1 | /* ==================================================================== |
2 | * Copyright (c) 2011 The OpenSSL Project. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in |
13 | * the documentation and/or other materials provided with the |
14 | * distribution. |
15 | * |
16 | * 3. All advertising materials mentioning features or use of this |
17 | * software must display the following acknowledgment: |
18 | * "This product includes software developed by the OpenSSL Project |
19 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
20 | * |
21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
22 | * endorse or promote products derived from this software without |
23 | * prior written permission. For written permission, please contact |
24 | * openssl-core@openssl.org. |
25 | * |
26 | * 5. Products derived from this software may not be called "OpenSSL" |
27 | * nor may "OpenSSL" appear in their names without prior written |
28 | * permission of the OpenSSL Project. |
29 | * |
30 | * 6. Redistributions of any form whatsoever must retain the following |
31 | * acknowledgment: |
32 | * "This product includes software developed by the OpenSSL Project |
33 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
34 | * |
35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
46 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
47 | * ==================================================================== |
48 | */ |
49 | |
50 | #include <assert.h> |
51 | #include <string.h> |
52 | |
53 | #include <openssl/cpu.h> |
54 | #include <openssl/mem.h> |
55 | |
56 | #include "../../internal.h" |
57 | #include "internal.h" |
58 | |
59 | |
60 | struct ccm128_state { |
61 | union { |
62 | uint64_t u[2]; |
63 | uint8_t c[16]; |
64 | } nonce, cmac; |
65 | }; |
66 | |
67 | int CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, const AES_KEY *key, |
68 | block128_f block, ctr128_f ctr, unsigned M, unsigned L) { |
69 | if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) { |
70 | return 0; |
71 | } |
72 | ctx->block = block; |
73 | ctx->ctr = ctr; |
74 | ctx->M = M; |
75 | ctx->L = L; |
76 | return 1; |
77 | } |
78 | |
79 | size_t CRYPTO_ccm128_max_input(const CCM128_CONTEXT *ctx) { |
80 | return ctx->L >= sizeof(size_t) ? (size_t)-1 |
81 | : (((size_t)1) << (ctx->L * 8)) - 1; |
82 | } |
83 | |
84 | static int ccm128_init_state(const CCM128_CONTEXT *ctx, |
85 | struct ccm128_state *state, const AES_KEY *key, |
86 | const uint8_t *nonce, size_t nonce_len, |
87 | const uint8_t *aad, size_t aad_len, |
88 | size_t plaintext_len) { |
89 | const block128_f block = ctx->block; |
90 | const unsigned M = ctx->M; |
91 | const unsigned L = ctx->L; |
92 | |
93 | // |L| determines the expected |nonce_len| and the limit for |plaintext_len|. |
94 | if (plaintext_len > CRYPTO_ccm128_max_input(ctx) || |
95 | nonce_len != 15 - L) { |
96 | return 0; |
97 | } |
98 | |
99 | // Assemble the first block for computing the MAC. |
100 | OPENSSL_memset(state, 0, sizeof(*state)); |
101 | state->nonce.c[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3); |
102 | if (aad_len != 0) { |
103 | state->nonce.c[0] |= 0x40; // Set AAD Flag |
104 | } |
105 | OPENSSL_memcpy(&state->nonce.c[1], nonce, nonce_len); |
106 | for (unsigned i = 0; i < L; i++) { |
107 | state->nonce.c[15 - i] = (uint8_t)(plaintext_len >> (8 * i)); |
108 | } |
109 | |
110 | (*block)(state->nonce.c, state->cmac.c, key); |
111 | size_t blocks = 1; |
112 | |
113 | if (aad_len != 0) { |
114 | unsigned i; |
115 | // Cast to u64 to avoid the compiler complaining about invalid shifts. |
116 | uint64_t aad_len_u64 = aad_len; |
117 | if (aad_len_u64 < 0x10000 - 0x100) { |
118 | state->cmac.c[0] ^= (uint8_t)(aad_len_u64 >> 8); |
119 | state->cmac.c[1] ^= (uint8_t)aad_len_u64; |
120 | i = 2; |
121 | } else if (aad_len_u64 <= 0xffffffff) { |
122 | state->cmac.c[0] ^= 0xff; |
123 | state->cmac.c[1] ^= 0xfe; |
124 | state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 24); |
125 | state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 16); |
126 | state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 8); |
127 | state->cmac.c[5] ^= (uint8_t)aad_len_u64; |
128 | i = 6; |
129 | } else { |
130 | state->cmac.c[0] ^= 0xff; |
131 | state->cmac.c[1] ^= 0xff; |
132 | state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 56); |
133 | state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 48); |
134 | state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 40); |
135 | state->cmac.c[5] ^= (uint8_t)(aad_len_u64 >> 32); |
136 | state->cmac.c[6] ^= (uint8_t)(aad_len_u64 >> 24); |
137 | state->cmac.c[7] ^= (uint8_t)(aad_len_u64 >> 16); |
138 | state->cmac.c[8] ^= (uint8_t)(aad_len_u64 >> 8); |
139 | state->cmac.c[9] ^= (uint8_t)aad_len_u64; |
140 | i = 10; |
141 | } |
142 | |
143 | do { |
144 | for (; i < 16 && aad_len != 0; i++) { |
145 | state->cmac.c[i] ^= *aad; |
146 | aad++; |
147 | aad_len--; |
148 | } |
149 | (*block)(state->cmac.c, state->cmac.c, key); |
150 | blocks++; |
151 | i = 0; |
152 | } while (aad_len != 0); |
153 | } |
154 | |
155 | // Per RFC 3610, section 2.6, the total number of block cipher operations done |
156 | // must not exceed 2^61. There are two block cipher operations remaining per |
157 | // message block, plus one block at the end to encrypt the MAC. |
158 | size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1; |
159 | if (plaintext_len + 15 < plaintext_len || |
160 | remaining_blocks + blocks < blocks || |
161 | (uint64_t) remaining_blocks + blocks > UINT64_C(1) << 61) { |
162 | return 0; |
163 | } |
164 | |
165 | // Assemble the first block for encrypting and decrypting. The bottom |L| |
166 | // bytes are replaced with a counter and all bit the encoding of |L| is |
167 | // cleared in the first byte. |
168 | state->nonce.c[0] &= 7; |
169 | return 1; |
170 | } |
171 | |
172 | static int ccm128_encrypt(const CCM128_CONTEXT *ctx, struct ccm128_state *state, |
173 | const AES_KEY *key, uint8_t *out, const uint8_t *in, |
174 | size_t len) { |
175 | // The counter for encryption begins at one. |
176 | for (unsigned i = 0; i < ctx->L; i++) { |
177 | state->nonce.c[15 - i] = 0; |
178 | } |
179 | state->nonce.c[15] = 1; |
180 | |
181 | uint8_t partial_buf[16]; |
182 | unsigned num = 0; |
183 | if (ctx->ctr != NULL) { |
184 | CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce.c, partial_buf, |
185 | &num, ctx->ctr); |
186 | } else { |
187 | CRYPTO_ctr128_encrypt(in, out, len, key, state->nonce.c, partial_buf, &num, |
188 | ctx->block); |
189 | } |
190 | return 1; |
191 | } |
192 | |
193 | static int ccm128_compute_mac(const CCM128_CONTEXT *ctx, |
194 | struct ccm128_state *state, const AES_KEY *key, |
195 | uint8_t *out_tag, size_t tag_len, |
196 | const uint8_t *in, size_t len) { |
197 | block128_f block = ctx->block; |
198 | if (tag_len != ctx->M) { |
199 | return 0; |
200 | } |
201 | |
202 | // Incorporate |in| into the MAC. |
203 | union { |
204 | uint64_t u[2]; |
205 | uint8_t c[16]; |
206 | } tmp; |
207 | while (len >= 16) { |
208 | OPENSSL_memcpy(tmp.c, in, 16); |
209 | state->cmac.u[0] ^= tmp.u[0]; |
210 | state->cmac.u[1] ^= tmp.u[1]; |
211 | (*block)(state->cmac.c, state->cmac.c, key); |
212 | in += 16; |
213 | len -= 16; |
214 | } |
215 | if (len > 0) { |
216 | for (size_t i = 0; i < len; i++) { |
217 | state->cmac.c[i] ^= in[i]; |
218 | } |
219 | (*block)(state->cmac.c, state->cmac.c, key); |
220 | } |
221 | |
222 | // Encrypt the MAC with counter zero. |
223 | for (unsigned i = 0; i < ctx->L; i++) { |
224 | state->nonce.c[15 - i] = 0; |
225 | } |
226 | (*block)(state->nonce.c, tmp.c, key); |
227 | state->cmac.u[0] ^= tmp.u[0]; |
228 | state->cmac.u[1] ^= tmp.u[1]; |
229 | |
230 | OPENSSL_memcpy(out_tag, state->cmac.c, tag_len); |
231 | return 1; |
232 | } |
233 | |
234 | int CRYPTO_ccm128_encrypt(const CCM128_CONTEXT *ctx, const AES_KEY *key, |
235 | uint8_t *out, uint8_t *out_tag, size_t tag_len, |
236 | const uint8_t *nonce, size_t nonce_len, |
237 | const uint8_t *in, size_t len, const uint8_t *aad, |
238 | size_t aad_len) { |
239 | struct ccm128_state state; |
240 | return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, |
241 | len) && |
242 | ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) && |
243 | ccm128_encrypt(ctx, &state, key, out, in, len); |
244 | } |
245 | |
246 | int CRYPTO_ccm128_decrypt(const CCM128_CONTEXT *ctx, const AES_KEY *key, |
247 | uint8_t *out, uint8_t *out_tag, size_t tag_len, |
248 | const uint8_t *nonce, size_t nonce_len, |
249 | const uint8_t *in, size_t len, const uint8_t *aad, |
250 | size_t aad_len) { |
251 | struct ccm128_state state; |
252 | return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, |
253 | len) && |
254 | ccm128_encrypt(ctx, &state, key, out, in, len) && |
255 | ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len); |
256 | } |
257 | |