1 | /* ==================================================================== |
2 | * Copyright (c) 2006 The OpenSSL Project. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in |
13 | * the documentation and/or other materials provided with the |
14 | * distribution. |
15 | * |
16 | * 3. All advertising materials mentioning features or use of this |
17 | * software must display the following acknowledgment: |
18 | * "This product includes software developed by the OpenSSL Project |
19 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
20 | * |
21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
22 | * endorse or promote products derived from this software without |
23 | * prior written permission. For written permission, please contact |
24 | * licensing@OpenSSL.org. |
25 | * |
26 | * 5. Products derived from this software may not be called "OpenSSL" |
27 | * nor may "OpenSSL" appear in their names without prior written |
28 | * permission of the OpenSSL Project. |
29 | * |
30 | * 6. Redistributions of any form whatsoever must retain the following |
31 | * acknowledgment: |
32 | * "This product includes software developed by the OpenSSL Project |
33 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
34 | * |
35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
46 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
47 | * ==================================================================== |
48 | * |
49 | * This product includes cryptographic software written by Eric Young |
50 | * (eay@cryptsoft.com). This product includes software written by Tim |
51 | * Hudson (tjh@cryptsoft.com). */ |
52 | |
53 | #include <openssl/evp.h> |
54 | |
55 | #include <openssl/bio.h> |
56 | #include <openssl/bn.h> |
57 | #include <openssl/dsa.h> |
58 | #include <openssl/ec.h> |
59 | #include <openssl/ec_key.h> |
60 | #include <openssl/mem.h> |
61 | #include <openssl/rsa.h> |
62 | |
63 | #include "../internal.h" |
64 | #include "../fipsmodule/rsa/internal.h" |
65 | |
66 | |
67 | static int bn_print(BIO *bp, const char *number, const BIGNUM *num, |
68 | uint8_t *buf, int off) { |
69 | if (num == NULL) { |
70 | return 1; |
71 | } |
72 | |
73 | if (!BIO_indent(bp, off, 128)) { |
74 | return 0; |
75 | } |
76 | if (BN_is_zero(num)) { |
77 | if (BIO_printf(bp, "%s 0\n" , number) <= 0) { |
78 | return 0; |
79 | } |
80 | return 1; |
81 | } |
82 | |
83 | if (BN_num_bytes(num) <= sizeof(long)) { |
84 | const char *neg = BN_is_negative(num) ? "-" : "" ; |
85 | if (BIO_printf(bp, "%s %s%lu (%s0x%lx)\n" , number, neg, |
86 | (unsigned long)num->d[0], neg, |
87 | (unsigned long)num->d[0]) <= 0) { |
88 | return 0; |
89 | } |
90 | } else { |
91 | buf[0] = 0; |
92 | if (BIO_printf(bp, "%s%s" , number, |
93 | (BN_is_negative(num)) ? " (Negative)" : "" ) <= 0) { |
94 | return 0; |
95 | } |
96 | int n = BN_bn2bin(num, &buf[1]); |
97 | |
98 | if (buf[1] & 0x80) { |
99 | n++; |
100 | } else { |
101 | buf++; |
102 | } |
103 | |
104 | int i; |
105 | for (i = 0; i < n; i++) { |
106 | if ((i % 15) == 0) { |
107 | if (BIO_puts(bp, "\n" ) <= 0 || |
108 | !BIO_indent(bp, off + 4, 128)) { |
109 | return 0; |
110 | } |
111 | } |
112 | if (BIO_printf(bp, "%02x%s" , buf[i], ((i + 1) == n) ? "" : ":" ) <= 0) { |
113 | return 0; |
114 | } |
115 | } |
116 | if (BIO_write(bp, "\n" , 1) <= 0) { |
117 | return 0; |
118 | } |
119 | } |
120 | return 1; |
121 | } |
122 | |
123 | static void update_buflen(const BIGNUM *b, size_t *pbuflen) { |
124 | if (!b) { |
125 | return; |
126 | } |
127 | |
128 | size_t len = BN_num_bytes(b); |
129 | if (*pbuflen < len) { |
130 | *pbuflen = len; |
131 | } |
132 | } |
133 | |
134 | // RSA keys. |
135 | |
136 | static int do_rsa_print(BIO *out, const RSA *rsa, int off, |
137 | int include_private) { |
138 | const char *s, *str; |
139 | uint8_t *m = NULL; |
140 | int ret = 0, mod_len = 0; |
141 | size_t buf_len = 0; |
142 | |
143 | update_buflen(rsa->n, &buf_len); |
144 | update_buflen(rsa->e, &buf_len); |
145 | |
146 | if (include_private) { |
147 | update_buflen(rsa->d, &buf_len); |
148 | update_buflen(rsa->p, &buf_len); |
149 | update_buflen(rsa->q, &buf_len); |
150 | update_buflen(rsa->dmp1, &buf_len); |
151 | update_buflen(rsa->dmq1, &buf_len); |
152 | update_buflen(rsa->iqmp, &buf_len); |
153 | } |
154 | |
155 | m = (uint8_t *)OPENSSL_malloc(buf_len + 10); |
156 | if (m == NULL) { |
157 | OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
158 | goto err; |
159 | } |
160 | |
161 | if (rsa->n != NULL) { |
162 | mod_len = BN_num_bits(rsa->n); |
163 | } |
164 | |
165 | if (!BIO_indent(out, off, 128)) { |
166 | goto err; |
167 | } |
168 | |
169 | if (include_private && rsa->d) { |
170 | if (BIO_printf(out, "Private-Key: (%d bit)\n" , mod_len) <= 0) { |
171 | goto err; |
172 | } |
173 | str = "modulus:" ; |
174 | s = "publicExponent:" ; |
175 | } else { |
176 | if (BIO_printf(out, "Public-Key: (%d bit)\n" , mod_len) <= 0) { |
177 | goto err; |
178 | } |
179 | str = "Modulus:" ; |
180 | s = "Exponent:" ; |
181 | } |
182 | if (!bn_print(out, str, rsa->n, m, off) || |
183 | !bn_print(out, s, rsa->e, m, off)) { |
184 | goto err; |
185 | } |
186 | |
187 | if (include_private) { |
188 | if (!bn_print(out, "privateExponent:" , rsa->d, m, off) || |
189 | !bn_print(out, "prime1:" , rsa->p, m, off) || |
190 | !bn_print(out, "prime2:" , rsa->q, m, off) || |
191 | !bn_print(out, "exponent1:" , rsa->dmp1, m, off) || |
192 | !bn_print(out, "exponent2:" , rsa->dmq1, m, off) || |
193 | !bn_print(out, "coefficient:" , rsa->iqmp, m, off)) { |
194 | goto err; |
195 | } |
196 | } |
197 | ret = 1; |
198 | |
199 | err: |
200 | OPENSSL_free(m); |
201 | return ret; |
202 | } |
203 | |
204 | static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
205 | ASN1_PCTX *ctx) { |
206 | return do_rsa_print(bp, pkey->pkey.rsa, indent, 0); |
207 | } |
208 | |
209 | static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
210 | ASN1_PCTX *ctx) { |
211 | return do_rsa_print(bp, pkey->pkey.rsa, indent, 1); |
212 | } |
213 | |
214 | |
215 | // DSA keys. |
216 | |
217 | static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { |
218 | uint8_t *m = NULL; |
219 | int ret = 0; |
220 | size_t buf_len = 0; |
221 | const char *ktype = NULL; |
222 | |
223 | const BIGNUM *priv_key, *pub_key; |
224 | |
225 | priv_key = NULL; |
226 | if (ptype == 2) { |
227 | priv_key = x->priv_key; |
228 | } |
229 | |
230 | pub_key = NULL; |
231 | if (ptype > 0) { |
232 | pub_key = x->pub_key; |
233 | } |
234 | |
235 | ktype = "DSA-Parameters" ; |
236 | if (ptype == 2) { |
237 | ktype = "Private-Key" ; |
238 | } else if (ptype == 1) { |
239 | ktype = "Public-Key" ; |
240 | } |
241 | |
242 | update_buflen(x->p, &buf_len); |
243 | update_buflen(x->q, &buf_len); |
244 | update_buflen(x->g, &buf_len); |
245 | update_buflen(priv_key, &buf_len); |
246 | update_buflen(pub_key, &buf_len); |
247 | |
248 | m = (uint8_t *)OPENSSL_malloc(buf_len + 10); |
249 | if (m == NULL) { |
250 | OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
251 | goto err; |
252 | } |
253 | |
254 | if (priv_key) { |
255 | if (!BIO_indent(bp, off, 128) || |
256 | BIO_printf(bp, "%s: (%d bit)\n" , ktype, BN_num_bits(x->p)) <= 0) { |
257 | goto err; |
258 | } |
259 | } |
260 | |
261 | if (!bn_print(bp, "priv:" , priv_key, m, off) || |
262 | !bn_print(bp, "pub: " , pub_key, m, off) || |
263 | !bn_print(bp, "P: " , x->p, m, off) || |
264 | !bn_print(bp, "Q: " , x->q, m, off) || |
265 | !bn_print(bp, "G: " , x->g, m, off)) { |
266 | goto err; |
267 | } |
268 | ret = 1; |
269 | |
270 | err: |
271 | OPENSSL_free(m); |
272 | return ret; |
273 | } |
274 | |
275 | static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
276 | ASN1_PCTX *ctx) { |
277 | return do_dsa_print(bp, pkey->pkey.dsa, indent, 0); |
278 | } |
279 | |
280 | static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
281 | ASN1_PCTX *ctx) { |
282 | return do_dsa_print(bp, pkey->pkey.dsa, indent, 1); |
283 | } |
284 | |
285 | static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
286 | ASN1_PCTX *ctx) { |
287 | return do_dsa_print(bp, pkey->pkey.dsa, indent, 2); |
288 | } |
289 | |
290 | |
291 | // EC keys. |
292 | |
293 | static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) { |
294 | uint8_t *buffer = NULL; |
295 | const char *ecstr; |
296 | size_t buf_len = 0, i; |
297 | int ret = 0, reason = ERR_R_BIO_LIB; |
298 | BIGNUM *order = NULL; |
299 | BN_CTX *ctx = NULL; |
300 | const EC_GROUP *group; |
301 | const EC_POINT *public_key; |
302 | const BIGNUM *priv_key; |
303 | uint8_t *pub_key_bytes = NULL; |
304 | size_t pub_key_bytes_len = 0; |
305 | |
306 | if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { |
307 | reason = ERR_R_PASSED_NULL_PARAMETER; |
308 | goto err; |
309 | } |
310 | |
311 | ctx = BN_CTX_new(); |
312 | if (ctx == NULL) { |
313 | reason = ERR_R_MALLOC_FAILURE; |
314 | goto err; |
315 | } |
316 | |
317 | if (ktype > 0) { |
318 | public_key = EC_KEY_get0_public_key(x); |
319 | if (public_key != NULL) { |
320 | pub_key_bytes_len = EC_POINT_point2oct( |
321 | group, public_key, EC_KEY_get_conv_form(x), NULL, 0, ctx); |
322 | if (pub_key_bytes_len == 0) { |
323 | reason = ERR_R_MALLOC_FAILURE; |
324 | goto err; |
325 | } |
326 | pub_key_bytes = OPENSSL_malloc(pub_key_bytes_len); |
327 | if (pub_key_bytes == NULL) { |
328 | reason = ERR_R_MALLOC_FAILURE; |
329 | goto err; |
330 | } |
331 | pub_key_bytes_len = |
332 | EC_POINT_point2oct(group, public_key, EC_KEY_get_conv_form(x), |
333 | pub_key_bytes, pub_key_bytes_len, ctx); |
334 | if (pub_key_bytes_len == 0) { |
335 | reason = ERR_R_MALLOC_FAILURE; |
336 | goto err; |
337 | } |
338 | buf_len = pub_key_bytes_len; |
339 | } |
340 | } |
341 | |
342 | if (ktype == 2) { |
343 | priv_key = EC_KEY_get0_private_key(x); |
344 | if (priv_key && (i = (size_t)BN_num_bytes(priv_key)) > buf_len) { |
345 | buf_len = i; |
346 | } |
347 | } else { |
348 | priv_key = NULL; |
349 | } |
350 | |
351 | if (ktype > 0) { |
352 | buf_len += 10; |
353 | if ((buffer = OPENSSL_malloc(buf_len)) == NULL) { |
354 | reason = ERR_R_MALLOC_FAILURE; |
355 | goto err; |
356 | } |
357 | } |
358 | if (ktype == 2) { |
359 | ecstr = "Private-Key" ; |
360 | } else if (ktype == 1) { |
361 | ecstr = "Public-Key" ; |
362 | } else { |
363 | ecstr = "ECDSA-Parameters" ; |
364 | } |
365 | |
366 | if (!BIO_indent(bp, off, 128)) { |
367 | goto err; |
368 | } |
369 | order = BN_new(); |
370 | if (order == NULL || !EC_GROUP_get_order(group, order, NULL) || |
371 | BIO_printf(bp, "%s: (%d bit)\n" , ecstr, BN_num_bits(order)) <= 0) { |
372 | goto err; |
373 | } |
374 | |
375 | if ((priv_key != NULL) && |
376 | !bn_print(bp, "priv:" , priv_key, buffer, off)) { |
377 | goto err; |
378 | } |
379 | if (pub_key_bytes != NULL) { |
380 | BIO_hexdump(bp, pub_key_bytes, pub_key_bytes_len, off); |
381 | } |
382 | // TODO(fork): implement |
383 | /* |
384 | if (!ECPKParameters_print(bp, group, off)) |
385 | goto err; */ |
386 | ret = 1; |
387 | |
388 | err: |
389 | if (!ret) { |
390 | OPENSSL_PUT_ERROR(EVP, reason); |
391 | } |
392 | OPENSSL_free(pub_key_bytes); |
393 | BN_free(order); |
394 | BN_CTX_free(ctx); |
395 | OPENSSL_free(buffer); |
396 | return ret; |
397 | } |
398 | |
399 | static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
400 | ASN1_PCTX *ctx) { |
401 | return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 0); |
402 | } |
403 | |
404 | static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
405 | ASN1_PCTX *ctx) { |
406 | return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 1); |
407 | } |
408 | |
409 | |
410 | static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
411 | ASN1_PCTX *ctx) { |
412 | return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 2); |
413 | } |
414 | |
415 | |
416 | typedef struct { |
417 | int type; |
418 | int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); |
419 | int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent, |
420 | ASN1_PCTX *pctx); |
421 | int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent, |
422 | ASN1_PCTX *pctx); |
423 | } EVP_PKEY_PRINT_METHOD; |
424 | |
425 | static EVP_PKEY_PRINT_METHOD kPrintMethods[] = { |
426 | { |
427 | EVP_PKEY_RSA, |
428 | rsa_pub_print, |
429 | rsa_priv_print, |
430 | NULL /* param_print */, |
431 | }, |
432 | { |
433 | EVP_PKEY_DSA, |
434 | dsa_pub_print, |
435 | dsa_priv_print, |
436 | dsa_param_print, |
437 | }, |
438 | { |
439 | EVP_PKEY_EC, |
440 | eckey_pub_print, |
441 | eckey_priv_print, |
442 | eckey_param_print, |
443 | }, |
444 | }; |
445 | |
446 | static size_t kPrintMethodsLen = OPENSSL_ARRAY_SIZE(kPrintMethods); |
447 | |
448 | static EVP_PKEY_PRINT_METHOD *find_method(int type) { |
449 | for (size_t i = 0; i < kPrintMethodsLen; i++) { |
450 | if (kPrintMethods[i].type == type) { |
451 | return &kPrintMethods[i]; |
452 | } |
453 | } |
454 | return NULL; |
455 | } |
456 | |
457 | static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent, |
458 | const char *kstr) { |
459 | BIO_indent(out, indent, 128); |
460 | BIO_printf(out, "%s algorithm unsupported\n" , kstr); |
461 | return 1; |
462 | } |
463 | |
464 | int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, |
465 | ASN1_PCTX *pctx) { |
466 | EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
467 | if (method != NULL && method->pub_print != NULL) { |
468 | return method->pub_print(out, pkey, indent, pctx); |
469 | } |
470 | return print_unsupported(out, pkey, indent, "Public Key" ); |
471 | } |
472 | |
473 | int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, |
474 | ASN1_PCTX *pctx) { |
475 | EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
476 | if (method != NULL && method->priv_print != NULL) { |
477 | return method->priv_print(out, pkey, indent, pctx); |
478 | } |
479 | return print_unsupported(out, pkey, indent, "Private Key" ); |
480 | } |
481 | |
482 | int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, |
483 | ASN1_PCTX *pctx) { |
484 | EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
485 | if (method != NULL && method->param_print != NULL) { |
486 | return method->param_print(out, pkey, indent, pctx); |
487 | } |
488 | return print_unsupported(out, pkey, indent, "Parameters" ); |
489 | } |
490 | |