1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /* |
6 | * GCHELPERS.CPP |
7 | * |
8 | * GC Allocation and Write Barrier Helpers |
9 | * |
10 | |
11 | * |
12 | */ |
13 | |
14 | #include "common.h" |
15 | #include "object.h" |
16 | #include "threads.h" |
17 | #include "eetwain.h" |
18 | #include "eeconfig.h" |
19 | #include "gcheaputilities.h" |
20 | #include "corhost.h" |
21 | #include "threads.h" |
22 | #include "fieldmarshaler.h" |
23 | #include "interoputil.h" |
24 | #include "dynamicmethod.h" |
25 | #include "stubhelpers.h" |
26 | #include "eventtrace.h" |
27 | |
28 | #include "excep.h" |
29 | |
30 | #include "gchelpers.inl" |
31 | #include "eeprofinterfaces.inl" |
32 | |
33 | #ifdef FEATURE_COMINTEROP |
34 | #include "runtimecallablewrapper.h" |
35 | #endif // FEATURE_COMINTEROP |
36 | |
37 | #include "rcwwalker.h" |
38 | |
39 | //======================================================================== |
40 | // |
41 | // ALLOCATION HELPERS |
42 | // |
43 | //======================================================================== |
44 | |
45 | #define ProfileTrackArrayAlloc(orObject) \ |
46 | OBJECTREF objref = ObjectToOBJECTREF((Object*)orObject);\ |
47 | GCPROTECT_BEGIN(objref);\ |
48 | ProfilerObjectAllocatedCallback(objref, (ClassID) orObject->GetTypeHandle().AsPtr());\ |
49 | GCPROTECT_END();\ |
50 | orObject = (ArrayBase *) OBJECTREFToObject(objref); |
51 | |
52 | |
53 | inline gc_alloc_context* GetThreadAllocContext() |
54 | { |
55 | WRAPPER_NO_CONTRACT; |
56 | |
57 | assert(GCHeapUtilities::UseThreadAllocationContexts()); |
58 | |
59 | return & GetThread()->m_alloc_context; |
60 | } |
61 | |
62 | // When not using per-thread allocation contexts, we (the EE) need to take care that |
63 | // no two threads are concurrently modifying the global allocation context. This lock |
64 | // must be acquired before any sort of operations involving the global allocation context |
65 | // can occur. |
66 | // |
67 | // This lock is acquired by all allocations when not using per-thread allocation contexts. |
68 | // It is acquired in two kinds of places: |
69 | // 1) JIT_TrialAllocFastSP (and related assembly alloc helpers), which attempt to |
70 | // acquire it but move into an alloc slow path if acquiring fails |
71 | // (but does not decrement the lock variable when doing so) |
72 | // 2) Alloc and AllocAlign8 in gchelpers.cpp, which acquire the lock using |
73 | // the Acquire and Release methods below. |
74 | class GlobalAllocLock { |
75 | friend struct AsmOffsets; |
76 | private: |
77 | // The lock variable. This field must always be first. |
78 | LONG m_lock; |
79 | |
80 | public: |
81 | // Creates a new GlobalAllocLock in the unlocked state. |
82 | GlobalAllocLock() : m_lock(-1) {} |
83 | |
84 | // Copy and copy-assignment operators should never be invoked |
85 | // for this type |
86 | GlobalAllocLock(const GlobalAllocLock&) = delete; |
87 | GlobalAllocLock& operator=(const GlobalAllocLock&) = delete; |
88 | |
89 | // Acquires the lock, spinning if necessary to do so. When this method |
90 | // returns, m_lock will be zero and the lock will be acquired. |
91 | void Acquire() |
92 | { |
93 | CONTRACTL { |
94 | NOTHROW; |
95 | GC_TRIGGERS; // switch to preemptive mode |
96 | MODE_COOPERATIVE; |
97 | } CONTRACTL_END; |
98 | |
99 | DWORD spinCount = 0; |
100 | while(FastInterlockExchange(&m_lock, 0) != -1) |
101 | { |
102 | GCX_PREEMP(); |
103 | __SwitchToThread(0, spinCount++); |
104 | } |
105 | |
106 | assert(m_lock == 0); |
107 | } |
108 | |
109 | // Releases the lock. |
110 | void Release() |
111 | { |
112 | LIMITED_METHOD_CONTRACT; |
113 | |
114 | // the lock may not be exactly 0. This is because the |
115 | // assembly alloc routines increment the lock variable and |
116 | // jump if not zero to the slow alloc path, which eventually |
117 | // will try to acquire the lock again. At that point, it will |
118 | // spin in Acquire (since m_lock is some number that's not zero). |
119 | // When the thread that /does/ hold the lock releases it, the spinning |
120 | // thread will continue. |
121 | MemoryBarrier(); |
122 | assert(m_lock >= 0); |
123 | m_lock = -1; |
124 | } |
125 | |
126 | // Static helper to acquire a lock, for use with the Holder template. |
127 | static void AcquireLock(GlobalAllocLock *lock) |
128 | { |
129 | WRAPPER_NO_CONTRACT; |
130 | lock->Acquire(); |
131 | } |
132 | |
133 | // Static helper to release a lock, for use with the Holder template |
134 | static void ReleaseLock(GlobalAllocLock *lock) |
135 | { |
136 | WRAPPER_NO_CONTRACT; |
137 | lock->Release(); |
138 | } |
139 | |
140 | typedef Holder<GlobalAllocLock *, GlobalAllocLock::AcquireLock, GlobalAllocLock::ReleaseLock> Holder; |
141 | }; |
142 | |
143 | typedef GlobalAllocLock::Holder GlobalAllocLockHolder; |
144 | |
145 | struct AsmOffsets { |
146 | static_assert(offsetof(GlobalAllocLock, m_lock) == 0, "ASM code relies on this property" ); |
147 | }; |
148 | |
149 | // For single-proc machines, the global allocation context is protected |
150 | // from concurrent modification by this lock. |
151 | // |
152 | // When not using per-thread allocation contexts, certain methods on IGCHeap |
153 | // require that this lock be held before calling. These methods are documented |
154 | // on the IGCHeap interface. |
155 | extern "C" |
156 | { |
157 | GlobalAllocLock g_global_alloc_lock; |
158 | } |
159 | |
160 | |
161 | // Checks to see if the given allocation size exceeds the |
162 | // largest object size allowed - if it does, it throws |
163 | // an OutOfMemoryException with a message indicating that |
164 | // the OOM was not from memory pressure but from an object |
165 | // being too large. |
166 | inline void CheckObjectSize(size_t alloc_size) |
167 | { |
168 | CONTRACTL { |
169 | THROWS; |
170 | GC_TRIGGERS; |
171 | } CONTRACTL_END; |
172 | |
173 | size_t max_object_size; |
174 | #ifdef BIT64 |
175 | if (g_pConfig->GetGCAllowVeryLargeObjects()) |
176 | { |
177 | max_object_size = (INT64_MAX - 7 - min_obj_size); |
178 | } |
179 | else |
180 | #endif // BIT64 |
181 | { |
182 | max_object_size = (INT32_MAX - 7 - min_obj_size); |
183 | } |
184 | |
185 | if (alloc_size >= max_object_size) |
186 | { |
187 | if (g_pConfig->IsGCBreakOnOOMEnabled()) |
188 | { |
189 | DebugBreak(); |
190 | } |
191 | |
192 | ThrowOutOfMemoryDimensionsExceeded(); |
193 | } |
194 | } |
195 | |
196 | |
197 | // There are only three ways to get into allocate an object. |
198 | // * Call optimized helpers that were generated on the fly. This is how JIT compiled code does most |
199 | // allocations, however they fall back code:Alloc, when for all but the most common code paths. These |
200 | // helpers are NOT used if profiler has asked to track GC allocation (see code:TrackAllocations) |
201 | // * Call code:Alloc - When the jit helpers fall back, or we do allocations within the runtime code |
202 | // itself, we ultimately call here. |
203 | // * Call code:AllocLHeap - Used very rarely to force allocation to be on the large object heap. |
204 | // |
205 | // While this is a choke point into allocating an object, it is primitive (it does not want to know about |
206 | // MethodTable and thus does not initialize that pointer. It also does not know if the object is finalizable |
207 | // or contains pointers. Thus we quickly wrap this function in more user-friendly ones that know about |
208 | // MethodTables etc. (see code:FastAllocatePrimitiveArray code:AllocateArrayEx code:AllocateObject) |
209 | // |
210 | // You can get an exhaustive list of code sites that allocate GC objects by finding all calls to |
211 | // code:ProfilerObjectAllocatedCallback (since the profiler has to hook them all). |
212 | inline Object* Alloc(size_t size, BOOL bFinalize, BOOL bContainsPointers ) |
213 | { |
214 | CONTRACTL { |
215 | THROWS; |
216 | GC_TRIGGERS; |
217 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
218 | } CONTRACTL_END; |
219 | |
220 | _ASSERTE(!NingenEnabled() && "You cannot allocate managed objects inside the ngen compilation process." ); |
221 | |
222 | #ifdef _DEBUG |
223 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
224 | { |
225 | char *a = new char; |
226 | delete a; |
227 | } |
228 | #endif |
229 | |
230 | DWORD flags = ((bContainsPointers ? GC_ALLOC_CONTAINS_REF : 0) | |
231 | (bFinalize ? GC_ALLOC_FINALIZE : 0)); |
232 | |
233 | Object *retVal = NULL; |
234 | CheckObjectSize(size); |
235 | |
236 | // We don't want to throw an SO during the GC, so make sure we have plenty |
237 | // of stack before calling in. |
238 | INTERIOR_STACK_PROBE_FOR(GetThread(), static_cast<unsigned>(DEFAULT_ENTRY_PROBE_AMOUNT * 1.5)); |
239 | if (GCHeapUtilities::UseThreadAllocationContexts()) |
240 | { |
241 | gc_alloc_context *threadContext = GetThreadAllocContext(); |
242 | GCStress<gc_on_alloc>::MaybeTrigger(threadContext); |
243 | retVal = GCHeapUtilities::GetGCHeap()->Alloc(threadContext, size, flags); |
244 | } |
245 | else |
246 | { |
247 | GlobalAllocLockHolder holder(&g_global_alloc_lock); |
248 | gc_alloc_context *globalContext = &g_global_alloc_context; |
249 | GCStress<gc_on_alloc>::MaybeTrigger(globalContext); |
250 | retVal = GCHeapUtilities::GetGCHeap()->Alloc(globalContext, size, flags); |
251 | } |
252 | |
253 | |
254 | if (!retVal) |
255 | { |
256 | ThrowOutOfMemory(); |
257 | } |
258 | |
259 | END_INTERIOR_STACK_PROBE; |
260 | return retVal; |
261 | } |
262 | |
263 | #ifdef FEATURE_64BIT_ALIGNMENT |
264 | // Helper for allocating 8-byte aligned objects (on platforms where this doesn't happen naturally, e.g. 32-bit |
265 | // platforms). |
266 | inline Object* AllocAlign8(size_t size, BOOL bFinalize, BOOL bContainsPointers, BOOL bAlignBias) |
267 | { |
268 | CONTRACTL { |
269 | THROWS; |
270 | GC_TRIGGERS; |
271 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
272 | } CONTRACTL_END; |
273 | |
274 | DWORD flags = ((bContainsPointers ? GC_ALLOC_CONTAINS_REF : 0) | |
275 | (bFinalize ? GC_ALLOC_FINALIZE : 0) | |
276 | (bAlignBias ? GC_ALLOC_ALIGN8_BIAS : 0)); |
277 | |
278 | Object *retVal = NULL; |
279 | CheckObjectSize(size); |
280 | |
281 | // We don't want to throw an SO during the GC, so make sure we have plenty |
282 | // of stack before calling in. |
283 | INTERIOR_STACK_PROBE_FOR(GetThread(), static_cast<unsigned>(DEFAULT_ENTRY_PROBE_AMOUNT * 1.5)); |
284 | if (GCHeapUtilities::UseThreadAllocationContexts()) |
285 | { |
286 | gc_alloc_context *threadContext = GetThreadAllocContext(); |
287 | GCStress<gc_on_alloc>::MaybeTrigger(threadContext); |
288 | retVal = GCHeapUtilities::GetGCHeap()->AllocAlign8(threadContext, size, flags); |
289 | } |
290 | else |
291 | { |
292 | GlobalAllocLockHolder holder(&g_global_alloc_lock); |
293 | gc_alloc_context *globalContext = &g_global_alloc_context; |
294 | GCStress<gc_on_alloc>::MaybeTrigger(globalContext); |
295 | retVal = GCHeapUtilities::GetGCHeap()->AllocAlign8(globalContext, size, flags); |
296 | } |
297 | |
298 | if (!retVal) |
299 | { |
300 | ThrowOutOfMemory(); |
301 | } |
302 | |
303 | END_INTERIOR_STACK_PROBE; |
304 | return retVal; |
305 | } |
306 | #endif // FEATURE_64BIT_ALIGNMENT |
307 | |
308 | // This is one of three ways of allocating an object (see code:Alloc for more). This variation is used in the |
309 | // rare circumstance when you want to allocate an object on the large object heap but the object is not big |
310 | // enough to naturally go there. |
311 | // |
312 | // One (and only?) example of where this is needed is 8 byte aligning of arrays of doubles. See |
313 | // code:EEConfig.GetDoubleArrayToLargeObjectHeapThreshold and code:CORINFO_HELP_NEWARR_1_ALIGN8 for more. |
314 | inline Object* AllocLHeap(size_t size, BOOL bFinalize, BOOL bContainsPointers ) |
315 | { |
316 | CONTRACTL { |
317 | THROWS; |
318 | GC_TRIGGERS; |
319 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative (don't assume large heap doesn't compact!) |
320 | } CONTRACTL_END; |
321 | |
322 | |
323 | _ASSERTE(!NingenEnabled() && "You cannot allocate managed objects inside the ngen compilation process." ); |
324 | |
325 | #ifdef _DEBUG |
326 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
327 | { |
328 | char *a = new char; |
329 | delete a; |
330 | } |
331 | #endif |
332 | |
333 | DWORD flags = ((bContainsPointers ? GC_ALLOC_CONTAINS_REF : 0) | |
334 | (bFinalize ? GC_ALLOC_FINALIZE : 0)); |
335 | |
336 | Object *retVal = NULL; |
337 | CheckObjectSize(size); |
338 | |
339 | // We don't want to throw an SO during the GC, so make sure we have plenty |
340 | // of stack before calling in. |
341 | INTERIOR_STACK_PROBE_FOR(GetThread(), static_cast<unsigned>(DEFAULT_ENTRY_PROBE_AMOUNT * 1.5)); |
342 | retVal = GCHeapUtilities::GetGCHeap()->AllocLHeap(size, flags); |
343 | |
344 | if (!retVal) |
345 | { |
346 | ThrowOutOfMemory(); |
347 | } |
348 | |
349 | END_INTERIOR_STACK_PROBE; |
350 | return retVal; |
351 | } |
352 | |
353 | |
354 | #ifdef _LOGALLOC |
355 | int g_iNumAllocs = 0; |
356 | |
357 | bool ToLogOrNotToLog(size_t size, const char *typeName) |
358 | { |
359 | WRAPPER_NO_CONTRACT; |
360 | |
361 | g_iNumAllocs++; |
362 | |
363 | if (g_iNumAllocs > g_pConfig->AllocNumThreshold()) |
364 | return true; |
365 | |
366 | if (size > (size_t)g_pConfig->AllocSizeThreshold()) |
367 | return true; |
368 | |
369 | if (g_pConfig->ShouldLogAlloc(typeName)) |
370 | return true; |
371 | |
372 | return false; |
373 | |
374 | } |
375 | |
376 | // READ THIS!!!!! |
377 | // this function is called on managed allocation path with unprotected Object* |
378 | // as a result LogAlloc cannot call anything that would toggle the GC mode else |
379 | // you'll introduce several GC holes! |
380 | inline void LogAlloc(size_t size, MethodTable *pMT, Object* object) |
381 | { |
382 | CONTRACTL |
383 | { |
384 | NOTHROW; |
385 | GC_NOTRIGGER; |
386 | MODE_COOPERATIVE; |
387 | } |
388 | CONTRACTL_END; |
389 | |
390 | #ifdef LOGGING |
391 | if (LoggingOn(LF_GCALLOC, LL_INFO10)) |
392 | { |
393 | LogSpewAlways("Allocated %5d bytes for %s_TYPE" FMT_ADDR FMT_CLASS "\n" , |
394 | size, |
395 | pMT->IsValueType() ? "VAL" : "REF" , |
396 | DBG_ADDR(object), |
397 | DBG_CLASS_NAME_MT(pMT)); |
398 | |
399 | if (LoggingOn(LF_GCALLOC, LL_INFO1000000) || |
400 | (LoggingOn(LF_GCALLOC, LL_INFO100) && |
401 | ToLogOrNotToLog(size, DBG_CLASS_NAME_MT(pMT)))) |
402 | { |
403 | void LogStackTrace(); |
404 | LogStackTrace(); |
405 | } |
406 | } |
407 | #endif |
408 | } |
409 | #else |
410 | #define LogAlloc(size, pMT, object) |
411 | #endif |
412 | |
413 | |
414 | inline SIZE_T MaxArrayLength(SIZE_T componentSize) |
415 | { |
416 | // Impose limits on maximum array length in each dimension to allow efficient |
417 | // implementation of advanced range check elimination in future. We have to allow |
418 | // higher limit for array of bytes (or one byte structs) for backward compatibility. |
419 | // Keep in sync with Array.MaxArrayLength in BCL. |
420 | return (componentSize == 1) ? 0X7FFFFFC7 : 0X7FEFFFFF; |
421 | } |
422 | |
423 | OBJECTREF AllocateValueSzArray(TypeHandle elementType, INT32 length) |
424 | { |
425 | CONTRACTL { |
426 | THROWS; |
427 | GC_TRIGGERS; |
428 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
429 | } CONTRACTL_END; |
430 | |
431 | return AllocateArrayEx(elementType.MakeSZArray(), &length, 1); |
432 | } |
433 | |
434 | void ThrowOutOfMemoryDimensionsExceeded() |
435 | { |
436 | CONTRACTL { |
437 | THROWS; |
438 | } CONTRACTL_END; |
439 | |
440 | #ifdef _WIN64 |
441 | EX_THROW(EEMessageException, (kOutOfMemoryException, IDS_EE_ARRAY_DIMENSIONS_EXCEEDED)); |
442 | #else |
443 | ThrowOutOfMemory(); |
444 | #endif |
445 | } |
446 | |
447 | // |
448 | // Handles arrays of arbitrary dimensions |
449 | // |
450 | // This is wrapper overload to handle TypeHandle arrayType |
451 | // |
452 | OBJECTREF AllocateArrayEx(TypeHandle arrayType, INT32 *pArgs, DWORD dwNumArgs, BOOL bAllocateInLargeHeap |
453 | DEBUG_ARG(BOOL bDontSetAppDomain)) |
454 | { |
455 | CONTRACTL |
456 | { |
457 | WRAPPER_NO_CONTRACT; |
458 | } CONTRACTL_END; |
459 | |
460 | ArrayTypeDesc* arrayDesc = arrayType.AsArray(); |
461 | MethodTable* pArrayMT = arrayDesc->GetMethodTable(); |
462 | |
463 | return AllocateArrayEx(pArrayMT, pArgs, dwNumArgs, bAllocateInLargeHeap |
464 | DEBUG_ARG(bDontSetAppDomain)); |
465 | } |
466 | |
467 | // |
468 | // Handles arrays of arbitrary dimensions |
469 | // |
470 | // If dwNumArgs is set to greater than 1 for a SZARRAY this function will recursively |
471 | // allocate sub-arrays and fill them in. |
472 | // |
473 | // For arrays with lower bounds, pBounds is <lower bound 1>, <count 1>, <lower bound 2>, ... |
474 | OBJECTREF AllocateArrayEx(MethodTable *pArrayMT, INT32 *pArgs, DWORD dwNumArgs, BOOL bAllocateInLargeHeap |
475 | DEBUG_ARG(BOOL bDontSetAppDomain)) |
476 | { |
477 | CONTRACTL { |
478 | THROWS; |
479 | GC_TRIGGERS; |
480 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
481 | PRECONDITION(CheckPointer(pArgs)); |
482 | PRECONDITION(dwNumArgs > 0); |
483 | } CONTRACTL_END; |
484 | |
485 | ArrayBase * orArray = NULL; |
486 | |
487 | #ifdef _DEBUG |
488 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
489 | { |
490 | char *a = new char; |
491 | delete a; |
492 | } |
493 | #endif |
494 | |
495 | _ASSERTE(pArrayMT->CheckInstanceActivated()); |
496 | PREFIX_ASSUME(pArrayMT != NULL); |
497 | CorElementType kind = pArrayMT->GetInternalCorElementType(); |
498 | _ASSERTE(kind == ELEMENT_TYPE_ARRAY || kind == ELEMENT_TYPE_SZARRAY); |
499 | |
500 | CorElementType elemType = pArrayMT->GetArrayElementType(); |
501 | // Disallow the creation of void[,] (a multi-dim array of System.Void) |
502 | if (elemType == ELEMENT_TYPE_VOID) |
503 | COMPlusThrow(kArgumentException); |
504 | |
505 | // Calculate the total number of elements in the array |
506 | UINT32 cElements; |
507 | |
508 | // IBC Log MethodTable access |
509 | g_IBCLogger.LogMethodTableAccess(pArrayMT); |
510 | SetTypeHandleOnThreadForAlloc(TypeHandle(pArrayMT)); |
511 | |
512 | SIZE_T componentSize = pArrayMT->GetComponentSize(); |
513 | bool maxArrayDimensionLengthOverflow = false; |
514 | bool providedLowerBounds = false; |
515 | |
516 | if (kind == ELEMENT_TYPE_ARRAY) |
517 | { |
518 | unsigned rank = pArrayMT->GetRank(); |
519 | _ASSERTE(dwNumArgs == rank || dwNumArgs == 2*rank); |
520 | |
521 | // Morph a ARRAY rank 1 with 0 lower bound into an SZARRAY |
522 | if (rank == 1 && (dwNumArgs == 1 || pArgs[0] == 0)) |
523 | { // lower bound is zero |
524 | |
525 | // This recursive call doesn't go any farther, because the dwNumArgs will be 1, |
526 | // so don't bother with stack probe. |
527 | TypeHandle szArrayType = ClassLoader::LoadArrayTypeThrowing(pArrayMT->GetApproxArrayElementTypeHandle(), ELEMENT_TYPE_SZARRAY, 1); |
528 | return AllocateArrayEx(szArrayType, &pArgs[dwNumArgs - 1], 1, bAllocateInLargeHeap DEBUG_ARG(bDontSetAppDomain)); |
529 | } |
530 | |
531 | providedLowerBounds = (dwNumArgs == 2*rank); |
532 | |
533 | S_UINT32 safeTotalElements = S_UINT32(1); |
534 | |
535 | for (unsigned i = 0; i < dwNumArgs; i++) |
536 | { |
537 | int lowerBound = 0; |
538 | if (providedLowerBounds) |
539 | { |
540 | lowerBound = pArgs[i]; |
541 | i++; |
542 | } |
543 | int length = pArgs[i]; |
544 | if (length < 0) |
545 | COMPlusThrow(kOverflowException); |
546 | if ((SIZE_T)length > MaxArrayLength(componentSize)) |
547 | maxArrayDimensionLengthOverflow = true; |
548 | if ((length > 0) && (lowerBound + (length - 1) < lowerBound)) |
549 | COMPlusThrow(kArgumentOutOfRangeException, W("ArgumentOutOfRange_ArrayLBAndLength" )); |
550 | safeTotalElements = safeTotalElements * S_UINT32(length); |
551 | if (safeTotalElements.IsOverflow()) |
552 | ThrowOutOfMemoryDimensionsExceeded(); |
553 | } |
554 | |
555 | cElements = safeTotalElements.Value(); |
556 | } |
557 | else |
558 | { |
559 | int length = pArgs[0]; |
560 | if (length < 0) |
561 | COMPlusThrow(kOverflowException); |
562 | if ((SIZE_T)length > MaxArrayLength(componentSize)) |
563 | maxArrayDimensionLengthOverflow = true; |
564 | cElements = length; |
565 | } |
566 | |
567 | // Throw this exception only after everything else was validated for backward compatibility. |
568 | if (maxArrayDimensionLengthOverflow) |
569 | ThrowOutOfMemoryDimensionsExceeded(); |
570 | |
571 | // Allocate the space from the GC heap |
572 | S_SIZE_T safeTotalSize = S_SIZE_T(cElements) * S_SIZE_T(componentSize) + S_SIZE_T(pArrayMT->GetBaseSize()); |
573 | if (safeTotalSize.IsOverflow()) |
574 | ThrowOutOfMemoryDimensionsExceeded(); |
575 | |
576 | size_t totalSize = safeTotalSize.Value(); |
577 | |
578 | #ifdef FEATURE_DOUBLE_ALIGNMENT_HINT |
579 | if ((elemType == ELEMENT_TYPE_R8) && |
580 | (cElements >= g_pConfig->GetDoubleArrayToLargeObjectHeapThreshold())) |
581 | { |
582 | STRESS_LOG2(LF_GC, LL_INFO10, "Allocating double MD array of size %d and length %d to large object heap\n" , totalSize, cElements); |
583 | bAllocateInLargeHeap = TRUE; |
584 | } |
585 | #endif |
586 | |
587 | if (bAllocateInLargeHeap) |
588 | { |
589 | orArray = (ArrayBase *) AllocLHeap(totalSize, FALSE, pArrayMT->ContainsPointers()); |
590 | orArray->SetArrayMethodTableForLargeObject(pArrayMT); |
591 | } |
592 | else |
593 | { |
594 | #ifdef FEATURE_64BIT_ALIGNMENT |
595 | MethodTable *pElementMT = pArrayMT->GetApproxArrayElementTypeHandle().GetMethodTable(); |
596 | if (pElementMT->RequiresAlign8() && pElementMT->IsValueType()) |
597 | { |
598 | // This platform requires that certain fields are 8-byte aligned (and the runtime doesn't provide |
599 | // this guarantee implicitly, e.g. on 32-bit platforms). Since it's the array payload, not the |
600 | // header that requires alignment we need to be careful. However it just so happens that all the |
601 | // cases we care about (single and multi-dim arrays of value types) have an even number of DWORDs |
602 | // in their headers so the alignment requirements for the header and the payload are the same. |
603 | _ASSERTE(((pArrayMT->GetBaseSize() - SIZEOF_OBJHEADER) & 7) == 0); |
604 | orArray = (ArrayBase *) AllocAlign8(totalSize, FALSE, pArrayMT->ContainsPointers(), FALSE); |
605 | } |
606 | else |
607 | #endif |
608 | { |
609 | orArray = (ArrayBase *) Alloc(totalSize, FALSE, pArrayMT->ContainsPointers()); |
610 | } |
611 | orArray->SetArrayMethodTable(pArrayMT); |
612 | } |
613 | |
614 | // Initialize Object |
615 | orArray->m_NumComponents = cElements; |
616 | |
617 | if (bAllocateInLargeHeap || |
618 | (totalSize >= g_pConfig->GetGCLOHThreshold())) |
619 | { |
620 | GCHeapUtilities::GetGCHeap()->PublishObject((BYTE*)orArray); |
621 | } |
622 | |
623 | #ifdef _LOGALLOC |
624 | LogAlloc(totalSize, pArrayMT, orArray); |
625 | #endif // _LOGALLOC |
626 | |
627 | #ifdef _DEBUG |
628 | // Ensure the typehandle has been interned prior to allocation. |
629 | // This is important for OOM reliability. |
630 | OBJECTREF objref = ObjectToOBJECTREF((Object *) orArray); |
631 | GCPROTECT_BEGIN(objref); |
632 | |
633 | orArray->GetTypeHandle(); |
634 | |
635 | GCPROTECT_END(); |
636 | orArray = (ArrayBase *) OBJECTREFToObject(objref); |
637 | #endif |
638 | |
639 | if (kind == ELEMENT_TYPE_ARRAY) |
640 | { |
641 | INT32 *pCountsPtr = (INT32 *) orArray->GetBoundsPtr(); |
642 | INT32 *pLowerBoundsPtr = (INT32 *) orArray->GetLowerBoundsPtr(); |
643 | for (unsigned i = 0; i < dwNumArgs; i++) |
644 | { |
645 | if (providedLowerBounds) |
646 | *pLowerBoundsPtr++ = pArgs[i++]; // if not stated, lower bound becomes 0 |
647 | *pCountsPtr++ = pArgs[i]; |
648 | } |
649 | } |
650 | |
651 | // Notify the profiler of the allocation |
652 | // do this after initializing bounds so callback has size information |
653 | if (TrackAllocations()) |
654 | { |
655 | ProfileTrackArrayAlloc(orArray); |
656 | } |
657 | |
658 | #ifdef FEATURE_EVENT_TRACE |
659 | // Send ETW event for allocation |
660 | if(ETW::TypeSystemLog::IsHeapAllocEventEnabled()) |
661 | { |
662 | ETW::TypeSystemLog::SendObjectAllocatedEvent(orArray); |
663 | } |
664 | #endif // FEATURE_EVENT_TRACE |
665 | |
666 | if (kind != ELEMENT_TYPE_ARRAY) |
667 | { |
668 | // Handle allocating multiple jagged array dimensions at once |
669 | if (dwNumArgs > 1) |
670 | { |
671 | PTRARRAYREF outerArray = (PTRARRAYREF) ObjectToOBJECTREF((Object *) orArray); |
672 | GCPROTECT_BEGIN(outerArray); |
673 | |
674 | // Turn off GC stress, it is of little value here |
675 | { |
676 | GCStressPolicy::InhibitHolder iholder; |
677 | |
678 | // Allocate dwProvidedBounds arrays |
679 | if (!pArrayMT->GetApproxArrayElementTypeHandle().IsArray()) |
680 | { |
681 | orArray = NULL; |
682 | } |
683 | else |
684 | { |
685 | // Since we're about to *really* recurse, probe for stack. |
686 | // @todo: is the default amount really correct? |
687 | _ASSERTE(GetThread()); |
688 | INTERIOR_STACK_PROBE(GetThread()); |
689 | |
690 | TypeHandle subArrayType = pArrayMT->GetApproxArrayElementTypeHandle(); |
691 | for (UINT32 i = 0; i < cElements; i++) |
692 | { |
693 | OBJECTREF obj = AllocateArrayEx(subArrayType, &pArgs[1], dwNumArgs-1, bAllocateInLargeHeap DEBUG_ARG(bDontSetAppDomain)); |
694 | outerArray->SetAt(i, obj); |
695 | } |
696 | |
697 | iholder.Release(); |
698 | |
699 | END_INTERIOR_STACK_PROBE |
700 | |
701 | orArray = (ArrayBase *) OBJECTREFToObject(outerArray); |
702 | } |
703 | } // GcStressPolicy::~InhibitHolder() |
704 | |
705 | GCPROTECT_END(); |
706 | } |
707 | } |
708 | |
709 | return ObjectToOBJECTREF((Object *) orArray); |
710 | } |
711 | |
712 | /* |
713 | * Allocates a single dimensional array of primitive types. |
714 | */ |
715 | OBJECTREF AllocatePrimitiveArray(CorElementType type, DWORD cElements, BOOL bAllocateInLargeHeap) |
716 | { |
717 | CONTRACTL |
718 | { |
719 | THROWS; |
720 | GC_TRIGGERS; |
721 | INJECT_FAULT(COMPlusThrowOM()); |
722 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
723 | } |
724 | CONTRACTL_END |
725 | |
726 | |
727 | // Allocating simple primite arrays is done in various places as internal storage. |
728 | // Because this is unlikely to result in any bad recursions, we will override the type limit |
729 | // here rather forever chase down all the callers. |
730 | OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED); |
731 | |
732 | _ASSERTE(CorTypeInfo::IsPrimitiveType(type)); |
733 | |
734 | // Fetch the proper array type |
735 | if (g_pPredefinedArrayTypes[type] == NULL) |
736 | { |
737 | TypeHandle elemType = TypeHandle(MscorlibBinder::GetElementType(type)); |
738 | TypeHandle typHnd = ClassLoader::LoadArrayTypeThrowing(elemType, ELEMENT_TYPE_SZARRAY, 0); |
739 | g_pPredefinedArrayTypes[type] = typHnd.AsArray(); |
740 | } |
741 | return FastAllocatePrimitiveArray(g_pPredefinedArrayTypes[type]->GetMethodTable(), cElements, bAllocateInLargeHeap); |
742 | } |
743 | |
744 | /* |
745 | * Allocates a single dimensional array of primitive types. |
746 | */ |
747 | |
748 | OBJECTREF FastAllocatePrimitiveArray(MethodTable* pMT, DWORD cElements, BOOL bAllocateInLargeHeap) |
749 | { |
750 | CONTRACTL { |
751 | THROWS; |
752 | GC_TRIGGERS; |
753 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
754 | PRECONDITION(pMT->CheckInstanceActivated()); |
755 | } CONTRACTL_END; |
756 | |
757 | #ifdef _DEBUG |
758 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
759 | { |
760 | char *a = new char; |
761 | delete a; |
762 | } |
763 | #endif |
764 | |
765 | _ASSERTE(pMT && pMT->IsArray()); |
766 | _ASSERTE(pMT->IsRestored_NoLogging()); |
767 | _ASSERTE(CorTypeInfo::IsPrimitiveType(pMT->GetArrayElementType()) && |
768 | g_pPredefinedArrayTypes[pMT->GetArrayElementType()] != NULL); |
769 | |
770 | g_IBCLogger.LogMethodTableAccess(pMT); |
771 | SetTypeHandleOnThreadForAlloc(TypeHandle(pMT)); |
772 | |
773 | SIZE_T componentSize = pMT->GetComponentSize(); |
774 | if (cElements > MaxArrayLength(componentSize)) |
775 | ThrowOutOfMemory(); |
776 | |
777 | S_SIZE_T safeTotalSize = S_SIZE_T(cElements) * S_SIZE_T(componentSize) + S_SIZE_T(pMT->GetBaseSize()); |
778 | if (safeTotalSize.IsOverflow()) |
779 | ThrowOutOfMemory(); |
780 | |
781 | size_t totalSize = safeTotalSize.Value(); |
782 | |
783 | BOOL bPublish = bAllocateInLargeHeap; |
784 | |
785 | ArrayBase* orObject; |
786 | if (bAllocateInLargeHeap) |
787 | { |
788 | orObject = (ArrayBase*) AllocLHeap(totalSize, FALSE, FALSE); |
789 | } |
790 | else |
791 | { |
792 | ArrayTypeDesc *pArrayR8TypeDesc = g_pPredefinedArrayTypes[ELEMENT_TYPE_R8]; |
793 | if (DATA_ALIGNMENT < sizeof(double) && pArrayR8TypeDesc != NULL && pMT == pArrayR8TypeDesc->GetMethodTable() && |
794 | (totalSize < g_pConfig->GetGCLOHThreshold() - MIN_OBJECT_SIZE)) |
795 | { |
796 | // Creation of an array of doubles, not in the large object heap. |
797 | // We want to align the doubles to 8 byte boundaries, but the GC gives us pointers aligned |
798 | // to 4 bytes only (on 32 bit platforms). To align, we ask for 12 bytes more to fill with a |
799 | // dummy object. |
800 | // If the GC gives us a 8 byte aligned address, we use it for the array and place the dummy |
801 | // object after the array, otherwise we put the dummy object first, shifting the base of |
802 | // the array to an 8 byte aligned address. |
803 | // Note: on 64 bit platforms, the GC always returns 8 byte aligned addresses, and we don't |
804 | // execute this code because DATA_ALIGNMENT < sizeof(double) is false. |
805 | |
806 | _ASSERTE(DATA_ALIGNMENT == sizeof(double)/2); |
807 | _ASSERTE((MIN_OBJECT_SIZE % sizeof(double)) == DATA_ALIGNMENT); // used to change alignment |
808 | _ASSERTE(pMT->GetComponentSize() == sizeof(double)); |
809 | _ASSERTE(g_pObjectClass->GetBaseSize() == MIN_OBJECT_SIZE); |
810 | _ASSERTE(totalSize < totalSize + MIN_OBJECT_SIZE); |
811 | orObject = (ArrayBase*) Alloc(totalSize + MIN_OBJECT_SIZE, FALSE, FALSE); |
812 | |
813 | Object *orDummyObject; |
814 | if((size_t)orObject % sizeof(double)) |
815 | { |
816 | orDummyObject = orObject; |
817 | orObject = (ArrayBase*) ((size_t)orObject + MIN_OBJECT_SIZE); |
818 | } |
819 | else |
820 | { |
821 | orDummyObject = (Object*) ((size_t)orObject + totalSize); |
822 | } |
823 | _ASSERTE(((size_t)orObject % sizeof(double)) == 0); |
824 | orDummyObject->SetMethodTable(g_pObjectClass); |
825 | } |
826 | else |
827 | { |
828 | orObject = (ArrayBase*) Alloc(totalSize, FALSE, FALSE); |
829 | bPublish = (totalSize >= g_pConfig->GetGCLOHThreshold()); |
830 | } |
831 | } |
832 | |
833 | // Initialize Object |
834 | orObject->SetArrayMethodTable( pMT ); |
835 | _ASSERTE(orObject->GetMethodTable() != NULL); |
836 | orObject->m_NumComponents = cElements; |
837 | |
838 | if (bPublish) |
839 | { |
840 | GCHeapUtilities::GetGCHeap()->PublishObject((BYTE*)orObject); |
841 | } |
842 | |
843 | // Notify the profiler of the allocation |
844 | if (TrackAllocations()) |
845 | { |
846 | OBJECTREF objref = ObjectToOBJECTREF((Object*)orObject); |
847 | GCPROTECT_BEGIN(objref); |
848 | ProfilerObjectAllocatedCallback(objref, (ClassID) orObject->GetTypeHandle().AsPtr()); |
849 | GCPROTECT_END(); |
850 | |
851 | orObject = (ArrayBase *) OBJECTREFToObject(objref); |
852 | } |
853 | |
854 | #ifdef FEATURE_EVENT_TRACE |
855 | // Send ETW event for allocation |
856 | if(ETW::TypeSystemLog::IsHeapAllocEventEnabled()) |
857 | { |
858 | ETW::TypeSystemLog::SendObjectAllocatedEvent(orObject); |
859 | } |
860 | #endif // FEATURE_EVENT_TRACE |
861 | |
862 | // IBC Log MethodTable access |
863 | g_IBCLogger.LogMethodTableAccess(pMT); |
864 | |
865 | LogAlloc(totalSize, pMT, orObject); |
866 | |
867 | return( ObjectToOBJECTREF((Object*)orObject) ); |
868 | } |
869 | |
870 | // |
871 | // Allocate an array which is the same size as pRef. However, do not zero out the array. |
872 | // |
873 | OBJECTREF DupArrayForCloning(BASEARRAYREF pRef, BOOL bAllocateInLargeHeap) |
874 | { |
875 | CONTRACTL { |
876 | THROWS; |
877 | GC_TRIGGERS; |
878 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
879 | } CONTRACTL_END; |
880 | |
881 | ArrayTypeDesc arrayType(pRef->GetMethodTable(), pRef->GetArrayElementTypeHandle()); |
882 | unsigned rank = arrayType.GetRank(); |
883 | |
884 | DWORD numArgs = rank*2; |
885 | INT32* args = (INT32*) _alloca(sizeof(INT32)*numArgs); |
886 | |
887 | if (arrayType.GetInternalCorElementType() == ELEMENT_TYPE_ARRAY) |
888 | { |
889 | const INT32* bounds = pRef->GetBoundsPtr(); |
890 | const INT32* lowerBounds = pRef->GetLowerBoundsPtr(); |
891 | for(unsigned int i=0; i < rank; i++) |
892 | { |
893 | args[2*i] = lowerBounds[i]; |
894 | args[2*i+1] = bounds[i]; |
895 | } |
896 | } |
897 | else |
898 | { |
899 | numArgs = 1; |
900 | args[0] = pRef->GetNumComponents(); |
901 | } |
902 | return AllocateArrayEx(TypeHandle(&arrayType), args, numArgs, bAllocateInLargeHeap DEBUG_ARG(FALSE)); |
903 | } |
904 | |
905 | #if defined(_TARGET_X86_) |
906 | |
907 | // The fast version always allocates in the normal heap |
908 | OBJECTREF AllocatePrimitiveArray(CorElementType type, DWORD cElements) |
909 | { |
910 | CONTRACTL { |
911 | THROWS; |
912 | GC_TRIGGERS; |
913 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
914 | } CONTRACTL_END; |
915 | |
916 | #ifdef _DEBUG |
917 | // fastPrimitiveArrayAllocator is called by VM and managed code. If called from managed code, we |
918 | // make sure that the thread is in SOTolerantState. |
919 | #ifdef FEATURE_STACK_PROBE |
920 | Thread::DisableSOCheckInHCALL disableSOCheckInHCALL; |
921 | #endif // FEATURE_STACK_PROBE |
922 | #endif // _DEBUG |
923 | return OBJECTREF( HCCALL2(fastPrimitiveArrayAllocator, type, cElements) ); |
924 | } |
925 | |
926 | // The fast version always allocates in the normal heap |
927 | OBJECTREF AllocateObjectArray(DWORD cElements, TypeHandle ElementType) |
928 | { |
929 | CONTRACTL { |
930 | THROWS; |
931 | GC_TRIGGERS; |
932 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
933 | } CONTRACTL_END; |
934 | |
935 | |
936 | OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED); |
937 | |
938 | // We must call this here to ensure the typehandle for this object is |
939 | // interned before the object is allocated. As soon as the object is allocated, |
940 | // the profiler could do a heapwalk and it expects to find an interned |
941 | // typehandle for every object in the heap. |
942 | TypeHandle ArrayType = ClassLoader::LoadArrayTypeThrowing(ElementType); |
943 | |
944 | #ifdef _DEBUG |
945 | // fastObjectArrayAllocator is called by VM and managed code. If called from managed code, we |
946 | // make sure that the thread is in SOTolerantState. |
947 | #ifdef FEATURE_STACK_PROBE |
948 | Thread::DisableSOCheckInHCALL disableSOCheckInHCALL; |
949 | #endif // FEATURE_STACK_PROBE |
950 | #endif // _DEBUG |
951 | return OBJECTREF( HCCALL2(fastObjectArrayAllocator, ArrayType.AsArray()->GetTemplateMethodTable(), cElements)); |
952 | } |
953 | |
954 | STRINGREF AllocateString( DWORD cchStringLength ) |
955 | { |
956 | CONTRACTL { |
957 | THROWS; |
958 | GC_TRIGGERS; |
959 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
960 | } CONTRACTL_END; |
961 | |
962 | #ifdef _DEBUG |
963 | // fastStringAllocator is called by VM and managed code. If called from managed code, we |
964 | // make sure that the thread is in SOTolerantState. |
965 | #ifdef FEATURE_STACK_PROBE |
966 | Thread::DisableSOCheckInHCALL disableSOCheckInHCALL; |
967 | #endif // FEATURE_STACK_PROBE |
968 | #endif // _DEBUG |
969 | return STRINGREF(HCCALL1(fastStringAllocator, cchStringLength)); |
970 | } |
971 | |
972 | #endif |
973 | |
974 | // |
975 | // Helper for parts of the EE which are allocating arrays |
976 | // |
977 | OBJECTREF AllocateObjectArray(DWORD cElements, TypeHandle elementType, BOOL bAllocateInLargeHeap) |
978 | { |
979 | CONTRACTL { |
980 | THROWS; |
981 | GC_TRIGGERS; |
982 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
983 | } CONTRACTL_END; |
984 | |
985 | OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED); |
986 | |
987 | // The object array class is loaded at startup. |
988 | _ASSERTE(g_pPredefinedArrayTypes[ELEMENT_TYPE_OBJECT] != NULL); |
989 | |
990 | #ifdef _DEBUG |
991 | ArrayTypeDesc arrayType(g_pPredefinedArrayTypes[ELEMENT_TYPE_OBJECT]->GetMethodTable(), elementType); |
992 | _ASSERTE(arrayType.GetRank() == 1); |
993 | _ASSERTE(arrayType.GetInternalCorElementType() == ELEMENT_TYPE_SZARRAY); |
994 | #endif //_DEBUG |
995 | |
996 | return AllocateArrayEx(ClassLoader::LoadArrayTypeThrowing(elementType), |
997 | (INT32 *)(&cElements), |
998 | 1, |
999 | bAllocateInLargeHeap |
1000 | DEBUG_ARG(FALSE)); |
1001 | } |
1002 | |
1003 | |
1004 | STRINGREF SlowAllocateString( DWORD cchStringLength ) |
1005 | { |
1006 | CONTRACTL { |
1007 | THROWS; |
1008 | GC_TRIGGERS; |
1009 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
1010 | } CONTRACTL_END; |
1011 | |
1012 | StringObject *orObject = NULL; |
1013 | |
1014 | #ifdef _DEBUG |
1015 | if (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP)) |
1016 | { |
1017 | char *a = new char; |
1018 | delete a; |
1019 | } |
1020 | #endif |
1021 | |
1022 | // Limit the maximum string size to <2GB to mitigate risk of security issues caused by 32-bit integer |
1023 | // overflows in buffer size calculations. |
1024 | if (cchStringLength > 0x3FFFFFDF) |
1025 | ThrowOutOfMemory(); |
1026 | |
1027 | SIZE_T ObjectSize = PtrAlign(StringObject::GetSize(cchStringLength)); |
1028 | _ASSERTE(ObjectSize > cchStringLength); |
1029 | |
1030 | SetTypeHandleOnThreadForAlloc(TypeHandle(g_pStringClass)); |
1031 | |
1032 | orObject = (StringObject *)Alloc( ObjectSize, FALSE, FALSE ); |
1033 | |
1034 | // Object is zero-init already |
1035 | _ASSERTE( orObject->HasEmptySyncBlockInfo() ); |
1036 | |
1037 | // Initialize Object |
1038 | //<TODO>@TODO need to build a LARGE g_pStringMethodTable before</TODO> |
1039 | orObject->SetMethodTable( g_pStringClass ); |
1040 | orObject->SetStringLength( cchStringLength ); |
1041 | |
1042 | if (ObjectSize >= g_pConfig->GetGCLOHThreshold()) |
1043 | { |
1044 | GCHeapUtilities::GetGCHeap()->PublishObject((BYTE*)orObject); |
1045 | } |
1046 | |
1047 | // Notify the profiler of the allocation |
1048 | if (TrackAllocations()) |
1049 | { |
1050 | OBJECTREF objref = ObjectToOBJECTREF((Object*)orObject); |
1051 | GCPROTECT_BEGIN(objref); |
1052 | ProfilerObjectAllocatedCallback(objref, (ClassID) orObject->GetTypeHandle().AsPtr()); |
1053 | GCPROTECT_END(); |
1054 | |
1055 | orObject = (StringObject *) OBJECTREFToObject(objref); |
1056 | } |
1057 | |
1058 | #ifdef FEATURE_EVENT_TRACE |
1059 | // Send ETW event for allocation |
1060 | if(ETW::TypeSystemLog::IsHeapAllocEventEnabled()) |
1061 | { |
1062 | ETW::TypeSystemLog::SendObjectAllocatedEvent(orObject); |
1063 | } |
1064 | #endif // FEATURE_EVENT_TRACE |
1065 | |
1066 | LogAlloc(ObjectSize, g_pStringClass, orObject); |
1067 | |
1068 | return( ObjectToSTRINGREF(orObject) ); |
1069 | } |
1070 | |
1071 | #ifdef FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
1072 | // OBJECTREF AllocateComClassObject(ComClassFactory* pComClsFac) |
1073 | void AllocateComClassObject(ComClassFactory* pComClsFac, OBJECTREF* ppRefClass) |
1074 | { |
1075 | CONTRACTL { |
1076 | THROWS; |
1077 | GC_TRIGGERS; |
1078 | MODE_COOPERATIVE; // returns an objref (out param) without pinning it => cooperative |
1079 | PRECONDITION(CheckPointer(pComClsFac)); |
1080 | PRECONDITION(CheckPointer(ppRefClass)); |
1081 | } CONTRACTL_END; |
1082 | |
1083 | // Create a COM+ Class object. |
1084 | MethodTable *pMT = g_pRuntimeTypeClass; |
1085 | _ASSERTE(pMT != NULL); |
1086 | *ppRefClass= AllocateObject(pMT); |
1087 | |
1088 | if (*ppRefClass != NULL) |
1089 | { |
1090 | SyncBlock* pSyncBlock = (*((REFLECTCLASSBASEREF*) ppRefClass))->GetSyncBlock(); |
1091 | |
1092 | // <TODO> This needs to support a COM version of ReflectClass. Right now we |
1093 | // still work as we used to <darylo> </TODO> |
1094 | MethodTable* pComMT = g_pBaseCOMObject; |
1095 | _ASSERTE(pComMT != NULL); |
1096 | |
1097 | // class for ComObject |
1098 | (*((REFLECTCLASSBASEREF*) ppRefClass))->SetType(TypeHandle(pComMT)); |
1099 | |
1100 | pSyncBlock->GetInteropInfo()->SetComClassFactory(pComClsFac); |
1101 | } |
1102 | } |
1103 | #endif // FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
1104 | |
1105 | // AllocateObject will throw OutOfMemoryException so don't need to check |
1106 | // for NULL return value from it. |
1107 | OBJECTREF AllocateObject(MethodTable *pMT |
1108 | #ifdef FEATURE_COMINTEROP |
1109 | , bool fHandleCom |
1110 | #endif |
1111 | ) |
1112 | { |
1113 | CONTRACTL { |
1114 | THROWS; |
1115 | GC_TRIGGERS; |
1116 | MODE_COOPERATIVE; // returns an objref without pinning it => cooperative |
1117 | PRECONDITION(CheckPointer(pMT)); |
1118 | PRECONDITION(pMT->CheckInstanceActivated()); |
1119 | } CONTRACTL_END; |
1120 | |
1121 | Object *orObject = NULL; |
1122 | // use unchecked oref here to avoid triggering assert in Validate that the AD is |
1123 | // not set becuase it isn't until near the end of the fcn at which point we can allow |
1124 | // the check. |
1125 | _UNCHECKED_OBJECTREF oref; |
1126 | |
1127 | g_IBCLogger.LogMethodTableAccess(pMT); |
1128 | SetTypeHandleOnThreadForAlloc(TypeHandle(pMT)); |
1129 | |
1130 | |
1131 | #ifdef FEATURE_COMINTEROP |
1132 | #ifdef FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
1133 | if (fHandleCom && pMT->IsComObjectType() && !pMT->IsWinRTObjectType()) |
1134 | { |
1135 | // Create a instance of __ComObject here is not allowed as we don't know what COM object to create |
1136 | if (pMT == g_pBaseCOMObject) |
1137 | COMPlusThrow(kInvalidComObjectException, IDS_EE_NO_BACKING_CLASS_FACTORY); |
1138 | |
1139 | oref = OBJECTREF_TO_UNCHECKED_OBJECTREF(AllocateComObject_ForManaged(pMT)); |
1140 | } |
1141 | else |
1142 | #endif // FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
1143 | #endif // FEATURE_COMINTEROP |
1144 | { |
1145 | DWORD baseSize = pMT->GetBaseSize(); |
1146 | |
1147 | #ifdef FEATURE_64BIT_ALIGNMENT |
1148 | if (pMT->RequiresAlign8()) |
1149 | { |
1150 | // The last argument to the allocation, indicates whether the alignment should be "biased". This |
1151 | // means that the object is allocated so that its header lies exactly between two 8-byte |
1152 | // boundaries. This is required in cases where we need to mis-align the header in order to align |
1153 | // the actual payload. Currently this is false for classes (where we apply padding to ensure the |
1154 | // first field is aligned relative to the header) and true for boxed value types (where we can't |
1155 | // do the same padding without introducing more complexity in type layout and unboxing stubs). |
1156 | _ASSERTE(sizeof(Object) == 4); |
1157 | orObject = (Object *) AllocAlign8(baseSize, |
1158 | pMT->HasFinalizer(), |
1159 | pMT->ContainsPointers(), |
1160 | pMT->IsValueType()); |
1161 | } |
1162 | else |
1163 | #endif // FEATURE_64BIT_ALIGNMENT |
1164 | { |
1165 | orObject = (Object *) Alloc(baseSize, |
1166 | pMT->HasFinalizer(), |
1167 | pMT->ContainsPointers()); |
1168 | } |
1169 | |
1170 | // verify zero'd memory (at least for sync block) |
1171 | _ASSERTE( orObject->HasEmptySyncBlockInfo() ); |
1172 | |
1173 | if ((baseSize >= g_pConfig->GetGCLOHThreshold())) |
1174 | { |
1175 | orObject->SetMethodTableForLargeObject(pMT); |
1176 | GCHeapUtilities::GetGCHeap()->PublishObject((BYTE*)orObject); |
1177 | } |
1178 | else |
1179 | { |
1180 | orObject->SetMethodTable(pMT); |
1181 | } |
1182 | |
1183 | if (pMT->HasFinalizer()) |
1184 | orObject->SetAppDomain(); |
1185 | |
1186 | // Notify the profiler of the allocation |
1187 | if (TrackAllocations()) |
1188 | { |
1189 | OBJECTREF objref = ObjectToOBJECTREF((Object*)orObject); |
1190 | GCPROTECT_BEGIN(objref); |
1191 | ProfilerObjectAllocatedCallback(objref, (ClassID) orObject->GetTypeHandle().AsPtr()); |
1192 | GCPROTECT_END(); |
1193 | |
1194 | orObject = (Object *) OBJECTREFToObject(objref); |
1195 | } |
1196 | |
1197 | #ifdef FEATURE_EVENT_TRACE |
1198 | // Send ETW event for allocation |
1199 | if(ETW::TypeSystemLog::IsHeapAllocEventEnabled()) |
1200 | { |
1201 | ETW::TypeSystemLog::SendObjectAllocatedEvent(orObject); |
1202 | } |
1203 | #endif // FEATURE_EVENT_TRACE |
1204 | |
1205 | LogAlloc(pMT->GetBaseSize(), pMT, orObject); |
1206 | |
1207 | oref = OBJECTREF_TO_UNCHECKED_OBJECTREF(orObject); |
1208 | } |
1209 | |
1210 | return UNCHECKED_OBJECTREF_TO_OBJECTREF(oref); |
1211 | } |
1212 | |
1213 | //======================================================================== |
1214 | // |
1215 | // WRITE BARRIER HELPERS |
1216 | // |
1217 | //======================================================================== |
1218 | |
1219 | |
1220 | #define card_byte(addr) (((size_t)(addr)) >> card_byte_shift) |
1221 | #define card_bit(addr) (1 << ((((size_t)(addr)) >> (card_byte_shift - 3)) & 7)) |
1222 | |
1223 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
1224 | #define card_bundle_byte(addr) (((size_t)(addr)) >> card_bundle_byte_shift) |
1225 | |
1226 | static void SetCardBundleByte(BYTE* addr) |
1227 | { |
1228 | BYTE* cbByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_bundle_table) + card_bundle_byte(addr); |
1229 | if (*cbByte != 0xFF) |
1230 | { |
1231 | *cbByte = 0xFF; |
1232 | } |
1233 | } |
1234 | #endif |
1235 | |
1236 | #ifdef FEATURE_USE_ASM_GC_WRITE_BARRIERS |
1237 | |
1238 | // implemented in assembly |
1239 | // extern "C" HCIMPL2_RAW(VOID, JIT_CheckedWriteBarrier, Object **dst, Object *refUNSAFE) |
1240 | // extern "C" HCIMPL2_RAW(VOID, JIT_WriteBarrier, Object **dst, Object *refUNSAFE) |
1241 | |
1242 | #else // FEATURE_USE_ASM_GC_WRITE_BARRIERS |
1243 | |
1244 | // NOTE: non-ASM write barriers only work with Workstation GC. |
1245 | |
1246 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1247 | static UINT64 CheckedBarrierCount = 0; |
1248 | static UINT64 CheckedBarrierRetBufCount = 0; |
1249 | static UINT64 CheckedBarrierByrefArgCount = 0; |
1250 | static UINT64 CheckedBarrierByrefOtherLocalCount = 0; |
1251 | static UINT64 CheckedBarrierAddrOfLocalCount = 0; |
1252 | static UINT64 UncheckedBarrierCount = 0; |
1253 | static UINT64 CheckedAfterHeapFilter = 0; |
1254 | static UINT64 CheckedAfterRefInEphemFilter = 0; |
1255 | static UINT64 CheckedAfterAlreadyDirtyFilter = 0; |
1256 | static UINT64 CheckedDestInEphem = 0; |
1257 | static UINT64 UncheckedAfterRefInEphemFilter = 0; |
1258 | static UINT64 UncheckedAfterAlreadyDirtyFilter = 0; |
1259 | static UINT64 UncheckedDestInEphem = 0; |
1260 | |
1261 | const unsigned BarrierCountPrintInterval = 1000000; |
1262 | static unsigned CheckedBarrierInterval = BarrierCountPrintInterval; |
1263 | static unsigned UncheckedBarrierInterval = BarrierCountPrintInterval; |
1264 | |
1265 | |
1266 | void IncCheckedBarrierCount() |
1267 | { |
1268 | ++CheckedBarrierCount; |
1269 | if (--CheckedBarrierInterval == 0) |
1270 | { |
1271 | CheckedBarrierInterval = BarrierCountPrintInterval; |
1272 | printf("GC write barrier counts: checked = %lld, unchecked = %lld, total = %lld.\n" , |
1273 | CheckedBarrierCount, UncheckedBarrierCount, (CheckedBarrierCount + UncheckedBarrierCount)); |
1274 | printf(" [Checked: %lld after heap check, %lld after ephem check, %lld after already dirty check.]\n" , |
1275 | CheckedAfterHeapFilter, CheckedAfterRefInEphemFilter, CheckedAfterAlreadyDirtyFilter); |
1276 | printf(" [Unchecked: %lld after ephem check, %lld after already dirty check.]\n" , |
1277 | UncheckedAfterRefInEphemFilter, UncheckedAfterAlreadyDirtyFilter); |
1278 | printf(" [Dest in ephem: checked = %lld, unchecked = %lld.]\n" , |
1279 | CheckedDestInEphem, UncheckedDestInEphem); |
1280 | printf(" [Checked: %lld are stores to fields of ret buff, %lld via byref args,\n" , |
1281 | CheckedBarrierRetBufCount, CheckedBarrierByrefArgCount); |
1282 | printf(" %lld via other locals, %lld via addr of local.]\n" , |
1283 | CheckedBarrierByrefOtherLocalCount, CheckedBarrierAddrOfLocalCount); |
1284 | } |
1285 | } |
1286 | |
1287 | void IncUncheckedBarrierCount() |
1288 | { |
1289 | ++UncheckedBarrierCount; |
1290 | if (--UncheckedBarrierInterval == 0) |
1291 | { |
1292 | printf("GC write barrier counts: checked = %lld, unchecked = %lld, total = %lld.\n" , |
1293 | CheckedBarrierCount, UncheckedBarrierCount, (CheckedBarrierCount + UncheckedBarrierCount)); |
1294 | UncheckedBarrierInterval = BarrierCountPrintInterval; |
1295 | } |
1296 | } |
1297 | #endif // FEATURE_COUNT_GC_WRITE_BARRIERS |
1298 | |
1299 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1300 | // (We ignore the advice below on using a _RAW macro for this performance diagnostic mode, which need not function properly in |
1301 | // all situations...) |
1302 | extern "C" HCIMPL3(VOID, JIT_CheckedWriteBarrier, Object **dst, Object *ref, CheckedWriteBarrierKinds kind) |
1303 | #else |
1304 | |
1305 | // This function is a JIT helper, but it must NOT use HCIMPL2 because it |
1306 | // modifies Thread state that will not be restored if an exception occurs |
1307 | // inside of memset. A normal EH unwind will not occur. |
1308 | extern "C" HCIMPL2_RAW(VOID, JIT_CheckedWriteBarrier, Object **dst, Object *ref) |
1309 | #endif |
1310 | { |
1311 | // Must use static contract here, because if an AV occurs, a normal EH |
1312 | // unwind will not occur, and destructors will not run. |
1313 | STATIC_CONTRACT_MODE_COOPERATIVE; |
1314 | STATIC_CONTRACT_THROWS; |
1315 | STATIC_CONTRACT_GC_NOTRIGGER; |
1316 | |
1317 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1318 | IncCheckedBarrierCount(); |
1319 | switch (kind) |
1320 | { |
1321 | case CWBKind_RetBuf: |
1322 | CheckedBarrierRetBufCount++; |
1323 | break; |
1324 | case CWBKind_ByRefArg: |
1325 | CheckedBarrierByrefArgCount++; |
1326 | break; |
1327 | case CWBKind_OtherByRefLocal: |
1328 | CheckedBarrierByrefOtherLocalCount++; |
1329 | break; |
1330 | case CWBKind_AddrOfLocal: |
1331 | CheckedBarrierAddrOfLocalCount++; |
1332 | break; |
1333 | case CWBKind_Unclassified: |
1334 | break; |
1335 | default: |
1336 | // It should be some member of the enumeration. |
1337 | _ASSERTE_ALL_BUILDS(__FILE__, false); |
1338 | break; |
1339 | } |
1340 | #endif // FEATURE_COUNT_GC_WRITE_BARRIERS |
1341 | |
1342 | // no HELPER_METHOD_FRAME because we are MODE_COOPERATIVE, GC_NOTRIGGER |
1343 | |
1344 | *dst = ref; |
1345 | |
1346 | // if the dst is outside of the heap (unboxed value classes) then we |
1347 | // simply exit |
1348 | if (((BYTE*)dst < g_lowest_address) || ((BYTE*)dst >= g_highest_address)) |
1349 | return; |
1350 | |
1351 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1352 | CheckedAfterHeapFilter++; |
1353 | #endif |
1354 | |
1355 | #ifdef WRITE_BARRIER_CHECK |
1356 | updateGCShadow(dst, ref); // support debugging write barrier |
1357 | #endif |
1358 | |
1359 | #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
1360 | if (GCHeapUtilities::SoftwareWriteWatchIsEnabled()) |
1361 | { |
1362 | GCHeapUtilities::SoftwareWriteWatchSetDirty(dst, sizeof(*dst)); |
1363 | } |
1364 | #endif // FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
1365 | |
1366 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1367 | if((BYTE*) dst >= g_ephemeral_low && (BYTE*) dst < g_ephemeral_high) |
1368 | { |
1369 | CheckedDestInEphem++; |
1370 | } |
1371 | #endif |
1372 | if((BYTE*) ref >= g_ephemeral_low && (BYTE*) ref < g_ephemeral_high) |
1373 | { |
1374 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1375 | CheckedAfterRefInEphemFilter++; |
1376 | #endif |
1377 | // VolatileLoadWithoutBarrier() is used here to prevent fetch of g_card_table from being reordered |
1378 | // with g_lowest/highest_address check above. See comment in code:gc_heap::grow_brick_card_tables. |
1379 | BYTE* pCardByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_table) + card_byte((BYTE *)dst); |
1380 | if(*pCardByte != 0xFF) |
1381 | { |
1382 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1383 | CheckedAfterAlreadyDirtyFilter++; |
1384 | #endif |
1385 | *pCardByte = 0xFF; |
1386 | |
1387 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
1388 | SetCardBundleByte((BYTE*)dst); |
1389 | #endif |
1390 | } |
1391 | } |
1392 | } |
1393 | HCIMPLEND_RAW |
1394 | |
1395 | // This function is a JIT helper, but it must NOT use HCIMPL2 because it |
1396 | // modifies Thread state that will not be restored if an exception occurs |
1397 | // inside of memset. A normal EH unwind will not occur. |
1398 | extern "C" HCIMPL2_RAW(VOID, JIT_WriteBarrier, Object **dst, Object *ref) |
1399 | { |
1400 | // Must use static contract here, because if an AV occurs, a normal EH |
1401 | // unwind will not occur, and destructors will not run. |
1402 | STATIC_CONTRACT_MODE_COOPERATIVE; |
1403 | STATIC_CONTRACT_THROWS; |
1404 | STATIC_CONTRACT_GC_NOTRIGGER; |
1405 | |
1406 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1407 | IncUncheckedBarrierCount(); |
1408 | #endif |
1409 | // no HELPER_METHOD_FRAME because we are MODE_COOPERATIVE, GC_NOTRIGGER |
1410 | |
1411 | *dst = ref; |
1412 | |
1413 | // If the store above succeeded, "dst" should be in the heap. |
1414 | assert(GCHeapUtilities::GetGCHeap()->IsHeapPointer((void*)dst)); |
1415 | |
1416 | #ifdef WRITE_BARRIER_CHECK |
1417 | updateGCShadow(dst, ref); // support debugging write barrier |
1418 | #endif |
1419 | |
1420 | #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
1421 | if (GCHeapUtilities::SoftwareWriteWatchIsEnabled()) |
1422 | { |
1423 | GCHeapUtilities::SoftwareWriteWatchSetDirty(dst, sizeof(*dst)); |
1424 | } |
1425 | #endif // FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
1426 | |
1427 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1428 | if((BYTE*) dst >= g_ephemeral_low && (BYTE*) dst < g_ephemeral_high) |
1429 | { |
1430 | UncheckedDestInEphem++; |
1431 | } |
1432 | #endif |
1433 | if((BYTE*) ref >= g_ephemeral_low && (BYTE*) ref < g_ephemeral_high) |
1434 | { |
1435 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1436 | UncheckedAfterRefInEphemFilter++; |
1437 | #endif |
1438 | BYTE* pCardByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_table) + card_byte((BYTE *)dst); |
1439 | if(*pCardByte != 0xFF) |
1440 | { |
1441 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
1442 | UncheckedAfterAlreadyDirtyFilter++; |
1443 | #endif |
1444 | *pCardByte = 0xFF; |
1445 | |
1446 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
1447 | SetCardBundleByte((BYTE*)dst); |
1448 | #endif |
1449 | |
1450 | } |
1451 | } |
1452 | } |
1453 | HCIMPLEND_RAW |
1454 | |
1455 | #endif // FEATURE_USE_ASM_GC_WRITE_BARRIERS |
1456 | |
1457 | extern "C" HCIMPL2_RAW(VOID, JIT_WriteBarrierEnsureNonHeapTarget, Object **dst, Object *ref) |
1458 | { |
1459 | // Must use static contract here, because if an AV occurs, a normal EH |
1460 | // unwind will not occur, and destructors will not run. |
1461 | STATIC_CONTRACT_MODE_COOPERATIVE; |
1462 | STATIC_CONTRACT_THROWS; |
1463 | STATIC_CONTRACT_GC_NOTRIGGER; |
1464 | |
1465 | assert(!GCHeapUtilities::GetGCHeap()->IsHeapPointer((void*)dst)); |
1466 | |
1467 | // no HELPER_METHOD_FRAME because we are MODE_COOPERATIVE, GC_NOTRIGGER |
1468 | |
1469 | *dst = ref; |
1470 | } |
1471 | HCIMPLEND_RAW |
1472 | |
1473 | // This function sets the card table with the granularity of 1 byte, to avoid ghost updates |
1474 | // that could occur if multiple threads were trying to set different bits in the same card. |
1475 | |
1476 | #include <optsmallperfcritical.h> |
1477 | void ErectWriteBarrier(OBJECTREF *dst, OBJECTREF ref) |
1478 | { |
1479 | STATIC_CONTRACT_MODE_COOPERATIVE; |
1480 | STATIC_CONTRACT_NOTHROW; |
1481 | STATIC_CONTRACT_GC_NOTRIGGER; |
1482 | STATIC_CONTRACT_SO_TOLERANT; |
1483 | |
1484 | // if the dst is outside of the heap (unboxed value classes) then we |
1485 | // simply exit |
1486 | if (((BYTE*)dst < g_lowest_address) || ((BYTE*)dst >= g_highest_address)) |
1487 | return; |
1488 | |
1489 | #ifdef WRITE_BARRIER_CHECK |
1490 | updateGCShadow((Object**) dst, OBJECTREFToObject(ref)); // support debugging write barrier |
1491 | #endif |
1492 | |
1493 | #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
1494 | if (GCHeapUtilities::SoftwareWriteWatchIsEnabled()) |
1495 | { |
1496 | GCHeapUtilities::SoftwareWriteWatchSetDirty(dst, sizeof(*dst)); |
1497 | } |
1498 | #endif // FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
1499 | |
1500 | if ((BYTE*) OBJECTREFToObject(ref) >= g_ephemeral_low && (BYTE*) OBJECTREFToObject(ref) < g_ephemeral_high) |
1501 | { |
1502 | // VolatileLoadWithoutBarrier() is used here to prevent fetch of g_card_table from being reordered |
1503 | // with g_lowest/highest_address check above. See comment in code:gc_heap::grow_brick_card_tables. |
1504 | BYTE* pCardByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_table) + card_byte((BYTE *)dst); |
1505 | if (*pCardByte != 0xFF) |
1506 | { |
1507 | *pCardByte = 0xFF; |
1508 | |
1509 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
1510 | SetCardBundleByte((BYTE*)dst); |
1511 | #endif |
1512 | |
1513 | } |
1514 | } |
1515 | } |
1516 | #include <optdefault.h> |
1517 | |
1518 | void ErectWriteBarrierForMT(MethodTable **dst, MethodTable *ref) |
1519 | { |
1520 | STATIC_CONTRACT_MODE_COOPERATIVE; |
1521 | STATIC_CONTRACT_NOTHROW; |
1522 | STATIC_CONTRACT_GC_NOTRIGGER; |
1523 | STATIC_CONTRACT_SO_TOLERANT; |
1524 | |
1525 | *dst = ref; |
1526 | |
1527 | #ifdef WRITE_BARRIER_CHECK |
1528 | updateGCShadow((Object **)dst, (Object *)ref); // support debugging write barrier, updateGCShadow only cares that these are pointers |
1529 | #endif |
1530 | |
1531 | if (ref->Collectible()) |
1532 | { |
1533 | #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
1534 | if (GCHeapUtilities::SoftwareWriteWatchIsEnabled()) |
1535 | { |
1536 | GCHeapUtilities::SoftwareWriteWatchSetDirty(dst, sizeof(*dst)); |
1537 | } |
1538 | |
1539 | #endif // FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP |
1540 | |
1541 | BYTE *refObject = *(BYTE **)((MethodTable*)ref)->GetLoaderAllocatorObjectHandle(); |
1542 | if((BYTE*) refObject >= g_ephemeral_low && (BYTE*) refObject < g_ephemeral_high) |
1543 | { |
1544 | // See comment above |
1545 | BYTE* pCardByte = (BYTE *)VolatileLoadWithoutBarrier(&g_card_table) + card_byte((BYTE *)dst); |
1546 | if( !((*pCardByte) & card_bit((BYTE *)dst)) ) |
1547 | { |
1548 | *pCardByte = 0xFF; |
1549 | |
1550 | #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES |
1551 | SetCardBundleByte((BYTE*)dst); |
1552 | #endif |
1553 | |
1554 | } |
1555 | } |
1556 | } |
1557 | } |
1558 | |
1559 | //---------------------------------------------------------------------------- |
1560 | // |
1561 | // Write Barrier Support for bulk copy ("Clone") operations |
1562 | // |
1563 | // StartPoint is the target bulk copy start point |
1564 | // len is the length of the bulk copy (in bytes) |
1565 | // |
1566 | // |
1567 | // Performance Note: |
1568 | // |
1569 | // This is implemented somewhat "conservatively", that is we |
1570 | // assume that all the contents of the bulk copy are object |
1571 | // references. If they are not, and the value lies in the |
1572 | // ephemeral range, we will set false positives in the card table. |
1573 | // |
1574 | // We could use the pointer maps and do this more accurately if necessary |
1575 | |
1576 | #if defined(_MSC_VER) && defined(_TARGET_X86_) |
1577 | #pragma optimize("y", on) // Small critical routines, don't put in EBP frame |
1578 | #endif //_MSC_VER && _TARGET_X86_ |
1579 | |
1580 | void |
1581 | SetCardsAfterBulkCopy(Object **start, size_t len) |
1582 | { |
1583 | // If the size is smaller than a pointer, no write barrier is required. |
1584 | if (len >= sizeof(uintptr_t)) |
1585 | { |
1586 | InlinedSetCardsAfterBulkCopyHelper(start, len); |
1587 | } |
1588 | } |
1589 | |
1590 | #if defined(_MSC_VER) && defined(_TARGET_X86_) |
1591 | #pragma optimize("", on) // Go back to command line default optimizations |
1592 | #endif //_MSC_VER && _TARGET_X86_ |
1593 | |