| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /* |
| 6 | * GCHELPERS.CPP |
| 7 | * |
| 8 | * GC Allocation and Write Barrier Helpers |
| 9 | * |
| 10 | |
| 11 | * |
| 12 | */ |
| 13 | |
| 14 | #include "common.h" |
| 15 | #include "object.h" |
| 16 | #include "threads.h" |
| 17 | #include "eetwain.h" |
| 18 | #include "eeconfig.h" |
| 19 | #include "gcheaputilities.h" |
| 20 | #include "corhost.h" |
| 21 | #include "threads.h" |
| 22 | #include "fieldmarshaler.h" |
| 23 | #include "interoputil.h" |
| 24 | #include "dynamicmethod.h" |
| 25 | #include "stubhelpers.h" |
| 26 | #include "eventtrace.h" |
| 27 | |
| 28 | #include "excep.h" |
| 29 | |
| 30 | #include "gchelpers.inl" |
| 31 | #include "eeprofinterfaces.inl" |
| 32 | |
| 33 | #ifdef FEATURE_COMINTEROP |
| 34 | #include "runtimecallablewrapper.h" |
| 35 | #endif // FEATURE_COMINTEROP |
| 36 | |
| 37 | #include "rcwwalker.h" |
| 38 | |
| 39 | //======================================================================== |
| 40 | // |
| 41 | // ALLOCATION HELPERS |
| 42 | // |
| 43 | //======================================================================== |
| 44 | |
| 45 | #define ProfileTrackArrayAlloc(orObject) \ |
| 46 | OBJECTREF objref = ObjectToOBJECTREF((Object*)orObject);\ |
| 47 | GCPROTECT_BEGIN(objref);\ |
| 48 | ProfilerObjectAllocatedCallback(objref, (ClassID) orObject->GetTypeHandle().AsPtr());\ |
| 49 | GCPROTECT_END();\ |
| 50 | orObject = (ArrayBase *) OBJECTREFToObject(objref); |
| 51 | |
| 52 | |
| 53 | inline gc_alloc_context* GetThreadAllocContext() |
| 54 | { |
| 55 | WRAPPER_NO_CONTRACT; |
| 56 | |
| 57 | assert(GCHeapUtilities::UseThreadAllocationContexts()); |
| 58 | |
| 59 | return & GetThread()->m_alloc_context; |
| 60 | } |
| 61 | |
| 62 | // When not using per-thread allocation contexts, we (the EE) need to take care that |
| 63 | // no two threads are concurrently modifying the global allocation context. This lock |
| 64 | // must be acquired before any sort of operations involving the global allocation context |
| 65 | // can occur. |
| 66 | // |
| 67 | // This lock is acquired by all allocations when not using per-thread allocation contexts. |
| 68 | // It is acquired in two kinds of places: |
| 69 | // 1) JIT_TrialAllocFastSP (and related assembly alloc helpers), which attempt to |
| 70 | // acquire it but move into an alloc slow path if acquiring fails |
| 71 | // (but does not decrement the lock variable when doing so) |
| 72 | // 2) Alloc and AllocAlign8 in gchelpers.cpp, which acquire the lock using |
| 73 | // the Acquire and Release methods below. |
| 74 | class GlobalAllocLock { |
| 75 | friend struct AsmOffsets; |
| 76 | private: |
| 77 | // The lock variable. This field must always be first. |
| 78 | LONG m_lock; |
| 79 | |
| 80 | public: |
| 81 | // Creates a new GlobalAllocLock in the unlocked state. |
| 82 | GlobalAllocLock() : m_lock(-1) {} |
| 83 | |
| 84 | // Copy and copy-assignment operators should never be invoked |
| 85 | // for this type |
| 86 | GlobalAllocLock(const GlobalAllocLock&) = delete; |
| 87 | GlobalAllocLock& operator=(const GlobalAllocLock&) = delete; |
| 88 | |
| 89 | // Acquires the lock, spinning if necessary to do so. When this method |
| 90 | // returns, m_lock will be zero and the lock will be acquired. |
| 91 | void Acquire() |
| 92 | { |
| 93 | CONTRACTL { |
| 94 | NOTHROW; |
| 95 | GC_TRIGGERS; // switch to preemptive mode |
| 96 | MODE_COOPERATIVE; |
| 97 | } CONTRACTL_END; |
| 98 | |
| 99 | DWORD spinCount = 0; |
| 100 | while(FastInterlockExchange(&m_lock, 0) != -1) |
| 101 | { |
| 102 | GCX_PREEMP(); |
| 103 | __SwitchToThread(0, spinCount++); |
| 104 | } |
| 105 | |
| 106 | assert(m_lock == 0); |
| 107 | } |
| 108 | |
| 109 | // Releases the lock. |
| 110 | void Release() |
| 111 | { |
| 112 | LIMITED_METHOD_CONTRACT; |
| 113 | |
| 114 | // the lock may not be exactly 0. This is because the |
| 115 | // assembly alloc routines increment the lock variable and |
| 116 | // jump if not zero to the slow alloc path, which eventually |
| 117 | // will try to acquire the lock again. At that point, it will |
| 118 | // spin in Acquire (since m_lock is some number that's not zero). |
| 119 | // When the thread that /does/ hold the lock releases it, the spinning |
| 120 | // thread will continue. |
| 121 | MemoryBarrier(); |
| 122 | assert(m_lock >= 0); |
| 123 | m_lock = -1; |
| 124 | } |
| 125 | |
| 126 | // Static helper to acquire a lock, for use with the Holder template. |
| 127 | static void AcquireLock(GlobalAllocLock *lock) |
| 128 | { |
| 129 | WRAPPER_NO_CONTRACT; |
| 130 | lock->Acquire(); |
| 131 | } |
| 132 | |
| 133 | // Static helper to release a lock, for use with the Holder template |
| 134 | static void ReleaseLock(GlobalAllocLock *lock) |
| 135 | { |
| 136 | WRAPPER_NO_CONTRACT; |
| 137 | lock->Release(); |
| 138 | } |
| 139 | |
| 140 | typedef Holder<GlobalAllocLock *, GlobalAllocLock::AcquireLock, GlobalAllocLock::ReleaseLock> Holder; |
| 141 | }; |
| 142 | |
| 143 | typedef GlobalAllocLock::Holder GlobalAllocLockHolder; |
| 144 | |
| 145 | struct AsmOffsets { |
| 146 | static_assert(offsetof(GlobalAllocLock, m_lock) == 0, "ASM code relies on this property" ); |
| 147 | }; |
| 148 | |
| 149 | // For single-proc machines, the global allocation context is protected |
| 150 | // from concurrent modification by this lock. |
| 151 | // |
| 152 | // When not using per-thread allocation contexts, certain methods on IGCHeap |
| 153 | // require that this lock be held before calling. These methods are documented |
| 154 | // on the IGCHeap interface. |
| 155 | extern "C" |
| 156 | { |
| 157 | GlobalAllocLock g_global_alloc_lock; |
| 158 | } |
| 159 | |
| 160 | |
| 161 | // Checks to see if the given allocation size exceeds the |
| 162 | // largest object size allowed - if it does, it throws |
| 163 | // an OutOfMemoryException with a message indicating that |
| 164 | // the OOM was not from memory pressure but from an object |
| 165 | // being too large. |
| 166 | inline void CheckObjectSize(size_t alloc_size) |
| 167 | { |
| 168 | CONTRACTL { |
| 169 | THROWS; |
| 170 | GC_TRIGGERS; |
| 171 | } CONTRACTL_END; |
| 172 | |
| 173 | size_t max_object_size; |
| 174 | #ifdef BIT64 |
| 175 | if (g_pConfig->GetGCAllowVeryLargeObjects()) |
| 176 | { |
| 177 | max_object_size = (INT64_MAX - 7 - min_obj_size); |
| 178 | } |
| 179 | else |
| 180 | #endif // BIT64 |
| 181 | { |
| 182 | max_object_size = (INT32_MAX - 7 - min_obj_size); |
| 183 | } |
| 184 | |
| 185 | if (alloc_size >= max_object_size) |
| 186 | { |
| 187 | if (g_pConfig->IsGCBreakOnOOMEnabled()) |
| 188 | { |
| 189 | DebugBreak(); |
| 190 | } |
| 191 | |
| 192 | ThrowOutOfMemoryDimensionsExceeded(); |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | |
| 197 | // There are only three ways to get into allocate an object. |
| 198 | // * Call optimized helpers that were generated on the fly. This is how JIT compiled code does most |
| 199 | // allocations, however they fall back code:Alloc, when for all but the most common code paths. These |
| 200 | // helpers are NOT used if profiler has asked to track GC allocation (see code:TrackAllocations) |
| 201 | // * Call code:Alloc - When the jit helpers fall back, or we do allocations within the runtime code |
| 202 | // itself, we ultimately call here. |
| 203 | // * Call code:AllocLHeap - Used very rarely to force allocation to be on the large object heap. |
| 204 | // |
| 205 | // While this is a choke point into allocating an object, it is primitive (it does not want to know about |
| 206 | // MethodTable and thus does not initialize that pointer. It also does not know if the object is finalizable |
| 207 | // or contains pointers. Thus we quickly wrap this function in more user-friendly ones that know about |
| 208 | // MethodTables etc. (see code:FastAllocatePrimitiveArray code:AllocateArrayEx code:AllocateObject) |
| 209 | // |
| 210 | // You can get an exhaustive list of code sites that allocate GC objects by finding all calls to |
| 211 | // code:ProfilerObjectAllocatedCallback (since the profiler has to hook them all). |
| 212 | inline Object* Alloc(size_t size, BOOL bFinalize, BOOL bContainsPointers ) |
| 213 | { |
| 214 | CONTRACTL { |
| 215 | THROWS; |
| 216 | GC_TRIGGERS; |
| 217 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 218 | } CONTRACTL_END; |
| 219 | |
| 220 | _ASSERTE(!NingenEnabled() && "You cannot allocate managed objects inside the ngen compilation process." ); |
| 221 | |
| 222 | #ifdef _DEBUG |
| 223 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
| 224 | { |
| 225 | char *a = new char; |
| 226 | delete a; |
| 227 | } |
| 228 | #endif |
| 229 | |
| 230 | DWORD flags = ((bContainsPointers ? GC_ALLOC_CONTAINS_REF : 0) | |
| 231 | (bFinalize ? GC_ALLOC_FINALIZE : 0)); |
| 232 | |
| 233 | Object *retVal = NULL; |
| 234 | CheckObjectSize(size); |
| 235 | |
| 236 | // We don't want to throw an SO during the GC, so make sure we have plenty |
| 237 | // of stack before calling in. |
| 238 | INTERIOR_STACK_PROBE_FOR(GetThread(), static_cast<unsigned>(DEFAULT_ENTRY_PROBE_AMOUNT * 1.5)); |
| 239 | if (GCHeapUtilities::UseThreadAllocationContexts()) |
| 240 | { |
| 241 | gc_alloc_context *threadContext = GetThreadAllocContext(); |
| 242 | GCStress<gc_on_alloc>::MaybeTrigger(threadContext); |
| 243 | retVal = GCHeapUtilities::GetGCHeap()->Alloc(threadContext, size, flags); |
| 244 | } |
| 245 | else |
| 246 | { |
| 247 | GlobalAllocLockHolder holder(&g_global_alloc_lock); |
| 248 | gc_alloc_context *globalContext = &g_global_alloc_context; |
| 249 | GCStress<gc_on_alloc>::MaybeTrigger(globalContext); |
| 250 | retVal = GCHeapUtilities::GetGCHeap()->Alloc(globalContext, size, flags); |
| 251 | } |
| 252 | |
| 253 | |
| 254 | if (!retVal) |
| 255 | { |
| 256 | ThrowOutOfMemory(); |
| 257 | } |
| 258 | |
| 259 | END_INTERIOR_STACK_PROBE; |
| 260 | return retVal; |
| 261 | } |
| 262 | |
| 263 | #ifdef FEATURE_64BIT_ALIGNMENT |
| 264 | // Helper for allocating 8-byte aligned objects (on platforms where this doesn't happen naturally, e.g. 32-bit |
| 265 | // platforms). |
| 266 | inline Object* AllocAlign8(size_t size, BOOL bFinalize, BOOL bContainsPointers, BOOL bAlignBias) |
| 267 | { |
| 268 | CONTRACTL { |
| 269 | THROWS; |
| 270 | GC_TRIGGERS; |
| 271 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 272 | } CONTRACTL_END; |
| 273 | |
| 274 | DWORD flags = ((bContainsPointers ? GC_ALLOC_CONTAINS_REF : 0) | |
| 275 | (bFinalize ? GC_ALLOC_FINALIZE : 0) | |
| 276 | (bAlignBias ? GC_ALLOC_ALIGN8_BIAS : 0)); |
| 277 | |
| 278 | Object *retVal = NULL; |
| 279 | CheckObjectSize(size); |
| 280 | |
| 281 | // We don't want to throw an SO during the GC, so make sure we have plenty |
| 282 | // of stack before calling in. |
| 283 | INTERIOR_STACK_PROBE_FOR(GetThread(), static_cast<unsigned>(DEFAULT_ENTRY_PROBE_AMOUNT * 1.5)); |
| 284 | if (GCHeapUtilities::UseThreadAllocationContexts()) |
| 285 | { |
| 286 | gc_alloc_context *threadContext = GetThreadAllocContext(); |
| 287 | GCStress<gc_on_alloc>::MaybeTrigger(threadContext); |
| 288 | retVal = GCHeapUtilities::GetGCHeap()->AllocAlign8(threadContext, size, flags); |
| 289 | } |
| 290 | else |
| 291 | { |
| 292 | GlobalAllocLockHolder holder(&g_global_alloc_lock); |
| 293 | gc_alloc_context *globalContext = &g_global_alloc_context; |
| 294 | GCStress<gc_on_alloc>::MaybeTrigger(globalContext); |
| 295 | retVal = GCHeapUtilities::GetGCHeap()->AllocAlign8(globalContext, size, flags); |
| 296 | } |
| 297 | |
| 298 | if (!retVal) |
| 299 | { |
| 300 | ThrowOutOfMemory(); |
| 301 | } |
| 302 | |
| 303 | END_INTERIOR_STACK_PROBE; |
| 304 | return retVal; |
| 305 | } |
| 306 | #endif // FEATURE_64BIT_ALIGNMENT |
| 307 | |
| 308 | // This is one of three ways of allocating an object (see code:Alloc for more). This variation is used in the |
| 309 | // rare circumstance when you want to allocate an object on the large object heap but the object is not big |
| 310 | // enough to naturally go there. |
| 311 | // |
| 312 | // One (and only?) example of where this is needed is 8 byte aligning of arrays of doubles. See |
| 313 | // code:EEConfig.GetDoubleArrayToLargeObjectHeapThreshold and code:CORINFO_HELP_NEWARR_1_ALIGN8 for more. |
| 314 | inline Object* AllocLHeap(size_t size, BOOL bFinalize, BOOL bContainsPointers ) |
| 315 | { |
| 316 | CONTRACTL { |
| 317 | THROWS; |
| 318 | GC_TRIGGERS; |
| 319 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative (don't assume large heap doesn't compact!) |
| 320 | } CONTRACTL_END; |
| 321 | |
| 322 | |
| 323 | _ASSERTE(!NingenEnabled() && "You cannot allocate managed objects inside the ngen compilation process." ); |
| 324 | |
| 325 | #ifdef _DEBUG |
| 326 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
| 327 | { |
| 328 | char *a = new char; |
| 329 | delete a; |
| 330 | } |
| 331 | #endif |
| 332 | |
| 333 | DWORD flags = ((bContainsPointers ? GC_ALLOC_CONTAINS_REF : 0) | |
| 334 | (bFinalize ? GC_ALLOC_FINALIZE : 0)); |
| 335 | |
| 336 | Object *retVal = NULL; |
| 337 | CheckObjectSize(size); |
| 338 | |
| 339 | // We don't want to throw an SO during the GC, so make sure we have plenty |
| 340 | // of stack before calling in. |
| 341 | INTERIOR_STACK_PROBE_FOR(GetThread(), static_cast<unsigned>(DEFAULT_ENTRY_PROBE_AMOUNT * 1.5)); |
| 342 | retVal = GCHeapUtilities::GetGCHeap()->AllocLHeap(size, flags); |
| 343 | |
| 344 | if (!retVal) |
| 345 | { |
| 346 | ThrowOutOfMemory(); |
| 347 | } |
| 348 | |
| 349 | END_INTERIOR_STACK_PROBE; |
| 350 | return retVal; |
| 351 | } |
| 352 | |
| 353 | |
| 354 | #ifdef _LOGALLOC |
| 355 | int g_iNumAllocs = 0; |
| 356 | |
| 357 | bool ToLogOrNotToLog(size_t size, const char *typeName) |
| 358 | { |
| 359 | WRAPPER_NO_CONTRACT; |
| 360 | |
| 361 | g_iNumAllocs++; |
| 362 | |
| 363 | if (g_iNumAllocs > g_pConfig->AllocNumThreshold()) |
| 364 | return true; |
| 365 | |
| 366 | if (size > (size_t)g_pConfig->AllocSizeThreshold()) |
| 367 | return true; |
| 368 | |
| 369 | if (g_pConfig->ShouldLogAlloc(typeName)) |
| 370 | return true; |
| 371 | |
| 372 | return false; |
| 373 | |
| 374 | } |
| 375 | |
| 376 | // READ THIS!!!!! |
| 377 | // this function is called on managed allocation path with unprotected Object* |
| 378 | // as a result LogAlloc cannot call anything that would toggle the GC mode else |
| 379 | // you'll introduce several GC holes! |
| 380 | inline void LogAlloc(size_t size, MethodTable *pMT, Object* object) |
| 381 | { |
| 382 | CONTRACTL |
| 383 | { |
| 384 | NOTHROW; |
| 385 | GC_NOTRIGGER; |
| 386 | MODE_COOPERATIVE; |
| 387 | } |
| 388 | CONTRACTL_END; |
| 389 | |
| 390 | #ifdef LOGGING |
| 391 | if (LoggingOn(LF_GCALLOC, LL_INFO10)) |
| 392 | { |
| 393 | LogSpewAlways("Allocated %5d bytes for %s_TYPE" FMT_ADDR FMT_CLASS "\n" , |
| 394 | size, |
| 395 | pMT->IsValueType() ? "VAL" : "REF" , |
| 396 | DBG_ADDR(object), |
| 397 | DBG_CLASS_NAME_MT(pMT)); |
| 398 | |
| 399 | if (LoggingOn(LF_GCALLOC, LL_INFO1000000) || |
| 400 | (LoggingOn(LF_GCALLOC, LL_INFO100) && |
| 401 | ToLogOrNotToLog(size, DBG_CLASS_NAME_MT(pMT)))) |
| 402 | { |
| 403 | void LogStackTrace(); |
| 404 | LogStackTrace(); |
| 405 | } |
| 406 | } |
| 407 | #endif |
| 408 | } |
| 409 | #else |
| 410 | #define LogAlloc(size, pMT, object) |
| 411 | #endif |
| 412 | |
| 413 | |
| 414 | inline SIZE_T MaxArrayLength(SIZE_T componentSize) |
| 415 | { |
| 416 | // Impose limits on maximum array length in each dimension to allow efficient |
| 417 | // implementation of advanced range check elimination in future. We have to allow |
| 418 | // higher limit for array of bytes (or one byte structs) for backward compatibility. |
| 419 | // Keep in sync with Array.MaxArrayLength in BCL. |
| 420 | return (componentSize == 1) ? 0X7FFFFFC7 : 0X7FEFFFFF; |
| 421 | } |
| 422 | |
| 423 | OBJECTREF AllocateValueSzArray(TypeHandle elementType, INT32 length) |
| 424 | { |
| 425 | CONTRACTL { |
| 426 | THROWS; |
| 427 | GC_TRIGGERS; |
| 428 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 429 | } CONTRACTL_END; |
| 430 | |
| 431 | return AllocateArrayEx(elementType.MakeSZArray(), &length, 1); |
| 432 | } |
| 433 | |
| 434 | void ThrowOutOfMemoryDimensionsExceeded() |
| 435 | { |
| 436 | CONTRACTL { |
| 437 | THROWS; |
| 438 | } CONTRACTL_END; |
| 439 | |
| 440 | #ifdef _WIN64 |
| 441 | EX_THROW(EEMessageException, (kOutOfMemoryException, IDS_EE_ARRAY_DIMENSIONS_EXCEEDED)); |
| 442 | #else |
| 443 | ThrowOutOfMemory(); |
| 444 | #endif |
| 445 | } |
| 446 | |
| 447 | // |
| 448 | // Handles arrays of arbitrary dimensions |
| 449 | // |
| 450 | // This is wrapper overload to handle TypeHandle arrayType |
| 451 | // |
| 452 | OBJECTREF AllocateArrayEx(TypeHandle arrayType, INT32 *pArgs, DWORD dwNumArgs, BOOL bAllocateInLargeHeap |
| 453 | DEBUG_ARG(BOOL bDontSetAppDomain)) |
| 454 | { |
| 455 | CONTRACTL |
| 456 | { |
| 457 | WRAPPER_NO_CONTRACT; |
| 458 | } CONTRACTL_END; |
| 459 | |
| 460 | ArrayTypeDesc* arrayDesc = arrayType.AsArray(); |
| 461 | MethodTable* pArrayMT = arrayDesc->GetMethodTable(); |
| 462 | |
| 463 | return AllocateArrayEx(pArrayMT, pArgs, dwNumArgs, bAllocateInLargeHeap |
| 464 | DEBUG_ARG(bDontSetAppDomain)); |
| 465 | } |
| 466 | |
| 467 | // |
| 468 | // Handles arrays of arbitrary dimensions |
| 469 | // |
| 470 | // If dwNumArgs is set to greater than 1 for a SZARRAY this function will recursively |
| 471 | // allocate sub-arrays and fill them in. |
| 472 | // |
| 473 | // For arrays with lower bounds, pBounds is <lower bound 1>, <count 1>, <lower bound 2>, ... |
| 474 | OBJECTREF AllocateArrayEx(MethodTable *pArrayMT, INT32 *pArgs, DWORD dwNumArgs, BOOL bAllocateInLargeHeap |
| 475 | DEBUG_ARG(BOOL bDontSetAppDomain)) |
| 476 | { |
| 477 | CONTRACTL { |
| 478 | THROWS; |
| 479 | GC_TRIGGERS; |
| 480 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 481 | PRECONDITION(CheckPointer(pArgs)); |
| 482 | PRECONDITION(dwNumArgs > 0); |
| 483 | } CONTRACTL_END; |
| 484 | |
| 485 | ArrayBase * orArray = NULL; |
| 486 | |
| 487 | #ifdef _DEBUG |
| 488 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
| 489 | { |
| 490 | char *a = new char; |
| 491 | delete a; |
| 492 | } |
| 493 | #endif |
| 494 | |
| 495 | _ASSERTE(pArrayMT->CheckInstanceActivated()); |
| 496 | PREFIX_ASSUME(pArrayMT != NULL); |
| 497 | CorElementType kind = pArrayMT->GetInternalCorElementType(); |
| 498 | _ASSERTE(kind == ELEMENT_TYPE_ARRAY || kind == ELEMENT_TYPE_SZARRAY); |
| 499 | |
| 500 | CorElementType elemType = pArrayMT->GetArrayElementType(); |
| 501 | // Disallow the creation of void[,] (a multi-dim array of System.Void) |
| 502 | if (elemType == ELEMENT_TYPE_VOID) |
| 503 | COMPlusThrow(kArgumentException); |
| 504 | |
| 505 | // Calculate the total number of elements in the array |
| 506 | UINT32 cElements; |
| 507 | |
| 508 | // IBC Log MethodTable access |
| 509 | g_IBCLogger.LogMethodTableAccess(pArrayMT); |
| 510 | SetTypeHandleOnThreadForAlloc(TypeHandle(pArrayMT)); |
| 511 | |
| 512 | SIZE_T componentSize = pArrayMT->GetComponentSize(); |
| 513 | bool maxArrayDimensionLengthOverflow = false; |
| 514 | bool providedLowerBounds = false; |
| 515 | |
| 516 | if (kind == ELEMENT_TYPE_ARRAY) |
| 517 | { |
| 518 | unsigned rank = pArrayMT->GetRank(); |
| 519 | _ASSERTE(dwNumArgs == rank || dwNumArgs == 2*rank); |
| 520 | |
| 521 | // Morph a ARRAY rank 1 with 0 lower bound into an SZARRAY |
| 522 | if (rank == 1 && (dwNumArgs == 1 || pArgs[0] == 0)) |
| 523 | { // lower bound is zero |
| 524 | |
| 525 | // This recursive call doesn't go any farther, because the dwNumArgs will be 1, |
| 526 | // so don't bother with stack probe. |
| 527 | TypeHandle szArrayType = ClassLoader::LoadArrayTypeThrowing(pArrayMT->GetApproxArrayElementTypeHandle(), ELEMENT_TYPE_SZARRAY, 1); |
| 528 | return AllocateArrayEx(szArrayType, &pArgs[dwNumArgs - 1], 1, bAllocateInLargeHeap DEBUG_ARG(bDontSetAppDomain)); |
| 529 | } |
| 530 | |
| 531 | providedLowerBounds = (dwNumArgs == 2*rank); |
| 532 | |
| 533 | S_UINT32 safeTotalElements = S_UINT32(1); |
| 534 | |
| 535 | for (unsigned i = 0; i < dwNumArgs; i++) |
| 536 | { |
| 537 | int lowerBound = 0; |
| 538 | if (providedLowerBounds) |
| 539 | { |
| 540 | lowerBound = pArgs[i]; |
| 541 | i++; |
| 542 | } |
| 543 | int length = pArgs[i]; |
| 544 | if (length < 0) |
| 545 | COMPlusThrow(kOverflowException); |
| 546 | if ((SIZE_T)length > MaxArrayLength(componentSize)) |
| 547 | maxArrayDimensionLengthOverflow = true; |
| 548 | if ((length > 0) && (lowerBound + (length - 1) < lowerBound)) |
| 549 | COMPlusThrow(kArgumentOutOfRangeException, W("ArgumentOutOfRange_ArrayLBAndLength" )); |
| 550 | safeTotalElements = safeTotalElements * S_UINT32(length); |
| 551 | if (safeTotalElements.IsOverflow()) |
| 552 | ThrowOutOfMemoryDimensionsExceeded(); |
| 553 | } |
| 554 | |
| 555 | cElements = safeTotalElements.Value(); |
| 556 | } |
| 557 | else |
| 558 | { |
| 559 | int length = pArgs[0]; |
| 560 | if (length < 0) |
| 561 | COMPlusThrow(kOverflowException); |
| 562 | if ((SIZE_T)length > MaxArrayLength(componentSize)) |
| 563 | maxArrayDimensionLengthOverflow = true; |
| 564 | cElements = length; |
| 565 | } |
| 566 | |
| 567 | // Throw this exception only after everything else was validated for backward compatibility. |
| 568 | if (maxArrayDimensionLengthOverflow) |
| 569 | ThrowOutOfMemoryDimensionsExceeded(); |
| 570 | |
| 571 | // Allocate the space from the GC heap |
| 572 | S_SIZE_T safeTotalSize = S_SIZE_T(cElements) * S_SIZE_T(componentSize) + S_SIZE_T(pArrayMT->GetBaseSize()); |
| 573 | if (safeTotalSize.IsOverflow()) |
| 574 | ThrowOutOfMemoryDimensionsExceeded(); |
| 575 | |
| 576 | size_t totalSize = safeTotalSize.Value(); |
| 577 | |
| 578 | #ifdef FEATURE_DOUBLE_ALIGNMENT_HINT |
| 579 | if ((elemType == ELEMENT_TYPE_R8) && |
| 580 | (cElements >= g_pConfig->GetDoubleArrayToLargeObjectHeapThreshold())) |
| 581 | { |
| 582 | STRESS_LOG2(LF_GC, LL_INFO10, "Allocating double MD array of size %d and length %d to large object heap\n" , totalSize, cElements); |
| 583 | bAllocateInLargeHeap = TRUE; |
| 584 | } |
| 585 | #endif |
| 586 | |
| 587 | if (bAllocateInLargeHeap) |
| 588 | { |
| 589 | orArray = (ArrayBase *) AllocLHeap(totalSize, FALSE, pArrayMT->ContainsPointers()); |
| 590 | orArray->SetArrayMethodTableForLargeObject(pArrayMT); |
| 591 | } |
| 592 | else |
| 593 | { |
| 594 | #ifdef FEATURE_64BIT_ALIGNMENT |
| 595 | MethodTable *pElementMT = pArrayMT->GetApproxArrayElementTypeHandle().GetMethodTable(); |
| 596 | if (pElementMT->RequiresAlign8() && pElementMT->IsValueType()) |
| 597 | { |
| 598 | // This platform requires that certain fields are 8-byte aligned (and the runtime doesn't provide |
| 599 | // this guarantee implicitly, e.g. on 32-bit platforms). Since it's the array payload, not the |
| 600 | // header that requires alignment we need to be careful. However it just so happens that all the |
| 601 | // cases we care about (single and multi-dim arrays of value types) have an even number of DWORDs |
| 602 | // in their headers so the alignment requirements for the header and the payload are the same. |
| 603 | _ASSERTE(((pArrayMT->GetBaseSize() - SIZEOF_OBJHEADER) & 7) == 0); |
| 604 | orArray = (ArrayBase *) AllocAlign8(totalSize, FALSE, pArrayMT->ContainsPointers(), FALSE); |
| 605 | } |
| 606 | else |
| 607 | #endif |
| 608 | { |
| 609 | orArray = (ArrayBase *) Alloc(totalSize, FALSE, pArrayMT->ContainsPointers()); |
| 610 | } |
| 611 | orArray->SetArrayMethodTable(pArrayMT); |
| 612 | } |
| 613 | |
| 614 | // Initialize Object |
| 615 | orArray->m_NumComponents = cElements; |
| 616 | |
| 617 | if (bAllocateInLargeHeap || |
| 618 | (totalSize >= g_pConfig->GetGCLOHThreshold())) |
| 619 | { |
| 620 | GCHeapUtilities::GetGCHeap()->PublishObject((BYTE*)orArray); |
| 621 | } |
| 622 | |
| 623 | #ifdef _LOGALLOC |
| 624 | LogAlloc(totalSize, pArrayMT, orArray); |
| 625 | #endif // _LOGALLOC |
| 626 | |
| 627 | #ifdef _DEBUG |
| 628 | // Ensure the typehandle has been interned prior to allocation. |
| 629 | // This is important for OOM reliability. |
| 630 | OBJECTREF objref = ObjectToOBJECTREF((Object *) orArray); |
| 631 | GCPROTECT_BEGIN(objref); |
| 632 | |
| 633 | orArray->GetTypeHandle(); |
| 634 | |
| 635 | GCPROTECT_END(); |
| 636 | orArray = (ArrayBase *) OBJECTREFToObject(objref); |
| 637 | #endif |
| 638 | |
| 639 | if (kind == ELEMENT_TYPE_ARRAY) |
| 640 | { |
| 641 | INT32 *pCountsPtr = (INT32 *) orArray->GetBoundsPtr(); |
| 642 | INT32 *pLowerBoundsPtr = (INT32 *) orArray->GetLowerBoundsPtr(); |
| 643 | for (unsigned i = 0; i < dwNumArgs; i++) |
| 644 | { |
| 645 | if (providedLowerBounds) |
| 646 | *pLowerBoundsPtr++ = pArgs[i++]; // if not stated, lower bound becomes 0 |
| 647 | *pCountsPtr++ = pArgs[i]; |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | // Notify the profiler of the allocation |
| 652 | // do this after initializing bounds so callback has size information |
| 653 | if (TrackAllocations()) |
| 654 | { |
| 655 | ProfileTrackArrayAlloc(orArray); |
| 656 | } |
| 657 | |
| 658 | #ifdef FEATURE_EVENT_TRACE |
| 659 | // Send ETW event for allocation |
| 660 | if(ETW::TypeSystemLog::IsHeapAllocEventEnabled()) |
| 661 | { |
| 662 | ETW::TypeSystemLog::SendObjectAllocatedEvent(orArray); |
| 663 | } |
| 664 | #endif // FEATURE_EVENT_TRACE |
| 665 | |
| 666 | if (kind != ELEMENT_TYPE_ARRAY) |
| 667 | { |
| 668 | // Handle allocating multiple jagged array dimensions at once |
| 669 | if (dwNumArgs > 1) |
| 670 | { |
| 671 | PTRARRAYREF outerArray = (PTRARRAYREF) ObjectToOBJECTREF((Object *) orArray); |
| 672 | GCPROTECT_BEGIN(outerArray); |
| 673 | |
| 674 | // Turn off GC stress, it is of little value here |
| 675 | { |
| 676 | GCStressPolicy::InhibitHolder iholder; |
| 677 | |
| 678 | // Allocate dwProvidedBounds arrays |
| 679 | if (!pArrayMT->GetApproxArrayElementTypeHandle().IsArray()) |
| 680 | { |
| 681 | orArray = NULL; |
| 682 | } |
| 683 | else |
| 684 | { |
| 685 | // Since we're about to *really* recurse, probe for stack. |
| 686 | // @todo: is the default amount really correct? |
| 687 | _ASSERTE(GetThread()); |
| 688 | INTERIOR_STACK_PROBE(GetThread()); |
| 689 | |
| 690 | TypeHandle subArrayType = pArrayMT->GetApproxArrayElementTypeHandle(); |
| 691 | for (UINT32 i = 0; i < cElements; i++) |
| 692 | { |
| 693 | OBJECTREF obj = AllocateArrayEx(subArrayType, &pArgs[1], dwNumArgs-1, bAllocateInLargeHeap DEBUG_ARG(bDontSetAppDomain)); |
| 694 | outerArray->SetAt(i, obj); |
| 695 | } |
| 696 | |
| 697 | iholder.Release(); |
| 698 | |
| 699 | END_INTERIOR_STACK_PROBE |
| 700 | |
| 701 | orArray = (ArrayBase *) OBJECTREFToObject(outerArray); |
| 702 | } |
| 703 | } // GcStressPolicy::~InhibitHolder() |
| 704 | |
| 705 | GCPROTECT_END(); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | return ObjectToOBJECTREF((Object *) orArray); |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * Allocates a single dimensional array of primitive types. |
| 714 | */ |
| 715 | OBJECTREF AllocatePrimitiveArray(CorElementType type, DWORD cElements, BOOL bAllocateInLargeHeap) |
| 716 | { |
| 717 | CONTRACTL |
| 718 | { |
| 719 | THROWS; |
| 720 | GC_TRIGGERS; |
| 721 | INJECT_FAULT(COMPlusThrowOM()); |
| 722 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 723 | } |
| 724 | CONTRACTL_END |
| 725 | |
| 726 | |
| 727 | // Allocating simple primite arrays is done in various places as internal storage. |
| 728 | // Because this is unlikely to result in any bad recursions, we will override the type limit |
| 729 | // here rather forever chase down all the callers. |
| 730 | OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED); |
| 731 | |
| 732 | _ASSERTE(CorTypeInfo::IsPrimitiveType(type)); |
| 733 | |
| 734 | // Fetch the proper array type |
| 735 | if (g_pPredefinedArrayTypes[type] == NULL) |
| 736 | { |
| 737 | TypeHandle elemType = TypeHandle(MscorlibBinder::GetElementType(type)); |
| 738 | TypeHandle typHnd = ClassLoader::LoadArrayTypeThrowing(elemType, ELEMENT_TYPE_SZARRAY, 0); |
| 739 | g_pPredefinedArrayTypes[type] = typHnd.AsArray(); |
| 740 | } |
| 741 | return FastAllocatePrimitiveArray(g_pPredefinedArrayTypes[type]->GetMethodTable(), cElements, bAllocateInLargeHeap); |
| 742 | } |
| 743 | |
| 744 | /* |
| 745 | * Allocates a single dimensional array of primitive types. |
| 746 | */ |
| 747 | |
| 748 | OBJECTREF FastAllocatePrimitiveArray(MethodTable* pMT, DWORD cElements, BOOL bAllocateInLargeHeap) |
| 749 | { |
| 750 | CONTRACTL { |
| 751 | THROWS; |
| 752 | GC_TRIGGERS; |
| 753 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 754 | PRECONDITION(pMT->CheckInstanceActivated()); |
| 755 | } CONTRACTL_END; |
| 756 | |
| 757 | #ifdef _DEBUG |
| 758 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
| 759 | { |
| 760 | char *a = new char; |
| 761 | delete a; |
| 762 | } |
| 763 | #endif |
| 764 | |
| 765 | _ASSERTE(pMT && pMT->IsArray()); |
| 766 | _ASSERTE(pMT->IsRestored_NoLogging()); |
| 767 | _ASSERTE(CorTypeInfo::IsPrimitiveType(pMT->GetArrayElementType()) && |
| 768 | g_pPredefinedArrayTypes[pMT->GetArrayElementType()] != NULL); |
| 769 | |
| 770 | g_IBCLogger.LogMethodTableAccess(pMT); |
| 771 | SetTypeHandleOnThreadForAlloc(TypeHandle(pMT)); |
| 772 | |
| 773 | SIZE_T componentSize = pMT->GetComponentSize(); |
| 774 | if (cElements > MaxArrayLength(componentSize)) |
| 775 | ThrowOutOfMemory(); |
| 776 | |
| 777 | S_SIZE_T safeTotalSize = S_SIZE_T(cElements) * S_SIZE_T(componentSize) + S_SIZE_T(pMT->GetBaseSize()); |
| 778 | if (safeTotalSize.IsOverflow()) |
| 779 | ThrowOutOfMemory(); |
| 780 | |
| 781 | size_t totalSize = safeTotalSize.Value(); |
| 782 | |
| 783 | BOOL bPublish = bAllocateInLargeHeap; |
| 784 | |
| 785 | ArrayBase* orObject; |
| 786 | if (bAllocateInLargeHeap) |
| 787 | { |
| 788 | orObject = (ArrayBase*) AllocLHeap(totalSize, FALSE, FALSE); |
| 789 | } |
| 790 | else |
| 791 | { |
| 792 | ArrayTypeDesc *pArrayR8TypeDesc = g_pPredefinedArrayTypes[ELEMENT_TYPE_R8]; |
| 793 | if (DATA_ALIGNMENT < sizeof(double) && pArrayR8TypeDesc != NULL && pMT == pArrayR8TypeDesc->GetMethodTable() && |
| 794 | (totalSize < g_pConfig->GetGCLOHThreshold() - MIN_OBJECT_SIZE)) |
| 795 | { |
| 796 | // Creation of an array of doubles, not in the large object heap. |
| 797 | // We want to align the doubles to 8 byte boundaries, but the GC gives us pointers aligned |
| 798 | // to 4 bytes only (on 32 bit platforms). To align, we ask for 12 bytes more to fill with a |
| 799 | // dummy object. |
| 800 | // If the GC gives us a 8 byte aligned address, we use it for the array and place the dummy |
| 801 | // object after the array, otherwise we put the dummy object first, shifting the base of |
| 802 | // the array to an 8 byte aligned address. |
| 803 | // Note: on 64 bit platforms, the GC always returns 8 byte aligned addresses, and we don't |
| 804 | // execute this code because DATA_ALIGNMENT < sizeof(double) is false. |
| 805 | |
| 806 | _ASSERTE(DATA_ALIGNMENT == sizeof(double)/2); |
| 807 | _ASSERTE((MIN_OBJECT_SIZE % sizeof(double)) == DATA_ALIGNMENT); // used to change alignment |
| 808 | _ASSERTE(pMT->GetComponentSize() == sizeof(double)); |
| 809 | _ASSERTE(g_pObjectClass->GetBaseSize() == MIN_OBJECT_SIZE); |
| 810 | _ASSERTE(totalSize < totalSize + MIN_OBJECT_SIZE); |
| 811 | orObject = (ArrayBase*) Alloc(totalSize + MIN_OBJECT_SIZE, FALSE, FALSE); |
| 812 | |
| 813 | Object *orDummyObject; |
| 814 | if((size_t)orObject % sizeof(double)) |
| 815 | { |
| 816 | orDummyObject = orObject; |
| 817 | orObject = (ArrayBase*) ((size_t)orObject + MIN_OBJECT_SIZE); |
| 818 | } |
| 819 | else |
| 820 | { |
| 821 | orDummyObject = (Object*) ((size_t)orObject + totalSize); |
| 822 | } |
| 823 | _ASSERTE(((size_t)orObject % sizeof(double)) == 0); |
| 824 | orDummyObject->SetMethodTable(g_pObjectClass); |
| 825 | } |
| 826 | else |
| 827 | { |
| 828 | orObject = (ArrayBase*) Alloc(totalSize, FALSE, FALSE); |
| 829 | bPublish = (totalSize >= g_pConfig->GetGCLOHThreshold()); |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | // Initialize Object |
| 834 | orObject->SetArrayMethodTable( pMT ); |
| 835 | _ASSERTE(orObject->GetMethodTable() != NULL); |
| 836 | orObject->m_NumComponents = cElements; |
| 837 | |
| 838 | if (bPublish) |
| 839 | { |
| 840 | GCHeapUtilities::GetGCHeap()->PublishObject((BYTE*)orObject); |
| 841 | } |
| 842 | |
| 843 | // Notify the profiler of the allocation |
| 844 | if (TrackAllocations()) |
| 845 | { |
| 846 | OBJECTREF objref = ObjectToOBJECTREF((Object*)orObject); |
| 847 | GCPROTECT_BEGIN(objref); |
| 848 | ProfilerObjectAllocatedCallback(objref, (ClassID) orObject->GetTypeHandle().AsPtr()); |
| 849 | GCPROTECT_END(); |
| 850 | |
| 851 | orObject = (ArrayBase *) OBJECTREFToObject(objref); |
| 852 | } |
| 853 | |
| 854 | #ifdef FEATURE_EVENT_TRACE |
| 855 | // Send ETW event for allocation |
| 856 | if(ETW::TypeSystemLog::IsHeapAllocEventEnabled()) |
| 857 | { |
| 858 | ETW::TypeSystemLog::SendObjectAllocatedEvent(orObject); |
| 859 | } |
| 860 | #endif // FEATURE_EVENT_TRACE |
| 861 | |
| 862 | // IBC Log MethodTable access |
| 863 | g_IBCLogger.LogMethodTableAccess(pMT); |
| 864 | |
| 865 | LogAlloc(totalSize, pMT, orObject); |
| 866 | |
| 867 | return( ObjectToOBJECTREF((Object*)orObject) ); |
| 868 | } |
| 869 | |
| 870 | // |
| 871 | // Allocate an array which is the same size as pRef. However, do not zero out the array. |
| 872 | // |
| 873 | OBJECTREF DupArrayForCloning(BASEARRAYREF pRef, BOOL bAllocateInLargeHeap) |
| 874 | { |
| 875 | CONTRACTL { |
| 876 | THROWS; |
| 877 | GC_TRIGGERS; |
| 878 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 879 | } CONTRACTL_END; |
| 880 | |
| 881 | ArrayTypeDesc arrayType(pRef->GetMethodTable(), pRef->GetArrayElementTypeHandle()); |
| 882 | unsigned rank = arrayType.GetRank(); |
| 883 | |
| 884 | DWORD numArgs = rank*2; |
| 885 | INT32* args = (INT32*) _alloca(sizeof(INT32)*numArgs); |
| 886 | |
| 887 | if (arrayType.GetInternalCorElementType() == ELEMENT_TYPE_ARRAY) |
| 888 | { |
| 889 | const INT32* bounds = pRef->GetBoundsPtr(); |
| 890 | const INT32* lowerBounds = pRef->GetLowerBoundsPtr(); |
| 891 | for(unsigned int i=0; i < rank; i++) |
| 892 | { |
| 893 | args[2*i] = lowerBounds[i]; |
| 894 | args[2*i+1] = bounds[i]; |
| 895 | } |
| 896 | } |
| 897 | else |
| 898 | { |
| 899 | numArgs = 1; |
| 900 | args[0] = pRef->GetNumComponents(); |
| 901 | } |
| 902 | return AllocateArrayEx(TypeHandle(&arrayType), args, numArgs, bAllocateInLargeHeap DEBUG_ARG(FALSE)); |
| 903 | } |
| 904 | |
| 905 | #if defined(_TARGET_X86_) |
| 906 | |
| 907 | // The fast version always allocates in the normal heap |
| 908 | OBJECTREF AllocatePrimitiveArray(CorElementType type, DWORD cElements) |
| 909 | { |
| 910 | CONTRACTL { |
| 911 | THROWS; |
| 912 | GC_TRIGGERS; |
| 913 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 914 | } CONTRACTL_END; |
| 915 | |
| 916 | #ifdef _DEBUG |
| 917 | // fastPrimitiveArrayAllocator is called by VM and managed code. If called from managed code, we |
| 918 | // make sure that the thread is in SOTolerantState. |
| 919 | #ifdef FEATURE_STACK_PROBE |
| 920 | Thread::DisableSOCheckInHCALL disableSOCheckInHCALL; |
| 921 | #endif // FEATURE_STACK_PROBE |
| 922 | #endif // _DEBUG |
| 923 | return OBJECTREF( HCCALL2(fastPrimitiveArrayAllocator, type, cElements) ); |
| 924 | } |
| 925 | |
| 926 | // The fast version always allocates in the normal heap |
| 927 | OBJECTREF AllocateObjectArray(DWORD cElements, TypeHandle ElementType) |
| 928 | { |
| 929 | CONTRACTL { |
| 930 | THROWS; |
| 931 | GC_TRIGGERS; |
| 932 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 933 | } CONTRACTL_END; |
| 934 | |
| 935 | |
| 936 | OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED); |
| 937 | |
| 938 | // We must call this here to ensure the typehandle for this object is |
| 939 | // interned before the object is allocated. As soon as the object is allocated, |
| 940 | // the profiler could do a heapwalk and it expects to find an interned |
| 941 | // typehandle for every object in the heap. |
| 942 | TypeHandle ArrayType = ClassLoader::LoadArrayTypeThrowing(ElementType); |
| 943 | |
| 944 | #ifdef _DEBUG |
| 945 | // fastObjectArrayAllocator is called by VM and managed code. If called from managed code, we |
| 946 | // make sure that the thread is in SOTolerantState. |
| 947 | #ifdef FEATURE_STACK_PROBE |
| 948 | Thread::DisableSOCheckInHCALL disableSOCheckInHCALL; |
| 949 | #endif // FEATURE_STACK_PROBE |
| 950 | #endif // _DEBUG |
| 951 | return OBJECTREF( HCCALL2(fastObjectArrayAllocator, ArrayType.AsArray()->GetTemplateMethodTable(), cElements)); |
| 952 | } |
| 953 | |
| 954 | STRINGREF AllocateString( DWORD cchStringLength ) |
| 955 | { |
| 956 | CONTRACTL { |
| 957 | THROWS; |
| 958 | GC_TRIGGERS; |
| 959 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 960 | } CONTRACTL_END; |
| 961 | |
| 962 | #ifdef _DEBUG |
| 963 | // fastStringAllocator is called by VM and managed code. If called from managed code, we |
| 964 | // make sure that the thread is in SOTolerantState. |
| 965 | #ifdef FEATURE_STACK_PROBE |
| 966 | Thread::DisableSOCheckInHCALL disableSOCheckInHCALL; |
| 967 | #endif // FEATURE_STACK_PROBE |
| 968 | #endif // _DEBUG |
| 969 | return STRINGREF(HCCALL1(fastStringAllocator, cchStringLength)); |
| 970 | } |
| 971 | |
| 972 | #endif |
| 973 | |
| 974 | // |
| 975 | // Helper for parts of the EE which are allocating arrays |
| 976 | // |
| 977 | OBJECTREF AllocateObjectArray(DWORD cElements, TypeHandle elementType, BOOL bAllocateInLargeHeap) |
| 978 | { |
| 979 | CONTRACTL { |
| 980 | THROWS; |
| 981 | GC_TRIGGERS; |
| 982 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 983 | } CONTRACTL_END; |
| 984 | |
| 985 | OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED); |
| 986 | |
| 987 | // The object array class is loaded at startup. |
| 988 | _ASSERTE(g_pPredefinedArrayTypes[ELEMENT_TYPE_OBJECT] != NULL); |
| 989 | |
| 990 | #ifdef _DEBUG |
| 991 | ArrayTypeDesc arrayType(g_pPredefinedArrayTypes[ELEMENT_TYPE_OBJECT]->GetMethodTable(), elementType); |
| 992 | _ASSERTE(arrayType.GetRank() == 1); |
| 993 | _ASSERTE(arrayType.GetInternalCorElementType() == ELEMENT_TYPE_SZARRAY); |
| 994 | #endif //_DEBUG |
| 995 | |
| 996 | return AllocateArrayEx(ClassLoader::LoadArrayTypeThrowing(elementType), |
| 997 | (INT32 *)(&cElements), |
| 998 | 1, |
| 999 | bAllocateInLargeHeap |
| 1000 | DEBUG_ARG(FALSE)); |
| 1001 | } |
| 1002 | |
| 1003 | |
| 1004 | STRINGREF SlowAllocateString( DWORD cchStringLength ) |
| 1005 | { |
| 1006 | CONTRACTL { |
| 1007 | THROWS; |
| 1008 | GC_TRIGGERS; |
| 1009 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 1010 | } CONTRACTL_END; |
| 1011 | |
| 1012 | StringObject *orObject = NULL; |
| 1013 | |
| 1014 | #ifdef _DEBUG |
| 1015 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
| 1016 | { |
| 1017 | char *a = new char; |
| 1018 | delete a; |
| 1019 | } |
| 1020 | #endif |
| 1021 | |
| 1022 | // Limit the maximum string size to <2GB to mitigate risk of security issues caused by 32-bit integer |
| 1023 | // overflows in buffer size calculations. |
| 1024 | if (cchStringLength > 0x3FFFFFDF) |
| 1025 | ThrowOutOfMemory(); |
| 1026 | |
| 1027 | SIZE_T ObjectSize = PtrAlign(StringObject::GetSize(cchStringLength)); |
| 1028 | _ASSERTE(ObjectSize > cchStringLength); |
| 1029 | |
| 1030 | SetTypeHandleOnThreadForAlloc(TypeHandle(g_pStringClass)); |
| 1031 | |
| 1032 | orObject = (StringObject *)Alloc( ObjectSize, FALSE, FALSE ); |
| 1033 | |
| 1034 | // Object is zero-init already |
| 1035 | _ASSERTE( orObject->HasEmptySyncBlockInfo() ); |
| 1036 | |
| 1037 | // Initialize Object |
| 1038 | //<TODO>@TODO need to build a LARGE g_pStringMethodTable before</TODO> |
| 1039 | orObject->SetMethodTable( g_pStringClass ); |
| 1040 | orObject->SetStringLength( cchStringLength ); |
| 1041 | |
| 1042 | if (ObjectSize >= g_pConfig->GetGCLOHThreshold()) |
| 1043 | { |
| 1044 | GCHeapUtilities::GetGCHeap()->PublishObject((BYTE*)orObject); |
| 1045 | } |
| 1046 | |
| 1047 | // Notify the profiler of the allocation |
| 1048 | if (TrackAllocations()) |
| 1049 | { |
| 1050 | OBJECTREF objref = ObjectToOBJECTREF((Object*)orObject); |
| 1051 | GCPROTECT_BEGIN(objref); |
| 1052 | ProfilerObjectAllocatedCallback(objref, (ClassID) orObject->GetTypeHandle().AsPtr()); |
| 1053 | GCPROTECT_END(); |
| 1054 | |
| 1055 | orObject = (StringObject *) OBJECTREFToObject(objref); |
| 1056 | } |
| 1057 | |
| 1058 | #ifdef FEATURE_EVENT_TRACE |
| 1059 | // Send ETW event for allocation |
| 1060 | if(ETW::TypeSystemLog::IsHeapAllocEventEnabled()) |
| 1061 | { |
| 1062 | ETW::TypeSystemLog::SendObjectAllocatedEvent(orObject); |
| 1063 | } |
| 1064 | #endif // FEATURE_EVENT_TRACE |
| 1065 | |
| 1066 | LogAlloc(ObjectSize, g_pStringClass, orObject); |
| 1067 | |
| 1068 | return( ObjectToSTRINGREF(orObject) ); |
| 1069 | } |
| 1070 | |
| 1071 | #ifdef FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
| 1072 | // OBJECTREF AllocateComClassObject(ComClassFactory* pComClsFac) |
| 1073 | void AllocateComClassObject(ComClassFactory* pComClsFac, OBJECTREF* ppRefClass) |
| 1074 | { |
| 1075 | CONTRACTL { |
| 1076 | THROWS; |
| 1077 | GC_TRIGGERS; |
| 1078 | MODE_COOPERATIVE; // returns an objref (out param) without pinning it => cooperative |
| 1079 | PRECONDITION(CheckPointer(pComClsFac)); |
| 1080 | PRECONDITION(CheckPointer(ppRefClass)); |
| 1081 | } CONTRACTL_END; |
| 1082 | |
| 1083 | // Create a COM+ Class object. |
| 1084 | MethodTable *pMT = g_pRuntimeTypeClass; |
| 1085 | _ASSERTE(pMT != NULL); |
| 1086 | *ppRefClass= AllocateObject(pMT); |
| 1087 | |
| 1088 | if (*ppRefClass != NULL) |
| 1089 | { |
| 1090 | SyncBlock* pSyncBlock = (*((REFLECTCLASSBASEREF*) ppRefClass))->GetSyncBlock(); |
| 1091 | |
| 1092 | // <TODO> This needs to support a COM version of ReflectClass. Right now we |
| 1093 | // still work as we used to <darylo> </TODO> |
| 1094 | MethodTable* pComMT = g_pBaseCOMObject; |
| 1095 | _ASSERTE(pComMT != NULL); |
| 1096 | |
| 1097 | // class for ComObject |
| 1098 | (*((REFLECTCLASSBASEREF*) ppRefClass))->SetType(TypeHandle(pComMT)); |
| 1099 | |
| 1100 | pSyncBlock->GetInteropInfo()->SetComClassFactory(pComClsFac); |
| 1101 | } |
| 1102 | } |
| 1103 | #endif // FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
| 1104 | |
| 1105 | // AllocateObject will throw OutOfMemoryException so don't need to check |
| 1106 | // for NULL return value from it. |
| 1107 | OBJECTREF AllocateObject(MethodTable *pMT |
| 1108 | #ifdef FEATURE_COMINTEROP |
| 1109 | , bool fHandleCom |
| 1110 | #endif |
| 1111 | ) |
| 1112 | { |
| 1113 | CONTRACTL { |
| 1114 | THROWS; |
| 1115 | GC_TRIGGERS; |
| 1116 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
| 1117 | PRECONDITION(CheckPointer(pMT)); |
| 1118 | PRECONDITION(pMT->CheckInstanceActivated()); |
| 1119 | } CONTRACTL_END; |
| 1120 | |
| 1121 | Object *orObject = NULL; |
| 1122 | // use unchecked oref here to avoid triggering assert in Validate that the AD is |
| 1123 | // not set becuase it isn't until near the end of the fcn at which point we can allow |
| 1124 | // the check. |
| 1125 | _UNCHECKED_OBJECTREF oref; |
| 1126 | |
| 1127 | g_IBCLogger.LogMethodTableAccess(pMT); |
| 1128 | SetTypeHandleOnThreadForAlloc(TypeHandle(pMT)); |
| 1129 | |
| 1130 | |
| 1131 | #ifdef FEATURE_COMINTEROP |
| 1132 | #ifdef FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
| 1133 | if (fHandleCom && pMT->IsComObjectType() && !pMT->IsWinRTObjectType()) |
| 1134 | { |
| 1135 | // Create a instance of __ComObject here is not allowed as we don't know what COM object to create |
| 1136 | if (pMT == g_pBaseCOMObject) |
| 1137 | COMPlusThrow(kInvalidComObjectException, IDS_EE_NO_BACKING_CLASS_FACTORY); |
| 1138 | |
| 1139 | oref = OBJECTREF_TO_UNCHECKED_OBJECTREF(AllocateComObject_ForManaged(pMT)); |
| 1140 | } |
| 1141 | else |
| 1142 | #endif // FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
| 1143 | #endif // FEATURE_COMINTEROP |
| 1144 | { |
| 1145 | DWORD baseSize = pMT->GetBaseSize(); |
| 1146 | |
| 1147 | #ifdef FEATURE_64BIT_ALIGNMENT |
| 1148 | if (pMT->RequiresAlign8()) |
| 1149 | { |
| 1150 | // The last argument to the allocation, indicates whether the alignment should be "biased". This |
| 1151 | // means that the object is allocated so that its header lies exactly between two 8-byte |
| 1152 | // boundaries. This is required in cases where we need to mis-align the header in order to align |
| 1153 | // the actual payload. Currently this is false for classes (where we apply padding to ensure the |
| 1154 | // first field is aligned relative to the header) and true for boxed value types (where we can't |
| 1155 | // do the same padding without introducing more complexity in type layout and unboxing stubs). |
| 1156 | _ASSERTE(sizeof(Object) == 4); |
| 1157 | orObject = (Object *) AllocAlign8(baseSize, |
| 1158 | pMT->HasFinalizer(), |
| 1159 | pMT->ContainsPointers(), |
| 1160 | pMT->IsValueType()); |
| 1161 | } |
| 1162 | else |
| 1163 | #endif // FEATURE_64BIT_ALIGNMENT |
| 1164 | { |
| 1165 | orObject = (Object *) Alloc(baseSize, |
| 1166 | pMT->HasFinalizer(), |
| 1167 | pMT->ContainsPointers()); |
| 1168 | } |
| 1169 | |
| 1170 | // verify zero'd memory (at least for sync block) |
| 1171 | _ASSERTE( orObject->HasEmptySyncBlockInfo() ); |
| 1172 | |
| 1173 | if ((baseSize >= g_pConfig->GetGCLOHThreshold())) |
| 1174 | { |
| 1175 | orObject->SetMethodTableForLargeObject(pMT); |
| 1176 | GCHeapUtilities::GetGCHeap()->PublishObject((BYTE*)orObject); |
| 1177 | } |
| 1178 | else |
| 1179 | { |
| 1180 | orObject->SetMethodTable(pMT); |
| 1181 | } |
| 1182 | |
| 1183 | if (pMT->HasFinalizer()) |
| 1184 | orObject->SetAppDomain(); |
| 1185 | |
| 1186 | // Notify the profiler of the allocation |
| 1187 | if (TrackAllocations()) |
| 1188 | { |
| 1189 | OBJECTREF objref = ObjectToOBJECTREF((Object*)orObject); |
| 1190 | GCPROTECT_BEGIN(objref); |
| 1191 | ProfilerObjectAllocatedCallback(objref, (ClassID) orObject->GetTypeHandle().AsPtr()); |
| 1192 | GCPROTECT_END(); |
| 1193 | |
| 1194 | orObject = (Object *) OBJECTREFToObject(objref); |
| 1195 | } |
| 1196 | |
| 1197 | #ifdef FEATURE_EVENT_TRACE |
| 1198 | // Send ETW event for allocation |
| 1199 | if(ETW::TypeSystemLog::IsHeapAllocEventEnabled()) |
| 1200 | { |
| 1201 | ETW::TypeSystemLog::SendObjectAllocatedEvent(orObject); |
| 1202 | } |
| 1203 | #endif // FEATURE_EVENT_TRACE |
| 1204 | |
| 1205 | LogAlloc(pMT->GetBaseSize(), pMT, orObject); |
| 1206 | |
| 1207 | oref = OBJECTREF_TO_UNCHECKED_OBJECTREF(orObject); |
| 1208 | } |
| 1209 | |
| 1210 | return UNCHECKED_OBJECTREF_TO_OBJECTREF(oref); |
| 1211 | } |
| 1212 | |
| 1213 | //======================================================================== |
| 1214 | // |
| 1215 | // WRITE BARRIER HELPERS |
| 1216 | // |
| 1217 | //======================================================================== |
| 1218 | |
| 1219 | |
| 1220 | #define card_byte(addr) (((size_t)(addr)) >> card_byte_shift) |
| 1221 | #define card_bit(addr) (1 << ((((size_t)(addr)) >> (card_byte_shift - 3)) & 7)) |
| 1222 | |
| 1223 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
| 1224 | #define card_bundle_byte(addr) (((size_t)(addr)) >> card_bundle_byte_shift) |
| 1225 | |
| 1226 | static void SetCardBundleByte(BYTE* addr) |
| 1227 | { |
| 1228 | BYTE* cbByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_bundle_table) + card_bundle_byte(addr); |
| 1229 | if (*cbByte != 0xFF) |
| 1230 | { |
| 1231 | *cbByte = 0xFF; |
| 1232 | } |
| 1233 | } |
| 1234 | #endif |
| 1235 | |
| 1236 | #ifdef FEATURE_USE_ASM_GC_WRITE_BARRIERS |
| 1237 | |
| 1238 | // implemented in assembly |
| 1239 | // extern "C" HCIMPL2_RAW(VOID, JIT_CheckedWriteBarrier, Object **dst, Object *refUNSAFE) |
| 1240 | // extern "C" HCIMPL2_RAW(VOID, JIT_WriteBarrier, Object **dst, Object *refUNSAFE) |
| 1241 | |
| 1242 | #else // FEATURE_USE_ASM_GC_WRITE_BARRIERS |
| 1243 | |
| 1244 | // NOTE: non-ASM write barriers only work with Workstation GC. |
| 1245 | |
| 1246 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1247 | static UINT64 CheckedBarrierCount = 0; |
| 1248 | static UINT64 CheckedBarrierRetBufCount = 0; |
| 1249 | static UINT64 CheckedBarrierByrefArgCount = 0; |
| 1250 | static UINT64 CheckedBarrierByrefOtherLocalCount = 0; |
| 1251 | static UINT64 CheckedBarrierAddrOfLocalCount = 0; |
| 1252 | static UINT64 UncheckedBarrierCount = 0; |
| 1253 | static UINT64 CheckedAfterHeapFilter = 0; |
| 1254 | static UINT64 CheckedAfterRefInEphemFilter = 0; |
| 1255 | static UINT64 CheckedAfterAlreadyDirtyFilter = 0; |
| 1256 | static UINT64 CheckedDestInEphem = 0; |
| 1257 | static UINT64 UncheckedAfterRefInEphemFilter = 0; |
| 1258 | static UINT64 UncheckedAfterAlreadyDirtyFilter = 0; |
| 1259 | static UINT64 UncheckedDestInEphem = 0; |
| 1260 | |
| 1261 | const unsigned BarrierCountPrintInterval = 1000000; |
| 1262 | static unsigned CheckedBarrierInterval = BarrierCountPrintInterval; |
| 1263 | static unsigned UncheckedBarrierInterval = BarrierCountPrintInterval; |
| 1264 | |
| 1265 | |
| 1266 | void IncCheckedBarrierCount() |
| 1267 | { |
| 1268 | ++CheckedBarrierCount; |
| 1269 | if (--CheckedBarrierInterval == 0) |
| 1270 | { |
| 1271 | CheckedBarrierInterval = BarrierCountPrintInterval; |
| 1272 | printf("GC write barrier counts: checked = %lld, unchecked = %lld, total = %lld.\n" , |
| 1273 | CheckedBarrierCount, UncheckedBarrierCount, (CheckedBarrierCount + UncheckedBarrierCount)); |
| 1274 | printf(" [Checked: %lld after heap check, %lld after ephem check, %lld after already dirty check.]\n" , |
| 1275 | CheckedAfterHeapFilter, CheckedAfterRefInEphemFilter, CheckedAfterAlreadyDirtyFilter); |
| 1276 | printf(" [Unchecked: %lld after ephem check, %lld after already dirty check.]\n" , |
| 1277 | UncheckedAfterRefInEphemFilter, UncheckedAfterAlreadyDirtyFilter); |
| 1278 | printf(" [Dest in ephem: checked = %lld, unchecked = %lld.]\n" , |
| 1279 | CheckedDestInEphem, UncheckedDestInEphem); |
| 1280 | printf(" [Checked: %lld are stores to fields of ret buff, %lld via byref args,\n" , |
| 1281 | CheckedBarrierRetBufCount, CheckedBarrierByrefArgCount); |
| 1282 | printf(" %lld via other locals, %lld via addr of local.]\n" , |
| 1283 | CheckedBarrierByrefOtherLocalCount, CheckedBarrierAddrOfLocalCount); |
| 1284 | } |
| 1285 | } |
| 1286 | |
| 1287 | void IncUncheckedBarrierCount() |
| 1288 | { |
| 1289 | ++UncheckedBarrierCount; |
| 1290 | if (--UncheckedBarrierInterval == 0) |
| 1291 | { |
| 1292 | printf("GC write barrier counts: checked = %lld, unchecked = %lld, total = %lld.\n" , |
| 1293 | CheckedBarrierCount, UncheckedBarrierCount, (CheckedBarrierCount + UncheckedBarrierCount)); |
| 1294 | UncheckedBarrierInterval = BarrierCountPrintInterval; |
| 1295 | } |
| 1296 | } |
| 1297 | #endif // FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1298 | |
| 1299 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1300 | // (We ignore the advice below on using a _RAW macro for this performance diagnostic mode, which need not function properly in |
| 1301 | // all situations...) |
| 1302 | extern "C" HCIMPL3(VOID, JIT_CheckedWriteBarrier, Object **dst, Object *ref, CheckedWriteBarrierKinds kind) |
| 1303 | #else |
| 1304 | |
| 1305 | // This function is a JIT helper, but it must NOT use HCIMPL2 because it |
| 1306 | // modifies Thread state that will not be restored if an exception occurs |
| 1307 | // inside of memset. A normal EH unwind will not occur. |
| 1308 | extern "C" HCIMPL2_RAW(VOID, JIT_CheckedWriteBarrier, Object **dst, Object *ref) |
| 1309 | #endif |
| 1310 | { |
| 1311 | // Must use static contract here, because if an AV occurs, a normal EH |
| 1312 | // unwind will not occur, and destructors will not run. |
| 1313 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 1314 | STATIC_CONTRACT_THROWS; |
| 1315 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 1316 | |
| 1317 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1318 | IncCheckedBarrierCount(); |
| 1319 | switch (kind) |
| 1320 | { |
| 1321 | case CWBKind_RetBuf: |
| 1322 | CheckedBarrierRetBufCount++; |
| 1323 | break; |
| 1324 | case CWBKind_ByRefArg: |
| 1325 | CheckedBarrierByrefArgCount++; |
| 1326 | break; |
| 1327 | case CWBKind_OtherByRefLocal: |
| 1328 | CheckedBarrierByrefOtherLocalCount++; |
| 1329 | break; |
| 1330 | case CWBKind_AddrOfLocal: |
| 1331 | CheckedBarrierAddrOfLocalCount++; |
| 1332 | break; |
| 1333 | case CWBKind_Unclassified: |
| 1334 | break; |
| 1335 | default: |
| 1336 | // It should be some member of the enumeration. |
| 1337 | _ASSERTE_ALL_BUILDS(__FILE__, false); |
| 1338 | break; |
| 1339 | } |
| 1340 | #endif // FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1341 | |
| 1342 | // no HELPER_METHOD_FRAME because we are MODE_COOPERATIVE, GC_NOTRIGGER |
| 1343 | |
| 1344 | *dst = ref; |
| 1345 | |
| 1346 | // if the dst is outside of the heap (unboxed value classes) then we |
| 1347 | // simply exit |
| 1348 | if (((BYTE*)dst < g_lowest_address) || ((BYTE*)dst >= g_highest_address)) |
| 1349 | return; |
| 1350 | |
| 1351 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1352 | CheckedAfterHeapFilter++; |
| 1353 | #endif |
| 1354 | |
| 1355 | #ifdef WRITE_BARRIER_CHECK |
| 1356 | updateGCShadow(dst, ref); // support debugging write barrier |
| 1357 | #endif |
| 1358 | |
| 1359 | #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
| 1360 | if (GCHeapUtilities::SoftwareWriteWatchIsEnabled()) |
| 1361 | { |
| 1362 | GCHeapUtilities::SoftwareWriteWatchSetDirty(dst, sizeof(*dst)); |
| 1363 | } |
| 1364 | #endif // FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
| 1365 | |
| 1366 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1367 | if((BYTE*) dst >= g_ephemeral_low && (BYTE*) dst < g_ephemeral_high) |
| 1368 | { |
| 1369 | CheckedDestInEphem++; |
| 1370 | } |
| 1371 | #endif |
| 1372 | if((BYTE*) ref >= g_ephemeral_low && (BYTE*) ref < g_ephemeral_high) |
| 1373 | { |
| 1374 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1375 | CheckedAfterRefInEphemFilter++; |
| 1376 | #endif |
| 1377 | // VolatileLoadWithoutBarrier() is used here to prevent fetch of g_card_table from being reordered |
| 1378 | // with g_lowest/highest_address check above. See comment in code:gc_heap::grow_brick_card_tables. |
| 1379 | BYTE* pCardByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_table) + card_byte((BYTE *)dst); |
| 1380 | if(*pCardByte != 0xFF) |
| 1381 | { |
| 1382 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1383 | CheckedAfterAlreadyDirtyFilter++; |
| 1384 | #endif |
| 1385 | *pCardByte = 0xFF; |
| 1386 | |
| 1387 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
| 1388 | SetCardBundleByte((BYTE*)dst); |
| 1389 | #endif |
| 1390 | } |
| 1391 | } |
| 1392 | } |
| 1393 | HCIMPLEND_RAW |
| 1394 | |
| 1395 | // This function is a JIT helper, but it must NOT use HCIMPL2 because it |
| 1396 | // modifies Thread state that will not be restored if an exception occurs |
| 1397 | // inside of memset. A normal EH unwind will not occur. |
| 1398 | extern "C" HCIMPL2_RAW(VOID, JIT_WriteBarrier, Object **dst, Object *ref) |
| 1399 | { |
| 1400 | // Must use static contract here, because if an AV occurs, a normal EH |
| 1401 | // unwind will not occur, and destructors will not run. |
| 1402 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 1403 | STATIC_CONTRACT_THROWS; |
| 1404 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 1405 | |
| 1406 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1407 | IncUncheckedBarrierCount(); |
| 1408 | #endif |
| 1409 | // no HELPER_METHOD_FRAME because we are MODE_COOPERATIVE, GC_NOTRIGGER |
| 1410 | |
| 1411 | *dst = ref; |
| 1412 | |
| 1413 | // If the store above succeeded, "dst" should be in the heap. |
| 1414 | assert(GCHeapUtilities::GetGCHeap()->IsHeapPointer((void*)dst)); |
| 1415 | |
| 1416 | #ifdef WRITE_BARRIER_CHECK |
| 1417 | updateGCShadow(dst, ref); // support debugging write barrier |
| 1418 | #endif |
| 1419 | |
| 1420 | #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
| 1421 | if (GCHeapUtilities::SoftwareWriteWatchIsEnabled()) |
| 1422 | { |
| 1423 | GCHeapUtilities::SoftwareWriteWatchSetDirty(dst, sizeof(*dst)); |
| 1424 | } |
| 1425 | #endif // FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
| 1426 | |
| 1427 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1428 | if((BYTE*) dst >= g_ephemeral_low && (BYTE*) dst < g_ephemeral_high) |
| 1429 | { |
| 1430 | UncheckedDestInEphem++; |
| 1431 | } |
| 1432 | #endif |
| 1433 | if((BYTE*) ref >= g_ephemeral_low && (BYTE*) ref < g_ephemeral_high) |
| 1434 | { |
| 1435 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1436 | UncheckedAfterRefInEphemFilter++; |
| 1437 | #endif |
| 1438 | BYTE* pCardByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_table) + card_byte((BYTE *)dst); |
| 1439 | if(*pCardByte != 0xFF) |
| 1440 | { |
| 1441 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 1442 | UncheckedAfterAlreadyDirtyFilter++; |
| 1443 | #endif |
| 1444 | *pCardByte = 0xFF; |
| 1445 | |
| 1446 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
| 1447 | SetCardBundleByte((BYTE*)dst); |
| 1448 | #endif |
| 1449 | |
| 1450 | } |
| 1451 | } |
| 1452 | } |
| 1453 | HCIMPLEND_RAW |
| 1454 | |
| 1455 | #endif // FEATURE_USE_ASM_GC_WRITE_BARRIERS |
| 1456 | |
| 1457 | extern "C" HCIMPL2_RAW(VOID, JIT_WriteBarrierEnsureNonHeapTarget, Object **dst, Object *ref) |
| 1458 | { |
| 1459 | // Must use static contract here, because if an AV occurs, a normal EH |
| 1460 | // unwind will not occur, and destructors will not run. |
| 1461 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 1462 | STATIC_CONTRACT_THROWS; |
| 1463 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 1464 | |
| 1465 | assert(!GCHeapUtilities::GetGCHeap()->IsHeapPointer((void*)dst)); |
| 1466 | |
| 1467 | // no HELPER_METHOD_FRAME because we are MODE_COOPERATIVE, GC_NOTRIGGER |
| 1468 | |
| 1469 | *dst = ref; |
| 1470 | } |
| 1471 | HCIMPLEND_RAW |
| 1472 | |
| 1473 | // This function sets the card table with the granularity of 1 byte, to avoid ghost updates |
| 1474 | // that could occur if multiple threads were trying to set different bits in the same card. |
| 1475 | |
| 1476 | #include <optsmallperfcritical.h> |
| 1477 | void ErectWriteBarrier(OBJECTREF *dst, OBJECTREF ref) |
| 1478 | { |
| 1479 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 1480 | STATIC_CONTRACT_NOTHROW; |
| 1481 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 1482 | STATIC_CONTRACT_SO_TOLERANT; |
| 1483 | |
| 1484 | // if the dst is outside of the heap (unboxed value classes) then we |
| 1485 | // simply exit |
| 1486 | if (((BYTE*)dst < g_lowest_address) || ((BYTE*)dst >= g_highest_address)) |
| 1487 | return; |
| 1488 | |
| 1489 | #ifdef WRITE_BARRIER_CHECK |
| 1490 | updateGCShadow((Object**) dst, OBJECTREFToObject(ref)); // support debugging write barrier |
| 1491 | #endif |
| 1492 | |
| 1493 | #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
| 1494 | if (GCHeapUtilities::SoftwareWriteWatchIsEnabled()) |
| 1495 | { |
| 1496 | GCHeapUtilities::SoftwareWriteWatchSetDirty(dst, sizeof(*dst)); |
| 1497 | } |
| 1498 | #endif // FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
| 1499 | |
| 1500 | if ((BYTE*) OBJECTREFToObject(ref) >= g_ephemeral_low && (BYTE*) OBJECTREFToObject(ref) < g_ephemeral_high) |
| 1501 | { |
| 1502 | // VolatileLoadWithoutBarrier() is used here to prevent fetch of g_card_table from being reordered |
| 1503 | // with g_lowest/highest_address check above. See comment in code:gc_heap::grow_brick_card_tables. |
| 1504 | BYTE* pCardByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_table) + card_byte((BYTE *)dst); |
| 1505 | if (*pCardByte != 0xFF) |
| 1506 | { |
| 1507 | *pCardByte = 0xFF; |
| 1508 | |
| 1509 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
| 1510 | SetCardBundleByte((BYTE*)dst); |
| 1511 | #endif |
| 1512 | |
| 1513 | } |
| 1514 | } |
| 1515 | } |
| 1516 | #include <optdefault.h> |
| 1517 | |
| 1518 | void ErectWriteBarrierForMT(MethodTable **dst, MethodTable *ref) |
| 1519 | { |
| 1520 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 1521 | STATIC_CONTRACT_NOTHROW; |
| 1522 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 1523 | STATIC_CONTRACT_SO_TOLERANT; |
| 1524 | |
| 1525 | *dst = ref; |
| 1526 | |
| 1527 | #ifdef WRITE_BARRIER_CHECK |
| 1528 | updateGCShadow((Object **)dst, (Object *)ref); // support debugging write barrier, updateGCShadow only cares that these are pointers |
| 1529 | #endif |
| 1530 | |
| 1531 | if (ref->Collectible()) |
| 1532 | { |
| 1533 | #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
| 1534 | if (GCHeapUtilities::SoftwareWriteWatchIsEnabled()) |
| 1535 | { |
| 1536 | GCHeapUtilities::SoftwareWriteWatchSetDirty(dst, sizeof(*dst)); |
| 1537 | } |
| 1538 | |
| 1539 | #endif // FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
| 1540 | |
| 1541 | BYTE *refObject = *(BYTE **)((MethodTable*)ref)->GetLoaderAllocatorObjectHandle(); |
| 1542 | if((BYTE*) refObject >= g_ephemeral_low && (BYTE*) refObject < g_ephemeral_high) |
| 1543 | { |
| 1544 | // See comment above |
| 1545 | BYTE* pCardByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_table) + card_byte((BYTE *)dst); |
| 1546 | if( !((*pCardByte) & card_bit((BYTE *)dst)) ) |
| 1547 | { |
| 1548 | *pCardByte = 0xFF; |
| 1549 | |
| 1550 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
| 1551 | SetCardBundleByte((BYTE*)dst); |
| 1552 | #endif |
| 1553 | |
| 1554 | } |
| 1555 | } |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | //---------------------------------------------------------------------------- |
| 1560 | // |
| 1561 | // Write Barrier Support for bulk copy ("Clone") operations |
| 1562 | // |
| 1563 | // StartPoint is the target bulk copy start point |
| 1564 | // len is the length of the bulk copy (in bytes) |
| 1565 | // |
| 1566 | // |
| 1567 | // Performance Note: |
| 1568 | // |
| 1569 | // This is implemented somewhat "conservatively", that is we |
| 1570 | // assume that all the contents of the bulk copy are object |
| 1571 | // references. If they are not, and the value lies in the |
| 1572 | // ephemeral range, we will set false positives in the card table. |
| 1573 | // |
| 1574 | // We could use the pointer maps and do this more accurately if necessary |
| 1575 | |
| 1576 | #if defined(_MSC_VER) && defined(_TARGET_X86_) |
| 1577 | #pragma optimize("y", on) // Small critical routines, don't put in EBP frame |
| 1578 | #endif //_MSC_VER && _TARGET_X86_ |
| 1579 | |
| 1580 | void |
| 1581 | SetCardsAfterBulkCopy(Object **start, size_t len) |
| 1582 | { |
| 1583 | // If the size is smaller than a pointer, no write barrier is required. |
| 1584 | if (len >= sizeof(uintptr_t)) |
| 1585 | { |
| 1586 | InlinedSetCardsAfterBulkCopyHelper(start, len); |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | #if defined(_MSC_VER) && defined(_TARGET_X86_) |
| 1591 | #pragma optimize("", on) // Go back to command line default optimizations |
| 1592 | #endif //_MSC_VER && _TARGET_X86_ |
| 1593 | |