| 1 | /* ==================================================================== |
| 2 | * Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * |
| 11 | * 2. Redistributions in binary form must reproduce the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer in |
| 13 | * the documentation and/or other materials provided with the |
| 14 | * distribution. |
| 15 | * |
| 16 | * 3. All advertising materials mentioning features or use of this |
| 17 | * software must display the following acknowledgment: |
| 18 | * "This product includes software developed by the OpenSSL Project |
| 19 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 20 | * |
| 21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 22 | * endorse or promote products derived from this software without |
| 23 | * prior written permission. For written permission, please contact |
| 24 | * openssl-core@openssl.org. |
| 25 | * |
| 26 | * 5. Products derived from this software may not be called "OpenSSL" |
| 27 | * nor may "OpenSSL" appear in their names without prior written |
| 28 | * permission of the OpenSSL Project. |
| 29 | * |
| 30 | * 6. Redistributions of any form whatsoever must retain the following |
| 31 | * acknowledgment: |
| 32 | * "This product includes software developed by the OpenSSL Project |
| 33 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 34 | * |
| 35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 46 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 47 | * ==================================================================== */ |
| 48 | |
| 49 | #include <openssl/base.h> |
| 50 | |
| 51 | #include <assert.h> |
| 52 | #include <string.h> |
| 53 | |
| 54 | #include <openssl/mem.h> |
| 55 | #include <openssl/cpu.h> |
| 56 | |
| 57 | #include "internal.h" |
| 58 | #include "../../internal.h" |
| 59 | |
| 60 | |
| 61 | #define PACK(s) ((size_t)(s) << (sizeof(size_t) * 8 - 16)) |
| 62 | #define REDUCE1BIT(V) \ |
| 63 | do { \ |
| 64 | if (sizeof(size_t) == 8) { \ |
| 65 | uint64_t T = UINT64_C(0xe100000000000000) & (0 - ((V).lo & 1)); \ |
| 66 | (V).lo = ((V).hi << 63) | ((V).lo >> 1); \ |
| 67 | (V).hi = ((V).hi >> 1) ^ T; \ |
| 68 | } else { \ |
| 69 | uint32_t T = 0xe1000000U & (0 - (uint32_t)((V).lo & 1)); \ |
| 70 | (V).lo = ((V).hi << 63) | ((V).lo >> 1); \ |
| 71 | (V).hi = ((V).hi >> 1) ^ ((uint64_t)T << 32); \ |
| 72 | } \ |
| 73 | } while (0) |
| 74 | |
| 75 | // kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four |
| 76 | // bits of a |size_t|. |
| 77 | static const size_t kSizeTWithoutLower4Bits = (size_t) -16; |
| 78 | |
| 79 | void gcm_init_4bit(u128 Htable[16], const uint64_t H[2]) { |
| 80 | u128 V; |
| 81 | |
| 82 | Htable[0].hi = 0; |
| 83 | Htable[0].lo = 0; |
| 84 | V.hi = H[0]; |
| 85 | V.lo = H[1]; |
| 86 | |
| 87 | Htable[8] = V; |
| 88 | REDUCE1BIT(V); |
| 89 | Htable[4] = V; |
| 90 | REDUCE1BIT(V); |
| 91 | Htable[2] = V; |
| 92 | REDUCE1BIT(V); |
| 93 | Htable[1] = V; |
| 94 | Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; |
| 95 | V = Htable[4]; |
| 96 | Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; |
| 97 | Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; |
| 98 | Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; |
| 99 | V = Htable[8]; |
| 100 | Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; |
| 101 | Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; |
| 102 | Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; |
| 103 | Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; |
| 104 | Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; |
| 105 | Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; |
| 106 | Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; |
| 107 | |
| 108 | #if defined(GHASH_ASM) && defined(OPENSSL_ARM) |
| 109 | for (int j = 0; j < 16; ++j) { |
| 110 | V = Htable[j]; |
| 111 | Htable[j].hi = V.lo; |
| 112 | Htable[j].lo = V.hi; |
| 113 | } |
| 114 | #endif |
| 115 | } |
| 116 | |
| 117 | #if !defined(GHASH_ASM) || defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE) |
| 118 | static const size_t rem_4bit[16] = { |
| 119 | PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), |
| 120 | PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), |
| 121 | PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), |
| 122 | PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)}; |
| 123 | |
| 124 | void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]) { |
| 125 | u128 Z; |
| 126 | int cnt = 15; |
| 127 | size_t rem, nlo, nhi; |
| 128 | |
| 129 | nlo = ((const uint8_t *)Xi)[15]; |
| 130 | nhi = nlo >> 4; |
| 131 | nlo &= 0xf; |
| 132 | |
| 133 | Z.hi = Htable[nlo].hi; |
| 134 | Z.lo = Htable[nlo].lo; |
| 135 | |
| 136 | while (1) { |
| 137 | rem = (size_t)Z.lo & 0xf; |
| 138 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| 139 | Z.hi = (Z.hi >> 4); |
| 140 | if (sizeof(size_t) == 8) { |
| 141 | Z.hi ^= rem_4bit[rem]; |
| 142 | } else { |
| 143 | Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| 144 | } |
| 145 | |
| 146 | Z.hi ^= Htable[nhi].hi; |
| 147 | Z.lo ^= Htable[nhi].lo; |
| 148 | |
| 149 | if (--cnt < 0) { |
| 150 | break; |
| 151 | } |
| 152 | |
| 153 | nlo = ((const uint8_t *)Xi)[cnt]; |
| 154 | nhi = nlo >> 4; |
| 155 | nlo &= 0xf; |
| 156 | |
| 157 | rem = (size_t)Z.lo & 0xf; |
| 158 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| 159 | Z.hi = (Z.hi >> 4); |
| 160 | if (sizeof(size_t) == 8) { |
| 161 | Z.hi ^= rem_4bit[rem]; |
| 162 | } else { |
| 163 | Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| 164 | } |
| 165 | |
| 166 | Z.hi ^= Htable[nlo].hi; |
| 167 | Z.lo ^= Htable[nlo].lo; |
| 168 | } |
| 169 | |
| 170 | Xi[0] = CRYPTO_bswap8(Z.hi); |
| 171 | Xi[1] = CRYPTO_bswap8(Z.lo); |
| 172 | } |
| 173 | |
| 174 | // Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for |
| 175 | // details... Compiler-generated code doesn't seem to give any |
| 176 | // performance improvement, at least not on x86[_64]. It's here |
| 177 | // mostly as reference and a placeholder for possible future |
| 178 | // non-trivial optimization[s]... |
| 179 | void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| 180 | size_t len) { |
| 181 | u128 Z; |
| 182 | int cnt; |
| 183 | size_t rem, nlo, nhi; |
| 184 | |
| 185 | do { |
| 186 | cnt = 15; |
| 187 | nlo = ((const uint8_t *)Xi)[15]; |
| 188 | nlo ^= inp[15]; |
| 189 | nhi = nlo >> 4; |
| 190 | nlo &= 0xf; |
| 191 | |
| 192 | Z.hi = Htable[nlo].hi; |
| 193 | Z.lo = Htable[nlo].lo; |
| 194 | |
| 195 | while (1) { |
| 196 | rem = (size_t)Z.lo & 0xf; |
| 197 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| 198 | Z.hi = (Z.hi >> 4); |
| 199 | if (sizeof(size_t) == 8) { |
| 200 | Z.hi ^= rem_4bit[rem]; |
| 201 | } else { |
| 202 | Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| 203 | } |
| 204 | |
| 205 | Z.hi ^= Htable[nhi].hi; |
| 206 | Z.lo ^= Htable[nhi].lo; |
| 207 | |
| 208 | if (--cnt < 0) { |
| 209 | break; |
| 210 | } |
| 211 | |
| 212 | nlo = ((const uint8_t *)Xi)[cnt]; |
| 213 | nlo ^= inp[cnt]; |
| 214 | nhi = nlo >> 4; |
| 215 | nlo &= 0xf; |
| 216 | |
| 217 | rem = (size_t)Z.lo & 0xf; |
| 218 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| 219 | Z.hi = (Z.hi >> 4); |
| 220 | if (sizeof(size_t) == 8) { |
| 221 | Z.hi ^= rem_4bit[rem]; |
| 222 | } else { |
| 223 | Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| 224 | } |
| 225 | |
| 226 | Z.hi ^= Htable[nlo].hi; |
| 227 | Z.lo ^= Htable[nlo].lo; |
| 228 | } |
| 229 | |
| 230 | Xi[0] = CRYPTO_bswap8(Z.hi); |
| 231 | Xi[1] = CRYPTO_bswap8(Z.lo); |
| 232 | } while (inp += 16, len -= 16); |
| 233 | } |
| 234 | #endif // !GHASH_ASM || AARCH64 || PPC64LE |
| 235 | |
| 236 | #define GCM_MUL(ctx, Xi) gcm_gmult_4bit((ctx)->Xi.u, (ctx)->gcm_key.Htable) |
| 237 | #define GHASH(ctx, in, len) \ |
| 238 | gcm_ghash_4bit((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) |
| 239 | // GHASH_CHUNK is "stride parameter" missioned to mitigate cache |
| 240 | // trashing effect. In other words idea is to hash data while it's |
| 241 | // still in L1 cache after encryption pass... |
| 242 | #define GHASH_CHUNK (3 * 1024) |
| 243 | |
| 244 | #if defined(GHASH_ASM_X86_64) || defined(GHASH_ASM_X86) |
| 245 | void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]) { |
| 246 | // Run the existing 4-bit version. |
| 247 | gcm_init_4bit(Htable, Xi); |
| 248 | |
| 249 | // First, swap hi and lo. The "4bit" version places hi first. It treats the |
| 250 | // two fields separately, so the order does not matter, but ghash-ssse3 reads |
| 251 | // the entire state into one 128-bit register. |
| 252 | for (int i = 0; i < 16; i++) { |
| 253 | uint64_t tmp = Htable[i].hi; |
| 254 | Htable[i].hi = Htable[i].lo; |
| 255 | Htable[i].lo = tmp; |
| 256 | } |
| 257 | |
| 258 | // Treat |Htable| as a 16x16 byte table and transpose it. Thus, Htable[i] |
| 259 | // contains the i'th byte of j*H for all j. |
| 260 | uint8_t *Hbytes = (uint8_t *)Htable; |
| 261 | for (int i = 0; i < 16; i++) { |
| 262 | for (int j = 0; j < i; j++) { |
| 263 | uint8_t tmp = Hbytes[16*i + j]; |
| 264 | Hbytes[16*i + j] = Hbytes[16*j + i]; |
| 265 | Hbytes[16*j + i] = tmp; |
| 266 | } |
| 267 | } |
| 268 | } |
| 269 | #endif // GHASH_ASM_X86_64 || GHASH_ASM_X86 |
| 270 | |
| 271 | #ifdef GCM_FUNCREF_4BIT |
| 272 | #undef GCM_MUL |
| 273 | #define GCM_MUL(ctx, Xi) (*gcm_gmult_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable) |
| 274 | #undef GHASH |
| 275 | #define GHASH(ctx, in, len) \ |
| 276 | (*gcm_ghash_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) |
| 277 | #endif // GCM_FUNCREF_4BIT |
| 278 | |
| 279 | void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
| 280 | u128 *out_key, u128 out_table[16], int *out_is_avx, |
| 281 | const uint8_t gcm_key[16]) { |
| 282 | *out_is_avx = 0; |
| 283 | |
| 284 | union { |
| 285 | uint64_t u[2]; |
| 286 | uint8_t c[16]; |
| 287 | } H; |
| 288 | |
| 289 | OPENSSL_memcpy(H.c, gcm_key, 16); |
| 290 | |
| 291 | // H is stored in host byte order |
| 292 | H.u[0] = CRYPTO_bswap8(H.u[0]); |
| 293 | H.u[1] = CRYPTO_bswap8(H.u[1]); |
| 294 | |
| 295 | OPENSSL_memcpy(out_key, H.c, 16); |
| 296 | |
| 297 | #if defined(GHASH_ASM_X86_64) |
| 298 | if (crypto_gcm_clmul_enabled()) { |
| 299 | if (((OPENSSL_ia32cap_get()[1] >> 22) & 0x41) == 0x41) { // AVX+MOVBE |
| 300 | gcm_init_avx(out_table, H.u); |
| 301 | *out_mult = gcm_gmult_avx; |
| 302 | *out_hash = gcm_ghash_avx; |
| 303 | *out_is_avx = 1; |
| 304 | return; |
| 305 | } |
| 306 | gcm_init_clmul(out_table, H.u); |
| 307 | *out_mult = gcm_gmult_clmul; |
| 308 | *out_hash = gcm_ghash_clmul; |
| 309 | return; |
| 310 | } |
| 311 | if (gcm_ssse3_capable()) { |
| 312 | gcm_init_ssse3(out_table, H.u); |
| 313 | *out_mult = gcm_gmult_ssse3; |
| 314 | *out_hash = gcm_ghash_ssse3; |
| 315 | return; |
| 316 | } |
| 317 | #elif defined(GHASH_ASM_X86) |
| 318 | if (crypto_gcm_clmul_enabled()) { |
| 319 | gcm_init_clmul(out_table, H.u); |
| 320 | *out_mult = gcm_gmult_clmul; |
| 321 | *out_hash = gcm_ghash_clmul; |
| 322 | return; |
| 323 | } |
| 324 | if (gcm_ssse3_capable()) { |
| 325 | gcm_init_ssse3(out_table, H.u); |
| 326 | *out_mult = gcm_gmult_ssse3; |
| 327 | *out_hash = gcm_ghash_ssse3; |
| 328 | return; |
| 329 | } |
| 330 | #elif defined(GHASH_ASM_ARM) |
| 331 | if (gcm_pmull_capable()) { |
| 332 | gcm_init_v8(out_table, H.u); |
| 333 | *out_mult = gcm_gmult_v8; |
| 334 | *out_hash = gcm_ghash_v8; |
| 335 | return; |
| 336 | } |
| 337 | |
| 338 | if (gcm_neon_capable()) { |
| 339 | gcm_init_neon(out_table, H.u); |
| 340 | *out_mult = gcm_gmult_neon; |
| 341 | *out_hash = gcm_ghash_neon; |
| 342 | return; |
| 343 | } |
| 344 | #elif defined(GHASH_ASM_PPC64LE) |
| 345 | if (CRYPTO_is_PPC64LE_vcrypto_capable()) { |
| 346 | gcm_init_p8(out_table, H.u); |
| 347 | *out_mult = gcm_gmult_p8; |
| 348 | *out_hash = gcm_ghash_p8; |
| 349 | return; |
| 350 | } |
| 351 | #endif |
| 352 | |
| 353 | gcm_init_4bit(out_table, H.u); |
| 354 | #if defined(GHASH_ASM_X86) |
| 355 | *out_mult = gcm_gmult_4bit_mmx; |
| 356 | *out_hash = gcm_ghash_4bit_mmx; |
| 357 | #else |
| 358 | *out_mult = gcm_gmult_4bit; |
| 359 | *out_hash = gcm_ghash_4bit; |
| 360 | #endif |
| 361 | } |
| 362 | |
| 363 | void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, const AES_KEY *aes_key, |
| 364 | block128_f block, int block_is_hwaes) { |
| 365 | OPENSSL_memset(gcm_key, 0, sizeof(*gcm_key)); |
| 366 | gcm_key->block = block; |
| 367 | |
| 368 | uint8_t ghash_key[16]; |
| 369 | OPENSSL_memset(ghash_key, 0, sizeof(ghash_key)); |
| 370 | (*block)(ghash_key, ghash_key, aes_key); |
| 371 | |
| 372 | int is_avx; |
| 373 | CRYPTO_ghash_init(&gcm_key->gmult, &gcm_key->ghash, &gcm_key->H, |
| 374 | gcm_key->Htable, &is_avx, ghash_key); |
| 375 | |
| 376 | gcm_key->use_aesni_gcm_crypt = (is_avx && block_is_hwaes) ? 1 : 0; |
| 377 | } |
| 378 | |
| 379 | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| 380 | const uint8_t *iv, size_t len) { |
| 381 | #ifdef GCM_FUNCREF_4BIT |
| 382 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| 383 | ctx->gcm_key.gmult; |
| 384 | #endif |
| 385 | |
| 386 | ctx->Yi.u[0] = 0; |
| 387 | ctx->Yi.u[1] = 0; |
| 388 | ctx->Xi.u[0] = 0; |
| 389 | ctx->Xi.u[1] = 0; |
| 390 | ctx->len.u[0] = 0; // AAD length |
| 391 | ctx->len.u[1] = 0; // message length |
| 392 | ctx->ares = 0; |
| 393 | ctx->mres = 0; |
| 394 | |
| 395 | uint32_t ctr; |
| 396 | if (len == 12) { |
| 397 | OPENSSL_memcpy(ctx->Yi.c, iv, 12); |
| 398 | ctx->Yi.c[15] = 1; |
| 399 | ctr = 1; |
| 400 | } else { |
| 401 | uint64_t len0 = len; |
| 402 | |
| 403 | while (len >= 16) { |
| 404 | for (size_t i = 0; i < 16; ++i) { |
| 405 | ctx->Yi.c[i] ^= iv[i]; |
| 406 | } |
| 407 | GCM_MUL(ctx, Yi); |
| 408 | iv += 16; |
| 409 | len -= 16; |
| 410 | } |
| 411 | if (len) { |
| 412 | for (size_t i = 0; i < len; ++i) { |
| 413 | ctx->Yi.c[i] ^= iv[i]; |
| 414 | } |
| 415 | GCM_MUL(ctx, Yi); |
| 416 | } |
| 417 | len0 <<= 3; |
| 418 | ctx->Yi.u[1] ^= CRYPTO_bswap8(len0); |
| 419 | |
| 420 | GCM_MUL(ctx, Yi); |
| 421 | ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| 422 | } |
| 423 | |
| 424 | (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EK0.c, key); |
| 425 | ++ctr; |
| 426 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 427 | } |
| 428 | |
| 429 | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) { |
| 430 | #ifdef GCM_FUNCREF_4BIT |
| 431 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| 432 | ctx->gcm_key.gmult; |
| 433 | #ifdef GHASH |
| 434 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| 435 | size_t len) = ctx->gcm_key.ghash; |
| 436 | #endif |
| 437 | #endif |
| 438 | |
| 439 | if (ctx->len.u[1]) { |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | uint64_t alen = ctx->len.u[0] + len; |
| 444 | if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) { |
| 445 | return 0; |
| 446 | } |
| 447 | ctx->len.u[0] = alen; |
| 448 | |
| 449 | unsigned n = ctx->ares; |
| 450 | if (n) { |
| 451 | while (n && len) { |
| 452 | ctx->Xi.c[n] ^= *(aad++); |
| 453 | --len; |
| 454 | n = (n + 1) % 16; |
| 455 | } |
| 456 | if (n == 0) { |
| 457 | GCM_MUL(ctx, Xi); |
| 458 | } else { |
| 459 | ctx->ares = n; |
| 460 | return 1; |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | // Process a whole number of blocks. |
| 465 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| 466 | if (len_blocks != 0) { |
| 467 | GHASH(ctx, aad, len_blocks); |
| 468 | aad += len_blocks; |
| 469 | len -= len_blocks; |
| 470 | } |
| 471 | |
| 472 | // Process the remainder. |
| 473 | if (len != 0) { |
| 474 | n = (unsigned int)len; |
| 475 | for (size_t i = 0; i < len; ++i) { |
| 476 | ctx->Xi.c[i] ^= aad[i]; |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | ctx->ares = n; |
| 481 | return 1; |
| 482 | } |
| 483 | |
| 484 | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| 485 | const uint8_t *in, uint8_t *out, size_t len) { |
| 486 | block128_f block = ctx->gcm_key.block; |
| 487 | #ifdef GCM_FUNCREF_4BIT |
| 488 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| 489 | ctx->gcm_key.gmult; |
| 490 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| 491 | size_t len) = ctx->gcm_key.ghash; |
| 492 | #endif |
| 493 | |
| 494 | uint64_t mlen = ctx->len.u[1] + len; |
| 495 | if (mlen > ((UINT64_C(1) << 36) - 32) || |
| 496 | (sizeof(len) == 8 && mlen < len)) { |
| 497 | return 0; |
| 498 | } |
| 499 | ctx->len.u[1] = mlen; |
| 500 | |
| 501 | if (ctx->ares) { |
| 502 | // First call to encrypt finalizes GHASH(AAD) |
| 503 | GCM_MUL(ctx, Xi); |
| 504 | ctx->ares = 0; |
| 505 | } |
| 506 | |
| 507 | unsigned n = ctx->mres; |
| 508 | if (n) { |
| 509 | while (n && len) { |
| 510 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| 511 | --len; |
| 512 | n = (n + 1) % 16; |
| 513 | } |
| 514 | if (n == 0) { |
| 515 | GCM_MUL(ctx, Xi); |
| 516 | } else { |
| 517 | ctx->mres = n; |
| 518 | return 1; |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| 523 | while (len >= GHASH_CHUNK) { |
| 524 | size_t j = GHASH_CHUNK; |
| 525 | |
| 526 | while (j) { |
| 527 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| 528 | ++ctr; |
| 529 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 530 | for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
| 531 | store_word_le(out + i, |
| 532 | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
| 533 | } |
| 534 | out += 16; |
| 535 | in += 16; |
| 536 | j -= 16; |
| 537 | } |
| 538 | GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); |
| 539 | len -= GHASH_CHUNK; |
| 540 | } |
| 541 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| 542 | if (len_blocks != 0) { |
| 543 | while (len >= 16) { |
| 544 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| 545 | ++ctr; |
| 546 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 547 | for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
| 548 | store_word_le(out + i, |
| 549 | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
| 550 | } |
| 551 | out += 16; |
| 552 | in += 16; |
| 553 | len -= 16; |
| 554 | } |
| 555 | GHASH(ctx, out - len_blocks, len_blocks); |
| 556 | } |
| 557 | if (len) { |
| 558 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| 559 | ++ctr; |
| 560 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 561 | while (len--) { |
| 562 | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| 563 | ++n; |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | ctx->mres = n; |
| 568 | return 1; |
| 569 | } |
| 570 | |
| 571 | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| 572 | const unsigned char *in, unsigned char *out, |
| 573 | size_t len) { |
| 574 | block128_f block = ctx->gcm_key.block; |
| 575 | #ifdef GCM_FUNCREF_4BIT |
| 576 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| 577 | ctx->gcm_key.gmult; |
| 578 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| 579 | size_t len) = ctx->gcm_key.ghash; |
| 580 | #endif |
| 581 | |
| 582 | uint64_t mlen = ctx->len.u[1] + len; |
| 583 | if (mlen > ((UINT64_C(1) << 36) - 32) || |
| 584 | (sizeof(len) == 8 && mlen < len)) { |
| 585 | return 0; |
| 586 | } |
| 587 | ctx->len.u[1] = mlen; |
| 588 | |
| 589 | if (ctx->ares) { |
| 590 | // First call to decrypt finalizes GHASH(AAD) |
| 591 | GCM_MUL(ctx, Xi); |
| 592 | ctx->ares = 0; |
| 593 | } |
| 594 | |
| 595 | unsigned n = ctx->mres; |
| 596 | if (n) { |
| 597 | while (n && len) { |
| 598 | uint8_t c = *(in++); |
| 599 | *(out++) = c ^ ctx->EKi.c[n]; |
| 600 | ctx->Xi.c[n] ^= c; |
| 601 | --len; |
| 602 | n = (n + 1) % 16; |
| 603 | } |
| 604 | if (n == 0) { |
| 605 | GCM_MUL(ctx, Xi); |
| 606 | } else { |
| 607 | ctx->mres = n; |
| 608 | return 1; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| 613 | while (len >= GHASH_CHUNK) { |
| 614 | size_t j = GHASH_CHUNK; |
| 615 | |
| 616 | GHASH(ctx, in, GHASH_CHUNK); |
| 617 | while (j) { |
| 618 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| 619 | ++ctr; |
| 620 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 621 | for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
| 622 | store_word_le(out + i, |
| 623 | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
| 624 | } |
| 625 | out += 16; |
| 626 | in += 16; |
| 627 | j -= 16; |
| 628 | } |
| 629 | len -= GHASH_CHUNK; |
| 630 | } |
| 631 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| 632 | if (len_blocks != 0) { |
| 633 | GHASH(ctx, in, len_blocks); |
| 634 | while (len >= 16) { |
| 635 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| 636 | ++ctr; |
| 637 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 638 | for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
| 639 | store_word_le(out + i, |
| 640 | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
| 641 | } |
| 642 | out += 16; |
| 643 | in += 16; |
| 644 | len -= 16; |
| 645 | } |
| 646 | } |
| 647 | if (len) { |
| 648 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| 649 | ++ctr; |
| 650 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 651 | while (len--) { |
| 652 | uint8_t c = in[n]; |
| 653 | ctx->Xi.c[n] ^= c; |
| 654 | out[n] = c ^ ctx->EKi.c[n]; |
| 655 | ++n; |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | ctx->mres = n; |
| 660 | return 1; |
| 661 | } |
| 662 | |
| 663 | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| 664 | const uint8_t *in, uint8_t *out, size_t len, |
| 665 | ctr128_f stream) { |
| 666 | #ifdef GCM_FUNCREF_4BIT |
| 667 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| 668 | ctx->gcm_key.gmult; |
| 669 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| 670 | size_t len) = ctx->gcm_key.ghash; |
| 671 | #endif |
| 672 | |
| 673 | uint64_t mlen = ctx->len.u[1] + len; |
| 674 | if (mlen > ((UINT64_C(1) << 36) - 32) || |
| 675 | (sizeof(len) == 8 && mlen < len)) { |
| 676 | return 0; |
| 677 | } |
| 678 | ctx->len.u[1] = mlen; |
| 679 | |
| 680 | if (ctx->ares) { |
| 681 | // First call to encrypt finalizes GHASH(AAD) |
| 682 | GCM_MUL(ctx, Xi); |
| 683 | ctx->ares = 0; |
| 684 | } |
| 685 | |
| 686 | unsigned n = ctx->mres; |
| 687 | if (n) { |
| 688 | while (n && len) { |
| 689 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| 690 | --len; |
| 691 | n = (n + 1) % 16; |
| 692 | } |
| 693 | if (n == 0) { |
| 694 | GCM_MUL(ctx, Xi); |
| 695 | } else { |
| 696 | ctx->mres = n; |
| 697 | return 1; |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | #if defined(AESNI_GCM) |
| 702 | if (ctx->gcm_key.use_aesni_gcm_crypt) { |
| 703 | // |aesni_gcm_encrypt| may not process all the input given to it. It may |
| 704 | // not process *any* of its input if it is deemed too small. |
| 705 | size_t bulk = aesni_gcm_encrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
| 706 | in += bulk; |
| 707 | out += bulk; |
| 708 | len -= bulk; |
| 709 | } |
| 710 | #endif |
| 711 | |
| 712 | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| 713 | while (len >= GHASH_CHUNK) { |
| 714 | (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| 715 | ctr += GHASH_CHUNK / 16; |
| 716 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 717 | GHASH(ctx, out, GHASH_CHUNK); |
| 718 | out += GHASH_CHUNK; |
| 719 | in += GHASH_CHUNK; |
| 720 | len -= GHASH_CHUNK; |
| 721 | } |
| 722 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| 723 | if (len_blocks != 0) { |
| 724 | size_t j = len_blocks / 16; |
| 725 | |
| 726 | (*stream)(in, out, j, key, ctx->Yi.c); |
| 727 | ctr += (unsigned int)j; |
| 728 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 729 | in += len_blocks; |
| 730 | len -= len_blocks; |
| 731 | GHASH(ctx, out, len_blocks); |
| 732 | out += len_blocks; |
| 733 | } |
| 734 | if (len) { |
| 735 | (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); |
| 736 | ++ctr; |
| 737 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 738 | while (len--) { |
| 739 | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| 740 | ++n; |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | ctx->mres = n; |
| 745 | return 1; |
| 746 | } |
| 747 | |
| 748 | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| 749 | const uint8_t *in, uint8_t *out, size_t len, |
| 750 | ctr128_f stream) { |
| 751 | #ifdef GCM_FUNCREF_4BIT |
| 752 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| 753 | ctx->gcm_key.gmult; |
| 754 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| 755 | size_t len) = ctx->gcm_key.ghash; |
| 756 | #endif |
| 757 | |
| 758 | uint64_t mlen = ctx->len.u[1] + len; |
| 759 | if (mlen > ((UINT64_C(1) << 36) - 32) || |
| 760 | (sizeof(len) == 8 && mlen < len)) { |
| 761 | return 0; |
| 762 | } |
| 763 | ctx->len.u[1] = mlen; |
| 764 | |
| 765 | if (ctx->ares) { |
| 766 | // First call to decrypt finalizes GHASH(AAD) |
| 767 | GCM_MUL(ctx, Xi); |
| 768 | ctx->ares = 0; |
| 769 | } |
| 770 | |
| 771 | unsigned n = ctx->mres; |
| 772 | if (n) { |
| 773 | while (n && len) { |
| 774 | uint8_t c = *(in++); |
| 775 | *(out++) = c ^ ctx->EKi.c[n]; |
| 776 | ctx->Xi.c[n] ^= c; |
| 777 | --len; |
| 778 | n = (n + 1) % 16; |
| 779 | } |
| 780 | if (n == 0) { |
| 781 | GCM_MUL(ctx, Xi); |
| 782 | } else { |
| 783 | ctx->mres = n; |
| 784 | return 1; |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | #if defined(AESNI_GCM) |
| 789 | if (ctx->gcm_key.use_aesni_gcm_crypt) { |
| 790 | // |aesni_gcm_decrypt| may not process all the input given to it. It may |
| 791 | // not process *any* of its input if it is deemed too small. |
| 792 | size_t bulk = aesni_gcm_decrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
| 793 | in += bulk; |
| 794 | out += bulk; |
| 795 | len -= bulk; |
| 796 | } |
| 797 | #endif |
| 798 | |
| 799 | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| 800 | while (len >= GHASH_CHUNK) { |
| 801 | GHASH(ctx, in, GHASH_CHUNK); |
| 802 | (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| 803 | ctr += GHASH_CHUNK / 16; |
| 804 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 805 | out += GHASH_CHUNK; |
| 806 | in += GHASH_CHUNK; |
| 807 | len -= GHASH_CHUNK; |
| 808 | } |
| 809 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| 810 | if (len_blocks != 0) { |
| 811 | size_t j = len_blocks / 16; |
| 812 | |
| 813 | GHASH(ctx, in, len_blocks); |
| 814 | (*stream)(in, out, j, key, ctx->Yi.c); |
| 815 | ctr += (unsigned int)j; |
| 816 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 817 | out += len_blocks; |
| 818 | in += len_blocks; |
| 819 | len -= len_blocks; |
| 820 | } |
| 821 | if (len) { |
| 822 | (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); |
| 823 | ++ctr; |
| 824 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| 825 | while (len--) { |
| 826 | uint8_t c = in[n]; |
| 827 | ctx->Xi.c[n] ^= c; |
| 828 | out[n] = c ^ ctx->EKi.c[n]; |
| 829 | ++n; |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | ctx->mres = n; |
| 834 | return 1; |
| 835 | } |
| 836 | |
| 837 | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) { |
| 838 | #ifdef GCM_FUNCREF_4BIT |
| 839 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| 840 | ctx->gcm_key.gmult; |
| 841 | #endif |
| 842 | |
| 843 | if (ctx->mres || ctx->ares) { |
| 844 | GCM_MUL(ctx, Xi); |
| 845 | } |
| 846 | |
| 847 | ctx->Xi.u[0] ^= CRYPTO_bswap8(ctx->len.u[0] << 3); |
| 848 | ctx->Xi.u[1] ^= CRYPTO_bswap8(ctx->len.u[1] << 3); |
| 849 | GCM_MUL(ctx, Xi); |
| 850 | |
| 851 | ctx->Xi.u[0] ^= ctx->EK0.u[0]; |
| 852 | ctx->Xi.u[1] ^= ctx->EK0.u[1]; |
| 853 | |
| 854 | if (tag && len <= sizeof(ctx->Xi)) { |
| 855 | return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0; |
| 856 | } else { |
| 857 | return 0; |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { |
| 862 | CRYPTO_gcm128_finish(ctx, NULL, 0); |
| 863 | OPENSSL_memcpy(tag, ctx->Xi.c, |
| 864 | len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); |
| 865 | } |
| 866 | |
| 867 | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| 868 | int crypto_gcm_clmul_enabled(void) { |
| 869 | #ifdef GHASH_ASM |
| 870 | const uint32_t *ia32cap = OPENSSL_ia32cap_get(); |
| 871 | return (ia32cap[0] & (1 << 24)) && // check FXSR bit |
| 872 | (ia32cap[1] & (1 << 1)); // check PCLMULQDQ bit |
| 873 | #else |
| 874 | return 0; |
| 875 | #endif |
| 876 | } |
| 877 | #endif |
| 878 | |