| 1 | // Copyright (c) Microsoft Corporation. All rights reserved. |
| 2 | // Licensed under the MIT license. |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include <atomic> |
| 7 | #include <cassert> |
| 8 | #include <cinttypes> |
| 9 | #include <cstdint> |
| 10 | #include <cstdio> |
| 11 | #include <cstring> |
| 12 | #include <type_traits> |
| 13 | |
| 14 | #include "device/file_system_disk.h" |
| 15 | |
| 16 | #include "alloc.h" |
| 17 | #include "checkpoint_locks.h" |
| 18 | #include "checkpoint_state.h" |
| 19 | #include "constants.h" |
| 20 | #include "gc_state.h" |
| 21 | #include "grow_state.h" |
| 22 | #include "guid.h" |
| 23 | #include "hash_table.h" |
| 24 | #include "internal_contexts.h" |
| 25 | #include "key_hash.h" |
| 26 | #include "malloc_fixed_page_size.h" |
| 27 | #include "persistent_memory_malloc.h" |
| 28 | #include "record.h" |
| 29 | #include "recovery_status.h" |
| 30 | #include "state_transitions.h" |
| 31 | #include "status.h" |
| 32 | #include "utility.h" |
| 33 | |
| 34 | using namespace std::chrono_literals; |
| 35 | |
| 36 | /// The FASTER key-value store, and related classes. |
| 37 | |
| 38 | namespace FASTER { |
| 39 | namespace core { |
| 40 | |
| 41 | class alignas(Constants::kCacheLineBytes) ThreadContext { |
| 42 | public: |
| 43 | ThreadContext() |
| 44 | : contexts_{} |
| 45 | , cur_{ 0 } { |
| 46 | } |
| 47 | |
| 48 | inline const ExecutionContext& cur() const { |
| 49 | return contexts_[cur_]; |
| 50 | } |
| 51 | inline ExecutionContext& cur() { |
| 52 | return contexts_[cur_]; |
| 53 | } |
| 54 | |
| 55 | inline const ExecutionContext& prev() const { |
| 56 | return contexts_[(cur_ + 1) % 2]; |
| 57 | } |
| 58 | inline ExecutionContext& prev() { |
| 59 | return contexts_[(cur_ + 1) % 2]; |
| 60 | } |
| 61 | |
| 62 | inline void swap() { |
| 63 | cur_ = (cur_ + 1) % 2; |
| 64 | } |
| 65 | |
| 66 | private: |
| 67 | ExecutionContext contexts_[2]; |
| 68 | uint8_t cur_; |
| 69 | }; |
| 70 | static_assert(sizeof(ThreadContext) == 448, "sizeof(ThreadContext) != 448" ); |
| 71 | |
| 72 | /// The FASTER key-value store. |
| 73 | template <class K, class V, class D> |
| 74 | class FasterKv { |
| 75 | public: |
| 76 | typedef FasterKv<K, V, D> faster_t; |
| 77 | |
| 78 | /// Keys and values stored in this key-value store. |
| 79 | typedef K key_t; |
| 80 | typedef V value_t; |
| 81 | |
| 82 | typedef D disk_t; |
| 83 | typedef typename D::file_t file_t; |
| 84 | typedef typename D::log_file_t log_file_t; |
| 85 | |
| 86 | typedef PersistentMemoryMalloc<disk_t> hlog_t; |
| 87 | |
| 88 | /// Contexts that have been deep-copied, for async continuations, and must be accessed via |
| 89 | /// virtual function calls. |
| 90 | typedef AsyncPendingReadContext<key_t> async_pending_read_context_t; |
| 91 | typedef AsyncPendingUpsertContext<key_t> async_pending_upsert_context_t; |
| 92 | typedef AsyncPendingRmwContext<key_t> async_pending_rmw_context_t; |
| 93 | |
| 94 | FasterKv(uint64_t table_size, uint64_t log_size, const std::string& filename, |
| 95 | double log_mutable_fraction = 0.9) |
| 96 | : min_table_size_{ table_size } |
| 97 | , disk{ filename, epoch_ } |
| 98 | , hlog{ log_size, epoch_, disk, disk.log(), log_mutable_fraction } |
| 99 | , system_state_{ Action::None, Phase::REST, 1 } |
| 100 | , num_pending_ios{ 0 } { |
| 101 | if(!Utility::IsPowerOfTwo(table_size)) { |
| 102 | throw std::invalid_argument{ " Size is not a power of 2" }; |
| 103 | } |
| 104 | if(table_size > INT32_MAX) { |
| 105 | throw std::invalid_argument{ " Cannot allocate such a large hash table " }; |
| 106 | } |
| 107 | |
| 108 | resize_info_.version = 0; |
| 109 | state_[0].Initialize(table_size, disk.log().alignment()); |
| 110 | overflow_buckets_allocator_[0].Initialize(disk.log().alignment(), epoch_); |
| 111 | } |
| 112 | |
| 113 | // No copy constructor. |
| 114 | FasterKv(const FasterKv& other) = delete; |
| 115 | |
| 116 | public: |
| 117 | /// Thread-related operations |
| 118 | Guid StartSession(); |
| 119 | uint64_t ContinueSession(const Guid& guid); |
| 120 | void StopSession(); |
| 121 | void Refresh(); |
| 122 | |
| 123 | /// Store interface |
| 124 | template <class RC> |
| 125 | inline Status Read(RC& context, AsyncCallback callback, uint64_t monotonic_serial_num); |
| 126 | |
| 127 | template <class UC> |
| 128 | inline Status Upsert(UC& context, AsyncCallback callback, uint64_t monotonic_serial_num); |
| 129 | |
| 130 | template <class MC> |
| 131 | inline Status Rmw(MC& context, AsyncCallback callback, uint64_t monotonic_serial_num); |
| 132 | /// Delete() not yet implemented! |
| 133 | // void Delete(const Key& key, Context& context, uint64_t lsn); |
| 134 | inline bool CompletePending(bool wait = false); |
| 135 | |
| 136 | /// Checkpoint/recovery operations. |
| 137 | bool Checkpoint(void(*index_persistence_callback)(Status result), |
| 138 | void(*hybrid_log_persistence_callback)(Status result, |
| 139 | uint64_t persistent_serial_num), Guid& token); |
| 140 | bool CheckpointIndex(void(*index_persistence_callback)(Status result), Guid& token); |
| 141 | bool CheckpointHybridLog(void(*hybrid_log_persistence_callback)(Status result, |
| 142 | uint64_t persistent_serial_num), Guid& token); |
| 143 | Status Recover(const Guid& index_token, const Guid& hybrid_log_token, uint32_t& version, |
| 144 | std::vector<Guid>& session_ids); |
| 145 | |
| 146 | /// Truncating the head of the log. |
| 147 | bool ShiftBeginAddress(Address address, GcState::truncate_callback_t truncate_callback, |
| 148 | GcState::complete_callback_t complete_callback); |
| 149 | |
| 150 | /// Make the hash table larger. |
| 151 | bool GrowIndex(GrowState::callback_t caller_callback); |
| 152 | |
| 153 | /// Statistics |
| 154 | inline uint64_t Size() const { |
| 155 | return hlog.GetTailAddress().control(); |
| 156 | } |
| 157 | inline void DumpDistribution() { |
| 158 | state_[resize_info_.version].DumpDistribution( |
| 159 | overflow_buckets_allocator_[resize_info_.version]); |
| 160 | } |
| 161 | |
| 162 | private: |
| 163 | typedef Record<key_t, value_t> record_t; |
| 164 | |
| 165 | typedef PendingContext<key_t> pending_context_t; |
| 166 | |
| 167 | template <class C> |
| 168 | inline OperationStatus InternalRead(C& pending_context) const; |
| 169 | |
| 170 | template <class C> |
| 171 | inline OperationStatus InternalUpsert(C& pending_context); |
| 172 | |
| 173 | template <class C> |
| 174 | inline OperationStatus InternalRmw(C& pending_context, bool retrying); |
| 175 | |
| 176 | inline OperationStatus InternalRetryPendingRmw(async_pending_rmw_context_t& pending_context); |
| 177 | |
| 178 | OperationStatus InternalContinuePendingRead(ExecutionContext& ctx, |
| 179 | AsyncIOContext& io_context); |
| 180 | OperationStatus InternalContinuePendingRmw(ExecutionContext& ctx, |
| 181 | AsyncIOContext& io_context); |
| 182 | |
| 183 | // Find the hash bucket entry, if any, corresponding to the specified hash. |
| 184 | inline const AtomicHashBucketEntry* FindEntry(KeyHash hash) const; |
| 185 | // If a hash bucket entry corresponding to the specified hash exists, return it; otherwise, |
| 186 | // create a new entry. The caller can use the "expected_entry" to CAS its desired address into |
| 187 | // the entry. |
| 188 | inline AtomicHashBucketEntry* FindOrCreateEntry(KeyHash hash, HashBucketEntry& expected_entry, |
| 189 | HashBucket*& bucket); |
| 190 | inline Address TraceBackForKeyMatch(const key_t& key, Address from_address, |
| 191 | Address min_offset) const; |
| 192 | Address TraceBackForOtherChainStart(uint64_t old_size, uint64_t new_size, Address from_address, |
| 193 | Address min_address, uint8_t side); |
| 194 | |
| 195 | // If a hash bucket entry corresponding to the specified hash exists, return it; otherwise, |
| 196 | // return an unused bucket entry. |
| 197 | inline AtomicHashBucketEntry* FindTentativeEntry(KeyHash hash, HashBucket* bucket, |
| 198 | uint8_t version, HashBucketEntry& expected_entry); |
| 199 | // Looks for an entry that has the same |
| 200 | inline bool HasConflictingEntry(KeyHash hash, const HashBucket* bucket, uint8_t version, |
| 201 | const AtomicHashBucketEntry* atomic_entry) const; |
| 202 | |
| 203 | inline Address BlockAllocate(uint32_t record_size); |
| 204 | |
| 205 | inline Status HandleOperationStatus(ExecutionContext& ctx, |
| 206 | pending_context_t& pending_context, |
| 207 | OperationStatus internal_status, bool& async); |
| 208 | inline Status PivotAndRetry(ExecutionContext& ctx, pending_context_t& pending_context, |
| 209 | bool& async); |
| 210 | inline Status RetryLater(ExecutionContext& ctx, pending_context_t& pending_context, |
| 211 | bool& async); |
| 212 | inline constexpr uint32_t MinIoRequestSize() const; |
| 213 | inline Status IssueAsyncIoRequest(ExecutionContext& ctx, pending_context_t& pending_context, |
| 214 | bool& async); |
| 215 | |
| 216 | void AsyncGetFromDisk(Address address, uint32_t num_records, AsyncIOCallback callback, |
| 217 | AsyncIOContext& context); |
| 218 | static void AsyncGetFromDiskCallback(IAsyncContext* ctxt, Status result, |
| 219 | size_t bytes_transferred); |
| 220 | |
| 221 | void CompleteIoPendingRequests(ExecutionContext& context); |
| 222 | void CompleteRetryRequests(ExecutionContext& context); |
| 223 | |
| 224 | void InitializeCheckpointLocks(); |
| 225 | |
| 226 | /// Checkpoint/recovery methods. |
| 227 | void HandleSpecialPhases(); |
| 228 | bool GlobalMoveToNextState(SystemState current_state); |
| 229 | |
| 230 | Status CheckpointFuzzyIndex(); |
| 231 | Status CheckpointFuzzyIndexComplete(); |
| 232 | Status RecoverFuzzyIndex(); |
| 233 | Status RecoverFuzzyIndexComplete(bool wait); |
| 234 | |
| 235 | Status WriteIndexMetadata(); |
| 236 | Status ReadIndexMetadata(const Guid& token); |
| 237 | Status WriteCprMetadata(); |
| 238 | Status ReadCprMetadata(const Guid& token); |
| 239 | Status WriteCprContext(); |
| 240 | Status ReadCprContexts(const Guid& token, const Guid* guids); |
| 241 | |
| 242 | Status RecoverHybridLog(); |
| 243 | Status RecoverHybridLogFromSnapshotFile(); |
| 244 | Status RecoverFromPage(Address from_address, Address to_address); |
| 245 | Status RestoreHybridLog(); |
| 246 | |
| 247 | void MarkAllPendingRequests(); |
| 248 | |
| 249 | inline void HeavyEnter(); |
| 250 | bool CleanHashTableBuckets(); |
| 251 | void SplitHashTableBuckets(); |
| 252 | void AddHashEntry(HashBucket*& bucket, uint32_t& next_idx, uint8_t version, |
| 253 | HashBucketEntry entry); |
| 254 | |
| 255 | /// Access the current and previous (thread-local) execution contexts. |
| 256 | const ExecutionContext& thread_ctx() const { |
| 257 | return thread_contexts_[Thread::id()].cur(); |
| 258 | } |
| 259 | ExecutionContext& thread_ctx() { |
| 260 | return thread_contexts_[Thread::id()].cur(); |
| 261 | } |
| 262 | ExecutionContext& prev_thread_ctx() { |
| 263 | return thread_contexts_[Thread::id()].prev(); |
| 264 | } |
| 265 | |
| 266 | private: |
| 267 | LightEpoch epoch_; |
| 268 | |
| 269 | public: |
| 270 | disk_t disk; |
| 271 | hlog_t hlog; |
| 272 | |
| 273 | private: |
| 274 | static constexpr bool kCopyReadsToTail = false; |
| 275 | static constexpr uint64_t kGcHashTableChunkSize = 16384; |
| 276 | static constexpr uint64_t kGrowHashTableChunkSize = 16384; |
| 277 | |
| 278 | bool fold_over_snapshot = true; |
| 279 | |
| 280 | /// Initial size of the table |
| 281 | uint64_t min_table_size_; |
| 282 | |
| 283 | // Allocator for the hash buckets that don't fit in the hash table. |
| 284 | MallocFixedPageSize<HashBucket, disk_t> overflow_buckets_allocator_[2]; |
| 285 | |
| 286 | // An array of size two, that contains the old and new versions of the hash-table |
| 287 | InternalHashTable<disk_t> state_[2]; |
| 288 | |
| 289 | CheckpointLocks checkpoint_locks_; |
| 290 | |
| 291 | ResizeInfo resize_info_; |
| 292 | |
| 293 | AtomicSystemState system_state_; |
| 294 | |
| 295 | /// Checkpoint/recovery state. |
| 296 | CheckpointState<file_t> checkpoint_; |
| 297 | /// Garbage collection state. |
| 298 | GcState gc_; |
| 299 | /// Grow (hash table) state. |
| 300 | GrowState grow_; |
| 301 | |
| 302 | /// Global count of pending I/Os, used for throttling. |
| 303 | std::atomic<uint64_t> num_pending_ios; |
| 304 | |
| 305 | /// Space for two contexts per thread, stored inline. |
| 306 | ThreadContext thread_contexts_[Thread::kMaxNumThreads]; |
| 307 | }; |
| 308 | |
| 309 | // Implementations. |
| 310 | template <class K, class V, class D> |
| 311 | inline Guid FasterKv<K, V, D>::StartSession() { |
| 312 | SystemState state = system_state_.load(); |
| 313 | if(state.phase != Phase::REST) { |
| 314 | throw std::runtime_error{ "Can acquire only in REST phase!" }; |
| 315 | } |
| 316 | thread_ctx().Initialize(state.phase, state.version, Guid::Create(), 0); |
| 317 | Refresh(); |
| 318 | return thread_ctx().guid; |
| 319 | } |
| 320 | |
| 321 | template <class K, class V, class D> |
| 322 | inline uint64_t FasterKv<K, V, D>::ContinueSession(const Guid& session_id) { |
| 323 | auto iter = checkpoint_.continue_tokens.find(session_id); |
| 324 | if(iter == checkpoint_.continue_tokens.end()) { |
| 325 | throw std::invalid_argument{ "Unknown session ID" }; |
| 326 | } |
| 327 | |
| 328 | SystemState state = system_state_.load(); |
| 329 | if(state.phase != Phase::REST) { |
| 330 | throw std::runtime_error{ "Can continue only in REST phase!" }; |
| 331 | } |
| 332 | thread_ctx().Initialize(state.phase, state.version, session_id, iter->second); |
| 333 | Refresh(); |
| 334 | return iter->second; |
| 335 | } |
| 336 | |
| 337 | template <class K, class V, class D> |
| 338 | inline void FasterKv<K, V, D>::Refresh() { |
| 339 | epoch_.ProtectAndDrain(); |
| 340 | // We check if we are in normal mode |
| 341 | SystemState new_state = system_state_.load(); |
| 342 | if(thread_ctx().phase == Phase::REST && new_state.phase == Phase::REST) { |
| 343 | return; |
| 344 | } |
| 345 | HandleSpecialPhases(); |
| 346 | } |
| 347 | |
| 348 | template <class K, class V, class D> |
| 349 | inline void FasterKv<K, V, D>::StopSession() { |
| 350 | // If this thread is still involved in some activity, wait until it finishes. |
| 351 | while(thread_ctx().phase != Phase::REST || |
| 352 | !thread_ctx().pending_ios.empty() || |
| 353 | !thread_ctx().retry_requests.empty()) { |
| 354 | CompletePending(false); |
| 355 | std::this_thread::yield(); |
| 356 | } |
| 357 | |
| 358 | assert(thread_ctx().retry_requests.empty()); |
| 359 | assert(thread_ctx().pending_ios.empty()); |
| 360 | assert(thread_ctx().io_responses.empty()); |
| 361 | |
| 362 | assert(prev_thread_ctx().retry_requests.empty()); |
| 363 | assert(prev_thread_ctx().pending_ios.empty()); |
| 364 | assert(prev_thread_ctx().io_responses.empty()); |
| 365 | |
| 366 | assert(thread_ctx().phase == Phase::REST); |
| 367 | |
| 368 | epoch_.Unprotect(); |
| 369 | } |
| 370 | |
| 371 | template <class K, class V, class D> |
| 372 | inline const AtomicHashBucketEntry* FasterKv<K, V, D>::FindEntry(KeyHash hash) const { |
| 373 | // Truncate the hash to get a bucket page_index < state[version].size. |
| 374 | uint32_t version = resize_info_.version; |
| 375 | const HashBucket* bucket = &state_[version].bucket(hash); |
| 376 | assert(reinterpret_cast<size_t>(bucket) % Constants::kCacheLineBytes == 0); |
| 377 | |
| 378 | while(true) { |
| 379 | // Search through the bucket looking for our key. Last entry is reserved |
| 380 | // for the overflow pointer. |
| 381 | for(uint32_t entry_idx = 0; entry_idx < HashBucket::kNumEntries; ++entry_idx) { |
| 382 | HashBucketEntry entry = bucket->entries[entry_idx].load(); |
| 383 | if(entry.unused()) { |
| 384 | continue; |
| 385 | } |
| 386 | if(hash.tag() == entry.tag()) { |
| 387 | // Found a matching tag. (So, the input hash matches the entry on 14 tag bits + |
| 388 | // log_2(table size) address bits.) |
| 389 | if(!entry.tentative()) { |
| 390 | // If (final key, return immediately) |
| 391 | return &bucket->entries[entry_idx]; |
| 392 | } |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | // Go to next bucket in the chain |
| 397 | HashBucketOverflowEntry entry = bucket->overflow_entry.load(); |
| 398 | if(entry.unused()) { |
| 399 | // No more buckets in the chain. |
| 400 | return nullptr; |
| 401 | } |
| 402 | bucket = &overflow_buckets_allocator_[version].Get(entry.address()); |
| 403 | assert(reinterpret_cast<size_t>(bucket) % Constants::kCacheLineBytes == 0); |
| 404 | } |
| 405 | assert(false); |
| 406 | return nullptr; // NOT REACHED |
| 407 | } |
| 408 | |
| 409 | template <class K, class V, class D> |
| 410 | inline AtomicHashBucketEntry* FasterKv<K, V, D>::FindTentativeEntry(KeyHash hash, |
| 411 | HashBucket* bucket, |
| 412 | uint8_t version, HashBucketEntry& expected_entry) { |
| 413 | expected_entry = HashBucketEntry::kInvalidEntry; |
| 414 | AtomicHashBucketEntry* atomic_entry = nullptr; |
| 415 | // Try to find a slot that contains the right tag or that's free. |
| 416 | while(true) { |
| 417 | // Search through the bucket looking for our key. Last entry is reserved |
| 418 | // for the overflow pointer. |
| 419 | for(uint32_t entry_idx = 0; entry_idx < HashBucket::kNumEntries; ++entry_idx) { |
| 420 | HashBucketEntry entry = bucket->entries[entry_idx].load(); |
| 421 | if(entry.unused()) { |
| 422 | if(!atomic_entry) { |
| 423 | // Found a free slot; keep track of it, and continue looking for a match. |
| 424 | atomic_entry = &bucket->entries[entry_idx]; |
| 425 | } |
| 426 | continue; |
| 427 | } |
| 428 | if(hash.tag() == entry.tag() && !entry.tentative()) { |
| 429 | // Found a match. (So, the input hash matches the entry on 14 tag bits + |
| 430 | // log_2(table size) address bits.) Return it to caller. |
| 431 | expected_entry = entry; |
| 432 | return &bucket->entries[entry_idx]; |
| 433 | } |
| 434 | } |
| 435 | // Go to next bucket in the chain |
| 436 | HashBucketOverflowEntry overflow_entry = bucket->overflow_entry.load(); |
| 437 | if(overflow_entry.unused()) { |
| 438 | // No more buckets in the chain. |
| 439 | if(atomic_entry) { |
| 440 | // We found a free slot earlier (possibly inside an earlier bucket). |
| 441 | assert(expected_entry == HashBucketEntry::kInvalidEntry); |
| 442 | return atomic_entry; |
| 443 | } |
| 444 | // We didn't find any free slots, so allocate new bucket. |
| 445 | FixedPageAddress new_bucket_addr = overflow_buckets_allocator_[version].Allocate(); |
| 446 | bool success; |
| 447 | do { |
| 448 | HashBucketOverflowEntry new_bucket_entry{ new_bucket_addr }; |
| 449 | success = bucket->overflow_entry.compare_exchange_strong(overflow_entry, |
| 450 | new_bucket_entry); |
| 451 | } while(!success && overflow_entry.unused()); |
| 452 | if(!success) { |
| 453 | // Install failed, undo allocation; use the winner's entry |
| 454 | overflow_buckets_allocator_[version].FreeAtEpoch(new_bucket_addr, 0); |
| 455 | } else { |
| 456 | // Install succeeded; we have a new bucket on the chain. Return its first slot. |
| 457 | bucket = &overflow_buckets_allocator_[version].Get(new_bucket_addr); |
| 458 | assert(expected_entry == HashBucketEntry::kInvalidEntry); |
| 459 | return &bucket->entries[0]; |
| 460 | } |
| 461 | } |
| 462 | // Go to the next bucket. |
| 463 | bucket = &overflow_buckets_allocator_[version].Get(overflow_entry.address()); |
| 464 | assert(reinterpret_cast<size_t>(bucket) % Constants::kCacheLineBytes == 0); |
| 465 | } |
| 466 | assert(false); |
| 467 | return nullptr; // NOT REACHED |
| 468 | } |
| 469 | |
| 470 | template <class K, class V, class D> |
| 471 | bool FasterKv<K, V, D>::HasConflictingEntry(KeyHash hash, const HashBucket* bucket, uint8_t version, |
| 472 | const AtomicHashBucketEntry* atomic_entry) const { |
| 473 | uint16_t tag = atomic_entry->load().tag(); |
| 474 | while(true) { |
| 475 | for(uint32_t entry_idx = 0; entry_idx < HashBucket::kNumEntries; ++entry_idx) { |
| 476 | HashBucketEntry entry = bucket->entries[entry_idx].load(); |
| 477 | if(entry != HashBucketEntry::kInvalidEntry && |
| 478 | entry.tag() == tag && |
| 479 | atomic_entry != &bucket->entries[entry_idx]) { |
| 480 | // Found a conflict. |
| 481 | return true; |
| 482 | } |
| 483 | } |
| 484 | // Go to next bucket in the chain |
| 485 | HashBucketOverflowEntry entry = bucket->overflow_entry.load(); |
| 486 | if(entry.unused()) { |
| 487 | // Reached the end of the bucket chain; no conflicts found. |
| 488 | return false; |
| 489 | } |
| 490 | // Go to the next bucket. |
| 491 | bucket = &overflow_buckets_allocator_[version].Get(entry.address()); |
| 492 | assert(reinterpret_cast<size_t>(bucket) % Constants::kCacheLineBytes == 0); |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | template <class K, class V, class D> |
| 497 | inline AtomicHashBucketEntry* FasterKv<K, V, D>::FindOrCreateEntry(KeyHash hash, |
| 498 | HashBucketEntry& expected_entry, HashBucket*& bucket) { |
| 499 | bucket = nullptr; |
| 500 | // Truncate the hash to get a bucket page_index < state[version].size. |
| 501 | uint32_t version = resize_info_.version; |
| 502 | assert(version <= 1); |
| 503 | |
| 504 | while(true) { |
| 505 | bucket = &state_[version].bucket(hash); |
| 506 | assert(reinterpret_cast<size_t>(bucket) % Constants::kCacheLineBytes == 0); |
| 507 | |
| 508 | AtomicHashBucketEntry* atomic_entry = FindTentativeEntry(hash, bucket, version, |
| 509 | expected_entry); |
| 510 | if(expected_entry != HashBucketEntry::kInvalidEntry) { |
| 511 | // Found an existing hash bucket entry; nothing further to check. |
| 512 | return atomic_entry; |
| 513 | } |
| 514 | // We have a free slot. |
| 515 | assert(atomic_entry); |
| 516 | assert(expected_entry == HashBucketEntry::kInvalidEntry); |
| 517 | // Try to install tentative tag in free slot. |
| 518 | HashBucketEntry entry{ Address::kInvalidAddress, hash.tag(), true }; |
| 519 | if(atomic_entry->compare_exchange_strong(expected_entry, entry)) { |
| 520 | // See if some other thread is also trying to install this tag. |
| 521 | if(HasConflictingEntry(hash, bucket, version, atomic_entry)) { |
| 522 | // Back off and try again. |
| 523 | atomic_entry->store(HashBucketEntry::kInvalidEntry); |
| 524 | } else { |
| 525 | // No other thread was trying to install this tag, so we can clear our entry's "tentative" |
| 526 | // bit. |
| 527 | expected_entry = HashBucketEntry{ Address::kInvalidAddress, hash.tag(), false }; |
| 528 | atomic_entry->store(expected_entry); |
| 529 | return atomic_entry; |
| 530 | } |
| 531 | } |
| 532 | } |
| 533 | assert(false); |
| 534 | return nullptr; // NOT REACHED |
| 535 | } |
| 536 | |
| 537 | template <class K, class V, class D> |
| 538 | template <class RC> |
| 539 | inline Status FasterKv<K, V, D>::Read(RC& context, AsyncCallback callback, |
| 540 | uint64_t monotonic_serial_num) { |
| 541 | typedef RC read_context_t; |
| 542 | typedef PendingReadContext<RC> pending_read_context_t; |
| 543 | static_assert(std::is_base_of<value_t, typename read_context_t::value_t>::value, |
| 544 | "value_t is not a base class of read_context_t::value_t" ); |
| 545 | static_assert(alignof(value_t) == alignof(typename read_context_t::value_t), |
| 546 | "alignof(value_t) != alignof(typename read_context_t::value_t)" ); |
| 547 | |
| 548 | pending_read_context_t pending_context{ context, callback }; |
| 549 | OperationStatus internal_status = InternalRead(pending_context); |
| 550 | Status status; |
| 551 | if(internal_status == OperationStatus::SUCCESS) { |
| 552 | status = Status::Ok; |
| 553 | } else if(internal_status == OperationStatus::NOT_FOUND) { |
| 554 | status = Status::NotFound; |
| 555 | } else { |
| 556 | assert(internal_status == OperationStatus::RECORD_ON_DISK); |
| 557 | bool async; |
| 558 | status = HandleOperationStatus(thread_ctx(), pending_context, internal_status, async); |
| 559 | } |
| 560 | thread_ctx().serial_num = monotonic_serial_num; |
| 561 | return status; |
| 562 | } |
| 563 | |
| 564 | template <class K, class V, class D> |
| 565 | template <class UC> |
| 566 | inline Status FasterKv<K, V, D>::Upsert(UC& context, AsyncCallback callback, |
| 567 | uint64_t monotonic_serial_num) { |
| 568 | typedef UC upsert_context_t; |
| 569 | typedef PendingUpsertContext<UC> pending_upsert_context_t; |
| 570 | static_assert(std::is_base_of<value_t, typename upsert_context_t::value_t>::value, |
| 571 | "value_t is not a base class of upsert_context_t::value_t" ); |
| 572 | static_assert(alignof(value_t) == alignof(typename upsert_context_t::value_t), |
| 573 | "alignof(value_t) != alignof(typename upsert_context_t::value_t)" ); |
| 574 | |
| 575 | pending_upsert_context_t pending_context{ context, callback }; |
| 576 | OperationStatus internal_status = InternalUpsert(pending_context); |
| 577 | Status status; |
| 578 | |
| 579 | if(internal_status == OperationStatus::SUCCESS) { |
| 580 | status = Status::Ok; |
| 581 | } else { |
| 582 | bool async; |
| 583 | status = HandleOperationStatus(thread_ctx(), pending_context, internal_status, async); |
| 584 | } |
| 585 | thread_ctx().serial_num = monotonic_serial_num; |
| 586 | return status; |
| 587 | } |
| 588 | |
| 589 | template <class K, class V, class D> |
| 590 | template <class MC> |
| 591 | inline Status FasterKv<K, V, D>::Rmw(MC& context, AsyncCallback callback, |
| 592 | uint64_t monotonic_serial_num) { |
| 593 | typedef MC rmw_context_t; |
| 594 | typedef PendingRmwContext<MC> pending_rmw_context_t; |
| 595 | static_assert(std::is_base_of<value_t, typename rmw_context_t::value_t>::value, |
| 596 | "value_t is not a base class of rmw_context_t::value_t" ); |
| 597 | static_assert(alignof(value_t) == alignof(typename rmw_context_t::value_t), |
| 598 | "alignof(value_t) != alignof(typename rmw_context_t::value_t)" ); |
| 599 | |
| 600 | pending_rmw_context_t pending_context{ context, callback }; |
| 601 | OperationStatus internal_status = InternalRmw(pending_context, false); |
| 602 | Status status; |
| 603 | if(internal_status == OperationStatus::SUCCESS) { |
| 604 | status = Status::Ok; |
| 605 | } else { |
| 606 | bool async; |
| 607 | status = HandleOperationStatus(thread_ctx(), pending_context, internal_status, async); |
| 608 | } |
| 609 | thread_ctx().serial_num = monotonic_serial_num; |
| 610 | return status; |
| 611 | } |
| 612 | |
| 613 | template <class K, class V, class D> |
| 614 | inline bool FasterKv<K, V, D>::CompletePending(bool wait) { |
| 615 | do { |
| 616 | disk.TryComplete(); |
| 617 | |
| 618 | bool done = true; |
| 619 | if(thread_ctx().phase != Phase::WAIT_PENDING && thread_ctx().phase != Phase::IN_PROGRESS) { |
| 620 | CompleteIoPendingRequests(thread_ctx()); |
| 621 | } |
| 622 | Refresh(); |
| 623 | CompleteRetryRequests(thread_ctx()); |
| 624 | |
| 625 | done = (thread_ctx().pending_ios.empty() && thread_ctx().retry_requests.empty()); |
| 626 | |
| 627 | if(thread_ctx().phase != Phase::REST) { |
| 628 | CompleteIoPendingRequests(prev_thread_ctx()); |
| 629 | Refresh(); |
| 630 | CompleteRetryRequests(prev_thread_ctx()); |
| 631 | done = false; |
| 632 | } |
| 633 | if(done) { |
| 634 | return true; |
| 635 | } |
| 636 | } while(wait); |
| 637 | return false; |
| 638 | } |
| 639 | |
| 640 | template <class K, class V, class D> |
| 641 | inline void FasterKv<K, V, D>::CompleteIoPendingRequests(ExecutionContext& context) { |
| 642 | AsyncIOContext* ctxt; |
| 643 | // Clear this thread's I/O response queue. (Does not clear I/Os issued by this thread that have |
| 644 | // not yet completed.) |
| 645 | while(context.io_responses.try_pop(ctxt)) { |
| 646 | CallbackContext<AsyncIOContext> io_context{ ctxt }; |
| 647 | CallbackContext<pending_context_t> pending_context{ io_context->caller_context }; |
| 648 | // This I/O is no longer pending, since we popped its response off the queue. |
| 649 | auto pending_io = context.pending_ios.find(io_context->io_id); |
| 650 | assert(pending_io != context.pending_ios.end()); |
| 651 | context.pending_ios.erase(pending_io); |
| 652 | |
| 653 | // Issue the continue command |
| 654 | OperationStatus internal_status; |
| 655 | if(pending_context->type == OperationType::Read) { |
| 656 | internal_status = InternalContinuePendingRead(context, *io_context.get()); |
| 657 | } else { |
| 658 | assert(pending_context->type == OperationType::RMW); |
| 659 | internal_status = InternalContinuePendingRmw(context, *io_context.get()); |
| 660 | } |
| 661 | Status result; |
| 662 | if(internal_status == OperationStatus::SUCCESS) { |
| 663 | result = Status::Ok; |
| 664 | } else if(internal_status == OperationStatus::NOT_FOUND) { |
| 665 | result = Status::NotFound; |
| 666 | } else { |
| 667 | result = HandleOperationStatus(context, *pending_context.get(), internal_status, |
| 668 | pending_context.async); |
| 669 | } |
| 670 | if(!pending_context.async) { |
| 671 | pending_context->caller_callback(pending_context->caller_context, result); |
| 672 | } |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | template <class K, class V, class D> |
| 677 | inline void FasterKv<K, V, D>::CompleteRetryRequests(ExecutionContext& context) { |
| 678 | // If we can't complete a request, it will be pushed back onto the deque. Retry each request |
| 679 | // only once. |
| 680 | size_t size = context.retry_requests.size(); |
| 681 | for(size_t idx = 0; idx < size; ++idx) { |
| 682 | CallbackContext<pending_context_t> pending_context{ context.retry_requests.front() }; |
| 683 | context.retry_requests.pop_front(); |
| 684 | // Issue retry command |
| 685 | OperationStatus internal_status; |
| 686 | switch(pending_context->type) { |
| 687 | case OperationType::RMW: |
| 688 | internal_status = InternalRetryPendingRmw( |
| 689 | *static_cast<async_pending_rmw_context_t*>(pending_context.get())); |
| 690 | break; |
| 691 | case OperationType::Upsert: |
| 692 | internal_status = InternalUpsert( |
| 693 | *static_cast<async_pending_upsert_context_t*>(pending_context.get())); |
| 694 | break; |
| 695 | default: |
| 696 | assert(false); |
| 697 | throw std::runtime_error{ "Cannot happen!" }; |
| 698 | } |
| 699 | // Handle operation status |
| 700 | Status result; |
| 701 | if(internal_status == OperationStatus::SUCCESS) { |
| 702 | result = Status::Ok; |
| 703 | } else { |
| 704 | result = HandleOperationStatus(context, *pending_context.get(), internal_status, |
| 705 | pending_context.async); |
| 706 | } |
| 707 | |
| 708 | // If done, callback user code. |
| 709 | if(!pending_context.async) { |
| 710 | pending_context->caller_callback(pending_context->caller_context, result); |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | template <class K, class V, class D> |
| 716 | template <class C> |
| 717 | inline OperationStatus FasterKv<K, V, D>::InternalRead(C& pending_context) const { |
| 718 | typedef C pending_read_context_t; |
| 719 | |
| 720 | if(thread_ctx().phase != Phase::REST) { |
| 721 | const_cast<faster_t*>(this)->HeavyEnter(); |
| 722 | } |
| 723 | |
| 724 | const key_t& key = pending_context.key(); |
| 725 | KeyHash hash = key.GetHash(); |
| 726 | const AtomicHashBucketEntry* atomic_entry = FindEntry(hash); |
| 727 | if(!atomic_entry) { |
| 728 | // no record found |
| 729 | return OperationStatus::NOT_FOUND; |
| 730 | } |
| 731 | |
| 732 | HashBucketEntry entry = atomic_entry->load(); |
| 733 | Address address = entry.address(); |
| 734 | Address begin_address = hlog.begin_address.load(); |
| 735 | Address head_address = hlog.head_address.load(); |
| 736 | Address safe_read_only_address = hlog.safe_read_only_address.load(); |
| 737 | Address read_only_address = hlog.read_only_address.load(); |
| 738 | uint64_t latest_record_version = 0; |
| 739 | |
| 740 | if(address >= head_address) { |
| 741 | // Look through the in-memory portion of the log, to find the first record (if any) whose key |
| 742 | // matches. |
| 743 | const record_t* record = reinterpret_cast<const record_t*>(hlog.Get(address)); |
| 744 | latest_record_version = record->header.checkpoint_version; |
| 745 | if(key != record->key()) { |
| 746 | address = TraceBackForKeyMatch(key, record->header.previous_address(), head_address); |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | switch(thread_ctx().phase) { |
| 751 | case Phase::PREPARE: |
| 752 | // Reading old version (v). |
| 753 | if(latest_record_version > thread_ctx().version) { |
| 754 | // CPR shift detected: we are in the "PREPARE" phase, and a record has a version later than |
| 755 | // what we've seen. |
| 756 | pending_context.go_async(thread_ctx().phase, thread_ctx().version, address, entry); |
| 757 | return OperationStatus::CPR_SHIFT_DETECTED; |
| 758 | } |
| 759 | break; |
| 760 | default: |
| 761 | break; |
| 762 | } |
| 763 | |
| 764 | if(address >= safe_read_only_address) { |
| 765 | // Mutable or fuzzy region |
| 766 | // concurrent read |
| 767 | pending_context.GetAtomic(hlog.Get(address)); |
| 768 | return OperationStatus::SUCCESS; |
| 769 | } else if(address >= head_address) { |
| 770 | // Immutable region |
| 771 | // single-thread read |
| 772 | pending_context.Get(hlog.Get(address)); |
| 773 | return OperationStatus::SUCCESS; |
| 774 | } else if(address >= begin_address) { |
| 775 | // Record not available in-memory |
| 776 | pending_context.go_async(thread_ctx().phase, thread_ctx().version, address, entry); |
| 777 | return OperationStatus::RECORD_ON_DISK; |
| 778 | } else { |
| 779 | // No record found |
| 780 | return OperationStatus::NOT_FOUND; |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | template <class K, class V, class D> |
| 785 | template <class C> |
| 786 | inline OperationStatus FasterKv<K, V, D>::InternalUpsert(C& pending_context) { |
| 787 | typedef C pending_upsert_context_t; |
| 788 | |
| 789 | if(thread_ctx().phase != Phase::REST) { |
| 790 | HeavyEnter(); |
| 791 | } |
| 792 | |
| 793 | const key_t& key = pending_context.key(); |
| 794 | KeyHash hash = key.GetHash(); |
| 795 | HashBucketEntry expected_entry; |
| 796 | HashBucket* bucket; |
| 797 | AtomicHashBucketEntry* atomic_entry = FindOrCreateEntry(hash, expected_entry, bucket); |
| 798 | |
| 799 | // (Note that address will be Address::kInvalidAddress, if the atomic_entry was created.) |
| 800 | Address address = expected_entry.address(); |
| 801 | Address head_address = hlog.head_address.load(); |
| 802 | Address read_only_address = hlog.read_only_address.load(); |
| 803 | uint64_t latest_record_version = 0; |
| 804 | |
| 805 | if(address >= head_address) { |
| 806 | // Multiple keys may share the same hash. Try to find the most recent record with a matching |
| 807 | // key that we might be able to update in place. |
| 808 | record_t* record = reinterpret_cast<record_t*>(hlog.Get(address)); |
| 809 | latest_record_version = record->header.checkpoint_version; |
| 810 | if(key != record->key()) { |
| 811 | address = TraceBackForKeyMatch(key, record->header.previous_address(), head_address); |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | CheckpointLockGuard lock_guard{ checkpoint_locks_, hash }; |
| 816 | |
| 817 | // The common case |
| 818 | if(thread_ctx().phase == Phase::REST && address >= read_only_address) { |
| 819 | record_t* record = reinterpret_cast<record_t*>(hlog.Get(address)); |
| 820 | if(pending_context.PutAtomic(record)) { |
| 821 | return OperationStatus::SUCCESS; |
| 822 | } else { |
| 823 | // Must retry as RCU. |
| 824 | goto create_record; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | // Acquire necessary locks. |
| 829 | switch(thread_ctx().phase) { |
| 830 | case Phase::PREPARE: |
| 831 | // Working on old version (v). |
| 832 | if(!lock_guard.try_lock_old()) { |
| 833 | pending_context.go_async(thread_ctx().phase, thread_ctx().version, address, expected_entry); |
| 834 | return OperationStatus::CPR_SHIFT_DETECTED; |
| 835 | } else { |
| 836 | if(latest_record_version > thread_ctx().version) { |
| 837 | // CPR shift detected: we are in the "PREPARE" phase, and a record has a version later than |
| 838 | // what we've seen. |
| 839 | pending_context.go_async(thread_ctx().phase, thread_ctx().version, address, |
| 840 | expected_entry); |
| 841 | return OperationStatus::CPR_SHIFT_DETECTED; |
| 842 | } |
| 843 | } |
| 844 | break; |
| 845 | case Phase::IN_PROGRESS: |
| 846 | // All other threads are in phase {PREPARE,IN_PROGRESS,WAIT_PENDING}. |
| 847 | if(latest_record_version < thread_ctx().version) { |
| 848 | // Will create new record or update existing record to new version (v+1). |
| 849 | if(!lock_guard.try_lock_new()) { |
| 850 | pending_context.go_async(thread_ctx().phase, thread_ctx().version, address, |
| 851 | expected_entry); |
| 852 | return OperationStatus::RETRY_LATER; |
| 853 | } else { |
| 854 | // Update to new version (v+1) requires RCU. |
| 855 | goto create_record; |
| 856 | } |
| 857 | } |
| 858 | break; |
| 859 | case Phase::WAIT_PENDING: |
| 860 | // All other threads are in phase {IN_PROGRESS,WAIT_PENDING,WAIT_FLUSH}. |
| 861 | if(latest_record_version < thread_ctx().version) { |
| 862 | if(lock_guard.old_locked()) { |
| 863 | pending_context.go_async(thread_ctx().phase, thread_ctx().version, address, |
| 864 | expected_entry); |
| 865 | return OperationStatus::RETRY_LATER; |
| 866 | } else { |
| 867 | // Update to new version (v+1) requires RCU. |
| 868 | goto create_record; |
| 869 | } |
| 870 | } |
| 871 | break; |
| 872 | case Phase::WAIT_FLUSH: |
| 873 | // All other threads are in phase {WAIT_PENDING,WAIT_FLUSH,PERSISTENCE_CALLBACK}. |
| 874 | if(latest_record_version < thread_ctx().version) { |
| 875 | goto create_record; |
| 876 | } |
| 877 | break; |
| 878 | default: |
| 879 | break; |
| 880 | } |
| 881 | |
| 882 | if(address >= read_only_address) { |
| 883 | // Mutable region; try to update in place. |
| 884 | if(atomic_entry->load() != expected_entry) { |
| 885 | // Some other thread may have RCUed the record before we locked it; try again. |
| 886 | return OperationStatus::RETRY_NOW; |
| 887 | } |
| 888 | // We acquired the necessary locks, so so we can update the record's bucket atomically. |
| 889 | record_t* record = reinterpret_cast<record_t*>(hlog.Get(address)); |
| 890 | if(pending_context.PutAtomic(record)) { |
| 891 | // Host successfully replaced record, atomically. |
| 892 | return OperationStatus::SUCCESS; |
| 893 | } else { |
| 894 | // Must retry as RCU. |
| 895 | goto create_record; |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | // Create a record and attempt RCU. |
| 900 | create_record: |
| 901 | uint32_t record_size = record_t::size(key, pending_context.value_size()); |
| 902 | Address new_address = BlockAllocate(record_size); |
| 903 | record_t* record = reinterpret_cast<record_t*>(hlog.Get(new_address)); |
| 904 | new(record) record_t{ |
| 905 | RecordInfo{ |
| 906 | static_cast<uint16_t>(thread_ctx().version), true, false, false, |
| 907 | expected_entry.address() }, |
| 908 | key }; |
| 909 | pending_context.Put(record); |
| 910 | |
| 911 | HashBucketEntry updated_entry{ new_address, hash.tag(), false }; |
| 912 | |
| 913 | if(atomic_entry->compare_exchange_strong(expected_entry, updated_entry)) { |
| 914 | // Installed the new record in the hash table. |
| 915 | return OperationStatus::SUCCESS; |
| 916 | } else { |
| 917 | // Try again. |
| 918 | record->header.invalid = true; |
| 919 | return InternalUpsert(pending_context); |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | template <class K, class V, class D> |
| 924 | template <class C> |
| 925 | inline OperationStatus FasterKv<K, V, D>::InternalRmw(C& pending_context, bool retrying) { |
| 926 | typedef C pending_rmw_context_t; |
| 927 | |
| 928 | Phase phase = retrying ? pending_context.phase : thread_ctx().phase; |
| 929 | uint32_t version = retrying ? pending_context.version : thread_ctx().version; |
| 930 | |
| 931 | if(phase != Phase::REST) { |
| 932 | HeavyEnter(); |
| 933 | } |
| 934 | |
| 935 | const key_t& key = pending_context.key(); |
| 936 | KeyHash hash = key.GetHash(); |
| 937 | HashBucketEntry expected_entry; |
| 938 | HashBucket* bucket; |
| 939 | AtomicHashBucketEntry* atomic_entry = FindOrCreateEntry(hash, expected_entry, bucket); |
| 940 | |
| 941 | // (Note that address will be Address::kInvalidAddress, if the atomic_entry was created.) |
| 942 | Address address = expected_entry.address(); |
| 943 | Address begin_address = hlog.begin_address.load(); |
| 944 | Address head_address = hlog.head_address.load(); |
| 945 | Address read_only_address = hlog.read_only_address.load(); |
| 946 | Address safe_read_only_address = hlog.safe_read_only_address.load(); |
| 947 | uint64_t latest_record_version = 0; |
| 948 | |
| 949 | if(address >= head_address) { |
| 950 | // Multiple keys may share the same hash. Try to find the most recent record with a matching |
| 951 | // key that we might be able to update in place. |
| 952 | record_t* record = reinterpret_cast<record_t*>(hlog.Get(address)); |
| 953 | latest_record_version = record->header.checkpoint_version; |
| 954 | if(key != record->key()) { |
| 955 | address = TraceBackForKeyMatch(key, record->header.previous_address(), head_address); |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | CheckpointLockGuard lock_guard{ checkpoint_locks_, hash }; |
| 960 | |
| 961 | // The common case. |
| 962 | if(phase == Phase::REST && address >= read_only_address) { |
| 963 | record_t* record = reinterpret_cast<record_t*>(hlog.Get(address)); |
| 964 | if(pending_context.RmwAtomic(record)) { |
| 965 | // In-place RMW succeeded. |
| 966 | return OperationStatus::SUCCESS; |
| 967 | } else { |
| 968 | // Must retry as RCU. |
| 969 | goto create_record; |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | // Acquire necessary locks. |
| 974 | switch(phase) { |
| 975 | case Phase::PREPARE: |
| 976 | // Working on old version (v). |
| 977 | if(!lock_guard.try_lock_old()) { |
| 978 | // If we're retrying the operation, then we already have an old lock, so we'll always |
| 979 | // succeed in obtaining a second. Otherwise, another thread has acquired the new lock, so |
| 980 | // a CPR shift has occurred. |
| 981 | assert(!retrying); |
| 982 | pending_context.go_async(phase, version, address, expected_entry); |
| 983 | return OperationStatus::CPR_SHIFT_DETECTED; |
| 984 | } else { |
| 985 | if(latest_record_version > version) { |
| 986 | // CPR shift detected: we are in the "PREPARE" phase, and a mutable record has a version |
| 987 | // later than what we've seen. |
| 988 | assert(!retrying); |
| 989 | pending_context.go_async(phase, version, address, expected_entry); |
| 990 | return OperationStatus::CPR_SHIFT_DETECTED; |
| 991 | } |
| 992 | } |
| 993 | break; |
| 994 | case Phase::IN_PROGRESS: |
| 995 | // All other threads are in phase {PREPARE,IN_PROGRESS,WAIT_PENDING}. |
| 996 | if(latest_record_version < version) { |
| 997 | // Will create new record or update existing record to new version (v+1). |
| 998 | if(!lock_guard.try_lock_new()) { |
| 999 | if(!retrying) { |
| 1000 | pending_context.go_async(phase, version, address, expected_entry); |
| 1001 | } else { |
| 1002 | pending_context.continue_async(address, expected_entry); |
| 1003 | } |
| 1004 | return OperationStatus::RETRY_LATER; |
| 1005 | } else { |
| 1006 | // Update to new version (v+1) requires RCU. |
| 1007 | goto create_record; |
| 1008 | } |
| 1009 | } |
| 1010 | break; |
| 1011 | case Phase::WAIT_PENDING: |
| 1012 | // All other threads are in phase {IN_PROGRESS,WAIT_PENDING,WAIT_FLUSH}. |
| 1013 | if(latest_record_version < version) { |
| 1014 | if(lock_guard.old_locked()) { |
| 1015 | if(!retrying) { |
| 1016 | pending_context.go_async(phase, version, address, expected_entry); |
| 1017 | } else { |
| 1018 | pending_context.continue_async(address, expected_entry); |
| 1019 | } |
| 1020 | return OperationStatus::RETRY_LATER; |
| 1021 | } else { |
| 1022 | // Update to new version (v+1) requires RCU. |
| 1023 | goto create_record; |
| 1024 | } |
| 1025 | } |
| 1026 | break; |
| 1027 | case Phase::WAIT_FLUSH: |
| 1028 | // All other threads are in phase {WAIT_PENDING,WAIT_FLUSH,PERSISTENCE_CALLBACK}. |
| 1029 | if(latest_record_version < version) { |
| 1030 | goto create_record; |
| 1031 | } |
| 1032 | break; |
| 1033 | default: |
| 1034 | break; |
| 1035 | } |
| 1036 | |
| 1037 | if(address >= read_only_address) { |
| 1038 | // Mutable region. Try to update in place. |
| 1039 | if(atomic_entry->load() != expected_entry) { |
| 1040 | // Some other thread may have RCUed the record before we locked it; try again. |
| 1041 | return OperationStatus::RETRY_NOW; |
| 1042 | } |
| 1043 | // We acquired the necessary locks, so so we can update the record's bucket atomically. |
| 1044 | record_t* record = reinterpret_cast<record_t*>(hlog.Get(address)); |
| 1045 | if(pending_context.RmwAtomic(record)) { |
| 1046 | // In-place RMW succeeded. |
| 1047 | return OperationStatus::SUCCESS; |
| 1048 | } else { |
| 1049 | // Must retry as RCU. |
| 1050 | goto create_record; |
| 1051 | } |
| 1052 | } else if(address >= safe_read_only_address) { |
| 1053 | // Fuzzy Region: Must go pending due to lost-update anomaly |
| 1054 | if(!retrying) { |
| 1055 | pending_context.go_async(phase, version, address, expected_entry); |
| 1056 | } else { |
| 1057 | pending_context.continue_async(address, expected_entry); |
| 1058 | } |
| 1059 | return OperationStatus::RETRY_LATER; |
| 1060 | } else if(address >= head_address) { |
| 1061 | goto create_record; |
| 1062 | } else if(address >= begin_address) { |
| 1063 | // Need to obtain old record from disk. |
| 1064 | if(!retrying) { |
| 1065 | pending_context.go_async(phase, version, address, expected_entry); |
| 1066 | } else { |
| 1067 | pending_context.continue_async(address, expected_entry); |
| 1068 | } |
| 1069 | return OperationStatus::RECORD_ON_DISK; |
| 1070 | } else { |
| 1071 | // Create a new record. |
| 1072 | goto create_record; |
| 1073 | } |
| 1074 | |
| 1075 | // Create a record and attempt RCU. |
| 1076 | create_record: |
| 1077 | uint32_t record_size = record_t::size(key, pending_context.value_size()); |
| 1078 | Address new_address = BlockAllocate(record_size); |
| 1079 | record_t* new_record = reinterpret_cast<record_t*>(hlog.Get(new_address)); |
| 1080 | |
| 1081 | // Allocating a block may have the side effect of advancing the head address. |
| 1082 | head_address = hlog.head_address.load(); |
| 1083 | // Allocating a block may have the side effect of advancing the thread context's version and |
| 1084 | // phase. |
| 1085 | if(!retrying) { |
| 1086 | phase = thread_ctx().phase; |
| 1087 | version = thread_ctx().version; |
| 1088 | } |
| 1089 | |
| 1090 | new(new_record) record_t{ |
| 1091 | RecordInfo{ |
| 1092 | static_cast<uint16_t>(version), true, false, false, |
| 1093 | expected_entry.address() }, |
| 1094 | key }; |
| 1095 | if(address < hlog.begin_address.load()) { |
| 1096 | pending_context.RmwInitial(new_record); |
| 1097 | } else if(address >= head_address) { |
| 1098 | const record_t* old_record = reinterpret_cast<const record_t*>(hlog.Get(address)); |
| 1099 | pending_context.RmwCopy(old_record, new_record); |
| 1100 | } else { |
| 1101 | // The block we allocated for the new record caused the head address to advance beyond |
| 1102 | // the old record. Need to obtain the old record from disk. |
| 1103 | new_record->header.invalid = true; |
| 1104 | if(!retrying) { |
| 1105 | pending_context.go_async(phase, version, address, expected_entry); |
| 1106 | } else { |
| 1107 | pending_context.continue_async(address, expected_entry); |
| 1108 | } |
| 1109 | return OperationStatus::RECORD_ON_DISK; |
| 1110 | } |
| 1111 | |
| 1112 | HashBucketEntry updated_entry{ new_address, hash.tag(), false }; |
| 1113 | if(atomic_entry->compare_exchange_strong(expected_entry, updated_entry)) { |
| 1114 | return OperationStatus::SUCCESS; |
| 1115 | } else { |
| 1116 | // CAS failed; try again. |
| 1117 | new_record->header.invalid = true; |
| 1118 | if(!retrying) { |
| 1119 | pending_context.go_async(phase, version, address, expected_entry); |
| 1120 | } else { |
| 1121 | pending_context.continue_async(address, expected_entry); |
| 1122 | } |
| 1123 | return OperationStatus::RETRY_NOW; |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | template <class K, class V, class D> |
| 1128 | inline OperationStatus FasterKv<K, V, D>::InternalRetryPendingRmw( |
| 1129 | async_pending_rmw_context_t& pending_context) { |
| 1130 | OperationStatus status = InternalRmw(pending_context, true); |
| 1131 | if(status == OperationStatus::SUCCESS && pending_context.version != thread_ctx().version) { |
| 1132 | status = OperationStatus::SUCCESS_UNMARK; |
| 1133 | } |
| 1134 | return status; |
| 1135 | } |
| 1136 | |
| 1137 | template <class K, class V, class D> |
| 1138 | inline Address FasterKv<K, V, D>::TraceBackForKeyMatch(const key_t& key, Address from_address, |
| 1139 | Address min_offset) const { |
| 1140 | while(from_address >= min_offset) { |
| 1141 | const record_t* record = reinterpret_cast<const record_t*>(hlog.Get(from_address)); |
| 1142 | if(key == record->key()) { |
| 1143 | return from_address; |
| 1144 | } else { |
| 1145 | from_address = record->header.previous_address(); |
| 1146 | continue; |
| 1147 | } |
| 1148 | } |
| 1149 | return from_address; |
| 1150 | } |
| 1151 | |
| 1152 | template <class K, class V, class D> |
| 1153 | inline Status FasterKv<K, V, D>::HandleOperationStatus(ExecutionContext& ctx, |
| 1154 | pending_context_t& pending_context, OperationStatus internal_status, bool& async) { |
| 1155 | async = false; |
| 1156 | switch(internal_status) { |
| 1157 | case OperationStatus::RETRY_NOW: |
| 1158 | switch(pending_context.type) { |
| 1159 | case OperationType::Read: { |
| 1160 | async_pending_read_context_t& read_context = |
| 1161 | *static_cast<async_pending_read_context_t*>(&pending_context); |
| 1162 | internal_status = InternalRead(read_context); |
| 1163 | break; |
| 1164 | } |
| 1165 | case OperationType::Upsert: { |
| 1166 | async_pending_upsert_context_t& upsert_context = |
| 1167 | *static_cast<async_pending_upsert_context_t*>(&pending_context); |
| 1168 | internal_status = InternalUpsert(upsert_context); |
| 1169 | break; |
| 1170 | } |
| 1171 | case OperationType::RMW: { |
| 1172 | async_pending_rmw_context_t& rmw_context = |
| 1173 | *static_cast<async_pending_rmw_context_t*>(&pending_context); |
| 1174 | internal_status = InternalRmw(rmw_context, false); |
| 1175 | break; |
| 1176 | } |
| 1177 | } |
| 1178 | |
| 1179 | if(internal_status == OperationStatus::SUCCESS) { |
| 1180 | return Status::Ok; |
| 1181 | } else { |
| 1182 | return HandleOperationStatus(ctx, pending_context, internal_status, async); |
| 1183 | } |
| 1184 | case OperationStatus::RETRY_LATER: |
| 1185 | if(thread_ctx().phase == Phase::PREPARE) { |
| 1186 | assert(pending_context.type == OperationType::RMW); |
| 1187 | // Can I be marking an operation again and again? |
| 1188 | if(!checkpoint_locks_.get_lock(pending_context.key().GetHash()).try_lock_old()) { |
| 1189 | return PivotAndRetry(ctx, pending_context, async); |
| 1190 | } |
| 1191 | } |
| 1192 | return RetryLater(ctx, pending_context, async); |
| 1193 | case OperationStatus::RECORD_ON_DISK: |
| 1194 | if(thread_ctx().phase == Phase::PREPARE) { |
| 1195 | assert(pending_context.type == OperationType::Read || |
| 1196 | pending_context.type == OperationType::RMW); |
| 1197 | // Can I be marking an operation again and again? |
| 1198 | if(!checkpoint_locks_.get_lock(pending_context.key().GetHash()).try_lock_old()) { |
| 1199 | return PivotAndRetry(ctx, pending_context, async); |
| 1200 | } |
| 1201 | } |
| 1202 | return IssueAsyncIoRequest(ctx, pending_context, async); |
| 1203 | case OperationStatus::SUCCESS_UNMARK: |
| 1204 | checkpoint_locks_.get_lock(pending_context.key().GetHash()).unlock_old(); |
| 1205 | return Status::Ok; |
| 1206 | case OperationStatus::NOT_FOUND_UNMARK: |
| 1207 | checkpoint_locks_.get_lock(pending_context.key().GetHash()).unlock_old(); |
| 1208 | return Status::NotFound; |
| 1209 | case OperationStatus::CPR_SHIFT_DETECTED: |
| 1210 | return PivotAndRetry(ctx, pending_context, async); |
| 1211 | } |
| 1212 | // not reached |
| 1213 | assert(false); |
| 1214 | return Status::Corruption; |
| 1215 | } |
| 1216 | |
| 1217 | template <class K, class V, class D> |
| 1218 | inline Status FasterKv<K, V, D>::PivotAndRetry(ExecutionContext& ctx, |
| 1219 | pending_context_t& pending_context, bool& async) { |
| 1220 | // Some invariants |
| 1221 | assert(ctx.version == thread_ctx().version); |
| 1222 | assert(thread_ctx().phase == Phase::PREPARE); |
| 1223 | Refresh(); |
| 1224 | // thread must have moved to IN_PROGRESS phase |
| 1225 | assert(thread_ctx().version == ctx.version + 1); |
| 1226 | // retry with new contexts |
| 1227 | pending_context.phase = thread_ctx().phase; |
| 1228 | pending_context.version = thread_ctx().version; |
| 1229 | return HandleOperationStatus(thread_ctx(), pending_context, OperationStatus::RETRY_NOW, async); |
| 1230 | } |
| 1231 | |
| 1232 | template <class K, class V, class D> |
| 1233 | inline Status FasterKv<K, V, D>::RetryLater(ExecutionContext& ctx, |
| 1234 | pending_context_t& pending_context, bool& async) { |
| 1235 | IAsyncContext* context_copy; |
| 1236 | Status result = pending_context.DeepCopy(context_copy); |
| 1237 | if(result == Status::Ok) { |
| 1238 | async = true; |
| 1239 | ctx.retry_requests.push_back(context_copy); |
| 1240 | return Status::Pending; |
| 1241 | } else { |
| 1242 | async = false; |
| 1243 | return result; |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | template <class K, class V, class D> |
| 1248 | inline constexpr uint32_t FasterKv<K, V, D>::MinIoRequestSize() const { |
| 1249 | return static_cast<uint32_t>( |
| 1250 | sizeof(value_t) + pad_alignment(record_t::min_disk_key_size(), |
| 1251 | alignof(value_t))); |
| 1252 | } |
| 1253 | |
| 1254 | template <class K, class V, class D> |
| 1255 | inline Status FasterKv<K, V, D>::IssueAsyncIoRequest(ExecutionContext& ctx, |
| 1256 | pending_context_t& pending_context, bool& async) { |
| 1257 | // Issue asynchronous I/O request |
| 1258 | uint64_t io_id = thread_ctx().io_id++; |
| 1259 | thread_ctx().pending_ios.insert({ io_id, pending_context.key().GetHash() }); |
| 1260 | async = true; |
| 1261 | AsyncIOContext io_request{ this, pending_context.address, &pending_context, |
| 1262 | &thread_ctx().io_responses, io_id }; |
| 1263 | AsyncGetFromDisk(pending_context.address, MinIoRequestSize(), AsyncGetFromDiskCallback, |
| 1264 | io_request); |
| 1265 | return Status::Pending; |
| 1266 | } |
| 1267 | |
| 1268 | template <class K, class V, class D> |
| 1269 | inline Address FasterKv<K, V, D>::BlockAllocate(uint32_t record_size) { |
| 1270 | uint32_t page; |
| 1271 | Address retval = hlog.Allocate(record_size, page); |
| 1272 | while(retval < hlog.read_only_address.load()) { |
| 1273 | Refresh(); |
| 1274 | // Don't overrun the hlog's tail offset. |
| 1275 | bool page_closed = (retval == Address::kInvalidAddress); |
| 1276 | while(page_closed) { |
| 1277 | page_closed = !hlog.NewPage(page); |
| 1278 | Refresh(); |
| 1279 | } |
| 1280 | retval = hlog.Allocate(record_size, page); |
| 1281 | } |
| 1282 | return retval; |
| 1283 | } |
| 1284 | |
| 1285 | template <class K, class V, class D> |
| 1286 | void FasterKv<K, V, D>::AsyncGetFromDisk(Address address, uint32_t num_records, |
| 1287 | AsyncIOCallback callback, AsyncIOContext& context) { |
| 1288 | if(epoch_.IsProtected()) { |
| 1289 | /// Throttling. (Thread pool, unprotected threads are not throttled.) |
| 1290 | while(num_pending_ios.load() > 120) { |
| 1291 | disk.TryComplete(); |
| 1292 | std::this_thread::yield(); |
| 1293 | epoch_.ProtectAndDrain(); |
| 1294 | } |
| 1295 | } |
| 1296 | ++num_pending_ios; |
| 1297 | hlog.AsyncGetFromDisk(address, num_records, callback, context); |
| 1298 | } |
| 1299 | |
| 1300 | template <class K, class V, class D> |
| 1301 | void FasterKv<K, V, D>::AsyncGetFromDiskCallback(IAsyncContext* ctxt, Status result, |
| 1302 | size_t bytes_transferred) { |
| 1303 | CallbackContext<AsyncIOContext> context{ ctxt }; |
| 1304 | faster_t* faster = reinterpret_cast<faster_t*>(context->faster); |
| 1305 | /// Context stack is: AsyncIOContext, PendingContext. |
| 1306 | pending_context_t* pending_context = static_cast<pending_context_t*>(context->caller_context); |
| 1307 | |
| 1308 | /// This I/O is finished. |
| 1309 | --faster->num_pending_ios; |
| 1310 | /// Always "goes async": context is freed by the issuing thread, when processing thread I/O |
| 1311 | /// responses. |
| 1312 | context.async = true; |
| 1313 | |
| 1314 | pending_context->result = result; |
| 1315 | if(result == Status::Ok) { |
| 1316 | record_t* record = reinterpret_cast<record_t*>(context->record.GetValidPointer()); |
| 1317 | // Size of the record we read from disk (might not have read the entire record, yet). |
| 1318 | size_t record_size = context->record.available_bytes; |
| 1319 | if(record->min_disk_key_size() > record_size) { |
| 1320 | // Haven't read the full record in yet; I/O is not complete! |
| 1321 | faster->AsyncGetFromDisk(context->address, record->min_disk_key_size(), |
| 1322 | AsyncGetFromDiskCallback, *context.get()); |
| 1323 | context.async = true; |
| 1324 | } else if(record->min_disk_value_size() > record_size) { |
| 1325 | // Haven't read the full record in yet; I/O is not complete! |
| 1326 | faster->AsyncGetFromDisk(context->address, record->min_disk_value_size(), |
| 1327 | AsyncGetFromDiskCallback, *context.get()); |
| 1328 | context.async = true; |
| 1329 | } else if(record->disk_size() > record_size) { |
| 1330 | // Haven't read the full record in yet; I/O is not complete! |
| 1331 | faster->AsyncGetFromDisk(context->address, record->disk_size(), |
| 1332 | AsyncGetFromDiskCallback, *context.get()); |
| 1333 | context.async = true; |
| 1334 | } else if(pending_context->key() == record->key()) { |
| 1335 | //The keys are same, so I/O is complete |
| 1336 | context->thread_io_responses->push(context.get()); |
| 1337 | } else { |
| 1338 | //keys are not same. I/O is not complete |
| 1339 | context->address = record->header.previous_address(); |
| 1340 | if(context->address >= faster->hlog.begin_address.load()) { |
| 1341 | faster->AsyncGetFromDisk(context->address, faster->MinIoRequestSize(), |
| 1342 | AsyncGetFromDiskCallback, *context.get()); |
| 1343 | context.async = true; |
| 1344 | } else { |
| 1345 | // Record not found, so I/O is complete. |
| 1346 | context->thread_io_responses->push(context.get()); |
| 1347 | } |
| 1348 | } |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | template <class K, class V, class D> |
| 1353 | OperationStatus FasterKv<K, V, D>::InternalContinuePendingRead(ExecutionContext& context, |
| 1354 | AsyncIOContext& io_context) { |
| 1355 | if(io_context.address >= hlog.begin_address.load()) { |
| 1356 | async_pending_read_context_t* pending_context = static_cast<async_pending_read_context_t*>( |
| 1357 | io_context.caller_context); |
| 1358 | record_t* record = reinterpret_cast<record_t*>(io_context.record.GetValidPointer()); |
| 1359 | pending_context->Get(record); |
| 1360 | assert(!kCopyReadsToTail); |
| 1361 | return (thread_ctx().version > context.version) ? OperationStatus::SUCCESS_UNMARK : |
| 1362 | OperationStatus::SUCCESS; |
| 1363 | } else { |
| 1364 | return (thread_ctx().version > context.version) ? OperationStatus::NOT_FOUND_UNMARK : |
| 1365 | OperationStatus::NOT_FOUND; |
| 1366 | } |
| 1367 | } |
| 1368 | |
| 1369 | template <class K, class V, class D> |
| 1370 | OperationStatus FasterKv<K, V, D>::InternalContinuePendingRmw(ExecutionContext& context, |
| 1371 | AsyncIOContext& io_context) { |
| 1372 | async_pending_rmw_context_t* pending_context = static_cast<async_pending_rmw_context_t*>( |
| 1373 | io_context.caller_context); |
| 1374 | |
| 1375 | // Find a hash bucket entry to store the updated value in. |
| 1376 | const key_t& key = pending_context->key(); |
| 1377 | KeyHash hash = key.GetHash(); |
| 1378 | HashBucketEntry expected_entry; |
| 1379 | HashBucket* bucket; |
| 1380 | AtomicHashBucketEntry* atomic_entry = FindOrCreateEntry(hash, expected_entry, bucket); |
| 1381 | |
| 1382 | // (Note that address will be Address::kInvalidAddress, if the atomic_entry was created.) |
| 1383 | Address address = expected_entry.address(); |
| 1384 | Address head_address = hlog.head_address.load(); |
| 1385 | |
| 1386 | // Make sure that atomic_entry is OK to update. |
| 1387 | if(address >= head_address) { |
| 1388 | record_t* record = reinterpret_cast<record_t*>(hlog.Get(address)); |
| 1389 | if(key != record->key()) { |
| 1390 | address = TraceBackForKeyMatch(key, record->header.previous_address(), head_address); |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | if(address > pending_context->entry.address()) { |
| 1395 | // We can't trace the current hash bucket entry back to the record we read. |
| 1396 | pending_context->continue_async(address, expected_entry); |
| 1397 | return OperationStatus::RETRY_NOW; |
| 1398 | } |
| 1399 | assert(address < hlog.begin_address.load() || address == pending_context->entry.address()); |
| 1400 | |
| 1401 | // We have to do copy-on-write/RCU and write the updated value to the tail of the log. |
| 1402 | uint32_t record_size = record_t::size(key, pending_context->value_size()); |
| 1403 | Address new_address = BlockAllocate(record_size); |
| 1404 | record_t* new_record = reinterpret_cast<record_t*>(hlog.Get(new_address)); |
| 1405 | |
| 1406 | new(new_record) record_t{ |
| 1407 | RecordInfo{ |
| 1408 | static_cast<uint16_t>(context.version), true, false, false, |
| 1409 | expected_entry.address() }, |
| 1410 | key }; |
| 1411 | if(io_context.address < hlog.begin_address.load()) { |
| 1412 | // The on-disk trace back failed to find a key match. |
| 1413 | pending_context->RmwInitial(new_record); |
| 1414 | } else { |
| 1415 | // The record we read from disk. |
| 1416 | const record_t* disk_record = reinterpret_cast<const record_t*>( |
| 1417 | io_context.record.GetValidPointer()); |
| 1418 | pending_context->RmwCopy(disk_record, new_record); |
| 1419 | } |
| 1420 | |
| 1421 | HashBucketEntry updated_entry{ new_address, hash.tag(), false }; |
| 1422 | if(atomic_entry->compare_exchange_strong(expected_entry, updated_entry)) { |
| 1423 | assert(thread_ctx().version >= context.version); |
| 1424 | return (thread_ctx().version == context.version) ? OperationStatus::SUCCESS : |
| 1425 | OperationStatus::SUCCESS_UNMARK; |
| 1426 | } else { |
| 1427 | // CAS failed; try again. |
| 1428 | new_record->header.invalid = true; |
| 1429 | pending_context->continue_async(address, expected_entry); |
| 1430 | return OperationStatus::RETRY_NOW; |
| 1431 | } |
| 1432 | } |
| 1433 | |
| 1434 | template <class K, class V, class D> |
| 1435 | void FasterKv<K, V, D>::InitializeCheckpointLocks() { |
| 1436 | uint32_t table_version = resize_info_.version; |
| 1437 | uint64_t size = state_[table_version].size(); |
| 1438 | checkpoint_locks_.Initialize(size); |
| 1439 | } |
| 1440 | |
| 1441 | template <class K, class V, class D> |
| 1442 | Status FasterKv<K, V, D>::WriteIndexMetadata() { |
| 1443 | std::string filename = disk.index_checkpoint_path(checkpoint_.index_token) + "info.dat" ; |
| 1444 | // (This code will need to be refactored into the disk_t interface, if we want to support |
| 1445 | // unformatted disks.) |
| 1446 | std::FILE* file = std::fopen(filename.c_str(), "wb" ); |
| 1447 | if(!file) { |
| 1448 | return Status::IOError; |
| 1449 | } |
| 1450 | if(std::fwrite(&checkpoint_.index_metadata, sizeof(checkpoint_.index_metadata), 1, file) != 1) { |
| 1451 | std::fclose(file); |
| 1452 | return Status::IOError; |
| 1453 | } |
| 1454 | if(std::fclose(file) != 0) { |
| 1455 | return Status::IOError; |
| 1456 | } |
| 1457 | return Status::Ok; |
| 1458 | } |
| 1459 | |
| 1460 | template <class K, class V, class D> |
| 1461 | Status FasterKv<K, V, D>::ReadIndexMetadata(const Guid& token) { |
| 1462 | std::string filename = disk.index_checkpoint_path(token) + "info.dat" ; |
| 1463 | // (This code will need to be refactored into the disk_t interface, if we want to support |
| 1464 | // unformatted disks.) |
| 1465 | std::FILE* file = std::fopen(filename.c_str(), "rb" ); |
| 1466 | if(!file) { |
| 1467 | return Status::IOError; |
| 1468 | } |
| 1469 | if(std::fread(&checkpoint_.index_metadata, sizeof(checkpoint_.index_metadata), 1, file) != 1) { |
| 1470 | std::fclose(file); |
| 1471 | return Status::IOError; |
| 1472 | } |
| 1473 | if(std::fclose(file) != 0) { |
| 1474 | return Status::IOError; |
| 1475 | } |
| 1476 | return Status::Ok; |
| 1477 | } |
| 1478 | |
| 1479 | template <class K, class V, class D> |
| 1480 | Status FasterKv<K, V, D>::WriteCprMetadata() { |
| 1481 | std::string filename = disk.cpr_checkpoint_path(checkpoint_.hybrid_log_token) + "info.dat" ; |
| 1482 | // (This code will need to be refactored into the disk_t interface, if we want to support |
| 1483 | // unformatted disks.) |
| 1484 | std::FILE* file = std::fopen(filename.c_str(), "wb" ); |
| 1485 | if(!file) { |
| 1486 | return Status::IOError; |
| 1487 | } |
| 1488 | if(std::fwrite(&checkpoint_.log_metadata, sizeof(checkpoint_.log_metadata), 1, file) != 1) { |
| 1489 | std::fclose(file); |
| 1490 | return Status::IOError; |
| 1491 | } |
| 1492 | if(std::fclose(file) != 0) { |
| 1493 | return Status::IOError; |
| 1494 | } |
| 1495 | return Status::Ok; |
| 1496 | } |
| 1497 | |
| 1498 | template <class K, class V, class D> |
| 1499 | Status FasterKv<K, V, D>::ReadCprMetadata(const Guid& token) { |
| 1500 | std::string filename = disk.cpr_checkpoint_path(token) + "info.dat" ; |
| 1501 | // (This code will need to be refactored into the disk_t interface, if we want to support |
| 1502 | // unformatted disks.) |
| 1503 | std::FILE* file = std::fopen(filename.c_str(), "rb" ); |
| 1504 | if(!file) { |
| 1505 | return Status::IOError; |
| 1506 | } |
| 1507 | if(std::fread(&checkpoint_.log_metadata, sizeof(checkpoint_.log_metadata), 1, file) != 1) { |
| 1508 | std::fclose(file); |
| 1509 | return Status::IOError; |
| 1510 | } |
| 1511 | if(std::fclose(file) != 0) { |
| 1512 | return Status::IOError; |
| 1513 | } |
| 1514 | return Status::Ok; |
| 1515 | } |
| 1516 | |
| 1517 | template <class K, class V, class D> |
| 1518 | Status FasterKv<K, V, D>::WriteCprContext() { |
| 1519 | std::string filename = disk.cpr_checkpoint_path(checkpoint_.hybrid_log_token); |
| 1520 | const Guid& guid = prev_thread_ctx().guid; |
| 1521 | filename += guid.ToString(); |
| 1522 | filename += ".dat" ; |
| 1523 | // (This code will need to be refactored into the disk_t interface, if we want to support |
| 1524 | // unformatted disks.) |
| 1525 | std::FILE* file = std::fopen(filename.c_str(), "wb" ); |
| 1526 | if(!file) { |
| 1527 | return Status::IOError; |
| 1528 | } |
| 1529 | if(std::fwrite(static_cast<PersistentExecContext*>(&prev_thread_ctx()), |
| 1530 | sizeof(PersistentExecContext), 1, file) != 1) { |
| 1531 | std::fclose(file); |
| 1532 | return Status::IOError; |
| 1533 | } |
| 1534 | if(std::fclose(file) != 0) { |
| 1535 | return Status::IOError; |
| 1536 | } |
| 1537 | return Status::Ok; |
| 1538 | } |
| 1539 | |
| 1540 | template <class K, class V, class D> |
| 1541 | Status FasterKv<K, V, D>::ReadCprContexts(const Guid& token, const Guid* guids) { |
| 1542 | for(size_t idx = 0; idx < Thread::kMaxNumThreads; ++idx) { |
| 1543 | const Guid& guid = guids[idx]; |
| 1544 | if(guid == Guid{}) { |
| 1545 | continue; |
| 1546 | } |
| 1547 | std::string filename = disk.cpr_checkpoint_path(token); |
| 1548 | filename += guid.ToString(); |
| 1549 | filename += ".dat" ; |
| 1550 | // (This code will need to be refactored into the disk_t interface, if we want to support |
| 1551 | // unformatted disks.) |
| 1552 | std::FILE* file = std::fopen(filename.c_str(), "rb" ); |
| 1553 | if(!file) { |
| 1554 | return Status::IOError; |
| 1555 | } |
| 1556 | PersistentExecContext context{}; |
| 1557 | if(std::fread(&context, sizeof(PersistentExecContext), 1, file) != 1) { |
| 1558 | std::fclose(file); |
| 1559 | return Status::IOError; |
| 1560 | } |
| 1561 | if(std::fclose(file) != 0) { |
| 1562 | return Status::IOError; |
| 1563 | } |
| 1564 | auto result = checkpoint_.continue_tokens.insert({ context.guid, context.serial_num }); |
| 1565 | assert(result.second); |
| 1566 | } |
| 1567 | if(checkpoint_.continue_tokens.size() != checkpoint_.log_metadata.num_threads) { |
| 1568 | return Status::Corruption; |
| 1569 | } else { |
| 1570 | return Status::Ok; |
| 1571 | } |
| 1572 | } |
| 1573 | |
| 1574 | template <class K, class V, class D> |
| 1575 | Status FasterKv<K, V, D>::CheckpointFuzzyIndex() { |
| 1576 | uint32_t hash_table_version = resize_info_.version; |
| 1577 | // Checkpoint the main hash table. |
| 1578 | file_t ht_file = disk.NewFile(disk.relative_index_checkpoint_path(checkpoint_.index_token) + |
| 1579 | "ht.dat" ); |
| 1580 | RETURN_NOT_OK(ht_file.Open(&disk.handler())); |
| 1581 | RETURN_NOT_OK(state_[hash_table_version].Checkpoint(disk, std::move(ht_file), |
| 1582 | checkpoint_.index_metadata.num_ht_bytes)); |
| 1583 | // Checkpoint the hash table's overflow buckets. |
| 1584 | file_t ofb_file = disk.NewFile(disk.relative_index_checkpoint_path(checkpoint_.index_token) + |
| 1585 | "ofb.dat" ); |
| 1586 | RETURN_NOT_OK(ofb_file.Open(&disk.handler())); |
| 1587 | RETURN_NOT_OK(overflow_buckets_allocator_[hash_table_version].Checkpoint(disk, |
| 1588 | std::move(ofb_file), checkpoint_.index_metadata.num_ofb_bytes)); |
| 1589 | checkpoint_.index_checkpoint_started = true; |
| 1590 | return Status::Ok; |
| 1591 | } |
| 1592 | |
| 1593 | template <class K, class V, class D> |
| 1594 | Status FasterKv<K, V, D>::CheckpointFuzzyIndexComplete() { |
| 1595 | if(!checkpoint_.index_checkpoint_started) { |
| 1596 | return Status::Pending; |
| 1597 | } |
| 1598 | uint32_t hash_table_version = resize_info_.version; |
| 1599 | Status result = state_[hash_table_version].CheckpointComplete(false); |
| 1600 | if(result == Status::Pending) { |
| 1601 | return Status::Pending; |
| 1602 | } else if(result != Status::Ok) { |
| 1603 | return result; |
| 1604 | } else { |
| 1605 | return overflow_buckets_allocator_[hash_table_version].CheckpointComplete(false); |
| 1606 | } |
| 1607 | } |
| 1608 | |
| 1609 | template <class K, class V, class D> |
| 1610 | Status FasterKv<K, V, D>::RecoverFuzzyIndex() { |
| 1611 | uint8_t hash_table_version = resize_info_.version; |
| 1612 | assert(state_[hash_table_version].size() == checkpoint_.index_metadata.table_size); |
| 1613 | |
| 1614 | // Recover the main hash table. |
| 1615 | file_t ht_file = disk.NewFile(disk.relative_index_checkpoint_path(checkpoint_.index_token) + |
| 1616 | "ht.dat" ); |
| 1617 | RETURN_NOT_OK(ht_file.Open(&disk.handler())); |
| 1618 | RETURN_NOT_OK(state_[hash_table_version].Recover(disk, std::move(ht_file), |
| 1619 | checkpoint_.index_metadata.num_ht_bytes)); |
| 1620 | // Recover the hash table's overflow buckets. |
| 1621 | file_t ofb_file = disk.NewFile(disk.relative_index_checkpoint_path(checkpoint_.index_token) + |
| 1622 | "ofb.dat" ); |
| 1623 | RETURN_NOT_OK(ofb_file.Open(&disk.handler())); |
| 1624 | return overflow_buckets_allocator_[hash_table_version].Recover(disk, std::move(ofb_file), |
| 1625 | checkpoint_.index_metadata.num_ofb_bytes, checkpoint_.index_metadata.ofb_count); |
| 1626 | } |
| 1627 | |
| 1628 | template <class K, class V, class D> |
| 1629 | Status FasterKv<K, V, D>::RecoverFuzzyIndexComplete(bool wait) { |
| 1630 | uint8_t hash_table_version = resize_info_.version; |
| 1631 | Status result = state_[hash_table_version].RecoverComplete(true); |
| 1632 | if(result != Status::Ok) { |
| 1633 | return result; |
| 1634 | } |
| 1635 | result = overflow_buckets_allocator_[hash_table_version].RecoverComplete(true); |
| 1636 | if(result != Status::Ok) { |
| 1637 | return result; |
| 1638 | } |
| 1639 | |
| 1640 | // Clear all tentative entries. |
| 1641 | for(uint64_t bucket_idx = 0; bucket_idx < state_[hash_table_version].size(); ++bucket_idx) { |
| 1642 | HashBucket* bucket = &state_[hash_table_version].bucket(bucket_idx); |
| 1643 | while(true) { |
| 1644 | for(uint32_t entry_idx = 0; entry_idx < HashBucket::kNumEntries; ++entry_idx) { |
| 1645 | if(bucket->entries[entry_idx].load().tentative()) { |
| 1646 | bucket->entries[entry_idx].store(HashBucketEntry::kInvalidEntry); |
| 1647 | } |
| 1648 | } |
| 1649 | // Go to next bucket in the chain |
| 1650 | HashBucketOverflowEntry entry = bucket->overflow_entry.load(); |
| 1651 | if(entry.unused()) { |
| 1652 | // No more buckets in the chain. |
| 1653 | break; |
| 1654 | } |
| 1655 | bucket = &overflow_buckets_allocator_[hash_table_version].Get(entry.address()); |
| 1656 | assert(reinterpret_cast<size_t>(bucket) % Constants::kCacheLineBytes == 0); |
| 1657 | } |
| 1658 | } |
| 1659 | return Status::Ok; |
| 1660 | } |
| 1661 | |
| 1662 | template <class K, class V, class D> |
| 1663 | Status FasterKv<K, V, D>::RecoverHybridLog() { |
| 1664 | class Context : public IAsyncContext { |
| 1665 | public: |
| 1666 | Context(hlog_t& hlog_, uint32_t page_, RecoveryStatus& recovery_status_) |
| 1667 | : hlog{ &hlog_} |
| 1668 | , page{ page_ } |
| 1669 | , recovery_status{ &recovery_status_ } { |
| 1670 | } |
| 1671 | /// The deep-copy constructor |
| 1672 | Context(const Context& other) |
| 1673 | : hlog{ other.hlog } |
| 1674 | , page{ other.page } |
| 1675 | , recovery_status{ other.recovery_status } { |
| 1676 | } |
| 1677 | protected: |
| 1678 | Status DeepCopy_Internal(IAsyncContext*& context_copy) final { |
| 1679 | return IAsyncContext::DeepCopy_Internal(*this, context_copy); |
| 1680 | } |
| 1681 | public: |
| 1682 | hlog_t* hlog; |
| 1683 | uint32_t page; |
| 1684 | RecoveryStatus* recovery_status; |
| 1685 | }; |
| 1686 | |
| 1687 | auto callback = [](IAsyncContext* ctxt, Status result) { |
| 1688 | CallbackContext<Context> context{ ctxt }; |
| 1689 | result = context->hlog->AsyncReadPagesFromLog(context->page, 1, *context->recovery_status); |
| 1690 | }; |
| 1691 | |
| 1692 | Address from_address = checkpoint_.index_metadata.checkpoint_start_address; |
| 1693 | Address to_address = checkpoint_.log_metadata.final_address; |
| 1694 | |
| 1695 | uint32_t start_page = from_address.page(); |
| 1696 | uint32_t end_page = to_address.offset() > 0 ? to_address.page() + 1 : to_address.page(); |
| 1697 | uint32_t capacity = hlog.buffer_size(); |
| 1698 | RecoveryStatus recovery_status{ start_page, end_page }; |
| 1699 | // Initially issue read request for all pages that can be held in memory |
| 1700 | uint32_t total_pages_to_read = end_page - start_page; |
| 1701 | uint32_t pages_to_read_first = std::min(capacity, total_pages_to_read); |
| 1702 | RETURN_NOT_OK(hlog.AsyncReadPagesFromLog(start_page, pages_to_read_first, recovery_status)); |
| 1703 | |
| 1704 | for(uint32_t page = start_page; page < end_page; ++page) { |
| 1705 | while(recovery_status.page_status(page) != PageRecoveryStatus::ReadDone) { |
| 1706 | disk.TryComplete(); |
| 1707 | std::this_thread::sleep_for(10ms); |
| 1708 | } |
| 1709 | |
| 1710 | // handle start and end at non-page boundaries |
| 1711 | RETURN_NOT_OK(RecoverFromPage(page == start_page ? from_address : Address{ page, 0 }, |
| 1712 | page + 1 == end_page ? to_address : |
| 1713 | Address{ page, Address::kMaxOffset })); |
| 1714 | |
| 1715 | // OS thread flushes current page and issues a read request if necessary |
| 1716 | if(page + capacity < end_page) { |
| 1717 | Context context{ hlog, page + capacity, recovery_status }; |
| 1718 | RETURN_NOT_OK(hlog.AsyncFlushPage(page, recovery_status, callback, &context)); |
| 1719 | } else { |
| 1720 | RETURN_NOT_OK(hlog.AsyncFlushPage(page, recovery_status, nullptr, nullptr)); |
| 1721 | } |
| 1722 | } |
| 1723 | // Wait until all pages have been flushed |
| 1724 | for(uint32_t page = start_page; page < end_page; ++page) { |
| 1725 | while(recovery_status.page_status(page) != PageRecoveryStatus::FlushDone) { |
| 1726 | disk.TryComplete(); |
| 1727 | std::this_thread::sleep_for(10ms); |
| 1728 | } |
| 1729 | } |
| 1730 | return Status::Ok; |
| 1731 | } |
| 1732 | |
| 1733 | template <class K, class V, class D> |
| 1734 | Status FasterKv<K, V, D>::RecoverHybridLogFromSnapshotFile() { |
| 1735 | class Context : public IAsyncContext { |
| 1736 | public: |
| 1737 | Context(hlog_t& hlog_, file_t& file_, uint32_t file_start_page_, uint32_t page_, |
| 1738 | RecoveryStatus& recovery_status_) |
| 1739 | : hlog{ &hlog_ } |
| 1740 | , file{ &file_ } |
| 1741 | , file_start_page{ file_start_page_ } |
| 1742 | , page{ page_ } |
| 1743 | , recovery_status{ &recovery_status_ } { |
| 1744 | } |
| 1745 | /// The deep-copy constructor |
| 1746 | Context(const Context& other) |
| 1747 | : hlog{ other.hlog } |
| 1748 | , file{ other.file } |
| 1749 | , file_start_page{ other.file_start_page } |
| 1750 | , page{ other.page } |
| 1751 | , recovery_status{ other.recovery_status } { |
| 1752 | } |
| 1753 | protected: |
| 1754 | Status DeepCopy_Internal(IAsyncContext*& context_copy) final { |
| 1755 | return IAsyncContext::DeepCopy_Internal(*this, context_copy); |
| 1756 | } |
| 1757 | public: |
| 1758 | hlog_t* hlog; |
| 1759 | file_t* file; |
| 1760 | uint32_t file_start_page; |
| 1761 | uint32_t page; |
| 1762 | RecoveryStatus* recovery_status; |
| 1763 | }; |
| 1764 | |
| 1765 | auto callback = [](IAsyncContext* ctxt, Status result) { |
| 1766 | CallbackContext<Context> context{ ctxt }; |
| 1767 | result = context->hlog->AsyncReadPagesFromSnapshot(*context->file, |
| 1768 | context->file_start_page, context->page, 1, *context->recovery_status); |
| 1769 | }; |
| 1770 | |
| 1771 | Address file_start_address = checkpoint_.log_metadata.flushed_address; |
| 1772 | Address from_address = checkpoint_.index_metadata.checkpoint_start_address; |
| 1773 | Address to_address = checkpoint_.log_metadata.final_address; |
| 1774 | |
| 1775 | uint32_t start_page = file_start_address.page(); |
| 1776 | uint32_t end_page = to_address.offset() > 0 ? to_address.page() + 1 : to_address.page(); |
| 1777 | uint32_t capacity = hlog.buffer_size(); |
| 1778 | RecoveryStatus recovery_status{ start_page, end_page }; |
| 1779 | checkpoint_.snapshot_file = disk.NewFile(disk.relative_cpr_checkpoint_path( |
| 1780 | checkpoint_.hybrid_log_token) + "snapshot.dat" ); |
| 1781 | RETURN_NOT_OK(checkpoint_.snapshot_file.Open(&disk.handler())); |
| 1782 | |
| 1783 | // Initially issue read request for all pages that can be held in memory |
| 1784 | uint32_t total_pages_to_read = end_page - start_page; |
| 1785 | uint32_t pages_to_read_first = std::min(capacity, total_pages_to_read); |
| 1786 | RETURN_NOT_OK(hlog.AsyncReadPagesFromSnapshot(checkpoint_.snapshot_file, start_page, start_page, |
| 1787 | pages_to_read_first, recovery_status)); |
| 1788 | |
| 1789 | for(uint32_t page = start_page; page < end_page; ++page) { |
| 1790 | while(recovery_status.page_status(page) != PageRecoveryStatus::ReadDone) { |
| 1791 | disk.TryComplete(); |
| 1792 | std::this_thread::sleep_for(10ms); |
| 1793 | } |
| 1794 | |
| 1795 | // Perform recovery if page in fuzzy portion of the log |
| 1796 | if(Address{ page + 1, 0 } > from_address) { |
| 1797 | // handle start and end at non-page boundaries |
| 1798 | RETURN_NOT_OK(RecoverFromPage(page == from_address.page() ? from_address : |
| 1799 | Address{ page, 0 }, |
| 1800 | page + 1 == end_page ? to_address : |
| 1801 | Address{ page, Address::kMaxOffset })); |
| 1802 | } |
| 1803 | |
| 1804 | // OS thread flushes current page and issues a read request if necessary |
| 1805 | if(page + capacity < end_page) { |
| 1806 | Context context{ hlog, checkpoint_.snapshot_file, start_page, page + capacity, |
| 1807 | recovery_status }; |
| 1808 | RETURN_NOT_OK(hlog.AsyncFlushPage(page, recovery_status, callback, &context)); |
| 1809 | } else { |
| 1810 | RETURN_NOT_OK(hlog.AsyncFlushPage(page, recovery_status, nullptr, nullptr)); |
| 1811 | } |
| 1812 | } |
| 1813 | // Wait until all pages have been flushed |
| 1814 | for(uint32_t page = start_page; page < end_page; ++page) { |
| 1815 | while(recovery_status.page_status(page) != PageRecoveryStatus::FlushDone) { |
| 1816 | disk.TryComplete(); |
| 1817 | std::this_thread::sleep_for(10ms); |
| 1818 | } |
| 1819 | } |
| 1820 | return Status::Ok; |
| 1821 | } |
| 1822 | |
| 1823 | template <class K, class V, class D> |
| 1824 | Status FasterKv<K, V, D>::RecoverFromPage(Address from_address, Address to_address) { |
| 1825 | assert(from_address.page() == to_address.page()); |
| 1826 | for(Address address = from_address; address < to_address;) { |
| 1827 | record_t* record = reinterpret_cast<record_t*>(hlog.Get(address)); |
| 1828 | if(record->header.IsNull()) { |
| 1829 | address += sizeof(record->header); |
| 1830 | continue; |
| 1831 | } |
| 1832 | if(record->header.invalid) { |
| 1833 | address += record->size(); |
| 1834 | continue; |
| 1835 | } |
| 1836 | const key_t& key = record->key(); |
| 1837 | KeyHash hash = key.GetHash(); |
| 1838 | HashBucketEntry expected_entry; |
| 1839 | HashBucket* bucket; |
| 1840 | AtomicHashBucketEntry* atomic_entry = FindOrCreateEntry(hash, expected_entry, bucket); |
| 1841 | |
| 1842 | if(record->header.checkpoint_version <= checkpoint_.log_metadata.version) { |
| 1843 | HashBucketEntry new_entry{ address, hash.tag(), false }; |
| 1844 | atomic_entry->store(new_entry); |
| 1845 | } else { |
| 1846 | record->header.invalid = true; |
| 1847 | if(record->header.previous_address() < checkpoint_.index_metadata.checkpoint_start_address) { |
| 1848 | HashBucketEntry new_entry{ record->header.previous_address(), hash.tag(), false }; |
| 1849 | atomic_entry->store(new_entry); |
| 1850 | } |
| 1851 | } |
| 1852 | address += record->size(); |
| 1853 | } |
| 1854 | |
| 1855 | return Status::Ok; |
| 1856 | } |
| 1857 | |
| 1858 | template <class K, class V, class D> |
| 1859 | Status FasterKv<K, V, D>::RestoreHybridLog() { |
| 1860 | Address tail_address = checkpoint_.log_metadata.final_address; |
| 1861 | uint32_t end_page = tail_address.offset() > 0 ? tail_address.page() + 1 : tail_address.page(); |
| 1862 | uint32_t capacity = hlog.buffer_size(); |
| 1863 | // Restore as much of the log as will fit in memory. |
| 1864 | uint32_t start_page; |
| 1865 | if(end_page < capacity - hlog.kNumHeadPages) { |
| 1866 | start_page = 0; |
| 1867 | } else { |
| 1868 | start_page = end_page - (capacity - hlog.kNumHeadPages); |
| 1869 | } |
| 1870 | RecoveryStatus recovery_status{ start_page, end_page }; |
| 1871 | |
| 1872 | uint32_t num_pages = end_page - start_page; |
| 1873 | RETURN_NOT_OK(hlog.AsyncReadPagesFromLog(start_page, num_pages, recovery_status)); |
| 1874 | |
| 1875 | // Wait until all pages have been read. |
| 1876 | for(uint32_t page = start_page; page < end_page; ++page) { |
| 1877 | while(recovery_status.page_status(page) != PageRecoveryStatus::ReadDone) { |
| 1878 | disk.TryComplete(); |
| 1879 | std::this_thread::sleep_for(10ms); |
| 1880 | } |
| 1881 | } |
| 1882 | // Skip the null page. |
| 1883 | Address head_address = start_page == 0 ? Address{ 0, Constants::kCacheLineBytes } : |
| 1884 | Address{ start_page, 0 }; |
| 1885 | hlog.RecoveryReset(checkpoint_.index_metadata.log_begin_address, head_address, tail_address); |
| 1886 | return Status::Ok; |
| 1887 | } |
| 1888 | |
| 1889 | template <class K, class V, class D> |
| 1890 | void FasterKv<K, V, D>::HeavyEnter() { |
| 1891 | if(thread_ctx().phase == Phase::GC_IO_PENDING || thread_ctx().phase == Phase::GC_IN_PROGRESS) { |
| 1892 | CleanHashTableBuckets(); |
| 1893 | return; |
| 1894 | } |
| 1895 | while(thread_ctx().phase == Phase::GROW_PREPARE) { |
| 1896 | // We spin-wait as a simplification |
| 1897 | // Could instead do a "heavy operation" here |
| 1898 | std::this_thread::yield(); |
| 1899 | Refresh(); |
| 1900 | } |
| 1901 | if(thread_ctx().phase == Phase::GROW_IN_PROGRESS) { |
| 1902 | SplitHashTableBuckets(); |
| 1903 | } |
| 1904 | } |
| 1905 | |
| 1906 | template <class K, class V, class D> |
| 1907 | bool FasterKv<K, V, D>::CleanHashTableBuckets() { |
| 1908 | uint64_t chunk = gc_.next_chunk++; |
| 1909 | if(chunk >= gc_.num_chunks) { |
| 1910 | // No chunk left to clean. |
| 1911 | return false; |
| 1912 | } |
| 1913 | uint8_t version = resize_info_.version; |
| 1914 | Address begin_address = hlog.begin_address.load(); |
| 1915 | uint64_t upper_bound; |
| 1916 | if(chunk + 1 < grow_.num_chunks) { |
| 1917 | // All chunks but the last chunk contain kGrowHashTableChunkSize elements. |
| 1918 | upper_bound = kGrowHashTableChunkSize; |
| 1919 | } else { |
| 1920 | // Last chunk might contain more or fewer elements. |
| 1921 | upper_bound = state_[version].size() - (chunk * kGcHashTableChunkSize); |
| 1922 | } |
| 1923 | for(uint64_t idx = 0; idx < upper_bound; ++idx) { |
| 1924 | HashBucket* bucket = &state_[version].bucket(chunk * kGcHashTableChunkSize + idx); |
| 1925 | while(true) { |
| 1926 | for(uint32_t entry_idx = 0; entry_idx < HashBucket::kNumEntries; ++entry_idx) { |
| 1927 | AtomicHashBucketEntry& atomic_entry = bucket->entries[entry_idx]; |
| 1928 | HashBucketEntry expected_entry = atomic_entry.load(); |
| 1929 | if(!expected_entry.unused() && expected_entry.address() != Address::kInvalidAddress && |
| 1930 | expected_entry.address() < begin_address) { |
| 1931 | // The record that this entry points to was truncated; try to delete the entry. |
| 1932 | atomic_entry.compare_exchange_strong(expected_entry, HashBucketEntry::kInvalidEntry); |
| 1933 | // If deletion failed, then some other thread must have added a new record to the entry. |
| 1934 | } |
| 1935 | } |
| 1936 | // Go to next bucket in the chain. |
| 1937 | HashBucketOverflowEntry overflow_entry = bucket->overflow_entry.load(); |
| 1938 | if(overflow_entry.unused()) { |
| 1939 | // No more buckets in the chain. |
| 1940 | break; |
| 1941 | } |
| 1942 | bucket = &overflow_buckets_allocator_[version].Get(overflow_entry.address()); |
| 1943 | } |
| 1944 | } |
| 1945 | // Done with this chunk--did some work. |
| 1946 | return true; |
| 1947 | } |
| 1948 | |
| 1949 | template <class K, class V, class D> |
| 1950 | void FasterKv<K, V, D>::AddHashEntry(HashBucket*& bucket, uint32_t& next_idx, uint8_t version, |
| 1951 | HashBucketEntry entry) { |
| 1952 | if(next_idx == HashBucket::kNumEntries) { |
| 1953 | // Need to allocate a new bucket, first. |
| 1954 | FixedPageAddress new_bucket_addr = overflow_buckets_allocator_[version].Allocate(); |
| 1955 | HashBucketOverflowEntry new_bucket_entry{ new_bucket_addr }; |
| 1956 | bucket->overflow_entry.store(new_bucket_entry); |
| 1957 | bucket = &overflow_buckets_allocator_[version].Get(new_bucket_addr); |
| 1958 | next_idx = 0; |
| 1959 | } |
| 1960 | bucket->entries[next_idx].store(entry); |
| 1961 | ++next_idx; |
| 1962 | } |
| 1963 | |
| 1964 | template <class K, class V, class D> |
| 1965 | Address FasterKv<K, V, D>::TraceBackForOtherChainStart(uint64_t old_size, uint64_t new_size, |
| 1966 | Address from_address, Address min_address, uint8_t side) { |
| 1967 | assert(side == 0 || side == 1); |
| 1968 | // Search back as far as min_address. |
| 1969 | while(from_address >= min_address) { |
| 1970 | const record_t* record = reinterpret_cast<const record_t*>(hlog.Get(from_address)); |
| 1971 | KeyHash hash = record->key().GetHash(); |
| 1972 | if((hash.idx(new_size) < old_size) != (side == 0)) { |
| 1973 | // Record's key hashes to the other side. |
| 1974 | return from_address; |
| 1975 | } |
| 1976 | from_address = record->header.previous_address(); |
| 1977 | } |
| 1978 | return from_address; |
| 1979 | } |
| 1980 | |
| 1981 | template <class K, class V, class D> |
| 1982 | void FasterKv<K, V, D>::SplitHashTableBuckets() { |
| 1983 | // This thread won't exit until all hash table buckets have been split. |
| 1984 | Address head_address = hlog.head_address.load(); |
| 1985 | Address begin_address = hlog.begin_address.load(); |
| 1986 | for(uint64_t chunk = grow_.next_chunk++; chunk < grow_.num_chunks; chunk = grow_.next_chunk++) { |
| 1987 | uint64_t old_size = state_[grow_.old_version].size(); |
| 1988 | uint64_t new_size = state_[grow_.new_version].size(); |
| 1989 | assert(new_size == old_size * 2); |
| 1990 | // Split this chunk. |
| 1991 | uint64_t upper_bound; |
| 1992 | if(chunk + 1 < grow_.num_chunks) { |
| 1993 | // All chunks but the last chunk contain kGrowHashTableChunkSize elements. |
| 1994 | upper_bound = kGrowHashTableChunkSize; |
| 1995 | } else { |
| 1996 | // Last chunk might contain more or fewer elements. |
| 1997 | upper_bound = old_size - (chunk * kGrowHashTableChunkSize); |
| 1998 | } |
| 1999 | for(uint64_t idx = 0; idx < upper_bound; ++idx) { |
| 2000 | |
| 2001 | // Split this (chain of) bucket(s). |
| 2002 | HashBucket* old_bucket = &state_[grow_.old_version].bucket( |
| 2003 | chunk * kGrowHashTableChunkSize + idx); |
| 2004 | HashBucket* new_bucket0 = &state_[grow_.new_version].bucket( |
| 2005 | chunk * kGrowHashTableChunkSize + idx); |
| 2006 | HashBucket* new_bucket1 = &state_[grow_.new_version].bucket( |
| 2007 | old_size + chunk * kGrowHashTableChunkSize + idx); |
| 2008 | uint32_t new_entry_idx0 = 0; |
| 2009 | uint32_t new_entry_idx1 = 0; |
| 2010 | while(true) { |
| 2011 | for(uint32_t old_entry_idx = 0; old_entry_idx < HashBucket::kNumEntries; ++old_entry_idx) { |
| 2012 | HashBucketEntry old_entry = old_bucket->entries[old_entry_idx].load(); |
| 2013 | if(old_entry.unused()) { |
| 2014 | // Nothing to do. |
| 2015 | continue; |
| 2016 | } else if(old_entry.address() < head_address) { |
| 2017 | // Can't tell which new bucket the entry should go into; put it in both. |
| 2018 | AddHashEntry(new_bucket0, new_entry_idx0, grow_.new_version, old_entry); |
| 2019 | AddHashEntry(new_bucket1, new_entry_idx1, grow_.new_version, old_entry); |
| 2020 | continue; |
| 2021 | } |
| 2022 | |
| 2023 | const record_t* record = reinterpret_cast<const record_t*>(hlog.Get( |
| 2024 | old_entry.address())); |
| 2025 | KeyHash hash = record->key().GetHash(); |
| 2026 | if(hash.idx(new_size) < old_size) { |
| 2027 | // Record's key hashes to the 0 side of the new hash table. |
| 2028 | AddHashEntry(new_bucket0, new_entry_idx0, grow_.new_version, old_entry); |
| 2029 | Address other_address = TraceBackForOtherChainStart(old_size, new_size, |
| 2030 | record->header.previous_address(), head_address, 0); |
| 2031 | if(other_address >= begin_address) { |
| 2032 | // We found a record that either is on disk or has a key that hashes to the 1 side of |
| 2033 | // the new hash table. |
| 2034 | AddHashEntry(new_bucket1, new_entry_idx1, grow_.new_version, |
| 2035 | HashBucketEntry{ other_address, old_entry.tag(), false }); |
| 2036 | } |
| 2037 | } else { |
| 2038 | // Record's key hashes to the 1 side of the new hash table. |
| 2039 | AddHashEntry(new_bucket1, new_entry_idx1, grow_.new_version, old_entry); |
| 2040 | Address other_address = TraceBackForOtherChainStart(old_size, new_size, |
| 2041 | record->header.previous_address(), head_address, 1); |
| 2042 | if(other_address >= begin_address) { |
| 2043 | // We found a record that either is on disk or has a key that hashes to the 0 side of |
| 2044 | // the new hash table. |
| 2045 | AddHashEntry(new_bucket0, new_entry_idx0, grow_.new_version, |
| 2046 | HashBucketEntry{ other_address, old_entry.tag(), false }); |
| 2047 | } |
| 2048 | } |
| 2049 | } |
| 2050 | // Go to next bucket in the chain. |
| 2051 | HashBucketOverflowEntry overflow_entry = old_bucket->overflow_entry.load(); |
| 2052 | if(overflow_entry.unused()) { |
| 2053 | // No more buckets in the chain. |
| 2054 | break; |
| 2055 | } |
| 2056 | old_bucket = &overflow_buckets_allocator_[grow_.old_version].Get(overflow_entry.address()); |
| 2057 | } |
| 2058 | } |
| 2059 | // Done with this chunk. |
| 2060 | if(--grow_.num_pending_chunks == 0) { |
| 2061 | // Free the old hash table. |
| 2062 | state_[grow_.old_version].Uninitialize(); |
| 2063 | overflow_buckets_allocator_[grow_.old_version].Uninitialize(); |
| 2064 | break; |
| 2065 | } |
| 2066 | } |
| 2067 | // Thread has finished growing its part of the hash table. |
| 2068 | thread_ctx().phase = Phase::REST; |
| 2069 | // Thread ack that it has finished growing the hash table. |
| 2070 | if(epoch_.FinishThreadPhase(Phase::GROW_IN_PROGRESS)) { |
| 2071 | // Let other threads know that they can use the new hash table now. |
| 2072 | GlobalMoveToNextState(SystemState{ Action::GrowIndex, Phase::GROW_IN_PROGRESS, |
| 2073 | thread_ctx().version }); |
| 2074 | } else { |
| 2075 | while(system_state_.load().phase == Phase::GROW_IN_PROGRESS) { |
| 2076 | // Spin until all other threads have finished splitting their chunks. |
| 2077 | std::this_thread::yield(); |
| 2078 | } |
| 2079 | } |
| 2080 | } |
| 2081 | |
| 2082 | template <class K, class V, class D> |
| 2083 | bool FasterKv<K, V, D>::GlobalMoveToNextState(SystemState current_state) { |
| 2084 | SystemState next_state = current_state.GetNextState(); |
| 2085 | if(!system_state_.compare_exchange_strong(current_state, next_state)) { |
| 2086 | return false; |
| 2087 | } |
| 2088 | |
| 2089 | switch(next_state.action) { |
| 2090 | case Action::CheckpointFull: |
| 2091 | case Action::CheckpointIndex: |
| 2092 | case Action::CheckpointHybridLog: |
| 2093 | switch(next_state.phase) { |
| 2094 | case Phase::PREP_INDEX_CHKPT: |
| 2095 | // This case is handled directly inside Checkpoint[Index](). |
| 2096 | assert(false); |
| 2097 | break; |
| 2098 | case Phase::INDEX_CHKPT: |
| 2099 | assert(next_state.action != Action::CheckpointHybridLog); |
| 2100 | // Issue async request for fuzzy checkpoint |
| 2101 | assert(!checkpoint_.failed); |
| 2102 | if(CheckpointFuzzyIndex() != Status::Ok) { |
| 2103 | checkpoint_.failed = true; |
| 2104 | } |
| 2105 | break; |
| 2106 | case Phase::PREPARE: |
| 2107 | // Index checkpoint will never reach this state; and CheckpointHybridLog() will handle this |
| 2108 | // case directly. |
| 2109 | assert(next_state.action == Action::CheckpointFull); |
| 2110 | // INDEX_CHKPT -> PREPARE |
| 2111 | // Get an overestimate for the ofb's tail, after we've finished fuzzy-checkpointing the ofb. |
| 2112 | // (Ensures that recovery won't accidentally reallocate from the ofb.) |
| 2113 | checkpoint_.index_metadata.ofb_count = |
| 2114 | overflow_buckets_allocator_[resize_info_.version].count(); |
| 2115 | // Write index meta data on disk |
| 2116 | if(WriteIndexMetadata() != Status::Ok) { |
| 2117 | checkpoint_.failed = true; |
| 2118 | } |
| 2119 | if(checkpoint_.index_persistence_callback) { |
| 2120 | // Notify the host that the index checkpoint has completed. |
| 2121 | checkpoint_.index_persistence_callback(Status::Ok); |
| 2122 | } |
| 2123 | break; |
| 2124 | case Phase::IN_PROGRESS: { |
| 2125 | assert(next_state.action != Action::CheckpointIndex); |
| 2126 | // PREPARE -> IN_PROGRESS |
| 2127 | // Do nothing |
| 2128 | break; |
| 2129 | } |
| 2130 | case Phase::WAIT_PENDING: |
| 2131 | assert(next_state.action != Action::CheckpointIndex); |
| 2132 | // IN_PROGRESS -> WAIT_PENDING |
| 2133 | // Do nothing |
| 2134 | break; |
| 2135 | case Phase::WAIT_FLUSH: |
| 2136 | assert(next_state.action != Action::CheckpointIndex); |
| 2137 | // WAIT_PENDING -> WAIT_FLUSH |
| 2138 | if(fold_over_snapshot) { |
| 2139 | // Move read-only to tail |
| 2140 | Address tail_address = hlog.ShiftReadOnlyToTail(); |
| 2141 | // Get final address for CPR |
| 2142 | checkpoint_.log_metadata.final_address = tail_address; |
| 2143 | } else { |
| 2144 | Address tail_address = hlog.GetTailAddress(); |
| 2145 | // Get final address for CPR |
| 2146 | checkpoint_.log_metadata.final_address = tail_address; |
| 2147 | checkpoint_.snapshot_file = disk.NewFile(disk.relative_cpr_checkpoint_path( |
| 2148 | checkpoint_.hybrid_log_token) + "snapshot.dat" ); |
| 2149 | if(checkpoint_.snapshot_file.Open(&disk.handler()) != Status::Ok) { |
| 2150 | checkpoint_.failed = true; |
| 2151 | } |
| 2152 | // Flush the log to a snapshot. |
| 2153 | hlog.AsyncFlushPagesToFile(checkpoint_.log_metadata.flushed_address.page(), |
| 2154 | checkpoint_.log_metadata.final_address, checkpoint_.snapshot_file, |
| 2155 | checkpoint_.flush_pending); |
| 2156 | } |
| 2157 | // Write CPR meta data file |
| 2158 | if(WriteCprMetadata() != Status::Ok) { |
| 2159 | checkpoint_.failed = true; |
| 2160 | } |
| 2161 | break; |
| 2162 | case Phase::PERSISTENCE_CALLBACK: |
| 2163 | assert(next_state.action != Action::CheckpointIndex); |
| 2164 | // WAIT_FLUSH -> PERSISTENCE_CALLBACK |
| 2165 | break; |
| 2166 | case Phase::REST: |
| 2167 | // PERSISTENCE_CALLBACK -> REST or INDEX_CHKPT -> REST |
| 2168 | if(next_state.action != Action::CheckpointIndex) { |
| 2169 | // The checkpoint is done; we can reset the contexts now. (Have to reset contexts before |
| 2170 | // another checkpoint can be started.) |
| 2171 | checkpoint_.CheckpointDone(); |
| 2172 | // Free checkpoint locks! |
| 2173 | checkpoint_locks_.Free(); |
| 2174 | // Checkpoint is done--no more work for threads to do. |
| 2175 | system_state_.store(SystemState{ Action::None, Phase::REST, next_state.version }); |
| 2176 | } else { |
| 2177 | // Get an overestimate for the ofb's tail, after we've finished fuzzy-checkpointing the |
| 2178 | // ofb. (Ensures that recovery won't accidentally reallocate from the ofb.) |
| 2179 | checkpoint_.index_metadata.ofb_count = |
| 2180 | overflow_buckets_allocator_[resize_info_.version].count(); |
| 2181 | // Write index meta data on disk |
| 2182 | if(WriteIndexMetadata() != Status::Ok) { |
| 2183 | checkpoint_.failed = true; |
| 2184 | } |
| 2185 | auto index_persistence_callback = checkpoint_.index_persistence_callback; |
| 2186 | // The checkpoint is done; we can reset the contexts now. (Have to reset contexts before |
| 2187 | // another checkpoint can be started.) |
| 2188 | checkpoint_.CheckpointDone(); |
| 2189 | // Checkpoint is done--no more work for threads to do. |
| 2190 | system_state_.store(SystemState{ Action::None, Phase::REST, next_state.version }); |
| 2191 | if(index_persistence_callback) { |
| 2192 | // Notify the host that the index checkpoint has completed. |
| 2193 | index_persistence_callback(Status::Ok); |
| 2194 | } |
| 2195 | } |
| 2196 | break; |
| 2197 | default: |
| 2198 | // not reached |
| 2199 | assert(false); |
| 2200 | break; |
| 2201 | } |
| 2202 | break; |
| 2203 | case Action::GC: |
| 2204 | switch(next_state.phase) { |
| 2205 | case Phase::GC_IO_PENDING: |
| 2206 | // This case is handled directly inside ShiftBeginAddress(). |
| 2207 | assert(false); |
| 2208 | break; |
| 2209 | case Phase::GC_IN_PROGRESS: |
| 2210 | // GC_IO_PENDING -> GC_IN_PROGRESS |
| 2211 | // Tell the disk to truncate the log. |
| 2212 | hlog.Truncate(gc_.truncate_callback); |
| 2213 | break; |
| 2214 | case Phase::REST: |
| 2215 | // GC_IN_PROGRESS -> REST |
| 2216 | // GC is done--no more work for threads to do. |
| 2217 | if(gc_.complete_callback) { |
| 2218 | gc_.complete_callback(); |
| 2219 | } |
| 2220 | system_state_.store(SystemState{ Action::None, Phase::REST, next_state.version }); |
| 2221 | break; |
| 2222 | default: |
| 2223 | // not reached |
| 2224 | assert(false); |
| 2225 | break; |
| 2226 | } |
| 2227 | break; |
| 2228 | case Action::GrowIndex: |
| 2229 | switch(next_state.phase) { |
| 2230 | case Phase::GROW_PREPARE: |
| 2231 | // This case is handled directly inside GrowIndex(). |
| 2232 | assert(false); |
| 2233 | break; |
| 2234 | case Phase::GROW_IN_PROGRESS: |
| 2235 | // Swap hash table versions so that all threads will use the new version after populating it. |
| 2236 | resize_info_.version = grow_.new_version; |
| 2237 | break; |
| 2238 | case Phase::REST: |
| 2239 | if(grow_.callback) { |
| 2240 | grow_.callback(state_[grow_.new_version].size()); |
| 2241 | } |
| 2242 | system_state_.store(SystemState{ Action::None, Phase::REST, next_state.version }); |
| 2243 | break; |
| 2244 | default: |
| 2245 | // not reached |
| 2246 | assert(false); |
| 2247 | break; |
| 2248 | } |
| 2249 | break; |
| 2250 | default: |
| 2251 | // not reached |
| 2252 | assert(false); |
| 2253 | break; |
| 2254 | } |
| 2255 | return true; |
| 2256 | } |
| 2257 | |
| 2258 | template <class K, class V, class D> |
| 2259 | void FasterKv<K, V, D>::MarkAllPendingRequests() { |
| 2260 | uint32_t table_version = resize_info_.version; |
| 2261 | uint64_t table_size = state_[table_version].size(); |
| 2262 | |
| 2263 | for(const IAsyncContext* ctxt : thread_ctx().retry_requests) { |
| 2264 | const pending_context_t* context = static_cast<const pending_context_t*>(ctxt); |
| 2265 | // We will succeed, since no other thread can currently advance the entry's version, since this |
| 2266 | // thread hasn't acked "PENDING" phase completion yet. |
| 2267 | bool result = checkpoint_locks_.get_lock(context->key().GetHash()).try_lock_old(); |
| 2268 | assert(result); |
| 2269 | } |
| 2270 | for(const auto& pending_io : thread_ctx().pending_ios) { |
| 2271 | // We will succeed, since no other thread can currently advance the entry's version, since this |
| 2272 | // thread hasn't acked "PENDING" phase completion yet. |
| 2273 | bool result = checkpoint_locks_.get_lock(pending_io.second).try_lock_old(); |
| 2274 | assert(result); |
| 2275 | } |
| 2276 | } |
| 2277 | |
| 2278 | template <class K, class V, class D> |
| 2279 | void FasterKv<K, V, D>::HandleSpecialPhases() { |
| 2280 | SystemState final_state = system_state_.load(); |
| 2281 | if(final_state.phase == Phase::REST) { |
| 2282 | // Nothing to do; just reset thread context. |
| 2283 | thread_ctx().phase = Phase::REST; |
| 2284 | thread_ctx().version = final_state.version; |
| 2285 | return; |
| 2286 | } |
| 2287 | SystemState previous_state{ final_state.action, thread_ctx().phase, thread_ctx().version }; |
| 2288 | do { |
| 2289 | // Identify the transition (currentState -> nextState) |
| 2290 | SystemState current_state = (previous_state == final_state) ? final_state : |
| 2291 | previous_state.GetNextState(); |
| 2292 | switch(current_state.action) { |
| 2293 | case Action::CheckpointFull: |
| 2294 | case Action::CheckpointIndex: |
| 2295 | case Action::CheckpointHybridLog: |
| 2296 | switch(current_state.phase) { |
| 2297 | case Phase::PREP_INDEX_CHKPT: |
| 2298 | assert(current_state.action != Action::CheckpointHybridLog); |
| 2299 | // Both from REST -> PREP_INDEX_CHKPT and PREP_INDEX_CHKPT -> PREP_INDEX_CHKPT |
| 2300 | if(previous_state.phase == Phase::REST) { |
| 2301 | // Thread ack that we're performing a checkpoint. |
| 2302 | if(epoch_.FinishThreadPhase(Phase::PREP_INDEX_CHKPT)) { |
| 2303 | GlobalMoveToNextState(current_state); |
| 2304 | } |
| 2305 | } |
| 2306 | break; |
| 2307 | case Phase::INDEX_CHKPT: { |
| 2308 | assert(current_state.action != Action::CheckpointHybridLog); |
| 2309 | // Both from PREP_INDEX_CHKPT -> INDEX_CHKPT and INDEX_CHKPT -> INDEX_CHKPT |
| 2310 | Status result = CheckpointFuzzyIndexComplete(); |
| 2311 | if(result != Status::Pending && result != Status::Ok) { |
| 2312 | checkpoint_.failed = true; |
| 2313 | } |
| 2314 | if(result != Status::Pending) { |
| 2315 | if(current_state.action == Action::CheckpointIndex) { |
| 2316 | // This thread is done now. |
| 2317 | thread_ctx().phase = Phase::REST; |
| 2318 | // Thread ack that it is done. |
| 2319 | if(epoch_.FinishThreadPhase(Phase::INDEX_CHKPT)) { |
| 2320 | GlobalMoveToNextState(current_state); |
| 2321 | } |
| 2322 | } else { |
| 2323 | // Index checkpoint is done; move on to PREPARE phase. |
| 2324 | GlobalMoveToNextState(current_state); |
| 2325 | } |
| 2326 | } |
| 2327 | break; |
| 2328 | } |
| 2329 | case Phase::PREPARE: |
| 2330 | assert(current_state.action != Action::CheckpointIndex); |
| 2331 | // Handle (INDEX_CHKPT -> PREPARE or REST -> PREPARE) and PREPARE -> PREPARE |
| 2332 | if(previous_state.phase != Phase::PREPARE) { |
| 2333 | // mark pending requests |
| 2334 | MarkAllPendingRequests(); |
| 2335 | // keep a count of number of threads |
| 2336 | ++checkpoint_.log_metadata.num_threads; |
| 2337 | // set the thread index |
| 2338 | checkpoint_.log_metadata.guids[Thread::id()] = thread_ctx().guid; |
| 2339 | // Thread ack that it has finished marking its pending requests. |
| 2340 | if(epoch_.FinishThreadPhase(Phase::PREPARE)) { |
| 2341 | GlobalMoveToNextState(current_state); |
| 2342 | } |
| 2343 | } |
| 2344 | break; |
| 2345 | case Phase::IN_PROGRESS: |
| 2346 | assert(current_state.action != Action::CheckpointIndex); |
| 2347 | // Handle PREPARE -> IN_PROGRESS and IN_PROGRESS -> IN_PROGRESS |
| 2348 | if(previous_state.phase == Phase::PREPARE) { |
| 2349 | assert(prev_thread_ctx().retry_requests.empty()); |
| 2350 | assert(prev_thread_ctx().pending_ios.empty()); |
| 2351 | assert(prev_thread_ctx().io_responses.empty()); |
| 2352 | |
| 2353 | // Get a new thread context; keep track of the old one as "previous." |
| 2354 | thread_contexts_[Thread::id()].swap(); |
| 2355 | // initialize a new local context |
| 2356 | thread_ctx().Initialize(Phase::IN_PROGRESS, current_state.version, |
| 2357 | prev_thread_ctx().guid, prev_thread_ctx().serial_num); |
| 2358 | // Thread ack that it has swapped contexts. |
| 2359 | if(epoch_.FinishThreadPhase(Phase::IN_PROGRESS)) { |
| 2360 | GlobalMoveToNextState(current_state); |
| 2361 | } |
| 2362 | } |
| 2363 | break; |
| 2364 | case Phase::WAIT_PENDING: |
| 2365 | assert(current_state.action != Action::CheckpointIndex); |
| 2366 | // Handle IN_PROGRESS -> WAIT_PENDING and WAIT_PENDING -> WAIT_PENDING |
| 2367 | if(!epoch_.HasThreadFinishedPhase(Phase::WAIT_PENDING)) { |
| 2368 | if(prev_thread_ctx().pending_ios.empty() && |
| 2369 | prev_thread_ctx().retry_requests.empty()) { |
| 2370 | // Thread ack that it has completed its pending I/Os. |
| 2371 | if(epoch_.FinishThreadPhase(Phase::WAIT_PENDING)) { |
| 2372 | GlobalMoveToNextState(current_state); |
| 2373 | } |
| 2374 | } |
| 2375 | } |
| 2376 | break; |
| 2377 | case Phase::WAIT_FLUSH: |
| 2378 | assert(current_state.action != Action::CheckpointIndex); |
| 2379 | // Handle WAIT_PENDING -> WAIT_FLUSH and WAIT_FLUSH -> WAIT_FLUSH |
| 2380 | if(!epoch_.HasThreadFinishedPhase(Phase::WAIT_FLUSH)) { |
| 2381 | bool flushed; |
| 2382 | if(fold_over_snapshot) { |
| 2383 | flushed = hlog.flushed_until_address.load() >= checkpoint_.log_metadata.final_address; |
| 2384 | } else { |
| 2385 | flushed = checkpoint_.flush_pending.load() == 0; |
| 2386 | } |
| 2387 | if(flushed) { |
| 2388 | // write context info |
| 2389 | WriteCprContext(); |
| 2390 | // Thread ack that it has written its CPU context. |
| 2391 | if(epoch_.FinishThreadPhase(Phase::WAIT_FLUSH)) { |
| 2392 | GlobalMoveToNextState(current_state); |
| 2393 | } |
| 2394 | } |
| 2395 | } |
| 2396 | break; |
| 2397 | case Phase::PERSISTENCE_CALLBACK: |
| 2398 | assert(current_state.action != Action::CheckpointIndex); |
| 2399 | // Handle WAIT_FLUSH -> PERSISTENCE_CALLBACK and PERSISTENCE_CALLBACK -> PERSISTENCE_CALLBACK |
| 2400 | if(previous_state.phase == Phase::WAIT_FLUSH) { |
| 2401 | // Persistence callback |
| 2402 | if(checkpoint_.hybrid_log_persistence_callback) { |
| 2403 | checkpoint_.hybrid_log_persistence_callback(Status::Ok, prev_thread_ctx().serial_num); |
| 2404 | } |
| 2405 | // Thread has finished checkpointing. |
| 2406 | thread_ctx().phase = Phase::REST; |
| 2407 | // Thread ack that it has finished checkpointing. |
| 2408 | if(epoch_.FinishThreadPhase(Phase::PERSISTENCE_CALLBACK)) { |
| 2409 | GlobalMoveToNextState(current_state); |
| 2410 | } |
| 2411 | } |
| 2412 | break; |
| 2413 | default: |
| 2414 | // nothing to do. |
| 2415 | break; |
| 2416 | } |
| 2417 | break; |
| 2418 | case Action::GC: |
| 2419 | switch(current_state.phase) { |
| 2420 | case Phase::GC_IO_PENDING: |
| 2421 | // Handle REST -> GC_IO_PENDING and GC_IO_PENDING -> GC_IO_PENDING. |
| 2422 | if(previous_state.phase == Phase::REST) { |
| 2423 | assert(prev_thread_ctx().retry_requests.empty()); |
| 2424 | assert(prev_thread_ctx().pending_ios.empty()); |
| 2425 | assert(prev_thread_ctx().io_responses.empty()); |
| 2426 | // Get a new thread context; keep track of the old one as "previous." |
| 2427 | thread_contexts_[Thread::id()].swap(); |
| 2428 | // initialize a new local context |
| 2429 | thread_ctx().Initialize(Phase::GC_IO_PENDING, current_state.version, |
| 2430 | prev_thread_ctx().guid, prev_thread_ctx().serial_num); |
| 2431 | } |
| 2432 | |
| 2433 | // See if the old thread context has completed its pending I/Os. |
| 2434 | if(!epoch_.HasThreadFinishedPhase(Phase::GC_IO_PENDING)) { |
| 2435 | if(prev_thread_ctx().pending_ios.empty() && |
| 2436 | prev_thread_ctx().retry_requests.empty()) { |
| 2437 | // Thread ack that it has completed its pending I/Os. |
| 2438 | if(epoch_.FinishThreadPhase(Phase::GC_IO_PENDING)) { |
| 2439 | GlobalMoveToNextState(current_state); |
| 2440 | } |
| 2441 | } |
| 2442 | } |
| 2443 | break; |
| 2444 | case Phase::GC_IN_PROGRESS: |
| 2445 | // Handle GC_IO_PENDING -> GC_IN_PROGRESS and GC_IN_PROGRESS -> GC_IN_PROGRESS. |
| 2446 | if(!epoch_.HasThreadFinishedPhase(Phase::GC_IN_PROGRESS)) { |
| 2447 | if(!CleanHashTableBuckets()) { |
| 2448 | // No more buckets for this thread to clean; thread has finished GC. |
| 2449 | thread_ctx().phase = Phase::REST; |
| 2450 | // Thread ack that it has finished GC. |
| 2451 | if(epoch_.FinishThreadPhase(Phase::GC_IN_PROGRESS)) { |
| 2452 | GlobalMoveToNextState(current_state); |
| 2453 | } |
| 2454 | } |
| 2455 | } |
| 2456 | break; |
| 2457 | default: |
| 2458 | assert(false); // not reached |
| 2459 | break; |
| 2460 | } |
| 2461 | break; |
| 2462 | case Action::GrowIndex: |
| 2463 | switch(current_state.phase) { |
| 2464 | case Phase::GROW_PREPARE: |
| 2465 | if(previous_state.phase == Phase::REST) { |
| 2466 | // Thread ack that we're going to grow the hash table. |
| 2467 | if(epoch_.FinishThreadPhase(Phase::GROW_PREPARE)) { |
| 2468 | GlobalMoveToNextState(current_state); |
| 2469 | } |
| 2470 | } else { |
| 2471 | // Wait for all other threads to finish their outstanding (synchronous) hash table |
| 2472 | // operations. |
| 2473 | std::this_thread::yield(); |
| 2474 | } |
| 2475 | break; |
| 2476 | case Phase::GROW_IN_PROGRESS: |
| 2477 | SplitHashTableBuckets(); |
| 2478 | break; |
| 2479 | } |
| 2480 | break; |
| 2481 | } |
| 2482 | thread_ctx().phase = current_state.phase; |
| 2483 | thread_ctx().version = current_state.version; |
| 2484 | previous_state = current_state; |
| 2485 | } while(previous_state != final_state); |
| 2486 | } |
| 2487 | |
| 2488 | template <class K, class V, class D> |
| 2489 | bool FasterKv<K, V, D>::Checkpoint(void(*index_persistence_callback)(Status result), |
| 2490 | void(*hybrid_log_persistence_callback)(Status result, |
| 2491 | uint64_t persistent_serial_num), Guid& token) { |
| 2492 | // Only one thread can initiate a checkpoint at a time. |
| 2493 | SystemState expected{ Action::None, Phase::REST, system_state_.load().version }; |
| 2494 | SystemState desired{ Action::CheckpointFull, Phase::REST, expected.version }; |
| 2495 | if(!system_state_.compare_exchange_strong(expected, desired)) { |
| 2496 | // Can't start a new checkpoint while a checkpoint or recovery is already in progress. |
| 2497 | return false; |
| 2498 | } |
| 2499 | // We are going to start a checkpoint. |
| 2500 | epoch_.ResetPhaseFinished(); |
| 2501 | // Initialize all contexts |
| 2502 | token = Guid::Create(); |
| 2503 | disk.CreateIndexCheckpointDirectory(token); |
| 2504 | disk.CreateCprCheckpointDirectory(token); |
| 2505 | // Obtain tail address for fuzzy index checkpoint |
| 2506 | if(!fold_over_snapshot) { |
| 2507 | checkpoint_.InitializeCheckpoint(token, desired.version, state_[resize_info_.version].size(), |
| 2508 | hlog.begin_address.load(), hlog.GetTailAddress(), true, |
| 2509 | hlog.flushed_until_address.load(), |
| 2510 | index_persistence_callback, |
| 2511 | hybrid_log_persistence_callback); |
| 2512 | } else { |
| 2513 | checkpoint_.InitializeCheckpoint(token, desired.version, state_[resize_info_.version].size(), |
| 2514 | hlog.begin_address.load(), hlog.GetTailAddress(), false, |
| 2515 | Address::kInvalidAddress, index_persistence_callback, |
| 2516 | hybrid_log_persistence_callback); |
| 2517 | |
| 2518 | } |
| 2519 | InitializeCheckpointLocks(); |
| 2520 | // Let other threads know that the checkpoint has started. |
| 2521 | system_state_.store(desired.GetNextState()); |
| 2522 | return true; |
| 2523 | } |
| 2524 | |
| 2525 | template <class K, class V, class D> |
| 2526 | bool FasterKv<K, V, D>::CheckpointIndex(void(*index_persistence_callback)(Status result), |
| 2527 | Guid& token) { |
| 2528 | // Only one thread can initiate a checkpoint at a time. |
| 2529 | SystemState expected{ Action::None, Phase::REST, system_state_.load().version }; |
| 2530 | SystemState desired{ Action::CheckpointIndex, Phase::REST, expected.version }; |
| 2531 | if(!system_state_.compare_exchange_strong(expected, desired)) { |
| 2532 | // Can't start a new checkpoint while a checkpoint or recovery is already in progress. |
| 2533 | return false; |
| 2534 | } |
| 2535 | // We are going to start a checkpoint. |
| 2536 | epoch_.ResetPhaseFinished(); |
| 2537 | // Initialize all contexts |
| 2538 | token = Guid::Create(); |
| 2539 | disk.CreateIndexCheckpointDirectory(token); |
| 2540 | checkpoint_.InitializeIndexCheckpoint(token, desired.version, |
| 2541 | state_[resize_info_.version].size(), |
| 2542 | hlog.begin_address.load(), hlog.GetTailAddress(), |
| 2543 | index_persistence_callback); |
| 2544 | // Let other threads know that the checkpoint has started. |
| 2545 | system_state_.store(desired.GetNextState()); |
| 2546 | return true; |
| 2547 | } |
| 2548 | |
| 2549 | template <class K, class V, class D> |
| 2550 | bool FasterKv<K, V, D>::CheckpointHybridLog(void(*hybrid_log_persistence_callback)(Status result, |
| 2551 | uint64_t persistent_serial_num), Guid& token) { |
| 2552 | // Only one thread can initiate a checkpoint at a time. |
| 2553 | SystemState expected{ Action::None, Phase::REST, system_state_.load().version }; |
| 2554 | SystemState desired{ Action::CheckpointHybridLog, Phase::REST, expected.version }; |
| 2555 | if(!system_state_.compare_exchange_strong(expected, desired)) { |
| 2556 | // Can't start a new checkpoint while a checkpoint or recovery is already in progress. |
| 2557 | return false; |
| 2558 | } |
| 2559 | // We are going to start a checkpoint. |
| 2560 | epoch_.ResetPhaseFinished(); |
| 2561 | // Initialize all contexts |
| 2562 | token = Guid::Create(); |
| 2563 | disk.CreateCprCheckpointDirectory(token); |
| 2564 | // Obtain tail address for fuzzy index checkpoint |
| 2565 | if(!fold_over_snapshot) { |
| 2566 | checkpoint_.InitializeHybridLogCheckpoint(token, desired.version, true, |
| 2567 | hlog.flushed_until_address.load(), hybrid_log_persistence_callback); |
| 2568 | } else { |
| 2569 | checkpoint_.InitializeHybridLogCheckpoint(token, desired.version, false, |
| 2570 | Address::kInvalidAddress, hybrid_log_persistence_callback); |
| 2571 | } |
| 2572 | InitializeCheckpointLocks(); |
| 2573 | // Let other threads know that the checkpoint has started. |
| 2574 | system_state_.store(desired.GetNextState()); |
| 2575 | return true; |
| 2576 | } |
| 2577 | |
| 2578 | template <class K, class V, class D> |
| 2579 | Status FasterKv<K, V, D>::Recover(const Guid& index_token, const Guid& hybrid_log_token, |
| 2580 | uint32_t& version, |
| 2581 | std::vector<Guid>& session_ids) { |
| 2582 | version = 0; |
| 2583 | session_ids.clear(); |
| 2584 | SystemState expected = SystemState{ Action::None, Phase::REST, system_state_.load().version }; |
| 2585 | if(!system_state_.compare_exchange_strong(expected, |
| 2586 | SystemState{ Action::Recover, Phase::REST, expected.version })) { |
| 2587 | return Status::Aborted; |
| 2588 | } |
| 2589 | checkpoint_.InitializeRecover(index_token, hybrid_log_token); |
| 2590 | Status status; |
| 2591 | #define BREAK_NOT_OK(s) \ |
| 2592 | status = (s); \ |
| 2593 | if (status != Status::Ok) break |
| 2594 | |
| 2595 | do { |
| 2596 | // Index and log metadata. |
| 2597 | BREAK_NOT_OK(ReadIndexMetadata(index_token)); |
| 2598 | BREAK_NOT_OK(ReadCprMetadata(hybrid_log_token)); |
| 2599 | if(checkpoint_.index_metadata.version != checkpoint_.log_metadata.version) { |
| 2600 | // Index and hybrid-log checkpoints should have the same version. |
| 2601 | status = Status::Corruption; |
| 2602 | break; |
| 2603 | } |
| 2604 | |
| 2605 | system_state_.store(SystemState{ Action::Recover, Phase::REST, |
| 2606 | checkpoint_.log_metadata.version + 1 }); |
| 2607 | |
| 2608 | BREAK_NOT_OK(ReadCprContexts(hybrid_log_token, checkpoint_.log_metadata.guids)); |
| 2609 | // The index itself (including overflow buckets). |
| 2610 | BREAK_NOT_OK(RecoverFuzzyIndex()); |
| 2611 | BREAK_NOT_OK(RecoverFuzzyIndexComplete(true)); |
| 2612 | // Any changes made to the log while the index was being fuzzy-checkpointed. |
| 2613 | if(fold_over_snapshot) { |
| 2614 | BREAK_NOT_OK(RecoverHybridLog()); |
| 2615 | } else { |
| 2616 | BREAK_NOT_OK(RecoverHybridLogFromSnapshotFile()); |
| 2617 | } |
| 2618 | BREAK_NOT_OK(RestoreHybridLog()); |
| 2619 | } while(false); |
| 2620 | if(status == Status::Ok) { |
| 2621 | for(const auto& token : checkpoint_.continue_tokens) { |
| 2622 | session_ids.push_back(token.first); |
| 2623 | } |
| 2624 | version = checkpoint_.log_metadata.version; |
| 2625 | } |
| 2626 | checkpoint_.RecoverDone(); |
| 2627 | system_state_.store(SystemState{ Action::None, Phase::REST, |
| 2628 | checkpoint_.log_metadata.version + 1 }); |
| 2629 | return status; |
| 2630 | #undef BREAK_NOT_OK |
| 2631 | } |
| 2632 | |
| 2633 | template <class K, class V, class D> |
| 2634 | bool FasterKv<K, V, D>::ShiftBeginAddress(Address address, |
| 2635 | GcState::truncate_callback_t truncate_callback, |
| 2636 | GcState::complete_callback_t complete_callback) { |
| 2637 | SystemState expected = SystemState{ Action::None, Phase::REST, system_state_.load().version }; |
| 2638 | if(!system_state_.compare_exchange_strong(expected, |
| 2639 | SystemState{ Action::GC, Phase::REST, expected.version })) { |
| 2640 | // Can't start a GC while an action is already in progress. |
| 2641 | return false; |
| 2642 | } |
| 2643 | hlog.begin_address.store(address); |
| 2644 | // Each active thread will notify the epoch when all pending I/Os have completed. |
| 2645 | epoch_.ResetPhaseFinished(); |
| 2646 | uint64_t num_chunks = std::max(state_[resize_info_.version].size() / kGcHashTableChunkSize, |
| 2647 | (uint64_t)1); |
| 2648 | gc_.Initialize(truncate_callback, complete_callback, num_chunks); |
| 2649 | // Let other threads know to complete their pending I/Os, so that the log can be truncated. |
| 2650 | system_state_.store(SystemState{ Action::GC, Phase::GC_IO_PENDING, expected.version }); |
| 2651 | return true; |
| 2652 | } |
| 2653 | |
| 2654 | template <class K, class V, class D> |
| 2655 | bool FasterKv<K, V, D>::GrowIndex(GrowState::callback_t caller_callback) { |
| 2656 | SystemState expected = SystemState{ Action::None, Phase::REST, system_state_.load().version }; |
| 2657 | if(!system_state_.compare_exchange_strong(expected, |
| 2658 | SystemState{ Action::GrowIndex, Phase::REST, expected.version })) { |
| 2659 | // An action is already in progress. |
| 2660 | return false; |
| 2661 | } |
| 2662 | epoch_.ResetPhaseFinished(); |
| 2663 | uint8_t current_version = resize_info_.version; |
| 2664 | assert(current_version == 0 || current_version == 1); |
| 2665 | uint8_t next_version = 1 - current_version; |
| 2666 | uint64_t num_chunks = std::max(state_[current_version].size() / kGrowHashTableChunkSize, |
| 2667 | (uint64_t)1); |
| 2668 | grow_.Initialize(caller_callback, current_version, num_chunks); |
| 2669 | // Initialize the next version of our hash table to be twice the size of the current version. |
| 2670 | state_[next_version].Initialize(state_[current_version].size() * 2, disk.log().alignment()); |
| 2671 | overflow_buckets_allocator_[next_version].Initialize(disk.log().alignment(), epoch_); |
| 2672 | |
| 2673 | SystemState next = SystemState{ Action::GrowIndex, Phase::GROW_PREPARE, expected.version }; |
| 2674 | system_state_.store(next); |
| 2675 | |
| 2676 | // Let this thread know it should be growing the index. |
| 2677 | Refresh(); |
| 2678 | return true; |
| 2679 | } |
| 2680 | |
| 2681 | } |
| 2682 | } // namespace FASTER::core |