1 | /* Copyright (c) 2017, Google Inc. |
2 | * |
3 | * Permission to use, copy, modify, and/or distribute this software for any |
4 | * purpose with or without fee is hereby granted, provided that the above |
5 | * copyright notice and this permission notice appear in all copies. |
6 | * |
7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | |
15 | #include <openssl/rand.h> |
16 | |
17 | #include <openssl/type_check.h> |
18 | #include <openssl/mem.h> |
19 | |
20 | #include "internal.h" |
21 | #include "../cipher/internal.h" |
22 | |
23 | |
24 | // Section references in this file refer to SP 800-90Ar1: |
25 | // http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf |
26 | |
27 | // See table 3. |
28 | static const uint64_t kMaxReseedCount = UINT64_C(1) << 48; |
29 | |
30 | int CTR_DRBG_init(CTR_DRBG_STATE *drbg, |
31 | const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], |
32 | const uint8_t *personalization, size_t personalization_len) { |
33 | // Section 10.2.1.3.1 |
34 | if (personalization_len > CTR_DRBG_ENTROPY_LEN) { |
35 | return 0; |
36 | } |
37 | |
38 | uint8_t seed_material[CTR_DRBG_ENTROPY_LEN]; |
39 | OPENSSL_memcpy(seed_material, entropy, CTR_DRBG_ENTROPY_LEN); |
40 | |
41 | for (size_t i = 0; i < personalization_len; i++) { |
42 | seed_material[i] ^= personalization[i]; |
43 | } |
44 | |
45 | // Section 10.2.1.2 |
46 | |
47 | // kInitMask is the result of encrypting blocks with big-endian value 1, 2 |
48 | // and 3 with the all-zero AES-256 key. |
49 | static const uint8_t kInitMask[CTR_DRBG_ENTROPY_LEN] = { |
50 | 0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9, 0x63, 0xb4, 0xf1, |
51 | 0xc4, 0xcb, 0x73, 0x8b, 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e, |
52 | 0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18, 0x72, 0x60, 0x03, 0xca, |
53 | 0x37, 0xa6, 0x2a, 0x74, 0xd1, 0xa2, 0xf5, 0x8e, 0x75, 0x06, 0x35, 0x8e, |
54 | }; |
55 | |
56 | for (size_t i = 0; i < sizeof(kInitMask); i++) { |
57 | seed_material[i] ^= kInitMask[i]; |
58 | } |
59 | |
60 | drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, seed_material, 32); |
61 | OPENSSL_memcpy(drbg->counter.bytes, seed_material + 32, 16); |
62 | drbg->reseed_counter = 1; |
63 | |
64 | return 1; |
65 | } |
66 | |
67 | OPENSSL_STATIC_ASSERT(CTR_DRBG_ENTROPY_LEN % AES_BLOCK_SIZE == 0, |
68 | "not a multiple of AES block size" ); |
69 | |
70 | // ctr_inc adds |n| to the last four bytes of |drbg->counter|, treated as a |
71 | // big-endian number. |
72 | static void ctr32_add(CTR_DRBG_STATE *drbg, uint32_t n) { |
73 | drbg->counter.words[3] = |
74 | CRYPTO_bswap4(CRYPTO_bswap4(drbg->counter.words[3]) + n); |
75 | } |
76 | |
77 | static int ctr_drbg_update(CTR_DRBG_STATE *drbg, const uint8_t *data, |
78 | size_t data_len) { |
79 | // Per section 10.2.1.2, |data_len| must be |CTR_DRBG_ENTROPY_LEN|. Here, we |
80 | // allow shorter inputs and right-pad them with zeros. This is equivalent to |
81 | // the specified algorithm but saves a copy in |CTR_DRBG_generate|. |
82 | if (data_len > CTR_DRBG_ENTROPY_LEN) { |
83 | return 0; |
84 | } |
85 | |
86 | uint8_t temp[CTR_DRBG_ENTROPY_LEN]; |
87 | for (size_t i = 0; i < CTR_DRBG_ENTROPY_LEN; i += AES_BLOCK_SIZE) { |
88 | ctr32_add(drbg, 1); |
89 | drbg->block(drbg->counter.bytes, temp + i, &drbg->ks); |
90 | } |
91 | |
92 | for (size_t i = 0; i < data_len; i++) { |
93 | temp[i] ^= data[i]; |
94 | } |
95 | |
96 | drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, temp, 32); |
97 | OPENSSL_memcpy(drbg->counter.bytes, temp + 32, 16); |
98 | |
99 | return 1; |
100 | } |
101 | |
102 | int CTR_DRBG_reseed(CTR_DRBG_STATE *drbg, |
103 | const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], |
104 | const uint8_t *additional_data, |
105 | size_t additional_data_len) { |
106 | // Section 10.2.1.4 |
107 | uint8_t entropy_copy[CTR_DRBG_ENTROPY_LEN]; |
108 | |
109 | if (additional_data_len > 0) { |
110 | if (additional_data_len > CTR_DRBG_ENTROPY_LEN) { |
111 | return 0; |
112 | } |
113 | |
114 | OPENSSL_memcpy(entropy_copy, entropy, CTR_DRBG_ENTROPY_LEN); |
115 | for (size_t i = 0; i < additional_data_len; i++) { |
116 | entropy_copy[i] ^= additional_data[i]; |
117 | } |
118 | |
119 | entropy = entropy_copy; |
120 | } |
121 | |
122 | if (!ctr_drbg_update(drbg, entropy, CTR_DRBG_ENTROPY_LEN)) { |
123 | return 0; |
124 | } |
125 | |
126 | drbg->reseed_counter = 1; |
127 | |
128 | return 1; |
129 | } |
130 | |
131 | int CTR_DRBG_generate(CTR_DRBG_STATE *drbg, uint8_t *out, size_t out_len, |
132 | const uint8_t *additional_data, |
133 | size_t additional_data_len) { |
134 | // See 9.3.1 |
135 | if (out_len > CTR_DRBG_MAX_GENERATE_LENGTH) { |
136 | return 0; |
137 | } |
138 | |
139 | // See 10.2.1.5.1 |
140 | if (drbg->reseed_counter > kMaxReseedCount) { |
141 | return 0; |
142 | } |
143 | |
144 | if (additional_data_len != 0 && |
145 | !ctr_drbg_update(drbg, additional_data, additional_data_len)) { |
146 | return 0; |
147 | } |
148 | |
149 | // kChunkSize is used to interact better with the cache. Since the AES-CTR |
150 | // code assumes that it's encrypting rather than just writing keystream, the |
151 | // buffer has to be zeroed first. Without chunking, large reads would zero |
152 | // the whole buffer, flushing the L1 cache, and then do another pass (missing |
153 | // the cache every time) to “encrypt” it. The code can avoid this by |
154 | // chunking. |
155 | static const size_t kChunkSize = 8 * 1024; |
156 | |
157 | while (out_len >= AES_BLOCK_SIZE) { |
158 | size_t todo = kChunkSize; |
159 | if (todo > out_len) { |
160 | todo = out_len; |
161 | } |
162 | |
163 | todo &= ~(AES_BLOCK_SIZE-1); |
164 | const size_t num_blocks = todo / AES_BLOCK_SIZE; |
165 | |
166 | if (drbg->ctr) { |
167 | OPENSSL_memset(out, 0, todo); |
168 | ctr32_add(drbg, 1); |
169 | drbg->ctr(out, out, num_blocks, &drbg->ks, drbg->counter.bytes); |
170 | ctr32_add(drbg, num_blocks - 1); |
171 | } else { |
172 | for (size_t i = 0; i < todo; i += AES_BLOCK_SIZE) { |
173 | ctr32_add(drbg, 1); |
174 | drbg->block(drbg->counter.bytes, out + i, &drbg->ks); |
175 | } |
176 | } |
177 | |
178 | out += todo; |
179 | out_len -= todo; |
180 | } |
181 | |
182 | if (out_len > 0) { |
183 | uint8_t block[AES_BLOCK_SIZE]; |
184 | ctr32_add(drbg, 1); |
185 | drbg->block(drbg->counter.bytes, block, &drbg->ks); |
186 | |
187 | OPENSSL_memcpy(out, block, out_len); |
188 | } |
189 | |
190 | // Right-padding |additional_data| in step 2.2 is handled implicitly by |
191 | // |ctr_drbg_update|, to save a copy. |
192 | if (!ctr_drbg_update(drbg, additional_data, additional_data_len)) { |
193 | return 0; |
194 | } |
195 | |
196 | drbg->reseed_counter++; |
197 | return 1; |
198 | } |
199 | |
200 | void CTR_DRBG_clear(CTR_DRBG_STATE *drbg) { |
201 | OPENSSL_cleanse(drbg, sizeof(CTR_DRBG_STATE)); |
202 | } |
203 | |