1 | /* |
2 | * DTLS implementation written by Nagendra Modadugu |
3 | * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. |
4 | */ |
5 | /* ==================================================================== |
6 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
7 | * |
8 | * Redistribution and use in source and binary forms, with or without |
9 | * modification, are permitted provided that the following conditions |
10 | * are met: |
11 | * |
12 | * 1. Redistributions of source code must retain the above copyright |
13 | * notice, this list of conditions and the following disclaimer. |
14 | * |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in |
17 | * the documentation and/or other materials provided with the |
18 | * distribution. |
19 | * |
20 | * 3. All advertising materials mentioning features or use of this |
21 | * software must display the following acknowledgment: |
22 | * "This product includes software developed by the OpenSSL Project |
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
24 | * |
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
26 | * endorse or promote products derived from this software without |
27 | * prior written permission. For written permission, please contact |
28 | * openssl-core@openssl.org. |
29 | * |
30 | * 5. Products derived from this software may not be called "OpenSSL" |
31 | * nor may "OpenSSL" appear in their names without prior written |
32 | * permission of the OpenSSL Project. |
33 | * |
34 | * 6. Redistributions of any form whatsoever must retain the following |
35 | * acknowledgment: |
36 | * "This product includes software developed by the OpenSSL Project |
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
38 | * |
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
51 | * ==================================================================== |
52 | * |
53 | * This product includes cryptographic software written by Eric Young |
54 | * (eay@cryptsoft.com). This product includes software written by Tim |
55 | * Hudson (tjh@cryptsoft.com). |
56 | * |
57 | */ |
58 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
59 | * All rights reserved. |
60 | * |
61 | * This package is an SSL implementation written |
62 | * by Eric Young (eay@cryptsoft.com). |
63 | * The implementation was written so as to conform with Netscapes SSL. |
64 | * |
65 | * This library is free for commercial and non-commercial use as long as |
66 | * the following conditions are aheared to. The following conditions |
67 | * apply to all code found in this distribution, be it the RC4, RSA, |
68 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
69 | * included with this distribution is covered by the same copyright terms |
70 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
71 | * |
72 | * Copyright remains Eric Young's, and as such any Copyright notices in |
73 | * the code are not to be removed. |
74 | * If this package is used in a product, Eric Young should be given attribution |
75 | * as the author of the parts of the library used. |
76 | * This can be in the form of a textual message at program startup or |
77 | * in documentation (online or textual) provided with the package. |
78 | * |
79 | * Redistribution and use in source and binary forms, with or without |
80 | * modification, are permitted provided that the following conditions |
81 | * are met: |
82 | * 1. Redistributions of source code must retain the copyright |
83 | * notice, this list of conditions and the following disclaimer. |
84 | * 2. Redistributions in binary form must reproduce the above copyright |
85 | * notice, this list of conditions and the following disclaimer in the |
86 | * documentation and/or other materials provided with the distribution. |
87 | * 3. All advertising materials mentioning features or use of this software |
88 | * must display the following acknowledgement: |
89 | * "This product includes cryptographic software written by |
90 | * Eric Young (eay@cryptsoft.com)" |
91 | * The word 'cryptographic' can be left out if the rouines from the library |
92 | * being used are not cryptographic related :-). |
93 | * 4. If you include any Windows specific code (or a derivative thereof) from |
94 | * the apps directory (application code) you must include an acknowledgement: |
95 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
96 | * |
97 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
98 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
99 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
100 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
101 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
102 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
103 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
104 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
105 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
106 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
107 | * SUCH DAMAGE. |
108 | * |
109 | * The licence and distribution terms for any publically available version or |
110 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
111 | * copied and put under another distribution licence |
112 | * [including the GNU Public Licence.] */ |
113 | |
114 | #include <openssl/ssl.h> |
115 | |
116 | #include <assert.h> |
117 | #include <limits.h> |
118 | #include <string.h> |
119 | |
120 | #include <openssl/buf.h> |
121 | #include <openssl/err.h> |
122 | #include <openssl/evp.h> |
123 | #include <openssl/mem.h> |
124 | #include <openssl/rand.h> |
125 | |
126 | #include "../crypto/internal.h" |
127 | #include "internal.h" |
128 | |
129 | |
130 | BSSL_NAMESPACE_BEGIN |
131 | |
132 | // TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable |
133 | // for these values? Notably, why is kMinMTU a function of the transport |
134 | // protocol's overhead rather than, say, what's needed to hold a minimally-sized |
135 | // handshake fragment plus protocol overhead. |
136 | |
137 | // kMinMTU is the minimum acceptable MTU value. |
138 | static const unsigned int kMinMTU = 256 - 28; |
139 | |
140 | // kDefaultMTU is the default MTU value to use if neither the user nor |
141 | // the underlying BIO supplies one. |
142 | static const unsigned int kDefaultMTU = 1500 - 28; |
143 | |
144 | |
145 | // Receiving handshake messages. |
146 | |
147 | hm_fragment::~hm_fragment() { |
148 | OPENSSL_free(data); |
149 | OPENSSL_free(reassembly); |
150 | } |
151 | |
152 | static UniquePtr<hm_fragment> ( |
153 | const struct hm_header_st *msg_hdr) { |
154 | ScopedCBB cbb; |
155 | UniquePtr<hm_fragment> frag = MakeUnique<hm_fragment>(); |
156 | if (!frag) { |
157 | return nullptr; |
158 | } |
159 | frag->type = msg_hdr->type; |
160 | frag->seq = msg_hdr->seq; |
161 | frag->msg_len = msg_hdr->msg_len; |
162 | |
163 | // Allocate space for the reassembled message and fill in the header. |
164 | frag->data = |
165 | (uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len); |
166 | if (frag->data == NULL) { |
167 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
168 | return nullptr; |
169 | } |
170 | |
171 | if (!CBB_init_fixed(cbb.get(), frag->data, DTLS1_HM_HEADER_LENGTH) || |
172 | !CBB_add_u8(cbb.get(), msg_hdr->type) || |
173 | !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
174 | !CBB_add_u16(cbb.get(), msg_hdr->seq) || |
175 | !CBB_add_u24(cbb.get(), 0 /* frag_off */) || |
176 | !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
177 | !CBB_finish(cbb.get(), NULL, NULL)) { |
178 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
179 | return nullptr; |
180 | } |
181 | |
182 | // If the handshake message is empty, |frag->reassembly| is NULL. |
183 | if (msg_hdr->msg_len > 0) { |
184 | // Initialize reassembly bitmask. |
185 | if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) { |
186 | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
187 | return nullptr; |
188 | } |
189 | size_t bitmask_len = (msg_hdr->msg_len + 7) / 8; |
190 | frag->reassembly = (uint8_t *)OPENSSL_malloc(bitmask_len); |
191 | if (frag->reassembly == NULL) { |
192 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
193 | return nullptr; |
194 | } |
195 | OPENSSL_memset(frag->reassembly, 0, bitmask_len); |
196 | } |
197 | |
198 | return frag; |
199 | } |
200 | |
201 | // bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|, |
202 | // exclusive, set. |
203 | static uint8_t bit_range(size_t start, size_t end) { |
204 | return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1)); |
205 | } |
206 | |
207 | // dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive, |
208 | // as received in |frag|. If |frag| becomes complete, it clears |
209 | // |frag->reassembly|. The range must be within the bounds of |frag|'s message |
210 | // and |frag->reassembly| must not be NULL. |
211 | static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start, |
212 | size_t end) { |
213 | size_t msg_len = frag->msg_len; |
214 | |
215 | if (frag->reassembly == NULL || start > end || end > msg_len) { |
216 | assert(0); |
217 | return; |
218 | } |
219 | // A zero-length message will never have a pending reassembly. |
220 | assert(msg_len > 0); |
221 | |
222 | if (start == end) { |
223 | return; |
224 | } |
225 | |
226 | if ((start >> 3) == (end >> 3)) { |
227 | frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7); |
228 | } else { |
229 | frag->reassembly[start >> 3] |= bit_range(start & 7, 8); |
230 | for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) { |
231 | frag->reassembly[i] = 0xff; |
232 | } |
233 | if ((end & 7) != 0) { |
234 | frag->reassembly[end >> 3] |= bit_range(0, end & 7); |
235 | } |
236 | } |
237 | |
238 | // Check if the fragment is complete. |
239 | for (size_t i = 0; i < (msg_len >> 3); i++) { |
240 | if (frag->reassembly[i] != 0xff) { |
241 | return; |
242 | } |
243 | } |
244 | if ((msg_len & 7) != 0 && |
245 | frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) { |
246 | return; |
247 | } |
248 | |
249 | OPENSSL_free(frag->reassembly); |
250 | frag->reassembly = NULL; |
251 | } |
252 | |
253 | // dtls1_is_current_message_complete returns whether the current handshake |
254 | // message is complete. |
255 | static bool dtls1_is_current_message_complete(const SSL *ssl) { |
256 | size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
257 | hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
258 | return frag != NULL && frag->reassembly == NULL; |
259 | } |
260 | |
261 | // dtls1_get_incoming_message returns the incoming message corresponding to |
262 | // |msg_hdr|. If none exists, it creates a new one and inserts it in the |
263 | // queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It |
264 | // returns NULL on failure. The caller does not take ownership of the result. |
265 | static hm_fragment *( |
266 | SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) { |
267 | if (msg_hdr->seq < ssl->d1->handshake_read_seq || |
268 | msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) { |
269 | *out_alert = SSL_AD_INTERNAL_ERROR; |
270 | return NULL; |
271 | } |
272 | |
273 | size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT; |
274 | hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
275 | if (frag != NULL) { |
276 | assert(frag->seq == msg_hdr->seq); |
277 | // The new fragment must be compatible with the previous fragments from this |
278 | // message. |
279 | if (frag->type != msg_hdr->type || |
280 | frag->msg_len != msg_hdr->msg_len) { |
281 | OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH); |
282 | *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
283 | return NULL; |
284 | } |
285 | return frag; |
286 | } |
287 | |
288 | // This is the first fragment from this message. |
289 | ssl->d1->incoming_messages[idx] = dtls1_hm_fragment_new(msg_hdr); |
290 | if (!ssl->d1->incoming_messages[idx]) { |
291 | *out_alert = SSL_AD_INTERNAL_ERROR; |
292 | return NULL; |
293 | } |
294 | return ssl->d1->incoming_messages[idx].get(); |
295 | } |
296 | |
297 | ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, |
298 | uint8_t *out_alert, Span<uint8_t> in) { |
299 | uint8_t type; |
300 | Span<uint8_t> record; |
301 | auto ret = dtls_open_record(ssl, &type, &record, out_consumed, out_alert, in); |
302 | if (ret != ssl_open_record_success) { |
303 | return ret; |
304 | } |
305 | |
306 | switch (type) { |
307 | case SSL3_RT_APPLICATION_DATA: |
308 | // Unencrypted application data records are always illegal. |
309 | if (ssl->s3->aead_read_ctx->is_null_cipher()) { |
310 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
311 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
312 | return ssl_open_record_error; |
313 | } |
314 | |
315 | // Out-of-order application data may be received between ChangeCipherSpec |
316 | // and finished. Discard it. |
317 | return ssl_open_record_discard; |
318 | |
319 | case SSL3_RT_CHANGE_CIPHER_SPEC: |
320 | // We do not support renegotiation, so encrypted ChangeCipherSpec records |
321 | // are illegal. |
322 | if (!ssl->s3->aead_read_ctx->is_null_cipher()) { |
323 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
324 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
325 | return ssl_open_record_error; |
326 | } |
327 | |
328 | if (record.size() != 1u || record[0] != SSL3_MT_CCS) { |
329 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC); |
330 | *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
331 | return ssl_open_record_error; |
332 | } |
333 | |
334 | // Flag the ChangeCipherSpec for later. |
335 | ssl->d1->has_change_cipher_spec = true; |
336 | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC, |
337 | record); |
338 | return ssl_open_record_success; |
339 | |
340 | case SSL3_RT_HANDSHAKE: |
341 | // Break out to main processing. |
342 | break; |
343 | |
344 | default: |
345 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
346 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
347 | return ssl_open_record_error; |
348 | } |
349 | |
350 | CBS cbs; |
351 | CBS_init(&cbs, record.data(), record.size()); |
352 | while (CBS_len(&cbs) > 0) { |
353 | // Read a handshake fragment. |
354 | struct hm_header_st msg_hdr; |
355 | CBS body; |
356 | if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) { |
357 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD); |
358 | *out_alert = SSL_AD_DECODE_ERROR; |
359 | return ssl_open_record_error; |
360 | } |
361 | |
362 | const size_t frag_off = msg_hdr.frag_off; |
363 | const size_t frag_len = msg_hdr.frag_len; |
364 | const size_t msg_len = msg_hdr.msg_len; |
365 | if (frag_off > msg_len || frag_off + frag_len < frag_off || |
366 | frag_off + frag_len > msg_len || |
367 | msg_len > ssl_max_handshake_message_len(ssl)) { |
368 | OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); |
369 | *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
370 | return ssl_open_record_error; |
371 | } |
372 | |
373 | // The encrypted epoch in DTLS has only one handshake message. |
374 | if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) { |
375 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
376 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
377 | return ssl_open_record_error; |
378 | } |
379 | |
380 | if (msg_hdr.seq < ssl->d1->handshake_read_seq || |
381 | msg_hdr.seq > |
382 | (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) { |
383 | // Ignore fragments from the past, or ones too far in the future. |
384 | continue; |
385 | } |
386 | |
387 | hm_fragment *frag = dtls1_get_incoming_message(ssl, out_alert, &msg_hdr); |
388 | if (frag == NULL) { |
389 | return ssl_open_record_error; |
390 | } |
391 | assert(frag->msg_len == msg_len); |
392 | |
393 | if (frag->reassembly == NULL) { |
394 | // The message is already assembled. |
395 | continue; |
396 | } |
397 | assert(msg_len > 0); |
398 | |
399 | // Copy the body into the fragment. |
400 | OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off, |
401 | CBS_data(&body), CBS_len(&body)); |
402 | dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len); |
403 | } |
404 | |
405 | return ssl_open_record_success; |
406 | } |
407 | |
408 | bool dtls1_get_message(const SSL *ssl, SSLMessage *out) { |
409 | if (!dtls1_is_current_message_complete(ssl)) { |
410 | return false; |
411 | } |
412 | |
413 | size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
414 | hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
415 | out->type = frag->type; |
416 | CBS_init(&out->body, frag->data + DTLS1_HM_HEADER_LENGTH, frag->msg_len); |
417 | CBS_init(&out->raw, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len); |
418 | out->is_v2_hello = false; |
419 | if (!ssl->s3->has_message) { |
420 | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw); |
421 | ssl->s3->has_message = true; |
422 | } |
423 | return true; |
424 | } |
425 | |
426 | void dtls1_next_message(SSL *ssl) { |
427 | assert(ssl->s3->has_message); |
428 | assert(dtls1_is_current_message_complete(ssl)); |
429 | size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
430 | ssl->d1->incoming_messages[index].reset(); |
431 | ssl->d1->handshake_read_seq++; |
432 | ssl->s3->has_message = false; |
433 | // If we previously sent a flight, mark it as having a reply, so |
434 | // |on_handshake_complete| can manage post-handshake retransmission. |
435 | if (ssl->d1->outgoing_messages_complete) { |
436 | ssl->d1->flight_has_reply = true; |
437 | } |
438 | } |
439 | |
440 | bool dtls_has_unprocessed_handshake_data(const SSL *ssl) { |
441 | if (ssl->d1->has_change_cipher_spec) { |
442 | return true; |
443 | } |
444 | |
445 | size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
446 | for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { |
447 | // Skip the current message. |
448 | if (ssl->s3->has_message && i == current) { |
449 | assert(dtls1_is_current_message_complete(ssl)); |
450 | continue; |
451 | } |
452 | if (ssl->d1->incoming_messages[i] != nullptr) { |
453 | return true; |
454 | } |
455 | } |
456 | return false; |
457 | } |
458 | |
459 | bool (CBS *cbs, struct hm_header_st *out_hdr, |
460 | CBS *out_body) { |
461 | OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st)); |
462 | |
463 | if (!CBS_get_u8(cbs, &out_hdr->type) || |
464 | !CBS_get_u24(cbs, &out_hdr->msg_len) || |
465 | !CBS_get_u16(cbs, &out_hdr->seq) || |
466 | !CBS_get_u24(cbs, &out_hdr->frag_off) || |
467 | !CBS_get_u24(cbs, &out_hdr->frag_len) || |
468 | !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) { |
469 | return false; |
470 | } |
471 | |
472 | return true; |
473 | } |
474 | |
475 | ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, |
476 | uint8_t *out_alert, |
477 | Span<uint8_t> in) { |
478 | if (!ssl->d1->has_change_cipher_spec) { |
479 | // dtls1_open_handshake processes both handshake and ChangeCipherSpec. |
480 | auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in); |
481 | if (ret != ssl_open_record_success) { |
482 | return ret; |
483 | } |
484 | } |
485 | if (ssl->d1->has_change_cipher_spec) { |
486 | ssl->d1->has_change_cipher_spec = false; |
487 | return ssl_open_record_success; |
488 | } |
489 | return ssl_open_record_discard; |
490 | } |
491 | |
492 | |
493 | // Sending handshake messages. |
494 | |
495 | void DTLS_OUTGOING_MESSAGE::Clear() { |
496 | OPENSSL_free(data); |
497 | data = nullptr; |
498 | } |
499 | |
500 | void dtls_clear_outgoing_messages(SSL *ssl) { |
501 | for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) { |
502 | ssl->d1->outgoing_messages[i].Clear(); |
503 | } |
504 | ssl->d1->outgoing_messages_len = 0; |
505 | ssl->d1->outgoing_written = 0; |
506 | ssl->d1->outgoing_offset = 0; |
507 | ssl->d1->outgoing_messages_complete = false; |
508 | ssl->d1->flight_has_reply = false; |
509 | } |
510 | |
511 | bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { |
512 | // Pick a modest size hint to save most of the |realloc| calls. |
513 | if (!CBB_init(cbb, 64) || |
514 | !CBB_add_u8(cbb, type) || |
515 | !CBB_add_u24(cbb, 0 /* length (filled in later) */) || |
516 | !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) || |
517 | !CBB_add_u24(cbb, 0 /* offset */) || |
518 | !CBB_add_u24_length_prefixed(cbb, body)) { |
519 | return false; |
520 | } |
521 | |
522 | return true; |
523 | } |
524 | |
525 | bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) { |
526 | if (!CBBFinishArray(cbb, out_msg) || |
527 | out_msg->size() < DTLS1_HM_HEADER_LENGTH) { |
528 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
529 | return false; |
530 | } |
531 | |
532 | // Fix up the header. Copy the fragment length into the total message |
533 | // length. |
534 | OPENSSL_memcpy(out_msg->data() + 1, |
535 | out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3); |
536 | return true; |
537 | } |
538 | |
539 | // ssl_size_t_greater_than_32_bits returns whether |v| exceeds the bounds of a |
540 | // 32-bit value. The obvious thing doesn't work because, in some 32-bit build |
541 | // configurations, the compiler warns that the test is always false and breaks |
542 | // the build. |
543 | static bool ssl_size_t_greater_than_32_bits(size_t v) { |
544 | #if defined(OPENSSL_64_BIT) |
545 | return v > 0xffffffff; |
546 | #elif defined(OPENSSL_32_BIT) |
547 | return false; |
548 | #else |
549 | #error "Building for neither 32- nor 64-bits." |
550 | #endif |
551 | } |
552 | |
553 | // add_outgoing adds a new handshake message or ChangeCipherSpec to the current |
554 | // outgoing flight. It returns true on success and false on error. |
555 | static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) { |
556 | if (ssl->d1->outgoing_messages_complete) { |
557 | // If we've begun writing a new flight, we received the peer flight. Discard |
558 | // the timer and the our flight. |
559 | dtls1_stop_timer(ssl); |
560 | dtls_clear_outgoing_messages(ssl); |
561 | } |
562 | |
563 | static_assert(SSL_MAX_HANDSHAKE_FLIGHT < |
564 | (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)), |
565 | "outgoing_messages_len is too small" ); |
566 | if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT || |
567 | ssl_size_t_greater_than_32_bits(data.size())) { |
568 | assert(false); |
569 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
570 | return false; |
571 | } |
572 | |
573 | if (!is_ccs) { |
574 | // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript |
575 | // on hs. |
576 | if (ssl->s3->hs != NULL && |
577 | !ssl->s3->hs->transcript.Update(data)) { |
578 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
579 | return false; |
580 | } |
581 | ssl->d1->handshake_write_seq++; |
582 | } |
583 | |
584 | DTLS_OUTGOING_MESSAGE *msg = |
585 | &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len]; |
586 | size_t len; |
587 | data.Release(&msg->data, &len); |
588 | msg->len = len; |
589 | msg->epoch = ssl->d1->w_epoch; |
590 | msg->is_ccs = is_ccs; |
591 | |
592 | ssl->d1->outgoing_messages_len++; |
593 | return true; |
594 | } |
595 | |
596 | bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) { |
597 | return add_outgoing(ssl, false /* handshake */, std::move(data)); |
598 | } |
599 | |
600 | bool dtls1_add_change_cipher_spec(SSL *ssl) { |
601 | return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>()); |
602 | } |
603 | |
604 | // dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above |
605 | // the minimum. |
606 | static void dtls1_update_mtu(SSL *ssl) { |
607 | // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the |
608 | // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use |
609 | // |SSL_set_mtu|. Does this need to be so complex? |
610 | if (ssl->d1->mtu < dtls1_min_mtu() && |
611 | !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { |
612 | long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); |
613 | if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) { |
614 | ssl->d1->mtu = (unsigned)mtu; |
615 | } else { |
616 | ssl->d1->mtu = kDefaultMTU; |
617 | BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL); |
618 | } |
619 | } |
620 | |
621 | // The MTU should be above the minimum now. |
622 | assert(ssl->d1->mtu >= dtls1_min_mtu()); |
623 | } |
624 | |
625 | enum seal_result_t { |
626 | seal_error, |
627 | seal_no_progress, |
628 | seal_partial, |
629 | seal_success, |
630 | }; |
631 | |
632 | // seal_next_message seals |msg|, which must be the next message, to |out|. If |
633 | // progress was made, it returns |seal_partial| or |seal_success| and sets |
634 | // |*out_len| to the number of bytes written. |
635 | static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out, |
636 | size_t *out_len, size_t max_out, |
637 | const DTLS_OUTGOING_MESSAGE *msg) { |
638 | assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len); |
639 | assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]); |
640 | |
641 | enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch; |
642 | if (ssl->d1->w_epoch >= 1 && msg->epoch == ssl->d1->w_epoch - 1) { |
643 | use_epoch = dtls1_use_previous_epoch; |
644 | } else if (msg->epoch != ssl->d1->w_epoch) { |
645 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
646 | return seal_error; |
647 | } |
648 | |
649 | size_t overhead = dtls_max_seal_overhead(ssl, use_epoch); |
650 | size_t prefix = dtls_seal_prefix_len(ssl, use_epoch); |
651 | |
652 | if (msg->is_ccs) { |
653 | // Check there is room for the ChangeCipherSpec. |
654 | static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; |
655 | if (max_out < sizeof(kChangeCipherSpec) + overhead) { |
656 | return seal_no_progress; |
657 | } |
658 | |
659 | if (!dtls_seal_record(ssl, out, out_len, max_out, |
660 | SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, |
661 | sizeof(kChangeCipherSpec), use_epoch)) { |
662 | return seal_error; |
663 | } |
664 | |
665 | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC, |
666 | kChangeCipherSpec); |
667 | return seal_success; |
668 | } |
669 | |
670 | // DTLS messages are serialized as a single fragment in |msg|. |
671 | CBS cbs, body; |
672 | struct hm_header_st hdr; |
673 | CBS_init(&cbs, msg->data, msg->len); |
674 | if (!dtls1_parse_fragment(&cbs, &hdr, &body) || |
675 | hdr.frag_off != 0 || |
676 | hdr.frag_len != CBS_len(&body) || |
677 | hdr.msg_len != CBS_len(&body) || |
678 | !CBS_skip(&body, ssl->d1->outgoing_offset) || |
679 | CBS_len(&cbs) != 0) { |
680 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
681 | return seal_error; |
682 | } |
683 | |
684 | // Determine how much progress can be made. |
685 | if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) { |
686 | return seal_no_progress; |
687 | } |
688 | size_t todo = CBS_len(&body); |
689 | if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) { |
690 | todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead; |
691 | } |
692 | |
693 | // Assemble a fragment, to be sealed in-place. |
694 | ScopedCBB cbb; |
695 | uint8_t *frag = out + prefix; |
696 | size_t max_frag = max_out - prefix, frag_len; |
697 | if (!CBB_init_fixed(cbb.get(), frag, max_frag) || |
698 | !CBB_add_u8(cbb.get(), hdr.type) || |
699 | !CBB_add_u24(cbb.get(), hdr.msg_len) || |
700 | !CBB_add_u16(cbb.get(), hdr.seq) || |
701 | !CBB_add_u24(cbb.get(), ssl->d1->outgoing_offset) || |
702 | !CBB_add_u24(cbb.get(), todo) || |
703 | !CBB_add_bytes(cbb.get(), CBS_data(&body), todo) || |
704 | !CBB_finish(cbb.get(), NULL, &frag_len)) { |
705 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
706 | return seal_error; |
707 | } |
708 | |
709 | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, |
710 | MakeSpan(frag, frag_len)); |
711 | |
712 | if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE, |
713 | out + prefix, frag_len, use_epoch)) { |
714 | return seal_error; |
715 | } |
716 | |
717 | if (todo == CBS_len(&body)) { |
718 | // The next message is complete. |
719 | ssl->d1->outgoing_offset = 0; |
720 | return seal_success; |
721 | } |
722 | |
723 | ssl->d1->outgoing_offset += todo; |
724 | return seal_partial; |
725 | } |
726 | |
727 | // seal_next_packet writes as much of the next flight as possible to |out| and |
728 | // advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as |
729 | // appropriate. |
730 | static bool seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len, |
731 | size_t max_out) { |
732 | bool made_progress = false; |
733 | size_t total = 0; |
734 | assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len); |
735 | for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len; |
736 | ssl->d1->outgoing_written++) { |
737 | const DTLS_OUTGOING_MESSAGE *msg = |
738 | &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]; |
739 | size_t len; |
740 | enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg); |
741 | switch (ret) { |
742 | case seal_error: |
743 | return false; |
744 | |
745 | case seal_no_progress: |
746 | goto packet_full; |
747 | |
748 | case seal_partial: |
749 | case seal_success: |
750 | out += len; |
751 | max_out -= len; |
752 | total += len; |
753 | made_progress = true; |
754 | |
755 | if (ret == seal_partial) { |
756 | goto packet_full; |
757 | } |
758 | break; |
759 | } |
760 | } |
761 | |
762 | packet_full: |
763 | // The MTU was too small to make any progress. |
764 | if (!made_progress) { |
765 | OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL); |
766 | return false; |
767 | } |
768 | |
769 | *out_len = total; |
770 | return true; |
771 | } |
772 | |
773 | static int send_flight(SSL *ssl) { |
774 | if (ssl->s3->write_shutdown != ssl_shutdown_none) { |
775 | OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); |
776 | return -1; |
777 | } |
778 | |
779 | dtls1_update_mtu(ssl); |
780 | |
781 | int ret = -1; |
782 | uint8_t *packet = (uint8_t *)OPENSSL_malloc(ssl->d1->mtu); |
783 | if (packet == NULL) { |
784 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
785 | goto err; |
786 | } |
787 | |
788 | while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) { |
789 | uint8_t old_written = ssl->d1->outgoing_written; |
790 | uint32_t old_offset = ssl->d1->outgoing_offset; |
791 | |
792 | size_t packet_len; |
793 | if (!seal_next_packet(ssl, packet, &packet_len, ssl->d1->mtu)) { |
794 | goto err; |
795 | } |
796 | |
797 | int bio_ret = BIO_write(ssl->wbio.get(), packet, packet_len); |
798 | if (bio_ret <= 0) { |
799 | // Retry this packet the next time around. |
800 | ssl->d1->outgoing_written = old_written; |
801 | ssl->d1->outgoing_offset = old_offset; |
802 | ssl->s3->rwstate = SSL_WRITING; |
803 | ret = bio_ret; |
804 | goto err; |
805 | } |
806 | } |
807 | |
808 | if (BIO_flush(ssl->wbio.get()) <= 0) { |
809 | ssl->s3->rwstate = SSL_WRITING; |
810 | goto err; |
811 | } |
812 | |
813 | ret = 1; |
814 | |
815 | err: |
816 | OPENSSL_free(packet); |
817 | return ret; |
818 | } |
819 | |
820 | int dtls1_flush_flight(SSL *ssl) { |
821 | ssl->d1->outgoing_messages_complete = true; |
822 | // Start the retransmission timer for the next flight (if any). |
823 | dtls1_start_timer(ssl); |
824 | return send_flight(ssl); |
825 | } |
826 | |
827 | int dtls1_retransmit_outgoing_messages(SSL *ssl) { |
828 | // Rewind to the start of the flight and write it again. |
829 | // |
830 | // TODO(davidben): This does not allow retransmits to be resumed on |
831 | // non-blocking write. |
832 | ssl->d1->outgoing_written = 0; |
833 | ssl->d1->outgoing_offset = 0; |
834 | |
835 | return send_flight(ssl); |
836 | } |
837 | |
838 | unsigned int dtls1_min_mtu(void) { |
839 | return kMinMTU; |
840 | } |
841 | |
842 | BSSL_NAMESPACE_END |
843 | |