| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | // |
| 5 | // threadsuspend.CPP |
| 6 | // |
| 7 | // This file contains the implementation of thread suspension. The implementation of thread suspension |
| 8 | // used to be spread through multiple places. That is why, many methods still live in their own homes |
| 9 | // (class Thread, class ThreadStore, etc.). They should be eventually refactored into class ThreadSuspend. |
| 10 | // |
| 11 | |
| 12 | #include "common.h" |
| 13 | |
| 14 | #include "threadsuspend.h" |
| 15 | |
| 16 | #include "finalizerthread.h" |
| 17 | #include "dbginterface.h" |
| 18 | |
| 19 | #include "mdaassistants.h" |
| 20 | |
| 21 | // from ntstatus.h |
| 22 | #define STATUS_SUSPEND_COUNT_EXCEEDED ((NTSTATUS)0xC000004AL) |
| 23 | |
| 24 | #define HIJACK_NONINTERRUPTIBLE_THREADS |
| 25 | |
| 26 | bool ThreadSuspend::s_fSuspendRuntimeInProgress = false; |
| 27 | |
| 28 | CLREvent* ThreadSuspend::g_pGCSuspendEvent = NULL; |
| 29 | |
| 30 | ThreadSuspend::SUSPEND_REASON ThreadSuspend::m_suspendReason; |
| 31 | Thread* ThreadSuspend::m_pThreadAttemptingSuspendForGC; |
| 32 | |
| 33 | CLREventBase * ThreadSuspend::s_hAbortEvt = NULL; |
| 34 | CLREventBase * ThreadSuspend::s_hAbortEvtCache = NULL; |
| 35 | |
| 36 | // If you add any thread redirection function, make sure the debugger can 1) recognize the redirection |
| 37 | // function, and 2) retrieve the original CONTEXT. See code:Debugger.InitializeHijackFunctionAddress and |
| 38 | // code:DacDbiInterfaceImpl.RetrieveHijackedContext. |
| 39 | extern "C" void RedirectedHandledJITCaseForGCThreadControl_Stub(void); |
| 40 | extern "C" void RedirectedHandledJITCaseForDbgThreadControl_Stub(void); |
| 41 | extern "C" void RedirectedHandledJITCaseForUserSuspend_Stub(void); |
| 42 | |
| 43 | #define GetRedirectHandlerForGCThreadControl() \ |
| 44 | ((PFN_REDIRECTTARGET) GetEEFuncEntryPoint(RedirectedHandledJITCaseForGCThreadControl_Stub)) |
| 45 | #define GetRedirectHandlerForDbgThreadControl() \ |
| 46 | ((PFN_REDIRECTTARGET) GetEEFuncEntryPoint(RedirectedHandledJITCaseForDbgThreadControl_Stub)) |
| 47 | #define GetRedirectHandlerForUserSuspend() \ |
| 48 | ((PFN_REDIRECTTARGET) GetEEFuncEntryPoint(RedirectedHandledJITCaseForUserSuspend_Stub)) |
| 49 | |
| 50 | #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 51 | #if defined(HAVE_GCCOVER) && defined(USE_REDIRECT_FOR_GCSTRESS) // GCCOVER |
| 52 | extern "C" void RedirectedHandledJITCaseForGCStress_Stub(void); |
| 53 | #define GetRedirectHandlerForGCStress() \ |
| 54 | ((PFN_REDIRECTTARGET) GetEEFuncEntryPoint(RedirectedHandledJITCaseForGCStress_Stub)) |
| 55 | #endif // HAVE_GCCOVER && USE_REDIRECT_FOR_GCSTRESS |
| 56 | #endif // _TARGET_AMD64_ || _TARGET_ARM_ |
| 57 | |
| 58 | |
| 59 | // Every PING_JIT_TIMEOUT ms, check to see if a thread in JITted code has wandered |
| 60 | // into some fully interruptible code (or should have a different hijack to improve |
| 61 | // our chances of snagging it at a safe spot). |
| 62 | #define PING_JIT_TIMEOUT 10 |
| 63 | |
| 64 | // When we find a thread in a spot that's not safe to abort -- how long to wait before |
| 65 | // we try again. |
| 66 | #define ABORT_POLL_TIMEOUT 10 |
| 67 | #ifdef _DEBUG |
| 68 | #define ABORT_FAIL_TIMEOUT 40000 |
| 69 | #endif // _DEBUG |
| 70 | |
| 71 | // |
| 72 | // CANNOT USE IsBad*Ptr() methods here. They are *banned* APIs because of various |
| 73 | // reasons (see http://winweb/wincet/bannedapis.htm). |
| 74 | // |
| 75 | #define IS_VALID_WRITE_PTR(addr, size) _ASSERTE(addr != NULL) |
| 76 | #define IS_VALID_CODE_PTR(addr) _ASSERTE(addr != NULL) |
| 77 | |
| 78 | |
| 79 | void ThreadSuspend::SetSuspendRuntimeInProgress() |
| 80 | { |
| 81 | LIMITED_METHOD_CONTRACT; |
| 82 | _ASSERTE(ThreadStore::HoldingThreadStore() || IsAtProcessExit()); |
| 83 | _ASSERTE(!s_fSuspendRuntimeInProgress || IsAtProcessExit()); |
| 84 | s_fSuspendRuntimeInProgress = true; |
| 85 | } |
| 86 | |
| 87 | void ThreadSuspend::ResetSuspendRuntimeInProgress() |
| 88 | { |
| 89 | LIMITED_METHOD_CONTRACT; |
| 90 | _ASSERTE(ThreadStore::HoldingThreadStore() || IsAtProcessExit()); |
| 91 | _ASSERTE(s_fSuspendRuntimeInProgress || IsAtProcessExit()); |
| 92 | s_fSuspendRuntimeInProgress = false; |
| 93 | } |
| 94 | |
| 95 | |
| 96 | // When SuspendThread returns, target thread may still be executing user code. |
| 97 | // We can not access data, e.g. m_fPreemptiveGCDisabled, changed by target thread. |
| 98 | // But our code depends on reading these data. To make this operation safe, we |
| 99 | // call GetThreadContext which returns only after target thread does not execute |
| 100 | // any user code. |
| 101 | |
| 102 | // Message from David Cutler |
| 103 | /* |
| 104 | After SuspendThread returns, can the suspended thread continue to execute code in user mode? |
| 105 | |
| 106 | [David Cutler] The suspended thread cannot execute any more user code, but it might be currently "running" |
| 107 | on a logical processor whose other logical processor is currently actually executing another thread. |
| 108 | In this case the target thread will not suspend until the hardware switches back to executing instructions |
| 109 | on its logical processor. In this case even the memory barrier would not necessarily work - a better solution |
| 110 | would be to use interlocked operations on the variable itself. |
| 111 | |
| 112 | After SuspendThread returns, does the store buffer of the CPU for the suspended thread still need to drain? |
| 113 | |
| 114 | Historically, we've assumed that the answer to both questions is No. But on one 4/8 hyper-threaded machine |
| 115 | running Win2K3 SP1 build 1421, we've seen two stress failures where SuspendThread returns while writes seem to still be in flight. |
| 116 | |
| 117 | Usually after we suspend a thread, we then call GetThreadContext. This seems to guarantee consistency. |
| 118 | But there are places we would like to avoid GetThreadContext, if it's safe and legal. |
| 119 | |
| 120 | [David Cutler] Get context delivers a APC to the target thread and waits on an event that will be set |
| 121 | when the target thread has delivered its context. |
| 122 | |
| 123 | Chris. |
| 124 | */ |
| 125 | |
| 126 | // Message from Neill Clift |
| 127 | /* |
| 128 | What SuspendThread does is insert an APC block into a target thread and request an inter-processor interrupt to |
| 129 | do the APC interrupt. It doesn't wait till the thread actually enters some state or the interrupt has been serviced. |
| 130 | |
| 131 | I took a quick look at the APIC spec in the Intel manuals this morning. Writing to the APIC posts a message on a bus. |
| 132 | Processors accept messages and presumably queue the s/w interrupts at this time. We don't wait for this acceptance |
| 133 | when we send the IPI so at least on APIC machines when you suspend a thread it continues to execute code for some short time |
| 134 | after the routine returns. We use other mechanisms for IPI and so it could work differently on different h/w. |
| 135 | |
| 136 | */ |
| 137 | BOOL EnsureThreadIsSuspended (HANDLE hThread, Thread* pThread) |
| 138 | { |
| 139 | STATIC_CONTRACT_NOTHROW; |
| 140 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 141 | |
| 142 | WRAPPER_NO_CONTRACT; |
| 143 | |
| 144 | CONTEXT ctx; |
| 145 | ctx.ContextFlags = CONTEXT_INTEGER; |
| 146 | |
| 147 | BOOL ret; |
| 148 | ret = ::GetThreadContext(hThread, &ctx); |
| 149 | return ret; |
| 150 | } |
| 151 | |
| 152 | FORCEINLINE VOID MyEnterLogLock() |
| 153 | { |
| 154 | EnterLogLock(); |
| 155 | } |
| 156 | FORCEINLINE VOID MyLeaveLogLock() |
| 157 | { |
| 158 | LeaveLogLock(); |
| 159 | } |
| 160 | |
| 161 | // On non-Windows CORECLR platforms remove Thread::SuspendThread support |
| 162 | #ifndef DISABLE_THREADSUSPEND |
| 163 | // SuspendThread |
| 164 | // Attempts to OS-suspend the thread, whichever GC mode it is in. |
| 165 | // Arguments: |
| 166 | // fOneTryOnly - If TRUE, report failure if the thread has its |
| 167 | // m_dwForbidSuspendThread flag set. If FALSE, retry. |
| 168 | // pdwSuspendCount - If non-NULL, will contain the return code |
| 169 | // of the underlying OS SuspendThread call on success, |
| 170 | // undefined on any kind of failure. |
| 171 | // Return value: |
| 172 | // A SuspendThreadResult value indicating success or failure. |
| 173 | Thread::SuspendThreadResult Thread::SuspendThread(BOOL fOneTryOnly, DWORD *pdwSuspendCount) |
| 174 | { |
| 175 | CONTRACTL { |
| 176 | NOTHROW; |
| 177 | GC_NOTRIGGER; |
| 178 | } |
| 179 | CONTRACTL_END; |
| 180 | |
| 181 | #ifdef STRESS_LOG |
| 182 | if (StressLog::StressLogOn((unsigned int)-1, 0)) |
| 183 | { |
| 184 | // Make sure to create the stress log for the current thread |
| 185 | // (if needed) before we suspend the target thread. The target |
| 186 | // thread may be holding the stress log lock when we suspend it, |
| 187 | // which could cause a deadlock. |
| 188 | if (StressLog::CreateThreadStressLog() == NULL) |
| 189 | { |
| 190 | return STR_NoStressLog; |
| 191 | } |
| 192 | } |
| 193 | #endif |
| 194 | |
| 195 | Volatile<HANDLE> hThread; |
| 196 | SuspendThreadResult str = (SuspendThreadResult) -1; |
| 197 | DWORD dwSuspendCount = 0; |
| 198 | DWORD tries = 1; |
| 199 | #if defined(_DEBUG) |
| 200 | int nCnt = 0; |
| 201 | bool bDiagSuspend = g_pConfig->GetDiagnosticSuspend(); |
| 202 | ULONGLONG i64TimestampStart = CLRGetTickCount64(); |
| 203 | ULONGLONG i64TimestampCur = i64TimestampStart; |
| 204 | ULONGLONG i64TimestampPrev = i64TimestampStart; |
| 205 | |
| 206 | // This is the max allowed timestamp ticks to transpire from beginning of |
| 207 | // our attempt to suspend the thread, before we'll assert (implying we believe |
| 208 | // there might be a deadlock) - (default = 2000). |
| 209 | ULONGLONG i64TimestampTicksMax = g_pConfig->SuspendThreadDeadlockTimeoutMs(); |
| 210 | #endif // _DEBUG |
| 211 | |
| 212 | #if defined(_DEBUG) |
| 213 | // Stop the stress log from allocating any new memory while in this function |
| 214 | // as that can lead to deadlocks |
| 215 | CantAllocHolder hldrCantAlloc; |
| 216 | #endif |
| 217 | |
| 218 | DWORD dwSwitchCount = 0; |
| 219 | |
| 220 | while (TRUE) { |
| 221 | StateHolder<MyEnterLogLock, MyLeaveLogLock> LogLockHolder(FALSE); |
| 222 | |
| 223 | CounterHolder handleHolder(&m_dwThreadHandleBeingUsed); |
| 224 | |
| 225 | // Whether or not "goto retry" should YieldProcessor and __SwitchToThread |
| 226 | BOOL doSwitchToThread = TRUE; |
| 227 | |
| 228 | hThread = GetThreadHandle(); |
| 229 | if (hThread == INVALID_HANDLE_VALUE) { |
| 230 | str = STR_UnstartedOrDead; |
| 231 | break; |
| 232 | } |
| 233 | else if (hThread == SWITCHOUT_HANDLE_VALUE) { |
| 234 | str = STR_SwitchedOut; |
| 235 | break; |
| 236 | } |
| 237 | |
| 238 | { |
| 239 | // We do not want to suspend the target thread while it is holding the log lock. |
| 240 | // By acquiring the lock ourselves, we know that this is not the case. |
| 241 | LogLockHolder.Acquire(); |
| 242 | |
| 243 | // It is important to avoid two threads suspending each other. |
| 244 | // Before a thread suspends another, it increments its own m_dwForbidSuspendThread count first, |
| 245 | // then it checks the target thread's m_dwForbidSuspendThread. |
| 246 | ForbidSuspendThreadHolder forbidSuspend; |
| 247 | if ((m_dwForbidSuspendThread != 0)) |
| 248 | { |
| 249 | #if defined(_DEBUG) |
| 250 | // Enable the diagnostic ::SuspendThread() if the |
| 251 | // DiagnosticSuspend config setting is set. |
| 252 | // This will interfere with the mutual suspend race but it's |
| 253 | // here only for diagnostic purposes anyway |
| 254 | if (!bDiagSuspend) |
| 255 | #endif // _DEBUG |
| 256 | goto retry; |
| 257 | } |
| 258 | |
| 259 | dwSuspendCount = ::SuspendThread(hThread); |
| 260 | |
| 261 | // |
| 262 | // Since SuspendThread is asynchronous, we now must wait for the thread to |
| 263 | // actually be suspended before decrementing our own m_dwForbidSuspendThread count. |
| 264 | // Otherwise there would still be a chance for the "suspended" thread to suspend us |
| 265 | // before it really stops running. |
| 266 | // |
| 267 | if ((int)dwSuspendCount >= 0) |
| 268 | { |
| 269 | if (!EnsureThreadIsSuspended(hThread, this)) |
| 270 | { |
| 271 | ::ResumeThread(hThread); |
| 272 | str = STR_Failure; |
| 273 | break; |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | if ((int)dwSuspendCount >= 0) |
| 278 | { |
| 279 | if (hThread == GetThreadHandle()) |
| 280 | { |
| 281 | if (m_dwForbidSuspendThread != 0) |
| 282 | { |
| 283 | #if defined(_DEBUG) |
| 284 | // Log diagnostic below 8 times during the i64TimestampTicksMax period |
| 285 | if (i64TimestampCur-i64TimestampStart >= nCnt*(i64TimestampTicksMax>>3) ) |
| 286 | { |
| 287 | CONTEXT ctx; |
| 288 | SetIP(&ctx, -1); |
| 289 | ctx.ContextFlags = CONTEXT_CONTROL; |
| 290 | this->GetThreadContext(&ctx); |
| 291 | STRESS_LOG7(LF_SYNC, LL_INFO1000, |
| 292 | "Thread::SuspendThread[%p]: EIP=%p. nCnt=%d. result=%d.\n" |
| 293 | "\t\t\t\t\t\t\t\t\t forbidSuspend=%d. coop=%d. state=%x.\n" , |
| 294 | this, GetIP(&ctx), nCnt, dwSuspendCount, |
| 295 | (LONG)this->m_dwForbidSuspendThread, (ULONG)this->m_fPreemptiveGCDisabled, this->GetSnapshotState()); |
| 296 | |
| 297 | // Enable a preemptive assert in diagnostic mode: before we |
| 298 | // resume the target thread to get its current state in the debugger |
| 299 | if (bDiagSuspend) |
| 300 | { |
| 301 | // triggered after 6 * 250msec |
| 302 | _ASSERTE(nCnt < 6 && "Timing out in Thread::SuspendThread" ); |
| 303 | } |
| 304 | |
| 305 | ++nCnt; |
| 306 | } |
| 307 | #endif // _DEBUG |
| 308 | ::ResumeThread(hThread); |
| 309 | |
| 310 | #if defined(_DEBUG) |
| 311 | // If the suspend diagnostics are enabled we need to spin here in order to avoid |
| 312 | // the case where we Suspend/Resume the target thread without giving it a chance to run. |
| 313 | if ((!fOneTryOnly) && bDiagSuspend) |
| 314 | { |
| 315 | while ( m_dwForbidSuspendThread != 0 && |
| 316 | CLRGetTickCount64()-i64TimestampStart < nCnt*(i64TimestampTicksMax>>3) ) |
| 317 | { |
| 318 | if (g_SystemInfo.dwNumberOfProcessors > 1) |
| 319 | { |
| 320 | if ((tries++) % 20 != 0) |
| 321 | { |
| 322 | YieldProcessor(); // play nice on hyperthreaded CPUs |
| 323 | } else { |
| 324 | __SwitchToThread(0, ++dwSwitchCount); |
| 325 | } |
| 326 | } |
| 327 | else |
| 328 | { |
| 329 | __SwitchToThread(0, ++dwSwitchCount); // don't spin on uniproc machines |
| 330 | } |
| 331 | } |
| 332 | } |
| 333 | #endif // _DEBUG |
| 334 | goto retry; |
| 335 | } |
| 336 | // We suspend the right thread |
| 337 | #ifdef _DEBUG |
| 338 | Thread * pCurThread = GetThread(); |
| 339 | if (pCurThread != NULL) |
| 340 | { |
| 341 | pCurThread->dbg_m_cSuspendedThreads ++; |
| 342 | _ASSERTE(pCurThread->dbg_m_cSuspendedThreads > 0); |
| 343 | } |
| 344 | #endif |
| 345 | IncCantAllocCount(); |
| 346 | |
| 347 | m_ThreadHandleForResume = hThread; |
| 348 | str = STR_Success; |
| 349 | break; |
| 350 | } |
| 351 | else |
| 352 | { |
| 353 | // A thread was switch out but in again. |
| 354 | // We suspend a wrong thread. |
| 355 | ::ResumeThread(hThread); |
| 356 | doSwitchToThread = FALSE; |
| 357 | goto retry; |
| 358 | } |
| 359 | } |
| 360 | else { |
| 361 | // We can get here either SuspendThread fails |
| 362 | // Or the fiber thread dies after this fiber switched out. |
| 363 | |
| 364 | if ((int)dwSuspendCount != -1) { |
| 365 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "In Thread::SuspendThread ::SuspendThread returned %x\n" , dwSuspendCount); |
| 366 | } |
| 367 | if (GetThreadHandle() == SWITCHOUT_HANDLE_VALUE) { |
| 368 | str = STR_SwitchedOut; |
| 369 | break; |
| 370 | } |
| 371 | else { |
| 372 | // Our callers generally expect that STR_Failure means that |
| 373 | // the thread has exited. |
| 374 | #ifndef FEATURE_PAL |
| 375 | _ASSERTE(NtCurrentTeb()->LastStatusValue != STATUS_SUSPEND_COUNT_EXCEEDED); |
| 376 | #endif // !FEATURE_PAL |
| 377 | str = STR_Failure; |
| 378 | break; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | retry: |
| 383 | handleHolder.Release(); |
| 384 | LogLockHolder.Release(); |
| 385 | |
| 386 | if (fOneTryOnly) |
| 387 | { |
| 388 | str = STR_Forbidden; |
| 389 | break; |
| 390 | } |
| 391 | |
| 392 | #if defined(_DEBUG) |
| 393 | i64TimestampPrev = i64TimestampCur; |
| 394 | i64TimestampCur = CLRGetTickCount64(); |
| 395 | // CLRGetTickCount64() is global per machine (not per CPU, like getTimeStamp()). |
| 396 | // Next ASSERT states that CLRGetTickCount64() is increasing, or has wrapped. |
| 397 | // If it wrapped, the last iteration should have executed faster then 0.5 seconds. |
| 398 | _ASSERTE(i64TimestampCur >= i64TimestampPrev || i64TimestampCur <= 500); |
| 399 | |
| 400 | if (i64TimestampCur - i64TimestampStart >= i64TimestampTicksMax) |
| 401 | { |
| 402 | dwSuspendCount = ::SuspendThread(hThread); |
| 403 | _ASSERTE(!"It takes too long to suspend a thread" ); |
| 404 | if ((int)dwSuspendCount >= 0) |
| 405 | ::ResumeThread(hThread); |
| 406 | } |
| 407 | #endif // _DEBUG |
| 408 | |
| 409 | if (doSwitchToThread) |
| 410 | { |
| 411 | // When looking for deadlocks we need to allow the target thread to run in order to make some progress. |
| 412 | // On multi processor machines we saw the suspending thread resuming immediately after the __SwitchToThread() |
| 413 | // because it has another few processors available. As a consequence the target thread was being Resumed and |
| 414 | // Suspended right away, w/o a real chance to make any progress. |
| 415 | if (g_SystemInfo.dwNumberOfProcessors > 1) |
| 416 | { |
| 417 | if ((tries++) % 20 != 0) { |
| 418 | YieldProcessor(); // play nice on hyperthreaded CPUs |
| 419 | } else { |
| 420 | __SwitchToThread(0, ++dwSwitchCount); |
| 421 | } |
| 422 | } |
| 423 | else |
| 424 | { |
| 425 | __SwitchToThread(0, ++dwSwitchCount); // don't spin on uniproc machines |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | } |
| 430 | |
| 431 | #ifdef PROFILING_SUPPORTED |
| 432 | { |
| 433 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 434 | if (str == STR_Success) |
| 435 | { |
| 436 | g_profControlBlock.pProfInterface->RuntimeThreadSuspended((ThreadID)this); |
| 437 | } |
| 438 | END_PIN_PROFILER(); |
| 439 | } |
| 440 | #endif // PROFILING_SUPPORTED |
| 441 | |
| 442 | if (pdwSuspendCount != NULL) |
| 443 | { |
| 444 | *pdwSuspendCount = dwSuspendCount; |
| 445 | } |
| 446 | _ASSERTE(str != (SuspendThreadResult) -1); |
| 447 | return str; |
| 448 | |
| 449 | } |
| 450 | #endif // DISABLE_THREADSUSPEND |
| 451 | |
| 452 | // On non-Windows CORECLR platforms remove Thread::ResumeThread support |
| 453 | #ifndef DISABLE_THREADSUSPEND |
| 454 | DWORD Thread::ResumeThread() |
| 455 | { |
| 456 | CONTRACTL |
| 457 | { |
| 458 | NOTHROW; |
| 459 | GC_NOTRIGGER; |
| 460 | SO_TOLERANT; |
| 461 | MODE_ANY; |
| 462 | } |
| 463 | CONTRACTL_END; |
| 464 | |
| 465 | _ASSERTE (m_ThreadHandleForResume != INVALID_HANDLE_VALUE); |
| 466 | |
| 467 | _ASSERTE (GetThreadHandle() != SWITCHOUT_HANDLE_VALUE); |
| 468 | |
| 469 | //DWORD res = ::ResumeThread(GetThreadHandle()); |
| 470 | DWORD res = ::ResumeThread(m_ThreadHandleForResume); |
| 471 | _ASSERTE (res != 0 && "Thread is not previously suspended" ); |
| 472 | #ifdef _DEBUG_IMPL |
| 473 | _ASSERTE (!m_Creater.IsCurrentThread()); |
| 474 | if ((res != (DWORD)-1) && (res != 0)) |
| 475 | { |
| 476 | Thread * pCurThread = GetThread(); |
| 477 | if (pCurThread != NULL) |
| 478 | { |
| 479 | _ASSERTE(pCurThread->dbg_m_cSuspendedThreads > 0); |
| 480 | pCurThread->dbg_m_cSuspendedThreads --; |
| 481 | _ASSERTE(pCurThread->dbg_m_cSuspendedThreadsWithoutOSLock <= pCurThread->dbg_m_cSuspendedThreads); |
| 482 | } |
| 483 | } |
| 484 | #endif |
| 485 | if (res != (DWORD) -1 && res != 0) |
| 486 | { |
| 487 | DecCantAllocCount(); |
| 488 | } |
| 489 | #ifdef PROFILING_SUPPORTED |
| 490 | { |
| 491 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 492 | if ((res != 0) && (res != (DWORD)-1)) |
| 493 | { |
| 494 | g_profControlBlock.pProfInterface->RuntimeThreadResumed((ThreadID)this); |
| 495 | } |
| 496 | END_PIN_PROFILER(); |
| 497 | } |
| 498 | #endif |
| 499 | return res; |
| 500 | |
| 501 | } |
| 502 | #endif // DISABLE_THREADSUSPEND |
| 503 | |
| 504 | #ifdef _DEBUG |
| 505 | void* forceStackA; |
| 506 | |
| 507 | // CheckSuspended |
| 508 | // Checks whether the given thread is currently suspended. |
| 509 | // Note that if we cannot determine the true suspension status |
| 510 | // of the thread, we succeed. Intended to be used in asserts |
| 511 | // in operations that require the target thread to be suspended. |
| 512 | // Arguments: |
| 513 | // pThread - The thread to examine. |
| 514 | // Return value: |
| 515 | // FALSE, if the thread is definitely not suspended. |
| 516 | // TRUE, otherwise. |
| 517 | static inline BOOL CheckSuspended(Thread *pThread) |
| 518 | { |
| 519 | CONTRACTL |
| 520 | { |
| 521 | NOTHROW; |
| 522 | GC_NOTRIGGER; |
| 523 | DEBUG_ONLY; |
| 524 | } |
| 525 | CONTRACTL_END; |
| 526 | |
| 527 | _ASSERTE(GetThread() != pThread); |
| 528 | _ASSERTE(CheckPointer(pThread)); |
| 529 | |
| 530 | #ifndef DISABLE_THREADSUSPEND |
| 531 | // Only perform this test if we're allowed to call back into the host. |
| 532 | // Thread::SuspendThread contains several potential calls into the host. |
| 533 | if (CanThisThreadCallIntoHost()) |
| 534 | { |
| 535 | DWORD dwSuspendCount; |
| 536 | Thread::SuspendThreadResult str = pThread->SuspendThread(FALSE, &dwSuspendCount); |
| 537 | forceStackA = &dwSuspendCount; |
| 538 | if (str == Thread::STR_Success) |
| 539 | { |
| 540 | pThread->ResumeThread(); |
| 541 | return dwSuspendCount >= 1; |
| 542 | } |
| 543 | } |
| 544 | #endif // !DISABLE_THREADSUSPEND |
| 545 | return TRUE; |
| 546 | } |
| 547 | #endif //_DEBUG |
| 548 | |
| 549 | BOOL EEGetThreadContext(Thread *pThread, CONTEXT *pContext) |
| 550 | { |
| 551 | CONTRACTL { |
| 552 | NOTHROW; |
| 553 | GC_NOTRIGGER; |
| 554 | } |
| 555 | CONTRACTL_END; |
| 556 | |
| 557 | _ASSERTE(CheckSuspended(pThread)); |
| 558 | |
| 559 | BOOL ret = pThread->GetThreadContext(pContext); |
| 560 | |
| 561 | STRESS_LOG6(LF_SYNC, LL_INFO1000, "Got thread context ret = %d EIP = %p ESP = %p EBP = %p, pThread = %p, ContextFlags = 0x%x\n" , |
| 562 | ret, GetIP(pContext), GetSP(pContext), GetFP(pContext), pThread, pContext->ContextFlags); |
| 563 | |
| 564 | return ret; |
| 565 | |
| 566 | } |
| 567 | |
| 568 | BOOL EESetThreadContext(Thread *pThread, const CONTEXT *pContext) |
| 569 | { |
| 570 | CONTRACTL { |
| 571 | NOTHROW; |
| 572 | GC_NOTRIGGER; |
| 573 | } |
| 574 | CONTRACTL_END; |
| 575 | |
| 576 | #ifdef _TARGET_X86_ |
| 577 | _ASSERTE(CheckSuspended(pThread)); |
| 578 | #endif |
| 579 | |
| 580 | BOOL ret = pThread->SetThreadContext(pContext); |
| 581 | |
| 582 | STRESS_LOG6(LF_SYNC, LL_INFO1000, "Set thread context ret = %d EIP = %p ESP = %p EBP = %p, pThread = %p, ContextFlags = 0x%x\n" , |
| 583 | ret, GetIP((CONTEXT*)pContext), GetSP((CONTEXT*)pContext), GetFP((CONTEXT*)pContext), pThread, pContext->ContextFlags); |
| 584 | |
| 585 | return ret; |
| 586 | } |
| 587 | |
| 588 | // The AbortReason must be cleared at the following times: |
| 589 | // |
| 590 | // 1. When the application performs a ResetAbort. |
| 591 | // |
| 592 | // 2. When the physical thread stops running. That's because we must eliminate any |
| 593 | // cycles that would otherwise be uncollectible, between the Reason and the Thread. |
| 594 | // Nobody can retrieve the Reason after the thread stops running anyway. |
| 595 | // |
| 596 | // We don't have to do any work when the AppDomain containing the Reason object is unloaded. |
| 597 | // That's because the HANDLE is released as part of the tear-down. The 'adid' prevents us |
| 598 | // from ever using the trash handle value thereafter. |
| 599 | |
| 600 | void Thread::ClearAbortReason(BOOL pNoLock) |
| 601 | { |
| 602 | CONTRACTL |
| 603 | { |
| 604 | GC_NOTRIGGER; |
| 605 | MODE_COOPERATIVE; |
| 606 | NOTHROW; |
| 607 | } |
| 608 | CONTRACTL_END; |
| 609 | |
| 610 | OBJECTHANDLE oh; |
| 611 | ADID adid; |
| 612 | |
| 613 | if (pNoLock){ |
| 614 | // Stash the fields so we can destroy the OBJECTHANDLE if appropriate. |
| 615 | oh = m_AbortReason; |
| 616 | adid = m_AbortReasonDomainID; |
| 617 | |
| 618 | // Clear the fields. |
| 619 | m_AbortReason = 0; |
| 620 | m_AbortReasonDomainID = ADID(INVALID_APPDOMAIN_ID); |
| 621 | } |
| 622 | else |
| 623 | // Scope the lock to stashing and clearing the two fields on the Thread object. |
| 624 | { |
| 625 | // Atomically get the OBJECTHANDLE and ADID of the object, and then |
| 626 | // clear them. |
| 627 | |
| 628 | // NOTE: get the lock on this thread object, not on the executing thread. |
| 629 | Thread::AbortRequestLockHolder lock(this); |
| 630 | |
| 631 | // Stash the fields so we can destroy the OBJECTHANDLE if appropriate. |
| 632 | oh = m_AbortReason; |
| 633 | adid = m_AbortReasonDomainID; |
| 634 | |
| 635 | // Clear the fields. |
| 636 | m_AbortReason = 0; |
| 637 | m_AbortReasonDomainID = ADID(INVALID_APPDOMAIN_ID); |
| 638 | } |
| 639 | |
| 640 | // If there is an OBJECTHANDLE, try to clear it. |
| 641 | if (oh != 0 && adid.m_dwId != 0) |
| 642 | DestroyHandle(oh); |
| 643 | } |
| 644 | |
| 645 | |
| 646 | // Context passed down through a stack crawl (see code below). |
| 647 | struct StackCrawlContext |
| 648 | { |
| 649 | enum SCCType |
| 650 | { |
| 651 | SCC_CheckWithinEH = 0x00000001, |
| 652 | SCC_CheckWithinCer = 0x00000002, |
| 653 | }; |
| 654 | Thread* pAbortee; |
| 655 | int eType; |
| 656 | BOOL fUnprotectedCode; |
| 657 | BOOL fWithinEHClause; |
| 658 | BOOL fWithinCer; |
| 659 | BOOL fHasManagedCodeOnStack; |
| 660 | BOOL fWriteToStressLog; |
| 661 | |
| 662 | BOOL fHaveLatchedCF; |
| 663 | CrawlFrame LatchedCF; |
| 664 | }; |
| 665 | |
| 666 | // Crawl the stack looking for Thread Abort related information (whether we're executing inside a CER or an error handling clauses |
| 667 | // of some sort). |
| 668 | static StackWalkAction TAStackCrawlCallBackWorker(CrawlFrame* pCf, StackCrawlContext *pData) |
| 669 | { |
| 670 | CONTRACTL { |
| 671 | NOTHROW; |
| 672 | GC_NOTRIGGER; |
| 673 | } |
| 674 | CONTRACTL_END; |
| 675 | |
| 676 | _ASSERTE(pData->eType & (StackCrawlContext::SCC_CheckWithinCer | StackCrawlContext::SCC_CheckWithinEH)); |
| 677 | |
| 678 | if(pCf->IsFrameless()) |
| 679 | { |
| 680 | IJitManager* pJitManager = pCf->GetJitManager(); |
| 681 | _ASSERTE(pJitManager); |
| 682 | if (pJitManager && !pData->fHasManagedCodeOnStack) |
| 683 | { |
| 684 | pData->fHasManagedCodeOnStack = TRUE; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | // Get the method for this frame if it exists (might not be a managed method, so check the explicit frame if that's what we're |
| 689 | // looking at). |
| 690 | MethodDesc *pMD = pCf->GetFunction(); |
| 691 | Frame *pFrame = pCf->GetFrame(); |
| 692 | if (pMD == NULL && pFrame != NULL) |
| 693 | pMD = pFrame->GetFunction(); |
| 694 | |
| 695 | // Non-method frames don't interest us. |
| 696 | if (pMD == NULL) |
| 697 | return SWA_CONTINUE; |
| 698 | |
| 699 | #if defined(_DEBUG) |
| 700 | #define METHODNAME(pFunc) (pFunc?pFunc->m_pszDebugMethodName:"<n/a>") |
| 701 | #else |
| 702 | #define METHODNAME(pFunc) "<n/a>" |
| 703 | #endif |
| 704 | if (pData->fWriteToStressLog) |
| 705 | { |
| 706 | STRESS_LOG5(LF_EH, LL_INFO100, "TAStackCrawlCallBack: STACKCRAWL method:%pM ('%s'), offset %x, Frame:%p, FrameVtable = %pV\n" , |
| 707 | pMD, METHODNAME(pMD), pCf->IsFrameless()?pCf->GetRelOffset():0, pFrame, pCf->IsFrameless()?0:(*(void**)pFrame)); |
| 708 | } |
| 709 | #undef METHODNAME |
| 710 | |
| 711 | |
| 712 | // If we weren't asked about EH clauses then we can return now (stop the stack trace if we have a definitive answer on the CER |
| 713 | // question, move to the next frame otherwise). |
| 714 | if ((pData->eType & StackCrawlContext::SCC_CheckWithinEH) == 0) |
| 715 | return ((pData->fWithinCer || pData->fUnprotectedCode) && pData->fHasManagedCodeOnStack) ? SWA_ABORT : SWA_CONTINUE; |
| 716 | |
| 717 | // If we already discovered we're within an EH clause but are still processing (presumably to determine whether we're within a |
| 718 | // CER), then we can just skip to the next frame straight away. Also terminate here if the current frame is not frameless since |
| 719 | // there isn't any useful EH information for non-managed frames. |
| 720 | if (pData->fWithinEHClause || !pCf->IsFrameless()) |
| 721 | return SWA_CONTINUE; |
| 722 | |
| 723 | IJitManager* pJitManager = pCf->GetJitManager(); |
| 724 | _ASSERTE(pJitManager); |
| 725 | |
| 726 | EH_CLAUSE_ENUMERATOR pEnumState; |
| 727 | unsigned EHCount = pJitManager->InitializeEHEnumeration(pCf->GetMethodToken(), &pEnumState); |
| 728 | if (EHCount == 0) |
| 729 | // We do not have finally clause here. |
| 730 | return SWA_CONTINUE; |
| 731 | |
| 732 | DWORD offs = (DWORD)pCf->GetRelOffset(); |
| 733 | |
| 734 | if (!pCf->IsActiveFrame()) |
| 735 | { |
| 736 | // If we aren't the topmost method, then our IP is a return address and |
| 737 | // we can't use it to directly compare against the EH ranges because we |
| 738 | // may be in an cloned finally which has a call as the last instruction. |
| 739 | |
| 740 | offs--; |
| 741 | } |
| 742 | |
| 743 | if (pData->fWriteToStressLog) |
| 744 | { |
| 745 | STRESS_LOG1(LF_EH, LL_INFO100, "TAStackCrawlCallBack: STACKCRAWL Offset 0x%x V\n" , offs); |
| 746 | } |
| 747 | EE_ILEXCEPTION_CLAUSE EHClause; |
| 748 | |
| 749 | StackWalkAction action = SWA_CONTINUE; |
| 750 | #ifndef WIN64EXCEPTIONS |
| 751 | // On X86, the EH encoding for catch clause is completely mess. |
| 752 | // If catch clause is in its own basic block, the end of catch includes everything in the basic block. |
| 753 | // For nested catch, the end of catch may include several jmp instructions after JIT_EndCatch call. |
| 754 | // To better decide if we are inside a nested catch, we check if offs-1 is in more than one catch clause. |
| 755 | DWORD countInCatch = 0; |
| 756 | BOOL fAtJitEndCatch = FALSE; |
| 757 | if (pData->pAbortee == GetThread() && |
| 758 | pData->pAbortee->ThrewControlForThread() == Thread::InducedThreadRedirectAtEndOfCatch && |
| 759 | GetControlPC(pCf->GetRegisterSet()) == (PCODE)GetIP(pData->pAbortee->GetAbortContext())) |
| 760 | { |
| 761 | fAtJitEndCatch = TRUE; |
| 762 | offs -= 1; |
| 763 | } |
| 764 | #endif // !WIN64EXCEPTIONS |
| 765 | |
| 766 | for(ULONG i=0; i < EHCount; i++) |
| 767 | { |
| 768 | pJitManager->GetNextEHClause(&pEnumState, &EHClause); |
| 769 | _ASSERTE(IsValidClause(&EHClause)); |
| 770 | |
| 771 | // !!! If this function is called on Aborter thread, we should check for finally only. |
| 772 | |
| 773 | // !!! If this function is called on Aborter thread, we should check for finally only. |
| 774 | // !!! Catch and filter clause are skipped. In UserAbort, the first thing after ReadyForAbort |
| 775 | // !!! is to check if the target thread is processing exception. |
| 776 | // !!! If exception is in flight, we don't induce ThreadAbort. Instead at the end of Jit_EndCatch |
| 777 | // !!! we will handle abort. |
| 778 | if (pData->pAbortee != GetThread() && !IsFaultOrFinally(&EHClause)) |
| 779 | { |
| 780 | continue; |
| 781 | } |
| 782 | if (offs >= EHClause.HandlerStartPC && |
| 783 | offs < EHClause.HandlerEndPC) |
| 784 | { |
| 785 | #ifndef WIN64EXCEPTIONS |
| 786 | if (fAtJitEndCatch) |
| 787 | { |
| 788 | // On X86, JIT's EH info may include the instruction after JIT_EndCatch inside the same catch |
| 789 | // clause if it is in the same basic block. |
| 790 | // So for this case, the offs is in at least one catch handler, but since we are at the end of |
| 791 | // catch, this one should not be counted. |
| 792 | countInCatch ++; |
| 793 | if (countInCatch == 1) |
| 794 | { |
| 795 | continue; |
| 796 | } |
| 797 | } |
| 798 | #endif // !WIN64EXCEPTIONS |
| 799 | pData->fWithinEHClause = true; |
| 800 | // We're within an EH clause. If we're asking about CERs too then stop the stack walk if we've reached a conclusive |
| 801 | // result or continue looking otherwise. Else we can stop the stackwalk now. |
| 802 | if (pData->eType & StackCrawlContext::SCC_CheckWithinCer) |
| 803 | { |
| 804 | action = (pData->fWithinCer || pData->fUnprotectedCode) ? SWA_ABORT : SWA_CONTINUE; |
| 805 | } |
| 806 | else |
| 807 | { |
| 808 | action = SWA_ABORT; |
| 809 | } |
| 810 | break; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | #ifndef WIN64EXCEPTIONS |
| 815 | #ifdef _DEBUG |
| 816 | if (fAtJitEndCatch) |
| 817 | { |
| 818 | _ASSERTE (countInCatch > 0); |
| 819 | } |
| 820 | #endif // _DEBUG |
| 821 | #endif // !WIN64EXCEPTIONS_ |
| 822 | return action; |
| 823 | } |
| 824 | |
| 825 | // Wrapper around code:TAStackCrawlCallBackWorker that abstracts away the differences between the reporting order |
| 826 | // of x86 and 64-bit stackwalker implementations, and also deals with interop calls that have an implicit reliability |
| 827 | // contract. If a P/Invoke or CLR->COM call returns SafeHandle or CriticalHandle, the IL stub could be aborted |
| 828 | // before having a chance to store the native handle into the Safe/CriticalHandle object. Therefore such calls are |
| 829 | // treated as unbreakable by convention. |
| 830 | StackWalkAction TAStackCrawlCallBack(CrawlFrame* pCf, void* data) |
| 831 | { |
| 832 | CONTRACTL { |
| 833 | NOTHROW; |
| 834 | GC_NOTRIGGER; |
| 835 | } |
| 836 | CONTRACTL_END; |
| 837 | |
| 838 | StackCrawlContext *pData = (StackCrawlContext *)data; |
| 839 | |
| 840 | // We have the current frame in pCf and possibly one latched frame in pData->LatchedCF. This enumeration |
| 841 | // describes which of these should be passed to code:TAStackCrawlCallBackWorker and in what order. |
| 842 | enum LatchedFrameAction |
| 843 | { |
| 844 | DiscardLatchedFrame, // forget the latched frame, report the current one |
| 845 | DiscardCurrentFrame, // ignore the current frame, report the latched one |
| 846 | ProcessLatchedInOrder, // report the latched frame, then report the current frame |
| 847 | ProcessLatchedReversed, // report the current frame, then report the latched frame |
| 848 | LatchCurrentFrame // latch the current frame, don't report anything |
| 849 | } |
| 850 | frameAction = DiscardLatchedFrame; |
| 851 | |
| 852 | #ifdef _TARGET_X86_ |
| 853 | // On X86 the IL stub method is reported to us before the frame with the actual interop method. We need to |
| 854 | // swap the order because if the worker saw the IL stub - which is a CER root - first, it would terminate the |
| 855 | // stack walk and wouldn't allow the thread to be aborted, regardless of how the interop method is annotated. |
| 856 | if (pData->fHaveLatchedCF) |
| 857 | { |
| 858 | // Does the current and latched frame represent the same call? |
| 859 | if (pCf->pFrame == pData->LatchedCF.pFrame) |
| 860 | { |
| 861 | if (pData->LatchedCF.GetFunction()->AsDynamicMethodDesc()->IsUnbreakable()) |
| 862 | { |
| 863 | // Report only the latched IL stub frame which is a CER root. |
| 864 | frameAction = DiscardCurrentFrame; |
| 865 | } |
| 866 | else |
| 867 | { |
| 868 | // Report the interop method (current frame) which may be annotated, then the IL stub. |
| 869 | frameAction = ProcessLatchedReversed; |
| 870 | } |
| 871 | } |
| 872 | else |
| 873 | { |
| 874 | // The two frames are unrelated - process them in order. |
| 875 | frameAction = ProcessLatchedInOrder; |
| 876 | } |
| 877 | pData->fHaveLatchedCF = FALSE; |
| 878 | } |
| 879 | else |
| 880 | { |
| 881 | MethodDesc *pMD = pCf->GetFunction(); |
| 882 | if (pMD != NULL && pMD->IsILStub() && InlinedCallFrame::FrameHasActiveCall(pCf->pFrame)) |
| 883 | { |
| 884 | // This may be IL stub for an interesting interop call - latch it. |
| 885 | frameAction = LatchCurrentFrame; |
| 886 | } |
| 887 | } |
| 888 | #else // _TARGET_X86_ |
| 889 | // On 64-bit the IL stub method is reported after the actual interop method so we don't have to swap them. |
| 890 | // However, we still want to discard the interop method frame if the call is unbreakable by convention. |
| 891 | if (pData->fHaveLatchedCF) |
| 892 | { |
| 893 | MethodDesc *pMD = pCf->GetFunction(); |
| 894 | if (pMD != NULL && pMD->IsILStub() && |
| 895 | pData->LatchedCF.GetFrame()->GetReturnAddress() == GetControlPC(pCf->GetRegisterSet()) && |
| 896 | pMD->AsDynamicMethodDesc()->IsUnbreakable()) |
| 897 | { |
| 898 | // The current and latched frame represent the same call and the IL stub is marked as unbreakable. |
| 899 | // We will discard the interop method and report only the IL stub which is a CER root. |
| 900 | frameAction = DiscardLatchedFrame; |
| 901 | } |
| 902 | else |
| 903 | { |
| 904 | // Otherwise process the two frames in order. |
| 905 | frameAction = ProcessLatchedInOrder; |
| 906 | } |
| 907 | pData->fHaveLatchedCF = FALSE; |
| 908 | } |
| 909 | else |
| 910 | { |
| 911 | MethodDesc *pMD = pCf->GetFunction(); |
| 912 | if (pCf->GetFrame() != NULL && pMD != NULL && (pMD->IsNDirect() || pMD->IsComPlusCall())) |
| 913 | { |
| 914 | // This may be interop method of an interesting interop call - latch it. |
| 915 | frameAction = LatchCurrentFrame; |
| 916 | } |
| 917 | } |
| 918 | #endif // _TARGET_X86_ |
| 919 | |
| 920 | // Execute the "frame action". |
| 921 | StackWalkAction action; |
| 922 | switch (frameAction) |
| 923 | { |
| 924 | case DiscardLatchedFrame: |
| 925 | action = TAStackCrawlCallBackWorker(pCf, pData); |
| 926 | break; |
| 927 | |
| 928 | case DiscardCurrentFrame: |
| 929 | action = TAStackCrawlCallBackWorker(&pData->LatchedCF, pData); |
| 930 | break; |
| 931 | |
| 932 | case ProcessLatchedInOrder: |
| 933 | action = TAStackCrawlCallBackWorker(&pData->LatchedCF, pData); |
| 934 | if (action == SWA_CONTINUE) |
| 935 | action = TAStackCrawlCallBackWorker(pCf, pData); |
| 936 | break; |
| 937 | |
| 938 | case ProcessLatchedReversed: |
| 939 | action = TAStackCrawlCallBackWorker(pCf, pData); |
| 940 | if (action == SWA_CONTINUE) |
| 941 | action = TAStackCrawlCallBackWorker(&pData->LatchedCF, pData); |
| 942 | break; |
| 943 | |
| 944 | case LatchCurrentFrame: |
| 945 | pData->LatchedCF = *pCf; |
| 946 | pData->fHaveLatchedCF = TRUE; |
| 947 | action = SWA_CONTINUE; |
| 948 | break; |
| 949 | |
| 950 | default: |
| 951 | UNREACHABLE(); |
| 952 | } |
| 953 | return action; |
| 954 | } |
| 955 | |
| 956 | // Is the current thread currently executing within a constrained execution region? |
| 957 | BOOL Thread::IsExecutingWithinCer() |
| 958 | { |
| 959 | CONTRACTL |
| 960 | { |
| 961 | NOTHROW; |
| 962 | GC_NOTRIGGER; |
| 963 | } |
| 964 | CONTRACTL_END; |
| 965 | |
| 966 | if (!g_fEEStarted) |
| 967 | return FALSE; |
| 968 | |
| 969 | Thread *pThread = GetThread(); |
| 970 | _ASSERTE (pThread); |
| 971 | StackCrawlContext sContext = { pThread, |
| 972 | StackCrawlContext::SCC_CheckWithinCer, |
| 973 | FALSE, |
| 974 | FALSE, |
| 975 | FALSE, |
| 976 | FALSE, |
| 977 | FALSE, |
| 978 | FALSE}; |
| 979 | |
| 980 | pThread->StackWalkFrames(TAStackCrawlCallBack, &sContext); |
| 981 | |
| 982 | #ifdef STRESS_LOG |
| 983 | if (sContext.fWithinCer && StressLog::StressLogOn(~0u, 0)) |
| 984 | { |
| 985 | // If stress log is on, write info to stress log |
| 986 | StackCrawlContext sContext1 = { pThread, |
| 987 | StackCrawlContext::SCC_CheckWithinCer, |
| 988 | FALSE, |
| 989 | FALSE, |
| 990 | FALSE, |
| 991 | FALSE, |
| 992 | TRUE, |
| 993 | FALSE}; |
| 994 | |
| 995 | pThread->StackWalkFrames(TAStackCrawlCallBack, &sContext1); |
| 996 | } |
| 997 | #endif |
| 998 | |
| 999 | return sContext.fWithinCer; |
| 1000 | } |
| 1001 | |
| 1002 | |
| 1003 | // Context structure used during stack walks to determine whether a given method is executing within a CER. |
| 1004 | struct CerStackCrawlContext |
| 1005 | { |
| 1006 | MethodDesc *m_pStartMethod; // First method we crawl (here for debug purposes) |
| 1007 | bool m_fFirstFrame; // True for first callback only |
| 1008 | bool m_fWithinCer; // The result |
| 1009 | }; |
| 1010 | |
| 1011 | |
| 1012 | // Determine whether the method at the given depth in the thread's execution stack is executing within a CER. |
| 1013 | BOOL Thread::IsWithinCer(CrawlFrame *pCf) |
| 1014 | { |
| 1015 | CONTRACTL |
| 1016 | { |
| 1017 | NOTHROW; |
| 1018 | GC_NOTRIGGER; |
| 1019 | } |
| 1020 | CONTRACTL_END; |
| 1021 | |
| 1022 | return FALSE; |
| 1023 | } |
| 1024 | |
| 1025 | #if defined(_TARGET_AMD64_) && defined(FEATURE_HIJACK) |
| 1026 | BOOL Thread::IsSafeToInjectThreadAbort(PTR_CONTEXT pContextToCheck) |
| 1027 | { |
| 1028 | CONTRACTL |
| 1029 | { |
| 1030 | NOTHROW; |
| 1031 | GC_NOTRIGGER; |
| 1032 | MODE_ANY; |
| 1033 | PRECONDITION(pContextToCheck != NULL); |
| 1034 | } |
| 1035 | CONTRACTL_END; |
| 1036 | |
| 1037 | EECodeInfo codeInfo(GetIP(pContextToCheck)); |
| 1038 | _ASSERTE(codeInfo.IsValid()); |
| 1039 | |
| 1040 | // Check if the method uses a frame register. If it does not, then RSP will be used by the OS as the frame register |
| 1041 | // and returned as the EstablisherFrame. This is fine at any instruction in the method (including epilog) since there is always a |
| 1042 | // difference of stackslot size between the callerSP and the callee SP due to return address having been pushed on the stack. |
| 1043 | if (!codeInfo.HasFrameRegister()) |
| 1044 | { |
| 1045 | return TRUE; |
| 1046 | } |
| 1047 | |
| 1048 | BOOL fSafeToInjectThreadAbort = TRUE; |
| 1049 | |
| 1050 | if (IsIPInEpilog(pContextToCheck, &codeInfo, &fSafeToInjectThreadAbort)) |
| 1051 | { |
| 1052 | return fSafeToInjectThreadAbort; |
| 1053 | } |
| 1054 | else |
| 1055 | { |
| 1056 | return TRUE; |
| 1057 | } |
| 1058 | } |
| 1059 | #endif // defined(_TARGET_AMD64_) && defined(FEATURE_HIJACK) |
| 1060 | |
| 1061 | #ifdef _TARGET_AMD64_ |
| 1062 | // CONTEXT_CONTROL does not include any nonvolatile registers that might be the frame pointer. |
| 1063 | #define CONTEXT_MIN_STACKWALK (CONTEXT_CONTROL | CONTEXT_INTEGER) |
| 1064 | #else |
| 1065 | #define CONTEXT_MIN_STACKWALK (CONTEXT_CONTROL) |
| 1066 | #endif |
| 1067 | |
| 1068 | |
| 1069 | BOOL Thread::ReadyForAsyncException() |
| 1070 | { |
| 1071 | CONTRACTL { |
| 1072 | NOTHROW; |
| 1073 | GC_NOTRIGGER; |
| 1074 | SO_TOLERANT; |
| 1075 | } |
| 1076 | CONTRACTL_END; |
| 1077 | |
| 1078 | if (!IsAbortRequested()) |
| 1079 | { |
| 1080 | return FALSE; |
| 1081 | } |
| 1082 | |
| 1083 | if (IsAbortRequested() && HasThreadStateNC(TSNC_SOWorkNeeded)) |
| 1084 | { |
| 1085 | return TRUE; |
| 1086 | } |
| 1087 | |
| 1088 | // This needs the probe with GenerateHardSO |
| 1089 | CONTRACT_VIOLATION(SOToleranceViolation); |
| 1090 | |
| 1091 | if (GetThread() == this && HasThreadStateNC (TSNC_PreparingAbort) && !IsRudeAbort() ) |
| 1092 | { |
| 1093 | STRESS_LOG0(LF_APPDOMAIN, LL_INFO10, "in Thread::ReadyForAbort PreparingAbort\n" ); |
| 1094 | // Avoid recursive call |
| 1095 | return FALSE; |
| 1096 | } |
| 1097 | |
| 1098 | if (IsAbortPrevented()) |
| 1099 | { |
| 1100 | // |
| 1101 | // If the thread is marked to have a FuncEval abort request, then allow that to go through |
| 1102 | // since we dont want to block funcEval aborts. Such requests are initiated by the |
| 1103 | // right-side when the thread is doing funcEval and the exception would be caught in the |
| 1104 | // left-side's funcEval implementation that will then clear the funcEval-abort-state from the thread. |
| 1105 | // |
| 1106 | // If another thread also marked this one for a non-FuncEval abort, then the left-side will |
| 1107 | // proceed to [re]throw that exception post funcEval abort. When we come here next, we would follow |
| 1108 | // the usual rules to raise the exception and if raised, to prevent the abort if applicable. |
| 1109 | // |
| 1110 | if (!IsFuncEvalAbort()) |
| 1111 | { |
| 1112 | STRESS_LOG0(LF_APPDOMAIN, LL_INFO10, "in Thread::ReadyForAbort prevent abort\n" ); |
| 1113 | return FALSE; |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | // The thread requests not to be aborted. Honor this for safe abort. |
| 1118 | if (!IsRudeAbort() && IsAsyncPrevented()) |
| 1119 | { |
| 1120 | STRESS_LOG0(LF_APPDOMAIN, LL_INFO10, "in Thread::ReadyForAbort AsyncPrevented\n" ); |
| 1121 | return FALSE; |
| 1122 | } |
| 1123 | |
| 1124 | REGDISPLAY rd; |
| 1125 | |
| 1126 | Frame *pStartFrame = NULL; |
| 1127 | if (ThrewControlForThread() == Thread::InducedThreadRedirect || |
| 1128 | ThrewControlForThread() == Thread::InducedThreadRedirectAtEndOfCatch) |
| 1129 | { |
| 1130 | _ASSERTE(GetThread() == this); |
| 1131 | _ASSERTE(ExecutionManager::IsManagedCode(GetIP(m_OSContext))); |
| 1132 | FillRegDisplay(&rd, m_OSContext); |
| 1133 | |
| 1134 | if (ThrewControlForThread() == Thread::InducedThreadRedirectAtEndOfCatch) |
| 1135 | { |
| 1136 | // On 64bit, this function may be called from COMPlusCheckForAbort when |
| 1137 | // stack has not unwound, but m_OSContext points to the place after unwind. |
| 1138 | // |
| 1139 | TADDR sp = GetSP(m_OSContext); |
| 1140 | Frame *pFrameAddr = m_pFrame; |
| 1141 | while (pFrameAddr < (LPVOID)sp) |
| 1142 | { |
| 1143 | pFrameAddr = pFrameAddr->Next(); |
| 1144 | } |
| 1145 | if (pFrameAddr != m_pFrame) |
| 1146 | { |
| 1147 | pStartFrame = pFrameAddr; |
| 1148 | } |
| 1149 | } |
| 1150 | #if defined(_TARGET_AMD64_) && defined(FEATURE_HIJACK) |
| 1151 | else if (ThrewControlForThread() == Thread::InducedThreadRedirect) |
| 1152 | { |
| 1153 | if (!IsSafeToInjectThreadAbort(m_OSContext)) |
| 1154 | { |
| 1155 | STRESS_LOG0(LF_EH, LL_INFO10, "Thread::ReadyForAbort: Not injecting abort since we are at an unsafe instruction.\n" ); |
| 1156 | return FALSE; |
| 1157 | } |
| 1158 | } |
| 1159 | #endif // defined(_TARGET_AMD64_) && defined(FEATURE_HIJACK) |
| 1160 | } |
| 1161 | else |
| 1162 | { |
| 1163 | if (GetFilterContext()) |
| 1164 | { |
| 1165 | FillRegDisplay(&rd, GetFilterContext()); |
| 1166 | } |
| 1167 | else |
| 1168 | { |
| 1169 | CONTEXT ctx; |
| 1170 | SetIP(&ctx, 0); |
| 1171 | SetSP(&ctx, 0); |
| 1172 | FillRegDisplay(&rd, &ctx); |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | #ifdef STRESS_LOG |
| 1177 | REGDISPLAY rd1; |
| 1178 | if (StressLog::StressLogOn(~0u, 0)) |
| 1179 | { |
| 1180 | CONTEXT ctx1; |
| 1181 | CopyRegDisplay(&rd, &rd1, &ctx1); |
| 1182 | } |
| 1183 | #endif |
| 1184 | |
| 1185 | // Walk the stack to determine if we are running in Constrained Execution Region or finally EH clause (in the non-rude abort |
| 1186 | // case). We cannot initiate an abort in these circumstances. |
| 1187 | StackCrawlContext TAContext = |
| 1188 | { |
| 1189 | this, |
| 1190 | StackCrawlContext::SCC_CheckWithinCer | (IsRudeAbort() ? 0 : StackCrawlContext::SCC_CheckWithinEH), |
| 1191 | FALSE, |
| 1192 | FALSE, |
| 1193 | FALSE, |
| 1194 | FALSE, |
| 1195 | FALSE |
| 1196 | }; |
| 1197 | |
| 1198 | StackWalkFramesEx(&rd, TAStackCrawlCallBack, &TAContext, QUICKUNWIND, pStartFrame); |
| 1199 | |
| 1200 | if (!TAContext.fHasManagedCodeOnStack && IsAbortInitiated() && GetThread() == this) |
| 1201 | { |
| 1202 | EEResetAbort(TAR_Thread); |
| 1203 | return FALSE; |
| 1204 | } |
| 1205 | |
| 1206 | if (TAContext.fWithinCer) |
| 1207 | { |
| 1208 | STRESS_LOG0(LF_APPDOMAIN, LL_INFO10, "in Thread::ReadyForAbort RunningCer\n" ); |
| 1209 | return FALSE; |
| 1210 | } |
| 1211 | |
| 1212 | #ifdef STRESS_LOG |
| 1213 | if (StressLog::StressLogOn(~0u, 0) && |
| 1214 | (IsRudeAbort() || !TAContext.fWithinEHClause)) |
| 1215 | { |
| 1216 | //Save into stresslog. |
| 1217 | StackCrawlContext TAContext1 = |
| 1218 | { |
| 1219 | this, |
| 1220 | StackCrawlContext::SCC_CheckWithinCer | (IsRudeAbort() ? 0 : StackCrawlContext::SCC_CheckWithinEH), |
| 1221 | FALSE, |
| 1222 | FALSE, |
| 1223 | FALSE, |
| 1224 | FALSE, |
| 1225 | TRUE |
| 1226 | }; |
| 1227 | |
| 1228 | StackWalkFramesEx(&rd1, TAStackCrawlCallBack, &TAContext1, QUICKUNWIND, pStartFrame); |
| 1229 | } |
| 1230 | #endif |
| 1231 | |
| 1232 | if (IsRudeAbort()) { |
| 1233 | // If it is rude abort, there is no additional restriction on abort. |
| 1234 | STRESS_LOG0(LF_APPDOMAIN, LL_INFO10, "in Thread::ReadyForAbort RudeAbort\n" ); |
| 1235 | return TRUE; |
| 1236 | } |
| 1237 | |
| 1238 | if (TAContext.fWithinEHClause) |
| 1239 | { |
| 1240 | STRESS_LOG0(LF_APPDOMAIN, LL_INFO10, "in Thread::ReadyForAbort RunningEHClause\n" ); |
| 1241 | } |
| 1242 | |
| 1243 | //if (m_AbortType == EEPolicy::TA_V1Compatible) { |
| 1244 | // return TRUE; |
| 1245 | //} |
| 1246 | |
| 1247 | // If we are running finally, we can not abort for Safe Abort. |
| 1248 | return !TAContext.fWithinEHClause; |
| 1249 | } |
| 1250 | |
| 1251 | BOOL Thread::IsRudeAbort() |
| 1252 | { |
| 1253 | CONTRACTL { |
| 1254 | NOTHROW; |
| 1255 | GC_NOTRIGGER; |
| 1256 | SO_TOLERANT; |
| 1257 | } |
| 1258 | CONTRACTL_END; |
| 1259 | |
| 1260 | return (IsAbortRequested() && (m_AbortType == EEPolicy::TA_Rude)); |
| 1261 | } |
| 1262 | |
| 1263 | BOOL Thread::IsFuncEvalAbort() |
| 1264 | { |
| 1265 | CONTRACTL { |
| 1266 | NOTHROW; |
| 1267 | GC_NOTRIGGER; |
| 1268 | } |
| 1269 | CONTRACTL_END; |
| 1270 | |
| 1271 | return (IsAbortRequested() && (m_AbortInfo & TAI_AnyFuncEvalAbort)); |
| 1272 | } |
| 1273 | |
| 1274 | // |
| 1275 | // If the OS is down in kernel mode when we do a GetThreadContext,any |
| 1276 | // updates we make to the context will not take effect if we try to do |
| 1277 | // a SetThreadContext. As a result, newer OSes expose the idea of |
| 1278 | // "trap frame reporting" which will tell us if it is unsafe to modify |
| 1279 | // the context and pass it along to SetThreadContext. |
| 1280 | // |
| 1281 | // On OSes that support trap frame reporting, we will return FALSE if |
| 1282 | // we can determine that the OS is not in user mode. Otherwise, we |
| 1283 | // return TRUE. |
| 1284 | // |
| 1285 | BOOL Thread::IsContextSafeToRedirect(CONTEXT* pContext) |
| 1286 | { |
| 1287 | CONTRACTL |
| 1288 | { |
| 1289 | NOTHROW; |
| 1290 | GC_NOTRIGGER; |
| 1291 | MODE_ANY; |
| 1292 | } |
| 1293 | CONTRACTL_END; |
| 1294 | |
| 1295 | BOOL isSafeToRedirect = TRUE; |
| 1296 | |
| 1297 | #ifndef FEATURE_PAL |
| 1298 | |
| 1299 | #if !defined(_TARGET_X86_) |
| 1300 | // In some cases (x86 WOW64, ARM32 on ARM64) Windows will not set the CONTEXT_EXCEPTION_REPORTING flag |
| 1301 | // if the thread is executing in kernel mode (i.e. in the middle of a syscall or exception handling). |
| 1302 | // Therefore, we should treat the absence of the CONTEXT_EXCEPTION_REPORTING flag as an indication that |
| 1303 | // it is not safe to manipulate with the current state of the thread context. |
| 1304 | // Note: the x86 WOW64 case is already handled in GetSafelyRedirectableThreadContext; in addition, this |
| 1305 | // flag is never set on Windows7 x86 WOW64. So this check is valid for non-x86 architectures only. |
| 1306 | isSafeToRedirect = (pContext->ContextFlags & CONTEXT_EXCEPTION_REPORTING) != 0; |
| 1307 | #endif // !defined(_TARGET_X86_) |
| 1308 | |
| 1309 | if (pContext->ContextFlags & CONTEXT_EXCEPTION_REPORTING) |
| 1310 | { |
| 1311 | if (pContext->ContextFlags & (CONTEXT_SERVICE_ACTIVE|CONTEXT_EXCEPTION_ACTIVE)) |
| 1312 | { |
| 1313 | // cannot process exception |
| 1314 | LOG((LF_ALWAYS, LL_WARNING, "thread [os id=0x08%x id=0x08%x] redirect failed due to ContextFlags of 0x%08x\n" , m_OSThreadId, m_ThreadId, pContext->ContextFlags)); |
| 1315 | isSafeToRedirect = FALSE; |
| 1316 | } |
| 1317 | } |
| 1318 | |
| 1319 | #endif // !FEATURE_PAL |
| 1320 | |
| 1321 | return isSafeToRedirect; |
| 1322 | } |
| 1323 | |
| 1324 | void Thread::SetAbortEndTime(ULONGLONG endTime, BOOL fRudeAbort) |
| 1325 | { |
| 1326 | LIMITED_METHOD_CONTRACT; |
| 1327 | |
| 1328 | { |
| 1329 | AbortRequestLockHolder lh(this); |
| 1330 | if (fRudeAbort) |
| 1331 | { |
| 1332 | if (endTime < m_RudeAbortEndTime) |
| 1333 | { |
| 1334 | m_RudeAbortEndTime = endTime; |
| 1335 | } |
| 1336 | } |
| 1337 | else |
| 1338 | { |
| 1339 | if (endTime < m_AbortEndTime) |
| 1340 | { |
| 1341 | m_AbortEndTime = endTime; |
| 1342 | } |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | } |
| 1347 | |
| 1348 | #ifdef _PREFAST_ |
| 1349 | #pragma warning(push) |
| 1350 | #pragma warning(disable:21000) // Suppress PREFast warning about overly large function |
| 1351 | #endif |
| 1352 | HRESULT |
| 1353 | Thread::UserAbort(ThreadAbortRequester requester, |
| 1354 | EEPolicy::ThreadAbortTypes abortType, |
| 1355 | DWORD timeout, |
| 1356 | UserAbort_Client client |
| 1357 | ) |
| 1358 | { |
| 1359 | CONTRACTL |
| 1360 | { |
| 1361 | THROWS; |
| 1362 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 1363 | } |
| 1364 | CONTRACTL_END; |
| 1365 | |
| 1366 | STRESS_LOG2(LF_SYNC | LF_APPDOMAIN, LL_INFO100, "UserAbort Thread %p Thread Id = %x\n" , this, GetThreadId()); |
| 1367 | |
| 1368 | BOOL fHoldingThreadStoreLock = ThreadStore::HoldingThreadStore(); |
| 1369 | |
| 1370 | // For SafeAbort from FuncEval abort, we do not apply escalation policy. Debugger |
| 1371 | // tries SafeAbort first with a short timeout. The thread will return to debugger. |
| 1372 | // After some break, the thread is going to do RudeAbort if abort has not finished. |
| 1373 | EClrOperation operation; |
| 1374 | if (abortType == EEPolicy::TA_Rude) |
| 1375 | { |
| 1376 | if (HasLockInCurrentDomain()) |
| 1377 | { |
| 1378 | operation = OPR_ThreadRudeAbortInCriticalRegion; |
| 1379 | } |
| 1380 | else |
| 1381 | { |
| 1382 | operation = OPR_ThreadRudeAbortInNonCriticalRegion; |
| 1383 | } |
| 1384 | } |
| 1385 | else |
| 1386 | { |
| 1387 | operation = OPR_ThreadAbort; |
| 1388 | } |
| 1389 | |
| 1390 | // Debugger func-eval aborts (both rude + normal) don't have any escalation policy. They are invoked |
| 1391 | // by the debugger and the debugger handles the consequences. |
| 1392 | // Furthermore, in interop-debugging, threads will be hard-suspened in preemptive mode while we try to abort them. |
| 1393 | // So any abort strategy that relies on a timeout and the target thread slipping is dangerous. Escalation policy would let a |
| 1394 | // host circumvent the timeout and thus we may wait forever for the target thread to slip. We'd deadlock here. Since the escalation |
| 1395 | // policy doesn't let the host break this deadlock (and certianly doesn't let the debugger break the deadlock), it's unsafe |
| 1396 | // to have an escalation policy for func-eval aborts at all. |
| 1397 | BOOL fEscalation = (requester != TAR_FuncEval); |
| 1398 | if (fEscalation) |
| 1399 | { |
| 1400 | EPolicyAction action = GetEEPolicy()->GetDefaultAction(operation, this); |
| 1401 | switch (action) |
| 1402 | { |
| 1403 | case eAbortThread: |
| 1404 | GetEEPolicy()->NotifyHostOnDefaultAction(operation,action); |
| 1405 | break; |
| 1406 | case eRudeAbortThread: |
| 1407 | if (abortType != EEPolicy::TA_Rude) |
| 1408 | { |
| 1409 | abortType = EEPolicy::TA_Rude; |
| 1410 | } |
| 1411 | GetEEPolicy()->NotifyHostOnDefaultAction(operation,action); |
| 1412 | break; |
| 1413 | case eUnloadAppDomain: |
| 1414 | case eRudeUnloadAppDomain: |
| 1415 | // AD unload does not abort finalizer thread. |
| 1416 | if (this != FinalizerThread::GetFinalizerThread()) |
| 1417 | { |
| 1418 | if (this == GetThread()) |
| 1419 | { |
| 1420 | Join(INFINITE,TRUE); |
| 1421 | } |
| 1422 | return S_OK; |
| 1423 | } |
| 1424 | break; |
| 1425 | case eExitProcess: |
| 1426 | case eFastExitProcess: |
| 1427 | case eRudeExitProcess: |
| 1428 | case eDisableRuntime: |
| 1429 | GetEEPolicy()->NotifyHostOnDefaultAction(operation,action); |
| 1430 | EEPolicy::HandleExitProcessFromEscalation(action, HOST_E_EXITPROCESS_THREADABORT); |
| 1431 | _ASSERTE (!"Should not reach here" ); |
| 1432 | break; |
| 1433 | default: |
| 1434 | _ASSERTE (!"unknown policy for thread abort" ); |
| 1435 | } |
| 1436 | |
| 1437 | DWORD timeoutFromPolicy; |
| 1438 | if (abortType != EEPolicy::TA_Rude) |
| 1439 | { |
| 1440 | timeoutFromPolicy = GetEEPolicy()->GetTimeout(OPR_ThreadAbort); |
| 1441 | } |
| 1442 | else if (!HasLockInCurrentDomain()) |
| 1443 | { |
| 1444 | timeoutFromPolicy = GetEEPolicy()->GetTimeout(OPR_ThreadRudeAbortInNonCriticalRegion); |
| 1445 | } |
| 1446 | else |
| 1447 | { |
| 1448 | timeoutFromPolicy = GetEEPolicy()->GetTimeout(OPR_ThreadRudeAbortInCriticalRegion); |
| 1449 | } |
| 1450 | if (timeout > timeoutFromPolicy) |
| 1451 | { |
| 1452 | timeout = timeoutFromPolicy; |
| 1453 | } |
| 1454 | } |
| 1455 | |
| 1456 | AbortControlHolder AbortController(this); |
| 1457 | |
| 1458 | // Swap in timeout |
| 1459 | if (timeout != INFINITE) |
| 1460 | { |
| 1461 | ULONG64 curTime = CLRGetTickCount64(); |
| 1462 | ULONG64 newEndTime = curTime + timeout; |
| 1463 | |
| 1464 | SetAbortEndTime(newEndTime, abortType == EEPolicy::TA_Rude); |
| 1465 | } |
| 1466 | |
| 1467 | // If the abort comes from the thread abort watchdog, proceed with the abort only |
| 1468 | // if the abort is still requested. This handles race between watchdog and UnmarkThreadForAbort. |
| 1469 | BOOL fTentative = (requester == Thread::TAR_Thread) && (client == UAC_WatchDog); |
| 1470 | MarkThreadForAbort(requester, abortType, fTentative); |
| 1471 | |
| 1472 | Thread *pCurThread = GetThread(); |
| 1473 | |
| 1474 | // If aborting self |
| 1475 | if (this == pCurThread) |
| 1476 | { |
| 1477 | SetAbortInitiated(); |
| 1478 | #ifdef _DEBUG |
| 1479 | m_dwAbortPoint = 1; |
| 1480 | #endif |
| 1481 | |
| 1482 | GCX_COOP(); |
| 1483 | |
| 1484 | OBJECTREF exceptObj; |
| 1485 | |
| 1486 | if (IsRudeAbort()) |
| 1487 | { |
| 1488 | exceptObj = CLRException::GetPreallocatedRudeThreadAbortException(); |
| 1489 | } |
| 1490 | else |
| 1491 | { |
| 1492 | EEException eeExcept(kThreadAbortException); |
| 1493 | exceptObj = CLRException::GetThrowableFromException(&eeExcept); |
| 1494 | } |
| 1495 | |
| 1496 | RaiseTheExceptionInternalOnly(exceptObj, FALSE); |
| 1497 | } |
| 1498 | |
| 1499 | #ifdef MDA_SUPPORTED |
| 1500 | if (requester != TAR_FuncEval) |
| 1501 | { |
| 1502 | // FuncEval abort is always aborting another thread. No need to trigger MDA. |
| 1503 | MDA_TRIGGER_ASSISTANT(AsynchronousThreadAbort, ReportViolation(GetThread(), this)); |
| 1504 | } |
| 1505 | #endif |
| 1506 | |
| 1507 | _ASSERTE(this != pCurThread); // Aborting another thread. |
| 1508 | |
| 1509 | if (client == UAC_Host) |
| 1510 | { |
| 1511 | // A host may call ICLRTask::Abort on a critical thread. We don't want to |
| 1512 | // block this thread. |
| 1513 | return S_OK; |
| 1514 | } |
| 1515 | |
| 1516 | #ifdef _DEBUG |
| 1517 | DWORD elapsed_time = 0; |
| 1518 | #endif |
| 1519 | |
| 1520 | // We do not want this thread to be alerted. |
| 1521 | ThreadPreventAsyncHolder preventAsync(pCurThread != NULL); |
| 1522 | |
| 1523 | #ifdef _DEBUG |
| 1524 | // If UserAbort times out, put up msgbox once. |
| 1525 | BOOL fAlreadyAssert = FALSE; |
| 1526 | #endif |
| 1527 | |
| 1528 | BOOL fOneTryOnly = (client == UAC_WatchDog) || (client == UAC_FinalizerTimeout); |
| 1529 | BOOL fFirstRun = TRUE; |
| 1530 | BOOL fNeedEscalation; |
| 1531 | |
| 1532 | #if !defined(DISABLE_THREADSUSPEND) |
| 1533 | DWORD dwSwitchCount = 0; |
| 1534 | #endif // !defined(DISABLE_THREADSUSPEND) |
| 1535 | |
| 1536 | LRetry: |
| 1537 | fNeedEscalation = FALSE; |
| 1538 | for (;;) |
| 1539 | { |
| 1540 | if (fOneTryOnly) |
| 1541 | { |
| 1542 | if (!fFirstRun) |
| 1543 | { |
| 1544 | return S_OK; |
| 1545 | } |
| 1546 | fFirstRun = FALSE; |
| 1547 | } |
| 1548 | // Lock the thread store |
| 1549 | LOG((LF_SYNC, INFO3, "UserAbort obtain lock\n" )); |
| 1550 | |
| 1551 | ULONGLONG abortEndTime = GetAbortEndTime(); |
| 1552 | if (abortEndTime != MAXULONGLONG) |
| 1553 | { |
| 1554 | ULONGLONG now_time = CLRGetTickCount64(); |
| 1555 | |
| 1556 | if (now_time >= abortEndTime) |
| 1557 | { |
| 1558 | EPolicyAction action1 = eNoAction; |
| 1559 | DWORD timeout1 = INFINITE; |
| 1560 | if (fEscalation) |
| 1561 | { |
| 1562 | if (!IsRudeAbort()) |
| 1563 | { |
| 1564 | action1 = GetEEPolicy()->GetActionOnTimeout(OPR_ThreadAbort, this); |
| 1565 | timeout1 = GetEEPolicy()->GetTimeout(OPR_ThreadAbort); |
| 1566 | } |
| 1567 | else if (HasLockInCurrentDomain()) |
| 1568 | { |
| 1569 | action1 = GetEEPolicy()->GetActionOnTimeout(OPR_ThreadRudeAbortInCriticalRegion, this); |
| 1570 | timeout1 = GetEEPolicy()->GetTimeout(OPR_ThreadRudeAbortInCriticalRegion); |
| 1571 | } |
| 1572 | else |
| 1573 | { |
| 1574 | action1 = GetEEPolicy()->GetActionOnTimeout(OPR_ThreadRudeAbortInNonCriticalRegion, this); |
| 1575 | timeout1 = GetEEPolicy()->GetTimeout(OPR_ThreadRudeAbortInNonCriticalRegion); |
| 1576 | } |
| 1577 | } |
| 1578 | if (action1 == eNoAction) |
| 1579 | { |
| 1580 | // timeout, but no action on timeout. |
| 1581 | // Debugger can call this function to about func-eval with a timeout |
| 1582 | return HRESULT_FROM_WIN32(ERROR_TIMEOUT); |
| 1583 | } |
| 1584 | if (timeout1 != INFINITE) |
| 1585 | { |
| 1586 | // There is an escalation policy. |
| 1587 | fNeedEscalation = TRUE; |
| 1588 | break; |
| 1589 | } |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | // Thread abort needs to walk stack to decide if thread abort can proceed. |
| 1594 | // It is unsafe to crawl a stack of thread if the thread is OS-suspended which we do during |
| 1595 | // thread abort. For example, Thread T1 aborts thread T2. T2 is suspended by T1. Inside SQL |
| 1596 | // this means that no thread sharing the same scheduler with T2 can run. If T1 needs a lock which |
| 1597 | // is owned by one thread on the scheduler, T1 will wait forever. |
| 1598 | // Our solution is to move T2 to a safe point, resume it, and then do stack crawl. |
| 1599 | |
| 1600 | // We need to make sure that ThreadStoreLock is released after CheckForAbort. This makes sure |
| 1601 | // that ThreadAbort does not race against GC. |
| 1602 | class CheckForAbort |
| 1603 | { |
| 1604 | private: |
| 1605 | Thread *m_pThread; |
| 1606 | BOOL m_fHoldingThreadStoreLock; |
| 1607 | BOOL m_NeedRelease; |
| 1608 | public: |
| 1609 | CheckForAbort(Thread *pThread, BOOL fHoldingThreadStoreLock) |
| 1610 | : m_pThread(pThread), |
| 1611 | m_fHoldingThreadStoreLock(fHoldingThreadStoreLock), |
| 1612 | m_NeedRelease(TRUE) |
| 1613 | { |
| 1614 | if (!fHoldingThreadStoreLock) |
| 1615 | { |
| 1616 | ThreadSuspend::LockThreadStore(ThreadSuspend::SUSPEND_OTHER); |
| 1617 | } |
| 1618 | ThreadStore::ResetStackCrawlEvent(); |
| 1619 | |
| 1620 | // The thread being aborted may clear the TS_AbortRequested bit and the matching increment |
| 1621 | // of g_TrapReturningThreads behind our back. Increment g_TrapReturningThreads here |
| 1622 | // to ensure that we stop for the stack crawl even if the TS_AbortRequested bit is cleared. |
| 1623 | ThreadStore::TrapReturningThreads(TRUE); |
| 1624 | } |
| 1625 | void NeedStackCrawl() |
| 1626 | { |
| 1627 | m_pThread->SetThreadState(Thread::TS_StackCrawlNeeded); |
| 1628 | } |
| 1629 | ~CheckForAbort() |
| 1630 | { |
| 1631 | Release(); |
| 1632 | } |
| 1633 | void Release() |
| 1634 | { |
| 1635 | if (m_NeedRelease) |
| 1636 | { |
| 1637 | m_NeedRelease = FALSE; |
| 1638 | ThreadStore::TrapReturningThreads(FALSE); |
| 1639 | ThreadStore::SetStackCrawlEvent(); |
| 1640 | m_pThread->ResetThreadState(TS_StackCrawlNeeded); |
| 1641 | if (!m_fHoldingThreadStoreLock) |
| 1642 | { |
| 1643 | ThreadSuspend::UnlockThreadStore(); |
| 1644 | } |
| 1645 | } |
| 1646 | } |
| 1647 | }; |
| 1648 | CheckForAbort checkForAbort(this, fHoldingThreadStoreLock); |
| 1649 | |
| 1650 | // We own TS lock. The state of the Thread can not be changed. |
| 1651 | if (m_State & TS_Unstarted) |
| 1652 | { |
| 1653 | // This thread is not yet started. |
| 1654 | #ifdef _DEBUG |
| 1655 | m_dwAbortPoint = 2; |
| 1656 | #endif |
| 1657 | if(requester == Thread::TAR_Thread) |
| 1658 | SetAborted(); |
| 1659 | return S_OK; |
| 1660 | } |
| 1661 | |
| 1662 | if (GetThreadHandle() == INVALID_HANDLE_VALUE && |
| 1663 | (m_State & TS_Unstarted) == 0) |
| 1664 | { |
| 1665 | // The thread is going to die or is already dead. |
| 1666 | UnmarkThreadForAbort(Thread::TAR_ALL); |
| 1667 | #ifdef _DEBUG |
| 1668 | m_dwAbortPoint = 3; |
| 1669 | #endif |
| 1670 | if(requester == Thread::TAR_Thread) |
| 1671 | SetAborted(); |
| 1672 | return S_OK; |
| 1673 | } |
| 1674 | |
| 1675 | // What if someone else has this thread suspended already? It'll depend where the |
| 1676 | // thread got suspended. |
| 1677 | // |
| 1678 | // User Suspend: |
| 1679 | // We'll just set the abort bit and hope for the best on the resume. |
| 1680 | // |
| 1681 | // GC Suspend: |
| 1682 | // If it's suspended in jitted code, we'll hijack the IP. |
| 1683 | // <REVISIT_TODO> Consider race w/ GC suspension</REVISIT_TODO> |
| 1684 | // If it's suspended but not in jitted code, we'll get suspended for GC, the GC |
| 1685 | // will complete, and then we'll abort the target thread. |
| 1686 | // |
| 1687 | |
| 1688 | // It's possible that the thread has completed the abort already. |
| 1689 | // |
| 1690 | if (!(m_State & TS_AbortRequested)) |
| 1691 | { |
| 1692 | #ifdef _DEBUG |
| 1693 | m_dwAbortPoint = 4; |
| 1694 | #endif |
| 1695 | if(requester == Thread::TAR_Thread) |
| 1696 | SetAborted(); |
| 1697 | return S_OK; |
| 1698 | } |
| 1699 | |
| 1700 | // If a thread is Dead or Detached, abort is a NOP. |
| 1701 | // |
| 1702 | if (m_State & (TS_Dead | TS_Detached | TS_TaskReset)) |
| 1703 | { |
| 1704 | UnmarkThreadForAbort(Thread::TAR_ALL); |
| 1705 | if(requester == Thread::TAR_Thread) |
| 1706 | SetAborted(); |
| 1707 | #ifdef _DEBUG |
| 1708 | m_dwAbortPoint = 5; |
| 1709 | #endif |
| 1710 | return S_OK; |
| 1711 | } |
| 1712 | |
| 1713 | // It's possible that some stub notices the AbortRequested bit -- even though we |
| 1714 | // haven't done any real magic yet. If the thread has already started it's abort, we're |
| 1715 | // done. |
| 1716 | // |
| 1717 | // Two more cases can be folded in here as well. If the thread is unstarted, it'll |
| 1718 | // abort when we start it. |
| 1719 | // |
| 1720 | // If the thread is user suspended (SyncSuspended) -- we're out of luck. Set the bit and |
| 1721 | // hope for the best on resume. |
| 1722 | // |
| 1723 | if ((m_State & TS_AbortInitiated) && !IsRudeAbort()) |
| 1724 | { |
| 1725 | #ifdef _DEBUG |
| 1726 | m_dwAbortPoint = 6; |
| 1727 | #endif |
| 1728 | break; |
| 1729 | } |
| 1730 | |
| 1731 | BOOL fOutOfRuntime = FALSE; |
| 1732 | BOOL fNeedStackCrawl = FALSE; |
| 1733 | |
| 1734 | #ifdef DISABLE_THREADSUSPEND |
| 1735 | // On platforms that do not support safe thread suspension we have to |
| 1736 | // rely on the GCPOLL mechanism; the mechanism is activated above by |
| 1737 | // TrapReturningThreads. However when reading shared state we need |
| 1738 | // to erect appropriate memory barriers. So the interlocked operation |
| 1739 | // below ensures that any future reads on this thread will happen after |
| 1740 | // any earlier writes on a different thread have taken effect. |
| 1741 | FastInterlockOr((DWORD*)&m_State, 0); |
| 1742 | |
| 1743 | #else // DISABLE_THREADSUSPEND |
| 1744 | |
| 1745 | // Win32 suspend the thread, so it isn't moving under us. |
| 1746 | SuspendThreadResult str = SuspendThread(); |
| 1747 | switch (str) |
| 1748 | { |
| 1749 | case STR_Success: |
| 1750 | break; |
| 1751 | |
| 1752 | case STR_Failure: |
| 1753 | case STR_UnstartedOrDead: |
| 1754 | case STR_NoStressLog: |
| 1755 | checkForAbort.Release(); |
| 1756 | __SwitchToThread(0, ++dwSwitchCount); |
| 1757 | continue; |
| 1758 | |
| 1759 | case STR_SwitchedOut: |
| 1760 | // If the thread is in preemptive gc mode, we can erect a barrier to block the |
| 1761 | // thread to return to cooperative mode. Then we can do stack crawl and make decision. |
| 1762 | if (!m_fPreemptiveGCDisabled) |
| 1763 | { |
| 1764 | checkForAbort.NeedStackCrawl(); |
| 1765 | if (GetThreadHandle() != SWITCHOUT_HANDLE_VALUE || m_fPreemptiveGCDisabled) |
| 1766 | { |
| 1767 | checkForAbort.Release(); |
| 1768 | __SwitchToThread(0, ++dwSwitchCount); |
| 1769 | continue; |
| 1770 | } |
| 1771 | else |
| 1772 | { |
| 1773 | goto LStackCrawl; |
| 1774 | } |
| 1775 | } |
| 1776 | else |
| 1777 | { |
| 1778 | goto LPrepareRetry; |
| 1779 | } |
| 1780 | |
| 1781 | default: |
| 1782 | UNREACHABLE(); |
| 1783 | } |
| 1784 | |
| 1785 | _ASSERTE(str == STR_Success); |
| 1786 | |
| 1787 | #endif // DISABLE_THREADSUSPEND |
| 1788 | |
| 1789 | // It's possible that the thread has completed the abort already. |
| 1790 | // |
| 1791 | if (!(m_State & TS_AbortRequested)) |
| 1792 | { |
| 1793 | #ifndef DISABLE_THREADSUSPEND |
| 1794 | ResumeThread(); |
| 1795 | #endif |
| 1796 | if(requester == Thread::TAR_Thread) |
| 1797 | SetAborted(); |
| 1798 | #ifdef _DEBUG |
| 1799 | m_dwAbortPoint = 63; |
| 1800 | #endif |
| 1801 | return S_OK; |
| 1802 | } |
| 1803 | |
| 1804 | // Check whether some stub noticed the AbortRequested bit in-between our test above |
| 1805 | // and us suspending the thread. |
| 1806 | if ((m_State & TS_AbortInitiated) && !IsRudeAbort()) |
| 1807 | { |
| 1808 | #ifndef DISABLE_THREADSUSPEND |
| 1809 | ResumeThread(); |
| 1810 | #endif |
| 1811 | #ifdef _DEBUG |
| 1812 | m_dwAbortPoint = 65; |
| 1813 | #endif |
| 1814 | break; |
| 1815 | } |
| 1816 | |
| 1817 | // If Threads is stopped under a managed debugger, it will have both |
| 1818 | // TS_DebugSuspendPending and TS_SyncSuspended, regardless of whether |
| 1819 | // the thread is actually suspended or not. |
| 1820 | // If it's suspended w/o the debugger (eg, by via Thread.Suspend), it will |
| 1821 | // also have TS_UserSuspendPending set. |
| 1822 | if (m_State & TS_SyncSuspended) |
| 1823 | { |
| 1824 | #ifndef DISABLE_THREADSUSPEND |
| 1825 | ResumeThread(); |
| 1826 | #endif |
| 1827 | checkForAbort.Release(); |
| 1828 | #ifdef _DEBUG |
| 1829 | m_dwAbortPoint = 7; |
| 1830 | #endif |
| 1831 | |
| 1832 | // CoreCLR does not support user-requested thread suspension |
| 1833 | _ASSERTE(!(m_State & TS_UserSuspendPending)); |
| 1834 | |
| 1835 | // |
| 1836 | // If it's stopped by the debugger, we don't want to throw an exception. |
| 1837 | // Debugger suspension is to have no effect of the runtime behaviour. |
| 1838 | // |
| 1839 | if (m_State & TS_DebugSuspendPending) |
| 1840 | { |
| 1841 | return S_OK; |
| 1842 | } |
| 1843 | |
| 1844 | COMPlusThrow(kThreadStateException, IDS_EE_THREAD_ABORT_WHILE_SUSPEND); |
| 1845 | } |
| 1846 | |
| 1847 | // If the thread has no managed code on it's call stack, abort is a NOP. We're about |
| 1848 | // to touch the unmanaged thread's stack -- for this to be safe, we can't be |
| 1849 | // Dead/Detached/Unstarted. |
| 1850 | // |
| 1851 | _ASSERTE(!(m_State & ( TS_Dead |
| 1852 | | TS_Detached |
| 1853 | | TS_Unstarted))); |
| 1854 | |
| 1855 | #if defined(_TARGET_X86_) && !defined(WIN64EXCEPTIONS) |
| 1856 | // TODO WIN64: consider this if there is a way to detect of managed code on stack. |
| 1857 | if ((m_pFrame == FRAME_TOP) |
| 1858 | && (GetFirstCOMPlusSEHRecord(this) == EXCEPTION_CHAIN_END) |
| 1859 | ) |
| 1860 | { |
| 1861 | #ifndef DISABLE_THREADSUSPEND |
| 1862 | ResumeThread(); |
| 1863 | #endif |
| 1864 | #ifdef _DEBUG |
| 1865 | m_dwAbortPoint = 8; |
| 1866 | #endif |
| 1867 | |
| 1868 | if(requester == Thread::TAR_Thread) |
| 1869 | SetAborted(); |
| 1870 | return S_OK; |
| 1871 | } |
| 1872 | #endif // _TARGET_X86_ |
| 1873 | |
| 1874 | |
| 1875 | if (!m_fPreemptiveGCDisabled) |
| 1876 | { |
| 1877 | if ((m_pFrame != FRAME_TOP) && m_pFrame->IsTransitionToNativeFrame() |
| 1878 | #if defined(_TARGET_X86_) && !defined(WIN64EXCEPTIONS) |
| 1879 | && ((size_t) GetFirstCOMPlusSEHRecord(this) > ((size_t) m_pFrame) - 20) |
| 1880 | #endif // _TARGET_X86_ |
| 1881 | ) |
| 1882 | { |
| 1883 | fOutOfRuntime = TRUE; |
| 1884 | } |
| 1885 | } |
| 1886 | |
| 1887 | checkForAbort.NeedStackCrawl(); |
| 1888 | if (!m_fPreemptiveGCDisabled) |
| 1889 | { |
| 1890 | fNeedStackCrawl = TRUE; |
| 1891 | } |
| 1892 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 1893 | else |
| 1894 | { |
| 1895 | HandleJITCaseForAbort(); |
| 1896 | } |
| 1897 | #endif // FEATURE_HIJACK && !PLATFORM_UNIX |
| 1898 | |
| 1899 | #ifndef DISABLE_THREADSUSPEND |
| 1900 | // The thread is not suspended now. |
| 1901 | ResumeThread(); |
| 1902 | #endif |
| 1903 | |
| 1904 | if (!fNeedStackCrawl) |
| 1905 | { |
| 1906 | goto LPrepareRetry; |
| 1907 | } |
| 1908 | |
| 1909 | #ifndef DISABLE_THREADSUSPEND |
| 1910 | LStackCrawl: |
| 1911 | #endif // DISABLE_THREADSUSPEND |
| 1912 | |
| 1913 | if (!ReadyForAbort()) { |
| 1914 | goto LPrepareRetry; |
| 1915 | } |
| 1916 | |
| 1917 | // !!! Check for Exception in flight should happen before induced thread abort. |
| 1918 | // !!! ReadyForAbort skips catch and filter clause. |
| 1919 | |
| 1920 | // If an exception is currently being thrown, one of two things will happen. Either, we'll |
| 1921 | // catch, and notice the abort request in our end-catch, or we'll not catch [in which case |
| 1922 | // we're leaving managed code anyway. The top-most handler is responsible for resetting |
| 1923 | // the bit. |
| 1924 | // |
| 1925 | if (HasException() && |
| 1926 | // For rude abort, we will initiated abort |
| 1927 | !IsRudeAbort()) |
| 1928 | { |
| 1929 | #ifdef _DEBUG |
| 1930 | m_dwAbortPoint = 9; |
| 1931 | #endif |
| 1932 | break; |
| 1933 | } |
| 1934 | |
| 1935 | // If the thread is in sleep, wait, or join interrupt it |
| 1936 | // However, we do NOT want to interrupt if the thread is already processing an exception |
| 1937 | if (m_State & TS_Interruptible) |
| 1938 | { |
| 1939 | UserInterrupt(TI_Abort); // if the user wakes up because of this, it will read the |
| 1940 | // abort requested bit and initiate the abort |
| 1941 | #ifdef _DEBUG |
| 1942 | m_dwAbortPoint = 10; |
| 1943 | #endif |
| 1944 | goto LPrepareRetry; |
| 1945 | } |
| 1946 | |
| 1947 | if (fOutOfRuntime) |
| 1948 | { |
| 1949 | // If the thread is running outside the EE, and is behind a stub that's going |
| 1950 | // to catch... |
| 1951 | #ifdef _DEBUG |
| 1952 | m_dwAbortPoint = 11; |
| 1953 | #endif |
| 1954 | break; |
| 1955 | } |
| 1956 | |
| 1957 | // Ok. It's not in managed code, nor safely out behind a stub that's going to catch |
| 1958 | // it on the way in. We have to poll. |
| 1959 | |
| 1960 | LPrepareRetry: |
| 1961 | |
| 1962 | checkForAbort.Release(); |
| 1963 | |
| 1964 | if (fOneTryOnly) |
| 1965 | { |
| 1966 | break; |
| 1967 | } |
| 1968 | |
| 1969 | // Don't do a Sleep. It's possible that the thread we are trying to abort is |
| 1970 | // stuck in unmanaged code trying to get into the apartment that we are supposed |
| 1971 | // to be pumping! Instead, ping the current thread's handle. Obviously this |
| 1972 | // will time out, but it will pump if we need it to. |
| 1973 | if (pCurThread) |
| 1974 | { |
| 1975 | pCurThread->Join(ABORT_POLL_TIMEOUT, TRUE); |
| 1976 | } |
| 1977 | else |
| 1978 | { |
| 1979 | ClrSleepEx(ABORT_POLL_TIMEOUT, FALSE); |
| 1980 | } |
| 1981 | |
| 1982 | |
| 1983 | #ifdef _DEBUG |
| 1984 | elapsed_time += ABORT_POLL_TIMEOUT; |
| 1985 | if (g_pConfig->GetGCStressLevel() == 0 && !fAlreadyAssert) |
| 1986 | { |
| 1987 | _ASSERTE(elapsed_time < ABORT_FAIL_TIMEOUT); |
| 1988 | fAlreadyAssert = TRUE; |
| 1989 | } |
| 1990 | #endif |
| 1991 | |
| 1992 | } // for(;;) |
| 1993 | |
| 1994 | if (fOneTryOnly && !fNeedEscalation) |
| 1995 | { |
| 1996 | return S_OK; |
| 1997 | } |
| 1998 | |
| 1999 | if ((GetAbortEndTime() != MAXULONGLONG) && IsAbortRequested()) |
| 2000 | { |
| 2001 | while (TRUE) |
| 2002 | { |
| 2003 | if (!IsAbortRequested()) |
| 2004 | { |
| 2005 | return S_OK; |
| 2006 | } |
| 2007 | ULONGLONG curTime = CLRGetTickCount64(); |
| 2008 | if (curTime >= GetAbortEndTime()) |
| 2009 | { |
| 2010 | break; |
| 2011 | } |
| 2012 | |
| 2013 | if (pCurThread) |
| 2014 | { |
| 2015 | pCurThread->Join(100, TRUE); |
| 2016 | } |
| 2017 | else |
| 2018 | { |
| 2019 | ClrSleepEx(100, FALSE); |
| 2020 | } |
| 2021 | |
| 2022 | } |
| 2023 | |
| 2024 | if (IsAbortRequested() && fEscalation) |
| 2025 | { |
| 2026 | EPolicyAction action1; |
| 2027 | EClrOperation operation1; |
| 2028 | if (!IsRudeAbort()) |
| 2029 | { |
| 2030 | operation1 = OPR_ThreadAbort; |
| 2031 | } |
| 2032 | else if (HasLockInCurrentDomain()) |
| 2033 | { |
| 2034 | operation1 = OPR_ThreadRudeAbortInCriticalRegion; |
| 2035 | } |
| 2036 | else |
| 2037 | { |
| 2038 | operation1 = OPR_ThreadRudeAbortInNonCriticalRegion; |
| 2039 | } |
| 2040 | action1 = GetEEPolicy()->GetActionOnTimeout(operation1, this); |
| 2041 | switch (action1) |
| 2042 | { |
| 2043 | case eRudeAbortThread: |
| 2044 | GetEEPolicy()->NotifyHostOnTimeout(operation1, action1); |
| 2045 | MarkThreadForAbort(requester, EEPolicy::TA_Rude); |
| 2046 | SetRudeAbortEndTimeFromEEPolicy(); |
| 2047 | goto LRetry; |
| 2048 | case eUnloadAppDomain: |
| 2049 | // AD unload does not abort finalizer thread. |
| 2050 | if (this == FinalizerThread::GetFinalizerThread()) |
| 2051 | { |
| 2052 | GetEEPolicy()->NotifyHostOnTimeout(operation1, action1); |
| 2053 | MarkThreadForAbort(requester, EEPolicy::TA_Rude); |
| 2054 | SetRudeAbortEndTimeFromEEPolicy(); |
| 2055 | goto LRetry; |
| 2056 | } |
| 2057 | else |
| 2058 | { |
| 2059 | if (this == GetThread()) |
| 2060 | { |
| 2061 | Join(INFINITE,TRUE); |
| 2062 | } |
| 2063 | return S_OK; |
| 2064 | } |
| 2065 | break; |
| 2066 | case eRudeUnloadAppDomain: |
| 2067 | // AD unload does not abort finalizer thread. |
| 2068 | if (this == FinalizerThread::GetFinalizerThread()) |
| 2069 | { |
| 2070 | MarkThreadForAbort(requester, EEPolicy::TA_Rude); |
| 2071 | SetRudeAbortEndTimeFromEEPolicy(); |
| 2072 | goto LRetry; |
| 2073 | } |
| 2074 | else |
| 2075 | { |
| 2076 | if (this == GetThread()) |
| 2077 | { |
| 2078 | Join(INFINITE,TRUE); |
| 2079 | } |
| 2080 | return S_OK; |
| 2081 | } |
| 2082 | break; |
| 2083 | case eExitProcess: |
| 2084 | case eFastExitProcess: |
| 2085 | case eRudeExitProcess: |
| 2086 | case eDisableRuntime: |
| 2087 | GetEEPolicy()->NotifyHostOnTimeout(operation1, action1); |
| 2088 | EEPolicy::HandleExitProcessFromEscalation(action1, HOST_E_EXITPROCESS_TIMEOUT); |
| 2089 | _ASSERTE (!"Should not reach here" ); |
| 2090 | break; |
| 2091 | default: |
| 2092 | break; |
| 2093 | } |
| 2094 | } |
| 2095 | |
| 2096 | return HRESULT_FROM_WIN32(ERROR_TIMEOUT); |
| 2097 | } |
| 2098 | |
| 2099 | if(requester == Thread::TAR_Thread) |
| 2100 | SetAborted(); |
| 2101 | return S_OK; |
| 2102 | } |
| 2103 | #ifdef _PREFAST_ |
| 2104 | #pragma warning(pop) |
| 2105 | #endif |
| 2106 | |
| 2107 | void Thread::SetRudeAbortEndTimeFromEEPolicy() |
| 2108 | { |
| 2109 | LIMITED_METHOD_CONTRACT; |
| 2110 | |
| 2111 | DWORD timeout = GetEEPolicy()->GetTimeout(OPR_ThreadRudeAbortInCriticalRegion); |
| 2112 | |
| 2113 | ULONGLONG newEndTime; |
| 2114 | if (timeout == INFINITE) |
| 2115 | { |
| 2116 | newEndTime = MAXULONGLONG; |
| 2117 | } |
| 2118 | else |
| 2119 | { |
| 2120 | newEndTime = CLRGetTickCount64() + timeout; |
| 2121 | } |
| 2122 | |
| 2123 | SetAbortEndTime(newEndTime, TRUE); |
| 2124 | } |
| 2125 | |
| 2126 | ULONGLONG Thread::s_NextSelfAbortEndTime = MAXULONGLONG; |
| 2127 | |
| 2128 | void Thread::ThreadAbortWatchDogAbort(Thread *pThread) |
| 2129 | { |
| 2130 | CONTRACTL |
| 2131 | { |
| 2132 | NOTHROW; |
| 2133 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 2134 | } |
| 2135 | CONTRACTL_END; |
| 2136 | |
| 2137 | EEPolicy::ThreadAbortTypes abortType = EEPolicy::TA_Safe; |
| 2138 | if (pThread->m_AbortInfo & TAI_ThreadRudeAbort) |
| 2139 | { |
| 2140 | abortType = EEPolicy::TA_Rude; |
| 2141 | } |
| 2142 | else if (pThread->m_AbortInfo & TAI_ThreadV1Abort) |
| 2143 | { |
| 2144 | abortType = EEPolicy::TA_V1Compatible; |
| 2145 | } |
| 2146 | else if (pThread->m_AbortInfo & TAI_ThreadAbort) |
| 2147 | { |
| 2148 | abortType = EEPolicy::TA_Safe; |
| 2149 | } |
| 2150 | else |
| 2151 | { |
| 2152 | return; |
| 2153 | } |
| 2154 | |
| 2155 | EX_TRY |
| 2156 | { |
| 2157 | pThread->UserAbort(Thread::TAR_Thread, abortType, INFINITE, Thread::UAC_WatchDog); |
| 2158 | } |
| 2159 | EX_CATCH |
| 2160 | { |
| 2161 | } |
| 2162 | EX_END_CATCH(SwallowAllExceptions); |
| 2163 | } |
| 2164 | |
| 2165 | void Thread::ThreadAbortWatchDogEscalate(Thread *pThread) |
| 2166 | { |
| 2167 | CONTRACTL |
| 2168 | { |
| 2169 | NOTHROW; |
| 2170 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 2171 | } |
| 2172 | CONTRACTL_END; |
| 2173 | |
| 2174 | EPolicyAction action = eNoAction; |
| 2175 | EClrOperation operation = OPR_ThreadRudeAbortInNonCriticalRegion; |
| 2176 | if (!pThread->IsRudeAbort()) |
| 2177 | { |
| 2178 | operation = OPR_ThreadAbort; |
| 2179 | } |
| 2180 | else if (pThread->HasLockInCurrentDomain()) |
| 2181 | { |
| 2182 | operation = OPR_ThreadRudeAbortInCriticalRegion; |
| 2183 | } |
| 2184 | else |
| 2185 | { |
| 2186 | operation = OPR_ThreadRudeAbortInNonCriticalRegion; |
| 2187 | } |
| 2188 | action = GetEEPolicy()->GetActionOnTimeout(operation, pThread); |
| 2189 | // We only support escalation to rude abort |
| 2190 | |
| 2191 | EX_TRY { |
| 2192 | switch (action) |
| 2193 | { |
| 2194 | case eRudeAbortThread: |
| 2195 | GetEEPolicy()->NotifyHostOnTimeout(operation,action); |
| 2196 | pThread->UserAbort(Thread::TAR_Thread, EEPolicy::TA_Rude, INFINITE, Thread::UAC_WatchDog); |
| 2197 | break; |
| 2198 | case eExitProcess: |
| 2199 | case eFastExitProcess: |
| 2200 | case eRudeExitProcess: |
| 2201 | case eDisableRuntime: |
| 2202 | // HandleExitProcessFromEscalation will try to grab ThreadStore again. |
| 2203 | _ASSERTE (ThreadStore::HoldingThreadStore()); |
| 2204 | ThreadStore::UnlockThreadStore(); |
| 2205 | GetEEPolicy()->NotifyHostOnTimeout(operation,action); |
| 2206 | EEPolicy::HandleExitProcessFromEscalation(action, HOST_E_EXITPROCESS_THREADABORT); |
| 2207 | _ASSERTE (!"Should not reach here" ); |
| 2208 | break; |
| 2209 | case eNoAction: |
| 2210 | break; |
| 2211 | default: |
| 2212 | _ASSERTE (!"unknown policy for thread abort" ); |
| 2213 | } |
| 2214 | } |
| 2215 | EX_CATCH { |
| 2216 | } |
| 2217 | EX_END_CATCH(SwallowAllExceptions); |
| 2218 | } |
| 2219 | |
| 2220 | // If a thread is self-aborted and has a timeout, we need to watch the thread |
| 2221 | void Thread::ThreadAbortWatchDog() |
| 2222 | { |
| 2223 | CONTRACTL |
| 2224 | { |
| 2225 | NOTHROW; |
| 2226 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 2227 | } |
| 2228 | CONTRACTL_END; |
| 2229 | |
| 2230 | if (CLRHosted()) |
| 2231 | { |
| 2232 | ThreadStoreLockHolder tsLock; |
| 2233 | |
| 2234 | ULONGLONG curTime = CLRGetTickCount64(); |
| 2235 | |
| 2236 | s_NextSelfAbortEndTime = MAXULONGLONG; |
| 2237 | |
| 2238 | Thread *thread = NULL; |
| 2239 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 2240 | { |
| 2241 | if (!thread->IsAbortRequested()) |
| 2242 | { |
| 2243 | continue; |
| 2244 | } |
| 2245 | |
| 2246 | if (thread == FinalizerThread::GetFinalizerThread() && !g_FinalizerIsRunning) |
| 2247 | { |
| 2248 | // if finalizer method is not running, don't try to abort the finalizer thread |
| 2249 | continue; |
| 2250 | } |
| 2251 | |
| 2252 | BOOL fNeedsToInitiateAbort = !thread->IsAbortInitiated() || thread->IsRudeAbort(); |
| 2253 | ULONGLONG endTime = thread->GetAbortEndTime(); |
| 2254 | if (fNeedsToInitiateAbort) |
| 2255 | { |
| 2256 | s_NextSelfAbortEndTime = 0; |
| 2257 | } |
| 2258 | else if (endTime < s_NextSelfAbortEndTime) |
| 2259 | { |
| 2260 | s_NextSelfAbortEndTime = endTime; |
| 2261 | } |
| 2262 | |
| 2263 | if (thread->m_AbortController == 0) |
| 2264 | { |
| 2265 | STRESS_LOG3(LF_ALWAYS, LL_ALWAYS, "ThreadAbortWatchDog for Thread %p Thread Id = %x with timeout %x\n" , |
| 2266 | thread, thread->GetThreadId(), endTime); |
| 2267 | |
| 2268 | if (endTime != MAXULONGLONG && curTime >= endTime) |
| 2269 | { |
| 2270 | ThreadAbortWatchDogEscalate(thread); |
| 2271 | } |
| 2272 | else if (fNeedsToInitiateAbort) |
| 2273 | { |
| 2274 | ThreadAbortWatchDogAbort(thread); |
| 2275 | } |
| 2276 | } |
| 2277 | } |
| 2278 | } |
| 2279 | } |
| 2280 | |
| 2281 | void Thread::LockAbortRequest(Thread* pThread) |
| 2282 | { |
| 2283 | WRAPPER_NO_CONTRACT; |
| 2284 | |
| 2285 | DWORD dwSwitchCount = 0; |
| 2286 | |
| 2287 | while (TRUE) { |
| 2288 | for (unsigned i = 0; i < 10000; i ++) { |
| 2289 | if (VolatileLoad(&(pThread->m_AbortRequestLock)) == 0) { |
| 2290 | break; |
| 2291 | } |
| 2292 | YieldProcessor(); // indicate to the processor that we are spinning |
| 2293 | } |
| 2294 | if (FastInterlockCompareExchange(&(pThread->m_AbortRequestLock),1,0) == 0) { |
| 2295 | return; |
| 2296 | } |
| 2297 | __SwitchToThread(0, ++dwSwitchCount); |
| 2298 | } |
| 2299 | } |
| 2300 | |
| 2301 | void Thread::UnlockAbortRequest(Thread *pThread) |
| 2302 | { |
| 2303 | LIMITED_METHOD_CONTRACT; |
| 2304 | |
| 2305 | _ASSERTE (pThread->m_AbortRequestLock == 1); |
| 2306 | FastInterlockExchange(&pThread->m_AbortRequestLock, 0); |
| 2307 | } |
| 2308 | |
| 2309 | void Thread::MarkThreadForAbort(ThreadAbortRequester requester, EEPolicy::ThreadAbortTypes abortType, BOOL fTentative /*=FALSE*/) |
| 2310 | { |
| 2311 | CONTRACTL |
| 2312 | { |
| 2313 | NOTHROW; |
| 2314 | GC_NOTRIGGER; |
| 2315 | } |
| 2316 | CONTRACTL_END; |
| 2317 | |
| 2318 | _ASSERTE ((requester & TAR_StackOverflow) == 0 || (requester & TAR_Thread) == TAR_Thread); |
| 2319 | |
| 2320 | AbortRequestLockHolder lh(this); |
| 2321 | |
| 2322 | if (fTentative) |
| 2323 | { |
| 2324 | if (!IsAbortRequested()) |
| 2325 | { |
| 2326 | STRESS_LOG0(LF_SYNC, LL_INFO1000, "Tentative thread abort abandoned\n" ); |
| 2327 | return; |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | #ifdef _DEBUG |
| 2332 | if (abortType == EEPolicy::TA_Rude) |
| 2333 | { |
| 2334 | m_fRudeAborted = TRUE; |
| 2335 | } |
| 2336 | #endif |
| 2337 | |
| 2338 | DWORD abortInfo = 0; |
| 2339 | |
| 2340 | if (requester & TAR_Thread) |
| 2341 | { |
| 2342 | if (abortType == EEPolicy::TA_Safe) |
| 2343 | { |
| 2344 | abortInfo |= TAI_ThreadAbort; |
| 2345 | } |
| 2346 | else if (abortType == EEPolicy::TA_Rude) |
| 2347 | { |
| 2348 | abortInfo |= TAI_ThreadRudeAbort; |
| 2349 | } |
| 2350 | else if (abortType == EEPolicy::TA_V1Compatible) |
| 2351 | { |
| 2352 | abortInfo |= TAI_ThreadV1Abort; |
| 2353 | } |
| 2354 | } |
| 2355 | |
| 2356 | if (requester & TAR_FuncEval) |
| 2357 | { |
| 2358 | if (abortType == EEPolicy::TA_Safe) |
| 2359 | { |
| 2360 | abortInfo |= TAI_FuncEvalAbort; |
| 2361 | } |
| 2362 | else if (abortType == EEPolicy::TA_Rude) |
| 2363 | { |
| 2364 | abortInfo |= TAI_FuncEvalRudeAbort; |
| 2365 | } |
| 2366 | else if (abortType == EEPolicy::TA_V1Compatible) |
| 2367 | { |
| 2368 | abortInfo |= TAI_FuncEvalV1Abort; |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | if (abortInfo == 0) |
| 2373 | { |
| 2374 | ASSERT(!"Invalid abort information" ); |
| 2375 | return; |
| 2376 | } |
| 2377 | |
| 2378 | if (requester == TAR_Thread) |
| 2379 | { |
| 2380 | DWORD timeoutFromPolicy; |
| 2381 | if (abortType != EEPolicy::TA_Rude) |
| 2382 | { |
| 2383 | timeoutFromPolicy = GetEEPolicy()->GetTimeout(OPR_ThreadAbort); |
| 2384 | } |
| 2385 | else if (!HasLockInCurrentDomain()) |
| 2386 | { |
| 2387 | timeoutFromPolicy = GetEEPolicy()->GetTimeout(OPR_ThreadRudeAbortInNonCriticalRegion); |
| 2388 | } |
| 2389 | else |
| 2390 | { |
| 2391 | timeoutFromPolicy = GetEEPolicy()->GetTimeout(OPR_ThreadRudeAbortInCriticalRegion); |
| 2392 | } |
| 2393 | if (timeoutFromPolicy != INFINITE) |
| 2394 | { |
| 2395 | ULONGLONG endTime = CLRGetTickCount64() + timeoutFromPolicy; |
| 2396 | if (abortType != EEPolicy::TA_Rude) |
| 2397 | { |
| 2398 | if (endTime < m_AbortEndTime) |
| 2399 | { |
| 2400 | m_AbortEndTime = endTime; |
| 2401 | } |
| 2402 | } |
| 2403 | else if (endTime < m_RudeAbortEndTime) |
| 2404 | { |
| 2405 | m_RudeAbortEndTime = endTime; |
| 2406 | } |
| 2407 | } |
| 2408 | } |
| 2409 | |
| 2410 | if (abortInfo == (m_AbortInfo & abortInfo)) |
| 2411 | { |
| 2412 | // |
| 2413 | // We are already doing this kind of abort. |
| 2414 | // |
| 2415 | return; |
| 2416 | } |
| 2417 | |
| 2418 | m_AbortInfo |= abortInfo; |
| 2419 | |
| 2420 | if (m_AbortType >= (DWORD)abortType) |
| 2421 | { |
| 2422 | // another thread is aborting at a higher level |
| 2423 | return; |
| 2424 | } |
| 2425 | |
| 2426 | m_AbortType = abortType; |
| 2427 | |
| 2428 | if (!IsAbortRequested()) |
| 2429 | { |
| 2430 | // We must set this before we start flipping thread bits to avoid races where |
| 2431 | // trap returning threads is already high due to other reasons. |
| 2432 | |
| 2433 | // The thread is asked for abort the first time |
| 2434 | SetAbortRequestBit(); |
| 2435 | } |
| 2436 | STRESS_LOG4(LF_APPDOMAIN, LL_ALWAYS, "Mark Thread %p Thread Id = %x for abort from requester %d (type %d)\n" , this, GetThreadId(), requester, abortType); |
| 2437 | } |
| 2438 | |
| 2439 | void Thread::SetAbortRequestBit() |
| 2440 | { |
| 2441 | WRAPPER_NO_CONTRACT; |
| 2442 | while (TRUE) |
| 2443 | { |
| 2444 | Volatile<LONG> curValue = (LONG)m_State; |
| 2445 | if ((curValue & TS_AbortRequested) != 0) |
| 2446 | { |
| 2447 | break; |
| 2448 | } |
| 2449 | if (FastInterlockCompareExchange((LONG*)&m_State, curValue|TS_AbortRequested, curValue) == curValue) |
| 2450 | { |
| 2451 | ThreadStore::TrapReturningThreads(TRUE); |
| 2452 | |
| 2453 | break; |
| 2454 | } |
| 2455 | } |
| 2456 | } |
| 2457 | |
| 2458 | void Thread::RemoveAbortRequestBit() |
| 2459 | { |
| 2460 | CONTRACTL { |
| 2461 | NOTHROW; |
| 2462 | GC_NOTRIGGER; |
| 2463 | } CONTRACTL_END; |
| 2464 | |
| 2465 | #ifdef _DEBUG |
| 2466 | // There's a race between removing the TS_AbortRequested bit and decrementing g_TrapReturningThreads |
| 2467 | // We may remove the bit, but before we have a chance to call ThreadStore::TrapReturningThreads(FALSE) |
| 2468 | // DbgFindThread() may execute, and find too few threads with the bit set. |
| 2469 | // To ensure the assert in DbgFindThread does not fire under such a race we set the ChgInFlight before hand. |
| 2470 | CounterHolder trtHolder(&g_trtChgInFlight); |
| 2471 | #endif |
| 2472 | while (TRUE) |
| 2473 | { |
| 2474 | Volatile<LONG> curValue = (LONG)m_State; |
| 2475 | if ((curValue & TS_AbortRequested) == 0) |
| 2476 | { |
| 2477 | break; |
| 2478 | } |
| 2479 | if (FastInterlockCompareExchange((LONG*)&m_State, curValue&(~TS_AbortRequested), curValue) == curValue) |
| 2480 | { |
| 2481 | ThreadStore::TrapReturningThreads(FALSE); |
| 2482 | |
| 2483 | break; |
| 2484 | } |
| 2485 | } |
| 2486 | } |
| 2487 | |
| 2488 | // Make sure that when AbortRequest bit is cleared, we also dec TrapReturningThreads count. |
| 2489 | void Thread::UnmarkThreadForAbort(ThreadAbortRequester requester, BOOL fForce) |
| 2490 | { |
| 2491 | CONTRACTL |
| 2492 | { |
| 2493 | NOTHROW; |
| 2494 | GC_NOTRIGGER; |
| 2495 | } |
| 2496 | CONTRACTL_END; |
| 2497 | |
| 2498 | // Switch to COOP (for ClearAbortReason) before acquiring AbortRequestLock |
| 2499 | GCX_COOP(); |
| 2500 | |
| 2501 | AbortRequestLockHolder lh(this); |
| 2502 | |
| 2503 | // |
| 2504 | // Unmark the bits that are being turned off |
| 2505 | // |
| 2506 | if (requester & TAR_Thread) |
| 2507 | { |
| 2508 | if ((m_AbortInfo != TAI_ThreadRudeAbort) || fForce) |
| 2509 | { |
| 2510 | m_AbortInfo &= ~(TAI_ThreadAbort | |
| 2511 | TAI_ThreadV1Abort | |
| 2512 | TAI_ThreadRudeAbort ); |
| 2513 | } |
| 2514 | |
| 2515 | if (m_AbortReason) |
| 2516 | { |
| 2517 | ClearAbortReason(TRUE); |
| 2518 | } |
| 2519 | } |
| 2520 | |
| 2521 | if (requester & TAR_FuncEval) |
| 2522 | { |
| 2523 | m_AbortInfo &= ~(TAI_FuncEvalAbort | |
| 2524 | TAI_FuncEvalV1Abort | |
| 2525 | TAI_FuncEvalRudeAbort); |
| 2526 | } |
| 2527 | |
| 2528 | // |
| 2529 | // Decide which type of abort to do based on the new bit field. |
| 2530 | // |
| 2531 | if (m_AbortInfo & TAI_AnyRudeAbort) |
| 2532 | { |
| 2533 | m_AbortType = EEPolicy::TA_Rude; |
| 2534 | } |
| 2535 | else if (m_AbortInfo & TAI_AnyV1Abort) |
| 2536 | { |
| 2537 | m_AbortType = EEPolicy::TA_V1Compatible; |
| 2538 | } |
| 2539 | else if (m_AbortInfo & TAI_AnySafeAbort) |
| 2540 | { |
| 2541 | m_AbortType = EEPolicy::TA_Safe; |
| 2542 | } |
| 2543 | else |
| 2544 | { |
| 2545 | m_AbortType = EEPolicy::TA_None; |
| 2546 | } |
| 2547 | |
| 2548 | // |
| 2549 | // If still aborting, do nothing |
| 2550 | // |
| 2551 | if (m_AbortType != EEPolicy::TA_None) |
| 2552 | { |
| 2553 | return; |
| 2554 | } |
| 2555 | |
| 2556 | m_AbortEndTime = MAXULONGLONG; |
| 2557 | m_RudeAbortEndTime = MAXULONGLONG; |
| 2558 | |
| 2559 | if (IsAbortRequested()) |
| 2560 | { |
| 2561 | RemoveAbortRequestBit(); |
| 2562 | FastInterlockAnd((DWORD*)&m_State,~(TS_AbortInitiated)); |
| 2563 | m_fRudeAbortInitiated = FALSE; |
| 2564 | ResetUserInterrupted(); |
| 2565 | } |
| 2566 | |
| 2567 | STRESS_LOG3(LF_APPDOMAIN, LL_ALWAYS, "Unmark Thread %p Thread Id = %x for abort from requester %d\n" , this, GetThreadId(), requester); |
| 2568 | } |
| 2569 | |
| 2570 | void Thread::InternalResetAbort(ThreadAbortRequester requester, BOOL fResetRudeAbort) |
| 2571 | { |
| 2572 | CONTRACTL { |
| 2573 | NOTHROW; |
| 2574 | GC_NOTRIGGER; |
| 2575 | } |
| 2576 | CONTRACTL_END; |
| 2577 | |
| 2578 | _ASSERTE(this == GetThread()); |
| 2579 | _ASSERTE(!IsDead()); |
| 2580 | |
| 2581 | // managed code can not reset Rude thread abort |
| 2582 | UnmarkThreadForAbort(requester, fResetRudeAbort); |
| 2583 | } |
| 2584 | |
| 2585 | |
| 2586 | // Throw a thread abort request when a suspended thread is resumed. Make sure you know what you |
| 2587 | // are doing when you call this routine. |
| 2588 | void Thread::SetAbortRequest(EEPolicy::ThreadAbortTypes abortType) |
| 2589 | { |
| 2590 | CONTRACTL { |
| 2591 | NOTHROW; |
| 2592 | GC_NOTRIGGER; |
| 2593 | } |
| 2594 | CONTRACTL_END; |
| 2595 | |
| 2596 | MarkThreadForAbort(TAR_Thread, abortType); |
| 2597 | |
| 2598 | if (m_State & TS_Interruptible) |
| 2599 | { |
| 2600 | UserInterrupt(TI_Abort); |
| 2601 | } |
| 2602 | } |
| 2603 | |
| 2604 | |
| 2605 | void ThreadSuspend::LockThreadStore(ThreadSuspend::SUSPEND_REASON reason) |
| 2606 | { |
| 2607 | CONTRACTL { |
| 2608 | NOTHROW; |
| 2609 | if ((GetThread() != NULL) && GetThread()->PreemptiveGCDisabled()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 2610 | } |
| 2611 | CONTRACTL_END; |
| 2612 | |
| 2613 | // There's a nasty problem here. Once we start shutting down because of a |
| 2614 | // process detach notification, threads are disappearing from under us. There |
| 2615 | // are a surprising number of cases where the dying thread holds the ThreadStore |
| 2616 | // lock. For example, the finalizer thread holds this during startup in about |
| 2617 | // 10 of our COM BVTs. |
| 2618 | if (!IsAtProcessExit()) |
| 2619 | { |
| 2620 | BOOL gcOnTransitions; |
| 2621 | |
| 2622 | Thread *pCurThread = GetThread(); |
| 2623 | |
| 2624 | gcOnTransitions = GC_ON_TRANSITIONS(FALSE); // dont do GC for GCStress 3 |
| 2625 | |
| 2626 | BOOL toggleGC = ( pCurThread != NULL |
| 2627 | && pCurThread->PreemptiveGCDisabled() |
| 2628 | && reason != ThreadSuspend::SUSPEND_FOR_GC); |
| 2629 | |
| 2630 | // Note: there is logic in gc.cpp surrounding suspending all |
| 2631 | // runtime threads for a GC that depends on the fact that we |
| 2632 | // do an EnablePreemptiveGC and a DisablePreemptiveGC around |
| 2633 | // taking this lock. |
| 2634 | if (toggleGC) |
| 2635 | pCurThread->EnablePreemptiveGC(); |
| 2636 | |
| 2637 | LOG((LF_SYNC, INFO3, "Locking thread store\n" )); |
| 2638 | |
| 2639 | // Any thread that holds the thread store lock cannot be stopped by unmanaged breakpoints and exceptions when |
| 2640 | // we're doing managed/unmanaged debugging. Calling SetDebugCantStop(true) on the current thread helps us |
| 2641 | // remember that. |
| 2642 | if (pCurThread) |
| 2643 | pCurThread->SetDebugCantStop(true); |
| 2644 | |
| 2645 | // This is used to avoid thread starvation if non-GC threads are competing for |
| 2646 | // the thread store lock when there is a real GC-thread waiting to get in. |
| 2647 | // This is initialized lazily when the first non-GC thread backs out because of |
| 2648 | // a waiting GC thread. |
| 2649 | if (s_hAbortEvt != NULL && |
| 2650 | !(reason == ThreadSuspend::SUSPEND_FOR_GC || |
| 2651 | reason == ThreadSuspend::SUSPEND_FOR_GC_PREP || |
| 2652 | reason == ThreadSuspend::SUSPEND_FOR_DEBUGGER_SWEEP) && |
| 2653 | m_pThreadAttemptingSuspendForGC != NULL && |
| 2654 | m_pThreadAttemptingSuspendForGC != pCurThread) |
| 2655 | { |
| 2656 | CLREventBase * hAbortEvt = s_hAbortEvt; |
| 2657 | |
| 2658 | if (hAbortEvt != NULL) |
| 2659 | { |
| 2660 | LOG((LF_SYNC, INFO3, "Performing suspend abort wait.\n" )); |
| 2661 | hAbortEvt->Wait(INFINITE, FALSE); |
| 2662 | LOG((LF_SYNC, INFO3, "Release from suspend abort wait.\n" )); |
| 2663 | } |
| 2664 | } |
| 2665 | |
| 2666 | // This is shutdown aware. If we're in shutdown, and not helper/finalizer/shutdown |
| 2667 | // then this will not take the lock and just block forever. |
| 2668 | ThreadStore::s_pThreadStore->Enter(); |
| 2669 | |
| 2670 | |
| 2671 | _ASSERTE(ThreadStore::s_pThreadStore->m_holderthreadid.IsUnknown()); |
| 2672 | ThreadStore::s_pThreadStore->m_holderthreadid.SetToCurrentThread(); |
| 2673 | |
| 2674 | LOG((LF_SYNC, INFO3, "Locked thread store\n" )); |
| 2675 | |
| 2676 | // Established after we obtain the lock, so only useful for synchronous tests. |
| 2677 | // A thread attempting to suspend us asynchronously already holds this lock. |
| 2678 | ThreadStore::s_pThreadStore->m_HoldingThread = pCurThread; |
| 2679 | |
| 2680 | #ifndef _PREFAST_ |
| 2681 | if (toggleGC) |
| 2682 | pCurThread->DisablePreemptiveGC(); |
| 2683 | #endif |
| 2684 | |
| 2685 | GC_ON_TRANSITIONS(gcOnTransitions); |
| 2686 | } |
| 2687 | #ifdef _DEBUG |
| 2688 | else |
| 2689 | LOG((LF_SYNC, INFO3, "Locking thread store skipped upon detach\n" )); |
| 2690 | #endif |
| 2691 | } |
| 2692 | |
| 2693 | void ThreadSuspend::UnlockThreadStore(BOOL bThreadDestroyed, ThreadSuspend::SUSPEND_REASON reason) |
| 2694 | { |
| 2695 | CONTRACTL { |
| 2696 | NOTHROW; |
| 2697 | GC_NOTRIGGER; |
| 2698 | } |
| 2699 | CONTRACTL_END; |
| 2700 | |
| 2701 | // There's a nasty problem here. Once we start shutting down because of a |
| 2702 | // process detach notification, threads are disappearing from under us. There |
| 2703 | // are a surprising number of cases where the dying thread holds the ThreadStore |
| 2704 | // lock. For example, the finalizer thread holds this during startup in about |
| 2705 | // 10 of our COM BVTs. |
| 2706 | if (!IsAtProcessExit()) |
| 2707 | { |
| 2708 | Thread *pCurThread = GetThread(); |
| 2709 | |
| 2710 | LOG((LF_SYNC, INFO3, "Unlocking thread store\n" )); |
| 2711 | _ASSERTE(GetThread() == NULL || ThreadStore::s_pThreadStore->m_HoldingThread == GetThread()); |
| 2712 | |
| 2713 | #ifdef _DEBUG |
| 2714 | // If Thread object has been destroyed, we need to reset the ownership info in Crst. |
| 2715 | _ASSERTE(!bThreadDestroyed || GetThread() == NULL); |
| 2716 | if (bThreadDestroyed) { |
| 2717 | ThreadStore::s_pThreadStore->m_Crst.m_holderthreadid.SetToCurrentThread(); |
| 2718 | } |
| 2719 | #endif |
| 2720 | |
| 2721 | ThreadStore::s_pThreadStore->m_HoldingThread = NULL; |
| 2722 | ThreadStore::s_pThreadStore->m_holderthreadid.Clear(); |
| 2723 | ThreadStore::s_pThreadStore->Leave(); |
| 2724 | LOG((LF_SYNC, INFO3, "Unlocked thread store\n" )); |
| 2725 | |
| 2726 | // We're out of the critical area for managed/unmanaged debugging. |
| 2727 | if (!bThreadDestroyed && pCurThread) |
| 2728 | pCurThread->SetDebugCantStop(false); |
| 2729 | } |
| 2730 | #ifdef _DEBUG |
| 2731 | else |
| 2732 | LOG((LF_SYNC, INFO3, "Unlocking thread store skipped upon detach\n" )); |
| 2733 | #endif |
| 2734 | } |
| 2735 | |
| 2736 | |
| 2737 | void ThreadStore::AllocateOSContext() |
| 2738 | { |
| 2739 | LIMITED_METHOD_CONTRACT; |
| 2740 | _ASSERTE(HoldingThreadStore()); |
| 2741 | if (s_pOSContext == NULL |
| 2742 | #ifdef _DEBUG |
| 2743 | || s_pOSContext == (CONTEXT*)0x1 |
| 2744 | #endif |
| 2745 | ) |
| 2746 | { |
| 2747 | s_pOSContext = new (nothrow) CONTEXT(); |
| 2748 | } |
| 2749 | #ifdef _DEBUG |
| 2750 | if (s_pOSContext == NULL) |
| 2751 | { |
| 2752 | s_pOSContext = (CONTEXT*)0x1; |
| 2753 | } |
| 2754 | #endif |
| 2755 | } |
| 2756 | |
| 2757 | CONTEXT *ThreadStore::GrabOSContext() |
| 2758 | { |
| 2759 | LIMITED_METHOD_CONTRACT; |
| 2760 | _ASSERTE(HoldingThreadStore()); |
| 2761 | CONTEXT *pContext = s_pOSContext; |
| 2762 | s_pOSContext = NULL; |
| 2763 | #ifdef _DEBUG |
| 2764 | if (pContext == (CONTEXT*)0x1) |
| 2765 | { |
| 2766 | pContext = NULL; |
| 2767 | } |
| 2768 | #endif |
| 2769 | return pContext; |
| 2770 | } |
| 2771 | |
| 2772 | extern void WaitForEndOfShutdown(); |
| 2773 | |
| 2774 | //---------------------------------------------------------------------------- |
| 2775 | // |
| 2776 | // Suspending threads, rendezvousing with threads that reach safe places, etc. |
| 2777 | // |
| 2778 | //---------------------------------------------------------------------------- |
| 2779 | |
| 2780 | // A note on SUSPENSIONS. |
| 2781 | // |
| 2782 | // We must not suspend a thread while it is holding the ThreadStore lock, or |
| 2783 | // the lock on the thread. Why? Because we need those locks to resume the |
| 2784 | // thread (and to perform a GC, use the debugger, spawn or kill threads, etc.) |
| 2785 | // |
| 2786 | // There are two types of suspension we must consider to enforce the above |
| 2787 | // rule. Synchronous suspensions are where we persuade the thread to suspend |
| 2788 | // itself. This is CommonTripThread and its cousins. In other words, the |
| 2789 | // thread toggles the GC mode, or it hits a hijack, or certain opcodes in the |
| 2790 | // interpreter, etc. In these cases, the thread can simply check whether it |
| 2791 | // is holding these locks before it suspends itself. |
| 2792 | // |
| 2793 | // The other style is an asynchronous suspension. This is where another |
| 2794 | // thread looks to see where we are. If we are in a fully interruptible region |
| 2795 | // of JIT code, we will be left suspended. In this case, the thread performing |
| 2796 | // the suspension must hold the locks on the thread and the threadstore. This |
| 2797 | // ensures that we aren't suspended while we are holding these locks. |
| 2798 | // |
| 2799 | // Note that in the asynchronous case it's not enough to just inspect the thread |
| 2800 | // to see if it's holding these locks. Since the thread must be in preemptive |
| 2801 | // mode to block to acquire these locks, and since there will be a few inst- |
| 2802 | // ructions between acquiring the lock and noting in our state that we've |
| 2803 | // acquired it, then there would be a window where we would seem eligible for |
| 2804 | // suspension -- but in fact would not be. |
| 2805 | |
| 2806 | //---------------------------------------------------------------------------- |
| 2807 | |
| 2808 | // We can't leave preemptive mode and enter cooperative mode, if a GC is |
| 2809 | // currently in progress. This is the situation when returning back into |
| 2810 | // the EE from outside. See the comments in DisablePreemptiveGC() to understand |
| 2811 | // why we Enable GC here! |
| 2812 | void Thread::RareDisablePreemptiveGC() |
| 2813 | { |
| 2814 | BEGIN_PRESERVE_LAST_ERROR; |
| 2815 | |
| 2816 | CONTRACTL { |
| 2817 | NOTHROW; |
| 2818 | SO_TOLERANT; |
| 2819 | DISABLED(GC_TRIGGERS); // I think this is actually wrong: prevents a p->c->p mode switch inside a NOTRIGGER region. |
| 2820 | } |
| 2821 | CONTRACTL_END; |
| 2822 | |
| 2823 | CONTRACT_VIOLATION(SOToleranceViolation); |
| 2824 | |
| 2825 | if (IsAtProcessExit()) |
| 2826 | { |
| 2827 | goto Exit; |
| 2828 | } |
| 2829 | |
| 2830 | // This should NEVER be called if the TSNC_UnsafeSkipEnterCooperative bit is set! |
| 2831 | _ASSERTE(!(m_StateNC & TSNC_UnsafeSkipEnterCooperative) && "DisablePreemptiveGC called while the TSNC_UnsafeSkipEnterCooperative bit is set" ); |
| 2832 | |
| 2833 | // Holding a spin lock in preemp mode and switch to coop mode could cause other threads spinning |
| 2834 | // waiting for GC |
| 2835 | _ASSERTE ((m_StateNC & Thread::TSNC_OwnsSpinLock) == 0); |
| 2836 | |
| 2837 | if (!GCHeapUtilities::IsGCHeapInitialized()) |
| 2838 | { |
| 2839 | goto Exit; |
| 2840 | } |
| 2841 | |
| 2842 | // CoreCLR does not support user-requested thread suspension |
| 2843 | _ASSERTE(!(m_State & TS_UserSuspendPending)); |
| 2844 | |
| 2845 | // Note IsGCInProgress is also true for say Pause (anywhere SuspendEE happens) and GCThread is the |
| 2846 | // thread that did the Pause. While in Pause if another thread attempts Rev/Pinvoke it should get inside the following and |
| 2847 | // block until resume |
| 2848 | if (((GCHeapUtilities::IsGCInProgress() && (this != ThreadSuspend::GetSuspensionThread())) || |
| 2849 | (m_State & (TS_UserSuspendPending | TS_DebugSuspendPending | TS_StackCrawlNeeded))) && |
| 2850 | (!g_fSuspendOnShutdown || IsFinalizerThread() || IsShutdownSpecialThread())) |
| 2851 | { |
| 2852 | if (!ThreadStore::HoldingThreadStore(this)) |
| 2853 | { |
| 2854 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "RareDisablePreemptiveGC: entering. Thread state = %x\n" , m_State.Load()); |
| 2855 | |
| 2856 | DWORD dwSwitchCount = 0; |
| 2857 | |
| 2858 | do |
| 2859 | { |
| 2860 | // CoreCLR does not support user-requested thread suspension |
| 2861 | _ASSERTE(!(m_State & TS_UserSuspendPending)); |
| 2862 | |
| 2863 | EnablePreemptiveGC(); |
| 2864 | |
| 2865 | // Cannot use GCX_PREEMP_NO_DTOR here because we're inside of the thread |
| 2866 | // PREEMP->COOP switch mechanism and GCX_PREEMP's assert's will fire. |
| 2867 | // Instead we use BEGIN_GCX_ASSERT_PREEMP to inform Scan of the mode |
| 2868 | // change here. |
| 2869 | BEGIN_GCX_ASSERT_PREEMP; |
| 2870 | |
| 2871 | // just wait until the GC is over. |
| 2872 | if (this != ThreadSuspend::GetSuspensionThread()) |
| 2873 | { |
| 2874 | #ifdef PROFILING_SUPPORTED |
| 2875 | // If profiler desires GC events, notify it that this thread is waiting until the GC is over |
| 2876 | // Do not send suspend notifications for debugger suspensions |
| 2877 | { |
| 2878 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 2879 | if (!(m_State & TS_DebugSuspendPending)) |
| 2880 | { |
| 2881 | g_profControlBlock.pProfInterface->RuntimeThreadSuspended((ThreadID)this); |
| 2882 | } |
| 2883 | END_PIN_PROFILER(); |
| 2884 | } |
| 2885 | #endif // PROFILING_SUPPORTED |
| 2886 | |
| 2887 | |
| 2888 | |
| 2889 | DWORD status = S_OK; |
| 2890 | SetThreadStateNC(TSNC_WaitUntilGCFinished); |
| 2891 | status = GCHeapUtilities::GetGCHeap()->WaitUntilGCComplete(); |
| 2892 | ResetThreadStateNC(TSNC_WaitUntilGCFinished); |
| 2893 | |
| 2894 | if (status == (DWORD)COR_E_STACKOVERFLOW) |
| 2895 | { |
| 2896 | // One of two things can happen here: |
| 2897 | // 1. GC is suspending the process. GC needs to wait. |
| 2898 | // 2. GC is proceeding after suspension. The current thread needs to spin. |
| 2899 | SetThreadState(TS_BlockGCForSO); |
| 2900 | while (GCHeapUtilities::IsGCInProgress() && m_fPreemptiveGCDisabled.Load() == 0) |
| 2901 | { |
| 2902 | #undef Sleep |
| 2903 | // We can not go to a host for blocking operation due ot lack of stack. |
| 2904 | // Instead we will spin here until |
| 2905 | // 1. GC is finished; Or |
| 2906 | // 2. GC lets this thread to run and will wait for it |
| 2907 | Sleep(10); |
| 2908 | #define Sleep(a) Dont_Use_Sleep(a) |
| 2909 | } |
| 2910 | ResetThreadState(TS_BlockGCForSO); |
| 2911 | if (m_fPreemptiveGCDisabled.Load() == 1) |
| 2912 | { |
| 2913 | // GC suspension has allowed this thread to switch back to cooperative mode. |
| 2914 | break; |
| 2915 | } |
| 2916 | } |
| 2917 | if (!GCHeapUtilities::IsGCInProgress()) |
| 2918 | { |
| 2919 | if (HasThreadState(TS_StackCrawlNeeded)) |
| 2920 | { |
| 2921 | SetThreadStateNC(TSNC_WaitUntilGCFinished); |
| 2922 | ThreadStore::WaitForStackCrawlEvent(); |
| 2923 | ResetThreadStateNC(TSNC_WaitUntilGCFinished); |
| 2924 | } |
| 2925 | else |
| 2926 | { |
| 2927 | __SwitchToThread(0, ++dwSwitchCount); |
| 2928 | } |
| 2929 | } |
| 2930 | |
| 2931 | #ifdef PROFILING_SUPPORTED |
| 2932 | // Let the profiler know that this thread is resuming |
| 2933 | { |
| 2934 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 2935 | g_profControlBlock.pProfInterface->RuntimeThreadResumed((ThreadID)this); |
| 2936 | END_PIN_PROFILER(); |
| 2937 | } |
| 2938 | #endif // PROFILING_SUPPORTED |
| 2939 | } |
| 2940 | |
| 2941 | END_GCX_ASSERT_PREEMP; |
| 2942 | |
| 2943 | // disable preemptive gc. |
| 2944 | FastInterlockOr(&m_fPreemptiveGCDisabled, 1); |
| 2945 | |
| 2946 | // The fact that we check whether 'this' is the GC thread may seem |
| 2947 | // strange. After all, we determined this before entering the method. |
| 2948 | // However, it is possible for the current thread to become the GC |
| 2949 | // thread while in this loop. This happens if you use the COM+ |
| 2950 | // debugger to suspend this thread and then release it. |
| 2951 | |
| 2952 | } while ((GCHeapUtilities::IsGCInProgress() && (this != ThreadSuspend::GetSuspensionThread())) || |
| 2953 | (m_State & (TS_UserSuspendPending | TS_DebugSuspendPending | TS_StackCrawlNeeded))); |
| 2954 | } |
| 2955 | STRESS_LOG0(LF_SYNC, LL_INFO1000, "RareDisablePreemptiveGC: leaving\n" ); |
| 2956 | } |
| 2957 | |
| 2958 | // Block all threads except finalizer and shutdown thread during shutdown. |
| 2959 | // If g_fSuspendFinalizerOnShutdown is set, block the finalizer too. |
| 2960 | if ((g_fSuspendOnShutdown && !IsFinalizerThread() && !IsShutdownSpecialThread()) || |
| 2961 | (g_fSuspendFinalizerOnShutdown && IsFinalizerThread())) |
| 2962 | { |
| 2963 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "RareDisablePreemptiveGC: entering. Thread state = %x\n" , m_State.Load()); |
| 2964 | |
| 2965 | EnablePreemptiveGC(); |
| 2966 | |
| 2967 | // Cannot use GCX_PREEMP_NO_DTOR here because we're inside of the thread |
| 2968 | // PREEMP->COOP switch mechanism and GCX_PREEMP's assert's will fire. |
| 2969 | // Instead we use BEGIN_GCX_ASSERT_PREEMP to inform Scan of the mode |
| 2970 | // change here. |
| 2971 | BEGIN_GCX_ASSERT_PREEMP; |
| 2972 | |
| 2973 | #ifdef PROFILING_SUPPORTED |
| 2974 | // If profiler desires GC events, notify it that this thread is waiting until the GC is over |
| 2975 | // Do not send suspend notifications for debugger suspensions |
| 2976 | { |
| 2977 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 2978 | if (!(m_State & TS_DebugSuspendPending)) |
| 2979 | { |
| 2980 | g_profControlBlock.pProfInterface->RuntimeThreadSuspended((ThreadID)this); |
| 2981 | } |
| 2982 | END_PIN_PROFILER(); |
| 2983 | } |
| 2984 | #endif // PROFILING_SUPPORTED |
| 2985 | |
| 2986 | |
| 2987 | |
| 2988 | // The thread is blocked for shutdown. We do not concern for GC violation. |
| 2989 | CONTRACT_VIOLATION(GCViolation); |
| 2990 | |
| 2991 | WaitForEndOfShutdown(); |
| 2992 | |
| 2993 | END_GCX_ASSERT_PREEMP; |
| 2994 | |
| 2995 | __SwitchToThread(INFINITE, CALLER_LIMITS_SPINNING); |
| 2996 | _ASSERTE(!"Cannot reach here" ); |
| 2997 | } |
| 2998 | |
| 2999 | Exit: ; |
| 3000 | END_PRESERVE_LAST_ERROR; |
| 3001 | } |
| 3002 | |
| 3003 | void Thread::HandleThreadAbortTimeout() |
| 3004 | { |
| 3005 | WRAPPER_NO_CONTRACT; |
| 3006 | |
| 3007 | EPolicyAction action = eNoAction; |
| 3008 | EClrOperation operation = OPR_ThreadRudeAbortInNonCriticalRegion; |
| 3009 | |
| 3010 | if (IsFuncEvalAbort()) |
| 3011 | { |
| 3012 | // There can't be escalation policy for FuncEvalAbort timeout. |
| 3013 | // The debugger should retain control of the policy. For example, if a RudeAbort times out, it's |
| 3014 | // probably because the debugger had some other thread frozen. When the thread is thawed, things might |
| 3015 | // be fine, so we don't want to escelate the FuncEvalRudeAbort (which will be swalled by FuncEvalHijackWorker) |
| 3016 | // into a user RudeThreadAbort (which will at least rip the entire thread). |
| 3017 | return; |
| 3018 | } |
| 3019 | |
| 3020 | if (!IsRudeAbort()) |
| 3021 | { |
| 3022 | operation = OPR_ThreadAbort; |
| 3023 | } |
| 3024 | else if (HasLockInCurrentDomain()) |
| 3025 | { |
| 3026 | operation = OPR_ThreadRudeAbortInCriticalRegion; |
| 3027 | } |
| 3028 | else |
| 3029 | { |
| 3030 | operation = OPR_ThreadRudeAbortInNonCriticalRegion; |
| 3031 | } |
| 3032 | action = GetEEPolicy()->GetActionOnTimeout(operation, this); |
| 3033 | // We only support escalation to rude abort |
| 3034 | |
| 3035 | EX_TRY { |
| 3036 | switch (action) |
| 3037 | { |
| 3038 | case eRudeAbortThread: |
| 3039 | GetEEPolicy()->NotifyHostOnTimeout(operation,action); |
| 3040 | MarkThreadForAbort(TAR_Thread, EEPolicy::TA_Rude); |
| 3041 | break; |
| 3042 | case eExitProcess: |
| 3043 | case eFastExitProcess: |
| 3044 | case eRudeExitProcess: |
| 3045 | case eDisableRuntime: |
| 3046 | GetEEPolicy()->NotifyHostOnTimeout(operation,action); |
| 3047 | EEPolicy::HandleExitProcessFromEscalation(action, HOST_E_EXITPROCESS_THREADABORT); |
| 3048 | _ASSERTE (!"Should not reach here" ); |
| 3049 | break; |
| 3050 | case eNoAction: |
| 3051 | break; |
| 3052 | default: |
| 3053 | _ASSERTE (!"unknown policy for thread abort" ); |
| 3054 | } |
| 3055 | } |
| 3056 | EX_CATCH { |
| 3057 | } |
| 3058 | EX_END_CATCH(SwallowAllExceptions); |
| 3059 | } |
| 3060 | |
| 3061 | void Thread::HandleThreadAbort (BOOL fForce) |
| 3062 | { |
| 3063 | BEGIN_PRESERVE_LAST_ERROR; |
| 3064 | |
| 3065 | STATIC_CONTRACT_THROWS; |
| 3066 | STATIC_CONTRACT_GC_TRIGGERS; |
| 3067 | STATIC_CONTRACT_SO_TOLERANT; |
| 3068 | |
| 3069 | BEGIN_SO_INTOLERANT_CODE(this); |
| 3070 | TESTHOOKCALL(AppDomainCanBeUnloaded(GetDomain()->GetId().m_dwId,FALSE)); |
| 3071 | |
| 3072 | // It's possible we could go through here if we hit a hard SO and MC++ has called back |
| 3073 | // into the runtime on this thread |
| 3074 | |
| 3075 | FinishSOWork(); |
| 3076 | |
| 3077 | if (IsAbortRequested() && GetAbortEndTime() < CLRGetTickCount64()) |
| 3078 | { |
| 3079 | HandleThreadAbortTimeout(); |
| 3080 | } |
| 3081 | |
| 3082 | // @TODO: we should consider treating this function as an FCALL or HCALL and use FCThrow instead of COMPlusThrow |
| 3083 | |
| 3084 | // Sometimes we call this without any CLR SEH in place. An example is UMThunkStubRareDisableWorker. |
| 3085 | // That's okay since COMPlusThrow will eventually erect SEH around the RaiseException. It prevents |
| 3086 | // us from stating CONTRACT here. |
| 3087 | |
| 3088 | if (fForce || ReadyForAbort()) |
| 3089 | { |
| 3090 | ResetThreadState ((ThreadState)(TS_Interrupted | TS_Interruptible)); |
| 3091 | // We are going to abort. Abort satisfies Thread.Interrupt requirement. |
| 3092 | FastInterlockExchange (&m_UserInterrupt, 0); |
| 3093 | |
| 3094 | // generate either a ThreadAbort exception |
| 3095 | STRESS_LOG1(LF_APPDOMAIN, LL_INFO100, "Thread::HandleThreadAbort throwing abort for %x\n" , GetThreadId()); |
| 3096 | |
| 3097 | GCX_COOP_NO_DTOR(); |
| 3098 | |
| 3099 | // Can not use holder. GCX_COOP forces the thread back to the original state during |
| 3100 | // exception unwinding, which may put the thread back to cooperative mode. |
| 3101 | // GCX_COOP(); |
| 3102 | |
| 3103 | if (!IsAbortInitiated() || |
| 3104 | (IsRudeAbort() && !IsRudeAbortInitiated())) |
| 3105 | { |
| 3106 | PreWorkForThreadAbort(); |
| 3107 | } |
| 3108 | |
| 3109 | PreparingAbortHolder paHolder; |
| 3110 | |
| 3111 | OBJECTREF exceptObj; |
| 3112 | |
| 3113 | if (IsRudeAbort()) |
| 3114 | { |
| 3115 | exceptObj = CLRException::GetPreallocatedRudeThreadAbortException(); |
| 3116 | } |
| 3117 | else |
| 3118 | { |
| 3119 | EEException eeExcept(kThreadAbortException); |
| 3120 | exceptObj = CLRException::GetThrowableFromException(&eeExcept); |
| 3121 | } |
| 3122 | |
| 3123 | RaiseTheExceptionInternalOnly(exceptObj, FALSE); |
| 3124 | } |
| 3125 | END_SO_INTOLERANT_CODE; |
| 3126 | |
| 3127 | END_PRESERVE_LAST_ERROR; |
| 3128 | } |
| 3129 | |
| 3130 | void Thread::PreWorkForThreadAbort() |
| 3131 | { |
| 3132 | WRAPPER_NO_CONTRACT; |
| 3133 | |
| 3134 | SetAbortInitiated(); |
| 3135 | // if an abort and interrupt happen at the same time (e.g. on a sleeping thread), |
| 3136 | // the abort is favored. But we do need to reset the interrupt bits. |
| 3137 | FastInterlockAnd((ULONG *) &m_State, ~(TS_Interruptible | TS_Interrupted)); |
| 3138 | ResetUserInterrupted(); |
| 3139 | |
| 3140 | if (IsRudeAbort() && !(m_AbortInfo & (TAI_ADUnloadAbort | |
| 3141 | TAI_ADUnloadRudeAbort | |
| 3142 | TAI_ADUnloadV1Abort) |
| 3143 | )) { |
| 3144 | if (HasLockInCurrentDomain()) { |
| 3145 | AppDomain *pDomain = GetAppDomain(); |
| 3146 | // Cannot enable the following assertion. |
| 3147 | // We may take the lock, but the lock will be released during exception backout. |
| 3148 | //_ASSERTE(!pDomain->IsDefaultDomain()); |
| 3149 | EPolicyAction action = GetEEPolicy()->GetDefaultAction(OPR_ThreadRudeAbortInCriticalRegion, this); |
| 3150 | switch (action) |
| 3151 | { |
| 3152 | case eExitProcess: |
| 3153 | case eFastExitProcess: |
| 3154 | case eRudeExitProcess: |
| 3155 | case eDisableRuntime: |
| 3156 | { |
| 3157 | // We're about to exit the process, if we take an SO here we'll just exit faster right??? |
| 3158 | CONTRACT_VIOLATION(SOToleranceViolation); |
| 3159 | |
| 3160 | GetEEPolicy()->NotifyHostOnDefaultAction(OPR_ThreadRudeAbortInCriticalRegion,action); |
| 3161 | GetEEPolicy()->HandleExitProcessFromEscalation(action,HOST_E_EXITPROCESS_ADUNLOAD); |
| 3162 | } |
| 3163 | break; |
| 3164 | default: |
| 3165 | break; |
| 3166 | } |
| 3167 | } |
| 3168 | } |
| 3169 | } |
| 3170 | |
| 3171 | #if defined(STRESS_HEAP) && defined(_DEBUG) |
| 3172 | |
| 3173 | // This function is for GC stress testing. Before we enable preemptive GC, let us do a GC |
| 3174 | // because GC may happen while the thread is in preemptive GC mode. |
| 3175 | void Thread::PerformPreemptiveGC() |
| 3176 | { |
| 3177 | CONTRACTL { |
| 3178 | NOTHROW; |
| 3179 | DISABLED(GC_TRIGGERS); // I think this is actually wrong: prevents a p->c->p mode switch inside a NOTRIGGER region. |
| 3180 | DEBUG_ONLY; |
| 3181 | } |
| 3182 | CONTRACTL_END; |
| 3183 | |
| 3184 | if (IsAtProcessExit()) |
| 3185 | return; |
| 3186 | |
| 3187 | if (!GCStressPolicy::IsEnabled() || !GCStress<cfg_transition>::IsEnabled()) |
| 3188 | return; |
| 3189 | |
| 3190 | if (!GCHeapUtilities::IsGCHeapInitialized()) |
| 3191 | return; |
| 3192 | |
| 3193 | if (!m_GCOnTransitionsOK |
| 3194 | #ifdef ENABLE_CONTRACTS |
| 3195 | || RawGCNoTrigger() |
| 3196 | #endif |
| 3197 | || g_fEEShutDown |
| 3198 | || GCHeapUtilities::IsGCInProgress(TRUE) |
| 3199 | || GCHeapUtilities::GetGCHeap()->GetGcCount() == 0 // Need something that works for isolated heap. |
| 3200 | || ThreadStore::HoldingThreadStore()) |
| 3201 | return; |
| 3202 | |
| 3203 | if (Thread::ThreadsAtUnsafePlaces()) |
| 3204 | return; |
| 3205 | |
| 3206 | #ifdef DEBUGGING_SUPPORTED |
| 3207 | // Don't collect if the debugger is attach and either 1) there |
| 3208 | // are any threads held at unsafe places or 2) this thread is |
| 3209 | // under the control of the debugger's dispatch logic (as |
| 3210 | // evidenced by having a non-NULL filter context.) |
| 3211 | if ((CORDebuggerAttached() && |
| 3212 | (g_pDebugInterface->ThreadsAtUnsafePlaces() || |
| 3213 | (GetFilterContext() != NULL)))) |
| 3214 | return; |
| 3215 | #endif // DEBUGGING_SUPPORTED |
| 3216 | |
| 3217 | _ASSERTE(m_fPreemptiveGCDisabled.Load() == 0); // we are in preemptive mode when we call this |
| 3218 | |
| 3219 | m_GCOnTransitionsOK = FALSE; |
| 3220 | { |
| 3221 | GCX_COOP(); |
| 3222 | m_bGCStressing = TRUE; |
| 3223 | |
| 3224 | // BUG(github #10318) - when not using allocation contexts, the alloc lock |
| 3225 | // must be acquired here. Until fixed, this assert prevents random heap corruption. |
| 3226 | _ASSERTE(GCHeapUtilities::UseThreadAllocationContexts()); |
| 3227 | GCHeapUtilities::GetGCHeap()->StressHeap(GetThread()->GetAllocContext()); |
| 3228 | m_bGCStressing = FALSE; |
| 3229 | } |
| 3230 | m_GCOnTransitionsOK = TRUE; |
| 3231 | } |
| 3232 | #endif // STRESS_HEAP && DEBUG |
| 3233 | |
| 3234 | // To leave cooperative mode and enter preemptive mode, if a GC is in progress, we |
| 3235 | // no longer care to suspend this thread. But if we are trying to suspend the thread |
| 3236 | // for other reasons (e.g. Thread.Suspend()), now is a good time. |
| 3237 | // |
| 3238 | // Note that it is possible for an N/Direct call to leave the EE without explicitly |
| 3239 | // enabling preemptive GC. |
| 3240 | void Thread::RareEnablePreemptiveGC() |
| 3241 | { |
| 3242 | CONTRACTL { |
| 3243 | NOTHROW; |
| 3244 | DISABLED(GC_TRIGGERS); // I think this is actually wrong: prevents a p->c->p mode switch inside a NOTRIGGER region. |
| 3245 | SO_TOLERANT; |
| 3246 | } |
| 3247 | CONTRACTL_END; |
| 3248 | |
| 3249 | // @todo - Needs a hard SO probe |
| 3250 | CONTRACT_VIOLATION(GCViolation|FaultViolation|SOToleranceViolation); |
| 3251 | |
| 3252 | // If we have already received our PROCESS_DETACH during shutdown, there is only one thread in the |
| 3253 | // process and no coordination is necessary. |
| 3254 | if (IsAtProcessExit()) |
| 3255 | return; |
| 3256 | |
| 3257 | // EnablePreemptiveGC already set us to preemptive mode before triggering the Rare path. |
| 3258 | // Force other threads to see this update, since the Rare path implies that someone else |
| 3259 | // is observing us (e.g. SuspendRuntime). |
| 3260 | |
| 3261 | _ASSERTE (!m_fPreemptiveGCDisabled); |
| 3262 | |
| 3263 | // holding a spin lock in coop mode and transit to preemp mode will cause deadlock on GC |
| 3264 | _ASSERTE ((m_StateNC & Thread::TSNC_OwnsSpinLock) == 0); |
| 3265 | |
| 3266 | FastInterlockOr (&m_fPreemptiveGCDisabled, 0); |
| 3267 | |
| 3268 | #if defined(STRESS_HEAP) && defined(_DEBUG) |
| 3269 | if (!IsDetached()) |
| 3270 | PerformPreemptiveGC(); |
| 3271 | #endif |
| 3272 | |
| 3273 | STRESS_LOG1(LF_SYNC, LL_INFO100000, "RareEnablePreemptiveGC: entering. Thread state = %x\n" , m_State.Load()); |
| 3274 | if (!ThreadStore::HoldingThreadStore(this)) |
| 3275 | { |
| 3276 | #ifdef FEATURE_HIJACK |
| 3277 | // Remove any hijacks we might have. |
| 3278 | UnhijackThread(); |
| 3279 | #endif // FEATURE_HIJACK |
| 3280 | |
| 3281 | // wake up any threads waiting to suspend us, like the GC thread. |
| 3282 | ThreadSuspend::g_pGCSuspendEvent->Set(); |
| 3283 | |
| 3284 | // for GC, the fact that we are leaving the EE means that it no longer needs to |
| 3285 | // suspend us. But if we are doing a non-GC suspend, we need to block now. |
| 3286 | // Give the debugger precedence over user suspensions: |
| 3287 | while (m_State & (TS_DebugSuspendPending | TS_UserSuspendPending)) |
| 3288 | { |
| 3289 | // CoreCLR does not support user-requested thread suspension |
| 3290 | _ASSERTE(!(m_State & TS_UserSuspendPending)); |
| 3291 | |
| 3292 | #ifdef DEBUGGING_SUPPORTED |
| 3293 | // We don't notify the debugger that this thread is now suspended. We'll just |
| 3294 | // let the debugger's helper thread sweep and pick it up. |
| 3295 | // We also never take the TSL in here either. |
| 3296 | // Life's much simpler this way... |
| 3297 | |
| 3298 | |
| 3299 | #endif // DEBUGGING_SUPPORTED |
| 3300 | |
| 3301 | #ifdef LOGGING |
| 3302 | { |
| 3303 | LOG((LF_CORDB, LL_INFO1000, "[0x%x] SUSPEND: suspended while enabling gc.\n" , GetThreadId())); |
| 3304 | } |
| 3305 | #endif |
| 3306 | |
| 3307 | WaitSuspendEvents(); // sets bits, too |
| 3308 | |
| 3309 | } |
| 3310 | } |
| 3311 | STRESS_LOG0(LF_SYNC, LL_INFO100000, " RareEnablePreemptiveGC: leaving.\n" ); |
| 3312 | } |
| 3313 | |
| 3314 | // Called when we are passing through a safe point in CommonTripThread or |
| 3315 | // HandleGCSuspensionForInterruptedThread. Do the right thing with this thread, |
| 3316 | // which can either mean waiting for the GC to complete, or performing a |
| 3317 | // pending suspension. |
| 3318 | void Thread::PulseGCMode() |
| 3319 | { |
| 3320 | CONTRACTL { |
| 3321 | NOTHROW; |
| 3322 | GC_TRIGGERS; |
| 3323 | } |
| 3324 | CONTRACTL_END; |
| 3325 | |
| 3326 | _ASSERTE(this == GetThread()); |
| 3327 | |
| 3328 | if (PreemptiveGCDisabled() && CatchAtSafePoint()) |
| 3329 | { |
| 3330 | EnablePreemptiveGC(); |
| 3331 | DisablePreemptiveGC(); |
| 3332 | } |
| 3333 | } |
| 3334 | |
| 3335 | // Indicate whether threads should be trapped when returning to the EE (i.e. disabling |
| 3336 | // preemptive GC mode) |
| 3337 | Volatile<LONG> g_fTrapReturningThreadsLock; |
| 3338 | void ThreadStore::TrapReturningThreads(BOOL yes) |
| 3339 | { |
| 3340 | CONTRACTL { |
| 3341 | NOTHROW; |
| 3342 | GC_NOTRIGGER; |
| 3343 | } CONTRACTL_END; |
| 3344 | |
| 3345 | // make sure that a thread doesn't get suspended holding g_fTrapReturningThreadsLock |
| 3346 | // if a suspended thread held this lock and then the suspending thread called in |
| 3347 | // here (which it does) the suspending thread would deadlock causing the suspension |
| 3348 | // as a whole to deadlock |
| 3349 | ForbidSuspendThreadHolder suspend; |
| 3350 | |
| 3351 | DWORD dwSwitchCount = 0; |
| 3352 | while (1 == FastInterlockExchange(&g_fTrapReturningThreadsLock, 1)) |
| 3353 | { |
| 3354 | // we can't forbid suspension while we are sleeping and don't hold the lock |
| 3355 | // this will trigger an assert on SQLCLR but is a general issue |
| 3356 | suspend.Release(); |
| 3357 | __SwitchToThread(0, ++dwSwitchCount); |
| 3358 | suspend.Acquire(); |
| 3359 | } |
| 3360 | |
| 3361 | if (yes) |
| 3362 | { |
| 3363 | #ifdef _DEBUG |
| 3364 | CounterHolder trtHolder(&g_trtChgInFlight); |
| 3365 | FastInterlockIncrement(&g_trtChgStamp); |
| 3366 | #endif |
| 3367 | |
| 3368 | GCHeapUtilities::GetGCHeap()->SetSuspensionPending(true); |
| 3369 | FastInterlockIncrement (&g_TrapReturningThreads); |
| 3370 | #ifdef ENABLE_FAST_GCPOLL_HELPER |
| 3371 | EnableJitGCPoll(); |
| 3372 | #endif |
| 3373 | _ASSERTE(g_TrapReturningThreads > 0); |
| 3374 | |
| 3375 | #ifdef _DEBUG |
| 3376 | trtHolder.Release(); |
| 3377 | #endif |
| 3378 | } |
| 3379 | else |
| 3380 | { |
| 3381 | FastInterlockDecrement (&g_TrapReturningThreads); |
| 3382 | GCHeapUtilities::GetGCHeap()->SetSuspensionPending(false); |
| 3383 | |
| 3384 | #ifdef ENABLE_FAST_GCPOLL_HELPER |
| 3385 | if (0 == g_TrapReturningThreads) |
| 3386 | { |
| 3387 | DisableJitGCPoll(); |
| 3388 | } |
| 3389 | #endif |
| 3390 | |
| 3391 | _ASSERTE(g_TrapReturningThreads >= 0); |
| 3392 | } |
| 3393 | #ifdef ENABLE_FAST_GCPOLL_HELPER |
| 3394 | //Ensure that we flush the cache line containing the GC Poll Helper. |
| 3395 | MemoryBarrier(); |
| 3396 | #endif //ENABLE_FAST_GCPOLL_HELPER |
| 3397 | g_fTrapReturningThreadsLock = 0; |
| 3398 | |
| 3399 | } |
| 3400 | |
| 3401 | #ifdef FEATURE_HIJACK |
| 3402 | |
| 3403 | void RedirectedThreadFrame::ExceptionUnwind() |
| 3404 | { |
| 3405 | CONTRACTL |
| 3406 | { |
| 3407 | NOTHROW; |
| 3408 | GC_NOTRIGGER; |
| 3409 | SO_TOLERANT; |
| 3410 | MODE_ANY; |
| 3411 | } |
| 3412 | CONTRACTL_END; |
| 3413 | |
| 3414 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "In RedirectedThreadFrame::ExceptionUnwind pFrame = %p\n" , this); |
| 3415 | |
| 3416 | Thread* pThread = GetThread(); |
| 3417 | |
| 3418 | if (pThread->GetSavedRedirectContext()) |
| 3419 | { |
| 3420 | delete m_Regs; |
| 3421 | } |
| 3422 | else |
| 3423 | { |
| 3424 | // Save it for future use to avoid repeatedly new'ing |
| 3425 | pThread->SetSavedRedirectContext(m_Regs); |
| 3426 | } |
| 3427 | |
| 3428 | m_Regs = NULL; |
| 3429 | } |
| 3430 | |
| 3431 | #ifndef PLATFORM_UNIX |
| 3432 | |
| 3433 | #ifdef _TARGET_X86_ |
| 3434 | //**************************************************************************************** |
| 3435 | // This will check who caused the exception. If it was caused by the the redirect function, |
| 3436 | // the reason is to resume the thread back at the point it was redirected in the first |
| 3437 | // place. If the exception was not caused by the function, then it was caused by the call |
| 3438 | // out to the I[GC|Debugger]ThreadControl client and we need to determine if it's an |
| 3439 | // exception that we can just eat and let the runtime resume the thread, or if it's an |
| 3440 | // uncatchable exception that we need to pass on to the runtime. |
| 3441 | // |
| 3442 | int RedirectedHandledJITCaseExceptionFilter( |
| 3443 | PEXCEPTION_POINTERS pExcepPtrs, // Exception data |
| 3444 | RedirectedThreadFrame *pFrame, // Frame on stack |
| 3445 | BOOL fDone, // Whether redirect completed without exception |
| 3446 | CONTEXT *pCtx) // Saved context |
| 3447 | { |
| 3448 | // !!! Do not use a non-static contract here. |
| 3449 | // !!! Contract may insert an exception handling record. |
| 3450 | // !!! This function assumes that GetCurrentSEHRecord() returns the exception record set up in |
| 3451 | // !!! Thread::RedirectedHandledJITCase |
| 3452 | // |
| 3453 | // !!! Do not use an object with dtor, since it injects a fs:0 entry. |
| 3454 | STATIC_CONTRACT_NOTHROW; |
| 3455 | STATIC_CONTRACT_GC_TRIGGERS; |
| 3456 | STATIC_CONTRACT_MODE_ANY; |
| 3457 | |
| 3458 | if (pExcepPtrs->ExceptionRecord->ExceptionCode == STATUS_STACK_OVERFLOW) |
| 3459 | { |
| 3460 | return EXCEPTION_CONTINUE_SEARCH; |
| 3461 | } |
| 3462 | |
| 3463 | // Get the thread handle |
| 3464 | Thread *pThread = GetThread(); |
| 3465 | _ASSERTE(pThread); |
| 3466 | |
| 3467 | |
| 3468 | STRESS_LOG2(LF_SYNC, LL_INFO100, "In RedirectedHandledJITCaseExceptionFilter fDone = %d pFrame = %p\n" , fDone, pFrame); |
| 3469 | |
| 3470 | // If we get here via COM+ exception, gc-mode is unknown. We need it to |
| 3471 | // be cooperative for this function. |
| 3472 | GCX_COOP_NO_DTOR(); |
| 3473 | |
| 3474 | // If the exception was due to the called client, then we need to figure out if it |
| 3475 | // is an exception that can be eaten or if it needs to be handled elsewhere. |
| 3476 | if (!fDone) |
| 3477 | { |
| 3478 | if (pExcepPtrs->ExceptionRecord->ExceptionFlags & EXCEPTION_NONCONTINUABLE) |
| 3479 | { |
| 3480 | return (EXCEPTION_CONTINUE_SEARCH); |
| 3481 | } |
| 3482 | |
| 3483 | // Get the latest thrown object |
| 3484 | OBJECTREF throwable = CLRException::GetThrowableFromExceptionRecord(pExcepPtrs->ExceptionRecord); |
| 3485 | |
| 3486 | // If this is an uncatchable exception, then let the exception be handled elsewhere |
| 3487 | if (IsUncatchable(&throwable)) |
| 3488 | { |
| 3489 | pThread->EnablePreemptiveGC(); |
| 3490 | return (EXCEPTION_CONTINUE_SEARCH); |
| 3491 | } |
| 3492 | } |
| 3493 | #ifdef _DEBUG |
| 3494 | else |
| 3495 | { |
| 3496 | _ASSERTE(pExcepPtrs->ExceptionRecord->ExceptionCode == EXCEPTION_HIJACK); |
| 3497 | } |
| 3498 | #endif |
| 3499 | |
| 3500 | // Unlink the frame in preparation for resuming in managed code |
| 3501 | pFrame->Pop(); |
| 3502 | |
| 3503 | // Copy the saved context record into the EH context; |
| 3504 | ReplaceExceptionContextRecord(pExcepPtrs->ContextRecord, pCtx); |
| 3505 | |
| 3506 | DWORD espValue = pCtx->Esp; |
| 3507 | if (pThread->GetSavedRedirectContext()) |
| 3508 | { |
| 3509 | delete pCtx; |
| 3510 | } |
| 3511 | else |
| 3512 | { |
| 3513 | // Save it for future use to avoid repeatedly new'ing |
| 3514 | pThread->SetSavedRedirectContext(pCtx); |
| 3515 | } |
| 3516 | |
| 3517 | ///////////////////////////////////////////////////////////////////////////// |
| 3518 | // NOTE: Ugly, ugly workaround. |
| 3519 | // We need to resume the thread into the managed code where it was redirected, |
| 3520 | // and the corresponding ESP is below the current one. But C++ expects that |
| 3521 | // on an EXCEPTION_CONTINUE_EXECUTION that the ESP will be above where it has |
| 3522 | // installed the SEH handler. To solve this, we need to remove all handlers |
| 3523 | // that reside above the resumed ESP, but we must leave the OS-installed |
| 3524 | // handler at the top, so we grab the top SEH handler, call |
| 3525 | // PopSEHRecords which will remove all SEH handlers above the target ESP and |
| 3526 | // then link the OS handler back in with SetCurrentSEHRecord. |
| 3527 | |
| 3528 | // Get the special OS handler and save it until PopSEHRecords is done |
| 3529 | EXCEPTION_REGISTRATION_RECORD *pCurSEH = GetCurrentSEHRecord(); |
| 3530 | |
| 3531 | // Unlink all records above the target resume ESP |
| 3532 | PopSEHRecords((LPVOID)(size_t)espValue); |
| 3533 | |
| 3534 | // Link the special OS handler back in to the top |
| 3535 | pCurSEH->Next = GetCurrentSEHRecord(); |
| 3536 | |
| 3537 | // Register the special OS handler as the top handler with the OS |
| 3538 | SetCurrentSEHRecord(pCurSEH); |
| 3539 | |
| 3540 | // Resume execution at point where thread was originally redirected |
| 3541 | return (EXCEPTION_CONTINUE_EXECUTION); |
| 3542 | } |
| 3543 | #endif // _TARGET_X86_ |
| 3544 | |
| 3545 | void NotifyHostOnGCSuspension() |
| 3546 | { |
| 3547 | CONTRACTL |
| 3548 | { |
| 3549 | NOTHROW; |
| 3550 | GC_NOTRIGGER; |
| 3551 | MODE_ANY; |
| 3552 | SO_TOLERANT; |
| 3553 | } |
| 3554 | CONTRACTL_END; |
| 3555 | |
| 3556 | } |
| 3557 | |
| 3558 | // This function is called from the assembly functions used to redirect a thread. It must not cause |
| 3559 | // an exception (except SO). |
| 3560 | extern "C" PCONTEXT __stdcall GetCurrentSavedRedirectContext() |
| 3561 | { |
| 3562 | LIMITED_METHOD_CONTRACT; |
| 3563 | |
| 3564 | DWORD dwLastError = GetLastError(); |
| 3565 | PCONTEXT pContext = GetThread()->GetSavedRedirectContext(); |
| 3566 | SetLastError(dwLastError); |
| 3567 | |
| 3568 | return pContext; |
| 3569 | } |
| 3570 | |
| 3571 | void __stdcall Thread::RedirectedHandledJITCase(RedirectReason reason) |
| 3572 | { |
| 3573 | STATIC_CONTRACT_THROWS; |
| 3574 | STATIC_CONTRACT_GC_TRIGGERS; |
| 3575 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 3576 | |
| 3577 | // We must preserve this in case we've interrupted an IL pinvoke stub before it |
| 3578 | // was able to save the error. |
| 3579 | DWORD dwLastError = GetLastError(); |
| 3580 | |
| 3581 | Thread *pThread = GetThread(); |
| 3582 | _ASSERTE(pThread); |
| 3583 | |
| 3584 | #ifdef FEATURE_STACK_PROBE |
| 3585 | if (GetEEPolicy()->GetActionOnFailure(FAIL_StackOverflow) == eRudeUnloadAppDomain) |
| 3586 | { |
| 3587 | RetailStackProbe(ADJUST_PROBE(DEFAULT_ENTRY_PROBE_AMOUNT), pThread); |
| 3588 | } |
| 3589 | #endif |
| 3590 | |
| 3591 | BEGIN_CONTRACT_VIOLATION(SOToleranceViolation); |
| 3592 | |
| 3593 | // Get the saved context |
| 3594 | CONTEXT *pCtx = pThread->GetSavedRedirectContext(); |
| 3595 | _ASSERTE(pCtx); |
| 3596 | |
| 3597 | INDEBUG(Thread::ObjectRefFlush(pThread)); |
| 3598 | |
| 3599 | // Create a frame on the stack |
| 3600 | FrameWithCookie<RedirectedThreadFrame> frame(pCtx); |
| 3601 | |
| 3602 | STRESS_LOG5(LF_SYNC, LL_INFO1000, "In RedirectedHandledJITcase reason 0x%x pFrame = %p pc = %p sp = %p fp = %p" , reason, &frame, GetIP(pCtx), GetSP(pCtx), GetFP(pCtx)); |
| 3603 | |
| 3604 | #ifdef _TARGET_X86_ |
| 3605 | // This will indicate to the exception filter whether or not the exception is caused |
| 3606 | // by us or the client. |
| 3607 | BOOL fDone = FALSE; |
| 3608 | int filter_count = 0; // A counter to avoid a nasty case where an |
| 3609 | // up-stack filter throws another exception |
| 3610 | // causing our filter to be run again for |
| 3611 | // some unrelated exception. |
| 3612 | |
| 3613 | __try |
| 3614 | #endif // _TARGET_X86_ |
| 3615 | { |
| 3616 | // Make sure this thread doesn't reuse the context memory in re-entrancy cases |
| 3617 | _ASSERTE(pThread->GetSavedRedirectContext() != NULL); |
| 3618 | pThread->SetSavedRedirectContext(NULL); |
| 3619 | |
| 3620 | // Link in the frame |
| 3621 | frame.Push(); |
| 3622 | |
| 3623 | #if defined(HAVE_GCCOVER) && defined(USE_REDIRECT_FOR_GCSTRESS) // GCCOVER |
| 3624 | if (reason == RedirectReason_GCStress) |
| 3625 | { |
| 3626 | _ASSERTE(pThread->PreemptiveGCDisabledOther()); |
| 3627 | DoGcStress(frame.GetContext(), NULL); |
| 3628 | } |
| 3629 | else |
| 3630 | #endif // HAVE_GCCOVER && USE_REDIRECT_FOR_GCSTRESS |
| 3631 | { |
| 3632 | // Enable PGC before calling out to the client to allow runtime suspend to finish |
| 3633 | GCX_PREEMP_NO_DTOR(); |
| 3634 | |
| 3635 | // Notify the interface of the pending suspension |
| 3636 | switch (reason) { |
| 3637 | case RedirectReason_GCSuspension: |
| 3638 | break; |
| 3639 | case RedirectReason_DebugSuspension: |
| 3640 | break; |
| 3641 | case RedirectReason_UserSuspension: |
| 3642 | // Do nothing; |
| 3643 | break; |
| 3644 | default: |
| 3645 | _ASSERTE(!"Invalid redirect reason" ); |
| 3646 | break; |
| 3647 | } |
| 3648 | |
| 3649 | // Disable preemptive GC so we can unlink the frame |
| 3650 | GCX_PREEMP_NO_DTOR_END(); |
| 3651 | } |
| 3652 | |
| 3653 | #ifdef _TARGET_X86_ |
| 3654 | pThread->HandleThreadAbort(); // Might throw an exception. |
| 3655 | |
| 3656 | // Indicate that the call to the service went without an exception, and that |
| 3657 | // we're raising our own exception to resume the thread to where it was |
| 3658 | // redirected from |
| 3659 | fDone = TRUE; |
| 3660 | |
| 3661 | // Save the instruction pointer where we redirected last. This does not race with the check |
| 3662 | // against this variable in HandledJitCase because the GC will not attempt to redirect the |
| 3663 | // thread until the instruction pointer of this thread is back in managed code. |
| 3664 | pThread->m_LastRedirectIP = GetIP(pCtx); |
| 3665 | pThread->m_SpinCount = 0; |
| 3666 | |
| 3667 | RaiseException(EXCEPTION_HIJACK, 0, 0, NULL); |
| 3668 | |
| 3669 | #else // _TARGET_X86_ |
| 3670 | |
| 3671 | #if defined(HAVE_GCCOVER) && defined(USE_REDIRECT_FOR_GCSTRESS) // GCCOVER |
| 3672 | // |
| 3673 | // If GCStress interrupts an IL stub or inlined p/invoke while it's running in preemptive mode, it switches the mode to |
| 3674 | // cooperative - but we will resume to preemptive below. We should not trigger an abort in that case, as it will fail |
| 3675 | // due to the GC mode. |
| 3676 | // |
| 3677 | if (!pThread->m_fPreemptiveGCDisabledForGCStress) |
| 3678 | #endif |
| 3679 | { |
| 3680 | |
| 3681 | UINT_PTR uAbortAddr; |
| 3682 | UINT_PTR uResumePC = (UINT_PTR)GetIP(pCtx); |
| 3683 | CopyOSContext(pThread->m_OSContext, pCtx); |
| 3684 | uAbortAddr = (UINT_PTR)COMPlusCheckForAbort(); |
| 3685 | if (uAbortAddr) |
| 3686 | { |
| 3687 | LOG((LF_EH, LL_INFO100, "thread abort in progress, resuming thread under control... (handled jit case)\n" )); |
| 3688 | |
| 3689 | CONSISTENCY_CHECK(CheckPointer(pCtx)); |
| 3690 | |
| 3691 | STRESS_LOG1(LF_EH, LL_INFO10, "resume under control: ip: %p (handled jit case)\n" , uResumePC); |
| 3692 | |
| 3693 | SetIP(pThread->m_OSContext, uResumePC); |
| 3694 | |
| 3695 | #if defined(_TARGET_ARM_) |
| 3696 | // Save the original resume PC in Lr |
| 3697 | pCtx->Lr = uResumePC; |
| 3698 | |
| 3699 | // Since we have set a new IP, we have to clear conditional execution flags too. |
| 3700 | ClearITState(pThread->m_OSContext); |
| 3701 | #endif // _TARGET_ARM_ |
| 3702 | |
| 3703 | SetIP(pCtx, uAbortAddr); |
| 3704 | } |
| 3705 | } |
| 3706 | |
| 3707 | // Unlink the frame in preparation for resuming in managed code |
| 3708 | frame.Pop(); |
| 3709 | |
| 3710 | { |
| 3711 | // Free the context struct if we already have one cached |
| 3712 | if (pThread->GetSavedRedirectContext()) |
| 3713 | { |
| 3714 | CONTEXT* pCtxTemp = (CONTEXT*)_alloca(sizeof(CONTEXT)); |
| 3715 | memcpy(pCtxTemp, pCtx, sizeof(CONTEXT)); |
| 3716 | delete pCtx; |
| 3717 | pCtx = pCtxTemp; |
| 3718 | } |
| 3719 | else |
| 3720 | { |
| 3721 | // Save it for future use to avoid repeatedly new'ing |
| 3722 | pThread->SetSavedRedirectContext(pCtx); |
| 3723 | } |
| 3724 | |
| 3725 | #if defined(HAVE_GCCOVER) && defined(USE_REDIRECT_FOR_GCSTRESS) // GCCOVER |
| 3726 | if (pThread->m_fPreemptiveGCDisabledForGCStress) |
| 3727 | { |
| 3728 | pThread->EnablePreemptiveGC(); |
| 3729 | pThread->m_fPreemptiveGCDisabledForGCStress = false; |
| 3730 | } |
| 3731 | #endif |
| 3732 | |
| 3733 | LOG((LF_SYNC, LL_INFO1000, "Resuming execution with RtlRestoreContext\n" )); |
| 3734 | |
| 3735 | SetLastError(dwLastError); |
| 3736 | |
| 3737 | RtlRestoreContext(pCtx, NULL); |
| 3738 | } |
| 3739 | #endif // _TARGET_X86_ |
| 3740 | } |
| 3741 | #ifdef _TARGET_X86_ |
| 3742 | __except (++filter_count == 1 |
| 3743 | ? RedirectedHandledJITCaseExceptionFilter(GetExceptionInformation(), &frame, fDone, pCtx) |
| 3744 | : EXCEPTION_CONTINUE_SEARCH) |
| 3745 | { |
| 3746 | _ASSERTE(!"Reached body of __except in Thread::RedirectedHandledJITCase" ); |
| 3747 | } |
| 3748 | |
| 3749 | #endif // _TARGET_X86_ |
| 3750 | |
| 3751 | END_CONTRACT_VIOLATION; |
| 3752 | |
| 3753 | } |
| 3754 | |
| 3755 | //**************************************************************************************** |
| 3756 | // This helper is called when a thread suspended in managed code at a sequence point while |
| 3757 | // suspending the runtime and there is a client interested in re-assigning the thread to |
| 3758 | // do interesting work while the runtime is suspended. This will call into the client |
| 3759 | // notifying it that the thread will be suspended for a runtime suspension. |
| 3760 | // |
| 3761 | void __stdcall Thread::RedirectedHandledJITCaseForDbgThreadControl() |
| 3762 | { |
| 3763 | WRAPPER_NO_CONTRACT; |
| 3764 | RedirectedHandledJITCase(RedirectReason_DebugSuspension); |
| 3765 | } |
| 3766 | |
| 3767 | //**************************************************************************************** |
| 3768 | // This helper is called when a thread suspended in managed code at a sequence point when |
| 3769 | // suspending the runtime. |
| 3770 | // |
| 3771 | // We do this because the obvious code sequence: |
| 3772 | // |
| 3773 | // SuspendThread(t1); |
| 3774 | // GetContext(t1, &ctx); |
| 3775 | // ctx.Ecx = <some new value>; |
| 3776 | // SetContext(t1, &ctx); |
| 3777 | // ResumeThread(t1); |
| 3778 | // |
| 3779 | // simply does not work due to a nasty race with exception handling in the OS. If the |
| 3780 | // thread that is suspended has just faulted, then the update can disappear without ever |
| 3781 | // modifying the real thread ... and there is no way to tell. |
| 3782 | // |
| 3783 | // Updating the EIP may not work ... but when it doesn't, we're ok ... an exception ends |
| 3784 | // up getting dispatched anyway. |
| 3785 | // |
| 3786 | // If the host is interested in getting control, then we give control to the host. If the |
| 3787 | // host is not interested in getting control, then we call out to the host. After that, |
| 3788 | // we raise an exception and will end up waiting for the GC to finish inside the filter. |
| 3789 | // |
| 3790 | void __stdcall Thread::RedirectedHandledJITCaseForGCThreadControl() |
| 3791 | { |
| 3792 | WRAPPER_NO_CONTRACT; |
| 3793 | RedirectedHandledJITCase(RedirectReason_GCSuspension); |
| 3794 | } |
| 3795 | |
| 3796 | //*********************** |
| 3797 | // Like the above, but called for a UserSuspend. |
| 3798 | // |
| 3799 | void __stdcall Thread::RedirectedHandledJITCaseForUserSuspend() |
| 3800 | { |
| 3801 | WRAPPER_NO_CONTRACT; |
| 3802 | RedirectedHandledJITCase(RedirectReason_UserSuspension); |
| 3803 | } |
| 3804 | |
| 3805 | #if defined(HAVE_GCCOVER) && defined(USE_REDIRECT_FOR_GCSTRESS) // GCCOVER |
| 3806 | |
| 3807 | //*********************** |
| 3808 | // Like the above, but called for GC stress. |
| 3809 | // |
| 3810 | void __stdcall Thread::RedirectedHandledJITCaseForGCStress() |
| 3811 | { |
| 3812 | WRAPPER_NO_CONTRACT; |
| 3813 | RedirectedHandledJITCase(RedirectReason_GCStress); |
| 3814 | } |
| 3815 | |
| 3816 | #endif // HAVE_GCCOVER && _DEBUG && USE_REDIRECT_FOR_GCSTRESS |
| 3817 | |
| 3818 | //**************************************************************************************** |
| 3819 | // This will take a thread that's been suspended in managed code at a sequence point and |
| 3820 | // will Redirect the thread. It will save all register information, build a frame on the |
| 3821 | // thread's stack, put a pointer to the frame at the top of the stack and set the IP of |
| 3822 | // the thread to pTgt. pTgt is then responsible for unlinking the thread, |
| 3823 | // |
| 3824 | // NOTE: Cannot play with a suspended thread's stack memory, since the OS will use the |
| 3825 | // top of the stack to store information. The thread must be resumed and play with it's |
| 3826 | // own stack. |
| 3827 | // |
| 3828 | |
| 3829 | #ifdef _TARGET_X86_ |
| 3830 | #define CONTEXT_COMPLETE (CONTEXT_FULL | CONTEXT_FLOATING_POINT | \ |
| 3831 | CONTEXT_DEBUG_REGISTERS | CONTEXT_EXTENDED_REGISTERS | CONTEXT_EXCEPTION_REQUEST) |
| 3832 | #else |
| 3833 | #define CONTEXT_COMPLETE (CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS | CONTEXT_EXCEPTION_REQUEST) |
| 3834 | #endif |
| 3835 | |
| 3836 | BOOL Thread::RedirectThreadAtHandledJITCase(PFN_REDIRECTTARGET pTgt) |
| 3837 | { |
| 3838 | CONTRACTL { |
| 3839 | NOTHROW; |
| 3840 | GC_NOTRIGGER; |
| 3841 | } |
| 3842 | CONTRACTL_END; |
| 3843 | |
| 3844 | _ASSERTE(HandledJITCase()); |
| 3845 | _ASSERTE(GetThread() != this); |
| 3846 | |
| 3847 | //////////////////////////////////////////////////////////////// |
| 3848 | // Acquire a context structure to save the thread state into |
| 3849 | |
| 3850 | // We need to distinguish between two types of callers: |
| 3851 | // - Most callers, including GC, operate while holding the ThreadStore |
| 3852 | // lock. This means that we can pre-allocate a context structure |
| 3853 | // globally in the ThreadStore and use it in this function. |
| 3854 | // - Some callers (currently only YieldTask) cannot take the ThreadStore |
| 3855 | // lock. Therefore we always allocate a SavedRedirectContext in the |
| 3856 | // Thread constructor. (Since YieldTask currently is the only caller |
| 3857 | // that does not hold the ThreadStore lock, we only do this when |
| 3858 | // we're hosted.) |
| 3859 | |
| 3860 | // Check whether we have a SavedRedirectContext we can reuse: |
| 3861 | CONTEXT *pCtx = GetSavedRedirectContext(); |
| 3862 | |
| 3863 | // If we've never allocated a context for this thread, do so now |
| 3864 | if (!pCtx) |
| 3865 | { |
| 3866 | // If our caller took the ThreadStore lock, then it pre-allocated |
| 3867 | // a context in the ThreadStore: |
| 3868 | if (ThreadStore::HoldingThreadStore()) |
| 3869 | { |
| 3870 | pCtx = ThreadStore::GrabOSContext(); |
| 3871 | } |
| 3872 | |
| 3873 | if (!pCtx) |
| 3874 | { |
| 3875 | // Even when our caller is YieldTask, we can find a NULL |
| 3876 | // SavedRedirectContext in this function: Consider the scenario |
| 3877 | // where GC is in progress and has already redirected a thread. |
| 3878 | // That thread will set its SavedRedirectContext to NULL to enable |
| 3879 | // reentrancy. Now assume that the host calls YieldTask for the |
| 3880 | // redirected thread. In this case, this function will simply |
| 3881 | // fail, but that is fine: The redirected thread will check, |
| 3882 | // before it resumes execution, whether it should yield. |
| 3883 | return (FALSE); |
| 3884 | } |
| 3885 | |
| 3886 | // Save the pointer for the redirect function |
| 3887 | _ASSERTE(GetSavedRedirectContext() == NULL); |
| 3888 | SetSavedRedirectContext(pCtx); |
| 3889 | } |
| 3890 | |
| 3891 | ////////////////////////////////////// |
| 3892 | // Get and save the thread's context |
| 3893 | |
| 3894 | // Always get complete context |
| 3895 | pCtx->ContextFlags = CONTEXT_COMPLETE; |
| 3896 | BOOL bRes = EEGetThreadContext(this, pCtx); |
| 3897 | _ASSERTE(bRes && "Failed to GetThreadContext in RedirectThreadAtHandledJITCase - aborting redirect." ); |
| 3898 | |
| 3899 | if (!bRes) |
| 3900 | return (FALSE); |
| 3901 | |
| 3902 | if (!IsContextSafeToRedirect(pCtx)) |
| 3903 | return (FALSE); |
| 3904 | |
| 3905 | //////////////////////////////////////////////////// |
| 3906 | // Now redirect the thread to the helper function |
| 3907 | |
| 3908 | // Temporarily set the IP of the context to the target for SetThreadContext |
| 3909 | PCODE dwOrigEip = GetIP(pCtx); |
| 3910 | #ifdef _TARGET_ARM_ |
| 3911 | // Redirection can be required when in IT Block. |
| 3912 | // In that case must reset the IT state before redirection. |
| 3913 | DWORD dwOrigCpsr = pCtx->Cpsr; |
| 3914 | ClearITState(pCtx); |
| 3915 | #endif |
| 3916 | _ASSERTE(ExecutionManager::IsManagedCode(dwOrigEip)); |
| 3917 | SetIP(pCtx, (PCODE)pTgt); |
| 3918 | |
| 3919 | |
| 3920 | STRESS_LOG4(LF_SYNC, LL_INFO10000, "Redirecting thread %p(tid=%x) from address 0x%08x to address 0x%p\n" , |
| 3921 | this, this->GetThreadId(), dwOrigEip, pTgt); |
| 3922 | |
| 3923 | bRes = EESetThreadContext(this, pCtx); |
| 3924 | _ASSERTE(bRes && "Failed to SetThreadContext in RedirectThreadAtHandledJITCase - aborting redirect." ); |
| 3925 | |
| 3926 | // Restore original IP |
| 3927 | SetIP(pCtx, dwOrigEip); |
| 3928 | #ifdef _TARGET_ARM_ |
| 3929 | // restore IT State in the context |
| 3930 | pCtx->Cpsr = dwOrigCpsr; |
| 3931 | #endif |
| 3932 | |
| 3933 | |
| 3934 | ////////////////////////////////////////////////// |
| 3935 | // Indicate whether or not the redirect succeeded |
| 3936 | |
| 3937 | return (bRes); |
| 3938 | } |
| 3939 | |
| 3940 | BOOL Thread::CheckForAndDoRedirect(PFN_REDIRECTTARGET pRedirectTarget) |
| 3941 | { |
| 3942 | CONTRACTL |
| 3943 | { |
| 3944 | NOTHROW; |
| 3945 | GC_NOTRIGGER; |
| 3946 | MODE_ANY; |
| 3947 | } |
| 3948 | CONTRACTL_END; |
| 3949 | |
| 3950 | _ASSERTE(this != GetThread()); |
| 3951 | _ASSERTE(PreemptiveGCDisabledOther()); |
| 3952 | _ASSERTE(IsAddrOfRedirectFunc(pRedirectTarget)); |
| 3953 | |
| 3954 | BOOL fRes = FALSE; |
| 3955 | fRes = RedirectThreadAtHandledJITCase(pRedirectTarget); |
| 3956 | LOG((LF_GC, LL_INFO1000, "RedirectThreadAtHandledJITCase %s.\n" , fRes ? "SUCCEEDED" : "FAILED" )); |
| 3957 | |
| 3958 | return (fRes); |
| 3959 | } |
| 3960 | |
| 3961 | BOOL Thread::RedirectCurrentThreadAtHandledJITCase(PFN_REDIRECTTARGET pTgt, CONTEXT *pCurrentThreadCtx) |
| 3962 | { |
| 3963 | CONTRACTL { |
| 3964 | NOTHROW; |
| 3965 | GC_NOTRIGGER; |
| 3966 | } |
| 3967 | CONTRACTL_END; |
| 3968 | |
| 3969 | // REVISIT_TODO need equivalent of this for the current thread |
| 3970 | //_ASSERTE(HandledJITCase()); |
| 3971 | |
| 3972 | _ASSERTE(GetThread() == this); |
| 3973 | _ASSERTE(PreemptiveGCDisabledOther()); |
| 3974 | _ASSERTE(IsAddrOfRedirectFunc(pTgt)); |
| 3975 | _ASSERTE(pCurrentThreadCtx); |
| 3976 | _ASSERTE((pCurrentThreadCtx->ContextFlags & (CONTEXT_COMPLETE - CONTEXT_EXCEPTION_REQUEST)) |
| 3977 | == (CONTEXT_COMPLETE - CONTEXT_EXCEPTION_REQUEST)); |
| 3978 | _ASSERTE(ExecutionManager::IsManagedCode(GetIP(pCurrentThreadCtx))); |
| 3979 | |
| 3980 | //////////////////////////////////////////////////////////////// |
| 3981 | // Allocate a context structure to save the thread state into |
| 3982 | |
| 3983 | // Check to see if we've already got memory allocated for this purpose. |
| 3984 | CONTEXT *pCtx = GetSavedRedirectContext(); |
| 3985 | |
| 3986 | // If we've never allocated a context for this thread, do so now |
| 3987 | if (!pCtx) |
| 3988 | { |
| 3989 | pCtx = new (nothrow) CONTEXT(); |
| 3990 | |
| 3991 | if (!pCtx) |
| 3992 | return (FALSE); |
| 3993 | |
| 3994 | // Save the pointer for the redirect function |
| 3995 | _ASSERTE(GetSavedRedirectContext() == NULL); |
| 3996 | SetSavedRedirectContext(pCtx); |
| 3997 | } |
| 3998 | |
| 3999 | ////////////////////////////////////// |
| 4000 | // Get and save the thread's context |
| 4001 | |
| 4002 | CopyMemory(pCtx, pCurrentThreadCtx, sizeof(CONTEXT)); |
| 4003 | |
| 4004 | // Clear any new bits we don't understand (like XSAVE) in case we pass |
| 4005 | // this context to RtlRestoreContext (like for gcstress) |
| 4006 | pCtx->ContextFlags &= CONTEXT_ALL; |
| 4007 | |
| 4008 | // Ensure that this flag is set for the next time through the normal path, |
| 4009 | // RedirectThreadAtHandledJITCase. |
| 4010 | pCtx->ContextFlags |= CONTEXT_EXCEPTION_REQUEST; |
| 4011 | |
| 4012 | //////////////////////////////////////////////////// |
| 4013 | // Now redirect the thread to the helper function |
| 4014 | |
| 4015 | SetIP(pCurrentThreadCtx, (PCODE)pTgt); |
| 4016 | |
| 4017 | #ifdef _TARGET_ARM_ |
| 4018 | // Redirection can be required when in IT Block |
| 4019 | // Clear the IT State before redirecting |
| 4020 | ClearITState(pCurrentThreadCtx); |
| 4021 | #endif |
| 4022 | |
| 4023 | ////////////////////////////////////////////////// |
| 4024 | // Indicate whether or not the redirect succeeded |
| 4025 | |
| 4026 | return TRUE; |
| 4027 | } |
| 4028 | |
| 4029 | //************************************************************************ |
| 4030 | // Exception handling needs to special case the redirection. So provide |
| 4031 | // a helper to identify redirection targets and keep the exception |
| 4032 | // checks in sync with the redirection here. |
| 4033 | // See CPFH_AdjustContextForThreadSuspensionRace for details. |
| 4034 | BOOL Thread::IsAddrOfRedirectFunc(void * pFuncAddr) |
| 4035 | { |
| 4036 | WRAPPER_NO_CONTRACT; |
| 4037 | |
| 4038 | #if defined(HAVE_GCCOVER) && defined(USE_REDIRECT_FOR_GCSTRESS) // GCCOVER |
| 4039 | if (pFuncAddr == GetRedirectHandlerForGCStress()) |
| 4040 | return TRUE; |
| 4041 | #endif // HAVE_GCCOVER && USE_REDIRECT_FOR_GCSTRESS |
| 4042 | |
| 4043 | return |
| 4044 | (pFuncAddr == GetRedirectHandlerForGCThreadControl()) || |
| 4045 | (pFuncAddr == GetRedirectHandlerForDbgThreadControl()) || |
| 4046 | (pFuncAddr == GetRedirectHandlerForUserSuspend()); |
| 4047 | } |
| 4048 | |
| 4049 | //************************************************************************ |
| 4050 | // Redirect thread at a GC suspension. |
| 4051 | BOOL Thread::CheckForAndDoRedirectForGC() |
| 4052 | { |
| 4053 | CONTRACTL |
| 4054 | { |
| 4055 | NOTHROW; |
| 4056 | GC_NOTRIGGER; |
| 4057 | MODE_ANY; |
| 4058 | } |
| 4059 | CONTRACTL_END; |
| 4060 | |
| 4061 | LOG((LF_GC, LL_INFO1000, "Redirecting thread %08x for GCThreadSuspension" , GetThreadId())); |
| 4062 | return CheckForAndDoRedirect(GetRedirectHandlerForGCThreadControl()); |
| 4063 | } |
| 4064 | |
| 4065 | //************************************************************************ |
| 4066 | // Redirect thread at a debug suspension. |
| 4067 | BOOL Thread::CheckForAndDoRedirectForDbg() |
| 4068 | { |
| 4069 | CONTRACTL |
| 4070 | { |
| 4071 | NOTHROW; |
| 4072 | GC_NOTRIGGER; |
| 4073 | MODE_ANY; |
| 4074 | } |
| 4075 | CONTRACTL_END; |
| 4076 | |
| 4077 | LOG((LF_CORDB, LL_INFO1000, "Redirecting thread %08x for DebugSuspension" , GetThreadId())); |
| 4078 | return CheckForAndDoRedirect(GetRedirectHandlerForDbgThreadControl()); |
| 4079 | } |
| 4080 | |
| 4081 | //************************************************************************* |
| 4082 | // Redirect thread at a user suspend. |
| 4083 | BOOL Thread::CheckForAndDoRedirectForUserSuspend() |
| 4084 | { |
| 4085 | CONTRACTL |
| 4086 | { |
| 4087 | NOTHROW; |
| 4088 | GC_NOTRIGGER; |
| 4089 | MODE_ANY; |
| 4090 | } |
| 4091 | CONTRACTL_END; |
| 4092 | |
| 4093 | LOG((LF_SYNC, LL_INFO1000, "Redirecting thread %08x for UserSuspension" , GetThreadId())); |
| 4094 | return CheckForAndDoRedirect(GetRedirectHandlerForUserSuspend()); |
| 4095 | } |
| 4096 | |
| 4097 | #if defined(HAVE_GCCOVER) && defined(USE_REDIRECT_FOR_GCSTRESS) // GCCOVER |
| 4098 | //************************************************************************* |
| 4099 | // Redirect thread at a GC stress point. |
| 4100 | BOOL Thread::CheckForAndDoRedirectForGCStress (CONTEXT *pCurrentThreadCtx) |
| 4101 | { |
| 4102 | WRAPPER_NO_CONTRACT; |
| 4103 | |
| 4104 | LOG((LF_CORDB, LL_INFO1000, "Redirecting thread %08x for GCStress" , GetThreadId())); |
| 4105 | |
| 4106 | m_fPreemptiveGCDisabledForGCStress = !PreemptiveGCDisabled(); |
| 4107 | GCX_COOP_NO_DTOR(); |
| 4108 | |
| 4109 | BOOL fSuccess = RedirectCurrentThreadAtHandledJITCase(GetRedirectHandlerForGCStress(), pCurrentThreadCtx); |
| 4110 | |
| 4111 | if (!fSuccess) |
| 4112 | { |
| 4113 | GCX_COOP_NO_DTOR_END(); |
| 4114 | m_fPreemptiveGCDisabledForGCStress = false; |
| 4115 | } |
| 4116 | |
| 4117 | return fSuccess; |
| 4118 | } |
| 4119 | #endif // HAVE_GCCOVER && USE_REDIRECT_FOR_GCSTRESS |
| 4120 | |
| 4121 | #endif // !PLATFORM_UNIX |
| 4122 | #endif // FEATURE_HIJACK |
| 4123 | |
| 4124 | |
| 4125 | #ifdef PROFILING_SUPPORTED |
| 4126 | // Simple helper to convert the GC's SUSPEND_REASON enum to the profiling API's public |
| 4127 | // COR_PRF_SUSPEND_REASON enum. Used in code:Thread::SuspendRuntime to help with |
| 4128 | // sending the suspension event to the profiler. |
| 4129 | COR_PRF_SUSPEND_REASON GCSuspendReasonToProfSuspendReason(ThreadSuspend::SUSPEND_REASON gcReason) |
| 4130 | { |
| 4131 | LIMITED_METHOD_CONTRACT; |
| 4132 | |
| 4133 | switch(gcReason) |
| 4134 | { |
| 4135 | default: |
| 4136 | return COR_PRF_SUSPEND_OTHER; |
| 4137 | case ThreadSuspend::SUSPEND_FOR_GC: |
| 4138 | return COR_PRF_SUSPEND_FOR_GC; |
| 4139 | case ThreadSuspend::SUSPEND_FOR_APPDOMAIN_SHUTDOWN: |
| 4140 | return COR_PRF_SUSPEND_FOR_APPDOMAIN_SHUTDOWN; |
| 4141 | case ThreadSuspend::SUSPEND_FOR_REJIT: |
| 4142 | return COR_PRF_SUSPEND_FOR_REJIT; |
| 4143 | case ThreadSuspend::SUSPEND_FOR_SHUTDOWN: |
| 4144 | return COR_PRF_SUSPEND_FOR_SHUTDOWN; |
| 4145 | case ThreadSuspend::SUSPEND_FOR_DEBUGGER: |
| 4146 | return COR_PRF_SUSPEND_FOR_INPROC_DEBUGGER; |
| 4147 | case ThreadSuspend::SUSPEND_FOR_GC_PREP: |
| 4148 | return COR_PRF_SUSPEND_FOR_GC_PREP; |
| 4149 | } |
| 4150 | } |
| 4151 | #endif // PROFILING_SUPPORTED |
| 4152 | |
| 4153 | //************************************************************************************ |
| 4154 | // To support fast application switch (FAS), one requirement is that the CPU |
| 4155 | // consumption during the time the CLR is paused should be 0. Given that the process |
| 4156 | // will be anyway suspended this should've been an NOP for CLR. However, in Mango |
| 4157 | // we ensured that no handle timed out or no other such context switch happens |
| 4158 | // during the pause time. To match that and also to ensure that in-between the |
| 4159 | // pause and when the process is suspended (~60 sec) no context switch happens due to |
| 4160 | // CLR handles (like Waits/sleeps due to calls from BCL) we call APC on these |
| 4161 | // Threads and make them wait on the resume handle |
| 4162 | void __stdcall PauseAPC(__in ULONG_PTR dwParam) |
| 4163 | { |
| 4164 | CONTRACTL |
| 4165 | { |
| 4166 | NOTHROW; |
| 4167 | GC_NOTRIGGER; |
| 4168 | MODE_ANY; |
| 4169 | } |
| 4170 | CONTRACTL_END; |
| 4171 | |
| 4172 | if(g_IsPaused && (GetThread()->m_State & Thread::TS_Interruptible)) |
| 4173 | { |
| 4174 | _ASSERTE(g_ClrResumeEvent.IsValid()); |
| 4175 | EX_TRY { |
| 4176 | g_ClrResumeEvent.Wait(INFINITE, FALSE); |
| 4177 | } |
| 4178 | EX_CATCH { |
| 4179 | // Assert on debug builds |
| 4180 | _ASSERTE(FALSE); |
| 4181 | } |
| 4182 | EX_END_CATCH(SwallowAllExceptions); |
| 4183 | } |
| 4184 | } |
| 4185 | |
| 4186 | |
| 4187 | //************************************************************************************ |
| 4188 | // |
| 4189 | // SuspendRuntime is responsible for ensuring that all managed threads reach a |
| 4190 | // "safe point." It returns when all threads are known to be in "preemptive" mode. |
| 4191 | // This is *only* called by ThreadSuspend::SuspendEE; these two methods should really |
| 4192 | // be refactored into a separate "managed execution lock." |
| 4193 | // |
| 4194 | // Note that we use this method for more than just GC suspension. We also suspend |
| 4195 | // for debugging, etc. |
| 4196 | // |
| 4197 | // The basic algorithm is this: |
| 4198 | // |
| 4199 | // while there are threads in cooperative mode: |
| 4200 | // for each thread in cooprative mode: |
| 4201 | // suspend the native thread. |
| 4202 | // if it's still in cooperative mode, and it's running JIT'd code: |
| 4203 | // Redirect/hijack the thread |
| 4204 | // |
| 4205 | // Redirection vs. Hijacking: |
| 4206 | // |
| 4207 | // JIT'd code does not generally poll to see if a GC wants to run. Instead, the JIT |
| 4208 | // records "GC info" describing where the "safe points" are in the code. While we |
| 4209 | // have a native thread suspended in JIT'd code, we can see which instruction it |
| 4210 | // is currently executing. If that instruction is a safe point, then the GC may proceed. |
| 4211 | // Returning from a managed method is *always* a safe point, so if the thread is not |
| 4212 | // currently at a safe point we can "hijack" its return address. Once that it done, |
| 4213 | // if/when the method tried to return the thread will be sent to a hijack routine |
| 4214 | // that will leave cooperative mode and wait for the GC to complete. |
| 4215 | // |
| 4216 | // If the thread is already at a safe point, you might think we could simply leave it |
| 4217 | // suspended and proceed with the GC. In principle, this should be what we do. |
| 4218 | // However, various historical OS bugs prevent this from working. The problem is that |
| 4219 | // we are not guaranteed to capture an accurate CONTEXT (register state) for a suspended |
| 4220 | // thread. So instead, we "redirect" the thread, by overwriting its instruction pointer. |
| 4221 | // We then resume the thread, and it immediately starts executing our "redirect" routine, |
| 4222 | // which leaves cooperative mode and waits for the GC to complete. |
| 4223 | // |
| 4224 | // See code:Thread#SuspendingTheRuntime for more |
| 4225 | HRESULT ThreadSuspend::SuspendRuntime(ThreadSuspend::SUSPEND_REASON reason) |
| 4226 | { |
| 4227 | CONTRACTL { |
| 4228 | NOTHROW; |
| 4229 | if (GetThread()) |
| 4230 | { |
| 4231 | GC_TRIGGERS; // CLREvent::Wait is GC_TRIGGERS |
| 4232 | } |
| 4233 | else |
| 4234 | { |
| 4235 | DISABLED(GC_TRIGGERS); |
| 4236 | } |
| 4237 | } |
| 4238 | CONTRACTL_END; |
| 4239 | |
| 4240 | // This thread |
| 4241 | Thread *pCurThread = GetThread(); |
| 4242 | |
| 4243 | // The thread we're working on (suspending, etc.) right now. |
| 4244 | Thread *thread = NULL; |
| 4245 | |
| 4246 | // The number of threads we found in COOP mode. |
| 4247 | LONG countThreads = 0; |
| 4248 | |
| 4249 | DWORD res; |
| 4250 | |
| 4251 | // Caller is expected to be holding the ThreadStore lock. Also, caller must |
| 4252 | // have set GcInProgress before coming here, or things will break; |
| 4253 | _ASSERTE(ThreadStore::HoldingThreadStore() || IsAtProcessExit()); |
| 4254 | _ASSERTE(GCHeapUtilities::IsGCInProgress() ); |
| 4255 | |
| 4256 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "Thread::SuspendRuntime(reason=0x%x)\n" , reason); |
| 4257 | |
| 4258 | |
| 4259 | #ifdef PROFILING_SUPPORTED |
| 4260 | // If the profiler desires information about GCs, then let it know that one |
| 4261 | // is starting. |
| 4262 | { |
| 4263 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 4264 | _ASSERTE(reason != ThreadSuspend::SUSPEND_FOR_DEBUGGER); |
| 4265 | _ASSERTE(reason != ThreadSuspend::SUSPEND_FOR_DEBUGGER_SWEEP); |
| 4266 | |
| 4267 | { |
| 4268 | g_profControlBlock.pProfInterface->RuntimeSuspendStarted( |
| 4269 | GCSuspendReasonToProfSuspendReason(reason)); |
| 4270 | } |
| 4271 | if (pCurThread) |
| 4272 | { |
| 4273 | // Notify the profiler that the thread that is actually doing the GC is 'suspended', |
| 4274 | // meaning that it is doing stuff other than run the managed code it was before the |
| 4275 | // GC started. |
| 4276 | g_profControlBlock.pProfInterface->RuntimeThreadSuspended((ThreadID)pCurThread); |
| 4277 | } |
| 4278 | END_PIN_PROFILER(); |
| 4279 | } |
| 4280 | #endif // PROFILING_SUPPORTED |
| 4281 | |
| 4282 | // |
| 4283 | // If this thread is running at low priority, boost its priority. We remember the old |
| 4284 | // priority so that we can restore it in ResumeRuntime. |
| 4285 | // |
| 4286 | if (pCurThread) // concurrent GC occurs on threads we don't know about |
| 4287 | { |
| 4288 | _ASSERTE(pCurThread->m_Priority == INVALID_THREAD_PRIORITY); |
| 4289 | int priority = pCurThread->GetThreadPriority(); |
| 4290 | if (priority < THREAD_PRIORITY_NORMAL) |
| 4291 | { |
| 4292 | pCurThread->m_Priority = priority; |
| 4293 | pCurThread->SetThreadPriority(THREAD_PRIORITY_NORMAL); |
| 4294 | } |
| 4295 | } |
| 4296 | |
| 4297 | // From this point until the end of the function, consider all active thread |
| 4298 | // suspension to be in progress. This is mainly to give the profiler API a hint |
| 4299 | // that trying to suspend a thread (in order to walk its stack) could delay the |
| 4300 | // overall EE suspension. So the profiler API would early-abort the stackwalk |
| 4301 | // in such a case. |
| 4302 | SuspendRuntimeInProgressHolder hldSuspendRuntimeInProgress; |
| 4303 | |
| 4304 | |
| 4305 | // Flush the store buffers on all CPUs, to ensure two things: |
| 4306 | // - we get a reliable reading of the threads' m_fPreemptiveGCDisabled state |
| 4307 | // - other threads see that g_TrapReturningThreads is set |
| 4308 | // See VSW 475315 and 488918 for details. |
| 4309 | |
| 4310 | ::FlushProcessWriteBuffers(); |
| 4311 | |
| 4312 | // |
| 4313 | // Make a pass through all threads. We do a couple of things here: |
| 4314 | // 1) we count the number of threads that are observed to be in cooperative mode. |
| 4315 | // 2) for threads currently running managed code, we try to redirect/jihack them. |
| 4316 | // |
| 4317 | // Later we will make more passes where we do roughly the same thing. We should combine the two loops. |
| 4318 | // |
| 4319 | |
| 4320 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 4321 | { |
| 4322 | if (thread->HasThreadState(Thread::TS_GCSuspendPending)) |
| 4323 | { |
| 4324 | thread->ResetThreadState(Thread::TS_GCSuspendPending); |
| 4325 | } |
| 4326 | |
| 4327 | if (thread == pCurThread) |
| 4328 | continue; |
| 4329 | |
| 4330 | STRESS_LOG3(LF_SYNC, LL_INFO10000, " Inspecting thread 0x%x ID 0x%x coop mode = %d\n" , |
| 4331 | thread, thread->GetThreadId(), thread->m_fPreemptiveGCDisabled.Load()); |
| 4332 | |
| 4333 | // Nothing confusing left over from last time. |
| 4334 | _ASSERTE((thread->m_State & Thread::TS_GCSuspendPending) == 0); |
| 4335 | |
| 4336 | // Threads can be in Preemptive or Cooperative GC mode. Threads cannot switch |
| 4337 | // to Cooperative mode without special treatment when a GC is happening. |
| 4338 | if (thread->m_fPreemptiveGCDisabled) |
| 4339 | { |
| 4340 | // Check a little more carefully. Threads might sneak out without telling |
| 4341 | // us, because of inlined PInvoke which doesn't go through RareEnablePreemptiveGC. |
| 4342 | |
| 4343 | #ifdef DISABLE_THREADSUSPEND |
| 4344 | // On platforms that do not support safe thread suspension, we do one of two things: |
| 4345 | // |
| 4346 | // - If we're on a Unix platform where hijacking is enabled, we attempt |
| 4347 | // to inject a GC suspension which will try to redirect or hijack the |
| 4348 | // thread to get it to a safe point. |
| 4349 | // |
| 4350 | // - Otherwise, we rely on the GCPOLL mechanism enabled by |
| 4351 | // TrapReturningThreads. |
| 4352 | |
| 4353 | // When reading shared state we need to erect appropriate memory barriers. |
| 4354 | // The interlocked operation below ensures that any future reads on this |
| 4355 | // thread will happen after any earlier writes on a different thread. |
| 4356 | // |
| 4357 | // <TODO> Need more careful review of this </TODO> |
| 4358 | // |
| 4359 | FastInterlockOr(&thread->m_fPreemptiveGCDisabled, 0); |
| 4360 | |
| 4361 | if (thread->m_fPreemptiveGCDisabled) |
| 4362 | { |
| 4363 | FastInterlockOr((ULONG *) &thread->m_State, Thread::TS_GCSuspendPending); |
| 4364 | countThreads++; |
| 4365 | |
| 4366 | #if defined(FEATURE_HIJACK) && defined(PLATFORM_UNIX) |
| 4367 | bool gcSuspensionSignalSuccess = thread->InjectGcSuspension(); |
| 4368 | if (!gcSuspensionSignalSuccess) |
| 4369 | { |
| 4370 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "Thread::SuspendRuntime() - Failed to raise GC suspension signal for thread %p.\n" , thread); |
| 4371 | } |
| 4372 | #endif // FEATURE_HIJACK && PLATFORM_UNIX |
| 4373 | } |
| 4374 | |
| 4375 | #else // DISABLE_THREADSUSPEND |
| 4376 | |
| 4377 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 4378 | DWORD dwSwitchCount = 0; |
| 4379 | RetrySuspension: |
| 4380 | #endif |
| 4381 | |
| 4382 | // We can not allocate memory after we suspend a thread. |
| 4383 | // Otherwise, we may deadlock the process, because the thread we just suspended |
| 4384 | // might hold locks we would need to acquire while allocating. |
| 4385 | ThreadStore::AllocateOSContext(); |
| 4386 | |
| 4387 | #ifdef TIME_SUSPEND |
| 4388 | DWORD startSuspend = g_SuspendStatistics.GetTime(); |
| 4389 | #endif |
| 4390 | |
| 4391 | // |
| 4392 | // Suspend the native thread. |
| 4393 | // |
| 4394 | Thread::SuspendThreadResult str = thread->SuspendThread(); |
| 4395 | |
| 4396 | // We should just always build with this TIME_SUSPEND stuff, and report the results via ETW. |
| 4397 | #ifdef TIME_SUSPEND |
| 4398 | g_SuspendStatistics.osSuspend.Accumulate( |
| 4399 | SuspendStatistics::GetElapsed(startSuspend, |
| 4400 | g_SuspendStatistics.GetTime())); |
| 4401 | |
| 4402 | if (str == Thread::STR_Success) |
| 4403 | g_SuspendStatistics.cntOSSuspendResume++; |
| 4404 | else |
| 4405 | g_SuspendStatistics.cntFailedSuspends++; |
| 4406 | #endif |
| 4407 | |
| 4408 | if (str == Thread::STR_NoStressLog) |
| 4409 | { |
| 4410 | STRESS_LOG2(LF_SYNC, LL_ERROR, " ERROR: Could not suspend thread 0x%x, result = %d\n" , thread, str); |
| 4411 | } |
| 4412 | else |
| 4413 | if (thread->m_fPreemptiveGCDisabled) |
| 4414 | { |
| 4415 | // We now know for sure that the thread is still in cooperative mode. If it's in JIT'd code, here |
| 4416 | // is where we try to hijack/redirect the thread. If it's in VM code, we have to just let the VM |
| 4417 | // finish what it's doing. |
| 4418 | |
| 4419 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 4420 | // Only check for HandledJITCase if we actually suspended the thread. |
| 4421 | if (str == Thread::STR_Success) |
| 4422 | { |
| 4423 | Thread::WorkingOnThreadContextHolder workingOnThreadContext(thread); |
| 4424 | |
| 4425 | // |
| 4426 | // Note that thread->HandledJITCase is not a simple predicate - it actually will hijack the thread if that's possible. |
| 4427 | // So HandledJITCase can do one of these: |
| 4428 | // |
| 4429 | // - Return TRUE, in which case it's our responsibility to redirect the thread |
| 4430 | // - Return FALSE after hijacking the thread - we shouldn't try to redirect |
| 4431 | // - Return FALSE but not hijack the thread - there's nothing we can do either |
| 4432 | // |
| 4433 | // Here is another great opportunity for refactoring :) |
| 4434 | // |
| 4435 | if (workingOnThreadContext.Acquired() && thread->HandledJITCase()) |
| 4436 | { |
| 4437 | // Redirect thread so we can capture a good thread context |
| 4438 | // (GetThreadContext is not sufficient, due to an OS bug). |
| 4439 | if (!thread->CheckForAndDoRedirectForGC()) |
| 4440 | { |
| 4441 | #ifdef TIME_SUSPEND |
| 4442 | g_SuspendStatistics.cntFailedRedirections++; |
| 4443 | #endif |
| 4444 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "Failed to CheckForAndDoRedirectForGC(). Retry suspension for thread %p\n" , thread); |
| 4445 | thread->ResumeThread(); |
| 4446 | __SwitchToThread(0, ++dwSwitchCount); |
| 4447 | goto RetrySuspension; |
| 4448 | } |
| 4449 | #ifdef TIME_SUSPEND |
| 4450 | else |
| 4451 | g_SuspendStatistics.cntRedirections++; |
| 4452 | #endif |
| 4453 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "Thread::SuspendRuntime() - Thread %p redirected().\n" , thread); |
| 4454 | } |
| 4455 | } |
| 4456 | #endif // FEATURE_HIJACK && !PLATFORM_UNIX |
| 4457 | |
| 4458 | FastInterlockOr((ULONG *) &thread->m_State, Thread::TS_GCSuspendPending); |
| 4459 | |
| 4460 | countThreads++; |
| 4461 | |
| 4462 | // Only resume if we actually suspended the thread above. |
| 4463 | if (str == Thread::STR_Success) |
| 4464 | thread->ResumeThread(); |
| 4465 | |
| 4466 | STRESS_LOG1(LF_SYNC, LL_INFO1000, " Thread 0x%x is in cooperative needs to rendezvous\n" , thread); |
| 4467 | } |
| 4468 | else |
| 4469 | if (str == Thread::STR_Success) |
| 4470 | { |
| 4471 | STRESS_LOG1(LF_SYNC, LL_WARNING, " Inspecting thread 0x%x was in cooperative, but now is not\n" , thread); |
| 4472 | // Oops. |
| 4473 | thread->ResumeThread(); |
| 4474 | } |
| 4475 | else |
| 4476 | if (str == Thread::STR_SwitchedOut) { |
| 4477 | STRESS_LOG1(LF_SYNC, LL_WARNING, " Inspecting thread 0x%x was in cooperative, but now is switched out\n" , thread); |
| 4478 | } |
| 4479 | else { |
| 4480 | _ASSERTE(str == Thread::STR_Failure || str == Thread::STR_UnstartedOrDead); |
| 4481 | STRESS_LOG3(LF_SYNC, LL_ERROR, " ERROR: Could not suspend thread 0x%x, result = %d, lastError = 0x%x\n" , thread, str, GetLastError()); |
| 4482 | } |
| 4483 | |
| 4484 | #endif // DISABLE_THREADSUSPEND |
| 4485 | |
| 4486 | } |
| 4487 | else |
| 4488 | { |
| 4489 | // To ensure 0 CPU utilization for FAS (see implementation of PauseAPC) |
| 4490 | // we queue the APC to all interruptable threads. |
| 4491 | if(g_IsPaused && (thread->m_State & Thread::TS_Interruptible)) |
| 4492 | { |
| 4493 | HANDLE handle = thread->GetThreadHandle(); |
| 4494 | QueueUserAPC((PAPCFUNC)PauseAPC, handle, APC_Code); |
| 4495 | } |
| 4496 | } |
| 4497 | } |
| 4498 | |
| 4499 | #ifdef _DEBUG |
| 4500 | |
| 4501 | { |
| 4502 | int countCheck = 0; |
| 4503 | Thread *InnerThread = NULL; |
| 4504 | |
| 4505 | while ((InnerThread = ThreadStore::GetThreadList(InnerThread)) != NULL) |
| 4506 | { |
| 4507 | if (InnerThread != pCurThread && |
| 4508 | (InnerThread->m_State & Thread::TS_GCSuspendPending) != 0) |
| 4509 | { |
| 4510 | countCheck++; |
| 4511 | } |
| 4512 | } |
| 4513 | _ASSERTE(countCheck == countThreads); |
| 4514 | } |
| 4515 | |
| 4516 | #endif |
| 4517 | |
| 4518 | // |
| 4519 | // Now we keep retrying until we find that no threads are in cooperative mode. This should be merged into |
| 4520 | // the first loop. |
| 4521 | // |
| 4522 | while (countThreads) |
| 4523 | { |
| 4524 | _ASSERTE (thread == NULL); |
| 4525 | STRESS_LOG1(LF_SYNC, LL_INFO1000, " A total of %d threads need to rendezvous\n" , countThreads); |
| 4526 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 4527 | { |
| 4528 | if (thread == pCurThread) |
| 4529 | continue; |
| 4530 | |
| 4531 | if (thread->HasThreadState(Thread::TS_BlockGCForSO)) |
| 4532 | { |
| 4533 | // The thread is trying to block for GC. But we don't have enough stack to do |
| 4534 | // this operation. |
| 4535 | // We will let the thread switch back to cooperative mode, and continue running. |
| 4536 | if (thread->m_fPreemptiveGCDisabled.Load() == 0) |
| 4537 | { |
| 4538 | if (!thread->HasThreadState(Thread::TS_GCSuspendPending)) |
| 4539 | { |
| 4540 | thread->SetThreadState(Thread::TS_GCSuspendPending); |
| 4541 | countThreads ++; |
| 4542 | } |
| 4543 | thread->ResetThreadState(Thread::TS_BlockGCForSO); |
| 4544 | FastInterlockOr (&thread->m_fPreemptiveGCDisabled, 1); |
| 4545 | } |
| 4546 | continue; |
| 4547 | } |
| 4548 | if ((thread->m_State & Thread::TS_GCSuspendPending) == 0) |
| 4549 | continue; |
| 4550 | |
| 4551 | if (!thread->m_fPreemptiveGCDisabled) |
| 4552 | { |
| 4553 | // Inlined N/Direct can sneak out to preemptive without actually checking. |
| 4554 | // If we find one, we can consider it suspended (since it can't get back in). |
| 4555 | STRESS_LOG1(LF_SYNC, LL_INFO1000, " Thread %x went preemptive it is at a GC safe point\n" , thread); |
| 4556 | countThreads--; |
| 4557 | thread->ResetThreadState(Thread::TS_GCSuspendPending); |
| 4558 | |
| 4559 | // To ensure 0 CPU utilization for FAS (see implementation of PauseAPC) |
| 4560 | // we queue the APC to all interruptable threads. |
| 4561 | if(g_IsPaused && (thread->m_State & Thread::TS_Interruptible)) |
| 4562 | { |
| 4563 | HANDLE handle = thread->GetThreadHandle(); |
| 4564 | QueueUserAPC((PAPCFUNC)PauseAPC, handle, APC_Code); |
| 4565 | } |
| 4566 | } |
| 4567 | } |
| 4568 | |
| 4569 | if (countThreads == 0) |
| 4570 | { |
| 4571 | break; |
| 4572 | } |
| 4573 | |
| 4574 | #ifdef _DEBUG |
| 4575 | DWORD dbgStartTimeout = GetTickCount(); |
| 4576 | #endif |
| 4577 | |
| 4578 | // If another thread is trying to do a GC, there is a chance of deadlock |
| 4579 | // because this thread holds the threadstore lock and the GC thread is stuck |
| 4580 | // trying to get it, so this thread must bail and do a retry after the GC completes. |
| 4581 | // |
| 4582 | // <REVISIT> Shouldn't we do this only if *this* thread isn't attempting a GC? We're mostly |
| 4583 | // done suspending the EE at this point - why give up just because another thread wants |
| 4584 | // to do exactly the same thing? Note that GetGCThreadAttemptingSuspend will never (AFAIK) |
| 4585 | // return the current thread here, because we NULL it out after obtaining the thread store lock. </REVISIT> |
| 4586 | // |
| 4587 | if (m_pThreadAttemptingSuspendForGC != NULL && m_pThreadAttemptingSuspendForGC != pCurThread) |
| 4588 | { |
| 4589 | #ifdef PROFILING_SUPPORTED |
| 4590 | // Must let the profiler know that this thread is aborting its attempt at suspending |
| 4591 | { |
| 4592 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 4593 | g_profControlBlock.pProfInterface->RuntimeSuspendAborted(); |
| 4594 | END_PIN_PROFILER(); |
| 4595 | } |
| 4596 | #endif // PROFILING_SUPPORTED |
| 4597 | |
| 4598 | STRESS_LOG0(LF_SYNC, LL_ALWAYS, "Thread::SuspendRuntime() - Timing out.\n" ); |
| 4599 | return (ERROR_TIMEOUT); |
| 4600 | } |
| 4601 | |
| 4602 | #ifdef TIME_SUSPEND |
| 4603 | DWORD startWait = g_SuspendStatistics.GetTime(); |
| 4604 | #endif |
| 4605 | |
| 4606 | // |
| 4607 | // Wait for at least one thread to tell us it's left cooperative mode. |
| 4608 | // we do this by waiting on g_pGCSuspendEvent. We cannot simply wait forever, because we |
| 4609 | // might have done return-address hijacking on a thread, and that thread might not |
| 4610 | // return from the method we hijacked (maybe it calls into some other managed code that |
| 4611 | // executes a long loop, for example). We we wait with a timeout, and retry hijacking/redirection. |
| 4612 | // |
| 4613 | // This is unfortunate, because it means that in some cases we wait for PING_JIT_TIMEOUT |
| 4614 | // milliseconds, causing long GC pause times. |
| 4615 | // |
| 4616 | // We should fix this, by calling SwitchToThread/Sleep(0) a few times before waiting on the event. |
| 4617 | // This will not fix it 100% of the time (we may still have to wait on the event), but |
| 4618 | // the event is needed to work around limitations of SwitchToThread/Sleep(0). |
| 4619 | // |
| 4620 | // For now, we simply wait. |
| 4621 | // |
| 4622 | |
| 4623 | res = g_pGCSuspendEvent->Wait(PING_JIT_TIMEOUT, FALSE); |
| 4624 | |
| 4625 | |
| 4626 | #ifdef TIME_SUSPEND |
| 4627 | g_SuspendStatistics.wait.Accumulate( |
| 4628 | SuspendStatistics::GetElapsed(startWait, |
| 4629 | g_SuspendStatistics.GetTime())); |
| 4630 | |
| 4631 | g_SuspendStatistics.cntWaits++; |
| 4632 | if (res == WAIT_TIMEOUT) |
| 4633 | g_SuspendStatistics.cntWaitTimeouts++; |
| 4634 | #endif |
| 4635 | |
| 4636 | if (res == WAIT_TIMEOUT || res == WAIT_IO_COMPLETION) |
| 4637 | { |
| 4638 | STRESS_LOG1(LF_SYNC, LL_INFO1000, " Timed out waiting for rendezvous event %d threads remaining\n" , countThreads); |
| 4639 | #ifdef _DEBUG |
| 4640 | DWORD dbgEndTimeout = GetTickCount(); |
| 4641 | |
| 4642 | if ((dbgEndTimeout > dbgStartTimeout) && |
| 4643 | (dbgEndTimeout - dbgStartTimeout > g_pConfig->SuspendDeadlockTimeout())) |
| 4644 | { |
| 4645 | // Do not change this to _ASSERTE. |
| 4646 | // We want to catch the state of the machine at the |
| 4647 | // time when we can not suspend some threads. |
| 4648 | // It takes too long for _ASSERTE to stop the process. |
| 4649 | DebugBreak(); |
| 4650 | _ASSERTE(!"Timed out trying to suspend EE due to thread" ); |
| 4651 | char message[256]; |
| 4652 | _ASSERTE (thread == NULL); |
| 4653 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 4654 | { |
| 4655 | if (thread == pCurThread) |
| 4656 | continue; |
| 4657 | |
| 4658 | if ((thread->m_State & Thread::TS_GCSuspendPending) == 0) |
| 4659 | continue; |
| 4660 | |
| 4661 | if (thread->m_fPreemptiveGCDisabled) |
| 4662 | { |
| 4663 | DWORD id = thread->m_OSThreadId; |
| 4664 | if (id == 0xbaadf00d) |
| 4665 | { |
| 4666 | sprintf_s (message, COUNTOF(message), "Thread CLR ID=%x cannot be suspended" , |
| 4667 | thread->GetThreadId()); |
| 4668 | } |
| 4669 | else |
| 4670 | { |
| 4671 | sprintf_s (message, COUNTOF(message), "Thread OS ID=%x cannot be suspended" , |
| 4672 | id); |
| 4673 | } |
| 4674 | DbgAssertDialog(__FILE__, __LINE__, message); |
| 4675 | } |
| 4676 | } |
| 4677 | // if we continue from the assert we'll reset the time |
| 4678 | dbgStartTimeout = GetTickCount(); |
| 4679 | } |
| 4680 | #endif |
| 4681 | |
| 4682 | #if defined(FEATURE_HIJACK) && defined(PLATFORM_UNIX) |
| 4683 | _ASSERTE (thread == NULL); |
| 4684 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 4685 | { |
| 4686 | if (thread == pCurThread) |
| 4687 | continue; |
| 4688 | |
| 4689 | if ((thread->m_State & Thread::TS_GCSuspendPending) == 0) |
| 4690 | continue; |
| 4691 | |
| 4692 | if (!thread->m_fPreemptiveGCDisabled) |
| 4693 | continue; |
| 4694 | |
| 4695 | // When we tried to inject the suspension before, we may have been in a place |
| 4696 | // where it wasn't possible. Try one more time. |
| 4697 | bool gcSuspensionSignalSuccess = thread->InjectGcSuspension(); |
| 4698 | if (!gcSuspensionSignalSuccess) |
| 4699 | { |
| 4700 | // If we failed to raise the signal for some reason, just log it and move on. |
| 4701 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "Thread::SuspendRuntime() - Failed to raise GC suspension signal for thread %p.\n" , thread); |
| 4702 | } |
| 4703 | } |
| 4704 | #endif |
| 4705 | |
| 4706 | #ifndef DISABLE_THREADSUSPEND |
| 4707 | // all these threads should be in cooperative mode unless they have |
| 4708 | // set their SafeEvent on the way out. But there's a race between |
| 4709 | // when we time out and when they toggle their mode, so sometimes |
| 4710 | // we will suspend a thread that has just left. |
| 4711 | _ASSERTE (thread == NULL); |
| 4712 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 4713 | { |
| 4714 | if (thread == pCurThread) |
| 4715 | continue; |
| 4716 | |
| 4717 | if ((thread->m_State & Thread::TS_GCSuspendPending) == 0) |
| 4718 | continue; |
| 4719 | |
| 4720 | if (!thread->m_fPreemptiveGCDisabled) |
| 4721 | continue; |
| 4722 | |
| 4723 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 4724 | RetrySuspension2: |
| 4725 | #endif |
| 4726 | // We can not allocate memory after we suspend a thread. |
| 4727 | // Otherwise, we may deadlock the process when CLR is hosted. |
| 4728 | ThreadStore::AllocateOSContext(); |
| 4729 | |
| 4730 | #ifdef TIME_SUSPEND |
| 4731 | DWORD startSuspend = g_SuspendStatistics.GetTime(); |
| 4732 | #endif |
| 4733 | |
| 4734 | Thread::SuspendThreadResult str = thread->SuspendThread(); |
| 4735 | |
| 4736 | #ifdef TIME_SUSPEND |
| 4737 | g_SuspendStatistics.osSuspend.Accumulate( |
| 4738 | SuspendStatistics::GetElapsed(startSuspend, |
| 4739 | g_SuspendStatistics.GetTime())); |
| 4740 | |
| 4741 | if (str == Thread::STR_Success) |
| 4742 | g_SuspendStatistics.cntOSSuspendResume++; |
| 4743 | else |
| 4744 | g_SuspendStatistics.cntFailedSuspends++; |
| 4745 | #endif |
| 4746 | |
| 4747 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 4748 | // Only check HandledJITCase if we actually suspended the thread, and |
| 4749 | // the thread is in cooperative mode. |
| 4750 | // See comment at the previous invocation of HandledJITCase - it does |
| 4751 | // more than you think! |
| 4752 | if (str == Thread::STR_Success && thread->m_fPreemptiveGCDisabled) |
| 4753 | { |
| 4754 | Thread::WorkingOnThreadContextHolder workingOnThreadContext(thread); |
| 4755 | if (workingOnThreadContext.Acquired() && thread->HandledJITCase()) |
| 4756 | { |
| 4757 | // Redirect thread so we can capture a good thread context |
| 4758 | // (GetThreadContext is not sufficient, due to an OS bug). |
| 4759 | if (!thread->CheckForAndDoRedirectForGC()) |
| 4760 | { |
| 4761 | #ifdef TIME_SUSPEND |
| 4762 | g_SuspendStatistics.cntFailedRedirections++; |
| 4763 | #endif |
| 4764 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "Failed to CheckForAndDoRedirectForGC(). Retry suspension 2 for thread %p\n" , thread); |
| 4765 | thread->ResumeThread(); |
| 4766 | goto RetrySuspension2; |
| 4767 | } |
| 4768 | #ifdef TIME_SUSPEND |
| 4769 | else |
| 4770 | g_SuspendStatistics.cntRedirections++; |
| 4771 | #endif |
| 4772 | } |
| 4773 | } |
| 4774 | #endif // FEATURE_HIJACK && !PLATFORM_UNIX |
| 4775 | |
| 4776 | if (str == Thread::STR_Success) |
| 4777 | thread->ResumeThread(); |
| 4778 | } |
| 4779 | #endif // DISABLE_THREADSUSPEND |
| 4780 | } |
| 4781 | else |
| 4782 | if (res == WAIT_OBJECT_0) |
| 4783 | { |
| 4784 | g_pGCSuspendEvent->Reset(); |
| 4785 | continue; |
| 4786 | } |
| 4787 | else |
| 4788 | { |
| 4789 | // No WAIT_FAILED, WAIT_ABANDONED, etc. |
| 4790 | _ASSERTE(!"unexpected wait termination during gc suspension" ); |
| 4791 | } |
| 4792 | } |
| 4793 | |
| 4794 | #ifdef PROFILING_SUPPORTED |
| 4795 | // If a profiler is keeping track of GC events, notify it |
| 4796 | { |
| 4797 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 4798 | g_profControlBlock.pProfInterface->RuntimeSuspendFinished(); |
| 4799 | END_PIN_PROFILER(); |
| 4800 | } |
| 4801 | #endif // PROFILING_SUPPORTED |
| 4802 | |
| 4803 | #ifdef _DEBUG |
| 4804 | if (reason == ThreadSuspend::SUSPEND_FOR_GC) { |
| 4805 | thread = NULL; |
| 4806 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 4807 | { |
| 4808 | thread->DisableStressHeap(); |
| 4809 | _ASSERTE (!thread->HasThreadState(Thread::TS_GCSuspendPending)); |
| 4810 | } |
| 4811 | } |
| 4812 | #endif |
| 4813 | |
| 4814 | // We know all threads are in preemptive mode, so go ahead and reset the event. |
| 4815 | g_pGCSuspendEvent->Reset(); |
| 4816 | |
| 4817 | #ifdef HAVE_GCCOVER |
| 4818 | // |
| 4819 | // Now that the EE has been suspended, let's see if any oustanding |
| 4820 | // gcstress instruction updates need to occur. Each thread can |
| 4821 | // have only one pending at a time. |
| 4822 | // |
| 4823 | thread = NULL; |
| 4824 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 4825 | { |
| 4826 | thread->CommitGCStressInstructionUpdate(); |
| 4827 | } |
| 4828 | #endif // HAVE_GCCOVER |
| 4829 | |
| 4830 | STRESS_LOG0(LF_SYNC, LL_INFO1000, "Thread::SuspendRuntime() - Success\n" ); |
| 4831 | return S_OK; |
| 4832 | } |
| 4833 | |
| 4834 | #ifdef HAVE_GCCOVER |
| 4835 | |
| 4836 | void Thread::CommitGCStressInstructionUpdate() |
| 4837 | { |
| 4838 | CONTRACTL |
| 4839 | { |
| 4840 | NOTHROW; |
| 4841 | GC_NOTRIGGER; |
| 4842 | MODE_ANY; |
| 4843 | } |
| 4844 | CONTRACTL_END; |
| 4845 | |
| 4846 | BYTE* pbDestCode = NULL; |
| 4847 | BYTE* pbSrcCode = NULL; |
| 4848 | |
| 4849 | if (TryClearGCStressInstructionUpdate(&pbDestCode, &pbSrcCode)) |
| 4850 | { |
| 4851 | assert(pbDestCode != NULL); |
| 4852 | assert(pbSrcCode != NULL); |
| 4853 | |
| 4854 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 4855 | |
| 4856 | *pbDestCode = *pbSrcCode; |
| 4857 | |
| 4858 | #elif defined(_TARGET_ARM_) |
| 4859 | |
| 4860 | if (GetARMInstructionLength(pbDestCode) == 2) |
| 4861 | *(WORD*)pbDestCode = *(WORD*)pbSrcCode; |
| 4862 | else |
| 4863 | *(DWORD*)pbDestCode = *(DWORD*)pbSrcCode; |
| 4864 | |
| 4865 | #elif defined(_TARGET_ARM64_) |
| 4866 | |
| 4867 | *(DWORD*)pbDestCode = *(DWORD*)pbSrcCode; |
| 4868 | |
| 4869 | #else |
| 4870 | |
| 4871 | *pbDestCode = *pbSrcCode; |
| 4872 | |
| 4873 | #endif |
| 4874 | |
| 4875 | FlushInstructionCache(GetCurrentProcess(), (LPCVOID)pbDestCode, 4); |
| 4876 | } |
| 4877 | } |
| 4878 | |
| 4879 | #endif // HAVE_GCCOVER |
| 4880 | |
| 4881 | |
| 4882 | #ifdef _DEBUG |
| 4883 | void EnableStressHeapHelper() |
| 4884 | { |
| 4885 | WRAPPER_NO_CONTRACT; |
| 4886 | ENABLESTRESSHEAP(); |
| 4887 | } |
| 4888 | #endif |
| 4889 | |
| 4890 | // We're done with our GC. Let all the threads run again. |
| 4891 | // By this point we've already unblocked most threads. This just releases the ThreadStore lock. |
| 4892 | void ThreadSuspend::ResumeRuntime(BOOL bFinishedGC, BOOL SuspendSucceded) |
| 4893 | { |
| 4894 | CONTRACTL { |
| 4895 | NOTHROW; |
| 4896 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 4897 | } |
| 4898 | CONTRACTL_END; |
| 4899 | |
| 4900 | Thread *pCurThread = GetThread(); |
| 4901 | |
| 4902 | // Caller is expected to be holding the ThreadStore lock. But they must have |
| 4903 | // reset GcInProgress, or threads will continue to suspend themselves and won't |
| 4904 | // be resumed until the next GC. |
| 4905 | _ASSERTE(IsGCSpecialThread() || ThreadStore::HoldingThreadStore()); |
| 4906 | _ASSERTE(!GCHeapUtilities::IsGCInProgress() ); |
| 4907 | |
| 4908 | STRESS_LOG2(LF_SYNC, LL_INFO1000, "Thread::ResumeRuntime(finishedGC=%d, SuspendSucceeded=%d) - Start\n" , bFinishedGC, SuspendSucceded); |
| 4909 | |
| 4910 | // |
| 4911 | // Notify everyone who cares, that this suspension is over, and this thread is going to go do other things. |
| 4912 | // |
| 4913 | |
| 4914 | |
| 4915 | #ifdef PROFILING_SUPPORTED |
| 4916 | // Need to give resume event for the GC thread |
| 4917 | { |
| 4918 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 4919 | if (pCurThread) |
| 4920 | { |
| 4921 | g_profControlBlock.pProfInterface->RuntimeThreadResumed((ThreadID)pCurThread); |
| 4922 | } |
| 4923 | END_PIN_PROFILER(); |
| 4924 | } |
| 4925 | #endif // PROFILING_SUPPORTED |
| 4926 | |
| 4927 | #ifdef TIME_SUSPEND |
| 4928 | DWORD startRelease = g_SuspendStatistics.GetTime(); |
| 4929 | #endif |
| 4930 | |
| 4931 | // |
| 4932 | // Unlock the thread store. At this point, all threads should be allowed to run. |
| 4933 | // |
| 4934 | ThreadSuspend::UnlockThreadStore(); |
| 4935 | |
| 4936 | #ifdef TIME_SUSPEND |
| 4937 | g_SuspendStatistics.releaseTSL.Accumulate(SuspendStatistics::GetElapsed(startRelease, |
| 4938 | g_SuspendStatistics.GetTime())); |
| 4939 | #endif |
| 4940 | |
| 4941 | #ifdef PROFILING_SUPPORTED |
| 4942 | // |
| 4943 | // This thread is logically "resuming" from a GC now. Tell the profiler. |
| 4944 | // |
| 4945 | { |
| 4946 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 4947 | GCX_PREEMP(); |
| 4948 | g_profControlBlock.pProfInterface->RuntimeResumeFinished(); |
| 4949 | END_PIN_PROFILER(); |
| 4950 | } |
| 4951 | #endif // PROFILING_SUPPORTED |
| 4952 | |
| 4953 | // |
| 4954 | // If we raised this thread's priority in SuspendRuntime, we restore it here. |
| 4955 | // |
| 4956 | if (pCurThread) |
| 4957 | { |
| 4958 | if (pCurThread->m_Priority != INVALID_THREAD_PRIORITY) |
| 4959 | { |
| 4960 | pCurThread->SetThreadPriority(pCurThread->m_Priority); |
| 4961 | pCurThread->m_Priority = INVALID_THREAD_PRIORITY; |
| 4962 | } |
| 4963 | } |
| 4964 | |
| 4965 | STRESS_LOG0(LF_SYNC, LL_INFO1000, "Thread::ResumeRuntime() - End\n" ); |
| 4966 | } |
| 4967 | |
| 4968 | #ifndef FEATURE_PAL |
| 4969 | #ifdef _TARGET_X86_ |
| 4970 | //**************************************************************************************** |
| 4971 | // This will resume the thread at the location of redirection. |
| 4972 | // |
| 4973 | int RedirectedThrowControlExceptionFilter( |
| 4974 | PEXCEPTION_POINTERS pExcepPtrs // Exception data |
| 4975 | ) |
| 4976 | { |
| 4977 | // !!! Do not use a non-static contract here. |
| 4978 | // !!! Contract may insert an exception handling record. |
| 4979 | // !!! This function assumes that GetCurrentSEHRecord() returns the exception record set up in |
| 4980 | // !!! ThrowControlForThread |
| 4981 | STATIC_CONTRACT_NOTHROW; |
| 4982 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 4983 | STATIC_CONTRACT_MODE_ANY; |
| 4984 | |
| 4985 | if (pExcepPtrs->ExceptionRecord->ExceptionCode == STATUS_STACK_OVERFLOW) |
| 4986 | { |
| 4987 | return EXCEPTION_CONTINUE_SEARCH; |
| 4988 | } |
| 4989 | |
| 4990 | // Get the thread handle |
| 4991 | Thread *pThread = GetThread(); |
| 4992 | _ASSERTE(pThread); |
| 4993 | |
| 4994 | |
| 4995 | STRESS_LOG0(LF_SYNC, LL_INFO100, "In RedirectedThrowControlExceptionFilter\n" ); |
| 4996 | |
| 4997 | // If we get here via COM+ exception, gc-mode is unknown. We need it to |
| 4998 | // be cooperative for this function. |
| 4999 | _ASSERTE (pThread->PreemptiveGCDisabled()); |
| 5000 | |
| 5001 | _ASSERTE(pExcepPtrs->ExceptionRecord->ExceptionCode == BOOTUP_EXCEPTION_COMPLUS); |
| 5002 | |
| 5003 | // Copy the saved context record into the EH context; |
| 5004 | CONTEXT *pCtx = pThread->m_OSContext; |
| 5005 | ReplaceExceptionContextRecord(pExcepPtrs->ContextRecord, pCtx); |
| 5006 | |
| 5007 | ///////////////////////////////////////////////////////////////////////////// |
| 5008 | // NOTE: Ugly, ugly workaround. |
| 5009 | // We need to resume the thread into the managed code where it was redirected, |
| 5010 | // and the corresponding ESP is below the current one. But C++ expects that |
| 5011 | // on an EXCEPTION_CONTINUE_EXECUTION that the ESP will be above where it has |
| 5012 | // installed the SEH handler. To solve this, we need to remove all handlers |
| 5013 | // that reside above the resumed ESP, but we must leave the OS-installed |
| 5014 | // handler at the top, so we grab the top SEH handler, call |
| 5015 | // PopSEHRecords which will remove all SEH handlers above the target ESP and |
| 5016 | // then link the OS handler back in with SetCurrentSEHRecord. |
| 5017 | |
| 5018 | // Get the special OS handler and save it until PopSEHRecords is done |
| 5019 | EXCEPTION_REGISTRATION_RECORD *pCurSEH = GetCurrentSEHRecord(); |
| 5020 | |
| 5021 | // Unlink all records above the target resume ESP |
| 5022 | PopSEHRecords((LPVOID)(size_t)pCtx->Esp); |
| 5023 | |
| 5024 | // Link the special OS handler back in to the top |
| 5025 | pCurSEH->Next = GetCurrentSEHRecord(); |
| 5026 | |
| 5027 | // Register the special OS handler as the top handler with the OS |
| 5028 | SetCurrentSEHRecord(pCurSEH); |
| 5029 | |
| 5030 | // Resume execution at point where thread was originally redirected |
| 5031 | return (EXCEPTION_CONTINUE_EXECUTION); |
| 5032 | } |
| 5033 | #endif |
| 5034 | #endif // !FEATURE_PAL |
| 5035 | |
| 5036 | // Resume a thread at this location, to persuade it to throw a ThreadStop. The |
| 5037 | // exception handler needs a reasonable idea of how large this method is, so don't |
| 5038 | // add lots of arbitrary code here. |
| 5039 | void |
| 5040 | ThrowControlForThread( |
| 5041 | #ifdef WIN64EXCEPTIONS |
| 5042 | FaultingExceptionFrame *pfef |
| 5043 | #endif // WIN64EXCEPTIONS |
| 5044 | ) |
| 5045 | { |
| 5046 | STATIC_CONTRACT_THROWS; |
| 5047 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 5048 | |
| 5049 | Thread *pThread = GetThread(); |
| 5050 | _ASSERTE(pThread); |
| 5051 | _ASSERTE(pThread->m_OSContext); |
| 5052 | |
| 5053 | _ASSERTE(pThread->PreemptiveGCDisabled()); |
| 5054 | |
| 5055 | #ifdef FEATURE_STACK_PROBE |
| 5056 | if (GetEEPolicy()->GetActionOnFailure(FAIL_StackOverflow) == eRudeUnloadAppDomain) |
| 5057 | { |
| 5058 | RetailStackProbe(ADJUST_PROBE(DEFAULT_ENTRY_PROBE_AMOUNT), pThread); |
| 5059 | } |
| 5060 | #endif |
| 5061 | |
| 5062 | // Check if we can start abort |
| 5063 | // We use InducedThreadRedirect as a marker to tell stackwalker that a thread is redirected from JIT code. |
| 5064 | // This is to distinguish a thread is in Preemptive mode and in JIT code. |
| 5065 | // After stackcrawl, we change to InducedThreadStop. |
| 5066 | if (pThread->ThrewControlForThread() == Thread::InducedThreadRedirect || |
| 5067 | pThread->ThrewControlForThread() == Thread::InducedThreadRedirectAtEndOfCatch) |
| 5068 | { |
| 5069 | _ASSERTE((pThread->m_OSContext->ContextFlags & CONTEXT_ALL) == CONTEXT_ALL); |
| 5070 | if (!pThread->ReadyForAbort()) |
| 5071 | { |
| 5072 | STRESS_LOG0(LF_SYNC, LL_INFO100, "ThrowControlForThread resume\n" ); |
| 5073 | pThread->ResetThrowControlForThread(); |
| 5074 | // Thread abort is not allowed at this point |
| 5075 | #ifndef WIN64EXCEPTIONS |
| 5076 | __try{ |
| 5077 | RaiseException(BOOTUP_EXCEPTION_COMPLUS,0,0,NULL); |
| 5078 | } |
| 5079 | __except(RedirectedThrowControlExceptionFilter(GetExceptionInformation())) |
| 5080 | { |
| 5081 | _ASSERTE(!"Should not reach here" ); |
| 5082 | } |
| 5083 | #else // WIN64EXCEPTIONS |
| 5084 | RtlRestoreContext(pThread->m_OSContext, NULL); |
| 5085 | #endif // !WIN64EXCEPTIONS |
| 5086 | _ASSERTE(!"Should not reach here" ); |
| 5087 | } |
| 5088 | pThread->SetThrowControlForThread(Thread::InducedThreadStop); |
| 5089 | } |
| 5090 | |
| 5091 | #if defined(WIN64EXCEPTIONS) |
| 5092 | *(TADDR*)pfef = FaultingExceptionFrame::GetMethodFrameVPtr(); |
| 5093 | *pfef->GetGSCookiePtr() = GetProcessGSCookie(); |
| 5094 | #else // WIN64EXCEPTIONS |
| 5095 | FrameWithCookie<FaultingExceptionFrame> fef; |
| 5096 | FaultingExceptionFrame *pfef = &fef; |
| 5097 | #endif // WIN64EXCEPTIONS |
| 5098 | pfef->InitAndLink(pThread->m_OSContext); |
| 5099 | |
| 5100 | // !!! Can not assert here. Sometimes our EHInfo for catch clause extends beyond |
| 5101 | // !!! Jit_EndCatch. Not sure if we have guarantee on catch clause. |
| 5102 | //_ASSERTE (pThread->ReadyForAbort()); |
| 5103 | |
| 5104 | STRESS_LOG0(LF_SYNC, LL_INFO100, "ThrowControlForThread Aborting\n" ); |
| 5105 | |
| 5106 | // Here we raise an exception. |
| 5107 | RaiseComPlusException(); |
| 5108 | } |
| 5109 | |
| 5110 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 5111 | // This function is called by UserAbort and StopEEAndUnwindThreads. |
| 5112 | // It forces a thread to abort if allowed and the thread is running managed code. |
| 5113 | BOOL Thread::HandleJITCaseForAbort() |
| 5114 | { |
| 5115 | CONTRACTL { |
| 5116 | NOTHROW; |
| 5117 | GC_NOTRIGGER; |
| 5118 | } |
| 5119 | CONTRACTL_END; |
| 5120 | |
| 5121 | _ASSERTE(ThreadStore::HoldingThreadStore()); |
| 5122 | |
| 5123 | WorkingOnThreadContextHolder workingOnThreadContext(this); |
| 5124 | if (!workingOnThreadContext.Acquired()) |
| 5125 | { |
| 5126 | return FALSE; |
| 5127 | } |
| 5128 | |
| 5129 | _ASSERTE (m_fPreemptiveGCDisabled); |
| 5130 | |
| 5131 | CONTEXT ctx; |
| 5132 | ctx.ContextFlags = CONTEXT_CONTROL | CONTEXT_DEBUG_REGISTERS | CONTEXT_EXCEPTION_REQUEST; |
| 5133 | BOOL success = EEGetThreadContext(this, &ctx); |
| 5134 | _ASSERTE(success && "Thread::HandleJITCaseForAbort : Failed to get thread context" ); |
| 5135 | |
| 5136 | if (success) |
| 5137 | { |
| 5138 | success = IsContextSafeToRedirect(&ctx); |
| 5139 | } |
| 5140 | |
| 5141 | if (success) |
| 5142 | { |
| 5143 | PCODE curIP = GetIP(&ctx); |
| 5144 | |
| 5145 | // check if this is code managed by the code manager (ie. in the code heap) |
| 5146 | if (ExecutionManager::IsManagedCode(curIP)) |
| 5147 | { |
| 5148 | return ResumeUnderControl(&ctx); |
| 5149 | } |
| 5150 | } |
| 5151 | |
| 5152 | return FALSE; |
| 5153 | } |
| 5154 | |
| 5155 | // Threads suspended by the Win32 ::SuspendThread() are resumed in two ways. If we |
| 5156 | // suspended them in error, they are resumed via the Win32 ::ResumeThread(). But if |
| 5157 | // this is the HandledJIT() case and the thread is in fully interruptible code, we |
| 5158 | // can resume them under special control. ResumeRuntime and UserResume are cases |
| 5159 | // of this. |
| 5160 | // |
| 5161 | // The suspension has done its work (e.g. GC or user thread suspension). But during |
| 5162 | // the resumption we may have more that we want to do with this thread. For example, |
| 5163 | // there may be a pending ThreadAbort request. Instead of resuming the thread at its |
| 5164 | // current EIP, we tweak its resumption point via the thread context. Then it starts |
| 5165 | // executing at a new spot where we can have our way with it. |
| 5166 | |
| 5167 | BOOL Thread::ResumeUnderControl(CONTEXT *pCtx) |
| 5168 | { |
| 5169 | CONTRACTL { |
| 5170 | NOTHROW; |
| 5171 | GC_NOTRIGGER; |
| 5172 | } |
| 5173 | CONTRACTL_END; |
| 5174 | |
| 5175 | BOOL fSuccess = FALSE; |
| 5176 | |
| 5177 | LOG((LF_APPDOMAIN, LL_INFO100, "ResumeUnderControl %x\n" , GetThreadId())); |
| 5178 | |
| 5179 | BOOL fSucceeded; |
| 5180 | |
| 5181 | m_OSContext->ContextFlags = CONTEXT_ALL | CONTEXT_EXCEPTION_REQUEST; |
| 5182 | fSucceeded = EEGetThreadContext(this, m_OSContext); |
| 5183 | |
| 5184 | if (fSucceeded) |
| 5185 | { |
| 5186 | if (GetIP(pCtx) != GetIP(m_OSContext)) |
| 5187 | { |
| 5188 | return FALSE; |
| 5189 | } |
| 5190 | fSucceeded = IsContextSafeToRedirect(m_OSContext); |
| 5191 | } |
| 5192 | |
| 5193 | if (fSucceeded) |
| 5194 | { |
| 5195 | PCODE resumePC = GetIP(m_OSContext); |
| 5196 | SetIP(m_OSContext, GetEEFuncEntryPoint(THROW_CONTROL_FOR_THREAD_FUNCTION)); |
| 5197 | SetThrowControlForThread(InducedThreadRedirect); |
| 5198 | STRESS_LOG1(LF_SYNC, LL_INFO100, "ResumeUnderControl for Thread %p\n" , this); |
| 5199 | |
| 5200 | #ifdef _TARGET_AMD64_ |
| 5201 | // We need to establish the return value on the stack in the redirection stub, to |
| 5202 | // achieve crawlability. We use 'rcx' as the way to communicate the return value. |
| 5203 | // However, we are going to crawl in ReadyForAbort and we are going to resume in |
| 5204 | // ThrowControlForThread using m_OSContext. It's vital that the original correct |
| 5205 | // Rcx is present at those times, or we will have corrupted Rcx at the point of |
| 5206 | // resumption. |
| 5207 | UINT_PTR keepRcx = m_OSContext->Rcx; |
| 5208 | |
| 5209 | m_OSContext->Rcx = (UINT_PTR)resumePC; |
| 5210 | #endif // _TARGET_AMD64_ |
| 5211 | |
| 5212 | #if defined(_TARGET_ARM_) |
| 5213 | // We save the original ControlPC in LR on ARM. |
| 5214 | UINT_PTR originalLR = m_OSContext->Lr; |
| 5215 | m_OSContext->Lr = (UINT_PTR)resumePC; |
| 5216 | |
| 5217 | // Since we have set a new IP, we have to clear conditional execution flags too. |
| 5218 | UINT_PTR originalCpsr = m_OSContext->Cpsr; |
| 5219 | ClearITState(m_OSContext); |
| 5220 | #endif // _TARGET_ARM_ |
| 5221 | |
| 5222 | EESetThreadContext(this, m_OSContext); |
| 5223 | |
| 5224 | #ifdef _TARGET_ARM_ |
| 5225 | // Restore the original LR now that the OS context has been updated to resume @ redirection function. |
| 5226 | m_OSContext->Lr = originalLR; |
| 5227 | m_OSContext->Cpsr = originalCpsr; |
| 5228 | #endif // _TARGET_ARM_ |
| 5229 | |
| 5230 | #ifdef _TARGET_AMD64_ |
| 5231 | // and restore. |
| 5232 | m_OSContext->Rcx = keepRcx; |
| 5233 | #endif // _TARGET_AMD64_ |
| 5234 | |
| 5235 | SetIP(m_OSContext, resumePC); |
| 5236 | |
| 5237 | fSuccess = TRUE; |
| 5238 | } |
| 5239 | #if _DEBUG |
| 5240 | else |
| 5241 | _ASSERTE(!"Couldn't obtain thread context -- StopRequest delayed" ); |
| 5242 | #endif |
| 5243 | return fSuccess; |
| 5244 | } |
| 5245 | |
| 5246 | #endif // FEATURE_HIJACK && !PLATFORM_UNIX |
| 5247 | |
| 5248 | |
| 5249 | PCONTEXT Thread::GetAbortContext () |
| 5250 | { |
| 5251 | LIMITED_METHOD_CONTRACT; |
| 5252 | |
| 5253 | LOG((LF_EH, LL_INFO100, "Returning abort context: %p\n" , m_OSContext)); |
| 5254 | return m_OSContext; |
| 5255 | } |
| 5256 | |
| 5257 | |
| 5258 | //**************************************************************************** |
| 5259 | // Return true if we've Suspended the runtime, |
| 5260 | // False if we still need to sweep. |
| 5261 | //**************************************************************************** |
| 5262 | bool Thread::SysStartSuspendForDebug(AppDomain *pAppDomain) |
| 5263 | { |
| 5264 | CONTRACTL { |
| 5265 | NOTHROW; |
| 5266 | GC_NOTRIGGER; |
| 5267 | } |
| 5268 | CONTRACTL_END; |
| 5269 | |
| 5270 | Thread *pCurThread = GetThread(); |
| 5271 | Thread *thread = NULL; |
| 5272 | |
| 5273 | if (IsAtProcessExit()) |
| 5274 | { |
| 5275 | LOG((LF_CORDB, LL_INFO1000, |
| 5276 | "SUSPEND: skipping suspend due to process detach.\n" )); |
| 5277 | return true; |
| 5278 | } |
| 5279 | |
| 5280 | LOG((LF_CORDB, LL_INFO1000, "[0x%x] SUSPEND: starting suspend. Trap count: %d\n" , |
| 5281 | pCurThread ? pCurThread->GetThreadId() : (DWORD) -1, g_TrapReturningThreads.Load())); |
| 5282 | |
| 5283 | // Caller is expected to be holding the ThreadStore lock |
| 5284 | _ASSERTE(ThreadStore::HoldingThreadStore() || IsAtProcessExit()); |
| 5285 | |
| 5286 | |
| 5287 | // NOTE::NOTE::NOTE::NOTE::NOTE |
| 5288 | // This function has parallel logic in SuspendRuntime. Please make |
| 5289 | // sure to make appropriate changes there as well. |
| 5290 | |
| 5291 | _ASSERTE(m_DebugWillSyncCount == -1); |
| 5292 | m_DebugWillSyncCount++; |
| 5293 | |
| 5294 | // From this point until the end of the function, consider all active thread |
| 5295 | // suspension to be in progress. This is mainly to give the profiler API a hint |
| 5296 | // that trying to suspend a thread (in order to walk its stack) could delay the |
| 5297 | // overall EE suspension. So the profiler API would early-abort the stackwalk |
| 5298 | // in such a case. |
| 5299 | ThreadSuspend::SuspendRuntimeInProgressHolder hldSuspendRuntimeInProgress; |
| 5300 | |
| 5301 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 5302 | { |
| 5303 | #if 0 |
| 5304 | //<REVISIT_TODO> @todo APPD This needs to be finished, replaced, or yanked --MiPanitz</REVISIT_TODO> |
| 5305 | if (m_DebugAppDomainTarget != NULL && |
| 5306 | thread->GetDomain() != m_DebugAppDomainTarget) |
| 5307 | { |
| 5308 | continue; |
| 5309 | } |
| 5310 | #endif |
| 5311 | |
| 5312 | // Don't try to suspend threads that you've left suspended. |
| 5313 | if (thread->m_StateNC & TSNC_DebuggerUserSuspend) |
| 5314 | continue; |
| 5315 | |
| 5316 | if (thread == pCurThread) |
| 5317 | { |
| 5318 | LOG((LF_CORDB, LL_INFO1000, |
| 5319 | "[0x%x] SUSPEND: marking current thread.\n" , |
| 5320 | thread->GetThreadId())); |
| 5321 | |
| 5322 | _ASSERTE(!thread->m_fPreemptiveGCDisabled); |
| 5323 | |
| 5324 | // Mark this thread so it trips when it tries to re-enter |
| 5325 | // after completing this call. |
| 5326 | thread->SetupForSuspension(TS_DebugSuspendPending); |
| 5327 | thread->MarkForSuspension(TS_DebugSuspendPending); |
| 5328 | continue; |
| 5329 | } |
| 5330 | |
| 5331 | thread->SetupForSuspension(TS_DebugSuspendPending); |
| 5332 | |
| 5333 | // Threads can be in Preemptive or Cooperative GC mode. |
| 5334 | // Threads cannot switch to Cooperative mode without special |
| 5335 | // treatment when a GC is happening. But they can certainly |
| 5336 | // switch back and forth during a debug suspension -- until we |
| 5337 | // can get their Pending bit set. |
| 5338 | |
| 5339 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 5340 | DWORD dwSwitchCount = 0; |
| 5341 | RetrySuspension: |
| 5342 | #endif // FEATURE_HIJACK && !PLATFORM_UNIX |
| 5343 | |
| 5344 | // We can not allocate memory after we suspend a thread. |
| 5345 | // Otherwise, we may deadlock the process when CLR is hosted. |
| 5346 | ThreadStore::AllocateOSContext(); |
| 5347 | |
| 5348 | #ifdef DISABLE_THREADSUSPEND |
| 5349 | // On platforms that do not support safe thread suspension we have |
| 5350 | // to rely on the GCPOLL mechanism. |
| 5351 | |
| 5352 | // When we do not suspend the target thread we rely on the GCPOLL |
| 5353 | // mechanism enabled by TrapReturningThreads. However when reading |
| 5354 | // shared state we need to erect appropriate memory barriers. So |
| 5355 | // the interlocked operation below ensures that any future reads on |
| 5356 | // this thread will happen after any earlier writes on a different |
| 5357 | // thread. |
| 5358 | SuspendThreadResult str = STR_Success; |
| 5359 | FastInterlockOr(&thread->m_fPreemptiveGCDisabled, 0); |
| 5360 | #else |
| 5361 | SuspendThreadResult str = thread->SuspendThread(); |
| 5362 | #endif // DISABLE_THREADSUSPEND |
| 5363 | |
| 5364 | if (thread->m_fPreemptiveGCDisabled && str == STR_Success) |
| 5365 | { |
| 5366 | |
| 5367 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 5368 | WorkingOnThreadContextHolder workingOnThreadContext(thread); |
| 5369 | if (workingOnThreadContext.Acquired() && thread->HandledJITCase()) |
| 5370 | { |
| 5371 | // Redirect thread so we can capture a good thread context |
| 5372 | // (GetThreadContext is not sufficient, due to an OS bug). |
| 5373 | // If we don't succeed (should only happen on Win9X, due to |
| 5374 | // a different OS bug), we must resume the thread and try |
| 5375 | // again. |
| 5376 | if (!thread->CheckForAndDoRedirectForDbg()) |
| 5377 | { |
| 5378 | thread->ResumeThread(); |
| 5379 | __SwitchToThread(0, ++dwSwitchCount); |
| 5380 | goto RetrySuspension; |
| 5381 | } |
| 5382 | } |
| 5383 | #endif // FEATURE_HIJACK && !PLATFORM_UNIX |
| 5384 | |
| 5385 | // Remember that this thread will be running to a safe point |
| 5386 | FastInterlockIncrement(&m_DebugWillSyncCount); |
| 5387 | |
| 5388 | // When the thread reaches a safe place, it will wait |
| 5389 | // on the DebugSuspendEvent which clients can set when they |
| 5390 | // want to release us. |
| 5391 | thread->MarkForSuspension(TS_DebugSuspendPending | |
| 5392 | TS_DebugWillSync |
| 5393 | ); |
| 5394 | |
| 5395 | #ifdef DISABLE_THREADSUSPEND |
| 5396 | // There'a a race above between the moment we first check m_fPreemptiveGCDisabled |
| 5397 | // and the moment we enable TrapReturningThreads in MarkForSuspension. However, |
| 5398 | // nothing bad happens if the thread has transitioned to preemptive before marking |
| 5399 | // the thread for suspension; the thread will later be identified as Synced in |
| 5400 | // SysSweepThreadsForDebug |
| 5401 | #else // DISABLE_THREADSUSPEND |
| 5402 | // Resume the thread and let it run to a safe point |
| 5403 | thread->ResumeThread(); |
| 5404 | #endif // DISABLE_THREADSUSPEND |
| 5405 | |
| 5406 | LOG((LF_CORDB, LL_INFO1000, |
| 5407 | "[0x%x] SUSPEND: gc disabled - will sync.\n" , |
| 5408 | thread->GetThreadId())); |
| 5409 | } |
| 5410 | else if (!thread->m_fPreemptiveGCDisabled) |
| 5411 | { |
| 5412 | // Mark threads that are outside the Runtime so that if |
| 5413 | // they attempt to re-enter they will trip. |
| 5414 | thread->MarkForSuspension(TS_DebugSuspendPending); |
| 5415 | |
| 5416 | #ifdef DISABLE_THREADSUSPEND |
| 5417 | // There'a a race above between the moment we first check m_fPreemptiveGCDisabled |
| 5418 | // and the moment we enable TrapReturningThreads in MarkForSuspension. To account |
| 5419 | // for that we check whether the thread moved into cooperative mode, and if it had |
| 5420 | // we mark it as a DebugWillSync thread, that will be handled later in |
| 5421 | // SysSweepThreadsForDebug |
| 5422 | if (thread->m_fPreemptiveGCDisabled) |
| 5423 | { |
| 5424 | // Remember that this thread will be running to a safe point |
| 5425 | FastInterlockIncrement(&m_DebugWillSyncCount); |
| 5426 | thread->SetThreadState(TS_DebugWillSync); |
| 5427 | } |
| 5428 | #else // DISABLE_THREADSUSPEND |
| 5429 | if (str == STR_Success) { |
| 5430 | thread->ResumeThread(); |
| 5431 | } |
| 5432 | #endif // DISABLE_THREADSUSPEND |
| 5433 | |
| 5434 | LOG((LF_CORDB, LL_INFO1000, |
| 5435 | "[0x%x] SUSPEND: gc enabled.\n" , thread->GetThreadId())); |
| 5436 | } |
| 5437 | } |
| 5438 | |
| 5439 | // |
| 5440 | // Return true if all threads are synchronized now, otherwise the |
| 5441 | // debugge must wait for the SuspendComplete, called from the last |
| 5442 | // thread to sync. |
| 5443 | // |
| 5444 | |
| 5445 | if (FastInterlockDecrement(&m_DebugWillSyncCount) < 0) |
| 5446 | { |
| 5447 | LOG((LF_CORDB, LL_INFO1000, |
| 5448 | "SUSPEND: all threads sync before return.\n" )); |
| 5449 | return true; |
| 5450 | } |
| 5451 | else |
| 5452 | return false; |
| 5453 | } |
| 5454 | |
| 5455 | // |
| 5456 | // This method is called by the debugger helper thread when it times out waiting for a set of threads to |
| 5457 | // synchronize. Its used to chase down threads that are not syncronizing quickly. It returns true if all the threads are |
| 5458 | // now synchronized. This also means that we own the thread store lock. |
| 5459 | // |
| 5460 | // This can be safely called if we're already suspended. |
| 5461 | bool Thread::SysSweepThreadsForDebug(bool forceSync) |
| 5462 | { |
| 5463 | CONTRACT(bool) { |
| 5464 | NOTHROW; |
| 5465 | DISABLED(GC_TRIGGERS); // WaitUntilConcurrentGCComplete toggle GC mode, disabled because called by unmanaged thread |
| 5466 | |
| 5467 | // We assume that only the "real" helper thread ever calls this (not somebody doing helper thread duty). |
| 5468 | PRECONDITION(ThreadStore::HoldingThreadStore()); |
| 5469 | PRECONDITION(IsDbgHelperSpecialThread()); |
| 5470 | PRECONDITION(GetThread() == NULL); |
| 5471 | |
| 5472 | // Iff we return true, then we have the TSL (or the aux lock used in workarounds). |
| 5473 | POSTCONDITION(ThreadStore::HoldingThreadStore()); |
| 5474 | } |
| 5475 | CONTRACT_END; |
| 5476 | |
| 5477 | _ASSERTE(!forceSync); // deprecated parameter |
| 5478 | |
| 5479 | Thread *thread = NULL; |
| 5480 | |
| 5481 | // NOTE::NOTE::NOTE::NOTE::NOTE |
| 5482 | // This function has parallel logic in SuspendRuntime. Please make |
| 5483 | // sure to make appropriate changes there as well. |
| 5484 | |
| 5485 | // From this point until the end of the function, consider all active thread |
| 5486 | // suspension to be in progress. This is mainly to give the profiler API a hint |
| 5487 | // that trying to suspend a thread (in order to walk its stack) could delay the |
| 5488 | // overall EE suspension. So the profiler API would early-abort the stackwalk |
| 5489 | // in such a case. |
| 5490 | ThreadSuspend::SuspendRuntimeInProgressHolder hldSuspendRuntimeInProgress; |
| 5491 | |
| 5492 | // Loop over the threads... |
| 5493 | while (((thread = ThreadStore::GetThreadList(thread)) != NULL) && (m_DebugWillSyncCount >= 0)) |
| 5494 | { |
| 5495 | // Skip threads that we aren't waiting for to sync. |
| 5496 | if ((thread->m_State & TS_DebugWillSync) == 0) |
| 5497 | continue; |
| 5498 | |
| 5499 | #ifdef DISABLE_THREADSUSPEND |
| 5500 | |
| 5501 | // On platforms that do not support safe thread suspension we have |
| 5502 | // to rely on the GCPOLL mechanism. |
| 5503 | |
| 5504 | // When we do not suspend the target thread we rely on the GCPOLL |
| 5505 | // mechanism enabled by TrapReturningThreads. However when reading |
| 5506 | // shared state we need to erect appropriate memory barriers. So |
| 5507 | // the interlocked operation below ensures that any future reads on |
| 5508 | // this thread will happen after any earlier writes on a different |
| 5509 | // thread. |
| 5510 | FastInterlockOr(&thread->m_fPreemptiveGCDisabled, 0); |
| 5511 | if (!thread->m_fPreemptiveGCDisabled) |
| 5512 | { |
| 5513 | // If the thread toggled to preemptive mode, then it's synced. |
| 5514 | goto Label_MarkThreadAsSynced; |
| 5515 | } |
| 5516 | else |
| 5517 | { |
| 5518 | continue; |
| 5519 | } |
| 5520 | |
| 5521 | #else // DISABLE_THREADSUSPEND |
| 5522 | // Suspend the thread |
| 5523 | |
| 5524 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 5525 | DWORD dwSwitchCount = 0; |
| 5526 | #endif |
| 5527 | |
| 5528 | RetrySuspension: |
| 5529 | // We can not allocate memory after we suspend a thread. |
| 5530 | // Otherwise, we may deadlock the process when CLR is hosted. |
| 5531 | ThreadStore::AllocateOSContext(); |
| 5532 | |
| 5533 | SuspendThreadResult str = thread->SuspendThread(); |
| 5534 | |
| 5535 | if (str == STR_Failure || str == STR_UnstartedOrDead) |
| 5536 | { |
| 5537 | // The thread cannot actually be unstarted - if it was, we would not |
| 5538 | // have marked it with TS_DebugWillSync in the first phase. |
| 5539 | _ASSERTE(!(thread->m_State & TS_Unstarted)); |
| 5540 | |
| 5541 | // If the thread has gone, we can't wait on it. |
| 5542 | goto Label_MarkThreadAsSynced; |
| 5543 | } |
| 5544 | else if (str == STR_SwitchedOut) |
| 5545 | { |
| 5546 | // The thread was switched b/c of fiber-mode stuff. |
| 5547 | if (!thread->m_fPreemptiveGCDisabled) |
| 5548 | { |
| 5549 | goto Label_MarkThreadAsSynced; |
| 5550 | } |
| 5551 | else |
| 5552 | { |
| 5553 | goto RetrySuspension; |
| 5554 | } |
| 5555 | } |
| 5556 | else if (str == STR_NoStressLog) |
| 5557 | { |
| 5558 | goto RetrySuspension; |
| 5559 | } |
| 5560 | else if (!thread->m_fPreemptiveGCDisabled) |
| 5561 | { |
| 5562 | // If the thread toggled to preemptive mode, then it's synced. |
| 5563 | |
| 5564 | // We can safely resume the thread here b/c it's in PreemptiveMode and the |
| 5565 | // EE will trap anybody trying to re-enter cooperative. So letting it run free |
| 5566 | // won't hurt the runtime. |
| 5567 | _ASSERTE(str == STR_Success); |
| 5568 | thread->ResumeThread(); |
| 5569 | |
| 5570 | goto Label_MarkThreadAsSynced; |
| 5571 | } |
| 5572 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 5573 | // If the thread is in jitted code, HandledJitCase will try to hijack it; and the hijack |
| 5574 | // will toggle the GC. |
| 5575 | else |
| 5576 | { |
| 5577 | _ASSERTE(str == STR_Success); |
| 5578 | WorkingOnThreadContextHolder workingOnThreadContext(thread); |
| 5579 | if (workingOnThreadContext.Acquired() && thread->HandledJITCase()) |
| 5580 | { |
| 5581 | // Redirect thread so we can capture a good thread context |
| 5582 | // (GetThreadContext is not sufficient, due to an OS bug). |
| 5583 | // If we don't succeed (should only happen on Win9X, due to |
| 5584 | // a different OS bug), we must resume the thread and try |
| 5585 | // again. |
| 5586 | if (!thread->CheckForAndDoRedirectForDbg()) |
| 5587 | { |
| 5588 | thread->ResumeThread(); |
| 5589 | __SwitchToThread(0, ++dwSwitchCount); |
| 5590 | goto RetrySuspension; |
| 5591 | } |
| 5592 | |
| 5593 | // The hijack will toggle our GC mode, and thus we could wait for the next sweep, |
| 5594 | // and the GC-mode check above would catch and sync us. But there's no reason to wait, |
| 5595 | // if the thread is hijacked, it's as good as synced, so mark it now. |
| 5596 | thread->ResumeThread(); |
| 5597 | goto Label_MarkThreadAsSynced; |
| 5598 | } |
| 5599 | } |
| 5600 | #endif // FEATURE_HIJACK && !PLATFORM_UNIX |
| 5601 | |
| 5602 | // If we didn't take the thread out of the set, then resume it and give it another chance to reach a safe |
| 5603 | // point. |
| 5604 | thread->ResumeThread(); |
| 5605 | continue; |
| 5606 | |
| 5607 | #endif // DISABLE_THREADSUSPEND |
| 5608 | |
| 5609 | // The thread is synced. Remove the sync bits and dec the sync count. |
| 5610 | Label_MarkThreadAsSynced: |
| 5611 | FastInterlockAnd((ULONG *) &thread->m_State, ~TS_DebugWillSync); |
| 5612 | if (FastInterlockDecrement(&m_DebugWillSyncCount) < 0) |
| 5613 | { |
| 5614 | // If that was the last thread, then the CLR is synced. |
| 5615 | // We return while own the thread store lock. We return true now, which indicates this to the caller. |
| 5616 | RETURN true; |
| 5617 | } |
| 5618 | continue; |
| 5619 | |
| 5620 | } // end looping through Thread Store |
| 5621 | |
| 5622 | if (m_DebugWillSyncCount < 0) |
| 5623 | { |
| 5624 | RETURN true; |
| 5625 | } |
| 5626 | |
| 5627 | // The CLR is not yet synced. We release the threadstore lock and return false. |
| 5628 | hldSuspendRuntimeInProgress.Release(); |
| 5629 | |
| 5630 | RETURN false; |
| 5631 | } |
| 5632 | |
| 5633 | void Thread::SysResumeFromDebug(AppDomain *pAppDomain) |
| 5634 | { |
| 5635 | CONTRACTL { |
| 5636 | NOTHROW; |
| 5637 | GC_NOTRIGGER; |
| 5638 | } |
| 5639 | CONTRACTL_END; |
| 5640 | |
| 5641 | Thread *thread = NULL; |
| 5642 | |
| 5643 | if (IsAtProcessExit()) |
| 5644 | { |
| 5645 | LOG((LF_CORDB, LL_INFO1000, |
| 5646 | "RESUME: skipping resume due to process detach.\n" )); |
| 5647 | return; |
| 5648 | } |
| 5649 | |
| 5650 | LOG((LF_CORDB, LL_INFO1000, "RESUME: starting resume AD:0x%x.\n" , pAppDomain)); |
| 5651 | |
| 5652 | |
| 5653 | // Make sure we completed the previous sync |
| 5654 | _ASSERTE(m_DebugWillSyncCount == -1); |
| 5655 | |
| 5656 | // Caller is expected to be holding the ThreadStore lock |
| 5657 | _ASSERTE(ThreadStore::HoldingThreadStore() || IsAtProcessExit()); |
| 5658 | |
| 5659 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 5660 | { |
| 5661 | // Only consider resuming threads if they're in the correct appdomain |
| 5662 | if (pAppDomain != NULL && thread->GetDomain() != pAppDomain) |
| 5663 | { |
| 5664 | LOG((LF_CORDB, LL_INFO1000, "RESUME: Not resuming thread 0x%x, since it's " |
| 5665 | "in appdomain 0x%x.\n" , thread, pAppDomain)); |
| 5666 | continue; |
| 5667 | } |
| 5668 | |
| 5669 | // If the user wants to keep the thread suspended, then |
| 5670 | // don't release the thread. |
| 5671 | if (!(thread->m_StateNC & TSNC_DebuggerUserSuspend)) |
| 5672 | { |
| 5673 | // If we are still trying to suspend this thread, forget about it. |
| 5674 | if (thread->m_State & TS_DebugSuspendPending) |
| 5675 | { |
| 5676 | LOG((LF_CORDB, LL_INFO1000, |
| 5677 | "[0x%x] RESUME: TS_DebugSuspendPending was set, but will be removed\n" , |
| 5678 | thread->GetThreadId())); |
| 5679 | |
| 5680 | #ifdef _TARGET_ARM_ |
| 5681 | if (thread->IsSingleStepEnabled()) |
| 5682 | { |
| 5683 | if (ISREDIRECTEDTHREAD(thread)) |
| 5684 | thread->ApplySingleStep(GETREDIRECTEDCONTEXT(thread)); |
| 5685 | } |
| 5686 | #endif |
| 5687 | // Note: we unmark for suspension _then_ set the suspend event. |
| 5688 | thread->ReleaseFromSuspension(TS_DebugSuspendPending); |
| 5689 | } |
| 5690 | |
| 5691 | } |
| 5692 | else |
| 5693 | { |
| 5694 | // Thread will remain suspended due to a request from the debugger. |
| 5695 | |
| 5696 | LOG((LF_CORDB,LL_INFO10000,"Didn't unsuspend thread 0x%x" |
| 5697 | "(ID:0x%x)\n" , thread, thread->GetThreadId())); |
| 5698 | LOG((LF_CORDB,LL_INFO10000,"Suspending:0x%x\n" , |
| 5699 | thread->m_State & TS_DebugSuspendPending)); |
| 5700 | _ASSERTE((thread->m_State & TS_DebugWillSync) == 0); |
| 5701 | |
| 5702 | } |
| 5703 | } |
| 5704 | |
| 5705 | LOG((LF_CORDB, LL_INFO1000, "RESUME: resume complete. Trap count: %d\n" , g_TrapReturningThreads.Load())); |
| 5706 | } |
| 5707 | |
| 5708 | /* |
| 5709 | * |
| 5710 | * WaitSuspendEventsHelper |
| 5711 | * |
| 5712 | * This function is a simple helper function for WaitSuspendEvents. It is needed |
| 5713 | * because of the EX_TRY macro. This macro does an alloca(), which allocates space |
| 5714 | * off the stack, not free'ing it. Thus, doing a EX_TRY in a loop can easily result |
| 5715 | * in a stack overflow error. By factoring out the EX_TRY into a separate function, |
| 5716 | * we recover that stack space. |
| 5717 | * |
| 5718 | * Parameters: |
| 5719 | * None. |
| 5720 | * |
| 5721 | * Return: |
| 5722 | * true if meant to continue, else false. |
| 5723 | * |
| 5724 | */ |
| 5725 | BOOL Thread::WaitSuspendEventsHelper(void) |
| 5726 | { |
| 5727 | STATIC_CONTRACT_NOTHROW; |
| 5728 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 5729 | |
| 5730 | DWORD result = WAIT_FAILED; |
| 5731 | |
| 5732 | EX_TRY { |
| 5733 | |
| 5734 | // CoreCLR does not support user-requested thread suspension |
| 5735 | _ASSERTE(!(m_State & TS_UserSuspendPending)); |
| 5736 | |
| 5737 | if (m_State & TS_DebugSuspendPending) { |
| 5738 | |
| 5739 | ThreadState oldState = m_State; |
| 5740 | |
| 5741 | while (oldState & TS_DebugSuspendPending) { |
| 5742 | |
| 5743 | ThreadState newState = (ThreadState)(oldState | TS_SyncSuspended); |
| 5744 | if (FastInterlockCompareExchange((LONG *)&m_State, newState, oldState) == (LONG)oldState) |
| 5745 | { |
| 5746 | result = m_DebugSuspendEvent.Wait(INFINITE,FALSE); |
| 5747 | #if _DEBUG |
| 5748 | newState = m_State; |
| 5749 | _ASSERTE(!(newState & TS_SyncSuspended) || (newState & TS_UserSuspendPending)); |
| 5750 | #endif |
| 5751 | break; |
| 5752 | } |
| 5753 | |
| 5754 | oldState = m_State; |
| 5755 | } |
| 5756 | } |
| 5757 | } |
| 5758 | EX_CATCH { |
| 5759 | } |
| 5760 | EX_END_CATCH(SwallowAllExceptions) |
| 5761 | |
| 5762 | return result != WAIT_OBJECT_0; |
| 5763 | } |
| 5764 | |
| 5765 | |
| 5766 | // There's a bit of a workaround here |
| 5767 | void Thread::WaitSuspendEvents(BOOL fDoWait) |
| 5768 | { |
| 5769 | STATIC_CONTRACT_NOTHROW; |
| 5770 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 5771 | |
| 5772 | _ASSERTE(!PreemptiveGCDisabled()); |
| 5773 | _ASSERTE((m_State & TS_SyncSuspended) == 0); |
| 5774 | |
| 5775 | // Let us do some useful work before suspending ourselves. |
| 5776 | |
| 5777 | // If we're required to perform a wait, do so. Typically, this is |
| 5778 | // skipped if this thread is a Debugger Special Thread. |
| 5779 | if (fDoWait) |
| 5780 | { |
| 5781 | while (TRUE) |
| 5782 | { |
| 5783 | WaitSuspendEventsHelper(); |
| 5784 | |
| 5785 | ThreadState oldState = m_State; |
| 5786 | |
| 5787 | // CoreCLR does not support user-requested thread suspension |
| 5788 | _ASSERTE(!(oldState & TS_UserSuspendPending)); |
| 5789 | |
| 5790 | // |
| 5791 | // If all reasons to suspend are off, we think we can exit |
| 5792 | // this loop, but we need to check atomically. |
| 5793 | // |
| 5794 | if ((oldState & (TS_UserSuspendPending | TS_DebugSuspendPending)) == 0) |
| 5795 | { |
| 5796 | // |
| 5797 | // Construct the destination state we desire - all suspension bits turned off. |
| 5798 | // |
| 5799 | ThreadState newState = (ThreadState)(oldState & ~(TS_UserSuspendPending | |
| 5800 | TS_DebugSuspendPending | |
| 5801 | TS_SyncSuspended)); |
| 5802 | |
| 5803 | if (FastInterlockCompareExchange((LONG *)&m_State, newState, oldState) == (LONG)oldState) |
| 5804 | { |
| 5805 | // |
| 5806 | // We are done. |
| 5807 | // |
| 5808 | break; |
| 5809 | } |
| 5810 | } |
| 5811 | } |
| 5812 | } |
| 5813 | } |
| 5814 | |
| 5815 | #ifdef FEATURE_HIJACK |
| 5816 | // Hijacking JITted calls |
| 5817 | // ====================== |
| 5818 | |
| 5819 | // State of execution when we suspend a thread |
| 5820 | struct ExecutionState |
| 5821 | { |
| 5822 | BOOL m_FirstPass; |
| 5823 | BOOL m_IsJIT; // are we executing JITted code? |
| 5824 | MethodDesc *m_pFD; // current function/method we're executing |
| 5825 | VOID **m_ppvRetAddrPtr; // pointer to return address in frame |
| 5826 | DWORD m_RelOffset; // relative offset at which we're currently executing in this fcn |
| 5827 | IJitManager *m_pJitManager; |
| 5828 | METHODTOKEN m_MethodToken; |
| 5829 | BOOL m_IsInterruptible; // is this code interruptible? |
| 5830 | |
| 5831 | ExecutionState() : m_FirstPass(TRUE) {LIMITED_METHOD_CONTRACT; } |
| 5832 | }; |
| 5833 | |
| 5834 | // Client is responsible for suspending the thread before calling |
| 5835 | void Thread::HijackThread(VOID *pvHijackAddr, ExecutionState *esb) |
| 5836 | { |
| 5837 | CONTRACTL { |
| 5838 | NOTHROW; |
| 5839 | GC_NOTRIGGER; |
| 5840 | } |
| 5841 | CONTRACTL_END; |
| 5842 | |
| 5843 | // Don't hijack if are in the first level of running a filter/finally/catch. |
| 5844 | // This is because they share ebp with their containing function further down the |
| 5845 | // stack and we will hijack their containing function incorrectly |
| 5846 | if (IsInFirstFrameOfHandler(this, esb->m_pJitManager, esb->m_MethodToken, esb->m_RelOffset)) |
| 5847 | { |
| 5848 | STRESS_LOG3(LF_SYNC, LL_INFO100, "Thread::HijackThread(%p to %p): Early out - IsInFirstFrameOfHandler. State=%x.\n" , this, pvHijackAddr, (ThreadState)m_State); |
| 5849 | return; |
| 5850 | } |
| 5851 | |
| 5852 | // Don't hijack if a profiler stackwalk is in progress |
| 5853 | HijackLockHolder hijackLockHolder(this); |
| 5854 | if (!hijackLockHolder.Acquired()) |
| 5855 | { |
| 5856 | STRESS_LOG3(LF_SYNC, LL_INFO100, "Thread::HijackThread(%p to %p): Early out - !hijackLockHolder.Acquired. State=%x.\n" , this, pvHijackAddr, (ThreadState)m_State); |
| 5857 | return; |
| 5858 | } |
| 5859 | |
| 5860 | IS_VALID_CODE_PTR((FARPROC) pvHijackAddr); |
| 5861 | |
| 5862 | if (m_State & TS_Hijacked) |
| 5863 | UnhijackThread(); |
| 5864 | |
| 5865 | // Make sure that the location of the return address is on the stack |
| 5866 | _ASSERTE(IsAddressInStack(esb->m_ppvRetAddrPtr)); |
| 5867 | |
| 5868 | // Obtain the location of the return address in the currently executing stack frame |
| 5869 | m_ppvHJRetAddrPtr = esb->m_ppvRetAddrPtr; |
| 5870 | |
| 5871 | // Remember the place that the return would have gone |
| 5872 | m_pvHJRetAddr = *esb->m_ppvRetAddrPtr; |
| 5873 | |
| 5874 | IS_VALID_CODE_PTR((FARPROC) (TADDR)m_pvHJRetAddr); |
| 5875 | // TODO [DAVBR]: For the full fix for VsWhidbey 450273, the below |
| 5876 | // may be uncommented once isLegalManagedCodeCaller works properly |
| 5877 | // with non-return address inputs, and with non-DEBUG builds |
| 5878 | //_ASSERTE(isLegalManagedCodeCaller((TADDR)m_pvHJRetAddr)); |
| 5879 | STRESS_LOG2(LF_SYNC, LL_INFO100, "Hijacking return address 0x%p for thread %p\n" , m_pvHJRetAddr, this); |
| 5880 | |
| 5881 | // Remember the method we're executing |
| 5882 | m_HijackedFunction = esb->m_pFD; |
| 5883 | |
| 5884 | // Bash the stack to return to one of our stubs |
| 5885 | *esb->m_ppvRetAddrPtr = pvHijackAddr; |
| 5886 | FastInterlockOr((ULONG *) &m_State, TS_Hijacked); |
| 5887 | } |
| 5888 | |
| 5889 | // If we are unhijacking another thread (not the current thread), then the caller is responsible for |
| 5890 | // suspending that thread. |
| 5891 | // It's legal to unhijack the current thread without special treatment. |
| 5892 | void Thread::UnhijackThread() |
| 5893 | { |
| 5894 | CONTRACTL { |
| 5895 | NOTHROW; |
| 5896 | GC_NOTRIGGER; |
| 5897 | SO_TOLERANT; |
| 5898 | CANNOT_TAKE_LOCK; |
| 5899 | } |
| 5900 | CONTRACTL_END; |
| 5901 | |
| 5902 | if (m_State & TS_Hijacked) |
| 5903 | { |
| 5904 | IS_VALID_WRITE_PTR(m_ppvHJRetAddrPtr, sizeof(void*)); |
| 5905 | IS_VALID_CODE_PTR((FARPROC) m_pvHJRetAddr); |
| 5906 | |
| 5907 | // Can't make the following assertion, because sometimes we unhijack after |
| 5908 | // the hijack has tripped (i.e. in the case we actually got some value from |
| 5909 | // it. |
| 5910 | // _ASSERTE(*m_ppvHJRetAddrPtr == OnHijackTripThread); |
| 5911 | |
| 5912 | STRESS_LOG2(LF_SYNC, LL_INFO100, "Unhijacking return address 0x%p for thread %p\n" , m_pvHJRetAddr, this); |
| 5913 | // restore the return address and clear the flag |
| 5914 | *m_ppvHJRetAddrPtr = m_pvHJRetAddr; |
| 5915 | FastInterlockAnd((ULONG *) &m_State, ~TS_Hijacked); |
| 5916 | |
| 5917 | // But don't touch m_pvHJRetAddr. We may need that to resume a thread that |
| 5918 | // is currently hijacked! |
| 5919 | } |
| 5920 | } |
| 5921 | |
| 5922 | // Get the ExecutionState for the specified *SUSPENDED* thread. Note that this is |
| 5923 | // a 'StackWalk' call back (PSTACKWALKFRAMESCALLBACK). |
| 5924 | StackWalkAction SWCB_GetExecutionState(CrawlFrame *pCF, VOID *pData) |
| 5925 | { |
| 5926 | CONTRACTL { |
| 5927 | NOTHROW; |
| 5928 | GC_NOTRIGGER; |
| 5929 | } |
| 5930 | CONTRACTL_END; |
| 5931 | |
| 5932 | ExecutionState *pES = (ExecutionState *) pData; |
| 5933 | StackWalkAction action = SWA_ABORT; |
| 5934 | |
| 5935 | if (pES->m_FirstPass) |
| 5936 | { |
| 5937 | // This will help factor out some repeated code. |
| 5938 | bool notJittedCase = false; |
| 5939 | |
| 5940 | // If we're jitted code at the top of the stack, grab everything |
| 5941 | if (pCF->IsFrameless() && pCF->IsActiveFunc()) |
| 5942 | { |
| 5943 | pES->m_IsJIT = TRUE; |
| 5944 | pES->m_pFD = pCF->GetFunction(); |
| 5945 | pES->m_MethodToken = pCF->GetMethodToken(); |
| 5946 | pES->m_ppvRetAddrPtr = 0; |
| 5947 | pES->m_IsInterruptible = pCF->IsGcSafe(); |
| 5948 | pES->m_RelOffset = pCF->GetRelOffset(); |
| 5949 | pES->m_pJitManager = pCF->GetJitManager(); |
| 5950 | |
| 5951 | STRESS_LOG3(LF_SYNC, LL_INFO1000, "Stopped in Jitted code at pc = %p sp = %p fullyInt=%d\n" , |
| 5952 | GetControlPC(pCF->GetRegisterSet()), GetRegdisplaySP(pCF->GetRegisterSet()), pES->m_IsInterruptible); |
| 5953 | |
| 5954 | #if defined(FEATURE_CONSERVATIVE_GC) && !defined(USE_GC_INFO_DECODER) |
| 5955 | if (g_pConfig->GetGCConservative()) |
| 5956 | { |
| 5957 | // Conservative GC enabled; behave as if HIJACK_NONINTERRUPTIBLE_THREADS had not been |
| 5958 | // set above: |
| 5959 | // |
| 5960 | notJittedCase = true; |
| 5961 | } |
| 5962 | else |
| 5963 | #endif // FEATURE_CONSERVATIVE_GC |
| 5964 | { |
| 5965 | #ifndef HIJACK_NONINTERRUPTIBLE_THREADS |
| 5966 | if (!pES->m_IsInterruptible) |
| 5967 | { |
| 5968 | notJittedCase = true; |
| 5969 | } |
| 5970 | #else // HIJACK_NONINTERRUPTIBLE_THREADS |
| 5971 | // if we're not interruptible right here, we need to determine the |
| 5972 | // return address for hijacking. |
| 5973 | if (!pES->m_IsInterruptible) |
| 5974 | { |
| 5975 | #ifdef WIN64EXCEPTIONS |
| 5976 | PREGDISPLAY pRDT = pCF->GetRegisterSet(); |
| 5977 | _ASSERTE(pRDT != NULL); |
| 5978 | |
| 5979 | // For simplicity, don't hijack in funclets |
| 5980 | bool fIsFunclet = pCF->IsFunclet(); |
| 5981 | if (fIsFunclet) |
| 5982 | { |
| 5983 | notJittedCase = true; |
| 5984 | } |
| 5985 | else |
| 5986 | { |
| 5987 | // We already have the caller context available at this point |
| 5988 | _ASSERTE(pRDT->IsCallerContextValid); |
| 5989 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 5990 | |
| 5991 | // Why do we use CallerContextPointers below? |
| 5992 | // |
| 5993 | // Assume the following callstack, growing from left->right: |
| 5994 | // |
| 5995 | // C -> B -> A |
| 5996 | // |
| 5997 | // Assuming A is non-interruptible function and pushes LR on stack, |
| 5998 | // when we get the stackwalk callback for A, the CallerContext would |
| 5999 | // contain non-volatile register state for B and CallerContextPtrs would |
| 6000 | // contain the location where the caller's (B's) non-volatiles where restored |
| 6001 | // from. This would be the stack location in A where they were pushed. Thus, |
| 6002 | // CallerContextPtrs->Lr would contain the stack location in A where LR (representing an address in B) |
| 6003 | // was pushed and thus, contains the return address in B. |
| 6004 | |
| 6005 | // Note that the JIT always pushes LR even for leaf methods to make hijacking |
| 6006 | // work for them. See comment in code:Compiler::genPushCalleeSavedRegisters. |
| 6007 | |
| 6008 | if(pRDT->pCallerContextPointers->Lr == &pRDT->pContext->Lr) |
| 6009 | { |
| 6010 | // This is the case when we are either: |
| 6011 | // |
| 6012 | // 1) In a leaf method that does not push LR on stack, OR |
| 6013 | // 2) In the prolog/epilog of a non-leaf method that has not yet pushed LR on stack |
| 6014 | // or has LR already popped off. |
| 6015 | // |
| 6016 | // The remaining case of non-leaf method is that of IP being in the body of the |
| 6017 | // function. In such a case, LR would be have been pushed on the stack and thus, |
| 6018 | // we wouldnt be here but in the "else" clause below. |
| 6019 | // |
| 6020 | // For (1) we can use CallerContext->ControlPC to be used as the return address |
| 6021 | // since we know that leaf frames will return back to their caller. |
| 6022 | // For this, we may need JIT support to do so. |
| 6023 | notJittedCase = true; |
| 6024 | } |
| 6025 | else if (pCF->HasTailCalls()) |
| 6026 | { |
| 6027 | // Do not hijack functions that have tail calls, since there are two problems: |
| 6028 | // 1. When a function that tail calls another one is hijacked, the LR may be |
| 6029 | // stored at a different location in the stack frame of the tail call target. |
| 6030 | // So just by performing tail call, the hijacked location becomes invalid and |
| 6031 | // unhijacking would corrupt stack by writing to that location. |
| 6032 | // 2. There is a small window after the caller pops LR from the stack in its |
| 6033 | // epilog and before the tail called function pushes LR in its prolog when |
| 6034 | // the hijacked return address would not be not on the stack and so we would |
| 6035 | // not be able to unhijack. |
| 6036 | notJittedCase = true; |
| 6037 | } |
| 6038 | else |
| 6039 | { |
| 6040 | // This is the case of IP being inside the method body and LR is |
| 6041 | // pushed on the stack. We get it to determine the return address |
| 6042 | // in the caller of the current non-interruptible frame. |
| 6043 | pES->m_ppvRetAddrPtr = (void **) pRDT->pCallerContextPointers->Lr; |
| 6044 | } |
| 6045 | #elif defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 6046 | pES->m_ppvRetAddrPtr = (void **) (EECodeManager::GetCallerSp(pRDT) - sizeof(void*)); |
| 6047 | #else // _TARGET_X86_ || _TARGET_AMD64_ |
| 6048 | PORTABILITY_ASSERT("Platform NYI" ); |
| 6049 | #endif // _TARGET_???_ |
| 6050 | } |
| 6051 | #else // WIN64EXCEPTIONS |
| 6052 | // peel off the next frame to expose the return address on the stack |
| 6053 | pES->m_FirstPass = FALSE; |
| 6054 | action = SWA_CONTINUE; |
| 6055 | #endif // !WIN64EXCEPTIONS |
| 6056 | } |
| 6057 | #endif // HIJACK_NONINTERRUPTIBLE_THREADS |
| 6058 | } |
| 6059 | // else we are successfully out of here with SWA_ABORT |
| 6060 | } |
| 6061 | else |
| 6062 | { |
| 6063 | #ifdef _TARGET_X86_ |
| 6064 | STRESS_LOG2(LF_SYNC, LL_INFO1000, "Not in Jitted code at EIP = %p, &EIP = %p\n" , GetControlPC(pCF->GetRegisterSet()), pCF->GetRegisterSet()->PCTAddr); |
| 6065 | #else |
| 6066 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "Not in Jitted code at pc = %p\n" , GetControlPC(pCF->GetRegisterSet())); |
| 6067 | #endif |
| 6068 | notJittedCase = true; |
| 6069 | } |
| 6070 | |
| 6071 | // Cases above may have set "notJITtedCase", which we handle as follows: |
| 6072 | if (notJittedCase) |
| 6073 | { |
| 6074 | pES->m_IsJIT = FALSE; |
| 6075 | #ifdef _DEBUG |
| 6076 | pES->m_pFD = (MethodDesc *)POISONC; |
| 6077 | pES->m_ppvRetAddrPtr = (void **)POISONC; |
| 6078 | pES->m_IsInterruptible = FALSE; |
| 6079 | #endif |
| 6080 | } |
| 6081 | } |
| 6082 | else |
| 6083 | { |
| 6084 | #if defined(_TARGET_X86_) && !defined(WIN64EXCEPTIONS) |
| 6085 | // Second pass, looking for the address of the return address so we can |
| 6086 | // hijack: |
| 6087 | |
| 6088 | PREGDISPLAY pRDT = pCF->GetRegisterSet(); |
| 6089 | |
| 6090 | if (pRDT != NULL) |
| 6091 | { |
| 6092 | // pPC points to the return address sitting on the stack, as our |
| 6093 | // current EIP for the penultimate stack frame. |
| 6094 | pES->m_ppvRetAddrPtr = (void **) pRDT->PCTAddr; |
| 6095 | |
| 6096 | STRESS_LOG2(LF_SYNC, LL_INFO1000, "Partially Int case hijack address = 0x%x val = 0x%x\n" , pES->m_ppvRetAddrPtr, *pES->m_ppvRetAddrPtr); |
| 6097 | } |
| 6098 | #else |
| 6099 | PORTABILITY_ASSERT("Platform NYI" ); |
| 6100 | #endif |
| 6101 | } |
| 6102 | |
| 6103 | return action; |
| 6104 | } |
| 6105 | |
| 6106 | HijackFrame::HijackFrame(LPVOID returnAddress, Thread *thread, HijackArgs *args) |
| 6107 | : m_ReturnAddress((TADDR)returnAddress), |
| 6108 | m_Thread(thread), |
| 6109 | m_Args(args) |
| 6110 | { |
| 6111 | CONTRACTL { |
| 6112 | NOTHROW; |
| 6113 | GC_NOTRIGGER; |
| 6114 | } |
| 6115 | CONTRACTL_END; |
| 6116 | |
| 6117 | _ASSERTE(m_Thread == GetThread()); |
| 6118 | |
| 6119 | m_Next = m_Thread->GetFrame(); |
| 6120 | m_Thread->SetFrame(this); |
| 6121 | } |
| 6122 | |
| 6123 | void STDCALL OnHijackWorker(HijackArgs * pArgs) |
| 6124 | { |
| 6125 | CONTRACTL{ |
| 6126 | THROWS; |
| 6127 | GC_TRIGGERS; |
| 6128 | SO_TOLERANT; |
| 6129 | } |
| 6130 | CONTRACTL_END; |
| 6131 | |
| 6132 | #ifdef HIJACK_NONINTERRUPTIBLE_THREADS |
| 6133 | Thread *thread = GetThread(); |
| 6134 | |
| 6135 | #ifdef FEATURE_STACK_PROBE |
| 6136 | if (GetEEPolicy()->GetActionOnFailure(FAIL_StackOverflow) == eRudeUnloadAppDomain) |
| 6137 | { |
| 6138 | // Make sure default domain does not see SO. |
| 6139 | // probe for our entry point amount and throw if not enough stack |
| 6140 | RetailStackProbe(ADJUST_PROBE(DEFAULT_ENTRY_PROBE_AMOUNT), thread); |
| 6141 | } |
| 6142 | #endif // FEATURE_STACK_PROBE |
| 6143 | |
| 6144 | CONTRACT_VIOLATION(SOToleranceViolation); |
| 6145 | |
| 6146 | thread->ResetThreadState(Thread::TS_Hijacked); |
| 6147 | |
| 6148 | // Fix up our caller's stack, so it can resume from the hijack correctly |
| 6149 | pArgs->ReturnAddress = (size_t)thread->m_pvHJRetAddr; |
| 6150 | |
| 6151 | // Build a frame so that stack crawling can proceed from here back to where |
| 6152 | // we will resume execution. |
| 6153 | FrameWithCookie<HijackFrame> frame((void *)pArgs->ReturnAddress, thread, pArgs); |
| 6154 | |
| 6155 | #ifdef _DEBUG |
| 6156 | BOOL GCOnTransition = FALSE; |
| 6157 | if (g_pConfig->FastGCStressLevel()) { |
| 6158 | GCOnTransition = GC_ON_TRANSITIONS(FALSE); |
| 6159 | } |
| 6160 | #endif // _DEBUG |
| 6161 | |
| 6162 | #ifdef TIME_SUSPEND |
| 6163 | g_SuspendStatistics.cntHijackTrap++; |
| 6164 | #endif // TIME_SUSPEND |
| 6165 | |
| 6166 | CommonTripThread(); |
| 6167 | |
| 6168 | #ifdef _DEBUG |
| 6169 | if (g_pConfig->FastGCStressLevel()) { |
| 6170 | GC_ON_TRANSITIONS(GCOnTransition); |
| 6171 | } |
| 6172 | #endif // _DEBUG |
| 6173 | |
| 6174 | frame.Pop(); |
| 6175 | #else |
| 6176 | PORTABILITY_ASSERT("OnHijackWorker not implemented on this platform." ); |
| 6177 | #endif // HIJACK_NONINTERRUPTIBLE_THREADS |
| 6178 | } |
| 6179 | |
| 6180 | ReturnKind GetReturnKindFromMethodTable(Thread *pThread, EECodeInfo *codeInfo) |
| 6181 | { |
| 6182 | #ifdef _WIN64 |
| 6183 | // For simplicity, we don't hijack in funclets, but if you ever change that, |
| 6184 | // be sure to choose the OnHijack... callback type to match that of the FUNCLET |
| 6185 | // not the main method (it would probably be Scalar). |
| 6186 | #endif // _WIN64 |
| 6187 | |
| 6188 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 6189 | // Mark that we are performing a stackwalker like operation on the current thread. |
| 6190 | // This is necessary to allow the signature parsing functions to work without triggering any loads |
| 6191 | ClrFlsValueSwitch threadStackWalking(TlsIdx_StackWalkerWalkingThread, pThread); |
| 6192 | |
| 6193 | MethodDesc *methodDesc = codeInfo->GetMethodDesc(); |
| 6194 | _ASSERTE(methodDesc != nullptr); |
| 6195 | |
| 6196 | #ifdef _TARGET_X86_ |
| 6197 | MetaSig msig(methodDesc); |
| 6198 | if (msig.HasFPReturn()) |
| 6199 | { |
| 6200 | // Figuring out whether the function returns FP or not is hard to do |
| 6201 | // on-the-fly, so we use a different callback helper on x86 where this |
| 6202 | // piece of information is needed in order to perform the right save & |
| 6203 | // restore of the return value around the call to OnHijackScalarWorker. |
| 6204 | return RT_Float; |
| 6205 | } |
| 6206 | #endif // _TARGET_X86_ |
| 6207 | |
| 6208 | MethodTable* pMT = NULL; |
| 6209 | MetaSig::RETURNTYPE type = methodDesc->ReturnsObject(INDEBUG_COMMA(false) &pMT); |
| 6210 | if (type == MetaSig::RETOBJ) |
| 6211 | { |
| 6212 | return RT_Object; |
| 6213 | } |
| 6214 | |
| 6215 | if (type == MetaSig::RETBYREF) |
| 6216 | { |
| 6217 | return RT_ByRef; |
| 6218 | } |
| 6219 | |
| 6220 | #ifdef UNIX_AMD64_ABI |
| 6221 | // The Multi-reg return case using the classhandle is only implemented for AMD64 SystemV ABI. |
| 6222 | // On other platforms, multi-reg return is not supported with GcInfo v1. |
| 6223 | // So, the relevant information must be obtained from the GcInfo tables (which requires version2). |
| 6224 | if (type == MetaSig::RETVALUETYPE) |
| 6225 | { |
| 6226 | EEClass *eeClass = pMT->GetClass(); |
| 6227 | ReturnKind regKinds[2] = { RT_Unset, RT_Unset }; |
| 6228 | int orefCount = 0; |
| 6229 | for (int i = 0; i < 2; i++) |
| 6230 | { |
| 6231 | if (eeClass->GetEightByteClassification(i) == SystemVClassificationTypeIntegerReference) |
| 6232 | { |
| 6233 | regKinds[i] = RT_Object; |
| 6234 | } |
| 6235 | else if (eeClass->GetEightByteClassification(i) == SystemVClassificationTypeIntegerByRef) |
| 6236 | { |
| 6237 | regKinds[i] = RT_ByRef; |
| 6238 | } |
| 6239 | else |
| 6240 | { |
| 6241 | regKinds[i] = RT_Scalar; |
| 6242 | } |
| 6243 | } |
| 6244 | ReturnKind structReturnKind = GetStructReturnKind(regKinds[0], regKinds[1]); |
| 6245 | return structReturnKind; |
| 6246 | } |
| 6247 | #endif // UNIX_AMD64_ABI |
| 6248 | |
| 6249 | return RT_Scalar; |
| 6250 | } |
| 6251 | |
| 6252 | ReturnKind GetReturnKind(Thread *pThread, EECodeInfo *codeInfo) |
| 6253 | { |
| 6254 | GCInfoToken gcInfoToken = codeInfo->GetGCInfoToken(); |
| 6255 | ReturnKind returnKind = codeInfo->GetCodeManager()->GetReturnKind(gcInfoToken); |
| 6256 | |
| 6257 | if (!IsValidReturnKind(returnKind)) |
| 6258 | { |
| 6259 | returnKind = GetReturnKindFromMethodTable(pThread, codeInfo); |
| 6260 | } |
| 6261 | else |
| 6262 | { |
| 6263 | #if !defined(FEATURE_MULTIREG_RETURN) || defined(UNIX_AMD64_ABI) |
| 6264 | // For ARM64 struct-return, GetReturnKindFromMethodTable() is not supported |
| 6265 | _ASSERTE(returnKind == GetReturnKindFromMethodTable(pThread, codeInfo)); |
| 6266 | #endif // !FEATURE_MULTIREG_RETURN || UNIX_AMD64_ABI |
| 6267 | } |
| 6268 | |
| 6269 | _ASSERTE(IsValidReturnKind(returnKind)); |
| 6270 | return returnKind; |
| 6271 | } |
| 6272 | |
| 6273 | VOID * GetHijackAddr(Thread *pThread, EECodeInfo *codeInfo) |
| 6274 | { |
| 6275 | ReturnKind returnKind = GetReturnKind(pThread, codeInfo); |
| 6276 | pThread->SetHijackReturnKind(returnKind); |
| 6277 | |
| 6278 | #ifdef _TARGET_X86_ |
| 6279 | if (returnKind == RT_Float) |
| 6280 | { |
| 6281 | return reinterpret_cast<VOID *>(OnHijackFPTripThread); |
| 6282 | } |
| 6283 | #endif // _TARGET_X86_ |
| 6284 | |
| 6285 | return reinterpret_cast<VOID *>(OnHijackTripThread); |
| 6286 | } |
| 6287 | |
| 6288 | #ifndef PLATFORM_UNIX |
| 6289 | |
| 6290 | // Get the ExecutionState for the specified SwitchIn thread. Note that this is |
| 6291 | // a 'StackWalk' call back (PSTACKWALKFRAMESCALLBACK). |
| 6292 | StackWalkAction SWCB_GetExecutionStateForSwitchIn(CrawlFrame *pCF, VOID *pData) |
| 6293 | { |
| 6294 | CONTRACTL { |
| 6295 | NOTHROW; |
| 6296 | GC_NOTRIGGER; |
| 6297 | } |
| 6298 | CONTRACTL_END; |
| 6299 | |
| 6300 | ExecutionState *pES = (ExecutionState *) pData; |
| 6301 | StackWalkAction action = SWA_CONTINUE; |
| 6302 | |
| 6303 | if (pES->m_FirstPass) { |
| 6304 | if (pCF->IsFrameless()) { |
| 6305 | #ifdef _TARGET_X86_ |
| 6306 | pES->m_FirstPass = FALSE; |
| 6307 | #else |
| 6308 | _ASSERTE(!"Platform NYI" ); |
| 6309 | #endif |
| 6310 | |
| 6311 | pES->m_IsJIT = TRUE; |
| 6312 | pES->m_pFD = pCF->GetFunction(); |
| 6313 | pES->m_MethodToken = pCF->GetMethodToken(); |
| 6314 | // We do not care if the code is interruptible |
| 6315 | pES->m_IsInterruptible = FALSE; |
| 6316 | pES->m_RelOffset = pCF->GetRelOffset(); |
| 6317 | pES->m_pJitManager = pCF->GetJitManager(); |
| 6318 | } |
| 6319 | } |
| 6320 | else { |
| 6321 | #ifdef _TARGET_X86_ |
| 6322 | if (pCF->IsFrameless()) { |
| 6323 | PREGDISPLAY pRDT = pCF->GetRegisterSet(); |
| 6324 | if (pRDT) { |
| 6325 | // pPC points to the return address sitting on the stack, as our |
| 6326 | // current EIP for the penultimate stack frame. |
| 6327 | pES->m_ppvRetAddrPtr = (void **) pRDT->PCTAddr; |
| 6328 | action = SWA_ABORT; |
| 6329 | } |
| 6330 | } |
| 6331 | #else |
| 6332 | _ASSERTE(!"Platform NYI" ); |
| 6333 | #endif |
| 6334 | } |
| 6335 | return action; |
| 6336 | } |
| 6337 | |
| 6338 | // |
| 6339 | // The function below, ThreadCaughtInKernelModeExceptionHandling, exists to detect and work around a very subtle |
| 6340 | // race that we have when we suspend a thread while that thread is in the kernel handling an exception. |
| 6341 | // |
| 6342 | // When a user-mode thread takes an exception, the OS must get involved to handle that exception before user-mode |
| 6343 | // exception handling takes place. The exception causes the thread to enter kernel-mode. To handle the exception, |
| 6344 | // the kernel does the following: 1) pushes a CONTEXT, then an EXCEPTION_RECORD, and finally an EXCEPTION_POINTERS |
| 6345 | // struct onto the thread's user-mode stack. 2) the Esp value in the thread's user-mode context is updated to |
| 6346 | // reflect the fact that these structures have just been pushed. 3) some segment registers in the user-mode context |
| 6347 | // are modified. 4) the Eip value in the user-mode context is changed to point to the user-mode exception dispatch |
| 6348 | // routine. 5) the kernel resumes user-mode execution with the altered context. |
| 6349 | // |
| 6350 | // Note that during this entire process: 1) the thread can be suspeded by another user-mode thread, and 2) |
| 6351 | // Get/SetThreadContext all operate on the user-mode context. |
| 6352 | // |
| 6353 | // There are two important races to consider here: a race with attempting to hijack the thread in HandledJITCase, |
| 6354 | // and a race attempting to trace the thread's stack in HandledJITCase. |
| 6355 | // |
| 6356 | // |
| 6357 | // Race #1: failure to hijack a thread in HandledJITCase. |
| 6358 | // |
| 6359 | // In HandledJITCase, if we see that a thread's Eip is in managed code at an interruptable point, we will attempt |
| 6360 | // to move the thread to a hijack in order to stop it's execution for a variety of reasons (GC, debugger, user-mode |
| 6361 | // supension, etc.) We do this by suspending the thread, inspecting Eip, changing Eip to the address of the hijack |
| 6362 | // routine, and resuming the thread. |
| 6363 | // |
| 6364 | // The problem here is that in step #4 above, the kernel is going to change Eip in the thread's context to point to |
| 6365 | // the user-mode exception dispatch routine. If we suspend a thread when it has taken an exception in managed code, |
| 6366 | // we may see Eip pointing to managed code and attempt to hijack the thread. When we resume the thread, step #4 |
| 6367 | // will eventually execute and the thread will go to the user-mode exception dispatch routine instead of to our |
| 6368 | // hijack. |
| 6369 | // |
| 6370 | // We tollerate this by recgonizing that this has happened when we arrive in our exception handler |
| 6371 | // (COMPlusFrameHandler), and we fix up the IP in the context passed to the handler. |
| 6372 | // |
| 6373 | // |
| 6374 | // Race #2: inability to trace a managed call stack |
| 6375 | // |
| 6376 | // If we suspend a thread after step #2 above, but before step #4, then we will see an Eip pointing to managed |
| 6377 | // code, but an Esp that points to the newly pushed exception structures. If we are in a managed function that does |
| 6378 | // not have an Ebp frame, the return address will be relative to Esp and we will not be able to resolve the return |
| 6379 | // address properly. Since we will attempt to place a return address hijack (as part of our heroic efforts to trap |
| 6380 | // the thread quickly), we may end up writing over random memory with our hijack. This is obviously extremely |
| 6381 | // bad. Realistically, any attempt to trace a thread's stack in this case is suspect, even if the mangaed function |
| 6382 | // has a EBP frame. |
| 6383 | // |
| 6384 | // The solution is to attempt to detect this race and abandon the hijack attempt. We have developed the following |
| 6385 | // heuristic to detect this case. Basically, we look to see if Esp points to an EXCEPTION_POINTERS structure, and |
| 6386 | // that this structure points to valid EXCEPTION_RECORD and CONTEXT structures. They must be ordered on the stack, |
| 6387 | // and the faulting address in the EXCEPTION_RECORD should be the thread's current Eip, and the Eip in the CONTEXT |
| 6388 | // should be the thread's current Eip. |
| 6389 | // |
| 6390 | // This is the heuristic codified. Given Eip and Esp from the thread's current context: |
| 6391 | // |
| 6392 | // 1. if Eip points to a managed function, and... |
| 6393 | // 2. the pointer at Esp is equal to Esp + sizeof(EXCEPTION_POINTERS), and... |
| 6394 | // 3. the faulting address in the EXCEPTION_RECORD at that location is equal to the current Eip, and... |
| 6395 | // 4. the NumberParameters field in the EXCEPTION_RECORD is valid (between 0 and EXCEPTION_MAXIMUM_PARAMETERS), and... |
| 6396 | // 5. the pointer at Esp + 4 is equal to Esp + sizeof(EXCEPTION_POINTERS) + the dynamic size of the EXCEPTION_RECORD, and... |
| 6397 | // 6. the Eip value of the CONTEXT at that location is equal to the current Eip, then we have recgonized the race. |
| 6398 | // |
| 6399 | // The validation of Eip in both places, combined with ensuring that the pointer values are on the thread's stack |
| 6400 | // make this a safe heuristic to evaluate. Even if one could end up in a function with the stack looking exactly |
| 6401 | // like this, and even if we are trying to suspend such a thread and we catch it at the Eip that matches the values |
| 6402 | // at the proper places on the stack, then the worst that will happen is we won't attempt to hijack the thread at |
| 6403 | // that point. We'll resume it and try again later. There will be at least one other instruction in the function |
| 6404 | // that is not at the Eip value on the stack, and we'll be able to trace the thread's stack from that instruction |
| 6405 | // and place the return address hijack. |
| 6406 | // |
| 6407 | // As races go, race #1 above is very, very easy to hit. We hit it in the wild before we shipped V1, and a simple |
| 6408 | // test program with one thread constantly AV'ing and another thread attempting to suspend the first thread every |
| 6409 | // half second hit's the race almost instantly. |
| 6410 | // |
| 6411 | // Race #2 is extremely rare in comparison. The same program properly instrumented only hits the race about 5 times |
| 6412 | // every 2000 attempts or so. We did not hit this even in very stressful exception tests and |
| 6413 | // it's never been seen in the wild. |
| 6414 | // |
| 6415 | // Note: a new feature has been added in recent OS's that allows us to detect both of these races with a simple |
| 6416 | // call to GetThreadContext. This feature exists on all Win64 platforms, so this change is only for 32-bit |
| 6417 | // platforms. We've asked for this fix to be applied to future 32-bit OS's, so we can remove this on those |
| 6418 | // platforms when that happens. Furthermore, once we stop supporting the older 32-bit OS versions that don't have |
| 6419 | // the new feature, we can remove these altogether. |
| 6420 | // |
| 6421 | // WARNING: Interrupts (int 3) immediately increment the IP whereas traps (AVs) do not. |
| 6422 | // So this heuristic only works for trap, but not for interrupts. As a result, the race |
| 6423 | // is still a problem for interrupts. This means that the race can cause a process crash |
| 6424 | // if the managed debugger puts an "int 3" in order to do a stepping operation, |
| 6425 | // and GC or a sampling profiler tries to suspend the thread. This can be handled |
| 6426 | // by modifying the code below to additionally check if the instruction just before |
| 6427 | // the IP is an "int 3". |
| 6428 | // |
| 6429 | |
| 6430 | #ifdef _TARGET_X86_ |
| 6431 | |
| 6432 | #ifndef FEATURE_PAL |
| 6433 | #define WORKAROUND_RACES_WITH_KERNEL_MODE_EXCEPTION_HANDLING |
| 6434 | #endif // !FEATURE_PAL |
| 6435 | |
| 6436 | #ifdef WORKAROUND_RACES_WITH_KERNEL_MODE_EXCEPTION_HANDLING |
| 6437 | BOOL ThreadCaughtInKernelModeExceptionHandling(Thread *pThread, CONTEXT *ctx) |
| 6438 | { |
| 6439 | CONTRACTL |
| 6440 | { |
| 6441 | NOTHROW; |
| 6442 | GC_NOTRIGGER; |
| 6443 | MODE_ANY; |
| 6444 | PRECONDITION(pThread != NULL); |
| 6445 | PRECONDITION(ctx != NULL); |
| 6446 | } |
| 6447 | CONTRACTL_END; |
| 6448 | |
| 6449 | // Validate that Esp plus all of our maximum structure sizes is on the thread's stack. We use the cached bounds |
| 6450 | // on the Thread object. If we're that close to the top of the thread's stack, then we can't possibly have hit |
| 6451 | // the race. If we pass this test, we can assume all memory accesses below are legal, since they're all on the |
| 6452 | // thread's stack. |
| 6453 | if ((ctx->Esp + sizeof(EXCEPTION_POINTERS) + sizeof(EXCEPTION_RECORD) + sizeof(CONTEXT)) >= |
| 6454 | (UINT_PTR)pThread->GetCachedStackBase()) |
| 6455 | { |
| 6456 | return FALSE; |
| 6457 | } |
| 6458 | |
| 6459 | // The calculations below assume that a DWORD is the same size as a pointer. Since this is only needed on |
| 6460 | // 32-bit platforms, this should be fine. |
| 6461 | _ASSERTE(sizeof(DWORD) == sizeof(void*)); |
| 6462 | |
| 6463 | // There are cases where the ESP is just decremented but the page is not touched, thus the page is not commited or |
| 6464 | // still has page guard bit set. We can't hit the race in such case so we just leave. Besides, we can't access the |
| 6465 | // memory with page guard flag or not committed. |
| 6466 | MEMORY_BASIC_INFORMATION mbi; |
| 6467 | #undef VirtualQuery |
| 6468 | // This code can run below YieldTask, which means that it must not call back into the host. |
| 6469 | // The reason is that YieldTask is invoked by the host, and the host needs not be reentrant. |
| 6470 | if (VirtualQuery((LPCVOID)(UINT_PTR)ctx->Esp, &mbi, sizeof(mbi)) == sizeof(mbi)) |
| 6471 | { |
| 6472 | if (!(mbi.State & MEM_COMMIT) || (mbi.Protect & PAGE_GUARD)) |
| 6473 | return FALSE; |
| 6474 | } |
| 6475 | else |
| 6476 | STRESS_LOG0 (LF_SYNC, ERROR, "VirtualQuery failed!" ); |
| 6477 | #define VirtualQuery(lpAddress, lpBuffer, dwLength) Dont_Use_VirtualQuery(lpAddress, lpBuffer, dwLength) |
| 6478 | |
| 6479 | // The first two values on the stack should be a pointer to the EXCEPTION_RECORD and a pointer to the CONTEXT. |
| 6480 | UINT_PTR Esp = (UINT_PTR)ctx->Esp; |
| 6481 | UINT_PTR ER = *((UINT_PTR*)Esp); |
| 6482 | UINT_PTR CTX = *((UINT_PTR*)(Esp + sizeof(EXCEPTION_RECORD*))); |
| 6483 | |
| 6484 | // The EXCEPTION_RECORD should be at Esp + sizeof(EXCEPTION_POINTERS)... if it's not, then we haven't hit the race. |
| 6485 | if (ER != (Esp + sizeof(EXCEPTION_POINTERS))) |
| 6486 | { |
| 6487 | return FALSE; |
| 6488 | } |
| 6489 | |
| 6490 | // Assume we have an EXCEPTION_RECORD at Esp + sizeof(EXCEPTION_POINTERS) and look at values within that. |
| 6491 | EXCEPTION_RECORD *pER = (EXCEPTION_RECORD*)ER; |
| 6492 | |
| 6493 | // Make sure the faulting address in the EXCEPTION_RECORD matches the thread's current Eip. |
| 6494 | if ((UINT_PTR)pER->ExceptionAddress != ctx->Eip) |
| 6495 | { |
| 6496 | return FALSE; |
| 6497 | } |
| 6498 | |
| 6499 | // Validate the number of exception parameters. |
| 6500 | if ((pER->NumberParameters > EXCEPTION_MAXIMUM_PARAMETERS)) |
| 6501 | { |
| 6502 | return FALSE; |
| 6503 | } |
| 6504 | |
| 6505 | // We have a plausable number of exception parameters, so compute the exact size of this exception |
| 6506 | // record. Remember, an EXCEPTION_RECORD has a variable sized array of optional information at the end called |
| 6507 | // the ExceptionInformation. It's an array of pointers up to EXCEPTION_MAXIMUM_PARAMETERS in length. |
| 6508 | DWORD exceptionRecordSize = sizeof(EXCEPTION_RECORD) - |
| 6509 | ((EXCEPTION_MAXIMUM_PARAMETERS - pER->NumberParameters) * sizeof(pER->ExceptionInformation[0])); |
| 6510 | |
| 6511 | // On Vista WOW on X64, the OS pushes the maximum number of parameters onto the stack. |
| 6512 | DWORD exceptionRecordMaxSize = sizeof(EXCEPTION_RECORD); |
| 6513 | |
| 6514 | // The CONTEXT pointer should be pointing right after the EXCEPTION_RECORD. |
| 6515 | if ((CTX != (ER + exceptionRecordSize)) && |
| 6516 | (CTX != (ER + exceptionRecordMaxSize))) |
| 6517 | { |
| 6518 | return FALSE; |
| 6519 | } |
| 6520 | |
| 6521 | // Assume we have a CONTEXT at Esp + 8 + exceptionRecordSize and look at values within that. |
| 6522 | CONTEXT *pCTX = (CONTEXT*)CTX; |
| 6523 | |
| 6524 | // Make sure the Eip in the CONTEXT on the stack matches the current Eip value. |
| 6525 | if (pCTX->Eip != ctx->Eip) |
| 6526 | { |
| 6527 | return FALSE; |
| 6528 | } |
| 6529 | |
| 6530 | // If all the tests above fail, then it means that we've hit race #2 described in the text before this function. |
| 6531 | STRESS_LOG3(LF_SYNC, LL_INFO100, |
| 6532 | "ThreadCaughtInKernelModeExceptionHandling returning TRUE. Eip=%p, Esp=%p, ExceptionCode=%p\n" , |
| 6533 | ctx->Eip, ctx->Esp, pER->ExceptionCode); |
| 6534 | |
| 6535 | return TRUE; |
| 6536 | } |
| 6537 | #endif //WORKAROUND_RACES_WITH_KERNEL_MODE_EXCEPTION_HANDLING |
| 6538 | #endif //_TARGET_X86_ |
| 6539 | |
| 6540 | //--------------------------------------------------------------------------------------- |
| 6541 | // |
| 6542 | // Helper used by HandledJITCase and others (like the profiling API) who need an |
| 6543 | // absolutely reliable register context. |
| 6544 | // |
| 6545 | // Arguments: |
| 6546 | // * dwOptions - [in] Combination of flags from enum |
| 6547 | // GetSafelyRedirectableThreadContextOptions to customize the checks performed by |
| 6548 | // this function. |
| 6549 | // * pCtx - [out] This Thread's current context. Callers may rely on this only if nonzero |
| 6550 | // is returned |
| 6551 | // * pRD - [out] Matching REGDISPLAY filled from the pCtx found by this function. |
| 6552 | // Callers may rely on this only if nonzero is returned |
| 6553 | // |
| 6554 | // Return Value: |
| 6555 | // Nonzero iff all requested checks have succeeded, which would imply that it is |
| 6556 | // a reliable time to use this Thread's context. |
| 6557 | // |
| 6558 | BOOL Thread::GetSafelyRedirectableThreadContext(DWORD dwOptions, CONTEXT * pCtx, REGDISPLAY * pRD) |
| 6559 | { |
| 6560 | CONTRACTL { |
| 6561 | NOTHROW; |
| 6562 | GC_NOTRIGGER; |
| 6563 | } |
| 6564 | CONTRACTL_END; |
| 6565 | |
| 6566 | _ASSERTE(pCtx != NULL); |
| 6567 | _ASSERTE(pRD != NULL); |
| 6568 | |
| 6569 | // We are never in interruptible code if there if a filter context put in place by the debugger. |
| 6570 | if (GetFilterContext() != NULL) |
| 6571 | return FALSE; |
| 6572 | |
| 6573 | #ifdef DEBUGGING_SUPPORTED |
| 6574 | if ((dwOptions & kCheckDebuggerBreakpoints) != 0) |
| 6575 | { |
| 6576 | // If we are running under the control of a managed debugger that may have placed breakpoints in the code stream, |
| 6577 | // then there is a special case that we need to check. See the comments in debugger.cpp for more information. |
| 6578 | if (CORDebuggerAttached() && (g_pDebugInterface->IsThreadContextInvalid(this))) |
| 6579 | return FALSE; |
| 6580 | } |
| 6581 | #endif // DEBUGGING_SUPPORTED |
| 6582 | |
| 6583 | // Make sure we specify CONTEXT_EXCEPTION_REQUEST to detect "trap frame reporting". |
| 6584 | _ASSERTE(GetFilterContext() == NULL); |
| 6585 | |
| 6586 | ZeroMemory(pCtx, sizeof(*pCtx)); |
| 6587 | pCtx->ContextFlags = CONTEXT_FULL | CONTEXT_EXCEPTION_REQUEST; |
| 6588 | if (!EEGetThreadContext(this, pCtx)) |
| 6589 | { |
| 6590 | return FALSE; |
| 6591 | } |
| 6592 | |
| 6593 | // |
| 6594 | // workaround around WOW64 problems. Only do this workaround if a) this is x86, and b) the OS does not support trap frame reporting, |
| 6595 | // If the OS *does* support trap frame reporting, then the call to IsContextSafeToRedirect below will return FALSE if we run |
| 6596 | // into this race. |
| 6597 | // |
| 6598 | #ifdef _TARGET_X86_ |
| 6599 | if (!(pCtx->ContextFlags & CONTEXT_EXCEPTION_REPORTING) && |
| 6600 | ((dwOptions & kPerfomLastRedirectIPCheck) != 0)) |
| 6601 | { |
| 6602 | // This code fixes a race between GetThreadContext and NtContinue. If we redirect managed code |
| 6603 | // at the same place twice in a row, we run the risk of reading a bogus CONTEXT when we redirect |
| 6604 | // the second time. This leads to access violations on x86 machines. To fix the problem, we |
| 6605 | // never redirect at the same instruction pointer that we redirected at on the previous GC. |
| 6606 | if (GetIP(pCtx) == m_LastRedirectIP) |
| 6607 | { |
| 6608 | // We need to test for an infinite loop in assembly, as this will break the heuristic we |
| 6609 | // are using. |
| 6610 | const BYTE short_jmp = 0xeb; // Machine code for a short jump. |
| 6611 | const BYTE self = 0xfe; // -2. Short jumps are calculated as [ip]+2+[second_byte]. |
| 6612 | |
| 6613 | // If we find that we are in an infinite loop, we'll set the last redirected IP to 0 so that we will |
| 6614 | // redirect the next time we attempt it. Delaying one interation allows us to narrow the window of |
| 6615 | // the race we are working around in this corner case. |
| 6616 | BYTE *ip = (BYTE *)m_LastRedirectIP; |
| 6617 | if (ip[0] == short_jmp && ip[1] == self) |
| 6618 | m_LastRedirectIP = 0; |
| 6619 | |
| 6620 | // We set a hard limit of 5 times we will spin on this to avoid any tricky race which we have not |
| 6621 | // accounted for. |
| 6622 | m_SpinCount++; |
| 6623 | if (m_SpinCount >= 5) |
| 6624 | m_LastRedirectIP = 0; |
| 6625 | |
| 6626 | STRESS_LOG0(LF_GC, LL_INFO10000, "GetSafelyRedirectableThreadContext() - Cannot redirect at the same IP as the last redirection.\n" ); |
| 6627 | return FALSE; |
| 6628 | } |
| 6629 | } |
| 6630 | #endif |
| 6631 | |
| 6632 | if (!IsContextSafeToRedirect(pCtx)) |
| 6633 | { |
| 6634 | STRESS_LOG0(LF_GC, LL_INFO10000, "GetSafelyRedirectableThreadContext() - trap frame reporting an invalid CONTEXT\n" ); |
| 6635 | return FALSE; |
| 6636 | } |
| 6637 | |
| 6638 | ZeroMemory(pRD, sizeof(*pRD)); |
| 6639 | if (!InitRegDisplay(pRD, pCtx, true)) |
| 6640 | return FALSE; |
| 6641 | |
| 6642 | return TRUE; |
| 6643 | } |
| 6644 | |
| 6645 | // Called while the thread is suspended. If we aren't in JITted code, this isn't |
| 6646 | // a JITCase and we return FALSE. If it is a JIT case and we are in interruptible |
| 6647 | // code, then we are handled. Our caller has found a good spot and can keep us |
| 6648 | // suspended. If we aren't in interruptible code, then we aren't handled. So we |
| 6649 | // pick a spot to hijack the return address and our caller will wait to get us |
| 6650 | // somewhere safe. |
| 6651 | BOOL Thread::HandledJITCase(BOOL ForTaskSwitchIn) |
| 6652 | { |
| 6653 | CONTRACTL { |
| 6654 | NOTHROW; |
| 6655 | GC_NOTRIGGER; |
| 6656 | } |
| 6657 | CONTRACTL_END; |
| 6658 | |
| 6659 | BOOL ret = FALSE; |
| 6660 | ExecutionState esb; |
| 6661 | StackWalkAction action; |
| 6662 | |
| 6663 | CONTEXT ctx; |
| 6664 | REGDISPLAY rd; |
| 6665 | if (!GetSafelyRedirectableThreadContext( |
| 6666 | kPerfomLastRedirectIPCheck | kCheckDebuggerBreakpoints, |
| 6667 | &ctx, |
| 6668 | &rd)) |
| 6669 | { |
| 6670 | STRESS_LOG0(LF_GC, LL_INFO10000, "HandledJITCase() - GetSafelyRedirectableThreadContext() returned FALSE\n" ); |
| 6671 | return FALSE; |
| 6672 | } |
| 6673 | |
| 6674 | PCODE ip = GetIP(&ctx); |
| 6675 | if (!ExecutionManager::IsManagedCode(ip)) |
| 6676 | { |
| 6677 | return FALSE; |
| 6678 | } |
| 6679 | |
| 6680 | #ifdef WORKAROUND_RACES_WITH_KERNEL_MODE_EXCEPTION_HANDLING |
| 6681 | if (ThreadCaughtInKernelModeExceptionHandling(this, &ctx)) |
| 6682 | { |
| 6683 | return FALSE; |
| 6684 | } |
| 6685 | #endif //WORKAROUND_RACES_WITH_KERNEL_MODE_EXCEPTION_HANDLING |
| 6686 | |
| 6687 | #ifdef _DEBUG |
| 6688 | // We know IP is in managed code, mark current thread as safe for calls into host |
| 6689 | Thread * pCurThread = GetThread(); |
| 6690 | if (pCurThread != NULL) |
| 6691 | { |
| 6692 | pCurThread->dbg_m_cSuspendedThreadsWithoutOSLock ++; |
| 6693 | _ASSERTE(pCurThread->dbg_m_cSuspendedThreadsWithoutOSLock <= pCurThread->dbg_m_cSuspendedThreads); |
| 6694 | } |
| 6695 | #endif //_DEBUG |
| 6696 | |
| 6697 | // Walk one or two frames of the stack... |
| 6698 | if (ForTaskSwitchIn) { |
| 6699 | action = StackWalkFramesEx(&rd,SWCB_GetExecutionStateForSwitchIn, &esb, QUICKUNWIND | DISABLE_MISSING_FRAME_DETECTION | THREAD_IS_SUSPENDED | ALLOW_ASYNC_STACK_WALK, NULL); |
| 6700 | } |
| 6701 | else { |
| 6702 | #ifdef TIME_SUSPEND |
| 6703 | DWORD startCrawl = g_SuspendStatistics.GetTime(); |
| 6704 | #endif |
| 6705 | action = StackWalkFramesEx(&rd,SWCB_GetExecutionState, &esb, |
| 6706 | QUICKUNWIND | DISABLE_MISSING_FRAME_DETECTION | |
| 6707 | THREAD_IS_SUSPENDED | ALLOW_ASYNC_STACK_WALK, NULL); |
| 6708 | |
| 6709 | #ifdef TIME_SUSPEND |
| 6710 | g_SuspendStatistics.crawl.Accumulate( |
| 6711 | SuspendStatistics::GetElapsed(startCrawl, |
| 6712 | g_SuspendStatistics.GetTime())); |
| 6713 | |
| 6714 | g_SuspendStatistics.cntHijackCrawl++; |
| 6715 | #endif |
| 6716 | } |
| 6717 | |
| 6718 | // |
| 6719 | // action should either be SWA_ABORT, in which case we properly walked |
| 6720 | // the stack frame and found out whether this is a JIT case, or |
| 6721 | // SWA_FAILED, in which case the walk couldn't even be started because |
| 6722 | // there are no stack frames, which also isn't a JIT case. |
| 6723 | // |
| 6724 | if (action == SWA_ABORT && esb.m_IsJIT) |
| 6725 | { |
| 6726 | // If we are interruptible and we are in cooperative mode, our caller can |
| 6727 | // just leave us suspended. |
| 6728 | if (esb.m_IsInterruptible && m_fPreemptiveGCDisabled) |
| 6729 | { |
| 6730 | _ASSERTE(!ThreadStore::HoldingThreadStore(this)); |
| 6731 | ret = TRUE; |
| 6732 | } |
| 6733 | else |
| 6734 | if (esb.m_ppvRetAddrPtr) |
| 6735 | { |
| 6736 | // we need to hijack the return address. Base this on whether or not |
| 6737 | // the method returns an object reference, so we know whether to protect |
| 6738 | // it or not. |
| 6739 | EECodeInfo codeInfo(ip); |
| 6740 | VOID *pvHijackAddr = GetHijackAddr(this, &codeInfo); |
| 6741 | |
| 6742 | #ifdef FEATURE_ENABLE_GCPOLL |
| 6743 | // On platforms that support both hijacking and GC polling |
| 6744 | // decide whether to hijack based on a configuration value. |
| 6745 | // COMPlus_GCPollType = 1 is the setting that enables hijacking |
| 6746 | // in GCPOLL enabled builds. |
| 6747 | EEConfig::GCPollType pollType = g_pConfig->GetGCPollType(); |
| 6748 | if (EEConfig::GCPOLL_TYPE_HIJACK == pollType || EEConfig::GCPOLL_TYPE_DEFAULT == pollType) |
| 6749 | #endif // FEATURE_ENABLE_GCPOLL |
| 6750 | { |
| 6751 | HijackThread(pvHijackAddr, &esb); |
| 6752 | } |
| 6753 | } |
| 6754 | } |
| 6755 | // else it's not even a JIT case |
| 6756 | |
| 6757 | #ifdef _DEBUG |
| 6758 | // Restore back the number of threads without OS lock |
| 6759 | if (pCurThread != NULL) |
| 6760 | { |
| 6761 | pCurThread->dbg_m_cSuspendedThreadsWithoutOSLock--; |
| 6762 | } |
| 6763 | #endif //_DEBUG |
| 6764 | |
| 6765 | STRESS_LOG1(LF_SYNC, LL_INFO10000, " HandledJitCase returning %d\n" , ret); |
| 6766 | return ret; |
| 6767 | } |
| 6768 | |
| 6769 | #endif // !PLATFORM_UNIX |
| 6770 | |
| 6771 | #endif // FEATURE_HIJACK |
| 6772 | |
| 6773 | // Some simple helpers to keep track of the threads we are waiting for |
| 6774 | void Thread::MarkForSuspension(ULONG bit) |
| 6775 | { |
| 6776 | CONTRACTL { |
| 6777 | NOTHROW; |
| 6778 | GC_NOTRIGGER; |
| 6779 | } |
| 6780 | CONTRACTL_END; |
| 6781 | |
| 6782 | // CoreCLR does not support user-requested thread suspension |
| 6783 | _ASSERTE(bit == TS_DebugSuspendPending || |
| 6784 | bit == (TS_DebugSuspendPending | TS_DebugWillSync)); |
| 6785 | |
| 6786 | _ASSERTE(IsAtProcessExit() || ThreadStore::HoldingThreadStore()); |
| 6787 | |
| 6788 | _ASSERTE((m_State & bit) == 0); |
| 6789 | |
| 6790 | FastInterlockOr((ULONG *) &m_State, bit); |
| 6791 | ThreadStore::TrapReturningThreads(TRUE); |
| 6792 | } |
| 6793 | |
| 6794 | void Thread::UnmarkForSuspension(ULONG mask) |
| 6795 | { |
| 6796 | CONTRACTL { |
| 6797 | NOTHROW; |
| 6798 | GC_NOTRIGGER; |
| 6799 | } |
| 6800 | CONTRACTL_END; |
| 6801 | |
| 6802 | // CoreCLR does not support user-requested thread suspension |
| 6803 | _ASSERTE(mask == ~TS_DebugSuspendPending); |
| 6804 | |
| 6805 | _ASSERTE(IsAtProcessExit() || ThreadStore::HoldingThreadStore()); |
| 6806 | |
| 6807 | _ASSERTE((m_State & ~mask) != 0); |
| 6808 | |
| 6809 | // we decrement the global first to be able to satisfy the assert from DbgFindThread |
| 6810 | ThreadStore::TrapReturningThreads(FALSE); |
| 6811 | FastInterlockAnd((ULONG *) &m_State, mask); |
| 6812 | } |
| 6813 | |
| 6814 | //---------------------------------------------------------------------------- |
| 6815 | |
| 6816 | void ThreadSuspend::RestartEE(BOOL bFinishedGC, BOOL SuspendSucceded) |
| 6817 | { |
| 6818 | #ifdef TIME_SUSPEND |
| 6819 | g_SuspendStatistics.StartRestart(); |
| 6820 | #endif //TIME_SUSPEND |
| 6821 | |
| 6822 | FireEtwGCRestartEEBegin_V1(GetClrInstanceId()); |
| 6823 | |
| 6824 | // |
| 6825 | // SyncClean holds a list of things to be cleaned up when it's possible. |
| 6826 | // SyncClean uses the GC mode to synchronize access to this list. Threads must be |
| 6827 | // in COOP mode to add things to the list, and the list can only be cleaned up |
| 6828 | // while no threads are adding things. |
| 6829 | // Since we know that no threads are in COOP mode at this point (because the EE is |
| 6830 | // suspended), we clean up the list here. |
| 6831 | // |
| 6832 | SyncClean::CleanUp(); |
| 6833 | |
| 6834 | #ifdef PROFILING_SUPPORTED |
| 6835 | // If a profiler is keeping track suspend events, notify it. This notification |
| 6836 | // must happen before we set TrapReturning threads to FALSE because as soon as |
| 6837 | // we remove the return trap threads can start "running" managed code again as |
| 6838 | // they return from unmanaged. (Whidbey Bug #7505) |
| 6839 | // Also must notify before setting GcInProgress = FALSE. |
| 6840 | // |
| 6841 | // It's very odd that we do this here, in ThreadSuspend::RestartEE, while the |
| 6842 | // corresponding call to RuntimeSuspendStarted is done at a lower architectural layer, |
| 6843 | // in ThreadSuspend::SuspendRuntime. |
| 6844 | { |
| 6845 | BEGIN_PIN_PROFILER(CORProfilerTrackSuspends()); |
| 6846 | g_profControlBlock.pProfInterface->RuntimeResumeStarted(); |
| 6847 | END_PIN_PROFILER(); |
| 6848 | } |
| 6849 | #endif // PROFILING_SUPPORTED |
| 6850 | |
| 6851 | // |
| 6852 | // Unhijack all threads, and reset their "suspend pending" flags. Why isn't this in |
| 6853 | // Thread::ResumeRuntime? |
| 6854 | // |
| 6855 | Thread *thread = NULL; |
| 6856 | while ((thread = ThreadStore::GetThreadList(thread)) != NULL) |
| 6857 | { |
| 6858 | thread->PrepareForEERestart(SuspendSucceded); |
| 6859 | } |
| 6860 | |
| 6861 | // |
| 6862 | // Revert to being a normal thread |
| 6863 | // |
| 6864 | ClrFlsClearThreadType (ThreadType_DynamicSuspendEE); |
| 6865 | GCHeapUtilities::GetGCHeap()->SetGCInProgress(false); |
| 6866 | |
| 6867 | // |
| 6868 | // Allow threads to enter COOP mode (though we still need to wake the ones |
| 6869 | // that we hijacked). |
| 6870 | // |
| 6871 | // Note: this is the last barrier that keeps managed threads |
| 6872 | // from entering cooperative mode. If the sequence changes, |
| 6873 | // you may have to change routine GCHeapUtilities::SafeToRestartManagedThreads |
| 6874 | // as well. |
| 6875 | // |
| 6876 | ThreadStore::TrapReturningThreads(FALSE); |
| 6877 | g_pSuspensionThread = 0; |
| 6878 | |
| 6879 | // |
| 6880 | // Any threads that are waiting in WaitUntilGCComplete will continue now. |
| 6881 | // |
| 6882 | GCHeapUtilities::GetGCHeap()->SetWaitForGCEvent(); |
| 6883 | _ASSERTE(IsGCSpecialThread() || ThreadStore::HoldingThreadStore()); |
| 6884 | |
| 6885 | ResumeRuntime(bFinishedGC, SuspendSucceded); |
| 6886 | |
| 6887 | FireEtwGCRestartEEEnd_V1(GetClrInstanceId()); |
| 6888 | |
| 6889 | #ifdef TIME_SUSPEND |
| 6890 | g_SuspendStatistics.EndRestart(); |
| 6891 | #endif //TIME_SUSPEND |
| 6892 | } |
| 6893 | |
| 6894 | // The contract between GC and the EE, for starting and finishing a GC is as follows: |
| 6895 | // |
| 6896 | // SuspendEE: |
| 6897 | // LockThreadStore |
| 6898 | // SetGCInProgress |
| 6899 | // SuspendRuntime |
| 6900 | // |
| 6901 | // ... perform the GC ... |
| 6902 | // |
| 6903 | // RestartEE: |
| 6904 | // SetGCDone |
| 6905 | // ResumeRuntime |
| 6906 | // calls UnlockThreadStore |
| 6907 | // |
| 6908 | // Note that this is intentionally *not* symmetrical. The EE will assert that the |
| 6909 | // GC does most of this stuff in the correct sequence. |
| 6910 | |
| 6911 | // |
| 6912 | // This is the only way to call ThreadSuspend::SuspendRuntime, and that method is |
| 6913 | // so tightly coupled to this one, with intermingled responsibilities, that we don't |
| 6914 | // understand why we have a separation at all. At some point we should refactor all of |
| 6915 | // the suspension code into a separate abstraction, which we would like to call the |
| 6916 | // "managed execution lock." The current "layering" of this stuff has it mixed |
| 6917 | // randomly into the Thread and GC code, and split into almost completely arbitrary |
| 6918 | // layers. |
| 6919 | // |
| 6920 | void ThreadSuspend::SuspendEE(SUSPEND_REASON reason) |
| 6921 | { |
| 6922 | #ifdef TIME_SUSPEND |
| 6923 | g_SuspendStatistics.StartSuspend(); |
| 6924 | #endif //TIME_SUSPEND |
| 6925 | |
| 6926 | BOOL gcOnTransitions; |
| 6927 | |
| 6928 | ETW::GCLog::ETW_GC_INFO Info; |
| 6929 | Info.SuspendEE.Reason = reason; |
| 6930 | Info.SuspendEE.GcCount = (((reason == SUSPEND_FOR_GC) || (reason == SUSPEND_FOR_GC_PREP)) ? |
| 6931 | (ULONG)GCHeapUtilities::GetGCHeap()->GetGcCount() : (ULONG)-1); |
| 6932 | |
| 6933 | FireEtwGCSuspendEEBegin_V1(Info.SuspendEE.Reason, Info.SuspendEE.GcCount, GetClrInstanceId()); |
| 6934 | |
| 6935 | LOG((LF_SYNC, INFO3, "Suspending the runtime for reason %d\n" , reason)); |
| 6936 | |
| 6937 | gcOnTransitions = GC_ON_TRANSITIONS(FALSE); // dont do GC for GCStress 3 |
| 6938 | |
| 6939 | Thread* pCurThread = GetThread(); |
| 6940 | |
| 6941 | DWORD dwSwitchCount = 0; |
| 6942 | |
| 6943 | // Note: we need to make sure to re-set m_pThreadAttemptingSuspendForGC when we retry |
| 6944 | // due to the debugger case below! |
| 6945 | retry_for_debugger: |
| 6946 | |
| 6947 | // |
| 6948 | // Set variable to indicate that this thread is preforming a true GC |
| 6949 | // This gives this thread priority over other threads that are trying to acquire the ThreadStore Lock |
| 6950 | // for other reasons. |
| 6951 | // |
| 6952 | if (reason == ThreadSuspend::SUSPEND_FOR_GC || reason == ThreadSuspend::SUSPEND_FOR_GC_PREP) |
| 6953 | { |
| 6954 | m_pThreadAttemptingSuspendForGC = pCurThread; |
| 6955 | |
| 6956 | // |
| 6957 | // also unblock any thread waiting around for this thread to suspend. This prevents us from completely |
| 6958 | // starving other suspension clients, such as the debugger, which we otherwise would do because of |
| 6959 | // the priority we just established. |
| 6960 | // |
| 6961 | g_pGCSuspendEvent->Set(); |
| 6962 | } |
| 6963 | |
| 6964 | #ifdef TIME_SUSPEND |
| 6965 | DWORD startAcquire = g_SuspendStatistics.GetTime(); |
| 6966 | #endif |
| 6967 | |
| 6968 | // |
| 6969 | // Acquire the TSL. We will hold this until the we restart the EE. |
| 6970 | // |
| 6971 | ThreadSuspend::LockThreadStore(reason); |
| 6972 | |
| 6973 | #ifdef TIME_SUSPEND |
| 6974 | g_SuspendStatistics.acquireTSL.Accumulate(SuspendStatistics::GetElapsed(startAcquire, |
| 6975 | g_SuspendStatistics.GetTime())); |
| 6976 | #endif |
| 6977 | |
| 6978 | // |
| 6979 | // If we've blocked other threads that are waiting for the ThreadStore lock, unblock them now |
| 6980 | // (since we already got it). This allows them to get the TSL after we release it. |
| 6981 | // |
| 6982 | if ( s_hAbortEvtCache != NULL && |
| 6983 | (reason == ThreadSuspend::SUSPEND_FOR_GC || reason == ThreadSuspend::SUSPEND_FOR_GC_PREP)) |
| 6984 | { |
| 6985 | LOG((LF_SYNC, INFO3, "GC thread is backing out the suspend abort event.\n" )); |
| 6986 | s_hAbortEvt = NULL; |
| 6987 | |
| 6988 | LOG((LF_SYNC, INFO3, "GC thread is signalling the suspend abort event.\n" )); |
| 6989 | s_hAbortEvtCache->Set(); |
| 6990 | } |
| 6991 | |
| 6992 | // |
| 6993 | // Also null-out m_pThreadAttemptingSuspendForGC since it should only matter if s_hAbortEvt is |
| 6994 | // in play. |
| 6995 | // |
| 6996 | if (reason == ThreadSuspend::SUSPEND_FOR_GC || reason == ThreadSuspend::SUSPEND_FOR_GC_PREP) |
| 6997 | { |
| 6998 | m_pThreadAttemptingSuspendForGC = NULL; |
| 6999 | } |
| 7000 | |
| 7001 | { |
| 7002 | // |
| 7003 | // Now we're going to acquire an exclusive lock on managed code execution (including |
| 7004 | // "maunally managed" code in GCX_COOP regions). |
| 7005 | // |
| 7006 | // First, we reset the event that we're about to tell other threads to wait for. |
| 7007 | // |
| 7008 | GCHeapUtilities::GetGCHeap()->ResetWaitForGCEvent(); |
| 7009 | |
| 7010 | // |
| 7011 | // Remember that we're the one doing the GC. Actually, maybe we're not doing a GC - |
| 7012 | // what this really indicates is that we are trying to acquire the "managed execution lock." |
| 7013 | // |
| 7014 | { |
| 7015 | g_pSuspensionThread = pCurThread; |
| 7016 | |
| 7017 | // |
| 7018 | // Tell all threads, globally, to wait for WaitForGCEvent. |
| 7019 | // |
| 7020 | ThreadStore::TrapReturningThreads(TRUE); |
| 7021 | |
| 7022 | // |
| 7023 | // Remember why we're doing this. |
| 7024 | // |
| 7025 | m_suspendReason = reason; |
| 7026 | |
| 7027 | // |
| 7028 | // There's a GC in progress. (again, not necessarily - we suspend the EE for other reasons. |
| 7029 | // I wonder how much confusion this has caused....) |
| 7030 | // It seems like much of the above is redundant. We should investigate reducing the number |
| 7031 | // of mechanisms we use to indicate that a suspension is in progress. |
| 7032 | // |
| 7033 | GCHeapUtilities::GetGCHeap()->SetGCInProgress(true); |
| 7034 | |
| 7035 | // |
| 7036 | // Gratuitous memory barrier. (may be needed - but I'm not sure why.) |
| 7037 | // |
| 7038 | MemoryBarrier(); |
| 7039 | |
| 7040 | ClrFlsSetThreadType (ThreadType_DynamicSuspendEE); |
| 7041 | } |
| 7042 | |
| 7043 | HRESULT hr; |
| 7044 | { |
| 7045 | _ASSERTE(ThreadStore::HoldingThreadStore() || g_fProcessDetach); |
| 7046 | |
| 7047 | // |
| 7048 | // Now that we've instructed all threads to please stop, |
| 7049 | // go interrupt the ones that are running managed code and force them to stop. |
| 7050 | // This does not return successfully until all threads have acknowledged that they |
| 7051 | // will not run managed code. |
| 7052 | // |
| 7053 | hr = SuspendRuntime(reason); |
| 7054 | ASSERT( hr == S_OK || hr == ERROR_TIMEOUT); |
| 7055 | |
| 7056 | #ifdef TIME_SUSPEND |
| 7057 | if (hr == ERROR_TIMEOUT) |
| 7058 | g_SuspendStatistics.cntCollideRetry++; |
| 7059 | #endif |
| 7060 | } |
| 7061 | |
| 7062 | if (hr == ERROR_TIMEOUT) |
| 7063 | STRESS_LOG0(LF_SYNC, LL_INFO1000, "SysSuspension colission" ); |
| 7064 | |
| 7065 | // If the debugging services are attached, then its possible |
| 7066 | // that there is a thread which appears to be stopped at a gc |
| 7067 | // safe point, but which really is not. If that is the case, |
| 7068 | // back off and try again. |
| 7069 | |
| 7070 | // If this is not the GC thread and another thread has triggered |
| 7071 | // a GC, then we may have bailed out of SuspendRuntime, so we |
| 7072 | // must resume all of the threads and tell the GC that we are |
| 7073 | // at a safepoint - since this is the exact same behaviour |
| 7074 | // that the debugger needs, just use it's code. |
| 7075 | if ((hr == ERROR_TIMEOUT) |
| 7076 | || Thread::ThreadsAtUnsafePlaces() |
| 7077 | #ifdef DEBUGGING_SUPPORTED // seriously? When would we want to disable debugging support? :) |
| 7078 | || (CORDebuggerAttached() && |
| 7079 | // When the debugger is synchronizing, trying to perform a GC could deadlock. The GC has the |
| 7080 | // threadstore lock and synchronization cannot complete until the debugger can get the |
| 7081 | // threadstore lock. However the GC can not complete until it sends the BeforeGarbageCollection |
| 7082 | // event, and the event can not be sent until the debugger is synchronized. In order to break |
| 7083 | // this deadlock cycle the GC must give up the threadstore lock, allow the debugger to synchronize, |
| 7084 | // then try again. |
| 7085 | (g_pDebugInterface->ThreadsAtUnsafePlaces() || g_pDebugInterface->IsSynchronizing())) |
| 7086 | #endif // DEBUGGING_SUPPORTED |
| 7087 | ) |
| 7088 | { |
| 7089 | // In this case, the debugger has stopped at least one |
| 7090 | // thread at an unsafe place. The debugger will usually |
| 7091 | // have already requested that we stop. If not, it will |
| 7092 | // usually either do so shortly, or resume the thread that is |
| 7093 | // at the unsafe place. Either way, we have to wait for the |
| 7094 | // debugger to decide what it wants to do. |
| 7095 | // |
| 7096 | // In some rare cases, the end-user debugger may have frozen |
| 7097 | // a thread at a gc-unsafe place, and so we'll loop forever |
| 7098 | // here and never resolve the deadlock. Unfortunately we can't |
| 7099 | // easily abort a GC |
| 7100 | // and so for now we just wait for the debugger to timeout and |
| 7101 | // hopefully thaw that thread. Maybe instead we should try to |
| 7102 | // detect this situation sooner (when thread abort is possible) |
| 7103 | // and notify the debugger with NotifyOfCrossThreadDependency, giving |
| 7104 | // it the chance to thaw other threads or abort us before getting |
| 7105 | // wedged in the GC. |
| 7106 | // |
| 7107 | // Note: we've still got the ThreadStore lock held. |
| 7108 | // |
| 7109 | // <REVISIT>The below manipulation of two static variables (s_hAbortEvtCache and s_hAbortEvt) |
| 7110 | // is protected by the ThreadStore lock, which we are still holding. But we access these |
| 7111 | // in ThreadSuspend::LockThreadStore, prior to obtaining the lock. </REVISIT> |
| 7112 | // |
| 7113 | LOG((LF_GCROOTS | LF_GC | LF_CORDB, |
| 7114 | LL_INFO10, |
| 7115 | "***** Giving up on current GC suspension due " |
| 7116 | "to debugger or timeout *****\n" )); |
| 7117 | |
| 7118 | if (s_hAbortEvtCache == NULL) |
| 7119 | { |
| 7120 | LOG((LF_SYNC, INFO3, "Creating suspend abort event.\n" )); |
| 7121 | |
| 7122 | CLREvent * pEvent = NULL; |
| 7123 | |
| 7124 | EX_TRY |
| 7125 | { |
| 7126 | pEvent = new CLREvent(); |
| 7127 | pEvent->CreateManualEvent(FALSE); |
| 7128 | s_hAbortEvtCache = pEvent; |
| 7129 | } |
| 7130 | EX_CATCH |
| 7131 | { |
| 7132 | // Bummer... couldn't init the abort event. Its a shame, but not fatal. We'll simply not use it |
| 7133 | // on this iteration and try again next time. |
| 7134 | if (pEvent) { |
| 7135 | _ASSERTE(!pEvent->IsValid()); |
| 7136 | pEvent->CloseEvent(); |
| 7137 | delete pEvent; |
| 7138 | } |
| 7139 | } |
| 7140 | EX_END_CATCH(SwallowAllExceptions) |
| 7141 | } |
| 7142 | |
| 7143 | if (s_hAbortEvtCache != NULL) |
| 7144 | { |
| 7145 | LOG((LF_SYNC, INFO3, "Using suspend abort event.\n" )); |
| 7146 | s_hAbortEvt = s_hAbortEvtCache; |
| 7147 | s_hAbortEvt->Reset(); |
| 7148 | } |
| 7149 | |
| 7150 | // Mark that we're done with the gc, so that the debugger can proceed. |
| 7151 | RestartEE(FALSE, FALSE); |
| 7152 | |
| 7153 | LOG((LF_GCROOTS | LF_GC | LF_CORDB, |
| 7154 | LL_INFO10, "The EE is free now...\n" )); |
| 7155 | |
| 7156 | // If someone's trying to suspent *this* thread, this is a good opportunity. |
| 7157 | // <REVIST>This call to CatchAtSafePoint is redundant - PulseGCMode already checks this.</REVISIT> |
| 7158 | if (pCurThread && pCurThread->CatchAtSafePoint()) |
| 7159 | { |
| 7160 | // <REVISIT> This assert is fired on BGC thread 'cause we |
| 7161 | // got timeout.</REVISIT> |
| 7162 | //_ASSERTE((pCurThread->PreemptiveGCDisabled()) || IsGCSpecialThread()); |
| 7163 | pCurThread->PulseGCMode(); // Go suspend myself. |
| 7164 | } |
| 7165 | else |
| 7166 | { |
| 7167 | // otherwise, just yield so the debugger can finish what it's doing. |
| 7168 | __SwitchToThread (0, ++dwSwitchCount); |
| 7169 | } |
| 7170 | |
| 7171 | goto retry_for_debugger; |
| 7172 | } |
| 7173 | } |
| 7174 | GC_ON_TRANSITIONS(gcOnTransitions); |
| 7175 | |
| 7176 | FireEtwGCSuspendEEEnd_V1(GetClrInstanceId()); |
| 7177 | |
| 7178 | #ifdef TIME_SUSPEND |
| 7179 | g_SuspendStatistics.EndSuspend(reason == SUSPEND_FOR_GC || reason == SUSPEND_FOR_GC_PREP); |
| 7180 | #endif //TIME_SUSPEND |
| 7181 | } |
| 7182 | |
| 7183 | #if defined(FEATURE_HIJACK) && defined(PLATFORM_UNIX) |
| 7184 | |
| 7185 | // This function is called by PAL to check if the specified instruction pointer |
| 7186 | // is in a function where we can safely inject activation. |
| 7187 | BOOL CheckActivationSafePoint(SIZE_T ip, BOOL checkingCurrentThread) |
| 7188 | { |
| 7189 | Thread *pThread = GetThread(); |
| 7190 | // It is safe to call the ExecutionManager::IsManagedCode only if we are making the check for |
| 7191 | // a thread different from the current one or if the current thread is in the cooperative mode. |
| 7192 | // Otherwise ExecutionManager::IsManagedCode could deadlock if the activation happened when the |
| 7193 | // thread was holding the ExecutionManager's writer lock. |
| 7194 | // When the thread is in preemptive mode, we know for sure that it is not executing managed code. |
| 7195 | BOOL checkForManagedCode = !checkingCurrentThread || (pThread != NULL && pThread->PreemptiveGCDisabled()); |
| 7196 | return checkForManagedCode && ExecutionManager::IsManagedCode(ip); |
| 7197 | } |
| 7198 | |
| 7199 | // This function is called when a GC is pending. It tries to ensure that the current |
| 7200 | // thread is taken to a GC-safe place as quickly as possible. It does this by doing |
| 7201 | // one of the following: |
| 7202 | // |
| 7203 | // - If the thread is in native code or preemptive GC is not disabled, there's |
| 7204 | // nothing to do, so we return. |
| 7205 | // |
| 7206 | // - If the thread is in interruptible managed code, we will push a frame that |
| 7207 | // has information about the context that was interrupted and then switch to |
| 7208 | // preemptive GC mode so that the pending GC can proceed, and then switch back. |
| 7209 | // |
| 7210 | // - If the thread is in uninterruptible managed code, we will patch the return |
| 7211 | // address to take the thread to the appropriate stub (based on the return |
| 7212 | // type of the method) which will then handle preparing the thread for GC. |
| 7213 | // |
| 7214 | void HandleGCSuspensionForInterruptedThread(CONTEXT *interruptedContext) |
| 7215 | { |
| 7216 | Thread *pThread = GetThread(); |
| 7217 | |
| 7218 | if (pThread->PreemptiveGCDisabled() != TRUE) |
| 7219 | return; |
| 7220 | |
| 7221 | #ifdef FEATURE_PERFTRACING |
| 7222 | // Mark that the thread is currently in managed code. |
| 7223 | pThread->SaveGCModeOnSuspension(); |
| 7224 | #endif // FEATURE_PERFTRACING |
| 7225 | |
| 7226 | PCODE ip = GetIP(interruptedContext); |
| 7227 | |
| 7228 | // This function can only be called when the interrupted thread is in |
| 7229 | // an activation safe point. |
| 7230 | _ASSERTE(CheckActivationSafePoint(ip, /* checkingCurrentThread */ TRUE)); |
| 7231 | |
| 7232 | Thread::WorkingOnThreadContextHolder workingOnThreadContext(pThread); |
| 7233 | if (!workingOnThreadContext.Acquired()) |
| 7234 | return; |
| 7235 | |
| 7236 | EECodeInfo codeInfo(ip); |
| 7237 | if (!codeInfo.IsValid()) |
| 7238 | return; |
| 7239 | |
| 7240 | DWORD addrOffset = codeInfo.GetRelOffset(); |
| 7241 | |
| 7242 | ICodeManager *pEECM = codeInfo.GetCodeManager(); |
| 7243 | _ASSERTE(pEECM != NULL); |
| 7244 | |
| 7245 | bool isAtSafePoint = pEECM->IsGcSafe(&codeInfo, addrOffset); |
| 7246 | if (isAtSafePoint) |
| 7247 | { |
| 7248 | // If the thread is at a GC safe point, push a RedirectedThreadFrame with |
| 7249 | // the interrupted context and pulse the GC mode so that GC can proceed. |
| 7250 | FrameWithCookie<RedirectedThreadFrame> frame(interruptedContext); |
| 7251 | pThread->SetSavedRedirectContext(NULL); |
| 7252 | |
| 7253 | frame.Push(pThread); |
| 7254 | |
| 7255 | pThread->PulseGCMode(); |
| 7256 | |
| 7257 | frame.Pop(pThread); |
| 7258 | } |
| 7259 | else |
| 7260 | { |
| 7261 | // The thread is in non-interruptible code. |
| 7262 | ExecutionState executionState; |
| 7263 | StackWalkAction action; |
| 7264 | REGDISPLAY regDisplay; |
| 7265 | pThread->InitRegDisplay(®Display, interruptedContext, true /* validContext */); |
| 7266 | |
| 7267 | BOOL unused; |
| 7268 | |
| 7269 | if (IsIPInEpilog(interruptedContext, &codeInfo, &unused)) |
| 7270 | return; |
| 7271 | |
| 7272 | // Use StackWalkFramesEx to find the location of the return address. This will locate the |
| 7273 | // return address by checking relative to the caller frame's SP, which is preferable to |
| 7274 | // checking next to the current RBP because we may have interrupted the function prior to |
| 7275 | // the point where RBP is updated. |
| 7276 | action = pThread->StackWalkFramesEx( |
| 7277 | ®Display, |
| 7278 | SWCB_GetExecutionState, |
| 7279 | &executionState, |
| 7280 | QUICKUNWIND | DISABLE_MISSING_FRAME_DETECTION | ALLOW_ASYNC_STACK_WALK); |
| 7281 | |
| 7282 | if (action != SWA_ABORT || !executionState.m_IsJIT) |
| 7283 | return; |
| 7284 | |
| 7285 | if (executionState.m_ppvRetAddrPtr == NULL) |
| 7286 | return; |
| 7287 | |
| 7288 | |
| 7289 | // Calling this turns off the GC_TRIGGERS/THROWS/INJECT_FAULT contract in LoadTypeHandle. |
| 7290 | // We should not trigger any loads for unresolved types. |
| 7291 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 7292 | |
| 7293 | // Mark that we are performing a stackwalker like operation on the current thread. |
| 7294 | // This is necessary to allow the signature parsing functions to work without triggering any loads. |
| 7295 | ClrFlsValueSwitch threadStackWalking(TlsIdx_StackWalkerWalkingThread, pThread); |
| 7296 | |
| 7297 | // Hijack the return address to point to the appropriate routine based on the method's return type. |
| 7298 | void *pvHijackAddr = GetHijackAddr(pThread, &codeInfo); |
| 7299 | pThread->HijackThread(pvHijackAddr, &executionState); |
| 7300 | } |
| 7301 | } |
| 7302 | |
| 7303 | bool Thread::InjectGcSuspension() |
| 7304 | { |
| 7305 | static ConfigDWORD injectionEnabled; |
| 7306 | if (injectionEnabled.val(CLRConfig::INTERNAL_ThreadSuspendInjection) == 0) |
| 7307 | return false; |
| 7308 | |
| 7309 | Volatile<HANDLE> hThread; |
| 7310 | hThread = GetThreadHandle(); |
| 7311 | if (hThread != INVALID_HANDLE_VALUE && hThread != SWITCHOUT_HANDLE_VALUE) |
| 7312 | { |
| 7313 | ::PAL_InjectActivation(hThread); |
| 7314 | return true; |
| 7315 | } |
| 7316 | |
| 7317 | return false; |
| 7318 | } |
| 7319 | |
| 7320 | #endif // FEATURE_HIJACK && PLATFORM_UNIX |
| 7321 | |
| 7322 | // Initialize thread suspension support |
| 7323 | void ThreadSuspend::Initialize() |
| 7324 | { |
| 7325 | #if defined(FEATURE_HIJACK) && defined(PLATFORM_UNIX) |
| 7326 | ::PAL_SetActivationFunction(HandleGCSuspensionForInterruptedThread, CheckActivationSafePoint); |
| 7327 | #endif |
| 7328 | } |
| 7329 | |
| 7330 | #ifdef _DEBUG |
| 7331 | BOOL Debug_IsLockedViaThreadSuspension() |
| 7332 | { |
| 7333 | LIMITED_METHOD_CONTRACT; |
| 7334 | return GCHeapUtilities::IsGCInProgress() && |
| 7335 | (dbgOnly_IsSpecialEEThread() || |
| 7336 | IsGCSpecialThread() || |
| 7337 | GetThread() == ThreadSuspend::GetSuspensionThread()); |
| 7338 | } |
| 7339 | #endif |
| 7340 | |
| 7341 | #if defined(TIME_SUSPEND) || defined(GC_STATS) |
| 7342 | |
| 7343 | DWORD StatisticsBase::secondsToDisplay = 0; |
| 7344 | |
| 7345 | DWORD StatisticsBase::GetTime() |
| 7346 | { |
| 7347 | LIMITED_METHOD_CONTRACT; |
| 7348 | LARGE_INTEGER large; |
| 7349 | |
| 7350 | if (divisor == 0) |
| 7351 | { |
| 7352 | if (QueryPerformanceFrequency(&large) && (large.QuadPart != 0)) |
| 7353 | divisor = (DWORD)(large.QuadPart / (1000 * 1000)); // microseconds |
| 7354 | else |
| 7355 | divisor = 1; |
| 7356 | } |
| 7357 | |
| 7358 | if (QueryPerformanceCounter(&large)) |
| 7359 | return (DWORD) (large.QuadPart / divisor); |
| 7360 | else |
| 7361 | return 0; |
| 7362 | } |
| 7363 | |
| 7364 | DWORD StatisticsBase::GetElapsed(DWORD start, DWORD stop) |
| 7365 | { |
| 7366 | LIMITED_METHOD_CONTRACT; |
| 7367 | if (stop > start) |
| 7368 | return stop - start; |
| 7369 | |
| 7370 | INT64 bigStop = stop; |
| 7371 | bigStop += 0x100000000ULL; |
| 7372 | bigStop -= start; |
| 7373 | |
| 7374 | // The assert below was seen firing in stress, so comment it out for now |
| 7375 | //_ASSERTE(((INT64)(DWORD)bigStop) == bigStop); |
| 7376 | |
| 7377 | if (((INT64)(DWORD)bigStop) == bigStop) |
| 7378 | return (DWORD) bigStop; |
| 7379 | else |
| 7380 | return 0; |
| 7381 | } |
| 7382 | |
| 7383 | void StatisticsBase::RollOverIfNeeded() |
| 7384 | { |
| 7385 | LIMITED_METHOD_CONTRACT; |
| 7386 | |
| 7387 | // Our counters are 32 bits and can count to 4 GB in microseconds or 4K in seconds. |
| 7388 | // Reset when we get close to overflowing |
| 7389 | const DWORD RolloverInterval = 3900; |
| 7390 | |
| 7391 | // every so often, print a summary of our statistics |
| 7392 | DWORD ticksNow = GetTickCount(); |
| 7393 | |
| 7394 | if (secondsToDisplay == 0) |
| 7395 | { |
| 7396 | secondsToDisplay = CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_StatsUpdatePeriod); |
| 7397 | if (secondsToDisplay == 0) |
| 7398 | secondsToDisplay = 1; |
| 7399 | else if (secondsToDisplay > RolloverInterval) |
| 7400 | secondsToDisplay = RolloverInterval; |
| 7401 | } |
| 7402 | |
| 7403 | if (ticksNow - startTick > secondsToDisplay * 1000) |
| 7404 | { |
| 7405 | DisplayAndUpdate(); |
| 7406 | |
| 7407 | startTick = GetTickCount(); |
| 7408 | |
| 7409 | // Our counters are 32 bits and can count to 4 GB in microseconds or 4K in seconds. |
| 7410 | // Reset when we get close to overflowing |
| 7411 | if (++cntDisplay >= (int)(RolloverInterval / secondsToDisplay)) |
| 7412 | Initialize(); |
| 7413 | } |
| 7414 | } |
| 7415 | |
| 7416 | #endif // defined(TIME_SUSPEND) || defined(GC_STATS) |
| 7417 | |
| 7418 | |
| 7419 | #ifdef TIME_SUSPEND |
| 7420 | |
| 7421 | // There is a current and a prior copy of the statistics. This allows us to display deltas per reporting |
| 7422 | // interval, as well as running totals. The 'min' and 'max' values require special treatment. They are |
| 7423 | // Reset (zeroed) in the current statistics when we begin a new interval and they are updated via a |
| 7424 | // comparison with the global min/max. |
| 7425 | SuspendStatistics g_SuspendStatistics; |
| 7426 | SuspendStatistics g_LastSuspendStatistics; |
| 7427 | |
| 7428 | WCHAR* SuspendStatistics::logFileName = NULL; |
| 7429 | |
| 7430 | // Called whenever our timers start to overflow |
| 7431 | void SuspendStatistics::Initialize() |
| 7432 | { |
| 7433 | LIMITED_METHOD_CONTRACT; |
| 7434 | // for efficiency sake we're taking a dependency on the layout of a C++ object |
| 7435 | // with a vtable. protect against violations of our premise: |
| 7436 | static_assert(offsetof(SuspendStatistics, cntDisplay) == sizeof(void*), |
| 7437 | "The first field of SuspendStatistics follows the pointer sized vtable" ); |
| 7438 | |
| 7439 | int podOffs = offsetof(SuspendStatistics, cntDisplay); // offset of the first POD field |
| 7440 | memset((BYTE*)(&g_SuspendStatistics)+podOffs, 0, sizeof(g_SuspendStatistics)-podOffs); |
| 7441 | memset((BYTE*)(&g_LastSuspendStatistics)+podOffs, 0, sizeof(g_LastSuspendStatistics)-podOffs); |
| 7442 | } |
| 7443 | |
| 7444 | // Top of SuspendEE |
| 7445 | void SuspendStatistics::StartSuspend() |
| 7446 | { |
| 7447 | LIMITED_METHOD_CONTRACT; |
| 7448 | startSuspend = GetTime(); |
| 7449 | } |
| 7450 | |
| 7451 | // Bottom of SuspendEE |
| 7452 | void SuspendStatistics::EndSuspend(BOOL bForGC) |
| 7453 | { |
| 7454 | LIMITED_METHOD_CONTRACT; |
| 7455 | DWORD time = GetElapsed(startSuspend, GetTime()); |
| 7456 | |
| 7457 | suspend.Accumulate(time); |
| 7458 | cntSuspends++; |
| 7459 | // details on suspends... |
| 7460 | if (!bForGC) |
| 7461 | cntNonGCSuspends++; |
| 7462 | if (GCHeapUtilities::GetGCHeap()->IsConcurrentGCInProgress()) |
| 7463 | { |
| 7464 | cntSuspendsInBGC++; |
| 7465 | if (!bForGC) |
| 7466 | cntNonGCSuspendsInBGC++; |
| 7467 | } |
| 7468 | } |
| 7469 | |
| 7470 | // Time spent in the current suspend (for pro-active debugging) |
| 7471 | DWORD SuspendStatistics::CurrentSuspend() |
| 7472 | { |
| 7473 | LIMITED_METHOD_CONTRACT; |
| 7474 | return GetElapsed(startSuspend, GetTime()); |
| 7475 | } |
| 7476 | |
| 7477 | // Top of RestartEE |
| 7478 | void SuspendStatistics::StartRestart() |
| 7479 | { |
| 7480 | LIMITED_METHOD_CONTRACT; |
| 7481 | startRestart = GetTime(); |
| 7482 | } |
| 7483 | |
| 7484 | // Bottom of RestartEE |
| 7485 | void SuspendStatistics::EndRestart() |
| 7486 | { |
| 7487 | LIMITED_METHOD_CONTRACT; |
| 7488 | DWORD timeNow = GetTime(); |
| 7489 | |
| 7490 | restart.Accumulate(GetElapsed(startRestart, timeNow)); |
| 7491 | cntRestarts++; |
| 7492 | |
| 7493 | paused.Accumulate(SuspendStatistics::GetElapsed(startSuspend, timeNow)); |
| 7494 | |
| 7495 | RollOverIfNeeded(); |
| 7496 | } |
| 7497 | |
| 7498 | // Time spent in the current restart |
| 7499 | DWORD SuspendStatistics::CurrentRestart() |
| 7500 | { |
| 7501 | LIMITED_METHOD_CONTRACT; |
| 7502 | return GetElapsed(startRestart, GetTime()); |
| 7503 | } |
| 7504 | |
| 7505 | void SuspendStatistics::DisplayAndUpdate() |
| 7506 | { |
| 7507 | LIMITED_METHOD_CONTRACT; |
| 7508 | |
| 7509 | // TODO: this fires at times... |
| 7510 | // _ASSERTE(cntSuspends == cntRestarts); |
| 7511 | |
| 7512 | if (logFileName == NULL) |
| 7513 | { |
| 7514 | logFileName = CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_SuspendTimeLog); |
| 7515 | } |
| 7516 | |
| 7517 | FILE* logFile; |
| 7518 | |
| 7519 | if (logFileName != NULL && (logFile = _wfopen((LPCWSTR)logFileName, W("a" ))) != NULL) |
| 7520 | { |
| 7521 | if (cntDisplay == 0) |
| 7522 | fprintf(logFile, "\nSUSP **** Initialize *****\n\n" ); |
| 7523 | |
| 7524 | fprintf(logFile, "SUSP **** Summary ***** %d\n" , cntDisplay); |
| 7525 | |
| 7526 | paused.DisplayAndUpdate (logFile, "Paused " , &g_LastSuspendStatistics.paused, cntSuspends, g_LastSuspendStatistics.cntSuspends); |
| 7527 | suspend.DisplayAndUpdate (logFile, "Suspend" , &g_LastSuspendStatistics.suspend, cntSuspends, g_LastSuspendStatistics.cntSuspends); |
| 7528 | restart.DisplayAndUpdate (logFile, "Restart" , &g_LastSuspendStatistics.restart, cntRestarts, g_LastSuspendStatistics.cntSuspends); |
| 7529 | acquireTSL.DisplayAndUpdate(logFile, "LockTSL" , &g_LastSuspendStatistics.acquireTSL, cntSuspends, g_LastSuspendStatistics.cntSuspends); |
| 7530 | releaseTSL.DisplayAndUpdate(logFile, "Unlock " , &g_LastSuspendStatistics.releaseTSL, cntSuspends, g_LastSuspendStatistics.cntSuspends); |
| 7531 | osSuspend.DisplayAndUpdate (logFile, "OS Susp" , &g_LastSuspendStatistics.osSuspend, cntOSSuspendResume, g_LastSuspendStatistics.cntOSSuspendResume); |
| 7532 | crawl.DisplayAndUpdate (logFile, "Crawl" , &g_LastSuspendStatistics.crawl, cntHijackCrawl, g_LastSuspendStatistics.cntHijackCrawl); |
| 7533 | wait.DisplayAndUpdate (logFile, "Wait" , &g_LastSuspendStatistics.wait, cntWaits, g_LastSuspendStatistics.cntWaits); |
| 7534 | |
| 7535 | fprintf(logFile, "OS Suspend Failures %d (%d), Wait Timeouts %d (%d), Hijack traps %d (%d)\n" , |
| 7536 | cntFailedSuspends - g_LastSuspendStatistics.cntFailedSuspends, cntFailedSuspends, |
| 7537 | cntWaitTimeouts - g_LastSuspendStatistics.cntWaitTimeouts, cntWaitTimeouts, |
| 7538 | cntHijackTrap - g_LastSuspendStatistics.cntHijackTrap, cntHijackTrap); |
| 7539 | |
| 7540 | fprintf(logFile, "Redirected EIP Failures %d (%d), Collided GC/Debugger/ADUnload %d (%d)\n" , |
| 7541 | cntFailedRedirections - g_LastSuspendStatistics.cntFailedRedirections, cntFailedRedirections, |
| 7542 | cntCollideRetry - g_LastSuspendStatistics.cntCollideRetry, cntCollideRetry); |
| 7543 | |
| 7544 | fprintf(logFile, "Suspend: All %d (%d). NonGC: %d (%d). InBGC: %d (%d). NonGCInBGC: %d (%d)\n\n" , |
| 7545 | cntSuspends - g_LastSuspendStatistics.cntSuspends, cntSuspends, |
| 7546 | cntNonGCSuspends - g_LastSuspendStatistics.cntNonGCSuspends, cntNonGCSuspends, |
| 7547 | cntSuspendsInBGC - g_LastSuspendStatistics.cntSuspendsInBGC, cntSuspendsInBGC, |
| 7548 | cntNonGCSuspendsInBGC - g_LastSuspendStatistics.cntNonGCSuspendsInBGC, cntNonGCSuspendsInBGC); |
| 7549 | |
| 7550 | // close the log file... |
| 7551 | fclose(logFile); |
| 7552 | } |
| 7553 | |
| 7554 | memcpy(&g_LastSuspendStatistics, this, sizeof(g_LastSuspendStatistics)); |
| 7555 | |
| 7556 | suspend.Reset(); |
| 7557 | restart.Reset(); |
| 7558 | paused.Reset(); |
| 7559 | acquireTSL.Reset(); |
| 7560 | releaseTSL.Reset(); |
| 7561 | osSuspend.Reset(); |
| 7562 | crawl.Reset(); |
| 7563 | wait.Reset(); |
| 7564 | } |
| 7565 | |
| 7566 | #endif // TIME_SUSPEND |
| 7567 | |
| 7568 | #if defined(TIME_SUSPEND) || defined(GC_STATS) |
| 7569 | |
| 7570 | const char* const str_timeUnit[] = { "usec" , "msec" , "sec" }; |
| 7571 | const int timeUnitFactor[] = { 1, 1000, 1000000 }; |
| 7572 | |
| 7573 | void MinMaxTot::DisplayAndUpdate(FILE* logFile, __in_z const char *pName, MinMaxTot *pLastOne, int fullCount, int priorCount, timeUnit unit /* = usec */) |
| 7574 | { |
| 7575 | LIMITED_METHOD_CONTRACT; |
| 7576 | |
| 7577 | int tuf = timeUnitFactor[unit]; |
| 7578 | int delta = fullCount - priorCount; |
| 7579 | |
| 7580 | fprintf(logFile, "%s %u (%u) times for %u (%u) %s. Min %u (%u), Max %u (%u), Avg %u (%u)\n" , |
| 7581 | pName, |
| 7582 | delta, fullCount, |
| 7583 | (totVal - pLastOne->totVal) / tuf, totVal / tuf, |
| 7584 | str_timeUnit[(int)unit], |
| 7585 | minVal / tuf, pLastOne->minVal / tuf, |
| 7586 | maxVal / tuf, pLastOne->maxVal / tuf, |
| 7587 | (delta == 0 ? 0 : (totVal - pLastOne->totVal) / delta) / tuf, |
| 7588 | (fullCount == 0 ? 0 : totVal / fullCount) / tuf); |
| 7589 | |
| 7590 | if (minVal > pLastOne->minVal && pLastOne->minVal != 0) |
| 7591 | minVal = pLastOne->minVal; |
| 7592 | |
| 7593 | if (maxVal < pLastOne->maxVal) |
| 7594 | maxVal = pLastOne->maxVal; |
| 7595 | } |
| 7596 | |
| 7597 | #endif // defined(TIME_SUSPEND) || defined(GC_STATS) |
| 7598 | |