| 1 | /* Copyright (c) 2017, Google Inc. |
| 2 | * |
| 3 | * Permission to use, copy, modify, and/or distribute this software for any |
| 4 | * purpose with or without fee is hereby granted, provided that the above |
| 5 | * copyright notice and this permission notice appear in all copies. |
| 6 | * |
| 7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| 10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| 14 | |
| 15 | #include <openssl/rand.h> |
| 16 | |
| 17 | #include <openssl/type_check.h> |
| 18 | #include <openssl/mem.h> |
| 19 | |
| 20 | #include "internal.h" |
| 21 | #include "../cipher/internal.h" |
| 22 | |
| 23 | |
| 24 | // Section references in this file refer to SP 800-90Ar1: |
| 25 | // http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf |
| 26 | |
| 27 | // See table 3. |
| 28 | static const uint64_t kMaxReseedCount = UINT64_C(1) << 48; |
| 29 | |
| 30 | int CTR_DRBG_init(CTR_DRBG_STATE *drbg, |
| 31 | const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], |
| 32 | const uint8_t *personalization, size_t personalization_len) { |
| 33 | // Section 10.2.1.3.1 |
| 34 | if (personalization_len > CTR_DRBG_ENTROPY_LEN) { |
| 35 | return 0; |
| 36 | } |
| 37 | |
| 38 | uint8_t seed_material[CTR_DRBG_ENTROPY_LEN]; |
| 39 | OPENSSL_memcpy(seed_material, entropy, CTR_DRBG_ENTROPY_LEN); |
| 40 | |
| 41 | for (size_t i = 0; i < personalization_len; i++) { |
| 42 | seed_material[i] ^= personalization[i]; |
| 43 | } |
| 44 | |
| 45 | // Section 10.2.1.2 |
| 46 | |
| 47 | // kInitMask is the result of encrypting blocks with big-endian value 1, 2 |
| 48 | // and 3 with the all-zero AES-256 key. |
| 49 | static const uint8_t kInitMask[CTR_DRBG_ENTROPY_LEN] = { |
| 50 | 0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9, 0x63, 0xb4, 0xf1, |
| 51 | 0xc4, 0xcb, 0x73, 0x8b, 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e, |
| 52 | 0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18, 0x72, 0x60, 0x03, 0xca, |
| 53 | 0x37, 0xa6, 0x2a, 0x74, 0xd1, 0xa2, 0xf5, 0x8e, 0x75, 0x06, 0x35, 0x8e, |
| 54 | }; |
| 55 | |
| 56 | for (size_t i = 0; i < sizeof(kInitMask); i++) { |
| 57 | seed_material[i] ^= kInitMask[i]; |
| 58 | } |
| 59 | |
| 60 | drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, seed_material, 32); |
| 61 | OPENSSL_memcpy(drbg->counter.bytes, seed_material + 32, 16); |
| 62 | drbg->reseed_counter = 1; |
| 63 | |
| 64 | return 1; |
| 65 | } |
| 66 | |
| 67 | OPENSSL_STATIC_ASSERT(CTR_DRBG_ENTROPY_LEN % AES_BLOCK_SIZE == 0, |
| 68 | "not a multiple of AES block size" ); |
| 69 | |
| 70 | // ctr_inc adds |n| to the last four bytes of |drbg->counter|, treated as a |
| 71 | // big-endian number. |
| 72 | static void ctr32_add(CTR_DRBG_STATE *drbg, uint32_t n) { |
| 73 | drbg->counter.words[3] = |
| 74 | CRYPTO_bswap4(CRYPTO_bswap4(drbg->counter.words[3]) + n); |
| 75 | } |
| 76 | |
| 77 | static int ctr_drbg_update(CTR_DRBG_STATE *drbg, const uint8_t *data, |
| 78 | size_t data_len) { |
| 79 | // Per section 10.2.1.2, |data_len| must be |CTR_DRBG_ENTROPY_LEN|. Here, we |
| 80 | // allow shorter inputs and right-pad them with zeros. This is equivalent to |
| 81 | // the specified algorithm but saves a copy in |CTR_DRBG_generate|. |
| 82 | if (data_len > CTR_DRBG_ENTROPY_LEN) { |
| 83 | return 0; |
| 84 | } |
| 85 | |
| 86 | uint8_t temp[CTR_DRBG_ENTROPY_LEN]; |
| 87 | for (size_t i = 0; i < CTR_DRBG_ENTROPY_LEN; i += AES_BLOCK_SIZE) { |
| 88 | ctr32_add(drbg, 1); |
| 89 | drbg->block(drbg->counter.bytes, temp + i, &drbg->ks); |
| 90 | } |
| 91 | |
| 92 | for (size_t i = 0; i < data_len; i++) { |
| 93 | temp[i] ^= data[i]; |
| 94 | } |
| 95 | |
| 96 | drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, temp, 32); |
| 97 | OPENSSL_memcpy(drbg->counter.bytes, temp + 32, 16); |
| 98 | |
| 99 | return 1; |
| 100 | } |
| 101 | |
| 102 | int CTR_DRBG_reseed(CTR_DRBG_STATE *drbg, |
| 103 | const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], |
| 104 | const uint8_t *additional_data, |
| 105 | size_t additional_data_len) { |
| 106 | // Section 10.2.1.4 |
| 107 | uint8_t entropy_copy[CTR_DRBG_ENTROPY_LEN]; |
| 108 | |
| 109 | if (additional_data_len > 0) { |
| 110 | if (additional_data_len > CTR_DRBG_ENTROPY_LEN) { |
| 111 | return 0; |
| 112 | } |
| 113 | |
| 114 | OPENSSL_memcpy(entropy_copy, entropy, CTR_DRBG_ENTROPY_LEN); |
| 115 | for (size_t i = 0; i < additional_data_len; i++) { |
| 116 | entropy_copy[i] ^= additional_data[i]; |
| 117 | } |
| 118 | |
| 119 | entropy = entropy_copy; |
| 120 | } |
| 121 | |
| 122 | if (!ctr_drbg_update(drbg, entropy, CTR_DRBG_ENTROPY_LEN)) { |
| 123 | return 0; |
| 124 | } |
| 125 | |
| 126 | drbg->reseed_counter = 1; |
| 127 | |
| 128 | return 1; |
| 129 | } |
| 130 | |
| 131 | int CTR_DRBG_generate(CTR_DRBG_STATE *drbg, uint8_t *out, size_t out_len, |
| 132 | const uint8_t *additional_data, |
| 133 | size_t additional_data_len) { |
| 134 | // See 9.3.1 |
| 135 | if (out_len > CTR_DRBG_MAX_GENERATE_LENGTH) { |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | // See 10.2.1.5.1 |
| 140 | if (drbg->reseed_counter > kMaxReseedCount) { |
| 141 | return 0; |
| 142 | } |
| 143 | |
| 144 | if (additional_data_len != 0 && |
| 145 | !ctr_drbg_update(drbg, additional_data, additional_data_len)) { |
| 146 | return 0; |
| 147 | } |
| 148 | |
| 149 | // kChunkSize is used to interact better with the cache. Since the AES-CTR |
| 150 | // code assumes that it's encrypting rather than just writing keystream, the |
| 151 | // buffer has to be zeroed first. Without chunking, large reads would zero |
| 152 | // the whole buffer, flushing the L1 cache, and then do another pass (missing |
| 153 | // the cache every time) to “encrypt” it. The code can avoid this by |
| 154 | // chunking. |
| 155 | static const size_t kChunkSize = 8 * 1024; |
| 156 | |
| 157 | while (out_len >= AES_BLOCK_SIZE) { |
| 158 | size_t todo = kChunkSize; |
| 159 | if (todo > out_len) { |
| 160 | todo = out_len; |
| 161 | } |
| 162 | |
| 163 | todo &= ~(AES_BLOCK_SIZE-1); |
| 164 | const size_t num_blocks = todo / AES_BLOCK_SIZE; |
| 165 | |
| 166 | if (drbg->ctr) { |
| 167 | OPENSSL_memset(out, 0, todo); |
| 168 | ctr32_add(drbg, 1); |
| 169 | drbg->ctr(out, out, num_blocks, &drbg->ks, drbg->counter.bytes); |
| 170 | ctr32_add(drbg, num_blocks - 1); |
| 171 | } else { |
| 172 | for (size_t i = 0; i < todo; i += AES_BLOCK_SIZE) { |
| 173 | ctr32_add(drbg, 1); |
| 174 | drbg->block(drbg->counter.bytes, out + i, &drbg->ks); |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | out += todo; |
| 179 | out_len -= todo; |
| 180 | } |
| 181 | |
| 182 | if (out_len > 0) { |
| 183 | uint8_t block[AES_BLOCK_SIZE]; |
| 184 | ctr32_add(drbg, 1); |
| 185 | drbg->block(drbg->counter.bytes, block, &drbg->ks); |
| 186 | |
| 187 | OPENSSL_memcpy(out, block, out_len); |
| 188 | } |
| 189 | |
| 190 | // Right-padding |additional_data| in step 2.2 is handled implicitly by |
| 191 | // |ctr_drbg_update|, to save a copy. |
| 192 | if (!ctr_drbg_update(drbg, additional_data, additional_data_len)) { |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | drbg->reseed_counter++; |
| 197 | return 1; |
| 198 | } |
| 199 | |
| 200 | void CTR_DRBG_clear(CTR_DRBG_STATE *drbg) { |
| 201 | OPENSSL_cleanse(drbg, sizeof(CTR_DRBG_STATE)); |
| 202 | } |
| 203 | |