| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] */ |
| 56 | |
| 57 | #include <openssl/asn1.h> |
| 58 | |
| 59 | #include <string.h> |
| 60 | #include <limits.h> |
| 61 | |
| 62 | #include <openssl/err.h> |
| 63 | #include <openssl/mem.h> |
| 64 | |
| 65 | #include "../internal.h" |
| 66 | |
| 67 | |
| 68 | ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x) |
| 69 | { |
| 70 | return M_ASN1_INTEGER_dup(x); |
| 71 | } |
| 72 | |
| 73 | int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) |
| 74 | { |
| 75 | int neg, ret; |
| 76 | /* Compare signs */ |
| 77 | neg = x->type & V_ASN1_NEG; |
| 78 | if (neg != (y->type & V_ASN1_NEG)) { |
| 79 | if (neg) |
| 80 | return -1; |
| 81 | else |
| 82 | return 1; |
| 83 | } |
| 84 | |
| 85 | ret = ASN1_STRING_cmp(x, y); |
| 86 | |
| 87 | if (neg) |
| 88 | return -ret; |
| 89 | else |
| 90 | return ret; |
| 91 | } |
| 92 | |
| 93 | /* |
| 94 | * This converts an ASN1 INTEGER into its content encoding. |
| 95 | * The internal representation is an ASN1_STRING whose data is a big endian |
| 96 | * representation of the value, ignoring the sign. The sign is determined by |
| 97 | * the type: V_ASN1_INTEGER for positive and V_ASN1_NEG_INTEGER for negative. |
| 98 | * |
| 99 | * Positive integers are no problem: they are almost the same as the DER |
| 100 | * encoding, except if the first byte is >= 0x80 we need to add a zero pad. |
| 101 | * |
| 102 | * Negative integers are a bit trickier... |
| 103 | * The DER representation of negative integers is in 2s complement form. |
| 104 | * The internal form is converted by complementing each octet and finally |
| 105 | * adding one to the result. This can be done less messily with a little trick. |
| 106 | * If the internal form has trailing zeroes then they will become FF by the |
| 107 | * complement and 0 by the add one (due to carry) so just copy as many trailing |
| 108 | * zeros to the destination as there are in the source. The carry will add one |
| 109 | * to the last none zero octet: so complement this octet and add one and finally |
| 110 | * complement any left over until you get to the start of the string. |
| 111 | * |
| 112 | * Padding is a little trickier too. If the first bytes is > 0x80 then we pad |
| 113 | * with 0xff. However if the first byte is 0x80 and one of the following bytes |
| 114 | * is non-zero we pad with 0xff. The reason for this distinction is that 0x80 |
| 115 | * followed by optional zeros isn't padded. |
| 116 | */ |
| 117 | |
| 118 | int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp) |
| 119 | { |
| 120 | int pad = 0, ret, i, neg; |
| 121 | unsigned char *p, *n, pb = 0; |
| 122 | |
| 123 | if (a == NULL) |
| 124 | return (0); |
| 125 | neg = a->type & V_ASN1_NEG; |
| 126 | if (a->length == 0) |
| 127 | ret = 1; |
| 128 | else { |
| 129 | ret = a->length; |
| 130 | i = a->data[0]; |
| 131 | if (ret == 1 && i == 0) |
| 132 | neg = 0; |
| 133 | if (!neg && (i > 127)) { |
| 134 | pad = 1; |
| 135 | pb = 0; |
| 136 | } else if (neg) { |
| 137 | if (i > 128) { |
| 138 | pad = 1; |
| 139 | pb = 0xFF; |
| 140 | } else if (i == 128) { |
| 141 | /* |
| 142 | * Special case: if any other bytes non zero we pad: |
| 143 | * otherwise we don't. |
| 144 | */ |
| 145 | for (i = 1; i < a->length; i++) |
| 146 | if (a->data[i]) { |
| 147 | pad = 1; |
| 148 | pb = 0xFF; |
| 149 | break; |
| 150 | } |
| 151 | } |
| 152 | } |
| 153 | ret += pad; |
| 154 | } |
| 155 | if (pp == NULL) |
| 156 | return (ret); |
| 157 | p = *pp; |
| 158 | |
| 159 | if (pad) |
| 160 | *(p++) = pb; |
| 161 | if (a->length == 0) |
| 162 | *(p++) = 0; |
| 163 | else if (!neg) |
| 164 | OPENSSL_memcpy(p, a->data, (unsigned int)a->length); |
| 165 | else { |
| 166 | /* Begin at the end of the encoding */ |
| 167 | n = a->data + a->length - 1; |
| 168 | p += a->length - 1; |
| 169 | i = a->length; |
| 170 | /* Copy zeros to destination as long as source is zero */ |
| 171 | while (!*n && i > 1) { |
| 172 | *(p--) = 0; |
| 173 | n--; |
| 174 | i--; |
| 175 | } |
| 176 | /* Complement and increment next octet */ |
| 177 | *(p--) = ((*(n--)) ^ 0xff) + 1; |
| 178 | i--; |
| 179 | /* Complement any octets left */ |
| 180 | for (; i > 0; i--) |
| 181 | *(p--) = *(n--) ^ 0xff; |
| 182 | } |
| 183 | |
| 184 | *pp += ret; |
| 185 | return (ret); |
| 186 | } |
| 187 | |
| 188 | /* Convert just ASN1 INTEGER content octets to ASN1_INTEGER structure */ |
| 189 | |
| 190 | ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp, |
| 191 | long len) |
| 192 | { |
| 193 | ASN1_INTEGER *ret = NULL; |
| 194 | const unsigned char *p, *pend; |
| 195 | unsigned char *to, *s; |
| 196 | int i; |
| 197 | |
| 198 | /* |
| 199 | * This function can handle lengths up to INT_MAX - 1, but the rest of the |
| 200 | * legacy ASN.1 code mixes integer types, so avoid exposing it to |
| 201 | * ASN1_INTEGERS with larger lengths. |
| 202 | */ |
| 203 | if (len < 0 || len > INT_MAX / 2) { |
| 204 | OPENSSL_PUT_ERROR(ASN1, ASN1_R_TOO_LONG); |
| 205 | return NULL; |
| 206 | } |
| 207 | |
| 208 | if ((a == NULL) || ((*a) == NULL)) { |
| 209 | if ((ret = M_ASN1_INTEGER_new()) == NULL) |
| 210 | return (NULL); |
| 211 | ret->type = V_ASN1_INTEGER; |
| 212 | } else |
| 213 | ret = (*a); |
| 214 | |
| 215 | p = *pp; |
| 216 | pend = p + len; |
| 217 | |
| 218 | /* |
| 219 | * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies |
| 220 | * a missing NULL parameter. |
| 221 | */ |
| 222 | s = (unsigned char *)OPENSSL_malloc((int)len + 1); |
| 223 | if (s == NULL) { |
| 224 | i = ERR_R_MALLOC_FAILURE; |
| 225 | goto err; |
| 226 | } |
| 227 | to = s; |
| 228 | if (!len) { |
| 229 | /* |
| 230 | * Strictly speaking this is an illegal INTEGER but we tolerate it. |
| 231 | */ |
| 232 | ret->type = V_ASN1_INTEGER; |
| 233 | } else if (*p & 0x80) { /* a negative number */ |
| 234 | ret->type = V_ASN1_NEG_INTEGER; |
| 235 | if ((*p == 0xff) && (len != 1)) { |
| 236 | p++; |
| 237 | len--; |
| 238 | } |
| 239 | i = len; |
| 240 | p += i - 1; |
| 241 | to += i - 1; |
| 242 | while ((!*p) && i) { |
| 243 | *(to--) = 0; |
| 244 | i--; |
| 245 | p--; |
| 246 | } |
| 247 | /* |
| 248 | * Special case: if all zeros then the number will be of the form FF |
| 249 | * followed by n zero bytes: this corresponds to 1 followed by n zero |
| 250 | * bytes. We've already written n zeros so we just append an extra |
| 251 | * one and set the first byte to a 1. This is treated separately |
| 252 | * because it is the only case where the number of bytes is larger |
| 253 | * than len. |
| 254 | */ |
| 255 | if (!i) { |
| 256 | *s = 1; |
| 257 | s[len] = 0; |
| 258 | len++; |
| 259 | } else { |
| 260 | *(to--) = (*(p--) ^ 0xff) + 1; |
| 261 | i--; |
| 262 | for (; i > 0; i--) |
| 263 | *(to--) = *(p--) ^ 0xff; |
| 264 | } |
| 265 | } else { |
| 266 | ret->type = V_ASN1_INTEGER; |
| 267 | if ((*p == 0) && (len != 1)) { |
| 268 | p++; |
| 269 | len--; |
| 270 | } |
| 271 | OPENSSL_memcpy(s, p, (int)len); |
| 272 | } |
| 273 | |
| 274 | if (ret->data != NULL) |
| 275 | OPENSSL_free(ret->data); |
| 276 | ret->data = s; |
| 277 | ret->length = (int)len; |
| 278 | if (a != NULL) |
| 279 | (*a) = ret; |
| 280 | *pp = pend; |
| 281 | return (ret); |
| 282 | err: |
| 283 | OPENSSL_PUT_ERROR(ASN1, i); |
| 284 | if ((ret != NULL) && ((a == NULL) || (*a != ret))) |
| 285 | M_ASN1_INTEGER_free(ret); |
| 286 | return (NULL); |
| 287 | } |
| 288 | |
| 289 | int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) |
| 290 | { |
| 291 | if (v >= 0) { |
| 292 | return ASN1_INTEGER_set_uint64(a, (uint64_t) v); |
| 293 | } |
| 294 | |
| 295 | if (!ASN1_INTEGER_set_uint64(a, 0 - (uint64_t) v)) { |
| 296 | return 0; |
| 297 | } |
| 298 | |
| 299 | a->type = V_ASN1_NEG_INTEGER; |
| 300 | return 1; |
| 301 | } |
| 302 | |
| 303 | int ASN1_INTEGER_set_uint64(ASN1_INTEGER *out, uint64_t v) |
| 304 | { |
| 305 | uint8_t *const newdata = OPENSSL_malloc(sizeof(uint64_t)); |
| 306 | if (newdata == NULL) { |
| 307 | OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); |
| 308 | return 0; |
| 309 | } |
| 310 | |
| 311 | OPENSSL_free(out->data); |
| 312 | out->data = newdata; |
| 313 | v = CRYPTO_bswap8(v); |
| 314 | memcpy(out->data, &v, sizeof(v)); |
| 315 | |
| 316 | out->type = V_ASN1_INTEGER; |
| 317 | |
| 318 | size_t leading_zeros; |
| 319 | for (leading_zeros = 0; leading_zeros < sizeof(uint64_t) - 1; |
| 320 | leading_zeros++) { |
| 321 | if (out->data[leading_zeros] != 0) { |
| 322 | break; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | out->length = sizeof(uint64_t) - leading_zeros; |
| 327 | OPENSSL_memmove(out->data, out->data + leading_zeros, out->length); |
| 328 | |
| 329 | return 1; |
| 330 | } |
| 331 | |
| 332 | long ASN1_INTEGER_get(const ASN1_INTEGER *a) |
| 333 | { |
| 334 | int neg = 0, i; |
| 335 | |
| 336 | if (a == NULL) |
| 337 | return (0L); |
| 338 | i = a->type; |
| 339 | if (i == V_ASN1_NEG_INTEGER) |
| 340 | neg = 1; |
| 341 | else if (i != V_ASN1_INTEGER) |
| 342 | return -1; |
| 343 | |
| 344 | OPENSSL_STATIC_ASSERT(sizeof(uint64_t) >= sizeof(long), |
| 345 | "long larger than uint64_t" ); |
| 346 | |
| 347 | if (a->length > (int)sizeof(uint64_t)) { |
| 348 | /* hmm... a bit ugly, return all ones */ |
| 349 | return -1; |
| 350 | } |
| 351 | |
| 352 | uint64_t r64 = 0; |
| 353 | if (a->data != NULL) { |
| 354 | for (i = 0; i < a->length; i++) { |
| 355 | r64 <<= 8; |
| 356 | r64 |= (unsigned char)a->data[i]; |
| 357 | } |
| 358 | |
| 359 | if (r64 > LONG_MAX) { |
| 360 | return -1; |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | long r = (long) r64; |
| 365 | if (neg) |
| 366 | r = -r; |
| 367 | |
| 368 | return r; |
| 369 | } |
| 370 | |
| 371 | ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) |
| 372 | { |
| 373 | ASN1_INTEGER *ret; |
| 374 | int len, j; |
| 375 | |
| 376 | if (ai == NULL) |
| 377 | ret = M_ASN1_INTEGER_new(); |
| 378 | else |
| 379 | ret = ai; |
| 380 | if (ret == NULL) { |
| 381 | OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| 382 | goto err; |
| 383 | } |
| 384 | if (BN_is_negative(bn) && !BN_is_zero(bn)) |
| 385 | ret->type = V_ASN1_NEG_INTEGER; |
| 386 | else |
| 387 | ret->type = V_ASN1_INTEGER; |
| 388 | j = BN_num_bits(bn); |
| 389 | len = ((j == 0) ? 0 : ((j / 8) + 1)); |
| 390 | if (ret->length < len + 4) { |
| 391 | unsigned char *new_data = OPENSSL_realloc(ret->data, len + 4); |
| 392 | if (!new_data) { |
| 393 | OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); |
| 394 | goto err; |
| 395 | } |
| 396 | ret->data = new_data; |
| 397 | } |
| 398 | ret->length = BN_bn2bin(bn, ret->data); |
| 399 | /* Correct zero case */ |
| 400 | if (!ret->length) { |
| 401 | ret->data[0] = 0; |
| 402 | ret->length = 1; |
| 403 | } |
| 404 | return (ret); |
| 405 | err: |
| 406 | if (ret != ai) |
| 407 | M_ASN1_INTEGER_free(ret); |
| 408 | return (NULL); |
| 409 | } |
| 410 | |
| 411 | BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) |
| 412 | { |
| 413 | BIGNUM *ret; |
| 414 | |
| 415 | if ((ret = BN_bin2bn(ai->data, ai->length, bn)) == NULL) |
| 416 | OPENSSL_PUT_ERROR(ASN1, ASN1_R_BN_LIB); |
| 417 | else if (ai->type == V_ASN1_NEG_INTEGER) |
| 418 | BN_set_negative(ret, 1); |
| 419 | return (ret); |
| 420 | } |
| 421 | |