1 | /* ==================================================================== |
2 | * Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in |
13 | * the documentation and/or other materials provided with the |
14 | * distribution. |
15 | * |
16 | * 3. All advertising materials mentioning features or use of this |
17 | * software must display the following acknowledgment: |
18 | * "This product includes software developed by the OpenSSL Project |
19 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
20 | * |
21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
22 | * endorse or promote products derived from this software without |
23 | * prior written permission. For written permission, please contact |
24 | * openssl-core@openssl.org. |
25 | * |
26 | * 5. Products derived from this software may not be called "OpenSSL" |
27 | * nor may "OpenSSL" appear in their names without prior written |
28 | * permission of the OpenSSL Project. |
29 | * |
30 | * 6. Redistributions of any form whatsoever must retain the following |
31 | * acknowledgment: |
32 | * "This product includes software developed by the OpenSSL Project |
33 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
34 | * |
35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
46 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
47 | * ==================================================================== */ |
48 | |
49 | #include <openssl/base.h> |
50 | |
51 | #include <assert.h> |
52 | #include <string.h> |
53 | |
54 | #include <openssl/mem.h> |
55 | #include <openssl/cpu.h> |
56 | |
57 | #include "internal.h" |
58 | #include "../../internal.h" |
59 | |
60 | |
61 | #define PACK(s) ((size_t)(s) << (sizeof(size_t) * 8 - 16)) |
62 | #define REDUCE1BIT(V) \ |
63 | do { \ |
64 | if (sizeof(size_t) == 8) { \ |
65 | uint64_t T = UINT64_C(0xe100000000000000) & (0 - ((V).lo & 1)); \ |
66 | (V).lo = ((V).hi << 63) | ((V).lo >> 1); \ |
67 | (V).hi = ((V).hi >> 1) ^ T; \ |
68 | } else { \ |
69 | uint32_t T = 0xe1000000U & (0 - (uint32_t)((V).lo & 1)); \ |
70 | (V).lo = ((V).hi << 63) | ((V).lo >> 1); \ |
71 | (V).hi = ((V).hi >> 1) ^ ((uint64_t)T << 32); \ |
72 | } \ |
73 | } while (0) |
74 | |
75 | // kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four |
76 | // bits of a |size_t|. |
77 | static const size_t kSizeTWithoutLower4Bits = (size_t) -16; |
78 | |
79 | void gcm_init_4bit(u128 Htable[16], const uint64_t H[2]) { |
80 | u128 V; |
81 | |
82 | Htable[0].hi = 0; |
83 | Htable[0].lo = 0; |
84 | V.hi = H[0]; |
85 | V.lo = H[1]; |
86 | |
87 | Htable[8] = V; |
88 | REDUCE1BIT(V); |
89 | Htable[4] = V; |
90 | REDUCE1BIT(V); |
91 | Htable[2] = V; |
92 | REDUCE1BIT(V); |
93 | Htable[1] = V; |
94 | Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; |
95 | V = Htable[4]; |
96 | Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; |
97 | Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; |
98 | Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; |
99 | V = Htable[8]; |
100 | Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; |
101 | Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; |
102 | Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; |
103 | Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; |
104 | Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; |
105 | Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; |
106 | Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; |
107 | |
108 | #if defined(GHASH_ASM) && defined(OPENSSL_ARM) |
109 | for (int j = 0; j < 16; ++j) { |
110 | V = Htable[j]; |
111 | Htable[j].hi = V.lo; |
112 | Htable[j].lo = V.hi; |
113 | } |
114 | #endif |
115 | } |
116 | |
117 | #if !defined(GHASH_ASM) || defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE) |
118 | static const size_t rem_4bit[16] = { |
119 | PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), |
120 | PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), |
121 | PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), |
122 | PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)}; |
123 | |
124 | void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]) { |
125 | u128 Z; |
126 | int cnt = 15; |
127 | size_t rem, nlo, nhi; |
128 | |
129 | nlo = ((const uint8_t *)Xi)[15]; |
130 | nhi = nlo >> 4; |
131 | nlo &= 0xf; |
132 | |
133 | Z.hi = Htable[nlo].hi; |
134 | Z.lo = Htable[nlo].lo; |
135 | |
136 | while (1) { |
137 | rem = (size_t)Z.lo & 0xf; |
138 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
139 | Z.hi = (Z.hi >> 4); |
140 | if (sizeof(size_t) == 8) { |
141 | Z.hi ^= rem_4bit[rem]; |
142 | } else { |
143 | Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
144 | } |
145 | |
146 | Z.hi ^= Htable[nhi].hi; |
147 | Z.lo ^= Htable[nhi].lo; |
148 | |
149 | if (--cnt < 0) { |
150 | break; |
151 | } |
152 | |
153 | nlo = ((const uint8_t *)Xi)[cnt]; |
154 | nhi = nlo >> 4; |
155 | nlo &= 0xf; |
156 | |
157 | rem = (size_t)Z.lo & 0xf; |
158 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
159 | Z.hi = (Z.hi >> 4); |
160 | if (sizeof(size_t) == 8) { |
161 | Z.hi ^= rem_4bit[rem]; |
162 | } else { |
163 | Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
164 | } |
165 | |
166 | Z.hi ^= Htable[nlo].hi; |
167 | Z.lo ^= Htable[nlo].lo; |
168 | } |
169 | |
170 | Xi[0] = CRYPTO_bswap8(Z.hi); |
171 | Xi[1] = CRYPTO_bswap8(Z.lo); |
172 | } |
173 | |
174 | // Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for |
175 | // details... Compiler-generated code doesn't seem to give any |
176 | // performance improvement, at least not on x86[_64]. It's here |
177 | // mostly as reference and a placeholder for possible future |
178 | // non-trivial optimization[s]... |
179 | void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
180 | size_t len) { |
181 | u128 Z; |
182 | int cnt; |
183 | size_t rem, nlo, nhi; |
184 | |
185 | do { |
186 | cnt = 15; |
187 | nlo = ((const uint8_t *)Xi)[15]; |
188 | nlo ^= inp[15]; |
189 | nhi = nlo >> 4; |
190 | nlo &= 0xf; |
191 | |
192 | Z.hi = Htable[nlo].hi; |
193 | Z.lo = Htable[nlo].lo; |
194 | |
195 | while (1) { |
196 | rem = (size_t)Z.lo & 0xf; |
197 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
198 | Z.hi = (Z.hi >> 4); |
199 | if (sizeof(size_t) == 8) { |
200 | Z.hi ^= rem_4bit[rem]; |
201 | } else { |
202 | Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
203 | } |
204 | |
205 | Z.hi ^= Htable[nhi].hi; |
206 | Z.lo ^= Htable[nhi].lo; |
207 | |
208 | if (--cnt < 0) { |
209 | break; |
210 | } |
211 | |
212 | nlo = ((const uint8_t *)Xi)[cnt]; |
213 | nlo ^= inp[cnt]; |
214 | nhi = nlo >> 4; |
215 | nlo &= 0xf; |
216 | |
217 | rem = (size_t)Z.lo & 0xf; |
218 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
219 | Z.hi = (Z.hi >> 4); |
220 | if (sizeof(size_t) == 8) { |
221 | Z.hi ^= rem_4bit[rem]; |
222 | } else { |
223 | Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
224 | } |
225 | |
226 | Z.hi ^= Htable[nlo].hi; |
227 | Z.lo ^= Htable[nlo].lo; |
228 | } |
229 | |
230 | Xi[0] = CRYPTO_bswap8(Z.hi); |
231 | Xi[1] = CRYPTO_bswap8(Z.lo); |
232 | } while (inp += 16, len -= 16); |
233 | } |
234 | #endif // !GHASH_ASM || AARCH64 || PPC64LE |
235 | |
236 | #define GCM_MUL(ctx, Xi) gcm_gmult_4bit((ctx)->Xi.u, (ctx)->gcm_key.Htable) |
237 | #define GHASH(ctx, in, len) \ |
238 | gcm_ghash_4bit((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) |
239 | // GHASH_CHUNK is "stride parameter" missioned to mitigate cache |
240 | // trashing effect. In other words idea is to hash data while it's |
241 | // still in L1 cache after encryption pass... |
242 | #define GHASH_CHUNK (3 * 1024) |
243 | |
244 | #if defined(GHASH_ASM_X86_64) || defined(GHASH_ASM_X86) |
245 | void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]) { |
246 | // Run the existing 4-bit version. |
247 | gcm_init_4bit(Htable, Xi); |
248 | |
249 | // First, swap hi and lo. The "4bit" version places hi first. It treats the |
250 | // two fields separately, so the order does not matter, but ghash-ssse3 reads |
251 | // the entire state into one 128-bit register. |
252 | for (int i = 0; i < 16; i++) { |
253 | uint64_t tmp = Htable[i].hi; |
254 | Htable[i].hi = Htable[i].lo; |
255 | Htable[i].lo = tmp; |
256 | } |
257 | |
258 | // Treat |Htable| as a 16x16 byte table and transpose it. Thus, Htable[i] |
259 | // contains the i'th byte of j*H for all j. |
260 | uint8_t *Hbytes = (uint8_t *)Htable; |
261 | for (int i = 0; i < 16; i++) { |
262 | for (int j = 0; j < i; j++) { |
263 | uint8_t tmp = Hbytes[16*i + j]; |
264 | Hbytes[16*i + j] = Hbytes[16*j + i]; |
265 | Hbytes[16*j + i] = tmp; |
266 | } |
267 | } |
268 | } |
269 | #endif // GHASH_ASM_X86_64 || GHASH_ASM_X86 |
270 | |
271 | #ifdef GCM_FUNCREF_4BIT |
272 | #undef GCM_MUL |
273 | #define GCM_MUL(ctx, Xi) (*gcm_gmult_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable) |
274 | #undef GHASH |
275 | #define GHASH(ctx, in, len) \ |
276 | (*gcm_ghash_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) |
277 | #endif // GCM_FUNCREF_4BIT |
278 | |
279 | void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
280 | u128 *out_key, u128 out_table[16], int *out_is_avx, |
281 | const uint8_t gcm_key[16]) { |
282 | *out_is_avx = 0; |
283 | |
284 | union { |
285 | uint64_t u[2]; |
286 | uint8_t c[16]; |
287 | } H; |
288 | |
289 | OPENSSL_memcpy(H.c, gcm_key, 16); |
290 | |
291 | // H is stored in host byte order |
292 | H.u[0] = CRYPTO_bswap8(H.u[0]); |
293 | H.u[1] = CRYPTO_bswap8(H.u[1]); |
294 | |
295 | OPENSSL_memcpy(out_key, H.c, 16); |
296 | |
297 | #if defined(GHASH_ASM_X86_64) |
298 | if (crypto_gcm_clmul_enabled()) { |
299 | if (((OPENSSL_ia32cap_get()[1] >> 22) & 0x41) == 0x41) { // AVX+MOVBE |
300 | gcm_init_avx(out_table, H.u); |
301 | *out_mult = gcm_gmult_avx; |
302 | *out_hash = gcm_ghash_avx; |
303 | *out_is_avx = 1; |
304 | return; |
305 | } |
306 | gcm_init_clmul(out_table, H.u); |
307 | *out_mult = gcm_gmult_clmul; |
308 | *out_hash = gcm_ghash_clmul; |
309 | return; |
310 | } |
311 | if (gcm_ssse3_capable()) { |
312 | gcm_init_ssse3(out_table, H.u); |
313 | *out_mult = gcm_gmult_ssse3; |
314 | *out_hash = gcm_ghash_ssse3; |
315 | return; |
316 | } |
317 | #elif defined(GHASH_ASM_X86) |
318 | if (crypto_gcm_clmul_enabled()) { |
319 | gcm_init_clmul(out_table, H.u); |
320 | *out_mult = gcm_gmult_clmul; |
321 | *out_hash = gcm_ghash_clmul; |
322 | return; |
323 | } |
324 | if (gcm_ssse3_capable()) { |
325 | gcm_init_ssse3(out_table, H.u); |
326 | *out_mult = gcm_gmult_ssse3; |
327 | *out_hash = gcm_ghash_ssse3; |
328 | return; |
329 | } |
330 | #elif defined(GHASH_ASM_ARM) |
331 | if (gcm_pmull_capable()) { |
332 | gcm_init_v8(out_table, H.u); |
333 | *out_mult = gcm_gmult_v8; |
334 | *out_hash = gcm_ghash_v8; |
335 | return; |
336 | } |
337 | |
338 | if (gcm_neon_capable()) { |
339 | gcm_init_neon(out_table, H.u); |
340 | *out_mult = gcm_gmult_neon; |
341 | *out_hash = gcm_ghash_neon; |
342 | return; |
343 | } |
344 | #elif defined(GHASH_ASM_PPC64LE) |
345 | if (CRYPTO_is_PPC64LE_vcrypto_capable()) { |
346 | gcm_init_p8(out_table, H.u); |
347 | *out_mult = gcm_gmult_p8; |
348 | *out_hash = gcm_ghash_p8; |
349 | return; |
350 | } |
351 | #endif |
352 | |
353 | gcm_init_4bit(out_table, H.u); |
354 | #if defined(GHASH_ASM_X86) |
355 | *out_mult = gcm_gmult_4bit_mmx; |
356 | *out_hash = gcm_ghash_4bit_mmx; |
357 | #else |
358 | *out_mult = gcm_gmult_4bit; |
359 | *out_hash = gcm_ghash_4bit; |
360 | #endif |
361 | } |
362 | |
363 | void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, const AES_KEY *aes_key, |
364 | block128_f block, int block_is_hwaes) { |
365 | OPENSSL_memset(gcm_key, 0, sizeof(*gcm_key)); |
366 | gcm_key->block = block; |
367 | |
368 | uint8_t ghash_key[16]; |
369 | OPENSSL_memset(ghash_key, 0, sizeof(ghash_key)); |
370 | (*block)(ghash_key, ghash_key, aes_key); |
371 | |
372 | int is_avx; |
373 | CRYPTO_ghash_init(&gcm_key->gmult, &gcm_key->ghash, &gcm_key->H, |
374 | gcm_key->Htable, &is_avx, ghash_key); |
375 | |
376 | gcm_key->use_aesni_gcm_crypt = (is_avx && block_is_hwaes) ? 1 : 0; |
377 | } |
378 | |
379 | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, |
380 | const uint8_t *iv, size_t len) { |
381 | #ifdef GCM_FUNCREF_4BIT |
382 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
383 | ctx->gcm_key.gmult; |
384 | #endif |
385 | |
386 | ctx->Yi.u[0] = 0; |
387 | ctx->Yi.u[1] = 0; |
388 | ctx->Xi.u[0] = 0; |
389 | ctx->Xi.u[1] = 0; |
390 | ctx->len.u[0] = 0; // AAD length |
391 | ctx->len.u[1] = 0; // message length |
392 | ctx->ares = 0; |
393 | ctx->mres = 0; |
394 | |
395 | uint32_t ctr; |
396 | if (len == 12) { |
397 | OPENSSL_memcpy(ctx->Yi.c, iv, 12); |
398 | ctx->Yi.c[15] = 1; |
399 | ctr = 1; |
400 | } else { |
401 | uint64_t len0 = len; |
402 | |
403 | while (len >= 16) { |
404 | for (size_t i = 0; i < 16; ++i) { |
405 | ctx->Yi.c[i] ^= iv[i]; |
406 | } |
407 | GCM_MUL(ctx, Yi); |
408 | iv += 16; |
409 | len -= 16; |
410 | } |
411 | if (len) { |
412 | for (size_t i = 0; i < len; ++i) { |
413 | ctx->Yi.c[i] ^= iv[i]; |
414 | } |
415 | GCM_MUL(ctx, Yi); |
416 | } |
417 | len0 <<= 3; |
418 | ctx->Yi.u[1] ^= CRYPTO_bswap8(len0); |
419 | |
420 | GCM_MUL(ctx, Yi); |
421 | ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
422 | } |
423 | |
424 | (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EK0.c, key); |
425 | ++ctr; |
426 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
427 | } |
428 | |
429 | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) { |
430 | #ifdef GCM_FUNCREF_4BIT |
431 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
432 | ctx->gcm_key.gmult; |
433 | #ifdef GHASH |
434 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
435 | size_t len) = ctx->gcm_key.ghash; |
436 | #endif |
437 | #endif |
438 | |
439 | if (ctx->len.u[1]) { |
440 | return 0; |
441 | } |
442 | |
443 | uint64_t alen = ctx->len.u[0] + len; |
444 | if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) { |
445 | return 0; |
446 | } |
447 | ctx->len.u[0] = alen; |
448 | |
449 | unsigned n = ctx->ares; |
450 | if (n) { |
451 | while (n && len) { |
452 | ctx->Xi.c[n] ^= *(aad++); |
453 | --len; |
454 | n = (n + 1) % 16; |
455 | } |
456 | if (n == 0) { |
457 | GCM_MUL(ctx, Xi); |
458 | } else { |
459 | ctx->ares = n; |
460 | return 1; |
461 | } |
462 | } |
463 | |
464 | // Process a whole number of blocks. |
465 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
466 | if (len_blocks != 0) { |
467 | GHASH(ctx, aad, len_blocks); |
468 | aad += len_blocks; |
469 | len -= len_blocks; |
470 | } |
471 | |
472 | // Process the remainder. |
473 | if (len != 0) { |
474 | n = (unsigned int)len; |
475 | for (size_t i = 0; i < len; ++i) { |
476 | ctx->Xi.c[i] ^= aad[i]; |
477 | } |
478 | } |
479 | |
480 | ctx->ares = n; |
481 | return 1; |
482 | } |
483 | |
484 | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, |
485 | const uint8_t *in, uint8_t *out, size_t len) { |
486 | block128_f block = ctx->gcm_key.block; |
487 | #ifdef GCM_FUNCREF_4BIT |
488 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
489 | ctx->gcm_key.gmult; |
490 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
491 | size_t len) = ctx->gcm_key.ghash; |
492 | #endif |
493 | |
494 | uint64_t mlen = ctx->len.u[1] + len; |
495 | if (mlen > ((UINT64_C(1) << 36) - 32) || |
496 | (sizeof(len) == 8 && mlen < len)) { |
497 | return 0; |
498 | } |
499 | ctx->len.u[1] = mlen; |
500 | |
501 | if (ctx->ares) { |
502 | // First call to encrypt finalizes GHASH(AAD) |
503 | GCM_MUL(ctx, Xi); |
504 | ctx->ares = 0; |
505 | } |
506 | |
507 | unsigned n = ctx->mres; |
508 | if (n) { |
509 | while (n && len) { |
510 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
511 | --len; |
512 | n = (n + 1) % 16; |
513 | } |
514 | if (n == 0) { |
515 | GCM_MUL(ctx, Xi); |
516 | } else { |
517 | ctx->mres = n; |
518 | return 1; |
519 | } |
520 | } |
521 | |
522 | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
523 | while (len >= GHASH_CHUNK) { |
524 | size_t j = GHASH_CHUNK; |
525 | |
526 | while (j) { |
527 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
528 | ++ctr; |
529 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
530 | for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
531 | store_word_le(out + i, |
532 | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
533 | } |
534 | out += 16; |
535 | in += 16; |
536 | j -= 16; |
537 | } |
538 | GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); |
539 | len -= GHASH_CHUNK; |
540 | } |
541 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
542 | if (len_blocks != 0) { |
543 | while (len >= 16) { |
544 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
545 | ++ctr; |
546 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
547 | for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
548 | store_word_le(out + i, |
549 | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
550 | } |
551 | out += 16; |
552 | in += 16; |
553 | len -= 16; |
554 | } |
555 | GHASH(ctx, out - len_blocks, len_blocks); |
556 | } |
557 | if (len) { |
558 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
559 | ++ctr; |
560 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
561 | while (len--) { |
562 | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
563 | ++n; |
564 | } |
565 | } |
566 | |
567 | ctx->mres = n; |
568 | return 1; |
569 | } |
570 | |
571 | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, |
572 | const unsigned char *in, unsigned char *out, |
573 | size_t len) { |
574 | block128_f block = ctx->gcm_key.block; |
575 | #ifdef GCM_FUNCREF_4BIT |
576 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
577 | ctx->gcm_key.gmult; |
578 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
579 | size_t len) = ctx->gcm_key.ghash; |
580 | #endif |
581 | |
582 | uint64_t mlen = ctx->len.u[1] + len; |
583 | if (mlen > ((UINT64_C(1) << 36) - 32) || |
584 | (sizeof(len) == 8 && mlen < len)) { |
585 | return 0; |
586 | } |
587 | ctx->len.u[1] = mlen; |
588 | |
589 | if (ctx->ares) { |
590 | // First call to decrypt finalizes GHASH(AAD) |
591 | GCM_MUL(ctx, Xi); |
592 | ctx->ares = 0; |
593 | } |
594 | |
595 | unsigned n = ctx->mres; |
596 | if (n) { |
597 | while (n && len) { |
598 | uint8_t c = *(in++); |
599 | *(out++) = c ^ ctx->EKi.c[n]; |
600 | ctx->Xi.c[n] ^= c; |
601 | --len; |
602 | n = (n + 1) % 16; |
603 | } |
604 | if (n == 0) { |
605 | GCM_MUL(ctx, Xi); |
606 | } else { |
607 | ctx->mres = n; |
608 | return 1; |
609 | } |
610 | } |
611 | |
612 | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
613 | while (len >= GHASH_CHUNK) { |
614 | size_t j = GHASH_CHUNK; |
615 | |
616 | GHASH(ctx, in, GHASH_CHUNK); |
617 | while (j) { |
618 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
619 | ++ctr; |
620 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
621 | for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
622 | store_word_le(out + i, |
623 | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
624 | } |
625 | out += 16; |
626 | in += 16; |
627 | j -= 16; |
628 | } |
629 | len -= GHASH_CHUNK; |
630 | } |
631 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
632 | if (len_blocks != 0) { |
633 | GHASH(ctx, in, len_blocks); |
634 | while (len >= 16) { |
635 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
636 | ++ctr; |
637 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
638 | for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
639 | store_word_le(out + i, |
640 | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
641 | } |
642 | out += 16; |
643 | in += 16; |
644 | len -= 16; |
645 | } |
646 | } |
647 | if (len) { |
648 | (*block)(ctx->Yi.c, ctx->EKi.c, key); |
649 | ++ctr; |
650 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
651 | while (len--) { |
652 | uint8_t c = in[n]; |
653 | ctx->Xi.c[n] ^= c; |
654 | out[n] = c ^ ctx->EKi.c[n]; |
655 | ++n; |
656 | } |
657 | } |
658 | |
659 | ctx->mres = n; |
660 | return 1; |
661 | } |
662 | |
663 | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, |
664 | const uint8_t *in, uint8_t *out, size_t len, |
665 | ctr128_f stream) { |
666 | #ifdef GCM_FUNCREF_4BIT |
667 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
668 | ctx->gcm_key.gmult; |
669 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
670 | size_t len) = ctx->gcm_key.ghash; |
671 | #endif |
672 | |
673 | uint64_t mlen = ctx->len.u[1] + len; |
674 | if (mlen > ((UINT64_C(1) << 36) - 32) || |
675 | (sizeof(len) == 8 && mlen < len)) { |
676 | return 0; |
677 | } |
678 | ctx->len.u[1] = mlen; |
679 | |
680 | if (ctx->ares) { |
681 | // First call to encrypt finalizes GHASH(AAD) |
682 | GCM_MUL(ctx, Xi); |
683 | ctx->ares = 0; |
684 | } |
685 | |
686 | unsigned n = ctx->mres; |
687 | if (n) { |
688 | while (n && len) { |
689 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
690 | --len; |
691 | n = (n + 1) % 16; |
692 | } |
693 | if (n == 0) { |
694 | GCM_MUL(ctx, Xi); |
695 | } else { |
696 | ctx->mres = n; |
697 | return 1; |
698 | } |
699 | } |
700 | |
701 | #if defined(AESNI_GCM) |
702 | if (ctx->gcm_key.use_aesni_gcm_crypt) { |
703 | // |aesni_gcm_encrypt| may not process all the input given to it. It may |
704 | // not process *any* of its input if it is deemed too small. |
705 | size_t bulk = aesni_gcm_encrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
706 | in += bulk; |
707 | out += bulk; |
708 | len -= bulk; |
709 | } |
710 | #endif |
711 | |
712 | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
713 | while (len >= GHASH_CHUNK) { |
714 | (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
715 | ctr += GHASH_CHUNK / 16; |
716 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
717 | GHASH(ctx, out, GHASH_CHUNK); |
718 | out += GHASH_CHUNK; |
719 | in += GHASH_CHUNK; |
720 | len -= GHASH_CHUNK; |
721 | } |
722 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
723 | if (len_blocks != 0) { |
724 | size_t j = len_blocks / 16; |
725 | |
726 | (*stream)(in, out, j, key, ctx->Yi.c); |
727 | ctr += (unsigned int)j; |
728 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
729 | in += len_blocks; |
730 | len -= len_blocks; |
731 | GHASH(ctx, out, len_blocks); |
732 | out += len_blocks; |
733 | } |
734 | if (len) { |
735 | (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); |
736 | ++ctr; |
737 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
738 | while (len--) { |
739 | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
740 | ++n; |
741 | } |
742 | } |
743 | |
744 | ctx->mres = n; |
745 | return 1; |
746 | } |
747 | |
748 | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, |
749 | const uint8_t *in, uint8_t *out, size_t len, |
750 | ctr128_f stream) { |
751 | #ifdef GCM_FUNCREF_4BIT |
752 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
753 | ctx->gcm_key.gmult; |
754 | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
755 | size_t len) = ctx->gcm_key.ghash; |
756 | #endif |
757 | |
758 | uint64_t mlen = ctx->len.u[1] + len; |
759 | if (mlen > ((UINT64_C(1) << 36) - 32) || |
760 | (sizeof(len) == 8 && mlen < len)) { |
761 | return 0; |
762 | } |
763 | ctx->len.u[1] = mlen; |
764 | |
765 | if (ctx->ares) { |
766 | // First call to decrypt finalizes GHASH(AAD) |
767 | GCM_MUL(ctx, Xi); |
768 | ctx->ares = 0; |
769 | } |
770 | |
771 | unsigned n = ctx->mres; |
772 | if (n) { |
773 | while (n && len) { |
774 | uint8_t c = *(in++); |
775 | *(out++) = c ^ ctx->EKi.c[n]; |
776 | ctx->Xi.c[n] ^= c; |
777 | --len; |
778 | n = (n + 1) % 16; |
779 | } |
780 | if (n == 0) { |
781 | GCM_MUL(ctx, Xi); |
782 | } else { |
783 | ctx->mres = n; |
784 | return 1; |
785 | } |
786 | } |
787 | |
788 | #if defined(AESNI_GCM) |
789 | if (ctx->gcm_key.use_aesni_gcm_crypt) { |
790 | // |aesni_gcm_decrypt| may not process all the input given to it. It may |
791 | // not process *any* of its input if it is deemed too small. |
792 | size_t bulk = aesni_gcm_decrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
793 | in += bulk; |
794 | out += bulk; |
795 | len -= bulk; |
796 | } |
797 | #endif |
798 | |
799 | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
800 | while (len >= GHASH_CHUNK) { |
801 | GHASH(ctx, in, GHASH_CHUNK); |
802 | (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
803 | ctr += GHASH_CHUNK / 16; |
804 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
805 | out += GHASH_CHUNK; |
806 | in += GHASH_CHUNK; |
807 | len -= GHASH_CHUNK; |
808 | } |
809 | size_t len_blocks = len & kSizeTWithoutLower4Bits; |
810 | if (len_blocks != 0) { |
811 | size_t j = len_blocks / 16; |
812 | |
813 | GHASH(ctx, in, len_blocks); |
814 | (*stream)(in, out, j, key, ctx->Yi.c); |
815 | ctr += (unsigned int)j; |
816 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
817 | out += len_blocks; |
818 | in += len_blocks; |
819 | len -= len_blocks; |
820 | } |
821 | if (len) { |
822 | (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); |
823 | ++ctr; |
824 | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
825 | while (len--) { |
826 | uint8_t c = in[n]; |
827 | ctx->Xi.c[n] ^= c; |
828 | out[n] = c ^ ctx->EKi.c[n]; |
829 | ++n; |
830 | } |
831 | } |
832 | |
833 | ctx->mres = n; |
834 | return 1; |
835 | } |
836 | |
837 | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) { |
838 | #ifdef GCM_FUNCREF_4BIT |
839 | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
840 | ctx->gcm_key.gmult; |
841 | #endif |
842 | |
843 | if (ctx->mres || ctx->ares) { |
844 | GCM_MUL(ctx, Xi); |
845 | } |
846 | |
847 | ctx->Xi.u[0] ^= CRYPTO_bswap8(ctx->len.u[0] << 3); |
848 | ctx->Xi.u[1] ^= CRYPTO_bswap8(ctx->len.u[1] << 3); |
849 | GCM_MUL(ctx, Xi); |
850 | |
851 | ctx->Xi.u[0] ^= ctx->EK0.u[0]; |
852 | ctx->Xi.u[1] ^= ctx->EK0.u[1]; |
853 | |
854 | if (tag && len <= sizeof(ctx->Xi)) { |
855 | return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0; |
856 | } else { |
857 | return 0; |
858 | } |
859 | } |
860 | |
861 | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { |
862 | CRYPTO_gcm128_finish(ctx, NULL, 0); |
863 | OPENSSL_memcpy(tag, ctx->Xi.c, |
864 | len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); |
865 | } |
866 | |
867 | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
868 | int crypto_gcm_clmul_enabled(void) { |
869 | #ifdef GHASH_ASM |
870 | const uint32_t *ia32cap = OPENSSL_ia32cap_get(); |
871 | return (ia32cap[0] & (1 << 24)) && // check FXSR bit |
872 | (ia32cap[1] & (1 << 1)); // check PCLMULQDQ bit |
873 | #else |
874 | return 0; |
875 | #endif |
876 | } |
877 | #endif |
878 | |