in the loop. |
| 5558 | bool optVNIsLoopInvariant(ValueNum vn, unsigned lnum, VNToBoolMap* recordedVNs); |
| 5559 | |
| 5560 | // Returns "true" iff "tree" is valid at the head of loop "lnum", in the context of the hoist substitution |
| 5561 | // "subst". If "tree" is a local SSA var, it is valid if its SSA definition occurs outside of the loop, or |
| 5562 | // if it is in the domain of "subst" (meaning that it's definition has been previously hoisted, with a "standin" |
| 5563 | // local.) If tree is a constant, it is valid. Otherwise, if it is an operator, it is valid iff its children are. |
| 5564 | bool optTreeIsValidAtLoopHead(GenTree* tree, unsigned lnum); |
| 5565 | |
| 5566 | // If "blk" is the entry block of a natural loop, returns true and sets "*pLnum" to the index of the loop |
| 5567 | // in the loop table. |
| 5568 | bool optBlockIsLoopEntry(BasicBlock* blk, unsigned* pLnum); |
| 5569 | |
| 5570 | // Records the set of "side effects" of all loops: fields (object instance and static) |
| 5571 | // written to, and SZ-array element type equivalence classes updated. |
| 5572 | void optComputeLoopSideEffects(); |
| 5573 | |
| 5574 | private: |
| 5575 | // Requires "lnum" to be the index of an outermost loop in the loop table. Traverses the body of that loop, |
| 5576 | // including all nested loops, and records the set of "side effects" of the loop: fields (object instance and |
| 5577 | // static) written to, and SZ-array element type equivalence classes updated. |
| 5578 | void optComputeLoopNestSideEffects(unsigned lnum); |
| 5579 | |
| 5580 | // Add the side effects of "blk" (which is required to be within a loop) to all loops of which it is a part. |
| 5581 | void optComputeLoopSideEffectsOfBlock(BasicBlock* blk); |
| 5582 | |
| 5583 | // Hoist the expression "expr" out of loop "lnum". |
| 5584 | void optPerformHoistExpr(GenTree* expr, unsigned lnum); |
| 5585 | |
| 5586 | public: |
| 5587 | void optOptimizeBools(); |
| 5588 | |
| 5589 | private: |
| 5590 | GenTree* optIsBoolCond(GenTree* condBranch, GenTree** compPtr, bool* boolPtr); |
| 5591 | #ifdef DEBUG |
| 5592 | void optOptimizeBoolsGcStress(BasicBlock* condBlock); |
| 5593 | #endif |
| 5594 | public: |
| 5595 | void optOptimizeLayout(); // Optimize the BasicBlock layout of the method |
| 5596 | |
| 5597 | void optOptimizeLoops(); // for "while-do" loops duplicates simple loop conditions and transforms |
| 5598 | // the loop into a "do-while" loop |
| 5599 | // Also finds all natural loops and records them in the loop table |
| 5600 | |
| 5601 | // Optionally clone loops in the loop table. |
| 5602 | void optCloneLoops(); |
| 5603 | |
| 5604 | // Clone loop "loopInd" in the loop table. |
| 5605 | void optCloneLoop(unsigned loopInd, LoopCloneContext* context); |
| 5606 | |
| 5607 | // Ensure that loop "loopInd" has a unique head block. (If the existing entry has |
| 5608 | // non-loop predecessors other than the head entry, create a new, empty block that goes (only) to the entry, |
| 5609 | // and redirects the preds of the entry to this new block.) Sets the weight of the newly created block to |
| 5610 | // "ambientWeight". |
| 5611 | void optEnsureUniqueHead(unsigned loopInd, unsigned ambientWeight); |
| 5612 | |
| 5613 | void optUnrollLoops(); // Unrolls loops (needs to have cost info) |
| 5614 | |
| 5615 | protected: |
| 5616 | // This enumeration describes what is killed by a call. |
| 5617 | |
| 5618 | enum callInterf |
| 5619 | { |
| 5620 | CALLINT_NONE, // no interference (most helpers) |
| 5621 | CALLINT_REF_INDIRS, // kills GC ref indirections (SETFIELD OBJ) |
| 5622 | CALLINT_SCL_INDIRS, // kills non GC ref indirections (SETFIELD non-OBJ) |
| 5623 | CALLINT_ALL_INDIRS, // kills both GC ref and non GC ref indirections (SETFIELD STRUCT) |
| 5624 | CALLINT_ALL, // kills everything (normal method call) |
| 5625 | }; |
| 5626 | |
| 5627 | public: |
| 5628 | // A "LoopDsc" describes a ("natural") loop. We (currently) require the body of a loop to be a contiguous (in |
| 5629 | // bbNext order) sequence of basic blocks. (At times, we may require the blocks in a loop to be "properly numbered" |
| 5630 | // in bbNext order; we use comparisons on the bbNum to decide order.) |
| 5631 | // The blocks that define the body are |
| 5632 | // first <= top <= entry <= bottom . |
| 5633 | // The "head" of the loop is a block outside the loop that has "entry" as a successor. We only support loops with a |
| 5634 | // single 'head' block. The meanings of these blocks are given in the definitions below. Also see the picture at |
| 5635 | // Compiler::optFindNaturalLoops(). |
| 5636 | struct LoopDsc |
| 5637 | { |
| 5638 | BasicBlock* lpHead; // HEAD of the loop (not part of the looping of the loop) -- has ENTRY as a successor. |
| 5639 | BasicBlock* lpFirst; // FIRST block (in bbNext order) reachable within this loop. (May be part of a nested |
| 5640 | // loop, but not the outer loop.) |
| 5641 | BasicBlock* lpTop; // loop TOP (the back edge from lpBottom reaches here) (in most cases FIRST and TOP are the |
| 5642 | // same) |
| 5643 | BasicBlock* lpEntry; // the ENTRY in the loop (in most cases TOP or BOTTOM) |
| 5644 | BasicBlock* lpBottom; // loop BOTTOM (from here we have a back edge to the TOP) |
| 5645 | BasicBlock* lpExit; // if a single exit loop this is the EXIT (in most cases BOTTOM) |
| 5646 | |
| 5647 | callInterf lpAsgCall; // "callInterf" for calls in the loop |
| 5648 | ALLVARSET_TP lpAsgVars; // set of vars assigned within the loop (all vars, not just tracked) |
| 5649 | varRefKinds lpAsgInds : 8; // set of inds modified within the loop |
| 5650 | |
| 5651 | unsigned short lpFlags; // Mask of the LPFLG_* constants |
| 5652 | |
| 5653 | unsigned char lpExitCnt; // number of exits from the loop |
| 5654 | |
| 5655 | unsigned char lpParent; // The index of the most-nested loop that completely contains this one, |
| 5656 | // or else BasicBlock::NOT_IN_LOOP if no such loop exists. |
| 5657 | unsigned char lpChild; // The index of a nested loop, or else BasicBlock::NOT_IN_LOOP if no child exists. |
| 5658 | // (Actually, an "immediately" nested loop -- |
| 5659 | // no other child of this loop is a parent of lpChild.) |
| 5660 | unsigned char lpSibling; // The index of another loop that is an immediate child of lpParent, |
| 5661 | // or else BasicBlock::NOT_IN_LOOP. One can enumerate all the children of a loop |
| 5662 | // by following "lpChild" then "lpSibling" links. |
| 5663 | |
| 5664 | #define LPFLG_DO_WHILE 0x0001 // it's a do-while loop (i.e ENTRY is at the TOP) |
| 5665 | #define LPFLG_ONE_EXIT 0x0002 // the loop has only one exit |
| 5666 | |
| 5667 | #define LPFLG_ITER 0x0004 // for (i = icon or lclVar; test_condition(); i++) |
| 5668 | #define LPFLG_HOISTABLE 0x0008 // the loop is in a form that is suitable for hoisting expressions |
| 5669 | #define LPFLG_CONST 0x0010 // for (i=icon;i<icon;i++){ ... } - constant loop |
| 5670 | |
| 5671 | #define LPFLG_VAR_INIT 0x0020 // iterator is initialized with a local var (var # found in lpVarInit) |
| 5672 | #define LPFLG_CONST_INIT 0x0040 // iterator is initialized with a constant (found in lpConstInit) |
| 5673 | |
| 5674 | #define LPFLG_VAR_LIMIT 0x0100 // iterator is compared with a local var (var # found in lpVarLimit) |
| 5675 | #define LPFLG_CONST_LIMIT 0x0200 // iterator is compared with a constant (found in lpConstLimit) |
| 5676 | #define LPFLG_ARRLEN_LIMIT 0x0400 // iterator is compared with a.len or a[i].len (found in lpArrLenLimit) |
| 5677 | #define LPFLG_SIMD_LIMIT 0x0080 // iterator is compared with Vector<T>.Count (found in lpConstLimit) |
| 5678 | |
| 5679 | #define LPFLG_HAS_PREHEAD 0x0800 // lpHead is known to be a preHead for this loop |
| 5680 | #define LPFLG_REMOVED 0x1000 // has been removed from the loop table (unrolled or optimized away) |
| 5681 | #define LPFLG_DONT_UNROLL 0x2000 // do not unroll this loop |
| 5682 | |
| 5683 | #define LPFLG_ASGVARS_YES 0x4000 // "lpAsgVars" has been computed |
| 5684 | #define LPFLG_ASGVARS_INC 0x8000 // "lpAsgVars" is incomplete -- vars beyond those representable in an AllVarSet |
| 5685 | // type are assigned to. |
| 5686 | |
| 5687 | bool lpLoopHasMemoryHavoc[MemoryKindCount]; // The loop contains an operation that we assume has arbitrary |
| 5688 | // memory side effects. If this is set, the fields below |
| 5689 | // may not be accurate (since they become irrelevant.) |
| 5690 | bool lpContainsCall; // True if executing the loop body *may* execute a call |
| 5691 | |
| 5692 | VARSET_TP lpVarInOut; // The set of variables that are IN or OUT during the execution of this loop |
| 5693 | VARSET_TP lpVarUseDef; // The set of variables that are USE or DEF during the execution of this loop |
| 5694 | |
| 5695 | int lpHoistedExprCount; // The register count for the non-FP expressions from inside this loop that have been |
| 5696 | // hoisted |
| 5697 | int lpLoopVarCount; // The register count for the non-FP LclVars that are read/written inside this loop |
| 5698 | int lpVarInOutCount; // The register count for the non-FP LclVars that are alive inside or accross this loop |
| 5699 | |
| 5700 | int lpHoistedFPExprCount; // The register count for the FP expressions from inside this loop that have been |
| 5701 | // hoisted |
| 5702 | int lpLoopVarFPCount; // The register count for the FP LclVars that are read/written inside this loop |
| 5703 | int lpVarInOutFPCount; // The register count for the FP LclVars that are alive inside or accross this loop |
| 5704 | |
| 5705 | typedef JitHashTable<CORINFO_FIELD_HANDLE, JitPtrKeyFuncs<struct CORINFO_FIELD_STRUCT_>, bool> FieldHandleSet; |
| 5706 | FieldHandleSet* lpFieldsModified; // This has entries (mappings to "true") for all static field and object |
| 5707 | // instance fields modified |
| 5708 | // in the loop. |
| 5709 | |
| 5710 | typedef JitHashTable<CORINFO_CLASS_HANDLE, JitPtrKeyFuncs<struct CORINFO_CLASS_STRUCT_>, bool> ClassHandleSet; |
| 5711 | ClassHandleSet* lpArrayElemTypesModified; // Bits set indicate the set of sz array element types such that |
| 5712 | // arrays of that type are modified |
| 5713 | // in the loop. |
| 5714 | |
| 5715 | // Adds the variable liveness information for 'blk' to 'this' LoopDsc |
| 5716 | void AddVariableLiveness(Compiler* comp, BasicBlock* blk); |
| 5717 | |
| 5718 | inline void AddModifiedField(Compiler* comp, CORINFO_FIELD_HANDLE fldHnd); |
| 5719 | // This doesn't *always* take a class handle -- it can also take primitive types, encoded as class handles |
| 5720 | // (shifted left, with a low-order bit set to distinguish.) |
| 5721 | // Use the {Encode/Decode}ElemType methods to construct/destruct these. |
| 5722 | inline void AddModifiedElemType(Compiler* comp, CORINFO_CLASS_HANDLE structHnd); |
| 5723 | |
| 5724 | /* The following values are set only for iterator loops, i.e. has the flag LPFLG_ITER set */ |
| 5725 | |
| 5726 | GenTree* lpIterTree; // The "i = i <op> const" tree |
| 5727 | unsigned lpIterVar(); // iterator variable # |
| 5728 | int lpIterConst(); // the constant with which the iterator is incremented |
| 5729 | genTreeOps lpIterOper(); // the type of the operation on the iterator (ASG_ADD, ASG_SUB, etc.) |
| 5730 | void VERIFY_lpIterTree(); |
| 5731 | |
| 5732 | var_types lpIterOperType(); // For overflow instructions |
| 5733 | |
| 5734 | union { |
| 5735 | int lpConstInit; // initial constant value of iterator : Valid if LPFLG_CONST_INIT |
| 5736 | unsigned lpVarInit; // initial local var number to which we initialize the iterator : Valid if |
| 5737 | // LPFLG_VAR_INIT |
| 5738 | }; |
| 5739 | |
| 5740 | /* The following is for LPFLG_ITER loops only (i.e. the loop condition is "i RELOP const or var" */ |
| 5741 | |
| 5742 | GenTree* lpTestTree; // pointer to the node containing the loop test |
| 5743 | genTreeOps lpTestOper(); // the type of the comparison between the iterator and the limit (GT_LE, GT_GE, etc.) |
| 5744 | void VERIFY_lpTestTree(); |
| 5745 | |
| 5746 | bool lpIsReversed(); // true if the iterator node is the second operand in the loop condition |
| 5747 | GenTree* lpIterator(); // the iterator node in the loop test |
| 5748 | GenTree* lpLimit(); // the limit node in the loop test |
| 5749 | |
| 5750 | int lpConstLimit(); // limit constant value of iterator - loop condition is "i RELOP const" : Valid if |
| 5751 | // LPFLG_CONST_LIMIT |
| 5752 | unsigned lpVarLimit(); // the lclVar # in the loop condition ( "i RELOP lclVar" ) : Valid if |
| 5753 | // LPFLG_VAR_LIMIT |
| 5754 | bool lpArrLenLimit(Compiler* comp, ArrIndex* index); // The array length in the loop condition ( "i RELOP |
| 5755 | // arr.len" or "i RELOP arr[i][j].len" ) : Valid if |
| 5756 | // LPFLG_ARRLEN_LIMIT |
| 5757 | |
| 5758 | // Returns "true" iff "*this" contains the blk. |
| 5759 | bool lpContains(BasicBlock* blk) |
| 5760 | { |
| 5761 | return lpFirst->bbNum <= blk->bbNum && blk->bbNum <= lpBottom->bbNum; |
| 5762 | } |
| 5763 | // Returns "true" iff "*this" (properly) contains the range [first, bottom] (allowing firsts |
| 5764 | // to be equal, but requiring bottoms to be different.) |
| 5765 | bool lpContains(BasicBlock* first, BasicBlock* bottom) |
| 5766 | { |
| 5767 | return lpFirst->bbNum <= first->bbNum && bottom->bbNum < lpBottom->bbNum; |
| 5768 | } |
| 5769 | |
| 5770 | // Returns "true" iff "*this" (properly) contains "lp2" (allowing firsts to be equal, but requiring |
| 5771 | // bottoms to be different.) |
| 5772 | bool lpContains(const LoopDsc& lp2) |
| 5773 | { |
| 5774 | return lpContains(lp2.lpFirst, lp2.lpBottom); |
| 5775 | } |
| 5776 | |
| 5777 | // Returns "true" iff "*this" is (properly) contained by the range [first, bottom] |
| 5778 | // (allowing firsts to be equal, but requiring bottoms to be different.) |
| 5779 | bool lpContainedBy(BasicBlock* first, BasicBlock* bottom) |
| 5780 | { |
| 5781 | return first->bbNum <= lpFirst->bbNum && lpBottom->bbNum < bottom->bbNum; |
| 5782 | } |
| 5783 | |
| 5784 | // Returns "true" iff "*this" is (properly) contained by "lp2" |
| 5785 | // (allowing firsts to be equal, but requiring bottoms to be different.) |
| 5786 | bool lpContainedBy(const LoopDsc& lp2) |
| 5787 | { |
| 5788 | return lpContains(lp2.lpFirst, lp2.lpBottom); |
| 5789 | } |
| 5790 | |
| 5791 | // Returns "true" iff "*this" is disjoint from the range [top, bottom]. |
| 5792 | bool lpDisjoint(BasicBlock* first, BasicBlock* bottom) |
| 5793 | { |
| 5794 | return bottom->bbNum < lpFirst->bbNum || lpBottom->bbNum < first->bbNum; |
| 5795 | } |
| 5796 | // Returns "true" iff "*this" is disjoint from "lp2". |
| 5797 | bool lpDisjoint(const LoopDsc& lp2) |
| 5798 | { |
| 5799 | return lpDisjoint(lp2.lpFirst, lp2.lpBottom); |
| 5800 | } |
| 5801 | // Returns "true" iff the loop is well-formed (see code for defn). |
| 5802 | bool lpWellFormed() |
| 5803 | { |
| 5804 | return lpFirst->bbNum <= lpTop->bbNum && lpTop->bbNum <= lpEntry->bbNum && |
| 5805 | lpEntry->bbNum <= lpBottom->bbNum && |
| 5806 | (lpHead->bbNum < lpTop->bbNum || lpHead->bbNum > lpBottom->bbNum); |
| 5807 | } |
| 5808 | }; |
| 5809 | |
| 5810 | protected: |
| 5811 | bool fgMightHaveLoop(); // returns true if there are any backedges |
| 5812 | bool fgHasLoops; // True if this method has any loops, set in fgComputeReachability |
| 5813 | |
| 5814 | public: |
| 5815 | LoopDsc* optLoopTable; // loop descriptor table |
| 5816 | unsigned char optLoopCount; // number of tracked loops |
| 5817 | |
| 5818 | bool optRecordLoop(BasicBlock* head, |
| 5819 | BasicBlock* first, |
| 5820 | BasicBlock* top, |
| 5821 | BasicBlock* entry, |
| 5822 | BasicBlock* bottom, |
| 5823 | BasicBlock* exit, |
| 5824 | unsigned char exitCnt); |
| 5825 | |
| 5826 | protected: |
| 5827 | unsigned optCallCount; // number of calls made in the method |
| 5828 | unsigned optIndirectCallCount; // number of virtual, interface and indirect calls made in the method |
| 5829 | unsigned optNativeCallCount; // number of Pinvoke/Native calls made in the method |
| 5830 | unsigned optLoopsCloned; // number of loops cloned in the current method. |
| 5831 | |
| 5832 | #ifdef DEBUG |
| 5833 | unsigned optFindLoopNumberFromBeginBlock(BasicBlock* begBlk); |
| 5834 | void optPrintLoopInfo(unsigned loopNum, |
| 5835 | BasicBlock* lpHead, |
| 5836 | BasicBlock* lpFirst, |
| 5837 | BasicBlock* lpTop, |
| 5838 | BasicBlock* lpEntry, |
| 5839 | BasicBlock* lpBottom, |
| 5840 | unsigned char lpExitCnt, |
| 5841 | BasicBlock* lpExit, |
| 5842 | unsigned parentLoop = BasicBlock::NOT_IN_LOOP); |
| 5843 | void optPrintLoopInfo(unsigned lnum); |
| 5844 | void optPrintLoopRecording(unsigned lnum); |
| 5845 | |
| 5846 | void optCheckPreds(); |
| 5847 | #endif |
| 5848 | |
| 5849 | void optSetBlockWeights(); |
| 5850 | |
| 5851 | void optMarkLoopBlocks(BasicBlock* begBlk, BasicBlock* endBlk, bool excludeEndBlk); |
| 5852 | |
| 5853 | void optUnmarkLoopBlocks(BasicBlock* begBlk, BasicBlock* endBlk); |
| 5854 | |
| 5855 | void optUpdateLoopsBeforeRemoveBlock(BasicBlock* block, bool skipUnmarkLoop = false); |
| 5856 | |
| 5857 | bool optIsLoopTestEvalIntoTemp(GenTree* test, GenTree** newTest); |
| 5858 | unsigned optIsLoopIncrTree(GenTree* incr); |
| 5859 | bool optCheckIterInLoopTest(unsigned loopInd, GenTree* test, BasicBlock* from, BasicBlock* to, unsigned iterVar); |
| 5860 | bool optComputeIterInfo(GenTree* incr, BasicBlock* from, BasicBlock* to, unsigned* pIterVar); |
| 5861 | bool optPopulateInitInfo(unsigned loopInd, GenTree* init, unsigned iterVar); |
| 5862 | bool ( |
| 5863 | BasicBlock* head, BasicBlock* bottom, BasicBlock* exit, GenTree** ppInit, GenTree** ppTest, GenTree** ppIncr); |
| 5864 | |
| 5865 | void optFindNaturalLoops(); |
| 5866 | |
| 5867 | // Ensures that all the loops in the loop nest rooted at "loopInd" (an index into the loop table) are 'canonical' -- |
| 5868 | // each loop has a unique "top." Returns "true" iff the flowgraph has been modified. |
| 5869 | bool optCanonicalizeLoopNest(unsigned char loopInd); |
| 5870 | |
| 5871 | // Ensures that the loop "loopInd" (an index into the loop table) is 'canonical' -- it has a unique "top," |
| 5872 | // unshared with any other loop. Returns "true" iff the flowgraph has been modified |
| 5873 | bool optCanonicalizeLoop(unsigned char loopInd); |
| 5874 | |
| 5875 | // Requires "l1" to be a valid loop table index, and not "BasicBlock::NOT_IN_LOOP". Requires "l2" to be |
| 5876 | // a valid loop table index, or else "BasicBlock::NOT_IN_LOOP". Returns true |
| 5877 | // iff "l2" is not NOT_IN_LOOP, and "l1" contains "l2". |
| 5878 | bool optLoopContains(unsigned l1, unsigned l2); |
| 5879 | |
| 5880 | // Requires "loopInd" to be a valid index into the loop table. |
| 5881 | // Updates the loop table by changing loop "loopInd", whose head is required |
| 5882 | // to be "from", to be "to". Also performs this transformation for any |
| 5883 | // loop nested in "loopInd" that shares the same head as "loopInd". |
| 5884 | void optUpdateLoopHead(unsigned loopInd, BasicBlock* from, BasicBlock* to); |
| 5885 | |
| 5886 | // Updates the successors of "blk": if "blk2" is a successor of "blk", and there is a mapping for "blk2->blk3" in |
| 5887 | // "redirectMap", change "blk" so that "blk3" is this successor. Note that the predecessor lists are not updated. |
| 5888 | void optRedirectBlock(BasicBlock* blk, BlockToBlockMap* redirectMap); |
| 5889 | |
| 5890 | // Marks the containsCall information to "lnum" and any parent loops. |
| 5891 | void AddContainsCallAllContainingLoops(unsigned lnum); |
| 5892 | // Adds the variable liveness information from 'blk' to "lnum" and any parent loops. |
| 5893 | void AddVariableLivenessAllContainingLoops(unsigned lnum, BasicBlock* blk); |
| 5894 | // Adds "fldHnd" to the set of modified fields of "lnum" and any parent loops. |
| 5895 | void AddModifiedFieldAllContainingLoops(unsigned lnum, CORINFO_FIELD_HANDLE fldHnd); |
| 5896 | // Adds "elemType" to the set of modified array element types of "lnum" and any parent loops. |
| 5897 | void AddModifiedElemTypeAllContainingLoops(unsigned lnum, CORINFO_CLASS_HANDLE elemType); |
| 5898 | |
| 5899 | // Requires that "from" and "to" have the same "bbJumpKind" (perhaps because "to" is a clone |
| 5900 | // of "from".) Copies the jump destination from "from" to "to". |
| 5901 | void optCopyBlkDest(BasicBlock* from, BasicBlock* to); |
| 5902 | |
| 5903 | // The depth of the loop described by "lnum" (an index into the loop table.) (0 == top level) |
| 5904 | unsigned optLoopDepth(unsigned lnum) |
| 5905 | { |
| 5906 | unsigned par = optLoopTable[lnum].lpParent; |
| 5907 | if (par == BasicBlock::NOT_IN_LOOP) |
| 5908 | { |
| 5909 | return 0; |
| 5910 | } |
| 5911 | else |
| 5912 | { |
| 5913 | return 1 + optLoopDepth(par); |
| 5914 | } |
| 5915 | } |
| 5916 | |
| 5917 | void fgOptWhileLoop(BasicBlock* block); |
| 5918 | |
| 5919 | bool optComputeLoopRep(int constInit, |
| 5920 | int constLimit, |
| 5921 | int iterInc, |
| 5922 | genTreeOps iterOper, |
| 5923 | var_types iterType, |
| 5924 | genTreeOps testOper, |
| 5925 | bool unsignedTest, |
| 5926 | bool dupCond, |
| 5927 | unsigned* iterCount); |
| 5928 | |
| 5929 | private: |
| 5930 | static fgWalkPreFn optIsVarAssgCB; |
| 5931 | |
| 5932 | protected: |
| 5933 | bool optIsVarAssigned(BasicBlock* beg, BasicBlock* end, GenTree* skip, unsigned var); |
| 5934 | |
| 5935 | bool optIsVarAssgLoop(unsigned lnum, unsigned var); |
| 5936 | |
| 5937 | int optIsSetAssgLoop(unsigned lnum, ALLVARSET_VALARG_TP vars, varRefKinds inds = VR_NONE); |
| 5938 | |
| 5939 | bool optNarrowTree(GenTree* tree, var_types srct, var_types dstt, ValueNumPair vnpNarrow, bool doit); |
| 5940 | |
| 5941 | /************************************************************************** |
| 5942 | * Optimization conditions |
| 5943 | *************************************************************************/ |
| 5944 | |
| 5945 | bool optFastCodeOrBlendedLoop(BasicBlock::weight_t bbWeight); |
| 5946 | bool optPentium4(void); |
| 5947 | bool optAvoidIncDec(BasicBlock::weight_t bbWeight); |
| 5948 | bool optAvoidIntMult(void); |
| 5949 | |
| 5950 | #if FEATURE_ANYCSE |
| 5951 | |
| 5952 | protected: |
| 5953 | // The following is the upper limit on how many expressions we'll keep track |
| 5954 | // of for the CSE analysis. |
| 5955 | // |
| 5956 | static const unsigned MAX_CSE_CNT = EXPSET_SZ; |
| 5957 | |
| 5958 | static const int MIN_CSE_COST = 2; |
| 5959 | |
| 5960 | // Keeps tracked cse indices |
| 5961 | BitVecTraits* cseTraits; |
| 5962 | EXPSET_TP cseFull; |
| 5963 | |
| 5964 | /* Generic list of nodes - used by the CSE logic */ |
| 5965 | |
| 5966 | struct treeLst |
| 5967 | { |
| 5968 | treeLst* tlNext; |
| 5969 | GenTree* tlTree; |
| 5970 | }; |
| 5971 | |
| 5972 | struct treeStmtLst |
| 5973 | { |
| 5974 | treeStmtLst* tslNext; |
| 5975 | GenTree* tslTree; // tree node |
| 5976 | GenTree* tslStmt; // statement containing the tree |
| 5977 | BasicBlock* tslBlock; // block containing the statement |
| 5978 | }; |
| 5979 | |
| 5980 | // The following logic keeps track of expressions via a simple hash table. |
| 5981 | |
| 5982 | struct CSEdsc |
| 5983 | { |
| 5984 | CSEdsc* csdNextInBucket; // used by the hash table |
| 5985 | |
| 5986 | unsigned csdHashKey; // the orginal hashkey |
| 5987 | |
| 5988 | unsigned csdIndex; // 1..optCSECandidateCount |
| 5989 | char csdLiveAcrossCall; // 0 or 1 |
| 5990 | |
| 5991 | unsigned short csdDefCount; // definition count |
| 5992 | unsigned short csdUseCount; // use count (excluding the implicit uses at defs) |
| 5993 | |
| 5994 | unsigned csdDefWtCnt; // weighted def count |
| 5995 | unsigned csdUseWtCnt; // weighted use count (excluding the implicit uses at defs) |
| 5996 | |
| 5997 | GenTree* csdTree; // treenode containing the 1st occurance |
| 5998 | GenTree* csdStmt; // stmt containing the 1st occurance |
| 5999 | BasicBlock* csdBlock; // block containing the 1st occurance |
| 6000 | |
| 6001 | treeStmtLst* csdTreeList; // list of matching tree nodes: head |
| 6002 | treeStmtLst* csdTreeLast; // list of matching tree nodes: tail |
| 6003 | |
| 6004 | ValueNum defExcSetPromise; // The exception set that is now required for all defs of this CSE. |
| 6005 | // This will be set to NoVN if we decide to abandon this CSE |
| 6006 | |
| 6007 | ValueNum defExcSetCurrent; // The set of exceptions we currently can use for CSE uses. |
| 6008 | |
| 6009 | ValueNum defConservNormVN; // if all def occurrences share the same conservative normal value |
| 6010 | // number, this will reflect it; otherwise, NoVN. |
| 6011 | }; |
| 6012 | |
| 6013 | static const size_t s_optCSEhashSize; |
| 6014 | CSEdsc** optCSEhash; |
| 6015 | CSEdsc** optCSEtab; |
| 6016 | |
| 6017 | typedef JitHashTable<GenTree*, JitPtrKeyFuncs<GenTree>, GenTree*> NodeToNodeMap; |
| 6018 | |
| 6019 | NodeToNodeMap* optCseCheckedBoundMap; // Maps bound nodes to ancestor compares that should be |
| 6020 | // re-numbered with the bound to improve range check elimination |
| 6021 | |
| 6022 | // Given a compare, look for a cse candidate checked bound feeding it and add a map entry if found. |
| 6023 | void optCseUpdateCheckedBoundMap(GenTree* compare); |
| 6024 | |
| 6025 | void optCSEstop(); |
| 6026 | |
| 6027 | CSEdsc* optCSEfindDsc(unsigned index); |
| 6028 | bool optUnmarkCSE(GenTree* tree); |
| 6029 | |
| 6030 | // user defined callback data for the tree walk function optCSE_MaskHelper() |
| 6031 | struct optCSE_MaskData |
| 6032 | { |
| 6033 | EXPSET_TP CSE_defMask; |
| 6034 | EXPSET_TP CSE_useMask; |
| 6035 | }; |
| 6036 | |
| 6037 | // Treewalk helper for optCSE_DefMask and optCSE_UseMask |
| 6038 | static fgWalkPreFn optCSE_MaskHelper; |
| 6039 | |
| 6040 | // This function walks all the node for an given tree |
| 6041 | // and return the mask of CSE definitions and uses for the tree |
| 6042 | // |
| 6043 | void optCSE_GetMaskData(GenTree* tree, optCSE_MaskData* pMaskData); |
| 6044 | |
| 6045 | // Given a binary tree node return true if it is safe to swap the order of evaluation for op1 and op2. |
| 6046 | bool optCSE_canSwap(GenTree* firstNode, GenTree* secondNode); |
| 6047 | bool optCSE_canSwap(GenTree* tree); |
| 6048 | |
| 6049 | static int __cdecl optCSEcostCmpEx(const void* op1, const void* op2); |
| 6050 | static int __cdecl optCSEcostCmpSz(const void* op1, const void* op2); |
| 6051 | |
| 6052 | void optCleanupCSEs(); |
| 6053 | |
| 6054 | #ifdef DEBUG |
| 6055 | void optEnsureClearCSEInfo(); |
| 6056 | #endif // DEBUG |
| 6057 | |
| 6058 | #endif // FEATURE_ANYCSE |
| 6059 | |
| 6060 | #if FEATURE_VALNUM_CSE |
| 6061 | /************************************************************************** |
| 6062 | * Value Number based CSEs |
| 6063 | *************************************************************************/ |
| 6064 | |
| 6065 | public: |
| 6066 | void optOptimizeValnumCSEs(); |
| 6067 | |
| 6068 | protected: |
| 6069 | void optValnumCSE_Init(); |
| 6070 | unsigned optValnumCSE_Index(GenTree* tree, GenTree* stmt); |
| 6071 | unsigned optValnumCSE_Locate(); |
| 6072 | void optValnumCSE_InitDataFlow(); |
| 6073 | void optValnumCSE_DataFlow(); |
| 6074 | void optValnumCSE_Availablity(); |
| 6075 | void optValnumCSE_Heuristic(); |
| 6076 | |
| 6077 | #endif // FEATURE_VALNUM_CSE |
| 6078 | |
| 6079 | #if FEATURE_ANYCSE |
| 6080 | bool optDoCSE; // True when we have found a duplicate CSE tree |
| 6081 | bool optValnumCSE_phase; // True when we are executing the optValnumCSE_phase |
| 6082 | unsigned optCSECandidateTotal; // Grand total of CSE candidates for both Lexical and ValNum |
| 6083 | unsigned optCSECandidateCount; // Count of CSE's candidates, reset for Lexical and ValNum CSE's |
| 6084 | unsigned optCSEstart; // The first local variable number that is a CSE |
| 6085 | unsigned optCSEcount; // The total count of CSE's introduced. |
| 6086 | unsigned optCSEweight; // The weight of the current block when we are |
| 6087 | // scanning for CSE expressions |
| 6088 | |
| 6089 | bool optIsCSEcandidate(GenTree* tree); |
| 6090 | |
| 6091 | // lclNumIsTrueCSE returns true if the LclVar was introduced by the CSE phase of the compiler |
| 6092 | // |
| 6093 | bool lclNumIsTrueCSE(unsigned lclNum) const |
| 6094 | { |
| 6095 | return ((optCSEcount > 0) && (lclNum >= optCSEstart) && (lclNum < optCSEstart + optCSEcount)); |
| 6096 | } |
| 6097 | |
| 6098 | // lclNumIsCSE returns true if the LclVar should be treated like a CSE with regards to constant prop. |
| 6099 | // |
| 6100 | bool lclNumIsCSE(unsigned lclNum) const |
| 6101 | { |
| 6102 | return lvaTable[lclNum].lvIsCSE; |
| 6103 | } |
| 6104 | |
| 6105 | #ifdef DEBUG |
| 6106 | bool optConfigDisableCSE(); |
| 6107 | bool optConfigDisableCSE2(); |
| 6108 | #endif |
| 6109 | void optOptimizeCSEs(); |
| 6110 | |
| 6111 | #endif // FEATURE_ANYCSE |
| 6112 | |
| 6113 | struct isVarAssgDsc |
| 6114 | { |
| 6115 | GenTree* ivaSkip; |
| 6116 | #ifdef DEBUG |
| 6117 | void* ivaSelf; |
| 6118 | #endif |
| 6119 | unsigned ivaVar; // Variable we are interested in, or -1 |
| 6120 | ALLVARSET_TP ivaMaskVal; // Set of variables assigned to. This is a set of all vars, not tracked vars. |
| 6121 | bool ivaMaskIncomplete; // Variables not representable in ivaMaskVal were assigned to. |
| 6122 | varRefKinds ivaMaskInd; // What kind of indirect assignments are there? |
| 6123 | callInterf ivaMaskCall; // What kind of calls are there? |
| 6124 | }; |
| 6125 | |
| 6126 | static callInterf optCallInterf(GenTreeCall* call); |
| 6127 | |
| 6128 | public: |
| 6129 | // VN based copy propagation. |
| 6130 | typedef ArrayStack<GenTree*> GenTreePtrStack; |
| 6131 | typedef JitHashTable<unsigned, JitSmallPrimitiveKeyFuncs<unsigned>, GenTreePtrStack*> LclNumToGenTreePtrStack; |
| 6132 | |
| 6133 | // Kill set to track variables with intervening definitions. |
| 6134 | VARSET_TP optCopyPropKillSet; |
| 6135 | |
| 6136 | // Copy propagation functions. |
| 6137 | void optCopyProp(BasicBlock* block, GenTree* stmt, GenTree* tree, LclNumToGenTreePtrStack* ); |
| 6138 | void optBlockCopyPropPopStacks(BasicBlock* block, LclNumToGenTreePtrStack* ); |
| 6139 | void optBlockCopyProp(BasicBlock* block, LclNumToGenTreePtrStack* ); |
| 6140 | bool optIsSsaLocal(GenTree* tree); |
| 6141 | int optCopyProp_LclVarScore(LclVarDsc* lclVarDsc, LclVarDsc* copyVarDsc, bool preferOp2); |
| 6142 | void optVnCopyProp(); |
| 6143 | INDEBUG(void optDumpCopyPropStack(LclNumToGenTreePtrStack* )); |
| 6144 | |
| 6145 | /************************************************************************** |
| 6146 | * Early value propagation |
| 6147 | *************************************************************************/ |
| 6148 | struct SSAName |
| 6149 | { |
| 6150 | unsigned m_lvNum; |
| 6151 | unsigned m_ssaNum; |
| 6152 | |
| 6153 | SSAName(unsigned lvNum, unsigned ssaNum) : m_lvNum(lvNum), m_ssaNum(ssaNum) |
| 6154 | { |
| 6155 | } |
| 6156 | |
| 6157 | static unsigned GetHashCode(SSAName ssaNm) |
| 6158 | { |
| 6159 | return (ssaNm.m_lvNum << 16) | (ssaNm.m_ssaNum); |
| 6160 | } |
| 6161 | |
| 6162 | static bool Equals(SSAName ssaNm1, SSAName ssaNm2) |
| 6163 | { |
| 6164 | return (ssaNm1.m_lvNum == ssaNm2.m_lvNum) && (ssaNm1.m_ssaNum == ssaNm2.m_ssaNum); |
| 6165 | } |
| 6166 | }; |
| 6167 | |
| 6168 | #define OMF_HAS_NEWARRAY 0x00000001 // Method contains 'new' of an array |
| 6169 | #define OMF_HAS_NEWOBJ 0x00000002 // Method contains 'new' of an object type. |
| 6170 | #define OMF_HAS_ARRAYREF 0x00000004 // Method contains array element loads or stores. |
| 6171 | #define OMF_HAS_VTABLEREF 0x00000008 // Method contains method table reference. |
| 6172 | #define OMF_HAS_NULLCHECK 0x00000010 // Method contains null check. |
| 6173 | #define OMF_HAS_FATPOINTER 0x00000020 // Method contains call, that needs fat pointer transformation. |
| 6174 | #define OMF_HAS_OBJSTACKALLOC 0x00000040 // Method contains an object allocated on the stack. |
| 6175 | #define OMF_HAS_GUARDEDDEVIRT 0x00000080 // Method contains guarded devirtualization candidate |
| 6176 | |
| 6177 | bool doesMethodHaveFatPointer() |
| 6178 | { |
| 6179 | return (optMethodFlags & OMF_HAS_FATPOINTER) != 0; |
| 6180 | } |
| 6181 | |
| 6182 | void setMethodHasFatPointer() |
| 6183 | { |
| 6184 | optMethodFlags |= OMF_HAS_FATPOINTER; |
| 6185 | } |
| 6186 | |
| 6187 | void clearMethodHasFatPointer() |
| 6188 | { |
| 6189 | optMethodFlags &= ~OMF_HAS_FATPOINTER; |
| 6190 | } |
| 6191 | |
| 6192 | void addFatPointerCandidate(GenTreeCall* call); |
| 6193 | |
| 6194 | bool doesMethodHaveGuardedDevirtualization() |
| 6195 | { |
| 6196 | return (optMethodFlags & OMF_HAS_GUARDEDDEVIRT) != 0; |
| 6197 | } |
| 6198 | |
| 6199 | void setMethodHasGuardedDevirtualization() |
| 6200 | { |
| 6201 | optMethodFlags |= OMF_HAS_GUARDEDDEVIRT; |
| 6202 | } |
| 6203 | |
| 6204 | void clearMethodHasGuardedDevirtualization() |
| 6205 | { |
| 6206 | optMethodFlags &= ~OMF_HAS_GUARDEDDEVIRT; |
| 6207 | } |
| 6208 | |
| 6209 | void addGuardedDevirtualizationCandidate(GenTreeCall* call, |
| 6210 | CORINFO_METHOD_HANDLE methodHandle, |
| 6211 | CORINFO_CLASS_HANDLE classHandle, |
| 6212 | unsigned methodAttr, |
| 6213 | unsigned classAttr); |
| 6214 | |
| 6215 | unsigned optMethodFlags; |
| 6216 | |
| 6217 | // Recursion bound controls how far we can go backwards tracking for a SSA value. |
| 6218 | // No throughput diff was found with backward walk bound between 3-8. |
| 6219 | static const int optEarlyPropRecurBound = 5; |
| 6220 | |
| 6221 | enum class optPropKind |
| 6222 | { |
| 6223 | OPK_INVALID, |
| 6224 | OPK_ARRAYLEN, |
| 6225 | OPK_OBJ_GETTYPE, |
| 6226 | OPK_NULLCHECK |
| 6227 | }; |
| 6228 | |
| 6229 | bool gtIsVtableRef(GenTree* tree); |
| 6230 | GenTree* getArrayLengthFromAllocation(GenTree* tree); |
| 6231 | GenTree* getObjectHandleNodeFromAllocation(GenTree* tree); |
| 6232 | GenTree* optPropGetValueRec(unsigned lclNum, unsigned ssaNum, optPropKind valueKind, int walkDepth); |
| 6233 | GenTree* optPropGetValue(unsigned lclNum, unsigned ssaNum, optPropKind valueKind); |
| 6234 | GenTree* optEarlyPropRewriteTree(GenTree* tree); |
| 6235 | bool optDoEarlyPropForBlock(BasicBlock* block); |
| 6236 | bool optDoEarlyPropForFunc(); |
| 6237 | void optEarlyProp(); |
| 6238 | void optFoldNullCheck(GenTree* tree); |
| 6239 | bool optCanMoveNullCheckPastTree(GenTree* tree, bool isInsideTry); |
| 6240 | |
| 6241 | #if ASSERTION_PROP |
| 6242 | /************************************************************************** |
| 6243 | * Value/Assertion propagation |
| 6244 | *************************************************************************/ |
| 6245 | public: |
| 6246 | // Data structures for assertion prop |
| 6247 | BitVecTraits* apTraits; |
| 6248 | ASSERT_TP apFull; |
| 6249 | |
| 6250 | enum optAssertionKind |
| 6251 | { |
| 6252 | OAK_INVALID, |
| 6253 | OAK_EQUAL, |
| 6254 | OAK_NOT_EQUAL, |
| 6255 | OAK_SUBRANGE, |
| 6256 | OAK_NO_THROW, |
| 6257 | OAK_COUNT |
| 6258 | }; |
| 6259 | |
| 6260 | enum optOp1Kind |
| 6261 | { |
| 6262 | O1K_INVALID, |
| 6263 | O1K_LCLVAR, |
| 6264 | O1K_ARR_BND, |
| 6265 | O1K_BOUND_OPER_BND, |
| 6266 | O1K_BOUND_LOOP_BND, |
| 6267 | O1K_CONSTANT_LOOP_BND, |
| 6268 | O1K_EXACT_TYPE, |
| 6269 | O1K_SUBTYPE, |
| 6270 | O1K_VALUE_NUMBER, |
| 6271 | O1K_COUNT |
| 6272 | }; |
| 6273 | |
| 6274 | enum optOp2Kind |
| 6275 | { |
| 6276 | O2K_INVALID, |
| 6277 | O2K_LCLVAR_COPY, |
| 6278 | O2K_IND_CNS_INT, |
| 6279 | O2K_CONST_INT, |
| 6280 | O2K_CONST_LONG, |
| 6281 | O2K_CONST_DOUBLE, |
| 6282 | O2K_ARR_LEN, |
| 6283 | O2K_SUBRANGE, |
| 6284 | O2K_COUNT |
| 6285 | }; |
| 6286 | struct AssertionDsc |
| 6287 | { |
| 6288 | optAssertionKind assertionKind; |
| 6289 | struct SsaVar |
| 6290 | { |
| 6291 | unsigned lclNum; // assigned to or property of this local var number |
| 6292 | unsigned ssaNum; |
| 6293 | }; |
| 6294 | struct ArrBnd |
| 6295 | { |
| 6296 | ValueNum vnIdx; |
| 6297 | ValueNum vnLen; |
| 6298 | }; |
| 6299 | struct AssertionDscOp1 |
| 6300 | { |
| 6301 | optOp1Kind kind; // a normal LclVar, or Exact-type or Subtype |
| 6302 | ValueNum vn; |
| 6303 | union { |
| 6304 | SsaVar lcl; |
| 6305 | ArrBnd bnd; |
| 6306 | }; |
| 6307 | } op1; |
| 6308 | struct AssertionDscOp2 |
| 6309 | { |
| 6310 | optOp2Kind kind; // a const or copy assignment |
| 6311 | ValueNum vn; |
| 6312 | struct IntVal |
| 6313 | { |
| 6314 | ssize_t iconVal; // integer |
| 6315 | unsigned iconFlags; // gtFlags |
| 6316 | }; |
| 6317 | struct Range // integer subrange |
| 6318 | { |
| 6319 | ssize_t loBound; |
| 6320 | ssize_t hiBound; |
| 6321 | }; |
| 6322 | union { |
| 6323 | SsaVar lcl; |
| 6324 | IntVal u1; |
| 6325 | __int64 lconVal; |
| 6326 | double dconVal; |
| 6327 | Range u2; |
| 6328 | }; |
| 6329 | } op2; |
| 6330 | |
| 6331 | bool IsCheckedBoundArithBound() |
| 6332 | { |
| 6333 | return ((assertionKind == OAK_EQUAL || assertionKind == OAK_NOT_EQUAL) && op1.kind == O1K_BOUND_OPER_BND); |
| 6334 | } |
| 6335 | bool IsCheckedBoundBound() |
| 6336 | { |
| 6337 | return ((assertionKind == OAK_EQUAL || assertionKind == OAK_NOT_EQUAL) && op1.kind == O1K_BOUND_LOOP_BND); |
| 6338 | } |
| 6339 | bool IsConstantBound() |
| 6340 | { |
| 6341 | return ((assertionKind == OAK_EQUAL || assertionKind == OAK_NOT_EQUAL) && |
| 6342 | op1.kind == O1K_CONSTANT_LOOP_BND); |
| 6343 | } |
| 6344 | bool IsBoundsCheckNoThrow() |
| 6345 | { |
| 6346 | return ((assertionKind == OAK_NO_THROW) && (op1.kind == O1K_ARR_BND)); |
| 6347 | } |
| 6348 | |
| 6349 | bool IsCopyAssertion() |
| 6350 | { |
| 6351 | return ((assertionKind == OAK_EQUAL) && (op1.kind == O1K_LCLVAR) && (op2.kind == O2K_LCLVAR_COPY)); |
| 6352 | } |
| 6353 | |
| 6354 | static bool SameKind(AssertionDsc* a1, AssertionDsc* a2) |
| 6355 | { |
| 6356 | return a1->assertionKind == a2->assertionKind && a1->op1.kind == a2->op1.kind && |
| 6357 | a1->op2.kind == a2->op2.kind; |
| 6358 | } |
| 6359 | |
| 6360 | static bool ComplementaryKind(optAssertionKind kind, optAssertionKind kind2) |
| 6361 | { |
| 6362 | if (kind == OAK_EQUAL) |
| 6363 | { |
| 6364 | return kind2 == OAK_NOT_EQUAL; |
| 6365 | } |
| 6366 | else if (kind == OAK_NOT_EQUAL) |
| 6367 | { |
| 6368 | return kind2 == OAK_EQUAL; |
| 6369 | } |
| 6370 | return false; |
| 6371 | } |
| 6372 | |
| 6373 | static ssize_t GetLowerBoundForIntegralType(var_types type) |
| 6374 | { |
| 6375 | switch (type) |
| 6376 | { |
| 6377 | case TYP_BYTE: |
| 6378 | return SCHAR_MIN; |
| 6379 | case TYP_SHORT: |
| 6380 | return SHRT_MIN; |
| 6381 | case TYP_INT: |
| 6382 | return INT_MIN; |
| 6383 | case TYP_BOOL: |
| 6384 | case TYP_UBYTE: |
| 6385 | case TYP_USHORT: |
| 6386 | case TYP_UINT: |
| 6387 | return 0; |
| 6388 | default: |
| 6389 | unreached(); |
| 6390 | } |
| 6391 | } |
| 6392 | static ssize_t GetUpperBoundForIntegralType(var_types type) |
| 6393 | { |
| 6394 | switch (type) |
| 6395 | { |
| 6396 | case TYP_BOOL: |
| 6397 | return 1; |
| 6398 | case TYP_BYTE: |
| 6399 | return SCHAR_MAX; |
| 6400 | case TYP_SHORT: |
| 6401 | return SHRT_MAX; |
| 6402 | case TYP_INT: |
| 6403 | return INT_MAX; |
| 6404 | case TYP_UBYTE: |
| 6405 | return UCHAR_MAX; |
| 6406 | case TYP_USHORT: |
| 6407 | return USHRT_MAX; |
| 6408 | case TYP_UINT: |
| 6409 | return UINT_MAX; |
| 6410 | default: |
| 6411 | unreached(); |
| 6412 | } |
| 6413 | } |
| 6414 | |
| 6415 | bool HasSameOp1(AssertionDsc* that, bool vnBased) |
| 6416 | { |
| 6417 | if (op1.kind != that->op1.kind) |
| 6418 | { |
| 6419 | return false; |
| 6420 | } |
| 6421 | else if (op1.kind == O1K_ARR_BND) |
| 6422 | { |
| 6423 | assert(vnBased); |
| 6424 | return (op1.bnd.vnIdx == that->op1.bnd.vnIdx) && (op1.bnd.vnLen == that->op1.bnd.vnLen); |
| 6425 | } |
| 6426 | else |
| 6427 | { |
| 6428 | return ((vnBased && (op1.vn == that->op1.vn)) || |
| 6429 | (!vnBased && (op1.lcl.lclNum == that->op1.lcl.lclNum))); |
| 6430 | } |
| 6431 | } |
| 6432 | |
| 6433 | bool HasSameOp2(AssertionDsc* that, bool vnBased) |
| 6434 | { |
| 6435 | if (op2.kind != that->op2.kind) |
| 6436 | { |
| 6437 | return false; |
| 6438 | } |
| 6439 | switch (op2.kind) |
| 6440 | { |
| 6441 | case O2K_IND_CNS_INT: |
| 6442 | case O2K_CONST_INT: |
| 6443 | return ((op2.u1.iconVal == that->op2.u1.iconVal) && (op2.u1.iconFlags == that->op2.u1.iconFlags)); |
| 6444 | |
| 6445 | case O2K_CONST_LONG: |
| 6446 | return (op2.lconVal == that->op2.lconVal); |
| 6447 | |
| 6448 | case O2K_CONST_DOUBLE: |
| 6449 | // exact match because of positive and negative zero. |
| 6450 | return (memcmp(&op2.dconVal, &that->op2.dconVal, sizeof(double)) == 0); |
| 6451 | |
| 6452 | case O2K_LCLVAR_COPY: |
| 6453 | case O2K_ARR_LEN: |
| 6454 | return (op2.lcl.lclNum == that->op2.lcl.lclNum) && |
| 6455 | (!vnBased || op2.lcl.ssaNum == that->op2.lcl.ssaNum); |
| 6456 | |
| 6457 | case O2K_SUBRANGE: |
| 6458 | return ((op2.u2.loBound == that->op2.u2.loBound) && (op2.u2.hiBound == that->op2.u2.hiBound)); |
| 6459 | |
| 6460 | case O2K_INVALID: |
| 6461 | // we will return false |
| 6462 | break; |
| 6463 | |
| 6464 | default: |
| 6465 | assert(!"Unexpected value for op2.kind in AssertionDsc." ); |
| 6466 | break; |
| 6467 | } |
| 6468 | return false; |
| 6469 | } |
| 6470 | |
| 6471 | bool Complementary(AssertionDsc* that, bool vnBased) |
| 6472 | { |
| 6473 | return ComplementaryKind(assertionKind, that->assertionKind) && HasSameOp1(that, vnBased) && |
| 6474 | HasSameOp2(that, vnBased); |
| 6475 | } |
| 6476 | |
| 6477 | bool Equals(AssertionDsc* that, bool vnBased) |
| 6478 | { |
| 6479 | if (assertionKind != that->assertionKind) |
| 6480 | { |
| 6481 | return false; |
| 6482 | } |
| 6483 | else if (assertionKind == OAK_NO_THROW) |
| 6484 | { |
| 6485 | assert(op2.kind == O2K_INVALID); |
| 6486 | return HasSameOp1(that, vnBased); |
| 6487 | } |
| 6488 | else |
| 6489 | { |
| 6490 | return HasSameOp1(that, vnBased) && HasSameOp2(that, vnBased); |
| 6491 | } |
| 6492 | } |
| 6493 | }; |
| 6494 | |
| 6495 | protected: |
| 6496 | static fgWalkPreFn optAddCopiesCallback; |
| 6497 | static fgWalkPreFn optVNAssertionPropCurStmtVisitor; |
| 6498 | unsigned optAddCopyLclNum; |
| 6499 | GenTree* optAddCopyAsgnNode; |
| 6500 | |
| 6501 | bool optLocalAssertionProp; // indicates that we are performing local assertion prop |
| 6502 | bool optAssertionPropagated; // set to true if we modified the trees |
| 6503 | bool optAssertionPropagatedCurrentStmt; |
| 6504 | #ifdef DEBUG |
| 6505 | GenTree* optAssertionPropCurrentTree; |
| 6506 | #endif |
| 6507 | AssertionIndex* optComplementaryAssertionMap; |
| 6508 | JitExpandArray<ASSERT_TP>* optAssertionDep; // table that holds dependent assertions (assertions |
| 6509 | // using the value of a local var) for each local var |
| 6510 | AssertionDsc* optAssertionTabPrivate; // table that holds info about value assignments |
| 6511 | AssertionIndex optAssertionCount; // total number of assertions in the assertion table |
| 6512 | AssertionIndex optMaxAssertionCount; |
| 6513 | |
| 6514 | public: |
| 6515 | void optVnNonNullPropCurStmt(BasicBlock* block, GenTree* stmt, GenTree* tree); |
| 6516 | fgWalkResult optVNConstantPropCurStmt(BasicBlock* block, GenTree* stmt, GenTree* tree); |
| 6517 | GenTree* optVNConstantPropOnJTrue(BasicBlock* block, GenTree* stmt, GenTree* test); |
| 6518 | GenTree* optVNConstantPropOnTree(BasicBlock* block, GenTree* stmt, GenTree* tree); |
| 6519 | GenTree* optPrepareTreeForReplacement(GenTree* , GenTree* replaceTree); |
| 6520 | |
| 6521 | AssertionIndex GetAssertionCount() |
| 6522 | { |
| 6523 | return optAssertionCount; |
| 6524 | } |
| 6525 | ASSERT_TP* bbJtrueAssertionOut; |
| 6526 | typedef JitHashTable<ValueNum, JitSmallPrimitiveKeyFuncs<ValueNum>, ASSERT_TP> ValueNumToAssertsMap; |
| 6527 | ValueNumToAssertsMap* optValueNumToAsserts; |
| 6528 | |
| 6529 | // Assertion prop helpers. |
| 6530 | ASSERT_TP& GetAssertionDep(unsigned lclNum); |
| 6531 | AssertionDsc* optGetAssertion(AssertionIndex assertIndex); |
| 6532 | void optAssertionInit(bool isLocalProp); |
| 6533 | void optAssertionTraitsInit(AssertionIndex assertionCount); |
| 6534 | #if LOCAL_ASSERTION_PROP |
| 6535 | void optAssertionReset(AssertionIndex limit); |
| 6536 | void optAssertionRemove(AssertionIndex index); |
| 6537 | #endif |
| 6538 | |
| 6539 | // Assertion prop data flow functions. |
| 6540 | void optAssertionPropMain(); |
| 6541 | GenTree* optVNAssertionPropCurStmt(BasicBlock* block, GenTree* stmt); |
| 6542 | bool optIsTreeKnownIntValue(bool vnBased, GenTree* tree, ssize_t* pConstant, unsigned* pIconFlags); |
| 6543 | ASSERT_TP* optInitAssertionDataflowFlags(); |
| 6544 | ASSERT_TP* optComputeAssertionGen(); |
| 6545 | |
| 6546 | // Assertion Gen functions. |
| 6547 | void optAssertionGen(GenTree* tree); |
| 6548 | AssertionIndex optAssertionGenPhiDefn(GenTree* tree); |
| 6549 | AssertionInfo optCreateJTrueBoundsAssertion(GenTree* tree); |
| 6550 | AssertionInfo optAssertionGenJtrue(GenTree* tree); |
| 6551 | AssertionIndex optCreateJtrueAssertions(GenTree* op1, GenTree* op2, Compiler::optAssertionKind assertionKind); |
| 6552 | AssertionIndex optFindComplementary(AssertionIndex assertionIndex); |
| 6553 | void optMapComplementary(AssertionIndex assertionIndex, AssertionIndex index); |
| 6554 | |
| 6555 | // Assertion creation functions. |
| 6556 | AssertionIndex optCreateAssertion(GenTree* op1, GenTree* op2, optAssertionKind assertionKind); |
| 6557 | AssertionIndex optCreateAssertion(GenTree* op1, |
| 6558 | GenTree* op2, |
| 6559 | optAssertionKind assertionKind, |
| 6560 | AssertionDsc* assertion); |
| 6561 | void optCreateComplementaryAssertion(AssertionIndex assertionIndex, GenTree* op1, GenTree* op2); |
| 6562 | |
| 6563 | bool optAssertionVnInvolvesNan(AssertionDsc* assertion); |
| 6564 | AssertionIndex optAddAssertion(AssertionDsc* assertion); |
| 6565 | void optAddVnAssertionMapping(ValueNum vn, AssertionIndex index); |
| 6566 | #ifdef DEBUG |
| 6567 | void optPrintVnAssertionMapping(); |
| 6568 | #endif |
| 6569 | ASSERT_TP optGetVnMappedAssertions(ValueNum vn); |
| 6570 | |
| 6571 | // Used for respective assertion propagations. |
| 6572 | AssertionIndex optAssertionIsSubrange(GenTree* tree, var_types toType, ASSERT_VALARG_TP assertions); |
| 6573 | AssertionIndex optAssertionIsSubtype(GenTree* tree, GenTree* methodTableArg, ASSERT_VALARG_TP assertions); |
| 6574 | AssertionIndex optAssertionIsNonNullInternal(GenTree* op, ASSERT_VALARG_TP assertions); |
| 6575 | bool optAssertionIsNonNull(GenTree* op, |
| 6576 | ASSERT_VALARG_TP assertions DEBUGARG(bool* pVnBased) DEBUGARG(AssertionIndex* pIndex)); |
| 6577 | |
| 6578 | // Used for Relop propagation. |
| 6579 | AssertionIndex optGlobalAssertionIsEqualOrNotEqual(ASSERT_VALARG_TP assertions, GenTree* op1, GenTree* op2); |
| 6580 | AssertionIndex optGlobalAssertionIsEqualOrNotEqualZero(ASSERT_VALARG_TP assertions, GenTree* op1); |
| 6581 | AssertionIndex optLocalAssertionIsEqualOrNotEqual( |
| 6582 | optOp1Kind op1Kind, unsigned lclNum, optOp2Kind op2Kind, ssize_t cnsVal, ASSERT_VALARG_TP assertions); |
| 6583 | |
| 6584 | // Assertion prop for lcl var functions. |
| 6585 | bool optAssertionProp_LclVarTypeCheck(GenTree* tree, LclVarDsc* lclVarDsc, LclVarDsc* copyVarDsc); |
| 6586 | GenTree* optCopyAssertionProp(AssertionDsc* curAssertion, |
| 6587 | GenTree* tree, |
| 6588 | GenTree* stmt DEBUGARG(AssertionIndex index)); |
| 6589 | GenTree* optConstantAssertionProp(AssertionDsc* curAssertion, |
| 6590 | GenTree* tree, |
| 6591 | GenTree* stmt DEBUGARG(AssertionIndex index)); |
| 6592 | |
| 6593 | // Assertion propagation functions. |
| 6594 | GenTree* optAssertionProp(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt); |
| 6595 | GenTree* optAssertionProp_LclVar(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt); |
| 6596 | GenTree* optAssertionProp_Ind(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt); |
| 6597 | GenTree* optAssertionProp_Cast(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt); |
| 6598 | GenTree* optAssertionProp_Call(ASSERT_VALARG_TP assertions, GenTreeCall* call, GenTree* stmt); |
| 6599 | GenTree* optAssertionProp_RelOp(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt); |
| 6600 | GenTree* optAssertionProp_Comma(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt); |
| 6601 | GenTree* optAssertionProp_BndsChk(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt); |
| 6602 | GenTree* optAssertionPropGlobal_RelOp(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt); |
| 6603 | GenTree* optAssertionPropLocal_RelOp(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt); |
| 6604 | GenTree* optAssertionProp_Update(GenTree* newTree, GenTree* tree, GenTree* stmt); |
| 6605 | GenTree* optNonNullAssertionProp_Call(ASSERT_VALARG_TP assertions, GenTreeCall* call, GenTree* stmt); |
| 6606 | |
| 6607 | // Implied assertion functions. |
| 6608 | void optImpliedAssertions(AssertionIndex assertionIndex, ASSERT_TP& activeAssertions); |
| 6609 | void optImpliedByTypeOfAssertions(ASSERT_TP& activeAssertions); |
| 6610 | void optImpliedByCopyAssertion(AssertionDsc* copyAssertion, AssertionDsc* depAssertion, ASSERT_TP& result); |
| 6611 | void optImpliedByConstAssertion(AssertionDsc* curAssertion, ASSERT_TP& result); |
| 6612 | |
| 6613 | #ifdef DEBUG |
| 6614 | void optPrintAssertion(AssertionDsc* newAssertion, AssertionIndex assertionIndex = 0); |
| 6615 | void optDebugCheckAssertion(AssertionDsc* assertion); |
| 6616 | void optDebugCheckAssertions(AssertionIndex AssertionIndex); |
| 6617 | #endif |
| 6618 | void optAddCopies(); |
| 6619 | #endif // ASSERTION_PROP |
| 6620 | |
| 6621 | /************************************************************************** |
| 6622 | * Range checks |
| 6623 | *************************************************************************/ |
| 6624 | |
| 6625 | public: |
| 6626 | struct LoopCloneVisitorInfo |
| 6627 | { |
| 6628 | LoopCloneContext* context; |
| 6629 | unsigned loopNum; |
| 6630 | GenTree* stmt; |
| 6631 | LoopCloneVisitorInfo(LoopCloneContext* context, unsigned loopNum, GenTree* stmt) |
| 6632 | : context(context), loopNum(loopNum), stmt(nullptr) |
| 6633 | { |
| 6634 | } |
| 6635 | }; |
| 6636 | |
| 6637 | bool optIsStackLocalInvariant(unsigned loopNum, unsigned lclNum); |
| 6638 | bool (GenTree* tree, ArrIndex* result, unsigned lhsNum); |
| 6639 | bool optReconstructArrIndex(GenTree* tree, ArrIndex* result, unsigned lhsNum); |
| 6640 | bool optIdentifyLoopOptInfo(unsigned loopNum, LoopCloneContext* context); |
| 6641 | static fgWalkPreFn optCanOptimizeByLoopCloningVisitor; |
| 6642 | fgWalkResult optCanOptimizeByLoopCloning(GenTree* tree, LoopCloneVisitorInfo* info); |
| 6643 | void optObtainLoopCloningOpts(LoopCloneContext* context); |
| 6644 | bool optIsLoopClonable(unsigned loopInd); |
| 6645 | |
| 6646 | bool optCanCloneLoops(); |
| 6647 | |
| 6648 | #ifdef DEBUG |
| 6649 | void optDebugLogLoopCloning(BasicBlock* block, GenTree* insertBefore); |
| 6650 | #endif |
| 6651 | void optPerformStaticOptimizations(unsigned loopNum, LoopCloneContext* context DEBUGARG(bool fastPath)); |
| 6652 | bool optComputeDerefConditions(unsigned loopNum, LoopCloneContext* context); |
| 6653 | bool optDeriveLoopCloningConditions(unsigned loopNum, LoopCloneContext* context); |
| 6654 | BasicBlock* optInsertLoopChoiceConditions(LoopCloneContext* context, |
| 6655 | unsigned loopNum, |
| 6656 | BasicBlock* head, |
| 6657 | BasicBlock* slow); |
| 6658 | |
| 6659 | protected: |
| 6660 | ssize_t optGetArrayRefScaleAndIndex(GenTree* mul, GenTree** pIndex DEBUGARG(bool bRngChk)); |
| 6661 | |
| 6662 | bool optReachWithoutCall(BasicBlock* srcBB, BasicBlock* dstBB); |
| 6663 | |
| 6664 | protected: |
| 6665 | bool optLoopsMarked; |
| 6666 | |
| 6667 | /* |
| 6668 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6669 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6670 | XX XX |
| 6671 | XX RegAlloc XX |
| 6672 | XX XX |
| 6673 | XX Does the register allocation and puts the remaining lclVars on the stack XX |
| 6674 | XX XX |
| 6675 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6676 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6677 | */ |
| 6678 | |
| 6679 | public: |
| 6680 | regNumber raUpdateRegStateForArg(RegState* regState, LclVarDsc* argDsc); |
| 6681 | |
| 6682 | void raMarkStkVars(); |
| 6683 | |
| 6684 | protected: |
| 6685 | // Some things are used by both LSRA and regpredict allocators. |
| 6686 | |
| 6687 | FrameType rpFrameType; |
| 6688 | bool rpMustCreateEBPCalled; // Set to true after we have called rpMustCreateEBPFrame once |
| 6689 | |
| 6690 | bool rpMustCreateEBPFrame(INDEBUG(const char** wbReason)); |
| 6691 | |
| 6692 | private: |
| 6693 | Lowering* m_pLowering; // Lowering; needed to Lower IR that's added or modified after Lowering. |
| 6694 | LinearScanInterface* m_pLinearScan; // Linear Scan allocator |
| 6695 | |
| 6696 | /* raIsVarargsStackArg is called by raMaskStkVars and by |
| 6697 | lvaSortByRefCount. It identifies the special case |
| 6698 | where a varargs function has a parameter passed on the |
| 6699 | stack, other than the special varargs handle. Such parameters |
| 6700 | require special treatment, because they cannot be tracked |
| 6701 | by the GC (their offsets in the stack are not known |
| 6702 | at compile time). |
| 6703 | */ |
| 6704 | |
| 6705 | bool raIsVarargsStackArg(unsigned lclNum) |
| 6706 | { |
| 6707 | #ifdef _TARGET_X86_ |
| 6708 | |
| 6709 | LclVarDsc* varDsc = &lvaTable[lclNum]; |
| 6710 | |
| 6711 | assert(varDsc->lvIsParam); |
| 6712 | |
| 6713 | return (info.compIsVarArgs && !varDsc->lvIsRegArg && (lclNum != lvaVarargsHandleArg)); |
| 6714 | |
| 6715 | #else // _TARGET_X86_ |
| 6716 | |
| 6717 | return false; |
| 6718 | |
| 6719 | #endif // _TARGET_X86_ |
| 6720 | } |
| 6721 | |
| 6722 | /* |
| 6723 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6724 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6725 | XX XX |
| 6726 | XX EEInterface XX |
| 6727 | XX XX |
| 6728 | XX Get to the class and method info from the Execution Engine given XX |
| 6729 | XX tokens for the class and method XX |
| 6730 | XX XX |
| 6731 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6732 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6733 | */ |
| 6734 | |
| 6735 | public: |
| 6736 | /* These are the different addressing modes used to access a local var. |
| 6737 | * The JIT has to report the location of the locals back to the EE |
| 6738 | * for debugging purposes. |
| 6739 | */ |
| 6740 | |
| 6741 | enum siVarLocType |
| 6742 | { |
| 6743 | VLT_REG, |
| 6744 | VLT_REG_BYREF, // this type is currently only used for value types on X64 |
| 6745 | VLT_REG_FP, |
| 6746 | VLT_STK, |
| 6747 | VLT_STK_BYREF, // this type is currently only used for value types on X64 |
| 6748 | VLT_REG_REG, |
| 6749 | VLT_REG_STK, |
| 6750 | VLT_STK_REG, |
| 6751 | VLT_STK2, |
| 6752 | VLT_FPSTK, |
| 6753 | VLT_FIXED_VA, |
| 6754 | |
| 6755 | VLT_COUNT, |
| 6756 | VLT_INVALID |
| 6757 | }; |
| 6758 | |
| 6759 | struct siVarLoc |
| 6760 | { |
| 6761 | siVarLocType vlType; |
| 6762 | |
| 6763 | union { |
| 6764 | // VLT_REG/VLT_REG_FP -- Any pointer-sized enregistered value (TYP_INT, TYP_REF, etc) |
| 6765 | // eg. EAX |
| 6766 | // VLT_REG_BYREF -- the specified register contains the address of the variable |
| 6767 | // eg. [EAX] |
| 6768 | |
| 6769 | struct |
| 6770 | { |
| 6771 | regNumber vlrReg; |
| 6772 | } vlReg; |
| 6773 | |
| 6774 | // VLT_STK -- Any 32 bit value which is on the stack |
| 6775 | // eg. [ESP+0x20], or [EBP-0x28] |
| 6776 | // VLT_STK_BYREF -- the specified stack location contains the address of the variable |
| 6777 | // eg. mov EAX, [ESP+0x20]; [EAX] |
| 6778 | |
| 6779 | struct |
| 6780 | { |
| 6781 | regNumber vlsBaseReg; |
| 6782 | NATIVE_OFFSET vlsOffset; |
| 6783 | } vlStk; |
| 6784 | |
| 6785 | // VLT_REG_REG -- TYP_LONG/TYP_DOUBLE with both DWords enregistered |
| 6786 | // eg. RBM_EAXEDX |
| 6787 | |
| 6788 | struct |
| 6789 | { |
| 6790 | regNumber vlrrReg1; |
| 6791 | regNumber vlrrReg2; |
| 6792 | } vlRegReg; |
| 6793 | |
| 6794 | // VLT_REG_STK -- Partly enregistered TYP_LONG/TYP_DOUBLE |
| 6795 | // eg { LowerDWord=EAX UpperDWord=[ESP+0x8] } |
| 6796 | |
| 6797 | struct |
| 6798 | { |
| 6799 | regNumber vlrsReg; |
| 6800 | |
| 6801 | struct |
| 6802 | { |
| 6803 | regNumber ; |
| 6804 | NATIVE_OFFSET ; |
| 6805 | } ; |
| 6806 | } vlRegStk; |
| 6807 | |
| 6808 | // VLT_STK_REG -- Partly enregistered TYP_LONG/TYP_DOUBLE |
| 6809 | // eg { LowerDWord=[ESP+0x8] UpperDWord=EAX } |
| 6810 | |
| 6811 | struct |
| 6812 | { |
| 6813 | struct |
| 6814 | { |
| 6815 | regNumber vlsrsBaseReg; |
| 6816 | NATIVE_OFFSET vlsrsOffset; |
| 6817 | } vlsrStk; |
| 6818 | |
| 6819 | regNumber vlsrReg; |
| 6820 | } vlStkReg; |
| 6821 | |
| 6822 | // VLT_STK2 -- Any 64 bit value which is on the stack, in 2 successsive DWords |
| 6823 | // eg 2 DWords at [ESP+0x10] |
| 6824 | |
| 6825 | struct |
| 6826 | { |
| 6827 | regNumber vls2BaseReg; |
| 6828 | NATIVE_OFFSET vls2Offset; |
| 6829 | } vlStk2; |
| 6830 | |
| 6831 | // VLT_FPSTK -- enregisterd TYP_DOUBLE (on the FP stack) |
| 6832 | // eg. ST(3). Actually it is ST("FPstkHeight - vpFpStk") |
| 6833 | |
| 6834 | struct |
| 6835 | { |
| 6836 | unsigned vlfReg; |
| 6837 | } vlFPstk; |
| 6838 | |
| 6839 | // VLT_FIXED_VA -- fixed argument of a varargs function. |
| 6840 | // The argument location depends on the size of the variable |
| 6841 | // arguments (...). Inspecting the VARARGS_HANDLE indicates the |
| 6842 | // location of the first arg. This argument can then be accessed |
| 6843 | // relative to the position of the first arg |
| 6844 | |
| 6845 | struct |
| 6846 | { |
| 6847 | unsigned vlfvOffset; |
| 6848 | } vlFixedVarArg; |
| 6849 | |
| 6850 | // VLT_MEMORY |
| 6851 | |
| 6852 | struct |
| 6853 | { |
| 6854 | void* rpValue; // pointer to the in-process |
| 6855 | // location of the value. |
| 6856 | } vlMemory; |
| 6857 | }; |
| 6858 | |
| 6859 | // Helper functions |
| 6860 | |
| 6861 | bool vlIsInReg(regNumber reg); |
| 6862 | bool vlIsOnStk(regNumber reg, signed offset); |
| 6863 | }; |
| 6864 | |
| 6865 | /*************************************************************************/ |
| 6866 | |
| 6867 | public: |
| 6868 | // Get handles |
| 6869 | |
| 6870 | void eeGetCallInfo(CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 6871 | CORINFO_RESOLVED_TOKEN* pConstrainedToken, |
| 6872 | CORINFO_CALLINFO_FLAGS flags, |
| 6873 | CORINFO_CALL_INFO* pResult); |
| 6874 | inline CORINFO_CALLINFO_FLAGS addVerifyFlag(CORINFO_CALLINFO_FLAGS flags); |
| 6875 | |
| 6876 | void eeGetFieldInfo(CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 6877 | CORINFO_ACCESS_FLAGS flags, |
| 6878 | CORINFO_FIELD_INFO* pResult); |
| 6879 | |
| 6880 | // Get the flags |
| 6881 | |
| 6882 | BOOL eeIsValueClass(CORINFO_CLASS_HANDLE clsHnd); |
| 6883 | |
| 6884 | #if defined(DEBUG) || defined(FEATURE_JIT_METHOD_PERF) || defined(FEATURE_SIMD) || defined(TRACK_LSRA_STATS) |
| 6885 | |
| 6886 | bool IsSuperPMIException(unsigned code) |
| 6887 | { |
| 6888 | // Copied from NDP\clr\src\ToolBox\SuperPMI\SuperPMI-Shared\ErrorHandling.h |
| 6889 | |
| 6890 | const unsigned EXCEPTIONCODE_DebugBreakorAV = 0xe0421000; |
| 6891 | const unsigned EXCEPTIONCODE_MC = 0xe0422000; |
| 6892 | const unsigned EXCEPTIONCODE_LWM = 0xe0423000; |
| 6893 | const unsigned EXCEPTIONCODE_SASM = 0xe0424000; |
| 6894 | const unsigned EXCEPTIONCODE_SSYM = 0xe0425000; |
| 6895 | const unsigned EXCEPTIONCODE_CALLUTILS = 0xe0426000; |
| 6896 | const unsigned EXCEPTIONCODE_TYPEUTILS = 0xe0427000; |
| 6897 | const unsigned EXCEPTIONCODE_ASSERT = 0xe0440000; |
| 6898 | |
| 6899 | switch (code) |
| 6900 | { |
| 6901 | case EXCEPTIONCODE_DebugBreakorAV: |
| 6902 | case EXCEPTIONCODE_MC: |
| 6903 | case EXCEPTIONCODE_LWM: |
| 6904 | case EXCEPTIONCODE_SASM: |
| 6905 | case EXCEPTIONCODE_SSYM: |
| 6906 | case EXCEPTIONCODE_CALLUTILS: |
| 6907 | case EXCEPTIONCODE_TYPEUTILS: |
| 6908 | case EXCEPTIONCODE_ASSERT: |
| 6909 | return true; |
| 6910 | default: |
| 6911 | return false; |
| 6912 | } |
| 6913 | } |
| 6914 | |
| 6915 | const char* eeGetMethodName(CORINFO_METHOD_HANDLE hnd, const char** className); |
| 6916 | const char* eeGetMethodFullName(CORINFO_METHOD_HANDLE hnd); |
| 6917 | |
| 6918 | bool eeIsNativeMethod(CORINFO_METHOD_HANDLE method); |
| 6919 | CORINFO_METHOD_HANDLE eeGetMethodHandleForNative(CORINFO_METHOD_HANDLE method); |
| 6920 | #endif |
| 6921 | |
| 6922 | var_types eeGetArgType(CORINFO_ARG_LIST_HANDLE list, CORINFO_SIG_INFO* sig); |
| 6923 | var_types eeGetArgType(CORINFO_ARG_LIST_HANDLE list, CORINFO_SIG_INFO* sig, bool* isPinned); |
| 6924 | unsigned eeGetArgSize(CORINFO_ARG_LIST_HANDLE list, CORINFO_SIG_INFO* sig); |
| 6925 | |
| 6926 | // VOM info, method sigs |
| 6927 | |
| 6928 | void eeGetSig(unsigned sigTok, |
| 6929 | CORINFO_MODULE_HANDLE scope, |
| 6930 | CORINFO_CONTEXT_HANDLE context, |
| 6931 | CORINFO_SIG_INFO* retSig); |
| 6932 | |
| 6933 | void eeGetCallSiteSig(unsigned sigTok, |
| 6934 | CORINFO_MODULE_HANDLE scope, |
| 6935 | CORINFO_CONTEXT_HANDLE context, |
| 6936 | CORINFO_SIG_INFO* retSig); |
| 6937 | |
| 6938 | void eeGetMethodSig(CORINFO_METHOD_HANDLE methHnd, CORINFO_SIG_INFO* retSig, CORINFO_CLASS_HANDLE owner = nullptr); |
| 6939 | |
| 6940 | // Method entry-points, instrs |
| 6941 | |
| 6942 | CORINFO_METHOD_HANDLE eeMarkNativeTarget(CORINFO_METHOD_HANDLE method); |
| 6943 | |
| 6944 | CORINFO_EE_INFO eeInfo; |
| 6945 | bool eeInfoInitialized; |
| 6946 | |
| 6947 | CORINFO_EE_INFO* eeGetEEInfo(); |
| 6948 | |
| 6949 | // Gets the offset of a SDArray's first element |
| 6950 | unsigned eeGetArrayDataOffset(var_types type); |
| 6951 | // Gets the offset of a MDArray's first element |
| 6952 | unsigned eeGetMDArrayDataOffset(var_types type, unsigned rank); |
| 6953 | |
| 6954 | GenTree* eeGetPInvokeCookie(CORINFO_SIG_INFO* szMetaSig); |
| 6955 | |
| 6956 | // Returns the page size for the target machine as reported by the EE. |
| 6957 | target_size_t eeGetPageSize() |
| 6958 | { |
| 6959 | return (target_size_t)eeGetEEInfo()->osPageSize; |
| 6960 | } |
| 6961 | |
| 6962 | // Returns the frame size at which we will generate a loop to probe the stack. |
| 6963 | target_size_t getVeryLargeFrameSize() |
| 6964 | { |
| 6965 | #ifdef _TARGET_ARM_ |
| 6966 | // The looping probe code is 40 bytes, whereas the straight-line probing for |
| 6967 | // the (0x2000..0x3000) case is 44, so use looping for anything 0x2000 bytes |
| 6968 | // or greater, to generate smaller code. |
| 6969 | return 2 * eeGetPageSize(); |
| 6970 | #else |
| 6971 | return 3 * eeGetPageSize(); |
| 6972 | #endif |
| 6973 | } |
| 6974 | |
| 6975 | //------------------------------------------------------------------------ |
| 6976 | // VirtualStubParam: virtual stub dispatch extra parameter (slot address). |
| 6977 | // |
| 6978 | // It represents Abi and target specific registers for the parameter. |
| 6979 | // |
| 6980 | class VirtualStubParamInfo |
| 6981 | { |
| 6982 | public: |
| 6983 | VirtualStubParamInfo(bool isCoreRTABI) |
| 6984 | { |
| 6985 | #if defined(_TARGET_X86_) |
| 6986 | reg = REG_EAX; |
| 6987 | regMask = RBM_EAX; |
| 6988 | #elif defined(_TARGET_AMD64_) |
| 6989 | if (isCoreRTABI) |
| 6990 | { |
| 6991 | reg = REG_R10; |
| 6992 | regMask = RBM_R10; |
| 6993 | } |
| 6994 | else |
| 6995 | { |
| 6996 | reg = REG_R11; |
| 6997 | regMask = RBM_R11; |
| 6998 | } |
| 6999 | #elif defined(_TARGET_ARM_) |
| 7000 | if (isCoreRTABI) |
| 7001 | { |
| 7002 | reg = REG_R12; |
| 7003 | regMask = RBM_R12; |
| 7004 | } |
| 7005 | else |
| 7006 | { |
| 7007 | reg = REG_R4; |
| 7008 | regMask = RBM_R4; |
| 7009 | } |
| 7010 | #elif defined(_TARGET_ARM64_) |
| 7011 | reg = REG_R11; |
| 7012 | regMask = RBM_R11; |
| 7013 | #else |
| 7014 | #error Unsupported or unset target architecture |
| 7015 | #endif |
| 7016 | } |
| 7017 | |
| 7018 | regNumber GetReg() const |
| 7019 | { |
| 7020 | return reg; |
| 7021 | } |
| 7022 | |
| 7023 | _regMask_enum GetRegMask() const |
| 7024 | { |
| 7025 | return regMask; |
| 7026 | } |
| 7027 | |
| 7028 | private: |
| 7029 | regNumber reg; |
| 7030 | _regMask_enum regMask; |
| 7031 | }; |
| 7032 | |
| 7033 | VirtualStubParamInfo* virtualStubParamInfo; |
| 7034 | |
| 7035 | bool IsTargetAbi(CORINFO_RUNTIME_ABI abi) |
| 7036 | { |
| 7037 | return eeGetEEInfo()->targetAbi == abi; |
| 7038 | } |
| 7039 | |
| 7040 | bool generateCFIUnwindCodes() |
| 7041 | { |
| 7042 | #if defined(_TARGET_UNIX_) |
| 7043 | return IsTargetAbi(CORINFO_CORERT_ABI); |
| 7044 | #else |
| 7045 | return false; |
| 7046 | #endif |
| 7047 | } |
| 7048 | |
| 7049 | // Debugging support - Line number info |
| 7050 | |
| 7051 | void eeGetStmtOffsets(); |
| 7052 | |
| 7053 | unsigned eeBoundariesCount; |
| 7054 | |
| 7055 | struct boundariesDsc |
| 7056 | { |
| 7057 | UNATIVE_OFFSET nativeIP; |
| 7058 | IL_OFFSET ilOffset; |
| 7059 | unsigned sourceReason; |
| 7060 | } * eeBoundaries; // Boundaries to report to EE |
| 7061 | void eeSetLIcount(unsigned count); |
| 7062 | void eeSetLIinfo(unsigned which, UNATIVE_OFFSET offs, unsigned srcIP, bool stkEmpty, bool callInstruction); |
| 7063 | void eeSetLIdone(); |
| 7064 | |
| 7065 | #ifdef DEBUG |
| 7066 | static void eeDispILOffs(IL_OFFSET offs); |
| 7067 | static void eeDispLineInfo(const boundariesDsc* line); |
| 7068 | void eeDispLineInfos(); |
| 7069 | #endif // DEBUG |
| 7070 | |
| 7071 | // Debugging support - Local var info |
| 7072 | |
| 7073 | void eeGetVars(); |
| 7074 | |
| 7075 | unsigned eeVarsCount; |
| 7076 | |
| 7077 | struct VarResultInfo |
| 7078 | { |
| 7079 | UNATIVE_OFFSET startOffset; |
| 7080 | UNATIVE_OFFSET endOffset; |
| 7081 | DWORD varNumber; |
| 7082 | siVarLoc loc; |
| 7083 | } * eeVars; |
| 7084 | void eeSetLVcount(unsigned count); |
| 7085 | void eeSetLVinfo(unsigned which, |
| 7086 | UNATIVE_OFFSET startOffs, |
| 7087 | UNATIVE_OFFSET length, |
| 7088 | unsigned varNum, |
| 7089 | unsigned LVnum, |
| 7090 | VarName namex, |
| 7091 | bool avail, |
| 7092 | const siVarLoc& loc); |
| 7093 | void eeSetLVdone(); |
| 7094 | |
| 7095 | #ifdef DEBUG |
| 7096 | void eeDispVar(ICorDebugInfo::NativeVarInfo* var); |
| 7097 | void eeDispVars(CORINFO_METHOD_HANDLE ftn, ULONG32 cVars, ICorDebugInfo::NativeVarInfo* vars); |
| 7098 | #endif // DEBUG |
| 7099 | |
| 7100 | // ICorJitInfo wrappers |
| 7101 | |
| 7102 | void eeReserveUnwindInfo(BOOL isFunclet, BOOL isColdCode, ULONG unwindSize); |
| 7103 | |
| 7104 | void eeAllocUnwindInfo(BYTE* pHotCode, |
| 7105 | BYTE* pColdCode, |
| 7106 | ULONG startOffset, |
| 7107 | ULONG endOffset, |
| 7108 | ULONG unwindSize, |
| 7109 | BYTE* pUnwindBlock, |
| 7110 | CorJitFuncKind funcKind); |
| 7111 | |
| 7112 | void eeSetEHcount(unsigned cEH); |
| 7113 | |
| 7114 | void eeSetEHinfo(unsigned EHnumber, const CORINFO_EH_CLAUSE* clause); |
| 7115 | |
| 7116 | WORD eeGetRelocTypeHint(void* target); |
| 7117 | |
| 7118 | // ICorStaticInfo wrapper functions |
| 7119 | |
| 7120 | bool eeTryResolveToken(CORINFO_RESOLVED_TOKEN* resolvedToken); |
| 7121 | |
| 7122 | #if defined(UNIX_AMD64_ABI) |
| 7123 | #ifdef DEBUG |
| 7124 | static void dumpSystemVClassificationType(SystemVClassificationType ct); |
| 7125 | #endif // DEBUG |
| 7126 | |
| 7127 | void eeGetSystemVAmd64PassStructInRegisterDescriptor( |
| 7128 | /*IN*/ CORINFO_CLASS_HANDLE structHnd, |
| 7129 | /*OUT*/ SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR* structPassInRegDescPtr); |
| 7130 | #endif // UNIX_AMD64_ABI |
| 7131 | |
| 7132 | template <typename ParamType> |
| 7133 | bool eeRunWithErrorTrap(void (*function)(ParamType*), ParamType* param) |
| 7134 | { |
| 7135 | return eeRunWithErrorTrapImp(reinterpret_cast<void (*)(void*)>(function), reinterpret_cast<void*>(param)); |
| 7136 | } |
| 7137 | |
| 7138 | bool eeRunWithErrorTrapImp(void (*function)(void*), void* param); |
| 7139 | |
| 7140 | // Utility functions |
| 7141 | |
| 7142 | const char* eeGetFieldName(CORINFO_FIELD_HANDLE fieldHnd, const char** classNamePtr = nullptr); |
| 7143 | |
| 7144 | #if defined(DEBUG) |
| 7145 | const wchar_t* eeGetCPString(size_t stringHandle); |
| 7146 | #endif |
| 7147 | |
| 7148 | const char* eeGetClassName(CORINFO_CLASS_HANDLE clsHnd); |
| 7149 | |
| 7150 | static CORINFO_METHOD_HANDLE eeFindHelper(unsigned helper); |
| 7151 | static CorInfoHelpFunc eeGetHelperNum(CORINFO_METHOD_HANDLE method); |
| 7152 | |
| 7153 | static fgWalkPreFn CountSharedStaticHelper; |
| 7154 | static bool IsSharedStaticHelper(GenTree* tree); |
| 7155 | static bool IsTreeAlwaysHoistable(GenTree* tree); |
| 7156 | static bool IsGcSafePoint(GenTree* tree); |
| 7157 | |
| 7158 | static CORINFO_FIELD_HANDLE eeFindJitDataOffs(unsigned jitDataOffs); |
| 7159 | // returns true/false if 'field' is a Jit Data offset |
| 7160 | static bool eeIsJitDataOffs(CORINFO_FIELD_HANDLE field); |
| 7161 | // returns a number < 0 if 'field' is not a Jit Data offset, otherwise the data offset (limited to 2GB) |
| 7162 | static int eeGetJitDataOffs(CORINFO_FIELD_HANDLE field); |
| 7163 | |
| 7164 | /*****************************************************************************/ |
| 7165 | |
| 7166 | /* |
| 7167 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7168 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7169 | XX XX |
| 7170 | XX CodeGenerator XX |
| 7171 | XX XX |
| 7172 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7173 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7174 | */ |
| 7175 | |
| 7176 | public: |
| 7177 | CodeGenInterface* codeGen; |
| 7178 | |
| 7179 | // The following holds information about instr offsets in terms of generated code. |
| 7180 | |
| 7181 | struct IPmappingDsc |
| 7182 | { |
| 7183 | IPmappingDsc* ipmdNext; // next line# record |
| 7184 | IL_OFFSETX ipmdILoffsx; // the instr offset |
| 7185 | emitLocation ipmdNativeLoc; // the emitter location of the native code corresponding to the IL offset |
| 7186 | bool ipmdIsLabel; // Can this code be a branch label? |
| 7187 | }; |
| 7188 | |
| 7189 | // Record the instr offset mapping to the generated code |
| 7190 | |
| 7191 | IPmappingDsc* genIPmappingList; |
| 7192 | IPmappingDsc* genIPmappingLast; |
| 7193 | |
| 7194 | // Managed RetVal - A side hash table meant to record the mapping from a |
| 7195 | // GT_CALL node to its IL offset. This info is used to emit sequence points |
| 7196 | // that can be used by debugger to determine the native offset at which the |
| 7197 | // managed RetVal will be available. |
| 7198 | // |
| 7199 | // In fact we can store IL offset in a GT_CALL node. This was ruled out in |
| 7200 | // favor of a side table for two reasons: 1) We need IL offset for only those |
| 7201 | // GT_CALL nodes (created during importation) that correspond to an IL call and |
| 7202 | // whose return type is other than TYP_VOID. 2) GT_CALL node is a frequently used |
| 7203 | // structure and IL offset is needed only when generating debuggable code. Therefore |
| 7204 | // it is desirable to avoid memory size penalty in retail scenarios. |
| 7205 | typedef JitHashTable<GenTree*, JitPtrKeyFuncs<GenTree>, IL_OFFSETX> CallSiteILOffsetTable; |
| 7206 | CallSiteILOffsetTable* genCallSite2ILOffsetMap; |
| 7207 | |
| 7208 | unsigned genReturnLocal; // Local number for the return value when applicable. |
| 7209 | BasicBlock* genReturnBB; // jumped to when not optimizing for speed. |
| 7210 | |
| 7211 | // The following properties are part of CodeGenContext. Getters are provided here for |
| 7212 | // convenience and backward compatibility, but the properties can only be set by invoking |
| 7213 | // the setter on CodeGenContext directly. |
| 7214 | |
| 7215 | __declspec(property(get = getEmitter)) emitter* genEmitter; |
| 7216 | emitter* getEmitter() |
| 7217 | { |
| 7218 | return codeGen->getEmitter(); |
| 7219 | } |
| 7220 | |
| 7221 | bool isFramePointerUsed() |
| 7222 | { |
| 7223 | return codeGen->isFramePointerUsed(); |
| 7224 | } |
| 7225 | |
| 7226 | __declspec(property(get = getInterruptible, put = setInterruptible)) bool genInterruptible; |
| 7227 | bool getInterruptible() |
| 7228 | { |
| 7229 | return codeGen->genInterruptible; |
| 7230 | } |
| 7231 | void setInterruptible(bool value) |
| 7232 | { |
| 7233 | codeGen->setInterruptible(value); |
| 7234 | } |
| 7235 | |
| 7236 | #ifdef _TARGET_ARMARCH_ |
| 7237 | __declspec(property(get = getHasTailCalls, put = setHasTailCalls)) bool hasTailCalls; |
| 7238 | bool getHasTailCalls() |
| 7239 | { |
| 7240 | return codeGen->hasTailCalls; |
| 7241 | } |
| 7242 | void setHasTailCalls(bool value) |
| 7243 | { |
| 7244 | codeGen->setHasTailCalls(value); |
| 7245 | } |
| 7246 | #endif // _TARGET_ARMARCH_ |
| 7247 | |
| 7248 | #if DOUBLE_ALIGN |
| 7249 | const bool genDoubleAlign() |
| 7250 | { |
| 7251 | return codeGen->doDoubleAlign(); |
| 7252 | } |
| 7253 | DWORD getCanDoubleAlign(); |
| 7254 | bool shouldDoubleAlign(unsigned refCntStk, |
| 7255 | unsigned refCntReg, |
| 7256 | unsigned refCntWtdReg, |
| 7257 | unsigned refCntStkParam, |
| 7258 | unsigned refCntWtdStkDbl); |
| 7259 | #endif // DOUBLE_ALIGN |
| 7260 | |
| 7261 | __declspec(property(get = getFullPtrRegMap, put = setFullPtrRegMap)) bool genFullPtrRegMap; |
| 7262 | bool getFullPtrRegMap() |
| 7263 | { |
| 7264 | return codeGen->genFullPtrRegMap; |
| 7265 | } |
| 7266 | void setFullPtrRegMap(bool value) |
| 7267 | { |
| 7268 | codeGen->setFullPtrRegMap(value); |
| 7269 | } |
| 7270 | |
| 7271 | // Things that MAY belong either in CodeGen or CodeGenContext |
| 7272 | |
| 7273 | #if FEATURE_EH_FUNCLETS |
| 7274 | FuncInfoDsc* compFuncInfos; |
| 7275 | unsigned short compCurrFuncIdx; |
| 7276 | unsigned short compFuncInfoCount; |
| 7277 | |
| 7278 | unsigned short compFuncCount() |
| 7279 | { |
| 7280 | assert(fgFuncletsCreated); |
| 7281 | return compFuncInfoCount; |
| 7282 | } |
| 7283 | |
| 7284 | #else // !FEATURE_EH_FUNCLETS |
| 7285 | |
| 7286 | // This is a no-op when there are no funclets! |
| 7287 | void genUpdateCurrentFunclet(BasicBlock* block) |
| 7288 | { |
| 7289 | return; |
| 7290 | } |
| 7291 | |
| 7292 | FuncInfoDsc compFuncInfoRoot; |
| 7293 | |
| 7294 | static const unsigned compCurrFuncIdx = 0; |
| 7295 | |
| 7296 | unsigned short compFuncCount() |
| 7297 | { |
| 7298 | return 1; |
| 7299 | } |
| 7300 | |
| 7301 | #endif // !FEATURE_EH_FUNCLETS |
| 7302 | |
| 7303 | FuncInfoDsc* funCurrentFunc(); |
| 7304 | void funSetCurrentFunc(unsigned funcIdx); |
| 7305 | FuncInfoDsc* funGetFunc(unsigned funcIdx); |
| 7306 | unsigned int funGetFuncIdx(BasicBlock* block); |
| 7307 | |
| 7308 | // LIVENESS |
| 7309 | |
| 7310 | VARSET_TP compCurLife; // current live variables |
| 7311 | GenTree* compCurLifeTree; // node after which compCurLife has been computed |
| 7312 | |
| 7313 | template <bool ForCodeGen> |
| 7314 | void compChangeLife(VARSET_VALARG_TP newLife); |
| 7315 | |
| 7316 | void genChangeLife(VARSET_VALARG_TP newLife) |
| 7317 | { |
| 7318 | compChangeLife</*ForCodeGen*/ true>(newLife); |
| 7319 | } |
| 7320 | |
| 7321 | template <bool ForCodeGen> |
| 7322 | inline void compUpdateLife(VARSET_VALARG_TP newLife); |
| 7323 | |
| 7324 | // Gets a register mask that represent the kill set for a helper call since |
| 7325 | // not all JIT Helper calls follow the standard ABI on the target architecture. |
| 7326 | regMaskTP compHelperCallKillSet(CorInfoHelpFunc helper); |
| 7327 | |
| 7328 | // Gets a register mask that represent the kill set for a NoGC helper call. |
| 7329 | regMaskTP compNoGCHelperCallKillSet(CorInfoHelpFunc helper); |
| 7330 | |
| 7331 | #ifdef _TARGET_ARM_ |
| 7332 | // Requires that "varDsc" be a promoted struct local variable being passed as an argument, beginning at |
| 7333 | // "firstArgRegNum", which is assumed to have already been aligned to the register alignment restriction of the |
| 7334 | // struct type. Adds bits to "*pArgSkippedRegMask" for any argument registers *not* used in passing "varDsc" -- |
| 7335 | // i.e., internal "holes" caused by internal alignment constraints. For example, if the struct contained an int and |
| 7336 | // a double, and we at R0 (on ARM), then R1 would be skipped, and the bit for R1 would be added to the mask. |
| 7337 | void fgAddSkippedRegsInPromotedStructArg(LclVarDsc* varDsc, unsigned firstArgRegNum, regMaskTP* pArgSkippedRegMask); |
| 7338 | #endif // _TARGET_ARM_ |
| 7339 | |
| 7340 | // If "tree" is a indirection (GT_IND, or GT_OBJ) whose arg is an ADDR, whose arg is a LCL_VAR, return that LCL_VAR |
| 7341 | // node, else NULL. |
| 7342 | static GenTree* fgIsIndirOfAddrOfLocal(GenTree* tree); |
| 7343 | |
| 7344 | // This map is indexed by GT_OBJ nodes that are address of promoted struct variables, which |
| 7345 | // have been annotated with the GTF_VAR_DEATH flag. If such a node is *not* mapped in this |
| 7346 | // table, one may assume that all the (tracked) field vars die at this GT_OBJ. Otherwise, |
| 7347 | // the node maps to a pointer to a VARSET_TP, containing set bits for each of the tracked field |
| 7348 | // vars of the promoted struct local that go dead at the given node (the set bits are the bits |
| 7349 | // for the tracked var indices of the field vars, as in a live var set). |
| 7350 | // |
| 7351 | // The map is allocated on demand so all map operations should use one of the following three |
| 7352 | // wrapper methods. |
| 7353 | |
| 7354 | NodeToVarsetPtrMap* m_promotedStructDeathVars; |
| 7355 | |
| 7356 | NodeToVarsetPtrMap* GetPromotedStructDeathVars() |
| 7357 | { |
| 7358 | if (m_promotedStructDeathVars == nullptr) |
| 7359 | { |
| 7360 | m_promotedStructDeathVars = new (getAllocator()) NodeToVarsetPtrMap(getAllocator()); |
| 7361 | } |
| 7362 | return m_promotedStructDeathVars; |
| 7363 | } |
| 7364 | |
| 7365 | void ClearPromotedStructDeathVars() |
| 7366 | { |
| 7367 | if (m_promotedStructDeathVars != nullptr) |
| 7368 | { |
| 7369 | m_promotedStructDeathVars->RemoveAll(); |
| 7370 | } |
| 7371 | } |
| 7372 | |
| 7373 | bool LookupPromotedStructDeathVars(GenTree* tree, VARSET_TP** bits) |
| 7374 | { |
| 7375 | bits = nullptr; |
| 7376 | bool result = false; |
| 7377 | |
| 7378 | if (m_promotedStructDeathVars != nullptr) |
| 7379 | { |
| 7380 | result = m_promotedStructDeathVars->Lookup(tree, bits); |
| 7381 | } |
| 7382 | |
| 7383 | return result; |
| 7384 | } |
| 7385 | |
| 7386 | /* |
| 7387 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7388 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7389 | XX XX |
| 7390 | XX UnwindInfo XX |
| 7391 | XX XX |
| 7392 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7393 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7394 | */ |
| 7395 | |
| 7396 | #if !defined(__GNUC__) |
| 7397 | #pragma region Unwind information |
| 7398 | #endif |
| 7399 | |
| 7400 | public: |
| 7401 | // |
| 7402 | // Infrastructure functions: start/stop/reserve/emit. |
| 7403 | // |
| 7404 | |
| 7405 | void unwindBegProlog(); |
| 7406 | void unwindEndProlog(); |
| 7407 | void unwindBegEpilog(); |
| 7408 | void unwindEndEpilog(); |
| 7409 | void unwindReserve(); |
| 7410 | void unwindEmit(void* pHotCode, void* pColdCode); |
| 7411 | |
| 7412 | // |
| 7413 | // Specific unwind information functions: called by code generation to indicate a particular |
| 7414 | // prolog or epilog unwindable instruction has been generated. |
| 7415 | // |
| 7416 | |
| 7417 | void unwindPush(regNumber reg); |
| 7418 | void unwindAllocStack(unsigned size); |
| 7419 | void unwindSetFrameReg(regNumber reg, unsigned offset); |
| 7420 | void unwindSaveReg(regNumber reg, unsigned offset); |
| 7421 | |
| 7422 | #if defined(_TARGET_ARM_) |
| 7423 | void unwindPushMaskInt(regMaskTP mask); |
| 7424 | void unwindPushMaskFloat(regMaskTP mask); |
| 7425 | void unwindPopMaskInt(regMaskTP mask); |
| 7426 | void unwindPopMaskFloat(regMaskTP mask); |
| 7427 | void unwindBranch16(); // The epilog terminates with a 16-bit branch (e.g., "bx lr") |
| 7428 | void unwindNop(unsigned codeSizeInBytes); // Generate unwind NOP code. 'codeSizeInBytes' is 2 or 4 bytes. Only |
| 7429 | // called via unwindPadding(). |
| 7430 | void unwindPadding(); // Generate a sequence of unwind NOP codes representing instructions between the last |
| 7431 | // instruction and the current location. |
| 7432 | #endif // _TARGET_ARM_ |
| 7433 | |
| 7434 | #if defined(_TARGET_ARM64_) |
| 7435 | void unwindNop(); |
| 7436 | void unwindPadding(); // Generate a sequence of unwind NOP codes representing instructions between the last |
| 7437 | // instruction and the current location. |
| 7438 | void unwindSaveReg(regNumber reg, int offset); // str reg, [sp, #offset] |
| 7439 | void unwindSaveRegPreindexed(regNumber reg, int offset); // str reg, [sp, #offset]! |
| 7440 | void unwindSaveRegPair(regNumber reg1, regNumber reg2, int offset); // stp reg1, reg2, [sp, #offset] |
| 7441 | void unwindSaveRegPairPreindexed(regNumber reg1, regNumber reg2, int offset); // stp reg1, reg2, [sp, #offset]! |
| 7442 | void unwindSaveNext(); // unwind code: save_next |
| 7443 | void unwindReturn(regNumber reg); // ret lr |
| 7444 | #endif // defined(_TARGET_ARM64_) |
| 7445 | |
| 7446 | // |
| 7447 | // Private "helper" functions for the unwind implementation. |
| 7448 | // |
| 7449 | |
| 7450 | private: |
| 7451 | #if FEATURE_EH_FUNCLETS |
| 7452 | void unwindGetFuncLocations(FuncInfoDsc* func, |
| 7453 | bool getHotSectionData, |
| 7454 | /* OUT */ emitLocation** ppStartLoc, |
| 7455 | /* OUT */ emitLocation** ppEndLoc); |
| 7456 | #endif // FEATURE_EH_FUNCLETS |
| 7457 | |
| 7458 | void unwindReserveFunc(FuncInfoDsc* func); |
| 7459 | void unwindEmitFunc(FuncInfoDsc* func, void* pHotCode, void* pColdCode); |
| 7460 | |
| 7461 | #if defined(_TARGET_AMD64_) || (defined(_TARGET_X86_) && FEATURE_EH_FUNCLETS) |
| 7462 | |
| 7463 | void unwindReserveFuncHelper(FuncInfoDsc* func, bool isHotCode); |
| 7464 | void unwindEmitFuncHelper(FuncInfoDsc* func, void* pHotCode, void* pColdCode, bool isHotCode); |
| 7465 | |
| 7466 | #endif // _TARGET_AMD64_ || (_TARGET_X86_ && FEATURE_EH_FUNCLETS) |
| 7467 | |
| 7468 | UNATIVE_OFFSET unwindGetCurrentOffset(FuncInfoDsc* func); |
| 7469 | |
| 7470 | #if defined(_TARGET_AMD64_) |
| 7471 | |
| 7472 | void unwindBegPrologWindows(); |
| 7473 | void unwindPushWindows(regNumber reg); |
| 7474 | void unwindAllocStackWindows(unsigned size); |
| 7475 | void unwindSetFrameRegWindows(regNumber reg, unsigned offset); |
| 7476 | void unwindSaveRegWindows(regNumber reg, unsigned offset); |
| 7477 | |
| 7478 | #ifdef UNIX_AMD64_ABI |
| 7479 | void unwindSaveRegCFI(regNumber reg, unsigned offset); |
| 7480 | #endif // UNIX_AMD64_ABI |
| 7481 | #elif defined(_TARGET_ARM_) |
| 7482 | |
| 7483 | void unwindPushPopMaskInt(regMaskTP mask, bool useOpsize16); |
| 7484 | void unwindPushPopMaskFloat(regMaskTP mask); |
| 7485 | |
| 7486 | #endif // _TARGET_ARM_ |
| 7487 | |
| 7488 | #if defined(_TARGET_UNIX_) |
| 7489 | int mapRegNumToDwarfReg(regNumber reg); |
| 7490 | void createCfiCode(FuncInfoDsc* func, UCHAR codeOffset, UCHAR opcode, USHORT dwarfReg, INT offset = 0); |
| 7491 | void unwindPushPopCFI(regNumber reg); |
| 7492 | void unwindBegPrologCFI(); |
| 7493 | void unwindPushPopMaskCFI(regMaskTP regMask, bool isFloat); |
| 7494 | void unwindAllocStackCFI(unsigned size); |
| 7495 | void unwindSetFrameRegCFI(regNumber reg, unsigned offset); |
| 7496 | void unwindEmitFuncCFI(FuncInfoDsc* func, void* pHotCode, void* pColdCode); |
| 7497 | #ifdef DEBUG |
| 7498 | void DumpCfiInfo(bool isHotCode, |
| 7499 | UNATIVE_OFFSET startOffset, |
| 7500 | UNATIVE_OFFSET endOffset, |
| 7501 | DWORD cfiCodeBytes, |
| 7502 | const CFI_CODE* const pCfiCode); |
| 7503 | #endif |
| 7504 | |
| 7505 | #endif // _TARGET_UNIX_ |
| 7506 | |
| 7507 | #if !defined(__GNUC__) |
| 7508 | #pragma endregion // Note: region is NOT under !defined(__GNUC__) |
| 7509 | #endif |
| 7510 | |
| 7511 | /* |
| 7512 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7513 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7514 | XX XX |
| 7515 | XX SIMD XX |
| 7516 | XX XX |
| 7517 | XX Info about SIMD types, methods and the SIMD assembly (i.e. the assembly XX |
| 7518 | XX that contains the distinguished, well-known SIMD type definitions). XX |
| 7519 | XX XX |
| 7520 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7521 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7522 | */ |
| 7523 | |
| 7524 | // Get highest available level for SIMD codegen |
| 7525 | SIMDLevel getSIMDSupportLevel() |
| 7526 | { |
| 7527 | #if defined(_TARGET_XARCH_) |
| 7528 | if (compSupports(InstructionSet_AVX2)) |
| 7529 | { |
| 7530 | return SIMD_AVX2_Supported; |
| 7531 | } |
| 7532 | |
| 7533 | if (compSupports(InstructionSet_SSE42)) |
| 7534 | { |
| 7535 | return SIMD_SSE4_Supported; |
| 7536 | } |
| 7537 | |
| 7538 | // min bar is SSE2 |
| 7539 | return SIMD_SSE2_Supported; |
| 7540 | #else |
| 7541 | assert(!"Available instruction set(s) for SIMD codegen is not defined for target arch" ); |
| 7542 | unreached(); |
| 7543 | return SIMD_Not_Supported; |
| 7544 | #endif |
| 7545 | } |
| 7546 | |
| 7547 | #ifdef FEATURE_SIMD |
| 7548 | |
| 7549 | // Should we support SIMD intrinsics? |
| 7550 | bool featureSIMD; |
| 7551 | |
| 7552 | // Have we identified any SIMD types? |
| 7553 | // This is currently used by struct promotion to avoid getting type information for a struct |
| 7554 | // field to see if it is a SIMD type, if we haven't seen any SIMD types or operations in |
| 7555 | // the method. |
| 7556 | bool _usesSIMDTypes; |
| 7557 | bool usesSIMDTypes() |
| 7558 | { |
| 7559 | return _usesSIMDTypes; |
| 7560 | } |
| 7561 | void setUsesSIMDTypes(bool value) |
| 7562 | { |
| 7563 | _usesSIMDTypes = value; |
| 7564 | } |
| 7565 | |
| 7566 | // This is a temp lclVar allocated on the stack as TYP_SIMD. It is used to implement intrinsics |
| 7567 | // that require indexed access to the individual fields of the vector, which is not well supported |
| 7568 | // by the hardware. It is allocated when/if such situations are encountered during Lowering. |
| 7569 | unsigned lvaSIMDInitTempVarNum; |
| 7570 | |
| 7571 | struct SIMDHandlesCache |
| 7572 | { |
| 7573 | // SIMD Types |
| 7574 | CORINFO_CLASS_HANDLE SIMDFloatHandle; |
| 7575 | CORINFO_CLASS_HANDLE SIMDDoubleHandle; |
| 7576 | CORINFO_CLASS_HANDLE SIMDIntHandle; |
| 7577 | CORINFO_CLASS_HANDLE SIMDUShortHandle; |
| 7578 | CORINFO_CLASS_HANDLE SIMDUByteHandle; |
| 7579 | CORINFO_CLASS_HANDLE SIMDShortHandle; |
| 7580 | CORINFO_CLASS_HANDLE SIMDByteHandle; |
| 7581 | CORINFO_CLASS_HANDLE SIMDLongHandle; |
| 7582 | CORINFO_CLASS_HANDLE SIMDUIntHandle; |
| 7583 | CORINFO_CLASS_HANDLE SIMDULongHandle; |
| 7584 | CORINFO_CLASS_HANDLE SIMDVector2Handle; |
| 7585 | CORINFO_CLASS_HANDLE SIMDVector3Handle; |
| 7586 | CORINFO_CLASS_HANDLE SIMDVector4Handle; |
| 7587 | CORINFO_CLASS_HANDLE SIMDVectorHandle; |
| 7588 | |
| 7589 | #ifdef FEATURE_HW_INTRINSICS |
| 7590 | #if defined(_TARGET_ARM64_) |
| 7591 | CORINFO_CLASS_HANDLE Vector64FloatHandle; |
| 7592 | CORINFO_CLASS_HANDLE Vector64IntHandle; |
| 7593 | CORINFO_CLASS_HANDLE Vector64UShortHandle; |
| 7594 | CORINFO_CLASS_HANDLE Vector64UByteHandle; |
| 7595 | CORINFO_CLASS_HANDLE Vector64ShortHandle; |
| 7596 | CORINFO_CLASS_HANDLE Vector64ByteHandle; |
| 7597 | CORINFO_CLASS_HANDLE Vector64UIntHandle; |
| 7598 | #endif // defined(_TARGET_ARM64_) |
| 7599 | CORINFO_CLASS_HANDLE Vector128FloatHandle; |
| 7600 | CORINFO_CLASS_HANDLE Vector128DoubleHandle; |
| 7601 | CORINFO_CLASS_HANDLE Vector128IntHandle; |
| 7602 | CORINFO_CLASS_HANDLE Vector128UShortHandle; |
| 7603 | CORINFO_CLASS_HANDLE Vector128UByteHandle; |
| 7604 | CORINFO_CLASS_HANDLE Vector128ShortHandle; |
| 7605 | CORINFO_CLASS_HANDLE Vector128ByteHandle; |
| 7606 | CORINFO_CLASS_HANDLE Vector128LongHandle; |
| 7607 | CORINFO_CLASS_HANDLE Vector128UIntHandle; |
| 7608 | CORINFO_CLASS_HANDLE Vector128ULongHandle; |
| 7609 | #if defined(_TARGET_XARCH_) |
| 7610 | CORINFO_CLASS_HANDLE Vector256FloatHandle; |
| 7611 | CORINFO_CLASS_HANDLE Vector256DoubleHandle; |
| 7612 | CORINFO_CLASS_HANDLE Vector256IntHandle; |
| 7613 | CORINFO_CLASS_HANDLE Vector256UShortHandle; |
| 7614 | CORINFO_CLASS_HANDLE Vector256UByteHandle; |
| 7615 | CORINFO_CLASS_HANDLE Vector256ShortHandle; |
| 7616 | CORINFO_CLASS_HANDLE Vector256ByteHandle; |
| 7617 | CORINFO_CLASS_HANDLE Vector256LongHandle; |
| 7618 | CORINFO_CLASS_HANDLE Vector256UIntHandle; |
| 7619 | CORINFO_CLASS_HANDLE Vector256ULongHandle; |
| 7620 | #endif // defined(_TARGET_XARCH_) |
| 7621 | #endif // FEATURE_HW_INTRINSICS |
| 7622 | |
| 7623 | SIMDHandlesCache() |
| 7624 | { |
| 7625 | memset(this, 0, sizeof(*this)); |
| 7626 | } |
| 7627 | }; |
| 7628 | |
| 7629 | SIMDHandlesCache* m_simdHandleCache; |
| 7630 | |
| 7631 | // Get an appropriate "zero" for the given type and class handle. |
| 7632 | GenTree* gtGetSIMDZero(var_types simdType, var_types baseType, CORINFO_CLASS_HANDLE simdHandle); |
| 7633 | |
| 7634 | // Get the handle for a SIMD type. |
| 7635 | CORINFO_CLASS_HANDLE gtGetStructHandleForSIMD(var_types simdType, var_types simdBaseType) |
| 7636 | { |
| 7637 | if (m_simdHandleCache == nullptr) |
| 7638 | { |
| 7639 | // This may happen if the JIT generates SIMD node on its own, without importing them. |
| 7640 | // Otherwise getBaseTypeAndSizeOfSIMDType should have created the cache. |
| 7641 | return NO_CLASS_HANDLE; |
| 7642 | } |
| 7643 | |
| 7644 | if (simdBaseType == TYP_FLOAT) |
| 7645 | { |
| 7646 | switch (simdType) |
| 7647 | { |
| 7648 | case TYP_SIMD8: |
| 7649 | return m_simdHandleCache->SIMDVector2Handle; |
| 7650 | case TYP_SIMD12: |
| 7651 | return m_simdHandleCache->SIMDVector3Handle; |
| 7652 | case TYP_SIMD16: |
| 7653 | if ((getSIMDVectorType() == TYP_SIMD32) || |
| 7654 | (m_simdHandleCache->SIMDVector4Handle != NO_CLASS_HANDLE)) |
| 7655 | { |
| 7656 | return m_simdHandleCache->SIMDVector4Handle; |
| 7657 | } |
| 7658 | break; |
| 7659 | case TYP_SIMD32: |
| 7660 | break; |
| 7661 | default: |
| 7662 | unreached(); |
| 7663 | } |
| 7664 | } |
| 7665 | assert(emitTypeSize(simdType) <= maxSIMDStructBytes()); |
| 7666 | switch (simdBaseType) |
| 7667 | { |
| 7668 | case TYP_FLOAT: |
| 7669 | return m_simdHandleCache->SIMDFloatHandle; |
| 7670 | case TYP_DOUBLE: |
| 7671 | return m_simdHandleCache->SIMDDoubleHandle; |
| 7672 | case TYP_INT: |
| 7673 | return m_simdHandleCache->SIMDIntHandle; |
| 7674 | case TYP_USHORT: |
| 7675 | return m_simdHandleCache->SIMDUShortHandle; |
| 7676 | case TYP_UBYTE: |
| 7677 | return m_simdHandleCache->SIMDUByteHandle; |
| 7678 | case TYP_SHORT: |
| 7679 | return m_simdHandleCache->SIMDShortHandle; |
| 7680 | case TYP_BYTE: |
| 7681 | return m_simdHandleCache->SIMDByteHandle; |
| 7682 | case TYP_LONG: |
| 7683 | return m_simdHandleCache->SIMDLongHandle; |
| 7684 | case TYP_UINT: |
| 7685 | return m_simdHandleCache->SIMDUIntHandle; |
| 7686 | case TYP_ULONG: |
| 7687 | return m_simdHandleCache->SIMDULongHandle; |
| 7688 | default: |
| 7689 | assert(!"Didn't find a class handle for simdType" ); |
| 7690 | } |
| 7691 | return NO_CLASS_HANDLE; |
| 7692 | } |
| 7693 | |
| 7694 | // Returns true if this is a SIMD type that should be considered an opaque |
| 7695 | // vector type (i.e. do not analyze or promote its fields). |
| 7696 | // Note that all but the fixed vector types are opaque, even though they may |
| 7697 | // actually be declared as having fields. |
| 7698 | bool isOpaqueSIMDType(CORINFO_CLASS_HANDLE structHandle) |
| 7699 | { |
| 7700 | return ((m_simdHandleCache != nullptr) && (structHandle != m_simdHandleCache->SIMDVector2Handle) && |
| 7701 | (structHandle != m_simdHandleCache->SIMDVector3Handle) && |
| 7702 | (structHandle != m_simdHandleCache->SIMDVector4Handle)); |
| 7703 | } |
| 7704 | |
| 7705 | // Returns true if the tree corresponds to a TYP_SIMD lcl var. |
| 7706 | // Note that both SIMD vector args and locals are mared as lvSIMDType = true, but |
| 7707 | // type of an arg node is TYP_BYREF and a local node is TYP_SIMD or TYP_STRUCT. |
| 7708 | bool isSIMDTypeLocal(GenTree* tree) |
| 7709 | { |
| 7710 | return tree->OperIsLocal() && lvaTable[tree->AsLclVarCommon()->gtLclNum].lvSIMDType; |
| 7711 | } |
| 7712 | |
| 7713 | // Returns true if the lclVar is an opaque SIMD type. |
| 7714 | bool isOpaqueSIMDLclVar(LclVarDsc* varDsc) |
| 7715 | { |
| 7716 | if (!varDsc->lvSIMDType) |
| 7717 | { |
| 7718 | return false; |
| 7719 | } |
| 7720 | return isOpaqueSIMDType(varDsc->lvVerTypeInfo.GetClassHandle()); |
| 7721 | } |
| 7722 | |
| 7723 | // Returns true if the type of the tree is a byref of TYP_SIMD |
| 7724 | bool isAddrOfSIMDType(GenTree* tree) |
| 7725 | { |
| 7726 | if (tree->TypeGet() == TYP_BYREF || tree->TypeGet() == TYP_I_IMPL) |
| 7727 | { |
| 7728 | switch (tree->OperGet()) |
| 7729 | { |
| 7730 | case GT_ADDR: |
| 7731 | return varTypeIsSIMD(tree->gtGetOp1()); |
| 7732 | |
| 7733 | case GT_LCL_VAR_ADDR: |
| 7734 | return lvaTable[tree->AsLclVarCommon()->gtLclNum].lvSIMDType; |
| 7735 | |
| 7736 | default: |
| 7737 | return isSIMDTypeLocal(tree); |
| 7738 | } |
| 7739 | } |
| 7740 | |
| 7741 | return false; |
| 7742 | } |
| 7743 | |
| 7744 | static bool isRelOpSIMDIntrinsic(SIMDIntrinsicID intrinsicId) |
| 7745 | { |
| 7746 | return (intrinsicId == SIMDIntrinsicEqual || intrinsicId == SIMDIntrinsicLessThan || |
| 7747 | intrinsicId == SIMDIntrinsicLessThanOrEqual || intrinsicId == SIMDIntrinsicGreaterThan || |
| 7748 | intrinsicId == SIMDIntrinsicGreaterThanOrEqual); |
| 7749 | } |
| 7750 | |
| 7751 | // Returns base type of a TYP_SIMD local. |
| 7752 | // Returns TYP_UNKNOWN if the local is not TYP_SIMD. |
| 7753 | var_types getBaseTypeOfSIMDLocal(GenTree* tree) |
| 7754 | { |
| 7755 | if (isSIMDTypeLocal(tree)) |
| 7756 | { |
| 7757 | return lvaTable[tree->AsLclVarCommon()->gtLclNum].lvBaseType; |
| 7758 | } |
| 7759 | |
| 7760 | return TYP_UNKNOWN; |
| 7761 | } |
| 7762 | |
| 7763 | bool isSIMDClass(CORINFO_CLASS_HANDLE clsHnd) |
| 7764 | { |
| 7765 | return info.compCompHnd->isInSIMDModule(clsHnd); |
| 7766 | } |
| 7767 | |
| 7768 | bool isIntrinsicType(CORINFO_CLASS_HANDLE clsHnd) |
| 7769 | { |
| 7770 | return (info.compCompHnd->getClassAttribs(clsHnd) & CORINFO_FLG_INTRINSIC_TYPE) != 0; |
| 7771 | } |
| 7772 | |
| 7773 | const char* getClassNameFromMetadata(CORINFO_CLASS_HANDLE cls, const char** namespaceName) |
| 7774 | { |
| 7775 | return info.compCompHnd->getClassNameFromMetadata(cls, namespaceName); |
| 7776 | } |
| 7777 | |
| 7778 | CORINFO_CLASS_HANDLE getTypeInstantiationArgument(CORINFO_CLASS_HANDLE cls, unsigned index) |
| 7779 | { |
| 7780 | return info.compCompHnd->getTypeInstantiationArgument(cls, index); |
| 7781 | } |
| 7782 | |
| 7783 | bool isSIMDClass(typeInfo* pTypeInfo) |
| 7784 | { |
| 7785 | return pTypeInfo->IsStruct() && isSIMDClass(pTypeInfo->GetClassHandleForValueClass()); |
| 7786 | } |
| 7787 | |
| 7788 | bool isHWSIMDClass(CORINFO_CLASS_HANDLE clsHnd) |
| 7789 | { |
| 7790 | #ifdef FEATURE_HW_INTRINSICS |
| 7791 | if (isIntrinsicType(clsHnd)) |
| 7792 | { |
| 7793 | const char* namespaceName = nullptr; |
| 7794 | (void)getClassNameFromMetadata(clsHnd, &namespaceName); |
| 7795 | return strcmp(namespaceName, "System.Runtime.Intrinsics" ) == 0; |
| 7796 | } |
| 7797 | #endif // FEATURE_HW_INTRINSICS |
| 7798 | return false; |
| 7799 | } |
| 7800 | |
| 7801 | bool isHWSIMDClass(typeInfo* pTypeInfo) |
| 7802 | { |
| 7803 | #ifdef FEATURE_HW_INTRINSICS |
| 7804 | return pTypeInfo->IsStruct() && isHWSIMDClass(pTypeInfo->GetClassHandleForValueClass()); |
| 7805 | #else |
| 7806 | return false; |
| 7807 | #endif |
| 7808 | } |
| 7809 | |
| 7810 | bool isSIMDorHWSIMDClass(CORINFO_CLASS_HANDLE clsHnd) |
| 7811 | { |
| 7812 | return isSIMDClass(clsHnd) || isHWSIMDClass(clsHnd); |
| 7813 | } |
| 7814 | |
| 7815 | bool isSIMDorHWSIMDClass(typeInfo* pTypeInfo) |
| 7816 | { |
| 7817 | return isSIMDClass(pTypeInfo) || isHWSIMDClass(pTypeInfo); |
| 7818 | } |
| 7819 | |
| 7820 | // Get the base (element) type and size in bytes for a SIMD type. Returns TYP_UNKNOWN |
| 7821 | // if it is not a SIMD type or is an unsupported base type. |
| 7822 | var_types getBaseTypeAndSizeOfSIMDType(CORINFO_CLASS_HANDLE typeHnd, unsigned* sizeBytes = nullptr); |
| 7823 | |
| 7824 | var_types getBaseTypeOfSIMDType(CORINFO_CLASS_HANDLE typeHnd) |
| 7825 | { |
| 7826 | return getBaseTypeAndSizeOfSIMDType(typeHnd, nullptr); |
| 7827 | } |
| 7828 | |
| 7829 | // Get SIMD Intrinsic info given the method handle. |
| 7830 | // Also sets typeHnd, argCount, baseType and sizeBytes out params. |
| 7831 | const SIMDIntrinsicInfo* getSIMDIntrinsicInfo(CORINFO_CLASS_HANDLE* typeHnd, |
| 7832 | CORINFO_METHOD_HANDLE methodHnd, |
| 7833 | CORINFO_SIG_INFO* sig, |
| 7834 | bool isNewObj, |
| 7835 | unsigned* argCount, |
| 7836 | var_types* baseType, |
| 7837 | unsigned* sizeBytes); |
| 7838 | |
| 7839 | // Pops and returns GenTree node from importers type stack. |
| 7840 | // Normalizes TYP_STRUCT value in case of GT_CALL, GT_RET_EXPR and arg nodes. |
| 7841 | GenTree* impSIMDPopStack(var_types type, bool expectAddr = false, CORINFO_CLASS_HANDLE structType = nullptr); |
| 7842 | |
| 7843 | // Create a GT_SIMD tree for a Get property of SIMD vector with a fixed index. |
| 7844 | GenTreeSIMD* impSIMDGetFixed(var_types simdType, var_types baseType, unsigned simdSize, int index); |
| 7845 | |
| 7846 | // Creates a GT_SIMD tree for Select operation |
| 7847 | GenTree* impSIMDSelect(CORINFO_CLASS_HANDLE typeHnd, |
| 7848 | var_types baseType, |
| 7849 | unsigned simdVectorSize, |
| 7850 | GenTree* op1, |
| 7851 | GenTree* op2, |
| 7852 | GenTree* op3); |
| 7853 | |
| 7854 | // Creates a GT_SIMD tree for Min/Max operation |
| 7855 | GenTree* impSIMDMinMax(SIMDIntrinsicID intrinsicId, |
| 7856 | CORINFO_CLASS_HANDLE typeHnd, |
| 7857 | var_types baseType, |
| 7858 | unsigned simdVectorSize, |
| 7859 | GenTree* op1, |
| 7860 | GenTree* op2); |
| 7861 | |
| 7862 | // Transforms operands and returns the SIMD intrinsic to be applied on |
| 7863 | // transformed operands to obtain given relop result. |
| 7864 | SIMDIntrinsicID impSIMDRelOp(SIMDIntrinsicID relOpIntrinsicId, |
| 7865 | CORINFO_CLASS_HANDLE typeHnd, |
| 7866 | unsigned simdVectorSize, |
| 7867 | var_types* baseType, |
| 7868 | GenTree** op1, |
| 7869 | GenTree** op2); |
| 7870 | |
| 7871 | // Creates a GT_SIMD tree for Abs intrinsic. |
| 7872 | GenTree* impSIMDAbs(CORINFO_CLASS_HANDLE typeHnd, var_types baseType, unsigned simdVectorSize, GenTree* op1); |
| 7873 | |
| 7874 | #if defined(_TARGET_XARCH_) |
| 7875 | |
| 7876 | // Transforms operands and returns the SIMD intrinsic to be applied on |
| 7877 | // transformed operands to obtain == comparison result. |
| 7878 | SIMDIntrinsicID impSIMDLongRelOpEqual(CORINFO_CLASS_HANDLE typeHnd, |
| 7879 | unsigned simdVectorSize, |
| 7880 | GenTree** op1, |
| 7881 | GenTree** op2); |
| 7882 | |
| 7883 | // Transforms operands and returns the SIMD intrinsic to be applied on |
| 7884 | // transformed operands to obtain > comparison result. |
| 7885 | SIMDIntrinsicID impSIMDLongRelOpGreaterThan(CORINFO_CLASS_HANDLE typeHnd, |
| 7886 | unsigned simdVectorSize, |
| 7887 | GenTree** op1, |
| 7888 | GenTree** op2); |
| 7889 | |
| 7890 | // Transforms operands and returns the SIMD intrinsic to be applied on |
| 7891 | // transformed operands to obtain >= comparison result. |
| 7892 | SIMDIntrinsicID impSIMDLongRelOpGreaterThanOrEqual(CORINFO_CLASS_HANDLE typeHnd, |
| 7893 | unsigned simdVectorSize, |
| 7894 | GenTree** op1, |
| 7895 | GenTree** op2); |
| 7896 | |
| 7897 | // Transforms operands and returns the SIMD intrinsic to be applied on |
| 7898 | // transformed operands to obtain >= comparison result in case of int32 |
| 7899 | // and small int base type vectors. |
| 7900 | SIMDIntrinsicID impSIMDIntegralRelOpGreaterThanOrEqual( |
| 7901 | CORINFO_CLASS_HANDLE typeHnd, unsigned simdVectorSize, var_types baseType, GenTree** op1, GenTree** op2); |
| 7902 | |
| 7903 | #endif // defined(_TARGET_XARCH_) |
| 7904 | |
| 7905 | void setLclRelatedToSIMDIntrinsic(GenTree* tree); |
| 7906 | bool areFieldsContiguous(GenTree* op1, GenTree* op2); |
| 7907 | bool areArrayElementsContiguous(GenTree* op1, GenTree* op2); |
| 7908 | bool areArgumentsContiguous(GenTree* op1, GenTree* op2); |
| 7909 | GenTree* createAddressNodeForSIMDInit(GenTree* tree, unsigned simdSize); |
| 7910 | |
| 7911 | // check methodHnd to see if it is a SIMD method that is expanded as an intrinsic in the JIT. |
| 7912 | GenTree* impSIMDIntrinsic(OPCODE opcode, |
| 7913 | GenTree* newobjThis, |
| 7914 | CORINFO_CLASS_HANDLE clsHnd, |
| 7915 | CORINFO_METHOD_HANDLE method, |
| 7916 | CORINFO_SIG_INFO* sig, |
| 7917 | unsigned methodFlags, |
| 7918 | int memberRef); |
| 7919 | |
| 7920 | GenTree* getOp1ForConstructor(OPCODE opcode, GenTree* newobjThis, CORINFO_CLASS_HANDLE clsHnd); |
| 7921 | |
| 7922 | // Whether SIMD vector occupies part of SIMD register. |
| 7923 | // SSE2: vector2f/3f are considered sub register SIMD types. |
| 7924 | // AVX: vector2f, 3f and 4f are all considered sub register SIMD types. |
| 7925 | bool isSubRegisterSIMDType(CORINFO_CLASS_HANDLE typeHnd) |
| 7926 | { |
| 7927 | unsigned sizeBytes = 0; |
| 7928 | var_types baseType = getBaseTypeAndSizeOfSIMDType(typeHnd, &sizeBytes); |
| 7929 | return (baseType == TYP_FLOAT) && (sizeBytes < getSIMDVectorRegisterByteLength()); |
| 7930 | } |
| 7931 | |
| 7932 | bool isSubRegisterSIMDType(GenTreeSIMD* simdNode) |
| 7933 | { |
| 7934 | return (simdNode->gtSIMDSize < getSIMDVectorRegisterByteLength()); |
| 7935 | } |
| 7936 | |
| 7937 | // Get the type for the hardware SIMD vector. |
| 7938 | // This is the maximum SIMD type supported for this target. |
| 7939 | var_types getSIMDVectorType() |
| 7940 | { |
| 7941 | #if defined(_TARGET_XARCH_) |
| 7942 | if (getSIMDSupportLevel() == SIMD_AVX2_Supported) |
| 7943 | { |
| 7944 | return TYP_SIMD32; |
| 7945 | } |
| 7946 | else |
| 7947 | { |
| 7948 | assert(getSIMDSupportLevel() >= SIMD_SSE2_Supported); |
| 7949 | return TYP_SIMD16; |
| 7950 | } |
| 7951 | #elif defined(_TARGET_ARM64_) |
| 7952 | return TYP_SIMD16; |
| 7953 | #else |
| 7954 | assert(!"getSIMDVectorType() unimplemented on target arch" ); |
| 7955 | unreached(); |
| 7956 | #endif |
| 7957 | } |
| 7958 | |
| 7959 | // Get the size of the SIMD type in bytes |
| 7960 | int getSIMDTypeSizeInBytes(CORINFO_CLASS_HANDLE typeHnd) |
| 7961 | { |
| 7962 | unsigned sizeBytes = 0; |
| 7963 | (void)getBaseTypeAndSizeOfSIMDType(typeHnd, &sizeBytes); |
| 7964 | return sizeBytes; |
| 7965 | } |
| 7966 | |
| 7967 | // Get the the number of elements of basetype of SIMD vector given by its size and baseType |
| 7968 | static int getSIMDVectorLength(unsigned simdSize, var_types baseType); |
| 7969 | |
| 7970 | // Get the the number of elements of basetype of SIMD vector given by its type handle |
| 7971 | int getSIMDVectorLength(CORINFO_CLASS_HANDLE typeHnd); |
| 7972 | |
| 7973 | // Get preferred alignment of SIMD type. |
| 7974 | int getSIMDTypeAlignment(var_types simdType); |
| 7975 | |
| 7976 | // Get the number of bytes in a System.Numeric.Vector<T> for the current compilation. |
| 7977 | // Note - cannot be used for System.Runtime.Intrinsic |
| 7978 | unsigned getSIMDVectorRegisterByteLength() |
| 7979 | { |
| 7980 | #if defined(_TARGET_XARCH_) |
| 7981 | if (getSIMDSupportLevel() == SIMD_AVX2_Supported) |
| 7982 | { |
| 7983 | return YMM_REGSIZE_BYTES; |
| 7984 | } |
| 7985 | else |
| 7986 | { |
| 7987 | assert(getSIMDSupportLevel() >= SIMD_SSE2_Supported); |
| 7988 | return XMM_REGSIZE_BYTES; |
| 7989 | } |
| 7990 | #elif defined(_TARGET_ARM64_) |
| 7991 | return FP_REGSIZE_BYTES; |
| 7992 | #else |
| 7993 | assert(!"getSIMDVectorRegisterByteLength() unimplemented on target arch" ); |
| 7994 | unreached(); |
| 7995 | #endif |
| 7996 | } |
| 7997 | |
| 7998 | // The minimum and maximum possible number of bytes in a SIMD vector. |
| 7999 | |
| 8000 | // maxSIMDStructBytes |
| 8001 | // The minimum SIMD size supported by System.Numeric.Vectors or System.Runtime.Intrinsic |
| 8002 | // SSE: 16-byte Vector<T> and Vector128<T> |
| 8003 | // AVX: 32-byte Vector256<T> (Vector<T> is 16-byte) |
| 8004 | // AVX2: 32-byte Vector<T> and Vector256<T> |
| 8005 | unsigned int maxSIMDStructBytes() |
| 8006 | { |
| 8007 | #if defined(FEATURE_HW_INTRINSICS) && defined(_TARGET_XARCH_) |
| 8008 | if (compSupports(InstructionSet_AVX)) |
| 8009 | { |
| 8010 | return YMM_REGSIZE_BYTES; |
| 8011 | } |
| 8012 | else |
| 8013 | { |
| 8014 | assert(getSIMDSupportLevel() >= SIMD_SSE2_Supported); |
| 8015 | return XMM_REGSIZE_BYTES; |
| 8016 | } |
| 8017 | #else |
| 8018 | return getSIMDVectorRegisterByteLength(); |
| 8019 | #endif |
| 8020 | } |
| 8021 | unsigned int minSIMDStructBytes() |
| 8022 | { |
| 8023 | return emitTypeSize(TYP_SIMD8); |
| 8024 | } |
| 8025 | |
| 8026 | // Returns the codegen type for a given SIMD size. |
| 8027 | var_types getSIMDTypeForSize(unsigned size) |
| 8028 | { |
| 8029 | var_types simdType = TYP_UNDEF; |
| 8030 | if (size == 8) |
| 8031 | { |
| 8032 | simdType = TYP_SIMD8; |
| 8033 | } |
| 8034 | else if (size == 12) |
| 8035 | { |
| 8036 | simdType = TYP_SIMD12; |
| 8037 | } |
| 8038 | else if (size == 16) |
| 8039 | { |
| 8040 | simdType = TYP_SIMD16; |
| 8041 | } |
| 8042 | else if (size == 32) |
| 8043 | { |
| 8044 | simdType = TYP_SIMD32; |
| 8045 | } |
| 8046 | else |
| 8047 | { |
| 8048 | noway_assert(!"Unexpected size for SIMD type" ); |
| 8049 | } |
| 8050 | return simdType; |
| 8051 | } |
| 8052 | |
| 8053 | unsigned getSIMDInitTempVarNum() |
| 8054 | { |
| 8055 | if (lvaSIMDInitTempVarNum == BAD_VAR_NUM) |
| 8056 | { |
| 8057 | lvaSIMDInitTempVarNum = lvaGrabTempWithImplicitUse(false DEBUGARG("SIMDInitTempVar" )); |
| 8058 | lvaTable[lvaSIMDInitTempVarNum].lvType = getSIMDVectorType(); |
| 8059 | } |
| 8060 | return lvaSIMDInitTempVarNum; |
| 8061 | } |
| 8062 | |
| 8063 | #else // !FEATURE_SIMD |
| 8064 | bool isOpaqueSIMDLclVar(LclVarDsc* varDsc) |
| 8065 | { |
| 8066 | return false; |
| 8067 | } |
| 8068 | #endif // FEATURE_SIMD |
| 8069 | |
| 8070 | public: |
| 8071 | //------------------------------------------------------------------------ |
| 8072 | // largestEnregisterableStruct: The size in bytes of the largest struct that can be enregistered. |
| 8073 | // |
| 8074 | // Notes: It is not guaranteed that the struct of this size or smaller WILL be a |
| 8075 | // candidate for enregistration. |
| 8076 | |
| 8077 | unsigned largestEnregisterableStructSize() |
| 8078 | { |
| 8079 | #ifdef FEATURE_SIMD |
| 8080 | unsigned vectorRegSize = getSIMDVectorRegisterByteLength(); |
| 8081 | if (vectorRegSize > TARGET_POINTER_SIZE) |
| 8082 | { |
| 8083 | return vectorRegSize; |
| 8084 | } |
| 8085 | else |
| 8086 | #endif // FEATURE_SIMD |
| 8087 | { |
| 8088 | return TARGET_POINTER_SIZE; |
| 8089 | } |
| 8090 | } |
| 8091 | |
| 8092 | private: |
| 8093 | // These routines need not be enclosed under FEATURE_SIMD since lvIsSIMDType() |
| 8094 | // is defined for both FEATURE_SIMD and !FEATURE_SIMD apropriately. The use |
| 8095 | // of this routines also avoids the need of #ifdef FEATURE_SIMD specific code. |
| 8096 | |
| 8097 | // Is this var is of type simd struct? |
| 8098 | bool lclVarIsSIMDType(unsigned varNum) |
| 8099 | { |
| 8100 | LclVarDsc* varDsc = lvaTable + varNum; |
| 8101 | return varDsc->lvIsSIMDType(); |
| 8102 | } |
| 8103 | |
| 8104 | // Is this Local node a SIMD local? |
| 8105 | bool lclVarIsSIMDType(GenTreeLclVarCommon* lclVarTree) |
| 8106 | { |
| 8107 | return lclVarIsSIMDType(lclVarTree->gtLclNum); |
| 8108 | } |
| 8109 | |
| 8110 | // Returns true if the TYP_SIMD locals on stack are aligned at their |
| 8111 | // preferred byte boundary specified by getSIMDTypeAlignment(). |
| 8112 | // |
| 8113 | // As per the Intel manual, the preferred alignment for AVX vectors is 32-bytes. On Amd64, |
| 8114 | // RSP/EBP is aligned at 16-bytes, therefore to align SIMD types at 32-bytes we need even |
| 8115 | // RSP/EBP to be 32-byte aligned. It is not clear whether additional stack space used in |
| 8116 | // aligning stack is worth the benefit and for now will use 16-byte alignment for AVX |
| 8117 | // 256-bit vectors with unaligned load/stores to/from memory. On x86, the stack frame |
| 8118 | // is aligned to 4 bytes. We need to extend existing support for double (8-byte) alignment |
| 8119 | // to 16 or 32 byte alignment for frames with local SIMD vars, if that is determined to be |
| 8120 | // profitable. |
| 8121 | // |
| 8122 | bool isSIMDTypeLocalAligned(unsigned varNum) |
| 8123 | { |
| 8124 | #if defined(FEATURE_SIMD) && ALIGN_SIMD_TYPES |
| 8125 | if (lclVarIsSIMDType(varNum) && lvaTable[varNum].lvType != TYP_BYREF) |
| 8126 | { |
| 8127 | bool ebpBased; |
| 8128 | int off = lvaFrameAddress(varNum, &ebpBased); |
| 8129 | // TODO-Cleanup: Can't this use the lvExactSize on the varDsc? |
| 8130 | int alignment = getSIMDTypeAlignment(lvaTable[varNum].lvType); |
| 8131 | bool isAligned = (alignment <= STACK_ALIGN) && ((off % alignment) == 0); |
| 8132 | return isAligned; |
| 8133 | } |
| 8134 | #endif // FEATURE_SIMD |
| 8135 | |
| 8136 | return false; |
| 8137 | } |
| 8138 | |
| 8139 | bool compSupports(InstructionSet isa) const |
| 8140 | { |
| 8141 | #if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_) |
| 8142 | return (opts.compSupportsISA & (1ULL << isa)) != 0; |
| 8143 | #else |
| 8144 | return false; |
| 8145 | #endif |
| 8146 | } |
| 8147 | |
| 8148 | bool canUseVexEncoding() const |
| 8149 | { |
| 8150 | #ifdef _TARGET_XARCH_ |
| 8151 | return compSupports(InstructionSet_AVX); |
| 8152 | #else |
| 8153 | return false; |
| 8154 | #endif |
| 8155 | } |
| 8156 | |
| 8157 | /* |
| 8158 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 8159 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 8160 | XX XX |
| 8161 | XX Compiler XX |
| 8162 | XX XX |
| 8163 | XX Generic info about the compilation and the method being compiled. XX |
| 8164 | XX It is responsible for driving the other phases. XX |
| 8165 | XX It is also responsible for all the memory management. XX |
| 8166 | XX XX |
| 8167 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 8168 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 8169 | */ |
| 8170 | |
| 8171 | public: |
| 8172 | Compiler* InlineeCompiler; // The Compiler instance for the inlinee |
| 8173 | |
| 8174 | InlineResult* compInlineResult; // The result of importing the inlinee method. |
| 8175 | |
| 8176 | bool compDoAggressiveInlining; // If true, mark every method as CORINFO_FLG_FORCEINLINE |
| 8177 | bool compJmpOpUsed; // Does the method do a JMP |
| 8178 | bool compLongUsed; // Does the method use TYP_LONG |
| 8179 | bool compFloatingPointUsed; // Does the method use TYP_FLOAT or TYP_DOUBLE |
| 8180 | bool compTailCallUsed; // Does the method do a tailcall |
| 8181 | bool compLocallocUsed; // Does the method use localloc. |
| 8182 | bool compLocallocOptimized; // Does the method have an optimized localloc |
| 8183 | bool compQmarkUsed; // Does the method use GT_QMARK/GT_COLON |
| 8184 | bool compQmarkRationalized; // Is it allowed to use a GT_QMARK/GT_COLON node. |
| 8185 | bool compUnsafeCastUsed; // Does the method use LDIND/STIND to cast between scalar/refernce types |
| 8186 | |
| 8187 | // NOTE: These values are only reliable after |
| 8188 | // the importing is completely finished. |
| 8189 | |
| 8190 | #ifdef DEBUG |
| 8191 | // State information - which phases have completed? |
| 8192 | // These are kept together for easy discoverability |
| 8193 | |
| 8194 | bool bRangeAllowStress; |
| 8195 | bool compCodeGenDone; |
| 8196 | int64_t compNumStatementLinksTraversed; // # of links traversed while doing debug checks |
| 8197 | bool fgNormalizeEHDone; // Has the flowgraph EH normalization phase been done? |
| 8198 | size_t compSizeEstimate; // The estimated size of the method as per `gtSetEvalOrder`. |
| 8199 | size_t compCycleEstimate; // The estimated cycle count of the method as per `gtSetEvalOrder` |
| 8200 | #endif // DEBUG |
| 8201 | |
| 8202 | bool fgLocalVarLivenessDone; // Note that this one is used outside of debug. |
| 8203 | bool fgLocalVarLivenessChanged; |
| 8204 | #if STACK_PROBES |
| 8205 | bool compStackProbePrologDone; |
| 8206 | #endif |
| 8207 | bool compLSRADone; |
| 8208 | bool compRationalIRForm; |
| 8209 | |
| 8210 | bool compUsesThrowHelper; // There is a call to a THOROW_HELPER for the compiled method. |
| 8211 | |
| 8212 | bool compGeneratingProlog; |
| 8213 | bool compGeneratingEpilog; |
| 8214 | bool compNeedsGSSecurityCookie; // There is an unsafe buffer (or localloc) on the stack. |
| 8215 | // Insert cookie on frame and code to check the cookie, like VC++ -GS. |
| 8216 | bool compGSReorderStackLayout; // There is an unsafe buffer on the stack, reorder locals and make local |
| 8217 | // copies of susceptible parameters to avoid buffer overrun attacks through locals/params |
| 8218 | bool getNeedsGSSecurityCookie() const |
| 8219 | { |
| 8220 | return compNeedsGSSecurityCookie; |
| 8221 | } |
| 8222 | void setNeedsGSSecurityCookie() |
| 8223 | { |
| 8224 | compNeedsGSSecurityCookie = true; |
| 8225 | } |
| 8226 | |
| 8227 | FrameLayoutState lvaDoneFrameLayout; // The highest frame layout state that we've completed. During |
| 8228 | // frame layout calculations, this is the level we are currently |
| 8229 | // computing. |
| 8230 | |
| 8231 | //---------------------------- JITing options ----------------------------- |
| 8232 | |
| 8233 | enum codeOptimize |
| 8234 | { |
| 8235 | BLENDED_CODE, |
| 8236 | SMALL_CODE, |
| 8237 | FAST_CODE, |
| 8238 | |
| 8239 | COUNT_OPT_CODE |
| 8240 | }; |
| 8241 | |
| 8242 | struct Options |
| 8243 | { |
| 8244 | JitFlags* jitFlags; // all flags passed from the EE |
| 8245 | unsigned compFlags; // method attributes |
| 8246 | |
| 8247 | codeOptimize compCodeOpt; // what type of code optimizations |
| 8248 | |
| 8249 | bool compUseFCOMI; |
| 8250 | bool compUseCMOV; |
| 8251 | |
| 8252 | #if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_) |
| 8253 | uint64_t compSupportsISA; |
| 8254 | void setSupportedISA(InstructionSet isa) |
| 8255 | { |
| 8256 | compSupportsISA |= 1ULL << isa; |
| 8257 | } |
| 8258 | #endif |
| 8259 | |
| 8260 | // optimize maximally and/or favor speed over size? |
| 8261 | |
| 8262 | #define DEFAULT_MIN_OPTS_CODE_SIZE 60000 |
| 8263 | #define DEFAULT_MIN_OPTS_INSTR_COUNT 20000 |
| 8264 | #define DEFAULT_MIN_OPTS_BB_COUNT 2000 |
| 8265 | #define DEFAULT_MIN_OPTS_LV_NUM_COUNT 2000 |
| 8266 | #define DEFAULT_MIN_OPTS_LV_REF_COUNT 8000 |
| 8267 | |
| 8268 | // Maximun number of locals before turning off the inlining |
| 8269 | #define MAX_LV_NUM_COUNT_FOR_INLINING 512 |
| 8270 | |
| 8271 | bool compMinOpts; |
| 8272 | unsigned instrCount; |
| 8273 | unsigned lvRefCount; |
| 8274 | bool compMinOptsIsSet; |
| 8275 | #ifdef DEBUG |
| 8276 | bool compMinOptsIsUsed; |
| 8277 | |
| 8278 | bool MinOpts() |
| 8279 | { |
| 8280 | assert(compMinOptsIsSet); |
| 8281 | compMinOptsIsUsed = true; |
| 8282 | return compMinOpts; |
| 8283 | } |
| 8284 | bool IsMinOptsSet() |
| 8285 | { |
| 8286 | return compMinOptsIsSet; |
| 8287 | } |
| 8288 | #else // !DEBUG |
| 8289 | bool MinOpts() |
| 8290 | { |
| 8291 | return compMinOpts; |
| 8292 | } |
| 8293 | bool IsMinOptsSet() |
| 8294 | { |
| 8295 | return compMinOptsIsSet; |
| 8296 | } |
| 8297 | #endif // !DEBUG |
| 8298 | |
| 8299 | bool OptimizationDisabled() |
| 8300 | { |
| 8301 | return MinOpts() || compDbgCode; |
| 8302 | } |
| 8303 | bool OptimizationEnabled() |
| 8304 | { |
| 8305 | return !OptimizationDisabled(); |
| 8306 | } |
| 8307 | |
| 8308 | void SetMinOpts(bool val) |
| 8309 | { |
| 8310 | assert(!compMinOptsIsUsed); |
| 8311 | assert(!compMinOptsIsSet || (compMinOpts == val)); |
| 8312 | compMinOpts = val; |
| 8313 | compMinOptsIsSet = true; |
| 8314 | } |
| 8315 | |
| 8316 | // true if the CLFLG_* for an optimization is set. |
| 8317 | bool OptEnabled(unsigned optFlag) |
| 8318 | { |
| 8319 | return !!(compFlags & optFlag); |
| 8320 | } |
| 8321 | |
| 8322 | #ifdef FEATURE_READYTORUN_COMPILER |
| 8323 | bool IsReadyToRun() |
| 8324 | { |
| 8325 | return jitFlags->IsSet(JitFlags::JIT_FLAG_READYTORUN); |
| 8326 | } |
| 8327 | #else |
| 8328 | bool IsReadyToRun() |
| 8329 | { |
| 8330 | return false; |
| 8331 | } |
| 8332 | #endif |
| 8333 | |
| 8334 | // true if we should use the PINVOKE_{BEGIN,END} helpers instead of generating |
| 8335 | // PInvoke transitions inline (e.g. when targeting CoreRT). |
| 8336 | bool ShouldUsePInvokeHelpers() |
| 8337 | { |
| 8338 | return jitFlags->IsSet(JitFlags::JIT_FLAG_USE_PINVOKE_HELPERS); |
| 8339 | } |
| 8340 | |
| 8341 | // true if we should use insert the REVERSE_PINVOKE_{ENTER,EXIT} helpers in the method |
| 8342 | // prolog/epilog |
| 8343 | bool IsReversePInvoke() |
| 8344 | { |
| 8345 | return jitFlags->IsSet(JitFlags::JIT_FLAG_REVERSE_PINVOKE); |
| 8346 | } |
| 8347 | |
| 8348 | // true if we must generate code compatible with JIT32 quirks |
| 8349 | bool IsJit32Compat() |
| 8350 | { |
| 8351 | #if defined(_TARGET_X86_) |
| 8352 | return jitFlags->IsSet(JitFlags::JIT_FLAG_DESKTOP_QUIRKS); |
| 8353 | #else |
| 8354 | return false; |
| 8355 | #endif |
| 8356 | } |
| 8357 | |
| 8358 | // true if we must generate code compatible with Jit64 quirks |
| 8359 | bool IsJit64Compat() |
| 8360 | { |
| 8361 | #if defined(_TARGET_AMD64_) |
| 8362 | return jitFlags->IsSet(JitFlags::JIT_FLAG_DESKTOP_QUIRKS); |
| 8363 | #elif !defined(FEATURE_CORECLR) |
| 8364 | return true; |
| 8365 | #else |
| 8366 | return false; |
| 8367 | #endif |
| 8368 | } |
| 8369 | |
| 8370 | bool compScopeInfo; // Generate the LocalVar info ? |
| 8371 | bool compDbgCode; // Generate debugger-friendly code? |
| 8372 | bool compDbgInfo; // Gather debugging info? |
| 8373 | bool compDbgEnC; |
| 8374 | |
| 8375 | #ifdef PROFILING_SUPPORTED |
| 8376 | bool compNoPInvokeInlineCB; |
| 8377 | #else |
| 8378 | static const bool compNoPInvokeInlineCB; |
| 8379 | #endif |
| 8380 | |
| 8381 | #ifdef DEBUG |
| 8382 | bool compGcChecks; // Check arguments and return values to ensure they are sane |
| 8383 | #endif |
| 8384 | |
| 8385 | #if defined(DEBUG) && defined(_TARGET_XARCH_) |
| 8386 | |
| 8387 | bool compStackCheckOnRet; // Check stack pointer on return to ensure it is correct. |
| 8388 | |
| 8389 | #endif // defined(DEBUG) && defined(_TARGET_XARCH_) |
| 8390 | |
| 8391 | #if defined(DEBUG) && defined(_TARGET_X86_) |
| 8392 | |
| 8393 | bool compStackCheckOnCall; // Check stack pointer after call to ensure it is correct. Only for x86. |
| 8394 | |
| 8395 | #endif // defined(DEBUG) && defined(_TARGET_X86_) |
| 8396 | |
| 8397 | bool compNeedSecurityCheck; // This flag really means where or not a security object needs |
| 8398 | // to be allocated on the stack. |
| 8399 | // It will be set to true in the following cases: |
| 8400 | // 1. When the method being compiled has a declarative security |
| 8401 | // (i.e. when CORINFO_FLG_NOSECURITYWRAP is reset for the current method). |
| 8402 | // This is also the case when we inject a prolog and epilog in the method. |
| 8403 | // (or) |
| 8404 | // 2. When the method being compiled has imperative security (i.e. the method |
| 8405 | // calls into another method that has CORINFO_FLG_SECURITYCHECK flag set). |
| 8406 | // (or) |
| 8407 | // 3. When opts.compDbgEnC is true. (See also Compiler::compCompile). |
| 8408 | // |
| 8409 | // When this flag is set, jit will allocate a gc-reference local variable (lvaSecurityObject), |
| 8410 | // which gets reported as a GC root to stackwalker. |
| 8411 | // (See also ICodeManager::GetAddrOfSecurityObject.) |
| 8412 | |
| 8413 | bool compReloc; // Generate relocs for pointers in code, true for all ngen/prejit codegen |
| 8414 | |
| 8415 | #ifdef DEBUG |
| 8416 | #if defined(_TARGET_XARCH_) |
| 8417 | bool compEnablePCRelAddr; // Whether absolute addr be encoded as PC-rel offset by RyuJIT where possible |
| 8418 | #endif |
| 8419 | #endif // DEBUG |
| 8420 | |
| 8421 | #ifdef UNIX_AMD64_ABI |
| 8422 | // This flag is indicating if there is a need to align the frame. |
| 8423 | // On AMD64-Windows, if there are calls, 4 slots for the outgoing ars are allocated, except for |
| 8424 | // FastTailCall. This slots makes the frame size non-zero, so alignment logic will be called. |
| 8425 | // On AMD64-Unix, there are no such slots. There is a possibility to have calls in the method with frame size of |
| 8426 | // 0. The frame alignment logic won't kick in. This flags takes care of the AMD64-Unix case by remembering that |
| 8427 | // there are calls and making sure the frame alignment logic is executed. |
| 8428 | bool compNeedToAlignFrame; |
| 8429 | #endif // UNIX_AMD64_ABI |
| 8430 | |
| 8431 | bool compProcedureSplitting; // Separate cold code from hot code |
| 8432 | |
| 8433 | bool genFPorder; // Preserve FP order (operations are non-commutative) |
| 8434 | bool genFPopt; // Can we do frame-pointer-omission optimization? |
| 8435 | bool altJit; // True if we are an altjit and are compiling this method |
| 8436 | |
| 8437 | #ifdef OPT_CONFIG |
| 8438 | bool optRepeat; // Repeat optimizer phases k times |
| 8439 | #endif |
| 8440 | |
| 8441 | #ifdef DEBUG |
| 8442 | bool compProcedureSplittingEH; // Separate cold code from hot code for functions with EH |
| 8443 | bool dspCode; // Display native code generated |
| 8444 | bool dspEHTable; // Display the EH table reported to the VM |
| 8445 | bool dspDebugInfo; // Display the Debug info reported to the VM |
| 8446 | bool dspInstrs; // Display the IL instructions intermixed with the native code output |
| 8447 | bool dspEmit; // Display emitter output |
| 8448 | bool dspLines; // Display source-code lines intermixed with native code output |
| 8449 | bool dmpHex; // Display raw bytes in hex of native code output |
| 8450 | bool varNames; // Display variables names in native code output |
| 8451 | bool disAsm; // Display native code as it is generated |
| 8452 | bool disAsmSpilled; // Display native code when any register spilling occurs |
| 8453 | bool disDiffable; // Makes the Disassembly code 'diff-able' |
| 8454 | bool disAsm2; // Display native code after it is generated using external disassembler |
| 8455 | bool dspOrder; // Display names of each of the methods that we ngen/jit |
| 8456 | bool dspUnwind; // Display the unwind info output |
| 8457 | bool dspDiffable; // Makes the Jit Dump 'diff-able' (currently uses same COMPlus_* flag as disDiffable) |
| 8458 | bool compLongAddress; // Force using large pseudo instructions for long address |
| 8459 | // (IF_LARGEJMP/IF_LARGEADR/IF_LARGLDC) |
| 8460 | bool dspGCtbls; // Display the GC tables |
| 8461 | #endif |
| 8462 | |
| 8463 | #ifdef LATE_DISASM |
| 8464 | bool doLateDisasm; // Run the late disassembler |
| 8465 | #endif // LATE_DISASM |
| 8466 | |
| 8467 | #if DUMP_GC_TABLES && !defined(DEBUG) && defined(JIT32_GCENCODER) |
| 8468 | // Only the JIT32_GCENCODER implements GC dumping in non-DEBUG code. |
| 8469 | #pragma message("NOTE: this non-debug build has GC ptr table dumping always enabled!") |
| 8470 | static const bool dspGCtbls = true; |
| 8471 | #endif |
| 8472 | |
| 8473 | // We need stack probes to guarantee that we won't trigger a stack overflow |
| 8474 | // when calling unmanaged code until they get a chance to set up a frame, because |
| 8475 | // the EE will have no idea where it is. |
| 8476 | // |
| 8477 | // We will only be doing this currently for hosted environments. Unfortunately |
| 8478 | // we need to take care of stubs, so potentially, we will have to do the probes |
| 8479 | // for any call. We have a plan for not needing for stubs though |
| 8480 | bool compNeedStackProbes; |
| 8481 | |
| 8482 | #ifdef PROFILING_SUPPORTED |
| 8483 | // Whether to emit Enter/Leave/TailCall hooks using a dummy stub (DummyProfilerELTStub()). |
| 8484 | // This option helps make the JIT behave as if it is running under a profiler. |
| 8485 | bool compJitELTHookEnabled; |
| 8486 | #endif // PROFILING_SUPPORTED |
| 8487 | |
| 8488 | #if FEATURE_TAILCALL_OPT |
| 8489 | // Whether opportunistic or implicit tail call optimization is enabled. |
| 8490 | bool compTailCallOpt; |
| 8491 | // Whether optimization of transforming a recursive tail call into a loop is enabled. |
| 8492 | bool compTailCallLoopOpt; |
| 8493 | #endif |
| 8494 | |
| 8495 | #ifdef ARM_SOFTFP |
| 8496 | static const bool compUseSoftFP = true; |
| 8497 | #else // !ARM_SOFTFP |
| 8498 | static const bool compUseSoftFP = false; |
| 8499 | #endif |
| 8500 | |
| 8501 | GCPollType compGCPollType; |
| 8502 | } opts; |
| 8503 | |
| 8504 | #ifdef ALT_JIT |
| 8505 | static bool s_pAltJitExcludeAssembliesListInitialized; |
| 8506 | static AssemblyNamesList2* s_pAltJitExcludeAssembliesList; |
| 8507 | #endif // ALT_JIT |
| 8508 | |
| 8509 | #ifdef DEBUG |
| 8510 | static bool s_pJitDisasmIncludeAssembliesListInitialized; |
| 8511 | static AssemblyNamesList2* s_pJitDisasmIncludeAssembliesList; |
| 8512 | #endif // DEBUG |
| 8513 | |
| 8514 | #ifdef DEBUG |
| 8515 | // silence warning of cast to greater size. It is easier to silence than construct code the compiler is happy with, and |
| 8516 | // it is safe in this case |
| 8517 | #pragma warning(push) |
| 8518 | #pragma warning(disable : 4312) |
| 8519 | |
| 8520 | template <typename T> |
| 8521 | T dspPtr(T p) |
| 8522 | { |
| 8523 | return (p == ZERO) ? ZERO : (opts.dspDiffable ? T(0xD1FFAB1E) : p); |
| 8524 | } |
| 8525 | |
| 8526 | template <typename T> |
| 8527 | T dspOffset(T o) |
| 8528 | { |
| 8529 | return (o == ZERO) ? ZERO : (opts.dspDiffable ? T(0xD1FFAB1E) : o); |
| 8530 | } |
| 8531 | #pragma warning(pop) |
| 8532 | |
| 8533 | static int dspTreeID(GenTree* tree) |
| 8534 | { |
| 8535 | return tree->gtTreeID; |
| 8536 | } |
| 8537 | static void printTreeID(GenTree* tree) |
| 8538 | { |
| 8539 | if (tree == nullptr) |
| 8540 | { |
| 8541 | printf("[------]" ); |
| 8542 | } |
| 8543 | else |
| 8544 | { |
| 8545 | printf("[%06d]" , dspTreeID(tree)); |
| 8546 | } |
| 8547 | } |
| 8548 | |
| 8549 | #endif // DEBUG |
| 8550 | |
| 8551 | // clang-format off |
| 8552 | #define STRESS_MODES \ |
| 8553 | \ |
| 8554 | STRESS_MODE(NONE) \ |
| 8555 | \ |
| 8556 | /* "Variations" stress areas which we try to mix up with each other. */ \ |
| 8557 | /* These should not be exhaustively used as they might */ \ |
| 8558 | /* hide/trivialize other areas */ \ |
| 8559 | \ |
| 8560 | STRESS_MODE(REGS) \ |
| 8561 | STRESS_MODE(DBL_ALN) \ |
| 8562 | STRESS_MODE(LCL_FLDS) \ |
| 8563 | STRESS_MODE(UNROLL_LOOPS) \ |
| 8564 | STRESS_MODE(MAKE_CSE) \ |
| 8565 | STRESS_MODE(LEGACY_INLINE) \ |
| 8566 | STRESS_MODE(CLONE_EXPR) \ |
| 8567 | STRESS_MODE(USE_FCOMI) \ |
| 8568 | STRESS_MODE(USE_CMOV) \ |
| 8569 | STRESS_MODE(FOLD) \ |
| 8570 | STRESS_MODE(BB_PROFILE) \ |
| 8571 | STRESS_MODE(OPT_BOOLS_GC) \ |
| 8572 | STRESS_MODE(REMORPH_TREES) \ |
| 8573 | STRESS_MODE(64RSLT_MUL) \ |
| 8574 | STRESS_MODE(DO_WHILE_LOOPS) \ |
| 8575 | STRESS_MODE(MIN_OPTS) \ |
| 8576 | STRESS_MODE(REVERSE_FLAG) /* Will set GTF_REVERSE_OPS whenever we can */ \ |
| 8577 | STRESS_MODE(REVERSE_COMMA) /* Will reverse commas created with gtNewCommaNode */ \ |
| 8578 | STRESS_MODE(TAILCALL) /* Will make the call as a tailcall whenever legal */ \ |
| 8579 | STRESS_MODE(CATCH_ARG) /* Will spill catch arg */ \ |
| 8580 | STRESS_MODE(UNSAFE_BUFFER_CHECKS) \ |
| 8581 | STRESS_MODE(NULL_OBJECT_CHECK) \ |
| 8582 | STRESS_MODE(PINVOKE_RESTORE_ESP) \ |
| 8583 | STRESS_MODE(RANDOM_INLINE) \ |
| 8584 | STRESS_MODE(SWITCH_CMP_BR_EXPANSION) \ |
| 8585 | STRESS_MODE(GENERIC_VARN) \ |
| 8586 | \ |
| 8587 | /* After COUNT_VARN, stress level 2 does all of these all the time */ \ |
| 8588 | \ |
| 8589 | STRESS_MODE(COUNT_VARN) \ |
| 8590 | \ |
| 8591 | /* "Check" stress areas that can be exhaustively used if we */ \ |
| 8592 | /* dont care about performance at all */ \ |
| 8593 | \ |
| 8594 | STRESS_MODE(FORCE_INLINE) /* Treat every method as AggressiveInlining */ \ |
| 8595 | STRESS_MODE(CHK_FLOW_UPDATE) \ |
| 8596 | STRESS_MODE(EMITTER) \ |
| 8597 | STRESS_MODE(CHK_REIMPORT) \ |
| 8598 | STRESS_MODE(FLATFP) \ |
| 8599 | STRESS_MODE(GENERIC_CHECK) \ |
| 8600 | STRESS_MODE(COUNT) |
| 8601 | |
| 8602 | enum compStressArea |
| 8603 | { |
| 8604 | #define STRESS_MODE(mode) STRESS_##mode, |
| 8605 | STRESS_MODES |
| 8606 | #undef STRESS_MODE |
| 8607 | }; |
| 8608 | // clang-format on |
| 8609 | |
| 8610 | #ifdef DEBUG |
| 8611 | static const LPCWSTR s_compStressModeNames[STRESS_COUNT + 1]; |
| 8612 | BYTE compActiveStressModes[STRESS_COUNT]; |
| 8613 | #endif // DEBUG |
| 8614 | |
| 8615 | #define MAX_STRESS_WEIGHT 100 |
| 8616 | |
| 8617 | bool compStressCompile(compStressArea stressArea, unsigned weightPercentage); |
| 8618 | |
| 8619 | #ifdef DEBUG |
| 8620 | |
| 8621 | bool compInlineStress() |
| 8622 | { |
| 8623 | return compStressCompile(STRESS_LEGACY_INLINE, 50); |
| 8624 | } |
| 8625 | |
| 8626 | bool compRandomInlineStress() |
| 8627 | { |
| 8628 | return compStressCompile(STRESS_RANDOM_INLINE, 50); |
| 8629 | } |
| 8630 | |
| 8631 | #endif // DEBUG |
| 8632 | |
| 8633 | bool compTailCallStress() |
| 8634 | { |
| 8635 | #ifdef DEBUG |
| 8636 | return (JitConfig.TailcallStress() != 0 || compStressCompile(STRESS_TAILCALL, 5)); |
| 8637 | #else |
| 8638 | return false; |
| 8639 | #endif |
| 8640 | } |
| 8641 | |
| 8642 | codeOptimize compCodeOpt() |
| 8643 | { |
| 8644 | #if 0 |
| 8645 | // Switching between size & speed has measurable throughput impact |
| 8646 | // (3.5% on NGen mscorlib when measured). It used to be enabled for |
| 8647 | // DEBUG, but should generate identical code between CHK & RET builds, |
| 8648 | // so that's not acceptable. |
| 8649 | // TODO-Throughput: Figure out what to do about size vs. speed & throughput. |
| 8650 | // Investigate the cause of the throughput regression. |
| 8651 | |
| 8652 | return opts.compCodeOpt; |
| 8653 | #else |
| 8654 | return BLENDED_CODE; |
| 8655 | #endif |
| 8656 | } |
| 8657 | |
| 8658 | //--------------------- Info about the procedure -------------------------- |
| 8659 | |
| 8660 | struct Info |
| 8661 | { |
| 8662 | COMP_HANDLE compCompHnd; |
| 8663 | CORINFO_MODULE_HANDLE compScopeHnd; |
| 8664 | CORINFO_CLASS_HANDLE compClassHnd; |
| 8665 | CORINFO_METHOD_HANDLE compMethodHnd; |
| 8666 | CORINFO_METHOD_INFO* compMethodInfo; |
| 8667 | |
| 8668 | BOOL hasCircularClassConstraints; |
| 8669 | BOOL hasCircularMethodConstraints; |
| 8670 | |
| 8671 | #if defined(DEBUG) || defined(LATE_DISASM) |
| 8672 | const char* compMethodName; |
| 8673 | const char* compClassName; |
| 8674 | const char* compFullName; |
| 8675 | #endif // defined(DEBUG) || defined(LATE_DISASM) |
| 8676 | |
| 8677 | #if defined(DEBUG) || defined(INLINE_DATA) |
| 8678 | // Method hash is logcally const, but computed |
| 8679 | // on first demand. |
| 8680 | mutable unsigned compMethodHashPrivate; |
| 8681 | unsigned compMethodHash() const; |
| 8682 | #endif // defined(DEBUG) || defined(INLINE_DATA) |
| 8683 | |
| 8684 | #ifdef PSEUDORANDOM_NOP_INSERTION |
| 8685 | // things for pseudorandom nop insertion |
| 8686 | unsigned compChecksum; |
| 8687 | CLRRandom compRNG; |
| 8688 | #endif |
| 8689 | |
| 8690 | // The following holds the FLG_xxxx flags for the method we're compiling. |
| 8691 | unsigned compFlags; |
| 8692 | |
| 8693 | // The following holds the class attributes for the method we're compiling. |
| 8694 | unsigned compClassAttr; |
| 8695 | |
| 8696 | const BYTE* compCode; |
| 8697 | IL_OFFSET compILCodeSize; // The IL code size |
| 8698 | UNATIVE_OFFSET compNativeCodeSize; // The native code size, after instructions are issued. This |
| 8699 | // is less than (compTotalHotCodeSize + compTotalColdCodeSize) only if: |
| 8700 | // (1) the code is not hot/cold split, and we issued less code than we expected, or |
| 8701 | // (2) the code is hot/cold split, and we issued less code than we expected |
| 8702 | // in the cold section (the hot section will always be padded out to compTotalHotCodeSize). |
| 8703 | |
| 8704 | bool compIsStatic : 1; // Is the method static (no 'this' pointer)? |
| 8705 | bool compIsVarArgs : 1; // Does the method have varargs parameters? |
| 8706 | bool compIsContextful : 1; // contextful method |
| 8707 | bool compInitMem : 1; // Is the CORINFO_OPT_INIT_LOCALS bit set in the method info options? |
| 8708 | bool compUnwrapContextful : 1; // JIT should unwrap proxies when possible |
| 8709 | bool compProfilerCallback : 1; // JIT inserted a profiler Enter callback |
| 8710 | bool compPublishStubParam : 1; // EAX captured in prolog will be available through an instrinsic |
| 8711 | bool compRetBuffDefStack : 1; // The ret buff argument definitely points into the stack. |
| 8712 | |
| 8713 | var_types compRetType; // Return type of the method as declared in IL |
| 8714 | var_types compRetNativeType; // Normalized return type as per target arch ABI |
| 8715 | unsigned compILargsCount; // Number of arguments (incl. implicit but not hidden) |
| 8716 | unsigned compArgsCount; // Number of arguments (incl. implicit and hidden) |
| 8717 | |
| 8718 | #if FEATURE_FASTTAILCALL |
| 8719 | size_t compArgStackSize; // Incoming argument stack size in bytes |
| 8720 | #endif // FEATURE_FASTTAILCALL |
| 8721 | |
| 8722 | unsigned compRetBuffArg; // position of hidden return param var (0, 1) (BAD_VAR_NUM means not present); |
| 8723 | int compTypeCtxtArg; // position of hidden param for type context for generic code (CORINFO_CALLCONV_PARAMTYPE) |
| 8724 | unsigned compThisArg; // position of implicit this pointer param (not to be confused with lvaArg0Var) |
| 8725 | unsigned compILlocalsCount; // Number of vars : args + locals (incl. implicit but not hidden) |
| 8726 | unsigned compLocalsCount; // Number of vars : args + locals (incl. implicit and hidden) |
| 8727 | unsigned compMaxStack; |
| 8728 | UNATIVE_OFFSET compTotalHotCodeSize; // Total number of bytes of Hot Code in the method |
| 8729 | UNATIVE_OFFSET compTotalColdCodeSize; // Total number of bytes of Cold Code in the method |
| 8730 | |
| 8731 | unsigned compCallUnmanaged; // count of unmanaged calls |
| 8732 | unsigned compLvFrameListRoot; // lclNum for the Frame root |
| 8733 | unsigned compXcptnsCount; // Number of exception-handling clauses read in the method's IL. |
| 8734 | // You should generally use compHndBBtabCount instead: it is the |
| 8735 | // current number of EH clauses (after additions like synchronized |
| 8736 | // methods and funclets, and removals like unreachable code deletion). |
| 8737 | |
| 8738 | bool compMatchedVM; // true if the VM is "matched": either the JIT is a cross-compiler |
| 8739 | // and the VM expects that, or the JIT is a "self-host" compiler |
| 8740 | // (e.g., x86 hosted targeting x86) and the VM expects that. |
| 8741 | |
| 8742 | /* The following holds IL scope information about local variables. |
| 8743 | */ |
| 8744 | |
| 8745 | unsigned compVarScopesCount; |
| 8746 | VarScopeDsc* compVarScopes; |
| 8747 | |
| 8748 | /* The following holds information about instr offsets for |
| 8749 | * which we need to report IP-mappings |
| 8750 | */ |
| 8751 | |
| 8752 | IL_OFFSET* compStmtOffsets; // sorted |
| 8753 | unsigned compStmtOffsetsCount; |
| 8754 | ICorDebugInfo::BoundaryTypes compStmtOffsetsImplicit; |
| 8755 | |
| 8756 | #define CPU_X86 0x0100 // The generic X86 CPU |
| 8757 | #define CPU_X86_PENTIUM_4 0x0110 |
| 8758 | |
| 8759 | #define CPU_X64 0x0200 // The generic x64 CPU |
| 8760 | #define CPU_AMD_X64 0x0210 // AMD x64 CPU |
| 8761 | #define CPU_INTEL_X64 0x0240 // Intel x64 CPU |
| 8762 | |
| 8763 | #define CPU_ARM 0x0300 // The generic ARM CPU |
| 8764 | #define CPU_ARM64 0x0400 // The generic ARM64 CPU |
| 8765 | |
| 8766 | unsigned genCPU; // What CPU are we running on |
| 8767 | } info; |
| 8768 | |
| 8769 | // Returns true if the method being compiled returns a non-void and non-struct value. |
| 8770 | // Note that lvaInitTypeRef() normalizes compRetNativeType for struct returns in a |
| 8771 | // single register as per target arch ABI (e.g on Amd64 Windows structs of size 1, 2, |
| 8772 | // 4 or 8 gets normalized to TYP_BYTE/TYP_SHORT/TYP_INT/TYP_LONG; On Arm HFA structs). |
| 8773 | // Methods returning such structs are considered to return non-struct return value and |
| 8774 | // this method returns true in that case. |
| 8775 | bool compMethodReturnsNativeScalarType() |
| 8776 | { |
| 8777 | return (info.compRetType != TYP_VOID) && !varTypeIsStruct(info.compRetNativeType); |
| 8778 | } |
| 8779 | |
| 8780 | // Returns true if the method being compiled returns RetBuf addr as its return value |
| 8781 | bool compMethodReturnsRetBufAddr() |
| 8782 | { |
| 8783 | // There are cases where implicit RetBuf argument should be explicitly returned in a register. |
| 8784 | // In such cases the return type is changed to TYP_BYREF and appropriate IR is generated. |
| 8785 | // These cases are: |
| 8786 | // 1. Profiler Leave calllback expects the address of retbuf as return value for |
| 8787 | // methods with hidden RetBuf argument. impReturnInstruction() when profiler |
| 8788 | // callbacks are needed creates GT_RETURN(TYP_BYREF, op1 = Addr of RetBuf) for |
| 8789 | // methods with hidden RetBufArg. |
| 8790 | // |
| 8791 | // 2. As per the System V ABI, the address of RetBuf needs to be returned by |
| 8792 | // methods with hidden RetBufArg in RAX. In such case GT_RETURN is of TYP_BYREF, |
| 8793 | // returning the address of RetBuf. |
| 8794 | // |
| 8795 | // 3. Windows 64-bit native calling convention also requires the address of RetBuff |
| 8796 | // to be returned in RAX. |
| 8797 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 8798 | |
| 8799 | #ifdef _TARGET_AMD64_ |
| 8800 | return (info.compRetBuffArg != BAD_VAR_NUM); |
| 8801 | #else // !_TARGET_AMD64_ |
| 8802 | return (compIsProfilerHookNeeded()) && (info.compRetBuffArg != BAD_VAR_NUM); |
| 8803 | #endif // !_TARGET_AMD64_ |
| 8804 | } |
| 8805 | |
| 8806 | // Returns true if the method returns a value in more than one return register |
| 8807 | // TODO-ARM-Bug: Deal with multi-register genReturnLocaled structs? |
| 8808 | // TODO-ARM64: Does this apply for ARM64 too? |
| 8809 | bool compMethodReturnsMultiRegRetType() |
| 8810 | { |
| 8811 | #if FEATURE_MULTIREG_RET |
| 8812 | #if defined(_TARGET_X86_) |
| 8813 | // On x86 only 64-bit longs are returned in multiple registers |
| 8814 | return varTypeIsLong(info.compRetNativeType); |
| 8815 | #else // targets: X64-UNIX, ARM64 or ARM32 |
| 8816 | // On all other targets that support multireg return values: |
| 8817 | // Methods returning a struct in multiple registers have a return value of TYP_STRUCT. |
| 8818 | // Such method's compRetNativeType is TYP_STRUCT without a hidden RetBufArg |
| 8819 | return varTypeIsStruct(info.compRetNativeType) && (info.compRetBuffArg == BAD_VAR_NUM); |
| 8820 | #endif // TARGET_XXX |
| 8821 | |
| 8822 | #else // not FEATURE_MULTIREG_RET |
| 8823 | |
| 8824 | // For this architecture there are no multireg returns |
| 8825 | return false; |
| 8826 | |
| 8827 | #endif // FEATURE_MULTIREG_RET |
| 8828 | } |
| 8829 | |
| 8830 | #if FEATURE_MULTIREG_ARGS |
| 8831 | // Given a GenTree node of TYP_STRUCT that represents a pass by value argument |
| 8832 | // return the gcPtr layout for the pointers sized fields |
| 8833 | void getStructGcPtrsFromOp(GenTree* op, BYTE* gcPtrsOut); |
| 8834 | #endif // FEATURE_MULTIREG_ARGS |
| 8835 | |
| 8836 | // Returns true if the method being compiled returns a value |
| 8837 | bool compMethodHasRetVal() |
| 8838 | { |
| 8839 | return compMethodReturnsNativeScalarType() || compMethodReturnsRetBufAddr() || |
| 8840 | compMethodReturnsMultiRegRetType(); |
| 8841 | } |
| 8842 | |
| 8843 | #if defined(DEBUG) |
| 8844 | |
| 8845 | void compDispLocalVars(); |
| 8846 | |
| 8847 | #endif // DEBUG |
| 8848 | |
| 8849 | //-------------------------- Global Compiler Data ------------------------------------ |
| 8850 | |
| 8851 | #ifdef DEBUG |
| 8852 | static unsigned s_compMethodsCount; // to produce unique label names |
| 8853 | unsigned compGenTreeID; |
| 8854 | unsigned compBasicBlockID; |
| 8855 | #endif |
| 8856 | |
| 8857 | BasicBlock* compCurBB; // the current basic block in process |
| 8858 | GenTree* compCurStmt; // the current statement in process |
| 8859 | #ifdef DEBUG |
| 8860 | unsigned compCurStmtNum; // to give all statements an increasing StmtNum when printing dumps |
| 8861 | #endif |
| 8862 | |
| 8863 | // The following is used to create the 'method JIT info' block. |
| 8864 | size_t compInfoBlkSize; |
| 8865 | BYTE* compInfoBlkAddr; |
| 8866 | |
| 8867 | EHblkDsc* compHndBBtab; // array of EH data |
| 8868 | unsigned compHndBBtabCount; // element count of used elements in EH data array |
| 8869 | unsigned compHndBBtabAllocCount; // element count of allocated elements in EH data array |
| 8870 | |
| 8871 | #if defined(_TARGET_X86_) |
| 8872 | |
| 8873 | //------------------------------------------------------------------------- |
| 8874 | // Tracking of region covered by the monitor in synchronized methods |
| 8875 | void* syncStartEmitCookie; // the emitter cookie for first instruction after the call to MON_ENTER |
| 8876 | void* syncEndEmitCookie; // the emitter cookie for first instruction after the call to MON_EXIT |
| 8877 | |
| 8878 | #endif // !_TARGET_X86_ |
| 8879 | |
| 8880 | Phases previousCompletedPhase; // the most recently completed phase |
| 8881 | |
| 8882 | //------------------------------------------------------------------------- |
| 8883 | // The following keeps track of how many bytes of local frame space we've |
| 8884 | // grabbed so far in the current function, and how many argument bytes we |
| 8885 | // need to pop when we return. |
| 8886 | // |
| 8887 | |
| 8888 | unsigned compLclFrameSize; // secObject+lclBlk+locals+temps |
| 8889 | |
| 8890 | // Count of callee-saved regs we pushed in the prolog. |
| 8891 | // Does not include EBP for isFramePointerUsed() and double-aligned frames. |
| 8892 | // In case of Amd64 this doesn't include float regs saved on stack. |
| 8893 | unsigned compCalleeRegsPushed; |
| 8894 | |
| 8895 | #if defined(_TARGET_XARCH_) |
| 8896 | // Mask of callee saved float regs on stack. |
| 8897 | regMaskTP compCalleeFPRegsSavedMask; |
| 8898 | #endif |
| 8899 | #ifdef _TARGET_AMD64_ |
| 8900 | // Quirk for VS debug-launch scenario to work: |
| 8901 | // Bytes of padding between save-reg area and locals. |
| 8902 | #define VSQUIRK_STACK_PAD (2 * REGSIZE_BYTES) |
| 8903 | unsigned compVSQuirkStackPaddingNeeded; |
| 8904 | bool compQuirkForPPPflag; |
| 8905 | #endif |
| 8906 | |
| 8907 | unsigned compArgSize; // total size of arguments in bytes (including register args (lvIsRegArg)) |
| 8908 | |
| 8909 | unsigned compMapILargNum(unsigned ILargNum); // map accounting for hidden args |
| 8910 | unsigned compMapILvarNum(unsigned ILvarNum); // map accounting for hidden args |
| 8911 | unsigned compMap2ILvarNum(unsigned varNum); // map accounting for hidden args |
| 8912 | |
| 8913 | //------------------------------------------------------------------------- |
| 8914 | |
| 8915 | static void compStartup(); // One-time initialization |
| 8916 | static void compShutdown(); // One-time finalization |
| 8917 | |
| 8918 | void compInit(ArenaAllocator* pAlloc, InlineInfo* inlineInfo); |
| 8919 | void compDone(); |
| 8920 | |
| 8921 | static void compDisplayStaticSizes(FILE* fout); |
| 8922 | |
| 8923 | //------------ Some utility functions -------------- |
| 8924 | |
| 8925 | void* compGetHelperFtn(CorInfoHelpFunc ftnNum, /* IN */ |
| 8926 | void** ppIndirection); /* OUT */ |
| 8927 | |
| 8928 | // Several JIT/EE interface functions return a CorInfoType, and also return a |
| 8929 | // class handle as an out parameter if the type is a value class. Returns the |
| 8930 | // size of the type these describe. |
| 8931 | unsigned compGetTypeSize(CorInfoType cit, CORINFO_CLASS_HANDLE clsHnd); |
| 8932 | |
| 8933 | #ifdef DEBUG |
| 8934 | // Components used by the compiler may write unit test suites, and |
| 8935 | // have them run within this method. They will be run only once per process, and only |
| 8936 | // in debug. (Perhaps should be under the control of a COMPlus_ flag.) |
| 8937 | // These should fail by asserting. |
| 8938 | void compDoComponentUnitTestsOnce(); |
| 8939 | #endif // DEBUG |
| 8940 | |
| 8941 | int compCompile(CORINFO_METHOD_HANDLE methodHnd, |
| 8942 | CORINFO_MODULE_HANDLE classPtr, |
| 8943 | COMP_HANDLE compHnd, |
| 8944 | CORINFO_METHOD_INFO* methodInfo, |
| 8945 | void** methodCodePtr, |
| 8946 | ULONG* methodCodeSize, |
| 8947 | JitFlags* compileFlags); |
| 8948 | void compCompileFinish(); |
| 8949 | int compCompileHelper(CORINFO_MODULE_HANDLE classPtr, |
| 8950 | COMP_HANDLE compHnd, |
| 8951 | CORINFO_METHOD_INFO* methodInfo, |
| 8952 | void** methodCodePtr, |
| 8953 | ULONG* methodCodeSize, |
| 8954 | JitFlags* compileFlags, |
| 8955 | CorInfoInstantiationVerification instVerInfo); |
| 8956 | |
| 8957 | ArenaAllocator* compGetArenaAllocator(); |
| 8958 | |
| 8959 | #if MEASURE_MEM_ALLOC |
| 8960 | static bool s_dspMemStats; // Display per-phase memory statistics for every function |
| 8961 | #endif // MEASURE_MEM_ALLOC |
| 8962 | |
| 8963 | #if LOOP_HOIST_STATS |
| 8964 | unsigned m_loopsConsidered; |
| 8965 | bool m_curLoopHasHoistedExpression; |
| 8966 | unsigned m_loopsWithHoistedExpressions; |
| 8967 | unsigned m_totalHoistedExpressions; |
| 8968 | |
| 8969 | void AddLoopHoistStats(); |
| 8970 | void PrintPerMethodLoopHoistStats(); |
| 8971 | |
| 8972 | static CritSecObject s_loopHoistStatsLock; // This lock protects the data structures below. |
| 8973 | static unsigned s_loopsConsidered; |
| 8974 | static unsigned s_loopsWithHoistedExpressions; |
| 8975 | static unsigned s_totalHoistedExpressions; |
| 8976 | |
| 8977 | static void PrintAggregateLoopHoistStats(FILE* f); |
| 8978 | #endif // LOOP_HOIST_STATS |
| 8979 | |
| 8980 | bool compIsForImportOnly(); |
| 8981 | bool compIsForInlining(); |
| 8982 | bool compDonotInline(); |
| 8983 | |
| 8984 | #ifdef DEBUG |
| 8985 | unsigned char compGetJitDefaultFill(); // Get the default fill char value |
| 8986 | // we randomize this value when JitStress is enabled |
| 8987 | |
| 8988 | const char* compLocalVarName(unsigned varNum, unsigned offs); |
| 8989 | VarName compVarName(regNumber reg, bool isFloatReg = false); |
| 8990 | const char* compRegVarName(regNumber reg, bool displayVar = false, bool isFloatReg = false); |
| 8991 | const char* compRegNameForSize(regNumber reg, size_t size); |
| 8992 | const char* compFPregVarName(unsigned fpReg, bool displayVar = false); |
| 8993 | void compDspSrcLinesByNativeIP(UNATIVE_OFFSET curIP); |
| 8994 | void compDspSrcLinesByLineNum(unsigned line, bool seek = false); |
| 8995 | #endif // DEBUG |
| 8996 | |
| 8997 | //------------------------------------------------------------------------- |
| 8998 | |
| 8999 | struct VarScopeListNode |
| 9000 | { |
| 9001 | VarScopeDsc* data; |
| 9002 | VarScopeListNode* next; |
| 9003 | static VarScopeListNode* Create(VarScopeDsc* value, CompAllocator alloc) |
| 9004 | { |
| 9005 | VarScopeListNode* node = new (alloc) VarScopeListNode; |
| 9006 | node->data = value; |
| 9007 | node->next = nullptr; |
| 9008 | return node; |
| 9009 | } |
| 9010 | }; |
| 9011 | |
| 9012 | struct VarScopeMapInfo |
| 9013 | { |
| 9014 | VarScopeListNode* head; |
| 9015 | VarScopeListNode* tail; |
| 9016 | static VarScopeMapInfo* Create(VarScopeListNode* node, CompAllocator alloc) |
| 9017 | { |
| 9018 | VarScopeMapInfo* info = new (alloc) VarScopeMapInfo; |
| 9019 | info->head = node; |
| 9020 | info->tail = node; |
| 9021 | return info; |
| 9022 | } |
| 9023 | }; |
| 9024 | |
| 9025 | // Max value of scope count for which we would use linear search; for larger values we would use hashtable lookup. |
| 9026 | static const unsigned MAX_LINEAR_FIND_LCL_SCOPELIST = 32; |
| 9027 | |
| 9028 | typedef JitHashTable<unsigned, JitSmallPrimitiveKeyFuncs<unsigned>, VarScopeMapInfo*> VarNumToScopeDscMap; |
| 9029 | |
| 9030 | // Map to keep variables' scope indexed by varNum containing it's scope dscs at the index. |
| 9031 | VarNumToScopeDscMap* compVarScopeMap; |
| 9032 | |
| 9033 | VarScopeDsc* compFindLocalVar(unsigned varNum, unsigned lifeBeg, unsigned lifeEnd); |
| 9034 | |
| 9035 | VarScopeDsc* compFindLocalVar(unsigned varNum, unsigned offs); |
| 9036 | |
| 9037 | VarScopeDsc* compFindLocalVarLinear(unsigned varNum, unsigned offs); |
| 9038 | |
| 9039 | void compInitVarScopeMap(); |
| 9040 | |
| 9041 | VarScopeDsc** compEnterScopeList; // List has the offsets where variables |
| 9042 | // enter scope, sorted by instr offset |
| 9043 | unsigned compNextEnterScope; |
| 9044 | |
| 9045 | VarScopeDsc** compExitScopeList; // List has the offsets where variables |
| 9046 | // go out of scope, sorted by instr offset |
| 9047 | unsigned compNextExitScope; |
| 9048 | |
| 9049 | void compInitScopeLists(); |
| 9050 | |
| 9051 | void compResetScopeLists(); |
| 9052 | |
| 9053 | VarScopeDsc* compGetNextEnterScope(unsigned offs, bool scan = false); |
| 9054 | |
| 9055 | VarScopeDsc* compGetNextExitScope(unsigned offs, bool scan = false); |
| 9056 | |
| 9057 | void compProcessScopesUntil(unsigned offset, |
| 9058 | VARSET_TP* inScope, |
| 9059 | void (Compiler::*enterScopeFn)(VARSET_TP* inScope, VarScopeDsc*), |
| 9060 | void (Compiler::*exitScopeFn)(VARSET_TP* inScope, VarScopeDsc*)); |
| 9061 | |
| 9062 | #ifdef DEBUG |
| 9063 | void compDispScopeLists(); |
| 9064 | #endif // DEBUG |
| 9065 | |
| 9066 | bool compIsProfilerHookNeeded(); |
| 9067 | |
| 9068 | //------------------------------------------------------------------------- |
| 9069 | /* Statistical Data Gathering */ |
| 9070 | |
| 9071 | void compJitStats(); // call this function and enable |
| 9072 | // various ifdef's below for statistical data |
| 9073 | |
| 9074 | #if CALL_ARG_STATS |
| 9075 | void compCallArgStats(); |
| 9076 | static void compDispCallArgStats(FILE* fout); |
| 9077 | #endif |
| 9078 | |
| 9079 | //------------------------------------------------------------------------- |
| 9080 | |
| 9081 | protected: |
| 9082 | #ifdef DEBUG |
| 9083 | bool skipMethod(); |
| 9084 | #endif |
| 9085 | |
| 9086 | ArenaAllocator* compArenaAllocator; |
| 9087 | |
| 9088 | public: |
| 9089 | void compFunctionTraceStart(); |
| 9090 | void compFunctionTraceEnd(void* methodCodePtr, ULONG methodCodeSize, bool isNYI); |
| 9091 | |
| 9092 | protected: |
| 9093 | size_t compMaxUncheckedOffsetForNullObject; |
| 9094 | |
| 9095 | void compInitOptions(JitFlags* compileFlags); |
| 9096 | |
| 9097 | void compSetProcessor(); |
| 9098 | void compInitDebuggingInfo(); |
| 9099 | void compSetOptimizationLevel(); |
| 9100 | #ifdef _TARGET_ARMARCH_ |
| 9101 | bool compRsvdRegCheck(FrameLayoutState curState); |
| 9102 | #endif |
| 9103 | void compCompile(void** methodCodePtr, ULONG* methodCodeSize, JitFlags* compileFlags); |
| 9104 | |
| 9105 | // Clear annotations produced during optimizations; to be used between iterations when repeating opts. |
| 9106 | void ResetOptAnnotations(); |
| 9107 | |
| 9108 | // Regenerate loop descriptors; to be used between iterations when repeating opts. |
| 9109 | void RecomputeLoopInfo(); |
| 9110 | |
| 9111 | #ifdef PROFILING_SUPPORTED |
| 9112 | // Data required for generating profiler Enter/Leave/TailCall hooks |
| 9113 | |
| 9114 | bool compProfilerHookNeeded; // Whether profiler Enter/Leave/TailCall hook needs to be generated for the method |
| 9115 | void* compProfilerMethHnd; // Profiler handle of the method being compiled. Passed as param to ELT callbacks |
| 9116 | bool compProfilerMethHndIndirected; // Whether compProfilerHandle is pointer to the handle or is an actual handle |
| 9117 | #endif |
| 9118 | |
| 9119 | #ifdef _TARGET_AMD64_ |
| 9120 | bool compQuirkForPPP(); // Check if this method should be Quirked for the PPP issue |
| 9121 | #endif |
| 9122 | public: |
| 9123 | // Assumes called as part of process shutdown; does any compiler-specific work associated with that. |
| 9124 | static void ProcessShutdownWork(ICorStaticInfo* statInfo); |
| 9125 | |
| 9126 | CompAllocator getAllocator(CompMemKind cmk = CMK_Generic) |
| 9127 | { |
| 9128 | return CompAllocator(compArenaAllocator, cmk); |
| 9129 | } |
| 9130 | |
| 9131 | CompAllocator getAllocatorGC() |
| 9132 | { |
| 9133 | return getAllocator(CMK_GC); |
| 9134 | } |
| 9135 | |
| 9136 | CompAllocator getAllocatorLoopHoist() |
| 9137 | { |
| 9138 | return getAllocator(CMK_LoopHoist); |
| 9139 | } |
| 9140 | |
| 9141 | #ifdef DEBUG |
| 9142 | CompAllocator getAllocatorDebugOnly() |
| 9143 | { |
| 9144 | return getAllocator(CMK_DebugOnly); |
| 9145 | } |
| 9146 | #endif // DEBUG |
| 9147 | |
| 9148 | /* |
| 9149 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9150 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9151 | XX XX |
| 9152 | XX typeInfo XX |
| 9153 | XX XX |
| 9154 | XX Checks for type compatibility and merges types XX |
| 9155 | XX XX |
| 9156 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9157 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9158 | */ |
| 9159 | |
| 9160 | public: |
| 9161 | // Set to TRUE if verification cannot be skipped for this method |
| 9162 | // If we detect unverifiable code, we will lazily check |
| 9163 | // canSkipMethodVerification() to see if verification is REALLY needed. |
| 9164 | BOOL tiVerificationNeeded; |
| 9165 | |
| 9166 | // It it initially TRUE, and it gets set to FALSE if we run into unverifiable code |
| 9167 | // Note that this is valid only if tiVerificationNeeded was ever TRUE. |
| 9168 | BOOL tiIsVerifiableCode; |
| 9169 | |
| 9170 | // Set to TRUE if runtime callout is needed for this method |
| 9171 | BOOL tiRuntimeCalloutNeeded; |
| 9172 | |
| 9173 | // Set to TRUE if security prolog/epilog callout is needed for this method |
| 9174 | // Note: This flag is different than compNeedSecurityCheck. |
| 9175 | // compNeedSecurityCheck means whether or not a security object needs |
| 9176 | // to be allocated on the stack, which is currently true for EnC as well. |
| 9177 | // tiSecurityCalloutNeeded means whether or not security callouts need |
| 9178 | // to be inserted in the jitted code. |
| 9179 | BOOL tiSecurityCalloutNeeded; |
| 9180 | |
| 9181 | // Returns TRUE if child is equal to or a subtype of parent for merge purposes |
| 9182 | // This support is necessary to suport attributes that are not described in |
| 9183 | // for example, signatures. For example, the permanent home byref (byref that |
| 9184 | // points to the gc heap), isn't a property of method signatures, therefore, |
| 9185 | // it is safe to have mismatches here (that tiCompatibleWith will not flag), |
| 9186 | // but when deciding if we need to reimport a block, we need to take these |
| 9187 | // in account |
| 9188 | BOOL tiMergeCompatibleWith(const typeInfo& pChild, const typeInfo& pParent, bool normalisedForStack) const; |
| 9189 | |
| 9190 | // Returns TRUE if child is equal to or a subtype of parent. |
| 9191 | // normalisedForStack indicates that both types are normalised for the stack |
| 9192 | BOOL tiCompatibleWith(const typeInfo& pChild, const typeInfo& pParent, bool normalisedForStack) const; |
| 9193 | |
| 9194 | // Merges pDest and pSrc. Returns FALSE if merge is undefined. |
| 9195 | // *pDest is modified to represent the merged type. Sets "*changed" to true |
| 9196 | // if this changes "*pDest". |
| 9197 | BOOL tiMergeToCommonParent(typeInfo* pDest, const typeInfo* pSrc, bool* changed) const; |
| 9198 | |
| 9199 | #ifdef DEBUG |
| 9200 | // <BUGNUM> VSW 471305 |
| 9201 | // IJW allows assigning REF to BYREF. The following allows us to temporarily |
| 9202 | // bypass the assert check in gcMarkRegSetGCref and gcMarkRegSetByref |
| 9203 | // We use a "short" as we need to push/pop this scope. |
| 9204 | // </BUGNUM> |
| 9205 | short compRegSetCheckLevel; |
| 9206 | #endif |
| 9207 | |
| 9208 | /* |
| 9209 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9210 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9211 | XX XX |
| 9212 | XX IL verification stuff XX |
| 9213 | XX XX |
| 9214 | XX XX |
| 9215 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9216 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9217 | */ |
| 9218 | |
| 9219 | public: |
| 9220 | // The following is used to track liveness of local variables, initialization |
| 9221 | // of valueclass constructors, and type safe use of IL instructions. |
| 9222 | |
| 9223 | // dynamic state info needed for verification |
| 9224 | EntryState verCurrentState; |
| 9225 | |
| 9226 | // this ptr of object type .ctors are considered intited only after |
| 9227 | // the base class ctor is called, or an alternate ctor is called. |
| 9228 | // An uninited this ptr can be used to access fields, but cannot |
| 9229 | // be used to call a member function. |
| 9230 | BOOL verTrackObjCtorInitState; |
| 9231 | |
| 9232 | void verInitBBEntryState(BasicBlock* block, EntryState* currentState); |
| 9233 | |
| 9234 | // Requires that "tis" is not TIS_Bottom -- it's a definite init/uninit state. |
| 9235 | void verSetThisInit(BasicBlock* block, ThisInitState tis); |
| 9236 | void verInitCurrentState(); |
| 9237 | void verResetCurrentState(BasicBlock* block, EntryState* currentState); |
| 9238 | |
| 9239 | // Merges the current verification state into the entry state of "block", return FALSE if that merge fails, |
| 9240 | // TRUE if it succeeds. Further sets "*changed" to true if this changes the entry state of "block". |
| 9241 | BOOL verMergeEntryStates(BasicBlock* block, bool* changed); |
| 9242 | |
| 9243 | void verConvertBBToThrowVerificationException(BasicBlock* block DEBUGARG(bool logMsg)); |
| 9244 | void verHandleVerificationFailure(BasicBlock* block DEBUGARG(bool logMsg)); |
| 9245 | typeInfo verMakeTypeInfo(CORINFO_CLASS_HANDLE clsHnd, |
| 9246 | bool bashStructToRef = false); // converts from jit type representation to typeInfo |
| 9247 | typeInfo verMakeTypeInfo(CorInfoType ciType, |
| 9248 | CORINFO_CLASS_HANDLE clsHnd); // converts from jit type representation to typeInfo |
| 9249 | BOOL verIsSDArray(typeInfo ti); |
| 9250 | typeInfo verGetArrayElemType(typeInfo ti); |
| 9251 | |
| 9252 | typeInfo verParseArgSigToTypeInfo(CORINFO_SIG_INFO* sig, CORINFO_ARG_LIST_HANDLE args); |
| 9253 | BOOL verNeedsVerification(); |
| 9254 | BOOL verIsByRefLike(const typeInfo& ti); |
| 9255 | BOOL verIsSafeToReturnByRef(const typeInfo& ti); |
| 9256 | |
| 9257 | // generic type variables range over types that satisfy IsBoxable |
| 9258 | BOOL verIsBoxable(const typeInfo& ti); |
| 9259 | |
| 9260 | void DECLSPEC_NORETURN verRaiseVerifyException(INDEBUG(const char* reason) DEBUGARG(const char* file) |
| 9261 | DEBUGARG(unsigned line)); |
| 9262 | void verRaiseVerifyExceptionIfNeeded(INDEBUG(const char* reason) DEBUGARG(const char* file) |
| 9263 | DEBUGARG(unsigned line)); |
| 9264 | bool verCheckTailCallConstraint(OPCODE opcode, |
| 9265 | CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 9266 | CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken, // Is this a "constrained." call |
| 9267 | // on a type parameter? |
| 9268 | bool speculative // If true, won't throw if verificatoin fails. Instead it will |
| 9269 | // return false to the caller. |
| 9270 | // If false, it will throw. |
| 9271 | ); |
| 9272 | bool verIsBoxedValueType(typeInfo ti); |
| 9273 | |
| 9274 | void verVerifyCall(OPCODE opcode, |
| 9275 | CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 9276 | CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken, |
| 9277 | bool tailCall, |
| 9278 | bool readonlyCall, // is this a "readonly." call? |
| 9279 | const BYTE* delegateCreateStart, |
| 9280 | const BYTE* codeAddr, |
| 9281 | CORINFO_CALL_INFO* callInfo DEBUGARG(const char* methodName)); |
| 9282 | |
| 9283 | BOOL verCheckDelegateCreation(const BYTE* delegateCreateStart, const BYTE* codeAddr, mdMemberRef& targetMemberRef); |
| 9284 | |
| 9285 | typeInfo verVerifySTIND(const typeInfo& ptr, const typeInfo& value, const typeInfo& instrType); |
| 9286 | typeInfo verVerifyLDIND(const typeInfo& ptr, const typeInfo& instrType); |
| 9287 | void verVerifyField(CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 9288 | const CORINFO_FIELD_INFO& fieldInfo, |
| 9289 | const typeInfo* tiThis, |
| 9290 | BOOL mutator, |
| 9291 | BOOL allowPlainStructAsThis = FALSE); |
| 9292 | void verVerifyCond(const typeInfo& tiOp1, const typeInfo& tiOp2, unsigned opcode); |
| 9293 | void verVerifyThisPtrInitialised(); |
| 9294 | BOOL verIsCallToInitThisPtr(CORINFO_CLASS_HANDLE context, CORINFO_CLASS_HANDLE target); |
| 9295 | |
| 9296 | #ifdef DEBUG |
| 9297 | |
| 9298 | // One line log function. Default level is 0. Increasing it gives you |
| 9299 | // more log information |
| 9300 | |
| 9301 | // levels are currently unused: #define JITDUMP(level,...) (); |
| 9302 | void JitLogEE(unsigned level, const char* fmt, ...); |
| 9303 | |
| 9304 | bool compDebugBreak; |
| 9305 | |
| 9306 | bool compJitHaltMethod(); |
| 9307 | |
| 9308 | #endif |
| 9309 | |
| 9310 | /* |
| 9311 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9312 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9313 | XX XX |
| 9314 | XX GS Security checks for unsafe buffers XX |
| 9315 | XX XX |
| 9316 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9317 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9318 | */ |
| 9319 | public: |
| 9320 | struct ShadowParamVarInfo |
| 9321 | { |
| 9322 | FixedBitVect* assignGroup; // the closure set of variables whose values depend on each other |
| 9323 | unsigned shadowCopy; // Lcl var num, valid only if not set to NO_SHADOW_COPY |
| 9324 | |
| 9325 | static bool mayNeedShadowCopy(LclVarDsc* varDsc) |
| 9326 | { |
| 9327 | #if defined(_TARGET_AMD64_) |
| 9328 | // GS cookie logic to create shadow slots, create trees to copy reg args to shadow |
| 9329 | // slots and update all trees to refer to shadow slots is done immediately after |
| 9330 | // fgMorph(). Lsra could potentially mark a param as DoNotEnregister after JIT determines |
| 9331 | // not to shadow a parameter. Also, LSRA could potentially spill a param which is passed |
| 9332 | // in register. Therefore, conservatively all params may need a shadow copy. Note that |
| 9333 | // GS cookie logic further checks whether the param is a ptr or an unsafe buffer before |
| 9334 | // creating a shadow slot even though this routine returns true. |
| 9335 | // |
| 9336 | // TODO-AMD64-CQ: Revisit this conservative approach as it could create more shadow slots than |
| 9337 | // required. There are two cases under which a reg arg could potentially be used from its |
| 9338 | // home location: |
| 9339 | // a) LSRA marks it as DoNotEnregister (see LinearScan::identifyCandidates()) |
| 9340 | // b) LSRA spills it |
| 9341 | // |
| 9342 | // Possible solution to address case (a) |
| 9343 | // - The conditions under which LSRA marks a varDsc as DoNotEnregister could be checked |
| 9344 | // in this routine. Note that live out of exception handler is something we may not be |
| 9345 | // able to do it here since GS cookie logic is invoked ahead of liveness computation. |
| 9346 | // Therefore, for methods with exception handling and need GS cookie check we might have |
| 9347 | // to take conservative approach. |
| 9348 | // |
| 9349 | // Possible solution to address case (b) |
| 9350 | // - Whenver a parameter passed in an argument register needs to be spilled by LSRA, we |
| 9351 | // create a new spill temp if the method needs GS cookie check. |
| 9352 | return varDsc->lvIsParam; |
| 9353 | #else // !defined(_TARGET_AMD64_) |
| 9354 | return varDsc->lvIsParam && !varDsc->lvIsRegArg; |
| 9355 | #endif |
| 9356 | } |
| 9357 | |
| 9358 | #ifdef DEBUG |
| 9359 | void Print() |
| 9360 | { |
| 9361 | printf("assignGroup [%p]; shadowCopy: [%d];\n" , assignGroup, shadowCopy); |
| 9362 | } |
| 9363 | #endif |
| 9364 | }; |
| 9365 | |
| 9366 | GSCookie* gsGlobalSecurityCookieAddr; // Address of global cookie for unsafe buffer checks |
| 9367 | GSCookie gsGlobalSecurityCookieVal; // Value of global cookie if addr is NULL |
| 9368 | ShadowParamVarInfo* gsShadowVarInfo; // Table used by shadow param analysis code |
| 9369 | |
| 9370 | void gsGSChecksInitCookie(); // Grabs cookie variable |
| 9371 | void gsCopyShadowParams(); // Identify vulnerable params and create dhadow copies |
| 9372 | bool gsFindVulnerableParams(); // Shadow param analysis code |
| 9373 | void gsParamsToShadows(); // Insert copy code and replave param uses by shadow |
| 9374 | |
| 9375 | static fgWalkPreFn gsMarkPtrsAndAssignGroups; // Shadow param analysis tree-walk |
| 9376 | static fgWalkPreFn gsReplaceShadowParams; // Shadow param replacement tree-walk |
| 9377 | |
| 9378 | #define DEFAULT_MAX_INLINE_SIZE 100 // Methods with > DEFAULT_MAX_INLINE_SIZE IL bytes will never be inlined. |
| 9379 | // This can be overwritten by setting complus_JITInlineSize env variable. |
| 9380 | |
| 9381 | #define DEFAULT_MAX_INLINE_DEPTH 20 // Methods at more than this level deep will not be inlined |
| 9382 | |
| 9383 | #define DEFAULT_MAX_LOCALLOC_TO_LOCAL_SIZE 32 // fixed locallocs of this size or smaller will convert to local buffers |
| 9384 | |
| 9385 | private: |
| 9386 | #ifdef FEATURE_JIT_METHOD_PERF |
| 9387 | JitTimer* pCompJitTimer; // Timer data structure (by phases) for current compilation. |
| 9388 | static CompTimeSummaryInfo s_compJitTimerSummary; // Summary of the Timer information for the whole run. |
| 9389 | |
| 9390 | static LPCWSTR JitTimeLogCsv(); // Retrieve the file name for CSV from ConfigDWORD. |
| 9391 | static LPCWSTR compJitTimeLogFilename; // If a log file for JIT time is desired, filename to write it to. |
| 9392 | #endif |
| 9393 | inline void EndPhase(Phases phase); // Indicate the end of the given phase. |
| 9394 | |
| 9395 | #if MEASURE_CLRAPI_CALLS |
| 9396 | // Thin wrappers that call into JitTimer (if present). |
| 9397 | inline void CLRApiCallEnter(unsigned apix); |
| 9398 | inline void CLRApiCallLeave(unsigned apix); |
| 9399 | |
| 9400 | public: |
| 9401 | inline void CLR_API_Enter(API_ICorJitInfo_Names ename); |
| 9402 | inline void CLR_API_Leave(API_ICorJitInfo_Names ename); |
| 9403 | |
| 9404 | private: |
| 9405 | #endif |
| 9406 | |
| 9407 | #if defined(DEBUG) || defined(INLINE_DATA) || defined(FEATURE_CLRSQM) |
| 9408 | // These variables are associated with maintaining SQM data about compile time. |
| 9409 | unsigned __int64 m_compCyclesAtEndOfInlining; // The thread-virtualized cycle count at the end of the inlining phase |
| 9410 | // in the current compilation. |
| 9411 | unsigned __int64 m_compCycles; // Net cycle count for current compilation |
| 9412 | DWORD m_compTickCountAtEndOfInlining; // The result of GetTickCount() (# ms since some epoch marker) at the end of |
| 9413 | // the inlining phase in the current compilation. |
| 9414 | #endif // defined(DEBUG) || defined(INLINE_DATA) || defined(FEATURE_CLRSQM) |
| 9415 | |
| 9416 | // Records the SQM-relevant (cycles and tick count). Should be called after inlining is complete. |
| 9417 | // (We do this after inlining because this marks the last point at which the JIT is likely to cause |
| 9418 | // type-loading and class initialization). |
| 9419 | void RecordStateAtEndOfInlining(); |
| 9420 | // Assumes being called at the end of compilation. Update the SQM state. |
| 9421 | void RecordStateAtEndOfCompilation(); |
| 9422 | |
| 9423 | #ifdef FEATURE_CLRSQM |
| 9424 | // Does anything SQM related necessary at process shutdown time. |
| 9425 | static void ProcessShutdownSQMWork(ICorStaticInfo* statInfo); |
| 9426 | #endif // FEATURE_CLRSQM |
| 9427 | |
| 9428 | public: |
| 9429 | #if FUNC_INFO_LOGGING |
| 9430 | static LPCWSTR compJitFuncInfoFilename; // If a log file for per-function information is required, this is the |
| 9431 | // filename to write it to. |
| 9432 | static FILE* compJitFuncInfoFile; // And this is the actual FILE* to write to. |
| 9433 | #endif // FUNC_INFO_LOGGING |
| 9434 | |
| 9435 | Compiler* prevCompiler; // Previous compiler on stack for TLS Compiler* linked list for reentrant compilers. |
| 9436 | |
| 9437 | // Is the compilation in a full trust context? |
| 9438 | bool compIsFullTrust(); |
| 9439 | |
| 9440 | #if MEASURE_NOWAY |
| 9441 | void RecordNowayAssert(const char* filename, unsigned line, const char* condStr); |
| 9442 | #endif // MEASURE_NOWAY |
| 9443 | |
| 9444 | #ifndef FEATURE_TRACELOGGING |
| 9445 | // Should we actually fire the noway assert body and the exception handler? |
| 9446 | bool compShouldThrowOnNoway(); |
| 9447 | #else // FEATURE_TRACELOGGING |
| 9448 | // Should we actually fire the noway assert body and the exception handler? |
| 9449 | bool compShouldThrowOnNoway(const char* filename, unsigned line); |
| 9450 | |
| 9451 | // Telemetry instance to use per method compilation. |
| 9452 | JitTelemetry compJitTelemetry; |
| 9453 | |
| 9454 | // Get common parameters that have to be logged with most telemetry data. |
| 9455 | void compGetTelemetryDefaults(const char** assemblyName, |
| 9456 | const char** scopeName, |
| 9457 | const char** methodName, |
| 9458 | unsigned* methodHash); |
| 9459 | #endif // !FEATURE_TRACELOGGING |
| 9460 | |
| 9461 | #ifdef DEBUG |
| 9462 | private: |
| 9463 | NodeToTestDataMap* m_nodeTestData; |
| 9464 | |
| 9465 | static const unsigned FIRST_LOOP_HOIST_CSE_CLASS = 1000; |
| 9466 | unsigned m_loopHoistCSEClass; // LoopHoist test annotations turn into CSE requirements; we |
| 9467 | // label them with CSE Class #'s starting at FIRST_LOOP_HOIST_CSE_CLASS. |
| 9468 | // Current kept in this. |
| 9469 | public: |
| 9470 | NodeToTestDataMap* GetNodeTestData() |
| 9471 | { |
| 9472 | Compiler* compRoot = impInlineRoot(); |
| 9473 | if (compRoot->m_nodeTestData == nullptr) |
| 9474 | { |
| 9475 | compRoot->m_nodeTestData = new (getAllocatorDebugOnly()) NodeToTestDataMap(getAllocatorDebugOnly()); |
| 9476 | } |
| 9477 | return compRoot->m_nodeTestData; |
| 9478 | } |
| 9479 | |
| 9480 | typedef JitHashTable<GenTree*, JitPtrKeyFuncs<GenTree>, int> NodeToIntMap; |
| 9481 | |
| 9482 | // Returns the set (i.e., the domain of the result map) of nodes that are keys in m_nodeTestData, and |
| 9483 | // currently occur in the AST graph. |
| 9484 | NodeToIntMap* FindReachableNodesInNodeTestData(); |
| 9485 | |
| 9486 | // Node "from" is being eliminated, and being replaced by node "to". If "from" had any associated |
| 9487 | // test data, associate that data with "to". |
| 9488 | void TransferTestDataToNode(GenTree* from, GenTree* to); |
| 9489 | |
| 9490 | // Requires that "to" is a clone of "from". If any nodes in the "from" tree |
| 9491 | // have annotations, attach similar annotations to the corresponding nodes in "to". |
| 9492 | void CopyTestDataToCloneTree(GenTree* from, GenTree* to); |
| 9493 | |
| 9494 | // These are the methods that test that the various conditions implied by the |
| 9495 | // test attributes are satisfied. |
| 9496 | void JitTestCheckSSA(); // SSA builder tests. |
| 9497 | void JitTestCheckVN(); // Value numbering tests. |
| 9498 | #endif // DEBUG |
| 9499 | |
| 9500 | // The "FieldSeqStore", for canonicalizing field sequences. See the definition of FieldSeqStore for |
| 9501 | // operations. |
| 9502 | FieldSeqStore* m_fieldSeqStore; |
| 9503 | |
| 9504 | FieldSeqStore* GetFieldSeqStore() |
| 9505 | { |
| 9506 | Compiler* compRoot = impInlineRoot(); |
| 9507 | if (compRoot->m_fieldSeqStore == nullptr) |
| 9508 | { |
| 9509 | // Create a CompAllocator that labels sub-structure with CMK_FieldSeqStore, and use that for allocation. |
| 9510 | CompAllocator ialloc(getAllocator(CMK_FieldSeqStore)); |
| 9511 | compRoot->m_fieldSeqStore = new (ialloc) FieldSeqStore(ialloc); |
| 9512 | } |
| 9513 | return compRoot->m_fieldSeqStore; |
| 9514 | } |
| 9515 | |
| 9516 | typedef JitHashTable<GenTree*, JitPtrKeyFuncs<GenTree>, FieldSeqNode*> NodeToFieldSeqMap; |
| 9517 | |
| 9518 | // Some nodes of "TYP_BYREF" or "TYP_I_IMPL" actually represent the address of a field within a struct, but since |
| 9519 | // the offset of the field is zero, there's no "GT_ADD" node. We normally attach a field sequence to the constant |
| 9520 | // that is added, but what do we do when that constant is zero, and is thus not present? We use this mechanism to |
| 9521 | // attach the field sequence directly to the address node. |
| 9522 | NodeToFieldSeqMap* m_zeroOffsetFieldMap; |
| 9523 | |
| 9524 | NodeToFieldSeqMap* GetZeroOffsetFieldMap() |
| 9525 | { |
| 9526 | // Don't need to worry about inlining here |
| 9527 | if (m_zeroOffsetFieldMap == nullptr) |
| 9528 | { |
| 9529 | // Create a CompAllocator that labels sub-structure with CMK_ZeroOffsetFieldMap, and use that for |
| 9530 | // allocation. |
| 9531 | CompAllocator ialloc(getAllocator(CMK_ZeroOffsetFieldMap)); |
| 9532 | m_zeroOffsetFieldMap = new (ialloc) NodeToFieldSeqMap(ialloc); |
| 9533 | } |
| 9534 | return m_zeroOffsetFieldMap; |
| 9535 | } |
| 9536 | |
| 9537 | // Requires that "op1" is a node of type "TYP_BYREF" or "TYP_I_IMPL". We are dereferencing this with the fields in |
| 9538 | // "fieldSeq", whose offsets are required all to be zero. Ensures that any field sequence annotation currently on |
| 9539 | // "op1" or its components is augmented by appending "fieldSeq". In practice, if "op1" is a GT_LCL_FLD, it has |
| 9540 | // a field sequence as a member; otherwise, it may be the addition of an a byref and a constant, where the const |
| 9541 | // has a field sequence -- in this case "fieldSeq" is appended to that of the constant; otherwise, we |
| 9542 | // record the the field sequence using the ZeroOffsetFieldMap described above. |
| 9543 | // |
| 9544 | // One exception above is that "op1" is a node of type "TYP_REF" where "op1" is a GT_LCL_VAR. |
| 9545 | // This happens when System.Object vtable pointer is a regular field at offset 0 in System.Private.CoreLib in |
| 9546 | // CoreRT. Such case is handled same as the default case. |
| 9547 | void fgAddFieldSeqForZeroOffset(GenTree* op1, FieldSeqNode* fieldSeq); |
| 9548 | |
| 9549 | typedef JitHashTable<const GenTree*, JitPtrKeyFuncs<GenTree>, ArrayInfo> NodeToArrayInfoMap; |
| 9550 | NodeToArrayInfoMap* m_arrayInfoMap; |
| 9551 | |
| 9552 | NodeToArrayInfoMap* GetArrayInfoMap() |
| 9553 | { |
| 9554 | Compiler* compRoot = impInlineRoot(); |
| 9555 | if (compRoot->m_arrayInfoMap == nullptr) |
| 9556 | { |
| 9557 | // Create a CompAllocator that labels sub-structure with CMK_ArrayInfoMap, and use that for allocation. |
| 9558 | CompAllocator ialloc(getAllocator(CMK_ArrayInfoMap)); |
| 9559 | compRoot->m_arrayInfoMap = new (ialloc) NodeToArrayInfoMap(ialloc); |
| 9560 | } |
| 9561 | return compRoot->m_arrayInfoMap; |
| 9562 | } |
| 9563 | |
| 9564 | //----------------------------------------------------------------------------------------------------------------- |
| 9565 | // Compiler::TryGetArrayInfo: |
| 9566 | // Given an indirection node, checks to see whether or not that indirection represents an array access, and |
| 9567 | // if so returns information about the array. |
| 9568 | // |
| 9569 | // Arguments: |
| 9570 | // indir - The `GT_IND` node. |
| 9571 | // arrayInfo (out) - Information about the accessed array if this function returns true. Undefined otherwise. |
| 9572 | // |
| 9573 | // Returns: |
| 9574 | // True if the `GT_IND` node represents an array access; false otherwise. |
| 9575 | bool TryGetArrayInfo(GenTreeIndir* indir, ArrayInfo* arrayInfo) |
| 9576 | { |
| 9577 | if ((indir->gtFlags & GTF_IND_ARR_INDEX) == 0) |
| 9578 | { |
| 9579 | return false; |
| 9580 | } |
| 9581 | |
| 9582 | if (indir->gtOp1->OperIs(GT_INDEX_ADDR)) |
| 9583 | { |
| 9584 | GenTreeIndexAddr* const indexAddr = indir->gtOp1->AsIndexAddr(); |
| 9585 | *arrayInfo = ArrayInfo(indexAddr->gtElemType, indexAddr->gtElemSize, indexAddr->gtElemOffset, |
| 9586 | indexAddr->gtStructElemClass); |
| 9587 | return true; |
| 9588 | } |
| 9589 | |
| 9590 | bool found = GetArrayInfoMap()->Lookup(indir, arrayInfo); |
| 9591 | assert(found); |
| 9592 | return true; |
| 9593 | } |
| 9594 | |
| 9595 | NodeToUnsignedMap* m_memorySsaMap[MemoryKindCount]; |
| 9596 | |
| 9597 | // In some cases, we want to assign intermediate SSA #'s to memory states, and know what nodes create those memory |
| 9598 | // states. (We do this for try blocks, where, if the try block doesn't do a call that loses track of the memory |
| 9599 | // state, all the possible memory states are possible initial states of the corresponding catch block(s).) |
| 9600 | NodeToUnsignedMap* GetMemorySsaMap(MemoryKind memoryKind) |
| 9601 | { |
| 9602 | if (memoryKind == GcHeap && byrefStatesMatchGcHeapStates) |
| 9603 | { |
| 9604 | // Use the same map for GCHeap and ByrefExposed when their states match. |
| 9605 | memoryKind = ByrefExposed; |
| 9606 | } |
| 9607 | |
| 9608 | assert(memoryKind < MemoryKindCount); |
| 9609 | Compiler* compRoot = impInlineRoot(); |
| 9610 | if (compRoot->m_memorySsaMap[memoryKind] == nullptr) |
| 9611 | { |
| 9612 | // Create a CompAllocator that labels sub-structure with CMK_ArrayInfoMap, and use that for allocation. |
| 9613 | CompAllocator ialloc(getAllocator(CMK_ArrayInfoMap)); |
| 9614 | compRoot->m_memorySsaMap[memoryKind] = new (ialloc) NodeToUnsignedMap(ialloc); |
| 9615 | } |
| 9616 | return compRoot->m_memorySsaMap[memoryKind]; |
| 9617 | } |
| 9618 | |
| 9619 | // The Refany type is the only struct type whose structure is implicitly assumed by IL. We need its fields. |
| 9620 | CORINFO_CLASS_HANDLE m_refAnyClass; |
| 9621 | CORINFO_FIELD_HANDLE GetRefanyDataField() |
| 9622 | { |
| 9623 | if (m_refAnyClass == nullptr) |
| 9624 | { |
| 9625 | m_refAnyClass = info.compCompHnd->getBuiltinClass(CLASSID_TYPED_BYREF); |
| 9626 | } |
| 9627 | return info.compCompHnd->getFieldInClass(m_refAnyClass, 0); |
| 9628 | } |
| 9629 | CORINFO_FIELD_HANDLE GetRefanyTypeField() |
| 9630 | { |
| 9631 | if (m_refAnyClass == nullptr) |
| 9632 | { |
| 9633 | m_refAnyClass = info.compCompHnd->getBuiltinClass(CLASSID_TYPED_BYREF); |
| 9634 | } |
| 9635 | return info.compCompHnd->getFieldInClass(m_refAnyClass, 1); |
| 9636 | } |
| 9637 | |
| 9638 | #if VARSET_COUNTOPS |
| 9639 | static BitSetSupport::BitSetOpCounter m_varsetOpCounter; |
| 9640 | #endif |
| 9641 | #if ALLVARSET_COUNTOPS |
| 9642 | static BitSetSupport::BitSetOpCounter m_allvarsetOpCounter; |
| 9643 | #endif |
| 9644 | |
| 9645 | static HelperCallProperties s_helperCallProperties; |
| 9646 | |
| 9647 | #ifdef UNIX_AMD64_ABI |
| 9648 | static var_types GetTypeFromClassificationAndSizes(SystemVClassificationType classType, int size); |
| 9649 | static var_types GetEightByteType(const SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR& structDesc, |
| 9650 | unsigned slotNum); |
| 9651 | |
| 9652 | static void GetStructTypeOffset(const SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR& structDesc, |
| 9653 | var_types* type0, |
| 9654 | var_types* type1, |
| 9655 | unsigned __int8* offset0, |
| 9656 | unsigned __int8* offset1); |
| 9657 | |
| 9658 | void GetStructTypeOffset(CORINFO_CLASS_HANDLE typeHnd, |
| 9659 | var_types* type0, |
| 9660 | var_types* type1, |
| 9661 | unsigned __int8* offset0, |
| 9662 | unsigned __int8* offset1); |
| 9663 | |
| 9664 | #endif // defined(UNIX_AMD64_ABI) |
| 9665 | |
| 9666 | void fgMorphMultiregStructArgs(GenTreeCall* call); |
| 9667 | GenTree* fgMorphMultiregStructArg(GenTree* arg, fgArgTabEntry* fgEntryPtr); |
| 9668 | |
| 9669 | bool killGCRefs(GenTree* tree); |
| 9670 | |
| 9671 | }; // end of class Compiler |
| 9672 | |
| 9673 | //--------------------------------------------------------------------------------------------------------------------- |
| 9674 | // GenTreeVisitor: a flexible tree walker implemented using the curiosly-recurring-template pattern. |
| 9675 | // |
| 9676 | // This class implements a configurable walker for IR trees. There are five configuration options (defaults values are |
| 9677 | // shown in parentheses): |
| 9678 | // |
| 9679 | // - ComputeStack (false): when true, the walker will push each node onto the `m_ancestors` stack. "Ancestors" is a bit |
| 9680 | // of a misnomer, as the first entry will always be the current node. |
| 9681 | // |
| 9682 | // - DoPreOrder (false): when true, the walker will invoke `TVisitor::PreOrderVisit` with the current node as an |
| 9683 | // argument before visiting the node's operands. |
| 9684 | // |
| 9685 | // - DoPostOrder (false): when true, the walker will invoke `TVisitor::PostOrderVisit` with the current node as an |
| 9686 | // argument after visiting the node's operands. |
| 9687 | // |
| 9688 | // - DoLclVarsOnly (false): when true, the walker will only invoke `TVisitor::PreOrderVisit` for lclVar nodes. |
| 9689 | // `DoPreOrder` must be true if this option is true. |
| 9690 | // |
| 9691 | // - UseExecutionOrder (false): when true, then walker will visit a node's operands in execution order (e.g. if a |
| 9692 | // binary operator has the `GTF_REVERSE_OPS` flag set, the second operand will be |
| 9693 | // visited before the first). |
| 9694 | // |
| 9695 | // At least one of `DoPreOrder` and `DoPostOrder` must be specified. |
| 9696 | // |
| 9697 | // A simple pre-order visitor might look something like the following: |
| 9698 | // |
| 9699 | // class CountingVisitor final : public GenTreeVisitor<CountingVisitor> |
| 9700 | // { |
| 9701 | // public: |
| 9702 | // enum |
| 9703 | // { |
| 9704 | // DoPreOrder = true |
| 9705 | // }; |
| 9706 | // |
| 9707 | // unsigned m_count; |
| 9708 | // |
| 9709 | // CountingVisitor(Compiler* compiler) |
| 9710 | // : GenTreeVisitor<CountingVisitor>(compiler), m_count(0) |
| 9711 | // { |
| 9712 | // } |
| 9713 | // |
| 9714 | // Compiler::fgWalkResult PreOrderVisit(GenTree* node) |
| 9715 | // { |
| 9716 | // m_count++; |
| 9717 | // } |
| 9718 | // }; |
| 9719 | // |
| 9720 | // This visitor would then be used like so: |
| 9721 | // |
| 9722 | // CountingVisitor countingVisitor(compiler); |
| 9723 | // countingVisitor.WalkTree(root); |
| 9724 | // |
| 9725 | template <typename TVisitor> |
| 9726 | class GenTreeVisitor |
| 9727 | { |
| 9728 | protected: |
| 9729 | typedef Compiler::fgWalkResult fgWalkResult; |
| 9730 | |
| 9731 | enum |
| 9732 | { |
| 9733 | ComputeStack = false, |
| 9734 | DoPreOrder = false, |
| 9735 | DoPostOrder = false, |
| 9736 | DoLclVarsOnly = false, |
| 9737 | UseExecutionOrder = false, |
| 9738 | }; |
| 9739 | |
| 9740 | Compiler* m_compiler; |
| 9741 | ArrayStack<GenTree*> m_ancestors; |
| 9742 | |
| 9743 | GenTreeVisitor(Compiler* compiler) : m_compiler(compiler), m_ancestors(compiler->getAllocator(CMK_ArrayStack)) |
| 9744 | { |
| 9745 | assert(compiler != nullptr); |
| 9746 | |
| 9747 | static_assert_no_msg(TVisitor::DoPreOrder || TVisitor::DoPostOrder); |
| 9748 | static_assert_no_msg(!TVisitor::DoLclVarsOnly || TVisitor::DoPreOrder); |
| 9749 | } |
| 9750 | |
| 9751 | fgWalkResult PreOrderVisit(GenTree** use, GenTree* user) |
| 9752 | { |
| 9753 | return fgWalkResult::WALK_CONTINUE; |
| 9754 | } |
| 9755 | |
| 9756 | fgWalkResult PostOrderVisit(GenTree** use, GenTree* user) |
| 9757 | { |
| 9758 | return fgWalkResult::WALK_CONTINUE; |
| 9759 | } |
| 9760 | |
| 9761 | public: |
| 9762 | fgWalkResult WalkTree(GenTree** use, GenTree* user) |
| 9763 | { |
| 9764 | assert(use != nullptr); |
| 9765 | |
| 9766 | GenTree* node = *use; |
| 9767 | |
| 9768 | if (TVisitor::ComputeStack) |
| 9769 | { |
| 9770 | m_ancestors.Push(node); |
| 9771 | } |
| 9772 | |
| 9773 | fgWalkResult result = fgWalkResult::WALK_CONTINUE; |
| 9774 | if (TVisitor::DoPreOrder && !TVisitor::DoLclVarsOnly) |
| 9775 | { |
| 9776 | result = reinterpret_cast<TVisitor*>(this)->PreOrderVisit(use, user); |
| 9777 | if (result == fgWalkResult::WALK_ABORT) |
| 9778 | { |
| 9779 | return result; |
| 9780 | } |
| 9781 | |
| 9782 | node = *use; |
| 9783 | if ((node == nullptr) || (result == fgWalkResult::WALK_SKIP_SUBTREES)) |
| 9784 | { |
| 9785 | goto DONE; |
| 9786 | } |
| 9787 | } |
| 9788 | |
| 9789 | switch (node->OperGet()) |
| 9790 | { |
| 9791 | // Leaf lclVars |
| 9792 | case GT_LCL_VAR: |
| 9793 | case GT_LCL_FLD: |
| 9794 | case GT_LCL_VAR_ADDR: |
| 9795 | case GT_LCL_FLD_ADDR: |
| 9796 | if (TVisitor::DoLclVarsOnly) |
| 9797 | { |
| 9798 | result = reinterpret_cast<TVisitor*>(this)->PreOrderVisit(use, user); |
| 9799 | if (result == fgWalkResult::WALK_ABORT) |
| 9800 | { |
| 9801 | return result; |
| 9802 | } |
| 9803 | } |
| 9804 | __fallthrough; |
| 9805 | |
| 9806 | // Leaf nodes |
| 9807 | case GT_CATCH_ARG: |
| 9808 | case GT_LABEL: |
| 9809 | case GT_FTN_ADDR: |
| 9810 | case GT_RET_EXPR: |
| 9811 | case GT_CNS_INT: |
| 9812 | case GT_CNS_LNG: |
| 9813 | case GT_CNS_DBL: |
| 9814 | case GT_CNS_STR: |
| 9815 | case GT_MEMORYBARRIER: |
| 9816 | case GT_JMP: |
| 9817 | case GT_JCC: |
| 9818 | case GT_SETCC: |
| 9819 | case GT_NO_OP: |
| 9820 | case GT_START_NONGC: |
| 9821 | case GT_PROF_HOOK: |
| 9822 | #if !FEATURE_EH_FUNCLETS |
| 9823 | case GT_END_LFIN: |
| 9824 | #endif // !FEATURE_EH_FUNCLETS |
| 9825 | case GT_PHI_ARG: |
| 9826 | case GT_JMPTABLE: |
| 9827 | case GT_CLS_VAR: |
| 9828 | case GT_CLS_VAR_ADDR: |
| 9829 | case GT_ARGPLACE: |
| 9830 | case GT_PHYSREG: |
| 9831 | case GT_EMITNOP: |
| 9832 | case GT_PINVOKE_PROLOG: |
| 9833 | case GT_PINVOKE_EPILOG: |
| 9834 | case GT_IL_OFFSET: |
| 9835 | break; |
| 9836 | |
| 9837 | // Lclvar unary operators |
| 9838 | case GT_STORE_LCL_VAR: |
| 9839 | case GT_STORE_LCL_FLD: |
| 9840 | if (TVisitor::DoLclVarsOnly) |
| 9841 | { |
| 9842 | result = reinterpret_cast<TVisitor*>(this)->PreOrderVisit(use, user); |
| 9843 | if (result == fgWalkResult::WALK_ABORT) |
| 9844 | { |
| 9845 | return result; |
| 9846 | } |
| 9847 | } |
| 9848 | __fallthrough; |
| 9849 | |
| 9850 | // Standard unary operators |
| 9851 | case GT_NOT: |
| 9852 | case GT_NEG: |
| 9853 | case GT_BSWAP: |
| 9854 | case GT_BSWAP16: |
| 9855 | case GT_COPY: |
| 9856 | case GT_RELOAD: |
| 9857 | case GT_ARR_LENGTH: |
| 9858 | case GT_CAST: |
| 9859 | case GT_BITCAST: |
| 9860 | case GT_CKFINITE: |
| 9861 | case GT_LCLHEAP: |
| 9862 | case GT_ADDR: |
| 9863 | case GT_IND: |
| 9864 | case GT_OBJ: |
| 9865 | case GT_BLK: |
| 9866 | case GT_BOX: |
| 9867 | case GT_ALLOCOBJ: |
| 9868 | case GT_INIT_VAL: |
| 9869 | case GT_JTRUE: |
| 9870 | case GT_SWITCH: |
| 9871 | case GT_NULLCHECK: |
| 9872 | case GT_PUTARG_REG: |
| 9873 | case GT_PUTARG_STK: |
| 9874 | case GT_RETURNTRAP: |
| 9875 | case GT_NOP: |
| 9876 | case GT_RETURN: |
| 9877 | case GT_RETFILT: |
| 9878 | case GT_PHI: |
| 9879 | case GT_RUNTIMELOOKUP: |
| 9880 | { |
| 9881 | GenTreeUnOp* const unOp = node->AsUnOp(); |
| 9882 | if (unOp->gtOp1 != nullptr) |
| 9883 | { |
| 9884 | result = WalkTree(&unOp->gtOp1, unOp); |
| 9885 | if (result == fgWalkResult::WALK_ABORT) |
| 9886 | { |
| 9887 | return result; |
| 9888 | } |
| 9889 | } |
| 9890 | break; |
| 9891 | } |
| 9892 | |
| 9893 | // Special nodes |
| 9894 | case GT_CMPXCHG: |
| 9895 | { |
| 9896 | GenTreeCmpXchg* const cmpXchg = node->AsCmpXchg(); |
| 9897 | |
| 9898 | result = WalkTree(&cmpXchg->gtOpLocation, cmpXchg); |
| 9899 | if (result == fgWalkResult::WALK_ABORT) |
| 9900 | { |
| 9901 | return result; |
| 9902 | } |
| 9903 | result = WalkTree(&cmpXchg->gtOpValue, cmpXchg); |
| 9904 | if (result == fgWalkResult::WALK_ABORT) |
| 9905 | { |
| 9906 | return result; |
| 9907 | } |
| 9908 | result = WalkTree(&cmpXchg->gtOpComparand, cmpXchg); |
| 9909 | if (result == fgWalkResult::WALK_ABORT) |
| 9910 | { |
| 9911 | return result; |
| 9912 | } |
| 9913 | break; |
| 9914 | } |
| 9915 | |
| 9916 | case GT_ARR_BOUNDS_CHECK: |
| 9917 | #ifdef FEATURE_SIMD |
| 9918 | case GT_SIMD_CHK: |
| 9919 | #endif // FEATURE_SIMD |
| 9920 | #ifdef FEATURE_HW_INTRINSICS |
| 9921 | case GT_HW_INTRINSIC_CHK: |
| 9922 | #endif // FEATURE_HW_INTRINSICS |
| 9923 | { |
| 9924 | GenTreeBoundsChk* const boundsChk = node->AsBoundsChk(); |
| 9925 | |
| 9926 | result = WalkTree(&boundsChk->gtIndex, boundsChk); |
| 9927 | if (result == fgWalkResult::WALK_ABORT) |
| 9928 | { |
| 9929 | return result; |
| 9930 | } |
| 9931 | result = WalkTree(&boundsChk->gtArrLen, boundsChk); |
| 9932 | if (result == fgWalkResult::WALK_ABORT) |
| 9933 | { |
| 9934 | return result; |
| 9935 | } |
| 9936 | break; |
| 9937 | } |
| 9938 | |
| 9939 | case GT_FIELD: |
| 9940 | { |
| 9941 | GenTreeField* const field = node->AsField(); |
| 9942 | |
| 9943 | if (field->gtFldObj != nullptr) |
| 9944 | { |
| 9945 | result = WalkTree(&field->gtFldObj, field); |
| 9946 | if (result == fgWalkResult::WALK_ABORT) |
| 9947 | { |
| 9948 | return result; |
| 9949 | } |
| 9950 | } |
| 9951 | break; |
| 9952 | } |
| 9953 | |
| 9954 | case GT_ARR_ELEM: |
| 9955 | { |
| 9956 | GenTreeArrElem* const arrElem = node->AsArrElem(); |
| 9957 | |
| 9958 | result = WalkTree(&arrElem->gtArrObj, arrElem); |
| 9959 | if (result == fgWalkResult::WALK_ABORT) |
| 9960 | { |
| 9961 | return result; |
| 9962 | } |
| 9963 | |
| 9964 | const unsigned rank = arrElem->gtArrRank; |
| 9965 | for (unsigned dim = 0; dim < rank; dim++) |
| 9966 | { |
| 9967 | result = WalkTree(&arrElem->gtArrInds[dim], arrElem); |
| 9968 | if (result == fgWalkResult::WALK_ABORT) |
| 9969 | { |
| 9970 | return result; |
| 9971 | } |
| 9972 | } |
| 9973 | break; |
| 9974 | } |
| 9975 | |
| 9976 | case GT_ARR_OFFSET: |
| 9977 | { |
| 9978 | GenTreeArrOffs* const arrOffs = node->AsArrOffs(); |
| 9979 | |
| 9980 | result = WalkTree(&arrOffs->gtOffset, arrOffs); |
| 9981 | if (result == fgWalkResult::WALK_ABORT) |
| 9982 | { |
| 9983 | return result; |
| 9984 | } |
| 9985 | result = WalkTree(&arrOffs->gtIndex, arrOffs); |
| 9986 | if (result == fgWalkResult::WALK_ABORT) |
| 9987 | { |
| 9988 | return result; |
| 9989 | } |
| 9990 | result = WalkTree(&arrOffs->gtArrObj, arrOffs); |
| 9991 | if (result == fgWalkResult::WALK_ABORT) |
| 9992 | { |
| 9993 | return result; |
| 9994 | } |
| 9995 | break; |
| 9996 | } |
| 9997 | |
| 9998 | case GT_DYN_BLK: |
| 9999 | { |
| 10000 | GenTreeDynBlk* const dynBlock = node->AsDynBlk(); |
| 10001 | |
| 10002 | GenTree** op1Use = &dynBlock->gtOp1; |
| 10003 | GenTree** op2Use = &dynBlock->gtDynamicSize; |
| 10004 | |
| 10005 | if (TVisitor::UseExecutionOrder && dynBlock->gtEvalSizeFirst) |
| 10006 | { |
| 10007 | std::swap(op1Use, op2Use); |
| 10008 | } |
| 10009 | |
| 10010 | result = WalkTree(op1Use, dynBlock); |
| 10011 | if (result == fgWalkResult::WALK_ABORT) |
| 10012 | { |
| 10013 | return result; |
| 10014 | } |
| 10015 | result = WalkTree(op2Use, dynBlock); |
| 10016 | if (result == fgWalkResult::WALK_ABORT) |
| 10017 | { |
| 10018 | return result; |
| 10019 | } |
| 10020 | break; |
| 10021 | } |
| 10022 | |
| 10023 | case GT_STORE_DYN_BLK: |
| 10024 | { |
| 10025 | GenTreeDynBlk* const dynBlock = node->AsDynBlk(); |
| 10026 | |
| 10027 | GenTree** op1Use = &dynBlock->gtOp1; |
| 10028 | GenTree** op2Use = &dynBlock->gtOp2; |
| 10029 | GenTree** op3Use = &dynBlock->gtDynamicSize; |
| 10030 | |
| 10031 | if (TVisitor::UseExecutionOrder) |
| 10032 | { |
| 10033 | if (dynBlock->IsReverseOp()) |
| 10034 | { |
| 10035 | std::swap(op1Use, op2Use); |
| 10036 | } |
| 10037 | if (dynBlock->gtEvalSizeFirst) |
| 10038 | { |
| 10039 | std::swap(op3Use, op2Use); |
| 10040 | std::swap(op2Use, op1Use); |
| 10041 | } |
| 10042 | } |
| 10043 | |
| 10044 | result = WalkTree(op1Use, dynBlock); |
| 10045 | if (result == fgWalkResult::WALK_ABORT) |
| 10046 | { |
| 10047 | return result; |
| 10048 | } |
| 10049 | result = WalkTree(op2Use, dynBlock); |
| 10050 | if (result == fgWalkResult::WALK_ABORT) |
| 10051 | { |
| 10052 | return result; |
| 10053 | } |
| 10054 | result = WalkTree(op3Use, dynBlock); |
| 10055 | if (result == fgWalkResult::WALK_ABORT) |
| 10056 | { |
| 10057 | return result; |
| 10058 | } |
| 10059 | break; |
| 10060 | } |
| 10061 | |
| 10062 | case GT_CALL: |
| 10063 | { |
| 10064 | GenTreeCall* const call = node->AsCall(); |
| 10065 | |
| 10066 | if (call->gtCallObjp != nullptr) |
| 10067 | { |
| 10068 | result = WalkTree(&call->gtCallObjp, call); |
| 10069 | if (result == fgWalkResult::WALK_ABORT) |
| 10070 | { |
| 10071 | return result; |
| 10072 | } |
| 10073 | } |
| 10074 | |
| 10075 | for (GenTreeArgList* args = call->gtCallArgs; args != nullptr; args = args->Rest()) |
| 10076 | { |
| 10077 | result = WalkTree(args->pCurrent(), call); |
| 10078 | if (result == fgWalkResult::WALK_ABORT) |
| 10079 | { |
| 10080 | return result; |
| 10081 | } |
| 10082 | } |
| 10083 | |
| 10084 | for (GenTreeArgList* args = call->gtCallLateArgs; args != nullptr; args = args->Rest()) |
| 10085 | { |
| 10086 | result = WalkTree(args->pCurrent(), call); |
| 10087 | if (result == fgWalkResult::WALK_ABORT) |
| 10088 | { |
| 10089 | return result; |
| 10090 | } |
| 10091 | } |
| 10092 | |
| 10093 | if (call->gtCallType == CT_INDIRECT) |
| 10094 | { |
| 10095 | if (call->gtCallCookie != nullptr) |
| 10096 | { |
| 10097 | result = WalkTree(&call->gtCallCookie, call); |
| 10098 | if (result == fgWalkResult::WALK_ABORT) |
| 10099 | { |
| 10100 | return result; |
| 10101 | } |
| 10102 | } |
| 10103 | |
| 10104 | result = WalkTree(&call->gtCallAddr, call); |
| 10105 | if (result == fgWalkResult::WALK_ABORT) |
| 10106 | { |
| 10107 | return result; |
| 10108 | } |
| 10109 | } |
| 10110 | |
| 10111 | if (call->gtControlExpr != nullptr) |
| 10112 | { |
| 10113 | result = WalkTree(&call->gtControlExpr, call); |
| 10114 | if (result == fgWalkResult::WALK_ABORT) |
| 10115 | { |
| 10116 | return result; |
| 10117 | } |
| 10118 | } |
| 10119 | |
| 10120 | break; |
| 10121 | } |
| 10122 | |
| 10123 | // Binary nodes |
| 10124 | default: |
| 10125 | { |
| 10126 | assert(node->OperIsBinary()); |
| 10127 | |
| 10128 | GenTreeOp* const op = node->AsOp(); |
| 10129 | |
| 10130 | GenTree** op1Use = &op->gtOp1; |
| 10131 | GenTree** op2Use = &op->gtOp2; |
| 10132 | |
| 10133 | if (TVisitor::UseExecutionOrder && node->IsReverseOp()) |
| 10134 | { |
| 10135 | std::swap(op1Use, op2Use); |
| 10136 | } |
| 10137 | |
| 10138 | if (*op1Use != nullptr) |
| 10139 | { |
| 10140 | result = WalkTree(op1Use, op); |
| 10141 | if (result == fgWalkResult::WALK_ABORT) |
| 10142 | { |
| 10143 | return result; |
| 10144 | } |
| 10145 | } |
| 10146 | |
| 10147 | if (*op2Use != nullptr) |
| 10148 | { |
| 10149 | result = WalkTree(op2Use, op); |
| 10150 | if (result == fgWalkResult::WALK_ABORT) |
| 10151 | { |
| 10152 | return result; |
| 10153 | } |
| 10154 | } |
| 10155 | break; |
| 10156 | } |
| 10157 | } |
| 10158 | |
| 10159 | DONE: |
| 10160 | // Finally, visit the current node |
| 10161 | if (TVisitor::DoPostOrder) |
| 10162 | { |
| 10163 | result = reinterpret_cast<TVisitor*>(this)->PostOrderVisit(use, user); |
| 10164 | } |
| 10165 | |
| 10166 | if (TVisitor::ComputeStack) |
| 10167 | { |
| 10168 | m_ancestors.Pop(); |
| 10169 | } |
| 10170 | |
| 10171 | return result; |
| 10172 | } |
| 10173 | }; |
| 10174 | |
| 10175 | template <bool computeStack, bool doPreOrder, bool doPostOrder, bool doLclVarsOnly, bool useExecutionOrder> |
| 10176 | class GenericTreeWalker final |
| 10177 | : public GenTreeVisitor<GenericTreeWalker<computeStack, doPreOrder, doPostOrder, doLclVarsOnly, useExecutionOrder>> |
| 10178 | { |
| 10179 | public: |
| 10180 | enum |
| 10181 | { |
| 10182 | ComputeStack = computeStack, |
| 10183 | DoPreOrder = doPreOrder, |
| 10184 | DoPostOrder = doPostOrder, |
| 10185 | DoLclVarsOnly = doLclVarsOnly, |
| 10186 | UseExecutionOrder = useExecutionOrder, |
| 10187 | }; |
| 10188 | |
| 10189 | private: |
| 10190 | Compiler::fgWalkData* m_walkData; |
| 10191 | |
| 10192 | public: |
| 10193 | GenericTreeWalker(Compiler::fgWalkData* walkData) |
| 10194 | : GenTreeVisitor<GenericTreeWalker<computeStack, doPreOrder, doPostOrder, doLclVarsOnly, useExecutionOrder>>( |
| 10195 | walkData->compiler) |
| 10196 | , m_walkData(walkData) |
| 10197 | { |
| 10198 | assert(walkData != nullptr); |
| 10199 | |
| 10200 | if (computeStack) |
| 10201 | { |
| 10202 | walkData->parentStack = &this->m_ancestors; |
| 10203 | } |
| 10204 | } |
| 10205 | |
| 10206 | Compiler::fgWalkResult PreOrderVisit(GenTree** use, GenTree* user) |
| 10207 | { |
| 10208 | m_walkData->parent = user; |
| 10209 | return m_walkData->wtprVisitorFn(use, m_walkData); |
| 10210 | } |
| 10211 | |
| 10212 | Compiler::fgWalkResult PostOrderVisit(GenTree** use, GenTree* user) |
| 10213 | { |
| 10214 | m_walkData->parent = user; |
| 10215 | return m_walkData->wtpoVisitorFn(use, m_walkData); |
| 10216 | } |
| 10217 | }; |
| 10218 | |
| 10219 | /* |
| 10220 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 10221 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 10222 | XX XX |
| 10223 | XX Miscellaneous Compiler stuff XX |
| 10224 | XX XX |
| 10225 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 10226 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 10227 | */ |
| 10228 | |
| 10229 | // Values used to mark the types a stack slot is used for |
| 10230 | |
| 10231 | const unsigned TYPE_REF_INT = 0x01; // slot used as a 32-bit int |
| 10232 | const unsigned TYPE_REF_LNG = 0x02; // slot used as a 64-bit long |
| 10233 | const unsigned TYPE_REF_FLT = 0x04; // slot used as a 32-bit float |
| 10234 | const unsigned TYPE_REF_DBL = 0x08; // slot used as a 64-bit float |
| 10235 | const unsigned TYPE_REF_PTR = 0x10; // slot used as a 32-bit pointer |
| 10236 | const unsigned TYPE_REF_BYR = 0x20; // slot used as a byref pointer |
| 10237 | const unsigned TYPE_REF_STC = 0x40; // slot used as a struct |
| 10238 | const unsigned TYPE_REF_TYPEMASK = 0x7F; // bits that represent the type |
| 10239 | |
| 10240 | // const unsigned TYPE_REF_ADDR_TAKEN = 0x80; // slots address was taken |
| 10241 | |
| 10242 | /***************************************************************************** |
| 10243 | * |
| 10244 | * Variables to keep track of total code amounts. |
| 10245 | */ |
| 10246 | |
| 10247 | #if DISPLAY_SIZES |
| 10248 | |
| 10249 | extern size_t grossVMsize; |
| 10250 | extern size_t grossNCsize; |
| 10251 | extern size_t totalNCsize; |
| 10252 | |
| 10253 | extern unsigned genMethodICnt; |
| 10254 | extern unsigned genMethodNCnt; |
| 10255 | extern size_t gcHeaderISize; |
| 10256 | extern size_t gcPtrMapISize; |
| 10257 | extern size_t gcHeaderNSize; |
| 10258 | extern size_t gcPtrMapNSize; |
| 10259 | |
| 10260 | #endif // DISPLAY_SIZES |
| 10261 | |
| 10262 | /***************************************************************************** |
| 10263 | * |
| 10264 | * Variables to keep track of basic block counts (more data on 1 BB methods) |
| 10265 | */ |
| 10266 | |
| 10267 | #if COUNT_BASIC_BLOCKS |
| 10268 | extern Histogram bbCntTable; |
| 10269 | extern Histogram bbOneBBSizeTable; |
| 10270 | #endif |
| 10271 | |
| 10272 | /***************************************************************************** |
| 10273 | * |
| 10274 | * Used by optFindNaturalLoops to gather statistical information such as |
| 10275 | * - total number of natural loops |
| 10276 | * - number of loops with 1, 2, ... exit conditions |
| 10277 | * - number of loops that have an iterator (for like) |
| 10278 | * - number of loops that have a constant iterator |
| 10279 | */ |
| 10280 | |
| 10281 | #if COUNT_LOOPS |
| 10282 | |
| 10283 | extern unsigned totalLoopMethods; // counts the total number of methods that have natural loops |
| 10284 | extern unsigned maxLoopsPerMethod; // counts the maximum number of loops a method has |
| 10285 | extern unsigned totalLoopOverflows; // # of methods that identified more loops than we can represent |
| 10286 | extern unsigned totalLoopCount; // counts the total number of natural loops |
| 10287 | extern unsigned totalUnnatLoopCount; // counts the total number of (not-necessarily natural) loops |
| 10288 | extern unsigned totalUnnatLoopOverflows; // # of methods that identified more unnatural loops than we can represent |
| 10289 | extern unsigned iterLoopCount; // counts the # of loops with an iterator (for like) |
| 10290 | extern unsigned simpleTestLoopCount; // counts the # of loops with an iterator and a simple loop condition (iter < |
| 10291 | // const) |
| 10292 | extern unsigned constIterLoopCount; // counts the # of loops with a constant iterator (for like) |
| 10293 | extern bool hasMethodLoops; // flag to keep track if we already counted a method as having loops |
| 10294 | extern unsigned loopsThisMethod; // counts the number of loops in the current method |
| 10295 | extern bool loopOverflowThisMethod; // True if we exceeded the max # of loops in the method. |
| 10296 | extern Histogram loopCountTable; // Histogram of loop counts |
| 10297 | extern Histogram loopExitCountTable; // Histogram of loop exit counts |
| 10298 | |
| 10299 | #endif // COUNT_LOOPS |
| 10300 | |
| 10301 | /***************************************************************************** |
| 10302 | * variables to keep track of how many iterations we go in a dataflow pass |
| 10303 | */ |
| 10304 | |
| 10305 | #if DATAFLOW_ITER |
| 10306 | |
| 10307 | extern unsigned CSEiterCount; // counts the # of iteration for the CSE dataflow |
| 10308 | extern unsigned CFiterCount; // counts the # of iteration for the Const Folding dataflow |
| 10309 | |
| 10310 | #endif // DATAFLOW_ITER |
| 10311 | |
| 10312 | #if MEASURE_BLOCK_SIZE |
| 10313 | extern size_t genFlowNodeSize; |
| 10314 | extern size_t genFlowNodeCnt; |
| 10315 | #endif // MEASURE_BLOCK_SIZE |
| 10316 | |
| 10317 | #if MEASURE_NODE_SIZE |
| 10318 | struct NodeSizeStats |
| 10319 | { |
| 10320 | void Init() |
| 10321 | { |
| 10322 | genTreeNodeCnt = 0; |
| 10323 | genTreeNodeSize = 0; |
| 10324 | genTreeNodeActualSize = 0; |
| 10325 | } |
| 10326 | |
| 10327 | // Count of tree nodes allocated. |
| 10328 | unsigned __int64 genTreeNodeCnt; |
| 10329 | |
| 10330 | // The size we allocate. |
| 10331 | unsigned __int64 genTreeNodeSize; |
| 10332 | |
| 10333 | // The actual size of the node. Note that the actual size will likely be smaller |
| 10334 | // than the allocated size, but we sometimes use SetOper()/ChangeOper() to change |
| 10335 | // a smaller node to a larger one. TODO-Cleanup: add stats on |
| 10336 | // SetOper()/ChangeOper() usage to quantify this. |
| 10337 | unsigned __int64 genTreeNodeActualSize; |
| 10338 | }; |
| 10339 | extern NodeSizeStats genNodeSizeStats; // Total node size stats |
| 10340 | extern NodeSizeStats genNodeSizeStatsPerFunc; // Per-function node size stats |
| 10341 | extern Histogram genTreeNcntHist; |
| 10342 | extern Histogram genTreeNsizHist; |
| 10343 | #endif // MEASURE_NODE_SIZE |
| 10344 | |
| 10345 | /***************************************************************************** |
| 10346 | * Count fatal errors (including noway_asserts). |
| 10347 | */ |
| 10348 | |
| 10349 | #if MEASURE_FATAL |
| 10350 | extern unsigned fatal_badCode; |
| 10351 | extern unsigned fatal_noWay; |
| 10352 | extern unsigned fatal_NOMEM; |
| 10353 | extern unsigned fatal_noWayAssertBody; |
| 10354 | #ifdef DEBUG |
| 10355 | extern unsigned fatal_noWayAssertBodyArgs; |
| 10356 | #endif // DEBUG |
| 10357 | extern unsigned fatal_NYI; |
| 10358 | #endif // MEASURE_FATAL |
| 10359 | |
| 10360 | /***************************************************************************** |
| 10361 | * Codegen |
| 10362 | */ |
| 10363 | |
| 10364 | #ifdef _TARGET_XARCH_ |
| 10365 | |
| 10366 | const instruction INS_SHIFT_LEFT_LOGICAL = INS_shl; |
| 10367 | const instruction INS_SHIFT_RIGHT_LOGICAL = INS_shr; |
| 10368 | const instruction INS_SHIFT_RIGHT_ARITHM = INS_sar; |
| 10369 | |
| 10370 | const instruction INS_AND = INS_and; |
| 10371 | const instruction INS_OR = INS_or; |
| 10372 | const instruction INS_XOR = INS_xor; |
| 10373 | const instruction INS_NEG = INS_neg; |
| 10374 | const instruction INS_TEST = INS_test; |
| 10375 | const instruction INS_MUL = INS_imul; |
| 10376 | const instruction INS_SIGNED_DIVIDE = INS_idiv; |
| 10377 | const instruction INS_UNSIGNED_DIVIDE = INS_div; |
| 10378 | const instruction INS_BREAKPOINT = INS_int3; |
| 10379 | const instruction INS_ADDC = INS_adc; |
| 10380 | const instruction INS_SUBC = INS_sbb; |
| 10381 | const instruction INS_NOT = INS_not; |
| 10382 | |
| 10383 | #endif // _TARGET_XARCH_ |
| 10384 | |
| 10385 | #ifdef _TARGET_ARM_ |
| 10386 | |
| 10387 | const instruction INS_SHIFT_LEFT_LOGICAL = INS_lsl; |
| 10388 | const instruction INS_SHIFT_RIGHT_LOGICAL = INS_lsr; |
| 10389 | const instruction INS_SHIFT_RIGHT_ARITHM = INS_asr; |
| 10390 | |
| 10391 | const instruction INS_AND = INS_and; |
| 10392 | const instruction INS_OR = INS_orr; |
| 10393 | const instruction INS_XOR = INS_eor; |
| 10394 | const instruction INS_NEG = INS_rsb; |
| 10395 | const instruction INS_TEST = INS_tst; |
| 10396 | const instruction INS_MUL = INS_mul; |
| 10397 | const instruction INS_MULADD = INS_mla; |
| 10398 | const instruction INS_SIGNED_DIVIDE = INS_sdiv; |
| 10399 | const instruction INS_UNSIGNED_DIVIDE = INS_udiv; |
| 10400 | const instruction INS_BREAKPOINT = INS_bkpt; |
| 10401 | const instruction INS_ADDC = INS_adc; |
| 10402 | const instruction INS_SUBC = INS_sbc; |
| 10403 | const instruction INS_NOT = INS_mvn; |
| 10404 | |
| 10405 | const instruction INS_ABS = INS_vabs; |
| 10406 | const instruction INS_SQRT = INS_vsqrt; |
| 10407 | |
| 10408 | #endif // _TARGET_ARM_ |
| 10409 | |
| 10410 | #ifdef _TARGET_ARM64_ |
| 10411 | |
| 10412 | const instruction INS_MULADD = INS_madd; |
| 10413 | const instruction INS_BREAKPOINT = INS_bkpt; |
| 10414 | |
| 10415 | const instruction INS_ABS = INS_fabs; |
| 10416 | const instruction INS_SQRT = INS_fsqrt; |
| 10417 | |
| 10418 | #endif // _TARGET_ARM64_ |
| 10419 | |
| 10420 | /*****************************************************************************/ |
| 10421 | |
| 10422 | extern const BYTE genTypeSizes[]; |
| 10423 | extern const BYTE genTypeAlignments[]; |
| 10424 | extern const BYTE genTypeStSzs[]; |
| 10425 | extern const BYTE genActualTypes[]; |
| 10426 | |
| 10427 | /*****************************************************************************/ |
| 10428 | |
| 10429 | // VERY_LARGE_FRAME_SIZE_REG_MASK is the set of registers we need to use for |
| 10430 | // the probing loop generated for very large stack frames (see `getVeryLargeFrameSize`). |
| 10431 | |
| 10432 | #ifdef _TARGET_ARM_ |
| 10433 | #define VERY_LARGE_FRAME_SIZE_REG_MASK (RBM_R4 | RBM_R5 | RBM_R6) |
| 10434 | #elif defined(_TARGET_ARM64_) |
| 10435 | #define VERY_LARGE_FRAME_SIZE_REG_MASK (RBM_R9 | RBM_R10 | RBM_R11) |
| 10436 | #endif |
| 10437 | |
| 10438 | /*****************************************************************************/ |
| 10439 | |
| 10440 | extern BasicBlock dummyBB; |
| 10441 | |
| 10442 | /*****************************************************************************/ |
| 10443 | /*****************************************************************************/ |
| 10444 | |
| 10445 | // foreach_treenode_execution_order: An iterator that iterates through all the tree |
| 10446 | // nodes of a statement in execution order. |
| 10447 | // __stmt: a GT_STMT type GenTree* |
| 10448 | // __node: a GenTree*, already declared, that gets updated with each node in the statement, in execution order |
| 10449 | |
| 10450 | #define foreach_treenode_execution_order(__node, __stmt) \ |
| 10451 | for ((__node) = (__stmt)->gtStmt.gtStmtList; (__node); (__node) = (__node)->gtNext) |
| 10452 | |
| 10453 | // foreach_block: An iterator over all blocks in the function. |
| 10454 | // __compiler: the Compiler* object |
| 10455 | // __block : a BasicBlock*, already declared, that gets updated each iteration. |
| 10456 | |
| 10457 | #define foreach_block(__compiler, __block) \ |
| 10458 | for ((__block) = (__compiler)->fgFirstBB; (__block); (__block) = (__block)->bbNext) |
| 10459 | |
| 10460 | /*****************************************************************************/ |
| 10461 | /*****************************************************************************/ |
| 10462 | |
| 10463 | #ifdef DEBUG |
| 10464 | |
| 10465 | void dumpConvertedVarSet(Compiler* comp, VARSET_VALARG_TP vars); |
| 10466 | |
| 10467 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 10468 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 10469 | XX XX |
| 10470 | XX Debugging helpers XX |
| 10471 | XX XX |
| 10472 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 10473 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 10474 | */ |
| 10475 | |
| 10476 | /*****************************************************************************/ |
| 10477 | /* The following functions are intended to be called from the debugger, to dump |
| 10478 | * various data structures. The can be used in the debugger Watch or Quick Watch |
| 10479 | * windows. They are designed to be short to type and take as few arguments as |
| 10480 | * possible. The 'c' versions take a Compiler*, whereas the 'd' versions use the TlsCompiler. |
| 10481 | * See the function definition comment for more details. |
| 10482 | */ |
| 10483 | |
| 10484 | void cBlock(Compiler* comp, BasicBlock* block); |
| 10485 | void cBlocks(Compiler* comp); |
| 10486 | void cBlocksV(Compiler* comp); |
| 10487 | void cTree(Compiler* comp, GenTree* tree); |
| 10488 | void cTrees(Compiler* comp); |
| 10489 | void cEH(Compiler* comp); |
| 10490 | void cVar(Compiler* comp, unsigned lclNum); |
| 10491 | void cVarDsc(Compiler* comp, LclVarDsc* varDsc); |
| 10492 | void cVars(Compiler* comp); |
| 10493 | void cVarsFinal(Compiler* comp); |
| 10494 | void cBlockPreds(Compiler* comp, BasicBlock* block); |
| 10495 | void cReach(Compiler* comp); |
| 10496 | void cDoms(Compiler* comp); |
| 10497 | void cLiveness(Compiler* comp); |
| 10498 | void cCVarSet(Compiler* comp, VARSET_VALARG_TP vars); |
| 10499 | |
| 10500 | void cFuncIR(Compiler* comp); |
| 10501 | void cBlockIR(Compiler* comp, BasicBlock* block); |
| 10502 | void cLoopIR(Compiler* comp, Compiler::LoopDsc* loop); |
| 10503 | void cTreeIR(Compiler* comp, GenTree* tree); |
| 10504 | int cTreeTypeIR(Compiler* comp, GenTree* tree); |
| 10505 | int cTreeKindsIR(Compiler* comp, GenTree* tree); |
| 10506 | int cTreeFlagsIR(Compiler* comp, GenTree* tree); |
| 10507 | int cOperandIR(Compiler* comp, GenTree* operand); |
| 10508 | int cLeafIR(Compiler* comp, GenTree* tree); |
| 10509 | int cIndirIR(Compiler* comp, GenTree* tree); |
| 10510 | int cListIR(Compiler* comp, GenTree* list); |
| 10511 | int cSsaNumIR(Compiler* comp, GenTree* tree); |
| 10512 | int cValNumIR(Compiler* comp, GenTree* tree); |
| 10513 | int cDependsIR(Compiler* comp, GenTree* comma, bool* first); |
| 10514 | |
| 10515 | void dBlock(BasicBlock* block); |
| 10516 | void dBlocks(); |
| 10517 | void dBlocksV(); |
| 10518 | void dTree(GenTree* tree); |
| 10519 | void dTrees(); |
| 10520 | void dEH(); |
| 10521 | void dVar(unsigned lclNum); |
| 10522 | void dVarDsc(LclVarDsc* varDsc); |
| 10523 | void dVars(); |
| 10524 | void dVarsFinal(); |
| 10525 | void dBlockPreds(BasicBlock* block); |
| 10526 | void dReach(); |
| 10527 | void dDoms(); |
| 10528 | void dLiveness(); |
| 10529 | void dCVarSet(VARSET_VALARG_TP vars); |
| 10530 | |
| 10531 | void dRegMask(regMaskTP mask); |
| 10532 | |
| 10533 | void dFuncIR(); |
| 10534 | void dBlockIR(BasicBlock* block); |
| 10535 | void dTreeIR(GenTree* tree); |
| 10536 | void dLoopIR(Compiler::LoopDsc* loop); |
| 10537 | void dLoopNumIR(unsigned loopNum); |
| 10538 | int dTabStopIR(int curr, int tabstop); |
| 10539 | int dTreeTypeIR(GenTree* tree); |
| 10540 | int dTreeKindsIR(GenTree* tree); |
| 10541 | int dTreeFlagsIR(GenTree* tree); |
| 10542 | int dOperandIR(GenTree* operand); |
| 10543 | int dLeafIR(GenTree* tree); |
| 10544 | int dIndirIR(GenTree* tree); |
| 10545 | int dListIR(GenTree* list); |
| 10546 | int dSsaNumIR(GenTree* tree); |
| 10547 | int dValNumIR(GenTree* tree); |
| 10548 | int dDependsIR(GenTree* comma); |
| 10549 | void dFormatIR(); |
| 10550 | |
| 10551 | GenTree* dFindTree(GenTree* tree, unsigned id); |
| 10552 | GenTree* dFindTree(unsigned id); |
| 10553 | GenTreeStmt* dFindStmt(unsigned id); |
| 10554 | BasicBlock* dFindBlock(unsigned bbNum); |
| 10555 | |
| 10556 | #endif // DEBUG |
| 10557 | |
| 10558 | #include "compiler.hpp" // All the shared inline functions |
| 10559 | |
| 10560 | /*****************************************************************************/ |
| 10561 | #endif //_COMPILER_H_ |
| 10562 | /*****************************************************************************/ |
| 10563 | |