| 1 | /* ==================================================================== |
| 2 | * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * |
| 11 | * 2. Redistributions in binary form must reproduce the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer in |
| 13 | * the documentation and/or other materials provided with the |
| 14 | * distribution. |
| 15 | * |
| 16 | * 3. All advertising materials mentioning features or use of this |
| 17 | * software must display the following acknowledgment: |
| 18 | * "This product includes software developed by the OpenSSL Project |
| 19 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 20 | * |
| 21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 22 | * endorse or promote products derived from this software without |
| 23 | * prior written permission. For written permission, please contact |
| 24 | * openssl-core@openssl.org. |
| 25 | * |
| 26 | * 5. Products derived from this software may not be called "OpenSSL" |
| 27 | * nor may "OpenSSL" appear in their names without prior written |
| 28 | * permission of the OpenSSL Project. |
| 29 | * |
| 30 | * 6. Redistributions of any form whatsoever must retain the following |
| 31 | * acknowledgment: |
| 32 | * "This product includes software developed by the OpenSSL Project |
| 33 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 34 | * |
| 35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 46 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 47 | * ==================================================================== */ |
| 48 | |
| 49 | #include <assert.h> |
| 50 | #include <string.h> |
| 51 | |
| 52 | #include <openssl/aead.h> |
| 53 | #include <openssl/aes.h> |
| 54 | #include <openssl/cipher.h> |
| 55 | #include <openssl/cpu.h> |
| 56 | #include <openssl/err.h> |
| 57 | #include <openssl/mem.h> |
| 58 | #include <openssl/nid.h> |
| 59 | #include <openssl/rand.h> |
| 60 | |
| 61 | #include "internal.h" |
| 62 | #include "../../internal.h" |
| 63 | #include "../aes/internal.h" |
| 64 | #include "../modes/internal.h" |
| 65 | #include "../delocate.h" |
| 66 | |
| 67 | |
| 68 | OPENSSL_MSVC_PRAGMA(warning(push)) |
| 69 | OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) // Unreachable code. |
| 70 | |
| 71 | typedef struct { |
| 72 | union { |
| 73 | double align; |
| 74 | AES_KEY ks; |
| 75 | } ks; |
| 76 | block128_f block; |
| 77 | union { |
| 78 | cbc128_f cbc; |
| 79 | ctr128_f ctr; |
| 80 | } stream; |
| 81 | } EVP_AES_KEY; |
| 82 | |
| 83 | typedef struct { |
| 84 | GCM128_CONTEXT gcm; |
| 85 | union { |
| 86 | double align; |
| 87 | AES_KEY ks; |
| 88 | } ks; // AES key schedule to use |
| 89 | int key_set; // Set if key initialised |
| 90 | int iv_set; // Set if an iv is set |
| 91 | uint8_t *iv; // Temporary IV store |
| 92 | int ivlen; // IV length |
| 93 | int taglen; |
| 94 | int iv_gen; // It is OK to generate IVs |
| 95 | ctr128_f ctr; |
| 96 | } EVP_AES_GCM_CTX; |
| 97 | |
| 98 | static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| 99 | const uint8_t *iv, int enc) { |
| 100 | int ret, mode; |
| 101 | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| 102 | |
| 103 | mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; |
| 104 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { |
| 105 | if (hwaes_capable()) { |
| 106 | ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| 107 | dat->block = aes_hw_decrypt; |
| 108 | dat->stream.cbc = NULL; |
| 109 | if (mode == EVP_CIPH_CBC_MODE) { |
| 110 | dat->stream.cbc = aes_hw_cbc_encrypt; |
| 111 | } |
| 112 | } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { |
| 113 | ret = aes_nohw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| 114 | // If |dat->stream.cbc| is provided, |dat->block| is never used. |
| 115 | dat->block = NULL; |
| 116 | dat->stream.cbc = bsaes_cbc_encrypt; |
| 117 | } else if (vpaes_capable()) { |
| 118 | ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| 119 | dat->block = vpaes_decrypt; |
| 120 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? vpaes_cbc_encrypt : NULL; |
| 121 | } else { |
| 122 | ret = aes_nohw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| 123 | dat->block = aes_nohw_decrypt; |
| 124 | dat->stream.cbc = NULL; |
| 125 | #if defined(AES_NOHW_CBC) |
| 126 | if (mode == EVP_CIPH_CBC_MODE) { |
| 127 | dat->stream.cbc = aes_nohw_cbc_encrypt; |
| 128 | } |
| 129 | #endif |
| 130 | } |
| 131 | } else if (hwaes_capable()) { |
| 132 | ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| 133 | dat->block = aes_hw_encrypt; |
| 134 | dat->stream.cbc = NULL; |
| 135 | if (mode == EVP_CIPH_CBC_MODE) { |
| 136 | dat->stream.cbc = aes_hw_cbc_encrypt; |
| 137 | } else if (mode == EVP_CIPH_CTR_MODE) { |
| 138 | dat->stream.ctr = aes_hw_ctr32_encrypt_blocks; |
| 139 | } |
| 140 | } else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) { |
| 141 | ret = aes_nohw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| 142 | // If |dat->stream.ctr| is provided, |dat->block| is never used. |
| 143 | dat->block = NULL; |
| 144 | dat->stream.ctr = bsaes_ctr32_encrypt_blocks; |
| 145 | } else if (vpaes_capable()) { |
| 146 | ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| 147 | dat->block = vpaes_encrypt; |
| 148 | dat->stream.cbc = NULL; |
| 149 | if (mode == EVP_CIPH_CBC_MODE) { |
| 150 | dat->stream.cbc = vpaes_cbc_encrypt; |
| 151 | } |
| 152 | #if defined(VPAES_CTR32) |
| 153 | if (mode == EVP_CIPH_CTR_MODE) { |
| 154 | dat->stream.ctr = vpaes_ctr32_encrypt_blocks; |
| 155 | } |
| 156 | #endif |
| 157 | } else { |
| 158 | ret = aes_nohw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| 159 | dat->block = aes_nohw_encrypt; |
| 160 | dat->stream.cbc = NULL; |
| 161 | #if defined(AES_NOHW_CBC) |
| 162 | if (mode == EVP_CIPH_CBC_MODE) { |
| 163 | dat->stream.cbc = aes_nohw_cbc_encrypt; |
| 164 | } |
| 165 | #endif |
| 166 | } |
| 167 | |
| 168 | if (ret < 0) { |
| 169 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); |
| 170 | return 0; |
| 171 | } |
| 172 | |
| 173 | return 1; |
| 174 | } |
| 175 | |
| 176 | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| 177 | size_t len) { |
| 178 | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| 179 | |
| 180 | if (dat->stream.cbc) { |
| 181 | (*dat->stream.cbc)(in, out, len, &dat->ks.ks, ctx->iv, ctx->encrypt); |
| 182 | } else if (ctx->encrypt) { |
| 183 | CRYPTO_cbc128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); |
| 184 | } else { |
| 185 | CRYPTO_cbc128_decrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); |
| 186 | } |
| 187 | |
| 188 | return 1; |
| 189 | } |
| 190 | |
| 191 | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| 192 | size_t len) { |
| 193 | size_t bl = ctx->cipher->block_size; |
| 194 | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| 195 | |
| 196 | if (len < bl) { |
| 197 | return 1; |
| 198 | } |
| 199 | |
| 200 | len -= bl; |
| 201 | for (size_t i = 0; i <= len; i += bl) { |
| 202 | (*dat->block)(in + i, out + i, &dat->ks.ks); |
| 203 | } |
| 204 | |
| 205 | return 1; |
| 206 | } |
| 207 | |
| 208 | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| 209 | size_t len) { |
| 210 | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| 211 | |
| 212 | if (dat->stream.ctr) { |
| 213 | CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf, |
| 214 | &ctx->num, dat->stream.ctr); |
| 215 | } else { |
| 216 | CRYPTO_ctr128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf, |
| 217 | &ctx->num, dat->block); |
| 218 | } |
| 219 | return 1; |
| 220 | } |
| 221 | |
| 222 | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| 223 | size_t len) { |
| 224 | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| 225 | |
| 226 | CRYPTO_ofb128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, &ctx->num, |
| 227 | dat->block); |
| 228 | return 1; |
| 229 | } |
| 230 | |
| 231 | ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_KEY *gcm_key, |
| 232 | block128_f *out_block, const uint8_t *key, |
| 233 | size_t key_bytes) { |
| 234 | if (hwaes_capable()) { |
| 235 | aes_hw_set_encrypt_key(key, key_bytes * 8, aes_key); |
| 236 | if (gcm_key != NULL) { |
| 237 | CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_hw_encrypt, 1); |
| 238 | } |
| 239 | if (out_block) { |
| 240 | *out_block = aes_hw_encrypt; |
| 241 | } |
| 242 | return aes_hw_ctr32_encrypt_blocks; |
| 243 | } |
| 244 | |
| 245 | if (bsaes_capable()) { |
| 246 | aes_nohw_set_encrypt_key(key, key_bytes * 8, aes_key); |
| 247 | if (gcm_key != NULL) { |
| 248 | CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_nohw_encrypt, 0); |
| 249 | } |
| 250 | if (out_block) { |
| 251 | *out_block = aes_nohw_encrypt; |
| 252 | } |
| 253 | return bsaes_ctr32_encrypt_blocks; |
| 254 | } |
| 255 | |
| 256 | if (vpaes_capable()) { |
| 257 | vpaes_set_encrypt_key(key, key_bytes * 8, aes_key); |
| 258 | if (out_block) { |
| 259 | *out_block = vpaes_encrypt; |
| 260 | } |
| 261 | if (gcm_key != NULL) { |
| 262 | CRYPTO_gcm128_init_key(gcm_key, aes_key, vpaes_encrypt, 0); |
| 263 | } |
| 264 | #if defined(VPAES_CTR32) |
| 265 | return vpaes_ctr32_encrypt_blocks; |
| 266 | #else |
| 267 | return NULL; |
| 268 | #endif |
| 269 | } |
| 270 | |
| 271 | aes_nohw_set_encrypt_key(key, key_bytes * 8, aes_key); |
| 272 | if (gcm_key != NULL) { |
| 273 | CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_nohw_encrypt, 0); |
| 274 | } |
| 275 | if (out_block) { |
| 276 | *out_block = aes_nohw_encrypt; |
| 277 | } |
| 278 | return NULL; |
| 279 | } |
| 280 | |
| 281 | #if defined(OPENSSL_32_BIT) |
| 282 | #define EVP_AES_GCM_CTX_PADDING (4+8) |
| 283 | #else |
| 284 | #define EVP_AES_GCM_CTX_PADDING 8 |
| 285 | #endif |
| 286 | |
| 287 | static EVP_AES_GCM_CTX *aes_gcm_from_cipher_ctx(EVP_CIPHER_CTX *ctx) { |
| 288 | #if defined(__GNUC__) || defined(__clang__) |
| 289 | OPENSSL_STATIC_ASSERT( |
| 290 | alignof(EVP_AES_GCM_CTX) <= 16, |
| 291 | "EVP_AES_GCM_CTX needs more alignment than this function provides" ); |
| 292 | #endif |
| 293 | |
| 294 | // |malloc| guarantees up to 4-byte alignment on 32-bit and 8-byte alignment |
| 295 | // on 64-bit systems, so we need to adjust to reach 16-byte alignment. |
| 296 | assert(ctx->cipher->ctx_size == |
| 297 | sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING); |
| 298 | |
| 299 | char *ptr = ctx->cipher_data; |
| 300 | #if defined(OPENSSL_32_BIT) |
| 301 | assert((uintptr_t)ptr % 4 == 0); |
| 302 | ptr += (uintptr_t)ptr & 4; |
| 303 | #endif |
| 304 | assert((uintptr_t)ptr % 8 == 0); |
| 305 | ptr += (uintptr_t)ptr & 8; |
| 306 | return (EVP_AES_GCM_CTX *)ptr; |
| 307 | } |
| 308 | |
| 309 | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| 310 | const uint8_t *iv, int enc) { |
| 311 | EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx); |
| 312 | if (!iv && !key) { |
| 313 | return 1; |
| 314 | } |
| 315 | if (key) { |
| 316 | OPENSSL_memset(&gctx->gcm, 0, sizeof(gctx->gcm)); |
| 317 | gctx->ctr = aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm.gcm_key, NULL, key, |
| 318 | ctx->key_len); |
| 319 | // If we have an iv can set it directly, otherwise use saved IV. |
| 320 | if (iv == NULL && gctx->iv_set) { |
| 321 | iv = gctx->iv; |
| 322 | } |
| 323 | if (iv) { |
| 324 | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); |
| 325 | gctx->iv_set = 1; |
| 326 | } |
| 327 | gctx->key_set = 1; |
| 328 | } else { |
| 329 | // If key set use IV, otherwise copy |
| 330 | if (gctx->key_set) { |
| 331 | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); |
| 332 | } else { |
| 333 | OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); |
| 334 | } |
| 335 | gctx->iv_set = 1; |
| 336 | gctx->iv_gen = 0; |
| 337 | } |
| 338 | return 1; |
| 339 | } |
| 340 | |
| 341 | static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) { |
| 342 | EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c); |
| 343 | OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); |
| 344 | if (gctx->iv != c->iv) { |
| 345 | OPENSSL_free(gctx->iv); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | // increment counter (64-bit int) by 1 |
| 350 | static void ctr64_inc(uint8_t *counter) { |
| 351 | int n = 8; |
| 352 | uint8_t c; |
| 353 | |
| 354 | do { |
| 355 | --n; |
| 356 | c = counter[n]; |
| 357 | ++c; |
| 358 | counter[n] = c; |
| 359 | if (c) { |
| 360 | return; |
| 361 | } |
| 362 | } while (n); |
| 363 | } |
| 364 | |
| 365 | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { |
| 366 | EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c); |
| 367 | switch (type) { |
| 368 | case EVP_CTRL_INIT: |
| 369 | gctx->key_set = 0; |
| 370 | gctx->iv_set = 0; |
| 371 | gctx->ivlen = c->cipher->iv_len; |
| 372 | gctx->iv = c->iv; |
| 373 | gctx->taglen = -1; |
| 374 | gctx->iv_gen = 0; |
| 375 | return 1; |
| 376 | |
| 377 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 378 | if (arg <= 0) { |
| 379 | return 0; |
| 380 | } |
| 381 | |
| 382 | // Allocate memory for IV if needed |
| 383 | if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { |
| 384 | if (gctx->iv != c->iv) { |
| 385 | OPENSSL_free(gctx->iv); |
| 386 | } |
| 387 | gctx->iv = OPENSSL_malloc(arg); |
| 388 | if (!gctx->iv) { |
| 389 | return 0; |
| 390 | } |
| 391 | } |
| 392 | gctx->ivlen = arg; |
| 393 | return 1; |
| 394 | |
| 395 | case EVP_CTRL_AEAD_SET_TAG: |
| 396 | if (arg <= 0 || arg > 16 || c->encrypt) { |
| 397 | return 0; |
| 398 | } |
| 399 | OPENSSL_memcpy(c->buf, ptr, arg); |
| 400 | gctx->taglen = arg; |
| 401 | return 1; |
| 402 | |
| 403 | case EVP_CTRL_AEAD_GET_TAG: |
| 404 | if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { |
| 405 | return 0; |
| 406 | } |
| 407 | OPENSSL_memcpy(ptr, c->buf, arg); |
| 408 | return 1; |
| 409 | |
| 410 | case EVP_CTRL_AEAD_SET_IV_FIXED: |
| 411 | // Special case: -1 length restores whole IV |
| 412 | if (arg == -1) { |
| 413 | OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen); |
| 414 | gctx->iv_gen = 1; |
| 415 | return 1; |
| 416 | } |
| 417 | // Fixed field must be at least 4 bytes and invocation field |
| 418 | // at least 8. |
| 419 | if (arg < 4 || (gctx->ivlen - arg) < 8) { |
| 420 | return 0; |
| 421 | } |
| 422 | if (arg) { |
| 423 | OPENSSL_memcpy(gctx->iv, ptr, arg); |
| 424 | } |
| 425 | if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) { |
| 426 | return 0; |
| 427 | } |
| 428 | gctx->iv_gen = 1; |
| 429 | return 1; |
| 430 | |
| 431 | case EVP_CTRL_GCM_IV_GEN: |
| 432 | if (gctx->iv_gen == 0 || gctx->key_set == 0) { |
| 433 | return 0; |
| 434 | } |
| 435 | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); |
| 436 | if (arg <= 0 || arg > gctx->ivlen) { |
| 437 | arg = gctx->ivlen; |
| 438 | } |
| 439 | OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
| 440 | // Invocation field will be at least 8 bytes in size and |
| 441 | // so no need to check wrap around or increment more than |
| 442 | // last 8 bytes. |
| 443 | ctr64_inc(gctx->iv + gctx->ivlen - 8); |
| 444 | gctx->iv_set = 1; |
| 445 | return 1; |
| 446 | |
| 447 | case EVP_CTRL_GCM_SET_IV_INV: |
| 448 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { |
| 449 | return 0; |
| 450 | } |
| 451 | OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
| 452 | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); |
| 453 | gctx->iv_set = 1; |
| 454 | return 1; |
| 455 | |
| 456 | case EVP_CTRL_COPY: { |
| 457 | EVP_CIPHER_CTX *out = ptr; |
| 458 | EVP_AES_GCM_CTX *gctx_out = aes_gcm_from_cipher_ctx(out); |
| 459 | // |EVP_CIPHER_CTX_copy| copies this generically, but we must redo it in |
| 460 | // case |out->cipher_data| and |in->cipher_data| are differently aligned. |
| 461 | OPENSSL_memcpy(gctx_out, gctx, sizeof(EVP_AES_GCM_CTX)); |
| 462 | if (gctx->iv == c->iv) { |
| 463 | gctx_out->iv = out->iv; |
| 464 | } else { |
| 465 | gctx_out->iv = OPENSSL_malloc(gctx->ivlen); |
| 466 | if (!gctx_out->iv) { |
| 467 | return 0; |
| 468 | } |
| 469 | OPENSSL_memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); |
| 470 | } |
| 471 | return 1; |
| 472 | } |
| 473 | |
| 474 | default: |
| 475 | return -1; |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| 480 | size_t len) { |
| 481 | EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx); |
| 482 | |
| 483 | // If not set up, return error |
| 484 | if (!gctx->key_set) { |
| 485 | return -1; |
| 486 | } |
| 487 | if (!gctx->iv_set) { |
| 488 | return -1; |
| 489 | } |
| 490 | |
| 491 | if (in) { |
| 492 | if (out == NULL) { |
| 493 | if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) { |
| 494 | return -1; |
| 495 | } |
| 496 | } else if (ctx->encrypt) { |
| 497 | if (gctx->ctr) { |
| 498 | if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, |
| 499 | gctx->ctr)) { |
| 500 | return -1; |
| 501 | } |
| 502 | } else { |
| 503 | if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { |
| 504 | return -1; |
| 505 | } |
| 506 | } |
| 507 | } else { |
| 508 | if (gctx->ctr) { |
| 509 | if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, |
| 510 | gctx->ctr)) { |
| 511 | return -1; |
| 512 | } |
| 513 | } else { |
| 514 | if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { |
| 515 | return -1; |
| 516 | } |
| 517 | } |
| 518 | } |
| 519 | return len; |
| 520 | } else { |
| 521 | if (!ctx->encrypt) { |
| 522 | if (gctx->taglen < 0 || |
| 523 | !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) { |
| 524 | return -1; |
| 525 | } |
| 526 | gctx->iv_set = 0; |
| 527 | return 0; |
| 528 | } |
| 529 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); |
| 530 | gctx->taglen = 16; |
| 531 | // Don't reuse the IV |
| 532 | gctx->iv_set = 0; |
| 533 | return 0; |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_cbc_generic) { |
| 538 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 539 | |
| 540 | out->nid = NID_aes_128_cbc; |
| 541 | out->block_size = 16; |
| 542 | out->key_len = 16; |
| 543 | out->iv_len = 16; |
| 544 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 545 | out->flags = EVP_CIPH_CBC_MODE; |
| 546 | out->init = aes_init_key; |
| 547 | out->cipher = aes_cbc_cipher; |
| 548 | } |
| 549 | |
| 550 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ctr_generic) { |
| 551 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 552 | |
| 553 | out->nid = NID_aes_128_ctr; |
| 554 | out->block_size = 1; |
| 555 | out->key_len = 16; |
| 556 | out->iv_len = 16; |
| 557 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 558 | out->flags = EVP_CIPH_CTR_MODE; |
| 559 | out->init = aes_init_key; |
| 560 | out->cipher = aes_ctr_cipher; |
| 561 | } |
| 562 | |
| 563 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) { |
| 564 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 565 | |
| 566 | out->nid = NID_aes_128_ecb; |
| 567 | out->block_size = 16; |
| 568 | out->key_len = 16; |
| 569 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 570 | out->flags = EVP_CIPH_ECB_MODE; |
| 571 | out->init = aes_init_key; |
| 572 | out->cipher = aes_ecb_cipher; |
| 573 | } |
| 574 | |
| 575 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ofb_generic) { |
| 576 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 577 | |
| 578 | out->nid = NID_aes_128_ofb128; |
| 579 | out->block_size = 1; |
| 580 | out->key_len = 16; |
| 581 | out->iv_len = 16; |
| 582 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 583 | out->flags = EVP_CIPH_OFB_MODE; |
| 584 | out->init = aes_init_key; |
| 585 | out->cipher = aes_ofb_cipher; |
| 586 | } |
| 587 | |
| 588 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_gcm_generic) { |
| 589 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 590 | |
| 591 | out->nid = NID_aes_128_gcm; |
| 592 | out->block_size = 1; |
| 593 | out->key_len = 16; |
| 594 | out->iv_len = 12; |
| 595 | out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING; |
| 596 | out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | |
| 597 | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | |
| 598 | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; |
| 599 | out->init = aes_gcm_init_key; |
| 600 | out->cipher = aes_gcm_cipher; |
| 601 | out->cleanup = aes_gcm_cleanup; |
| 602 | out->ctrl = aes_gcm_ctrl; |
| 603 | } |
| 604 | |
| 605 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_cbc_generic) { |
| 606 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 607 | |
| 608 | out->nid = NID_aes_192_cbc; |
| 609 | out->block_size = 16; |
| 610 | out->key_len = 24; |
| 611 | out->iv_len = 16; |
| 612 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 613 | out->flags = EVP_CIPH_CBC_MODE; |
| 614 | out->init = aes_init_key; |
| 615 | out->cipher = aes_cbc_cipher; |
| 616 | } |
| 617 | |
| 618 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ctr_generic) { |
| 619 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 620 | |
| 621 | out->nid = NID_aes_192_ctr; |
| 622 | out->block_size = 1; |
| 623 | out->key_len = 24; |
| 624 | out->iv_len = 16; |
| 625 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 626 | out->flags = EVP_CIPH_CTR_MODE; |
| 627 | out->init = aes_init_key; |
| 628 | out->cipher = aes_ctr_cipher; |
| 629 | } |
| 630 | |
| 631 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) { |
| 632 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 633 | |
| 634 | out->nid = NID_aes_192_ecb; |
| 635 | out->block_size = 16; |
| 636 | out->key_len = 24; |
| 637 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 638 | out->flags = EVP_CIPH_ECB_MODE; |
| 639 | out->init = aes_init_key; |
| 640 | out->cipher = aes_ecb_cipher; |
| 641 | } |
| 642 | |
| 643 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ofb_generic) { |
| 644 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 645 | |
| 646 | out->nid = NID_aes_192_ofb128; |
| 647 | out->block_size = 1; |
| 648 | out->key_len = 24; |
| 649 | out->iv_len = 16; |
| 650 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 651 | out->flags = EVP_CIPH_OFB_MODE; |
| 652 | out->init = aes_init_key; |
| 653 | out->cipher = aes_ofb_cipher; |
| 654 | } |
| 655 | |
| 656 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_gcm_generic) { |
| 657 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 658 | |
| 659 | out->nid = NID_aes_192_gcm; |
| 660 | out->block_size = 1; |
| 661 | out->key_len = 24; |
| 662 | out->iv_len = 12; |
| 663 | out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING; |
| 664 | out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | |
| 665 | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | |
| 666 | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; |
| 667 | out->init = aes_gcm_init_key; |
| 668 | out->cipher = aes_gcm_cipher; |
| 669 | out->cleanup = aes_gcm_cleanup; |
| 670 | out->ctrl = aes_gcm_ctrl; |
| 671 | } |
| 672 | |
| 673 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_cbc_generic) { |
| 674 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 675 | |
| 676 | out->nid = NID_aes_256_cbc; |
| 677 | out->block_size = 16; |
| 678 | out->key_len = 32; |
| 679 | out->iv_len = 16; |
| 680 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 681 | out->flags = EVP_CIPH_CBC_MODE; |
| 682 | out->init = aes_init_key; |
| 683 | out->cipher = aes_cbc_cipher; |
| 684 | } |
| 685 | |
| 686 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ctr_generic) { |
| 687 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 688 | |
| 689 | out->nid = NID_aes_256_ctr; |
| 690 | out->block_size = 1; |
| 691 | out->key_len = 32; |
| 692 | out->iv_len = 16; |
| 693 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 694 | out->flags = EVP_CIPH_CTR_MODE; |
| 695 | out->init = aes_init_key; |
| 696 | out->cipher = aes_ctr_cipher; |
| 697 | } |
| 698 | |
| 699 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) { |
| 700 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 701 | |
| 702 | out->nid = NID_aes_256_ecb; |
| 703 | out->block_size = 16; |
| 704 | out->key_len = 32; |
| 705 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 706 | out->flags = EVP_CIPH_ECB_MODE; |
| 707 | out->init = aes_init_key; |
| 708 | out->cipher = aes_ecb_cipher; |
| 709 | } |
| 710 | |
| 711 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ofb_generic) { |
| 712 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 713 | |
| 714 | out->nid = NID_aes_256_ofb128; |
| 715 | out->block_size = 1; |
| 716 | out->key_len = 32; |
| 717 | out->iv_len = 16; |
| 718 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 719 | out->flags = EVP_CIPH_OFB_MODE; |
| 720 | out->init = aes_init_key; |
| 721 | out->cipher = aes_ofb_cipher; |
| 722 | } |
| 723 | |
| 724 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_gcm_generic) { |
| 725 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 726 | |
| 727 | out->nid = NID_aes_256_gcm; |
| 728 | out->block_size = 1; |
| 729 | out->key_len = 32; |
| 730 | out->iv_len = 12; |
| 731 | out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING; |
| 732 | out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | |
| 733 | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | |
| 734 | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; |
| 735 | out->init = aes_gcm_init_key; |
| 736 | out->cipher = aes_gcm_cipher; |
| 737 | out->cleanup = aes_gcm_cleanup; |
| 738 | out->ctrl = aes_gcm_ctrl; |
| 739 | } |
| 740 | |
| 741 | #if defined(HWAES_ECB) |
| 742 | |
| 743 | static int aes_hw_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, |
| 744 | const uint8_t *in, size_t len) { |
| 745 | size_t bl = ctx->cipher->block_size; |
| 746 | |
| 747 | if (len < bl) { |
| 748 | return 1; |
| 749 | } |
| 750 | |
| 751 | aes_hw_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); |
| 752 | |
| 753 | return 1; |
| 754 | } |
| 755 | |
| 756 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_128_ecb) { |
| 757 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 758 | |
| 759 | out->nid = NID_aes_128_ecb; |
| 760 | out->block_size = 16; |
| 761 | out->key_len = 16; |
| 762 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 763 | out->flags = EVP_CIPH_ECB_MODE; |
| 764 | out->init = aes_init_key; |
| 765 | out->cipher = aes_hw_ecb_cipher; |
| 766 | } |
| 767 | |
| 768 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_192_ecb) { |
| 769 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 770 | |
| 771 | out->nid = NID_aes_192_ecb; |
| 772 | out->block_size = 16; |
| 773 | out->key_len = 24; |
| 774 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 775 | out->flags = EVP_CIPH_ECB_MODE; |
| 776 | out->init = aes_init_key; |
| 777 | out->cipher = aes_hw_ecb_cipher; |
| 778 | } |
| 779 | |
| 780 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_256_ecb) { |
| 781 | memset(out, 0, sizeof(EVP_CIPHER)); |
| 782 | |
| 783 | out->nid = NID_aes_256_ecb; |
| 784 | out->block_size = 16; |
| 785 | out->key_len = 32; |
| 786 | out->ctx_size = sizeof(EVP_AES_KEY); |
| 787 | out->flags = EVP_CIPH_ECB_MODE; |
| 788 | out->init = aes_init_key; |
| 789 | out->cipher = aes_hw_ecb_cipher; |
| 790 | } |
| 791 | |
| 792 | #define EVP_ECB_CIPHER_FUNCTION(keybits) \ |
| 793 | const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ |
| 794 | if (hwaes_capable()) { \ |
| 795 | return aes_hw_##keybits##_ecb(); \ |
| 796 | } \ |
| 797 | return aes_##keybits##_ecb_generic(); \ |
| 798 | } |
| 799 | |
| 800 | #else |
| 801 | |
| 802 | #define EVP_ECB_CIPHER_FUNCTION(keybits) \ |
| 803 | const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ |
| 804 | return aes_##keybits##_ecb_generic(); \ |
| 805 | } |
| 806 | |
| 807 | #endif // HWAES_ECB |
| 808 | |
| 809 | #define EVP_CIPHER_FUNCTION(keybits, mode) \ |
| 810 | const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ |
| 811 | return aes_##keybits##_##mode##_generic(); \ |
| 812 | } |
| 813 | |
| 814 | EVP_CIPHER_FUNCTION(128, cbc) |
| 815 | EVP_CIPHER_FUNCTION(128, ctr) |
| 816 | EVP_CIPHER_FUNCTION(128, ofb) |
| 817 | EVP_CIPHER_FUNCTION(128, gcm) |
| 818 | |
| 819 | EVP_CIPHER_FUNCTION(192, cbc) |
| 820 | EVP_CIPHER_FUNCTION(192, ctr) |
| 821 | EVP_CIPHER_FUNCTION(192, ofb) |
| 822 | EVP_CIPHER_FUNCTION(192, gcm) |
| 823 | |
| 824 | EVP_CIPHER_FUNCTION(256, cbc) |
| 825 | EVP_CIPHER_FUNCTION(256, ctr) |
| 826 | EVP_CIPHER_FUNCTION(256, ofb) |
| 827 | EVP_CIPHER_FUNCTION(256, gcm) |
| 828 | |
| 829 | EVP_ECB_CIPHER_FUNCTION(128) |
| 830 | EVP_ECB_CIPHER_FUNCTION(192) |
| 831 | EVP_ECB_CIPHER_FUNCTION(256) |
| 832 | |
| 833 | |
| 834 | #define EVP_AEAD_AES_GCM_TAG_LEN 16 |
| 835 | |
| 836 | struct aead_aes_gcm_ctx { |
| 837 | union { |
| 838 | double align; |
| 839 | AES_KEY ks; |
| 840 | } ks; |
| 841 | GCM128_KEY gcm_key; |
| 842 | ctr128_f ctr; |
| 843 | }; |
| 844 | |
| 845 | static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx, |
| 846 | size_t *out_tag_len, const uint8_t *key, |
| 847 | size_t key_len, size_t tag_len) { |
| 848 | const size_t key_bits = key_len * 8; |
| 849 | |
| 850 | if (key_bits != 128 && key_bits != 256) { |
| 851 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| 852 | return 0; // EVP_AEAD_CTX_init should catch this. |
| 853 | } |
| 854 | |
| 855 | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| 856 | tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| 857 | } |
| 858 | |
| 859 | if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { |
| 860 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| 861 | return 0; |
| 862 | } |
| 863 | |
| 864 | gcm_ctx->ctr = |
| 865 | aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm_key, NULL, key, key_len); |
| 866 | *out_tag_len = tag_len; |
| 867 | return 1; |
| 868 | } |
| 869 | |
| 870 | OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| 871 | sizeof(struct aead_aes_gcm_ctx), |
| 872 | "AEAD state is too small" ); |
| 873 | #if defined(__GNUC__) || defined(__clang__) |
| 874 | OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
| 875 | alignof(struct aead_aes_gcm_ctx), |
| 876 | "AEAD state has insufficient alignment" ); |
| 877 | #endif |
| 878 | |
| 879 | static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| 880 | size_t key_len, size_t requested_tag_len) { |
| 881 | struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *) &ctx->state; |
| 882 | |
| 883 | size_t actual_tag_len; |
| 884 | if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len, |
| 885 | requested_tag_len)) { |
| 886 | return 0; |
| 887 | } |
| 888 | |
| 889 | ctx->tag_len = actual_tag_len; |
| 890 | return 1; |
| 891 | } |
| 892 | |
| 893 | static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {} |
| 894 | |
| 895 | static int aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| 896 | uint8_t *out_tag, size_t *out_tag_len, |
| 897 | size_t max_out_tag_len, |
| 898 | const uint8_t *nonce, size_t nonce_len, |
| 899 | const uint8_t *in, size_t in_len, |
| 900 | const uint8_t *, |
| 901 | size_t , |
| 902 | const uint8_t *ad, size_t ad_len) { |
| 903 | struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *) &ctx->state; |
| 904 | |
| 905 | if (extra_in_len + ctx->tag_len < ctx->tag_len) { |
| 906 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| 907 | return 0; |
| 908 | } |
| 909 | if (max_out_tag_len < extra_in_len + ctx->tag_len) { |
| 910 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| 911 | return 0; |
| 912 | } |
| 913 | if (nonce_len == 0) { |
| 914 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| 915 | return 0; |
| 916 | } |
| 917 | |
| 918 | const AES_KEY *key = &gcm_ctx->ks.ks; |
| 919 | |
| 920 | GCM128_CONTEXT gcm; |
| 921 | OPENSSL_memset(&gcm, 0, sizeof(gcm)); |
| 922 | OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key)); |
| 923 | CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); |
| 924 | |
| 925 | if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { |
| 926 | return 0; |
| 927 | } |
| 928 | |
| 929 | if (gcm_ctx->ctr) { |
| 930 | if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len, |
| 931 | gcm_ctx->ctr)) { |
| 932 | return 0; |
| 933 | } |
| 934 | } else { |
| 935 | if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) { |
| 936 | return 0; |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | if (extra_in_len) { |
| 941 | if (gcm_ctx->ctr) { |
| 942 | if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, extra_in, out_tag, |
| 943 | extra_in_len, gcm_ctx->ctr)) { |
| 944 | return 0; |
| 945 | } |
| 946 | } else { |
| 947 | if (!CRYPTO_gcm128_encrypt(&gcm, key, extra_in, out_tag, extra_in_len)) { |
| 948 | return 0; |
| 949 | } |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | CRYPTO_gcm128_tag(&gcm, out_tag + extra_in_len, ctx->tag_len); |
| 954 | *out_tag_len = ctx->tag_len + extra_in_len; |
| 955 | |
| 956 | return 1; |
| 957 | } |
| 958 | |
| 959 | static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| 960 | const uint8_t *nonce, size_t nonce_len, |
| 961 | const uint8_t *in, size_t in_len, |
| 962 | const uint8_t *in_tag, size_t in_tag_len, |
| 963 | const uint8_t *ad, size_t ad_len) { |
| 964 | struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *) &ctx->state; |
| 965 | uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; |
| 966 | |
| 967 | if (nonce_len == 0) { |
| 968 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| 969 | return 0; |
| 970 | } |
| 971 | |
| 972 | if (in_tag_len != ctx->tag_len) { |
| 973 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| 974 | return 0; |
| 975 | } |
| 976 | |
| 977 | const AES_KEY *key = &gcm_ctx->ks.ks; |
| 978 | |
| 979 | GCM128_CONTEXT gcm; |
| 980 | OPENSSL_memset(&gcm, 0, sizeof(gcm)); |
| 981 | OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key)); |
| 982 | CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); |
| 983 | |
| 984 | if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { |
| 985 | return 0; |
| 986 | } |
| 987 | |
| 988 | if (gcm_ctx->ctr) { |
| 989 | if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, in_len, |
| 990 | gcm_ctx->ctr)) { |
| 991 | return 0; |
| 992 | } |
| 993 | } else { |
| 994 | if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len)) { |
| 995 | return 0; |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | CRYPTO_gcm128_tag(&gcm, tag, ctx->tag_len); |
| 1000 | if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) { |
| 1001 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| 1002 | return 0; |
| 1003 | } |
| 1004 | |
| 1005 | return 1; |
| 1006 | } |
| 1007 | |
| 1008 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) { |
| 1009 | memset(out, 0, sizeof(EVP_AEAD)); |
| 1010 | |
| 1011 | out->key_len = 16; |
| 1012 | out->nonce_len = 12; |
| 1013 | out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1014 | out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1015 | out->seal_scatter_supports_extra_in = 1; |
| 1016 | |
| 1017 | out->init = aead_aes_gcm_init; |
| 1018 | out->cleanup = aead_aes_gcm_cleanup; |
| 1019 | out->seal_scatter = aead_aes_gcm_seal_scatter; |
| 1020 | out->open_gather = aead_aes_gcm_open_gather; |
| 1021 | } |
| 1022 | |
| 1023 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) { |
| 1024 | memset(out, 0, sizeof(EVP_AEAD)); |
| 1025 | |
| 1026 | out->key_len = 32; |
| 1027 | out->nonce_len = 12; |
| 1028 | out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1029 | out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1030 | out->seal_scatter_supports_extra_in = 1; |
| 1031 | |
| 1032 | out->init = aead_aes_gcm_init; |
| 1033 | out->cleanup = aead_aes_gcm_cleanup; |
| 1034 | out->seal_scatter = aead_aes_gcm_seal_scatter; |
| 1035 | out->open_gather = aead_aes_gcm_open_gather; |
| 1036 | } |
| 1037 | |
| 1038 | struct aead_aes_gcm_tls12_ctx { |
| 1039 | struct aead_aes_gcm_ctx gcm_ctx; |
| 1040 | uint64_t min_next_nonce; |
| 1041 | }; |
| 1042 | |
| 1043 | OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| 1044 | sizeof(struct aead_aes_gcm_tls12_ctx), |
| 1045 | "AEAD state is too small" ); |
| 1046 | #if defined(__GNUC__) || defined(__clang__) |
| 1047 | OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
| 1048 | alignof(struct aead_aes_gcm_tls12_ctx), |
| 1049 | "AEAD state has insufficient alignment" ); |
| 1050 | #endif |
| 1051 | |
| 1052 | static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| 1053 | size_t key_len, size_t requested_tag_len) { |
| 1054 | struct aead_aes_gcm_tls12_ctx *gcm_ctx = |
| 1055 | (struct aead_aes_gcm_tls12_ctx *) &ctx->state; |
| 1056 | |
| 1057 | gcm_ctx->min_next_nonce = 0; |
| 1058 | |
| 1059 | size_t actual_tag_len; |
| 1060 | if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, |
| 1061 | requested_tag_len)) { |
| 1062 | return 0; |
| 1063 | } |
| 1064 | |
| 1065 | ctx->tag_len = actual_tag_len; |
| 1066 | return 1; |
| 1067 | } |
| 1068 | |
| 1069 | static int aead_aes_gcm_tls12_seal_scatter( |
| 1070 | const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| 1071 | size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| 1072 | size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *, |
| 1073 | size_t , const uint8_t *ad, size_t ad_len) { |
| 1074 | struct aead_aes_gcm_tls12_ctx *gcm_ctx = |
| 1075 | (struct aead_aes_gcm_tls12_ctx *) &ctx->state; |
| 1076 | |
| 1077 | if (nonce_len != 12) { |
| 1078 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| 1079 | return 0; |
| 1080 | } |
| 1081 | |
| 1082 | // The given nonces must be strictly monotonically increasing. |
| 1083 | uint64_t given_counter; |
| 1084 | OPENSSL_memcpy(&given_counter, nonce + nonce_len - sizeof(given_counter), |
| 1085 | sizeof(given_counter)); |
| 1086 | given_counter = CRYPTO_bswap8(given_counter); |
| 1087 | if (given_counter == UINT64_MAX || |
| 1088 | given_counter < gcm_ctx->min_next_nonce) { |
| 1089 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); |
| 1090 | return 0; |
| 1091 | } |
| 1092 | |
| 1093 | gcm_ctx->min_next_nonce = given_counter + 1; |
| 1094 | |
| 1095 | return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, |
| 1096 | max_out_tag_len, nonce, nonce_len, in, |
| 1097 | in_len, extra_in, extra_in_len, ad, ad_len); |
| 1098 | } |
| 1099 | |
| 1100 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) { |
| 1101 | memset(out, 0, sizeof(EVP_AEAD)); |
| 1102 | |
| 1103 | out->key_len = 16; |
| 1104 | out->nonce_len = 12; |
| 1105 | out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1106 | out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1107 | out->seal_scatter_supports_extra_in = 1; |
| 1108 | |
| 1109 | out->init = aead_aes_gcm_tls12_init; |
| 1110 | out->cleanup = aead_aes_gcm_cleanup; |
| 1111 | out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; |
| 1112 | out->open_gather = aead_aes_gcm_open_gather; |
| 1113 | } |
| 1114 | |
| 1115 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) { |
| 1116 | memset(out, 0, sizeof(EVP_AEAD)); |
| 1117 | |
| 1118 | out->key_len = 32; |
| 1119 | out->nonce_len = 12; |
| 1120 | out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1121 | out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1122 | out->seal_scatter_supports_extra_in = 1; |
| 1123 | |
| 1124 | out->init = aead_aes_gcm_tls12_init; |
| 1125 | out->cleanup = aead_aes_gcm_cleanup; |
| 1126 | out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; |
| 1127 | out->open_gather = aead_aes_gcm_open_gather; |
| 1128 | } |
| 1129 | |
| 1130 | struct aead_aes_gcm_tls13_ctx { |
| 1131 | struct aead_aes_gcm_ctx gcm_ctx; |
| 1132 | uint64_t min_next_nonce; |
| 1133 | uint64_t mask; |
| 1134 | uint8_t first; |
| 1135 | }; |
| 1136 | |
| 1137 | OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| 1138 | sizeof(struct aead_aes_gcm_tls13_ctx), |
| 1139 | "AEAD state is too small" ); |
| 1140 | #if defined(__GNUC__) || defined(__clang__) |
| 1141 | OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
| 1142 | alignof(struct aead_aes_gcm_tls13_ctx), |
| 1143 | "AEAD state has insufficient alignment" ); |
| 1144 | #endif |
| 1145 | |
| 1146 | static int aead_aes_gcm_tls13_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| 1147 | size_t key_len, size_t requested_tag_len) { |
| 1148 | struct aead_aes_gcm_tls13_ctx *gcm_ctx = |
| 1149 | (struct aead_aes_gcm_tls13_ctx *) &ctx->state; |
| 1150 | |
| 1151 | gcm_ctx->min_next_nonce = 0; |
| 1152 | gcm_ctx->first = 1; |
| 1153 | |
| 1154 | size_t actual_tag_len; |
| 1155 | if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, |
| 1156 | requested_tag_len)) { |
| 1157 | return 0; |
| 1158 | } |
| 1159 | |
| 1160 | ctx->tag_len = actual_tag_len; |
| 1161 | return 1; |
| 1162 | } |
| 1163 | |
| 1164 | static int aead_aes_gcm_tls13_seal_scatter( |
| 1165 | const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| 1166 | size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| 1167 | size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *, |
| 1168 | size_t , const uint8_t *ad, size_t ad_len) { |
| 1169 | struct aead_aes_gcm_tls13_ctx *gcm_ctx = |
| 1170 | (struct aead_aes_gcm_tls13_ctx *) &ctx->state; |
| 1171 | |
| 1172 | if (nonce_len != 12) { |
| 1173 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| 1174 | return 0; |
| 1175 | } |
| 1176 | |
| 1177 | // The given nonces must be strictly monotonically increasing. See |
| 1178 | // https://tools.ietf.org/html/rfc8446#section-5.3 for details of the TLS 1.3 |
| 1179 | // nonce construction. |
| 1180 | uint64_t given_counter; |
| 1181 | OPENSSL_memcpy(&given_counter, nonce + nonce_len - sizeof(given_counter), |
| 1182 | sizeof(given_counter)); |
| 1183 | given_counter = CRYPTO_bswap8(given_counter); |
| 1184 | |
| 1185 | if (gcm_ctx->first) { |
| 1186 | // In the first call the sequence number will be zero and therefore the |
| 1187 | // given nonce will be 0 ^ mask = mask. |
| 1188 | gcm_ctx->mask = given_counter; |
| 1189 | gcm_ctx->first = 0; |
| 1190 | } |
| 1191 | given_counter ^= gcm_ctx->mask; |
| 1192 | |
| 1193 | if (given_counter == UINT64_MAX || |
| 1194 | given_counter < gcm_ctx->min_next_nonce) { |
| 1195 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); |
| 1196 | return 0; |
| 1197 | } |
| 1198 | |
| 1199 | gcm_ctx->min_next_nonce = given_counter + 1; |
| 1200 | |
| 1201 | return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, |
| 1202 | max_out_tag_len, nonce, nonce_len, in, |
| 1203 | in_len, extra_in, extra_in_len, ad, ad_len); |
| 1204 | } |
| 1205 | |
| 1206 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls13) { |
| 1207 | memset(out, 0, sizeof(EVP_AEAD)); |
| 1208 | |
| 1209 | out->key_len = 16; |
| 1210 | out->nonce_len = 12; |
| 1211 | out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1212 | out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1213 | out->seal_scatter_supports_extra_in = 1; |
| 1214 | |
| 1215 | out->init = aead_aes_gcm_tls13_init; |
| 1216 | out->cleanup = aead_aes_gcm_cleanup; |
| 1217 | out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; |
| 1218 | out->open_gather = aead_aes_gcm_open_gather; |
| 1219 | } |
| 1220 | |
| 1221 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls13) { |
| 1222 | memset(out, 0, sizeof(EVP_AEAD)); |
| 1223 | |
| 1224 | out->key_len = 32; |
| 1225 | out->nonce_len = 12; |
| 1226 | out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1227 | out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| 1228 | out->seal_scatter_supports_extra_in = 1; |
| 1229 | |
| 1230 | out->init = aead_aes_gcm_tls13_init; |
| 1231 | out->cleanup = aead_aes_gcm_cleanup; |
| 1232 | out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; |
| 1233 | out->open_gather = aead_aes_gcm_open_gather; |
| 1234 | } |
| 1235 | |
| 1236 | int EVP_has_aes_hardware(void) { |
| 1237 | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| 1238 | return hwaes_capable() && crypto_gcm_clmul_enabled(); |
| 1239 | #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
| 1240 | return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable(); |
| 1241 | #else |
| 1242 | return 0; |
| 1243 | #endif |
| 1244 | } |
| 1245 | |
| 1246 | OPENSSL_MSVC_PRAGMA(warning(pop)) |
| 1247 | |