| 1 | /* |
| 2 | * DTLS implementation written by Nagendra Modadugu |
| 3 | * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. |
| 4 | */ |
| 5 | /* ==================================================================== |
| 6 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * |
| 12 | * 1. Redistributions of source code must retain the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer. |
| 14 | * |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in |
| 17 | * the documentation and/or other materials provided with the |
| 18 | * distribution. |
| 19 | * |
| 20 | * 3. All advertising materials mentioning features or use of this |
| 21 | * software must display the following acknowledgment: |
| 22 | * "This product includes software developed by the OpenSSL Project |
| 23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 24 | * |
| 25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 26 | * endorse or promote products derived from this software without |
| 27 | * prior written permission. For written permission, please contact |
| 28 | * openssl-core@openssl.org. |
| 29 | * |
| 30 | * 5. Products derived from this software may not be called "OpenSSL" |
| 31 | * nor may "OpenSSL" appear in their names without prior written |
| 32 | * permission of the OpenSSL Project. |
| 33 | * |
| 34 | * 6. Redistributions of any form whatsoever must retain the following |
| 35 | * acknowledgment: |
| 36 | * "This product includes software developed by the OpenSSL Project |
| 37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 38 | * |
| 39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 50 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 51 | * ==================================================================== |
| 52 | * |
| 53 | * This product includes cryptographic software written by Eric Young |
| 54 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 55 | * Hudson (tjh@cryptsoft.com). |
| 56 | * |
| 57 | */ |
| 58 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 59 | * All rights reserved. |
| 60 | * |
| 61 | * This package is an SSL implementation written |
| 62 | * by Eric Young (eay@cryptsoft.com). |
| 63 | * The implementation was written so as to conform with Netscapes SSL. |
| 64 | * |
| 65 | * This library is free for commercial and non-commercial use as long as |
| 66 | * the following conditions are aheared to. The following conditions |
| 67 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 68 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 69 | * included with this distribution is covered by the same copyright terms |
| 70 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 71 | * |
| 72 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 73 | * the code are not to be removed. |
| 74 | * If this package is used in a product, Eric Young should be given attribution |
| 75 | * as the author of the parts of the library used. |
| 76 | * This can be in the form of a textual message at program startup or |
| 77 | * in documentation (online or textual) provided with the package. |
| 78 | * |
| 79 | * Redistribution and use in source and binary forms, with or without |
| 80 | * modification, are permitted provided that the following conditions |
| 81 | * are met: |
| 82 | * 1. Redistributions of source code must retain the copyright |
| 83 | * notice, this list of conditions and the following disclaimer. |
| 84 | * 2. Redistributions in binary form must reproduce the above copyright |
| 85 | * notice, this list of conditions and the following disclaimer in the |
| 86 | * documentation and/or other materials provided with the distribution. |
| 87 | * 3. All advertising materials mentioning features or use of this software |
| 88 | * must display the following acknowledgement: |
| 89 | * "This product includes cryptographic software written by |
| 90 | * Eric Young (eay@cryptsoft.com)" |
| 91 | * The word 'cryptographic' can be left out if the rouines from the library |
| 92 | * being used are not cryptographic related :-). |
| 93 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 94 | * the apps directory (application code) you must include an acknowledgement: |
| 95 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 96 | * |
| 97 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 98 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 99 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 100 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 101 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 102 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 103 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 104 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 105 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 106 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 107 | * SUCH DAMAGE. |
| 108 | * |
| 109 | * The licence and distribution terms for any publically available version or |
| 110 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 111 | * copied and put under another distribution licence |
| 112 | * [including the GNU Public Licence.] */ |
| 113 | |
| 114 | #include <openssl/ssl.h> |
| 115 | |
| 116 | #include <assert.h> |
| 117 | #include <limits.h> |
| 118 | #include <string.h> |
| 119 | |
| 120 | #include <openssl/buf.h> |
| 121 | #include <openssl/err.h> |
| 122 | #include <openssl/evp.h> |
| 123 | #include <openssl/mem.h> |
| 124 | #include <openssl/rand.h> |
| 125 | |
| 126 | #include "../crypto/internal.h" |
| 127 | #include "internal.h" |
| 128 | |
| 129 | |
| 130 | BSSL_NAMESPACE_BEGIN |
| 131 | |
| 132 | // TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable |
| 133 | // for these values? Notably, why is kMinMTU a function of the transport |
| 134 | // protocol's overhead rather than, say, what's needed to hold a minimally-sized |
| 135 | // handshake fragment plus protocol overhead. |
| 136 | |
| 137 | // kMinMTU is the minimum acceptable MTU value. |
| 138 | static const unsigned int kMinMTU = 256 - 28; |
| 139 | |
| 140 | // kDefaultMTU is the default MTU value to use if neither the user nor |
| 141 | // the underlying BIO supplies one. |
| 142 | static const unsigned int kDefaultMTU = 1500 - 28; |
| 143 | |
| 144 | |
| 145 | // Receiving handshake messages. |
| 146 | |
| 147 | hm_fragment::~hm_fragment() { |
| 148 | OPENSSL_free(data); |
| 149 | OPENSSL_free(reassembly); |
| 150 | } |
| 151 | |
| 152 | static UniquePtr<hm_fragment> ( |
| 153 | const struct hm_header_st *msg_hdr) { |
| 154 | ScopedCBB cbb; |
| 155 | UniquePtr<hm_fragment> frag = MakeUnique<hm_fragment>(); |
| 156 | if (!frag) { |
| 157 | return nullptr; |
| 158 | } |
| 159 | frag->type = msg_hdr->type; |
| 160 | frag->seq = msg_hdr->seq; |
| 161 | frag->msg_len = msg_hdr->msg_len; |
| 162 | |
| 163 | // Allocate space for the reassembled message and fill in the header. |
| 164 | frag->data = |
| 165 | (uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len); |
| 166 | if (frag->data == NULL) { |
| 167 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 168 | return nullptr; |
| 169 | } |
| 170 | |
| 171 | if (!CBB_init_fixed(cbb.get(), frag->data, DTLS1_HM_HEADER_LENGTH) || |
| 172 | !CBB_add_u8(cbb.get(), msg_hdr->type) || |
| 173 | !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
| 174 | !CBB_add_u16(cbb.get(), msg_hdr->seq) || |
| 175 | !CBB_add_u24(cbb.get(), 0 /* frag_off */) || |
| 176 | !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
| 177 | !CBB_finish(cbb.get(), NULL, NULL)) { |
| 178 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 179 | return nullptr; |
| 180 | } |
| 181 | |
| 182 | // If the handshake message is empty, |frag->reassembly| is NULL. |
| 183 | if (msg_hdr->msg_len > 0) { |
| 184 | // Initialize reassembly bitmask. |
| 185 | if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) { |
| 186 | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| 187 | return nullptr; |
| 188 | } |
| 189 | size_t bitmask_len = (msg_hdr->msg_len + 7) / 8; |
| 190 | frag->reassembly = (uint8_t *)OPENSSL_malloc(bitmask_len); |
| 191 | if (frag->reassembly == NULL) { |
| 192 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 193 | return nullptr; |
| 194 | } |
| 195 | OPENSSL_memset(frag->reassembly, 0, bitmask_len); |
| 196 | } |
| 197 | |
| 198 | return frag; |
| 199 | } |
| 200 | |
| 201 | // bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|, |
| 202 | // exclusive, set. |
| 203 | static uint8_t bit_range(size_t start, size_t end) { |
| 204 | return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1)); |
| 205 | } |
| 206 | |
| 207 | // dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive, |
| 208 | // as received in |frag|. If |frag| becomes complete, it clears |
| 209 | // |frag->reassembly|. The range must be within the bounds of |frag|'s message |
| 210 | // and |frag->reassembly| must not be NULL. |
| 211 | static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start, |
| 212 | size_t end) { |
| 213 | size_t msg_len = frag->msg_len; |
| 214 | |
| 215 | if (frag->reassembly == NULL || start > end || end > msg_len) { |
| 216 | assert(0); |
| 217 | return; |
| 218 | } |
| 219 | // A zero-length message will never have a pending reassembly. |
| 220 | assert(msg_len > 0); |
| 221 | |
| 222 | if (start == end) { |
| 223 | return; |
| 224 | } |
| 225 | |
| 226 | if ((start >> 3) == (end >> 3)) { |
| 227 | frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7); |
| 228 | } else { |
| 229 | frag->reassembly[start >> 3] |= bit_range(start & 7, 8); |
| 230 | for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) { |
| 231 | frag->reassembly[i] = 0xff; |
| 232 | } |
| 233 | if ((end & 7) != 0) { |
| 234 | frag->reassembly[end >> 3] |= bit_range(0, end & 7); |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | // Check if the fragment is complete. |
| 239 | for (size_t i = 0; i < (msg_len >> 3); i++) { |
| 240 | if (frag->reassembly[i] != 0xff) { |
| 241 | return; |
| 242 | } |
| 243 | } |
| 244 | if ((msg_len & 7) != 0 && |
| 245 | frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) { |
| 246 | return; |
| 247 | } |
| 248 | |
| 249 | OPENSSL_free(frag->reassembly); |
| 250 | frag->reassembly = NULL; |
| 251 | } |
| 252 | |
| 253 | // dtls1_is_current_message_complete returns whether the current handshake |
| 254 | // message is complete. |
| 255 | static bool dtls1_is_current_message_complete(const SSL *ssl) { |
| 256 | size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| 257 | hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
| 258 | return frag != NULL && frag->reassembly == NULL; |
| 259 | } |
| 260 | |
| 261 | // dtls1_get_incoming_message returns the incoming message corresponding to |
| 262 | // |msg_hdr|. If none exists, it creates a new one and inserts it in the |
| 263 | // queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It |
| 264 | // returns NULL on failure. The caller does not take ownership of the result. |
| 265 | static hm_fragment *( |
| 266 | SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) { |
| 267 | if (msg_hdr->seq < ssl->d1->handshake_read_seq || |
| 268 | msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) { |
| 269 | *out_alert = SSL_AD_INTERNAL_ERROR; |
| 270 | return NULL; |
| 271 | } |
| 272 | |
| 273 | size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| 274 | hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
| 275 | if (frag != NULL) { |
| 276 | assert(frag->seq == msg_hdr->seq); |
| 277 | // The new fragment must be compatible with the previous fragments from this |
| 278 | // message. |
| 279 | if (frag->type != msg_hdr->type || |
| 280 | frag->msg_len != msg_hdr->msg_len) { |
| 281 | OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH); |
| 282 | *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| 283 | return NULL; |
| 284 | } |
| 285 | return frag; |
| 286 | } |
| 287 | |
| 288 | // This is the first fragment from this message. |
| 289 | ssl->d1->incoming_messages[idx] = dtls1_hm_fragment_new(msg_hdr); |
| 290 | if (!ssl->d1->incoming_messages[idx]) { |
| 291 | *out_alert = SSL_AD_INTERNAL_ERROR; |
| 292 | return NULL; |
| 293 | } |
| 294 | return ssl->d1->incoming_messages[idx].get(); |
| 295 | } |
| 296 | |
| 297 | ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, |
| 298 | uint8_t *out_alert, Span<uint8_t> in) { |
| 299 | uint8_t type; |
| 300 | Span<uint8_t> record; |
| 301 | auto ret = dtls_open_record(ssl, &type, &record, out_consumed, out_alert, in); |
| 302 | if (ret != ssl_open_record_success) { |
| 303 | return ret; |
| 304 | } |
| 305 | |
| 306 | switch (type) { |
| 307 | case SSL3_RT_APPLICATION_DATA: |
| 308 | // Unencrypted application data records are always illegal. |
| 309 | if (ssl->s3->aead_read_ctx->is_null_cipher()) { |
| 310 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| 311 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| 312 | return ssl_open_record_error; |
| 313 | } |
| 314 | |
| 315 | // Out-of-order application data may be received between ChangeCipherSpec |
| 316 | // and finished. Discard it. |
| 317 | return ssl_open_record_discard; |
| 318 | |
| 319 | case SSL3_RT_CHANGE_CIPHER_SPEC: |
| 320 | // We do not support renegotiation, so encrypted ChangeCipherSpec records |
| 321 | // are illegal. |
| 322 | if (!ssl->s3->aead_read_ctx->is_null_cipher()) { |
| 323 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| 324 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| 325 | return ssl_open_record_error; |
| 326 | } |
| 327 | |
| 328 | if (record.size() != 1u || record[0] != SSL3_MT_CCS) { |
| 329 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC); |
| 330 | *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| 331 | return ssl_open_record_error; |
| 332 | } |
| 333 | |
| 334 | // Flag the ChangeCipherSpec for later. |
| 335 | ssl->d1->has_change_cipher_spec = true; |
| 336 | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC, |
| 337 | record); |
| 338 | return ssl_open_record_success; |
| 339 | |
| 340 | case SSL3_RT_HANDSHAKE: |
| 341 | // Break out to main processing. |
| 342 | break; |
| 343 | |
| 344 | default: |
| 345 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| 346 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| 347 | return ssl_open_record_error; |
| 348 | } |
| 349 | |
| 350 | CBS cbs; |
| 351 | CBS_init(&cbs, record.data(), record.size()); |
| 352 | while (CBS_len(&cbs) > 0) { |
| 353 | // Read a handshake fragment. |
| 354 | struct hm_header_st msg_hdr; |
| 355 | CBS body; |
| 356 | if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) { |
| 357 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD); |
| 358 | *out_alert = SSL_AD_DECODE_ERROR; |
| 359 | return ssl_open_record_error; |
| 360 | } |
| 361 | |
| 362 | const size_t frag_off = msg_hdr.frag_off; |
| 363 | const size_t frag_len = msg_hdr.frag_len; |
| 364 | const size_t msg_len = msg_hdr.msg_len; |
| 365 | if (frag_off > msg_len || frag_off + frag_len < frag_off || |
| 366 | frag_off + frag_len > msg_len || |
| 367 | msg_len > ssl_max_handshake_message_len(ssl)) { |
| 368 | OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); |
| 369 | *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| 370 | return ssl_open_record_error; |
| 371 | } |
| 372 | |
| 373 | // The encrypted epoch in DTLS has only one handshake message. |
| 374 | if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) { |
| 375 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| 376 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| 377 | return ssl_open_record_error; |
| 378 | } |
| 379 | |
| 380 | if (msg_hdr.seq < ssl->d1->handshake_read_seq || |
| 381 | msg_hdr.seq > |
| 382 | (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) { |
| 383 | // Ignore fragments from the past, or ones too far in the future. |
| 384 | continue; |
| 385 | } |
| 386 | |
| 387 | hm_fragment *frag = dtls1_get_incoming_message(ssl, out_alert, &msg_hdr); |
| 388 | if (frag == NULL) { |
| 389 | return ssl_open_record_error; |
| 390 | } |
| 391 | assert(frag->msg_len == msg_len); |
| 392 | |
| 393 | if (frag->reassembly == NULL) { |
| 394 | // The message is already assembled. |
| 395 | continue; |
| 396 | } |
| 397 | assert(msg_len > 0); |
| 398 | |
| 399 | // Copy the body into the fragment. |
| 400 | OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off, |
| 401 | CBS_data(&body), CBS_len(&body)); |
| 402 | dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len); |
| 403 | } |
| 404 | |
| 405 | return ssl_open_record_success; |
| 406 | } |
| 407 | |
| 408 | bool dtls1_get_message(const SSL *ssl, SSLMessage *out) { |
| 409 | if (!dtls1_is_current_message_complete(ssl)) { |
| 410 | return false; |
| 411 | } |
| 412 | |
| 413 | size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| 414 | hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
| 415 | out->type = frag->type; |
| 416 | CBS_init(&out->body, frag->data + DTLS1_HM_HEADER_LENGTH, frag->msg_len); |
| 417 | CBS_init(&out->raw, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len); |
| 418 | out->is_v2_hello = false; |
| 419 | if (!ssl->s3->has_message) { |
| 420 | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw); |
| 421 | ssl->s3->has_message = true; |
| 422 | } |
| 423 | return true; |
| 424 | } |
| 425 | |
| 426 | void dtls1_next_message(SSL *ssl) { |
| 427 | assert(ssl->s3->has_message); |
| 428 | assert(dtls1_is_current_message_complete(ssl)); |
| 429 | size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| 430 | ssl->d1->incoming_messages[index].reset(); |
| 431 | ssl->d1->handshake_read_seq++; |
| 432 | ssl->s3->has_message = false; |
| 433 | // If we previously sent a flight, mark it as having a reply, so |
| 434 | // |on_handshake_complete| can manage post-handshake retransmission. |
| 435 | if (ssl->d1->outgoing_messages_complete) { |
| 436 | ssl->d1->flight_has_reply = true; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | bool dtls_has_unprocessed_handshake_data(const SSL *ssl) { |
| 441 | if (ssl->d1->has_change_cipher_spec) { |
| 442 | return true; |
| 443 | } |
| 444 | |
| 445 | size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| 446 | for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { |
| 447 | // Skip the current message. |
| 448 | if (ssl->s3->has_message && i == current) { |
| 449 | assert(dtls1_is_current_message_complete(ssl)); |
| 450 | continue; |
| 451 | } |
| 452 | if (ssl->d1->incoming_messages[i] != nullptr) { |
| 453 | return true; |
| 454 | } |
| 455 | } |
| 456 | return false; |
| 457 | } |
| 458 | |
| 459 | bool (CBS *cbs, struct hm_header_st *out_hdr, |
| 460 | CBS *out_body) { |
| 461 | OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st)); |
| 462 | |
| 463 | if (!CBS_get_u8(cbs, &out_hdr->type) || |
| 464 | !CBS_get_u24(cbs, &out_hdr->msg_len) || |
| 465 | !CBS_get_u16(cbs, &out_hdr->seq) || |
| 466 | !CBS_get_u24(cbs, &out_hdr->frag_off) || |
| 467 | !CBS_get_u24(cbs, &out_hdr->frag_len) || |
| 468 | !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) { |
| 469 | return false; |
| 470 | } |
| 471 | |
| 472 | return true; |
| 473 | } |
| 474 | |
| 475 | ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, |
| 476 | uint8_t *out_alert, |
| 477 | Span<uint8_t> in) { |
| 478 | if (!ssl->d1->has_change_cipher_spec) { |
| 479 | // dtls1_open_handshake processes both handshake and ChangeCipherSpec. |
| 480 | auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in); |
| 481 | if (ret != ssl_open_record_success) { |
| 482 | return ret; |
| 483 | } |
| 484 | } |
| 485 | if (ssl->d1->has_change_cipher_spec) { |
| 486 | ssl->d1->has_change_cipher_spec = false; |
| 487 | return ssl_open_record_success; |
| 488 | } |
| 489 | return ssl_open_record_discard; |
| 490 | } |
| 491 | |
| 492 | |
| 493 | // Sending handshake messages. |
| 494 | |
| 495 | void DTLS_OUTGOING_MESSAGE::Clear() { |
| 496 | OPENSSL_free(data); |
| 497 | data = nullptr; |
| 498 | } |
| 499 | |
| 500 | void dtls_clear_outgoing_messages(SSL *ssl) { |
| 501 | for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) { |
| 502 | ssl->d1->outgoing_messages[i].Clear(); |
| 503 | } |
| 504 | ssl->d1->outgoing_messages_len = 0; |
| 505 | ssl->d1->outgoing_written = 0; |
| 506 | ssl->d1->outgoing_offset = 0; |
| 507 | ssl->d1->outgoing_messages_complete = false; |
| 508 | ssl->d1->flight_has_reply = false; |
| 509 | } |
| 510 | |
| 511 | bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { |
| 512 | // Pick a modest size hint to save most of the |realloc| calls. |
| 513 | if (!CBB_init(cbb, 64) || |
| 514 | !CBB_add_u8(cbb, type) || |
| 515 | !CBB_add_u24(cbb, 0 /* length (filled in later) */) || |
| 516 | !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) || |
| 517 | !CBB_add_u24(cbb, 0 /* offset */) || |
| 518 | !CBB_add_u24_length_prefixed(cbb, body)) { |
| 519 | return false; |
| 520 | } |
| 521 | |
| 522 | return true; |
| 523 | } |
| 524 | |
| 525 | bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) { |
| 526 | if (!CBBFinishArray(cbb, out_msg) || |
| 527 | out_msg->size() < DTLS1_HM_HEADER_LENGTH) { |
| 528 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 529 | return false; |
| 530 | } |
| 531 | |
| 532 | // Fix up the header. Copy the fragment length into the total message |
| 533 | // length. |
| 534 | OPENSSL_memcpy(out_msg->data() + 1, |
| 535 | out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3); |
| 536 | return true; |
| 537 | } |
| 538 | |
| 539 | // ssl_size_t_greater_than_32_bits returns whether |v| exceeds the bounds of a |
| 540 | // 32-bit value. The obvious thing doesn't work because, in some 32-bit build |
| 541 | // configurations, the compiler warns that the test is always false and breaks |
| 542 | // the build. |
| 543 | static bool ssl_size_t_greater_than_32_bits(size_t v) { |
| 544 | #if defined(OPENSSL_64_BIT) |
| 545 | return v > 0xffffffff; |
| 546 | #elif defined(OPENSSL_32_BIT) |
| 547 | return false; |
| 548 | #else |
| 549 | #error "Building for neither 32- nor 64-bits." |
| 550 | #endif |
| 551 | } |
| 552 | |
| 553 | // add_outgoing adds a new handshake message or ChangeCipherSpec to the current |
| 554 | // outgoing flight. It returns true on success and false on error. |
| 555 | static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) { |
| 556 | if (ssl->d1->outgoing_messages_complete) { |
| 557 | // If we've begun writing a new flight, we received the peer flight. Discard |
| 558 | // the timer and the our flight. |
| 559 | dtls1_stop_timer(ssl); |
| 560 | dtls_clear_outgoing_messages(ssl); |
| 561 | } |
| 562 | |
| 563 | static_assert(SSL_MAX_HANDSHAKE_FLIGHT < |
| 564 | (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)), |
| 565 | "outgoing_messages_len is too small" ); |
| 566 | if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT || |
| 567 | ssl_size_t_greater_than_32_bits(data.size())) { |
| 568 | assert(false); |
| 569 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 570 | return false; |
| 571 | } |
| 572 | |
| 573 | if (!is_ccs) { |
| 574 | // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript |
| 575 | // on hs. |
| 576 | if (ssl->s3->hs != NULL && |
| 577 | !ssl->s3->hs->transcript.Update(data)) { |
| 578 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 579 | return false; |
| 580 | } |
| 581 | ssl->d1->handshake_write_seq++; |
| 582 | } |
| 583 | |
| 584 | DTLS_OUTGOING_MESSAGE *msg = |
| 585 | &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len]; |
| 586 | size_t len; |
| 587 | data.Release(&msg->data, &len); |
| 588 | msg->len = len; |
| 589 | msg->epoch = ssl->d1->w_epoch; |
| 590 | msg->is_ccs = is_ccs; |
| 591 | |
| 592 | ssl->d1->outgoing_messages_len++; |
| 593 | return true; |
| 594 | } |
| 595 | |
| 596 | bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) { |
| 597 | return add_outgoing(ssl, false /* handshake */, std::move(data)); |
| 598 | } |
| 599 | |
| 600 | bool dtls1_add_change_cipher_spec(SSL *ssl) { |
| 601 | return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>()); |
| 602 | } |
| 603 | |
| 604 | // dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above |
| 605 | // the minimum. |
| 606 | static void dtls1_update_mtu(SSL *ssl) { |
| 607 | // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the |
| 608 | // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use |
| 609 | // |SSL_set_mtu|. Does this need to be so complex? |
| 610 | if (ssl->d1->mtu < dtls1_min_mtu() && |
| 611 | !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { |
| 612 | long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); |
| 613 | if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) { |
| 614 | ssl->d1->mtu = (unsigned)mtu; |
| 615 | } else { |
| 616 | ssl->d1->mtu = kDefaultMTU; |
| 617 | BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL); |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | // The MTU should be above the minimum now. |
| 622 | assert(ssl->d1->mtu >= dtls1_min_mtu()); |
| 623 | } |
| 624 | |
| 625 | enum seal_result_t { |
| 626 | seal_error, |
| 627 | seal_no_progress, |
| 628 | seal_partial, |
| 629 | seal_success, |
| 630 | }; |
| 631 | |
| 632 | // seal_next_message seals |msg|, which must be the next message, to |out|. If |
| 633 | // progress was made, it returns |seal_partial| or |seal_success| and sets |
| 634 | // |*out_len| to the number of bytes written. |
| 635 | static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out, |
| 636 | size_t *out_len, size_t max_out, |
| 637 | const DTLS_OUTGOING_MESSAGE *msg) { |
| 638 | assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len); |
| 639 | assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]); |
| 640 | |
| 641 | enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch; |
| 642 | if (ssl->d1->w_epoch >= 1 && msg->epoch == ssl->d1->w_epoch - 1) { |
| 643 | use_epoch = dtls1_use_previous_epoch; |
| 644 | } else if (msg->epoch != ssl->d1->w_epoch) { |
| 645 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 646 | return seal_error; |
| 647 | } |
| 648 | |
| 649 | size_t overhead = dtls_max_seal_overhead(ssl, use_epoch); |
| 650 | size_t prefix = dtls_seal_prefix_len(ssl, use_epoch); |
| 651 | |
| 652 | if (msg->is_ccs) { |
| 653 | // Check there is room for the ChangeCipherSpec. |
| 654 | static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; |
| 655 | if (max_out < sizeof(kChangeCipherSpec) + overhead) { |
| 656 | return seal_no_progress; |
| 657 | } |
| 658 | |
| 659 | if (!dtls_seal_record(ssl, out, out_len, max_out, |
| 660 | SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, |
| 661 | sizeof(kChangeCipherSpec), use_epoch)) { |
| 662 | return seal_error; |
| 663 | } |
| 664 | |
| 665 | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC, |
| 666 | kChangeCipherSpec); |
| 667 | return seal_success; |
| 668 | } |
| 669 | |
| 670 | // DTLS messages are serialized as a single fragment in |msg|. |
| 671 | CBS cbs, body; |
| 672 | struct hm_header_st hdr; |
| 673 | CBS_init(&cbs, msg->data, msg->len); |
| 674 | if (!dtls1_parse_fragment(&cbs, &hdr, &body) || |
| 675 | hdr.frag_off != 0 || |
| 676 | hdr.frag_len != CBS_len(&body) || |
| 677 | hdr.msg_len != CBS_len(&body) || |
| 678 | !CBS_skip(&body, ssl->d1->outgoing_offset) || |
| 679 | CBS_len(&cbs) != 0) { |
| 680 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 681 | return seal_error; |
| 682 | } |
| 683 | |
| 684 | // Determine how much progress can be made. |
| 685 | if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) { |
| 686 | return seal_no_progress; |
| 687 | } |
| 688 | size_t todo = CBS_len(&body); |
| 689 | if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) { |
| 690 | todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead; |
| 691 | } |
| 692 | |
| 693 | // Assemble a fragment, to be sealed in-place. |
| 694 | ScopedCBB cbb; |
| 695 | uint8_t *frag = out + prefix; |
| 696 | size_t max_frag = max_out - prefix, frag_len; |
| 697 | if (!CBB_init_fixed(cbb.get(), frag, max_frag) || |
| 698 | !CBB_add_u8(cbb.get(), hdr.type) || |
| 699 | !CBB_add_u24(cbb.get(), hdr.msg_len) || |
| 700 | !CBB_add_u16(cbb.get(), hdr.seq) || |
| 701 | !CBB_add_u24(cbb.get(), ssl->d1->outgoing_offset) || |
| 702 | !CBB_add_u24(cbb.get(), todo) || |
| 703 | !CBB_add_bytes(cbb.get(), CBS_data(&body), todo) || |
| 704 | !CBB_finish(cbb.get(), NULL, &frag_len)) { |
| 705 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 706 | return seal_error; |
| 707 | } |
| 708 | |
| 709 | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, |
| 710 | MakeSpan(frag, frag_len)); |
| 711 | |
| 712 | if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE, |
| 713 | out + prefix, frag_len, use_epoch)) { |
| 714 | return seal_error; |
| 715 | } |
| 716 | |
| 717 | if (todo == CBS_len(&body)) { |
| 718 | // The next message is complete. |
| 719 | ssl->d1->outgoing_offset = 0; |
| 720 | return seal_success; |
| 721 | } |
| 722 | |
| 723 | ssl->d1->outgoing_offset += todo; |
| 724 | return seal_partial; |
| 725 | } |
| 726 | |
| 727 | // seal_next_packet writes as much of the next flight as possible to |out| and |
| 728 | // advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as |
| 729 | // appropriate. |
| 730 | static bool seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len, |
| 731 | size_t max_out) { |
| 732 | bool made_progress = false; |
| 733 | size_t total = 0; |
| 734 | assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len); |
| 735 | for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len; |
| 736 | ssl->d1->outgoing_written++) { |
| 737 | const DTLS_OUTGOING_MESSAGE *msg = |
| 738 | &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]; |
| 739 | size_t len; |
| 740 | enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg); |
| 741 | switch (ret) { |
| 742 | case seal_error: |
| 743 | return false; |
| 744 | |
| 745 | case seal_no_progress: |
| 746 | goto packet_full; |
| 747 | |
| 748 | case seal_partial: |
| 749 | case seal_success: |
| 750 | out += len; |
| 751 | max_out -= len; |
| 752 | total += len; |
| 753 | made_progress = true; |
| 754 | |
| 755 | if (ret == seal_partial) { |
| 756 | goto packet_full; |
| 757 | } |
| 758 | break; |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | packet_full: |
| 763 | // The MTU was too small to make any progress. |
| 764 | if (!made_progress) { |
| 765 | OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL); |
| 766 | return false; |
| 767 | } |
| 768 | |
| 769 | *out_len = total; |
| 770 | return true; |
| 771 | } |
| 772 | |
| 773 | static int send_flight(SSL *ssl) { |
| 774 | if (ssl->s3->write_shutdown != ssl_shutdown_none) { |
| 775 | OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); |
| 776 | return -1; |
| 777 | } |
| 778 | |
| 779 | dtls1_update_mtu(ssl); |
| 780 | |
| 781 | int ret = -1; |
| 782 | uint8_t *packet = (uint8_t *)OPENSSL_malloc(ssl->d1->mtu); |
| 783 | if (packet == NULL) { |
| 784 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 785 | goto err; |
| 786 | } |
| 787 | |
| 788 | while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) { |
| 789 | uint8_t old_written = ssl->d1->outgoing_written; |
| 790 | uint32_t old_offset = ssl->d1->outgoing_offset; |
| 791 | |
| 792 | size_t packet_len; |
| 793 | if (!seal_next_packet(ssl, packet, &packet_len, ssl->d1->mtu)) { |
| 794 | goto err; |
| 795 | } |
| 796 | |
| 797 | int bio_ret = BIO_write(ssl->wbio.get(), packet, packet_len); |
| 798 | if (bio_ret <= 0) { |
| 799 | // Retry this packet the next time around. |
| 800 | ssl->d1->outgoing_written = old_written; |
| 801 | ssl->d1->outgoing_offset = old_offset; |
| 802 | ssl->s3->rwstate = SSL_WRITING; |
| 803 | ret = bio_ret; |
| 804 | goto err; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | if (BIO_flush(ssl->wbio.get()) <= 0) { |
| 809 | ssl->s3->rwstate = SSL_WRITING; |
| 810 | goto err; |
| 811 | } |
| 812 | |
| 813 | ret = 1; |
| 814 | |
| 815 | err: |
| 816 | OPENSSL_free(packet); |
| 817 | return ret; |
| 818 | } |
| 819 | |
| 820 | int dtls1_flush_flight(SSL *ssl) { |
| 821 | ssl->d1->outgoing_messages_complete = true; |
| 822 | // Start the retransmission timer for the next flight (if any). |
| 823 | dtls1_start_timer(ssl); |
| 824 | return send_flight(ssl); |
| 825 | } |
| 826 | |
| 827 | int dtls1_retransmit_outgoing_messages(SSL *ssl) { |
| 828 | // Rewind to the start of the flight and write it again. |
| 829 | // |
| 830 | // TODO(davidben): This does not allow retransmits to be resumed on |
| 831 | // non-blocking write. |
| 832 | ssl->d1->outgoing_written = 0; |
| 833 | ssl->d1->outgoing_offset = 0; |
| 834 | |
| 835 | return send_flight(ssl); |
| 836 | } |
| 837 | |
| 838 | unsigned int dtls1_min_mtu(void) { |
| 839 | return kMinMTU; |
| 840 | } |
| 841 | |
| 842 | BSSL_NAMESPACE_END |
| 843 | |