1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57/* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110/* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 * ECC cipher suite support in OpenSSL originally developed by
113 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114 */
115/* ====================================================================
116 * Copyright 2005 Nokia. All rights reserved.
117 *
118 * The portions of the attached software ("Contribution") is developed by
119 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120 * license.
121 *
122 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124 * support (see RFC 4279) to OpenSSL.
125 *
126 * No patent licenses or other rights except those expressly stated in
127 * the OpenSSL open source license shall be deemed granted or received
128 * expressly, by implication, estoppel, or otherwise.
129 *
130 * No assurances are provided by Nokia that the Contribution does not
131 * infringe the patent or other intellectual property rights of any third
132 * party or that the license provides you with all the necessary rights
133 * to make use of the Contribution.
134 *
135 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139 * OTHERWISE.
140 */
141
142#ifndef OPENSSL_HEADER_SSL_INTERNAL_H
143#define OPENSSL_HEADER_SSL_INTERNAL_H
144
145#include <openssl/base.h>
146
147#include <stdlib.h>
148
149#include <limits>
150#include <new>
151#include <type_traits>
152#include <utility>
153
154#include <openssl/aead.h>
155#include <openssl/err.h>
156#include <openssl/lhash.h>
157#include <openssl/mem.h>
158#include <openssl/span.h>
159#include <openssl/ssl.h>
160#include <openssl/stack.h>
161
162#include "../crypto/err/internal.h"
163#include "../crypto/internal.h"
164
165
166#if defined(OPENSSL_WINDOWS)
167// Windows defines struct timeval in winsock2.h.
168OPENSSL_MSVC_PRAGMA(warning(push, 3))
169#include <winsock2.h>
170OPENSSL_MSVC_PRAGMA(warning(pop))
171#else
172#include <sys/time.h>
173#endif
174
175
176BSSL_NAMESPACE_BEGIN
177
178struct SSL_CONFIG;
179struct SSL_HANDSHAKE;
180struct SSL_PROTOCOL_METHOD;
181struct SSL_X509_METHOD;
182
183// C++ utilities.
184
185// New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
186// returns nullptr on allocation error. It only implements single-object
187// allocation and not new T[n].
188//
189// Note: unlike |new|, this does not support non-public constructors.
190template <typename T, typename... Args>
191T *New(Args &&... args) {
192 void *t = OPENSSL_malloc(sizeof(T));
193 if (t == nullptr) {
194 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
195 return nullptr;
196 }
197 return new (t) T(std::forward<Args>(args)...);
198}
199
200// Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
201//
202// Note: unlike |delete| this does not support non-public destructors.
203template <typename T>
204void Delete(T *t) {
205 if (t != nullptr) {
206 t->~T();
207 OPENSSL_free(t);
208 }
209}
210
211// All types with kAllowUniquePtr set may be used with UniquePtr. Other types
212// may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
213namespace internal {
214template <typename T>
215struct DeleterImpl<T, typename std::enable_if<T::kAllowUniquePtr>::type> {
216 static void Free(T *t) { Delete(t); }
217};
218} // namespace internal
219
220// MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
221// error.
222template <typename T, typename... Args>
223UniquePtr<T> MakeUnique(Args &&... args) {
224 return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
225}
226
227#if defined(BORINGSSL_ALLOW_CXX_RUNTIME)
228#define HAS_VIRTUAL_DESTRUCTOR
229#define PURE_VIRTUAL = 0
230#else
231// HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a
232// virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the
233// class from being used with |delete|.
234#define HAS_VIRTUAL_DESTRUCTOR \
235 void operator delete(void *) { abort(); }
236
237// PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual
238// functions. This avoids a dependency on |__cxa_pure_virtual| but loses
239// compile-time checking.
240#define PURE_VIRTUAL \
241 { abort(); }
242#endif
243
244// CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work
245// on constexpr arrays.
246#if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910
247#define CONSTEXPR_ARRAY const
248#else
249#define CONSTEXPR_ARRAY constexpr
250#endif
251
252// Array<T> is an owning array of elements of |T|.
253template <typename T>
254class Array {
255 public:
256 // Array's default constructor creates an empty array.
257 Array() {}
258 Array(const Array &) = delete;
259 Array(Array &&other) { *this = std::move(other); }
260
261 ~Array() { Reset(); }
262
263 Array &operator=(const Array &) = delete;
264 Array &operator=(Array &&other) {
265 Reset();
266 other.Release(&data_, &size_);
267 return *this;
268 }
269
270 const T *data() const { return data_; }
271 T *data() { return data_; }
272 size_t size() const { return size_; }
273 bool empty() const { return size_ == 0; }
274
275 const T &operator[](size_t i) const { return data_[i]; }
276 T &operator[](size_t i) { return data_[i]; }
277
278 T *begin() { return data_; }
279 const T *cbegin() const { return data_; }
280 T *end() { return data_ + size_; }
281 const T *cend() const { return data_ + size_; }
282
283 void Reset() { Reset(nullptr, 0); }
284
285 // Reset releases the current contents of the array and takes ownership of the
286 // raw pointer supplied by the caller.
287 void Reset(T *new_data, size_t new_size) {
288 for (size_t i = 0; i < size_; i++) {
289 data_[i].~T();
290 }
291 OPENSSL_free(data_);
292 data_ = new_data;
293 size_ = new_size;
294 }
295
296 // Release releases ownership of the array to a raw pointer supplied by the
297 // caller.
298 void Release(T **out, size_t *out_size) {
299 *out = data_;
300 *out_size = size_;
301 data_ = nullptr;
302 size_ = 0;
303 }
304
305 // Init replaces the array with a newly-allocated array of |new_size|
306 // default-constructed copies of |T|. It returns true on success and false on
307 // error.
308 //
309 // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
310 bool Init(size_t new_size) {
311 Reset();
312 if (new_size == 0) {
313 return true;
314 }
315
316 if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
317 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
318 return false;
319 }
320 data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
321 if (data_ == nullptr) {
322 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
323 return false;
324 }
325 size_ = new_size;
326 for (size_t i = 0; i < size_; i++) {
327 new (&data_[i]) T;
328 }
329 return true;
330 }
331
332 // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
333 // true on success and false on error.
334 bool CopyFrom(Span<const T> in) {
335 if (!Init(in.size())) {
336 return false;
337 }
338 OPENSSL_memcpy(data_, in.data(), sizeof(T) * in.size());
339 return true;
340 }
341
342 // Shrink shrinks the stored size of the array to |new_size|. It crashes if
343 // the new size is larger. Note this does not shrink the allocation itself.
344 void Shrink(size_t new_size) {
345 if (new_size > size_) {
346 abort();
347 }
348 size_ = new_size;
349 }
350
351 private:
352 T *data_ = nullptr;
353 size_t size_ = 0;
354};
355
356// CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
357OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
358
359
360// Protocol versions.
361//
362// Due to DTLS's historical wire version differences, we maintain two notions of
363// version.
364//
365// The "version" or "wire version" is the actual 16-bit value that appears on
366// the wire. It uniquely identifies a version and is also used at API
367// boundaries. The set of supported versions differs between TLS and DTLS. Wire
368// versions are opaque values and may not be compared numerically.
369//
370// The "protocol version" identifies the high-level handshake variant being
371// used. DTLS versions map to the corresponding TLS versions. Protocol versions
372// are sequential and may be compared numerically.
373
374// ssl_protocol_version_from_wire sets |*out| to the protocol version
375// corresponding to wire version |version| and returns true. If |version| is not
376// a valid TLS or DTLS version, it returns false.
377//
378// Note this simultaneously handles both DTLS and TLS. Use one of the
379// higher-level functions below for most operations.
380bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
381
382// ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
383// minimum and maximum enabled protocol versions, respectively.
384bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version,
385 uint16_t *out_max_version);
386
387// ssl_supports_version returns whether |hs| supports |version|.
388bool ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version);
389
390// ssl_method_supports_version returns whether |method| supports |version|.
391bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method,
392 uint16_t version);
393
394// ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
395// decreasing preference order.
396bool ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb);
397
398// ssl_negotiate_version negotiates a common version based on |hs|'s preferences
399// and the peer preference list in |peer_versions|. On success, it returns true
400// and sets |*out_version| to the selected version. Otherwise, it returns false
401// and sets |*out_alert| to an alert to send.
402bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
403 uint16_t *out_version, const CBS *peer_versions);
404
405// ssl_protocol_version returns |ssl|'s protocol version. It is an error to
406// call this function before the version is determined.
407uint16_t ssl_protocol_version(const SSL *ssl);
408
409// Cipher suites.
410
411BSSL_NAMESPACE_END
412
413struct ssl_cipher_st {
414 // name is the OpenSSL name for the cipher.
415 const char *name;
416 // standard_name is the IETF name for the cipher.
417 const char *standard_name;
418 // id is the cipher suite value bitwise OR-d with 0x03000000.
419 uint32_t id;
420
421 // algorithm_* determine the cipher suite. See constants below for the values.
422 uint32_t algorithm_mkey;
423 uint32_t algorithm_auth;
424 uint32_t algorithm_enc;
425 uint32_t algorithm_mac;
426 uint32_t algorithm_prf;
427};
428
429BSSL_NAMESPACE_BEGIN
430
431// Bits for |algorithm_mkey| (key exchange algorithm).
432#define SSL_kRSA 0x00000001u
433#define SSL_kECDHE 0x00000002u
434// SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
435#define SSL_kPSK 0x00000004u
436#define SSL_kGENERIC 0x00000008u
437
438// Bits for |algorithm_auth| (server authentication).
439#define SSL_aRSA 0x00000001u
440#define SSL_aECDSA 0x00000002u
441// SSL_aPSK is set for both PSK and ECDHE_PSK.
442#define SSL_aPSK 0x00000004u
443#define SSL_aGENERIC 0x00000008u
444
445#define SSL_aCERT (SSL_aRSA | SSL_aECDSA)
446
447// Bits for |algorithm_enc| (symmetric encryption).
448#define SSL_3DES 0x00000001u
449#define SSL_AES128 0x00000002u
450#define SSL_AES256 0x00000004u
451#define SSL_AES128GCM 0x00000008u
452#define SSL_AES256GCM 0x00000010u
453#define SSL_eNULL 0x00000020u
454#define SSL_CHACHA20POLY1305 0x00000040u
455
456#define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
457
458// Bits for |algorithm_mac| (symmetric authentication).
459#define SSL_SHA1 0x00000001u
460// SSL_AEAD is set for all AEADs.
461#define SSL_AEAD 0x00000002u
462
463// Bits for |algorithm_prf| (handshake digest).
464#define SSL_HANDSHAKE_MAC_DEFAULT 0x1
465#define SSL_HANDSHAKE_MAC_SHA256 0x2
466#define SSL_HANDSHAKE_MAC_SHA384 0x4
467
468// An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal-
469// preference groups. For TLS clients, the groups are moot because the server
470// picks the cipher and groups cannot be expressed on the wire. However, for
471// servers, the equal-preference groups allow the client's preferences to be
472// partially respected. (This only has an effect with
473// SSL_OP_CIPHER_SERVER_PREFERENCE).
474//
475// The equal-preference groups are expressed by grouping SSL_CIPHERs together.
476// All elements of a group have the same priority: no ordering is expressed
477// within a group.
478//
479// The values in |ciphers| are in one-to-one correspondence with
480// |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
481// bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
482// indicate that the corresponding SSL_CIPHER is not the last element of a
483// group, or 0 to indicate that it is.
484//
485// For example, if |in_group_flags| contains all zeros then that indicates a
486// traditional, fully-ordered preference. Every SSL_CIPHER is the last element
487// of the group (i.e. they are all in a one-element group).
488//
489// For a more complex example, consider:
490// ciphers: A B C D E F
491// in_group_flags: 1 1 0 0 1 0
492//
493// That would express the following, order:
494//
495// A E
496// B -> D -> F
497// C
498struct SSLCipherPreferenceList {
499 static constexpr bool kAllowUniquePtr = true;
500
501 SSLCipherPreferenceList() = default;
502 ~SSLCipherPreferenceList();
503
504 bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers,
505 Span<const bool> in_group_flags);
506 bool Init(const SSLCipherPreferenceList &);
507
508 void Remove(const SSL_CIPHER *cipher);
509
510 UniquePtr<STACK_OF(SSL_CIPHER)> ciphers;
511 bool *in_group_flags = nullptr;
512};
513
514// AllCiphers returns an array of all supported ciphers, sorted by id.
515Span<const SSL_CIPHER> AllCiphers();
516
517// ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
518// object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
519// and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
520// respectively. The MAC key length is zero except for legacy block and stream
521// ciphers. It returns true on success and false on error.
522bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
523 size_t *out_mac_secret_len,
524 size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
525 uint16_t version, bool is_dtls);
526
527// ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
528// |cipher|.
529const EVP_MD *ssl_get_handshake_digest(uint16_t version,
530 const SSL_CIPHER *cipher);
531
532// ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
533// newly-allocated |SSLCipherPreferenceList| containing the result. It returns
534// true on success and false on failure. If |strict| is true, nonsense will be
535// rejected. If false, nonsense will be silently ignored. An empty result is
536// considered an error regardless of |strict|.
537bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
538 const char *rule_str, bool strict);
539
540// ssl_cipher_get_value returns the cipher suite id of |cipher|.
541uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher);
542
543// ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
544// values suitable for use with |key| in TLS 1.2 and below.
545uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key);
546
547// ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
548// server and, optionally, the client with a certificate.
549bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
550
551// ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
552// ServerKeyExchange message.
553//
554// This function may return false while still allowing |cipher| an optional
555// ServerKeyExchange. This is the case for plain PSK ciphers.
556bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
557
558// ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
559// length of an encrypted 1-byte record, for use in record-splitting. Otherwise
560// it returns zero.
561size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
562
563// ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best
564// available from |cipher_suites| compatible with |version| and |group_id|. It
565// returns NULL if there isn't a compatible cipher.
566const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, uint16_t version,
567 uint16_t group_id);
568
569
570// Transcript layer.
571
572// SSLTranscript maintains the handshake transcript as a combination of a
573// buffer and running hash.
574class SSLTranscript {
575 public:
576 SSLTranscript();
577 ~SSLTranscript();
578
579 // Init initializes the handshake transcript. If called on an existing
580 // transcript, it resets the transcript and hash. It returns true on success
581 // and false on failure.
582 bool Init();
583
584 // InitHash initializes the handshake hash based on the PRF and contents of
585 // the handshake transcript. Subsequent calls to |Update| will update the
586 // rolling hash. It returns one on success and zero on failure. It is an error
587 // to call this function after the handshake buffer is released.
588 bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
589
590 // UpdateForHelloRetryRequest resets the rolling hash with the
591 // HelloRetryRequest construction. It returns true on success and false on
592 // failure. It is an error to call this function before the handshake buffer
593 // is released.
594 bool UpdateForHelloRetryRequest();
595
596 // CopyHashContext copies the hash context into |ctx| and returns true on
597 // success.
598 bool CopyHashContext(EVP_MD_CTX *ctx);
599
600 Span<const uint8_t> buffer() {
601 return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
602 buffer_->length);
603 }
604
605 // FreeBuffer releases the handshake buffer. Subsequent calls to
606 // |Update| will not update the handshake buffer.
607 void FreeBuffer();
608
609 // DigestLen returns the length of the PRF hash.
610 size_t DigestLen() const;
611
612 // Digest returns the PRF hash. For TLS 1.1 and below, this is
613 // |EVP_md5_sha1|.
614 const EVP_MD *Digest() const;
615
616 // Update adds |in| to the handshake buffer and handshake hash, whichever is
617 // enabled. It returns true on success and false on failure.
618 bool Update(Span<const uint8_t> in);
619
620 // GetHash writes the handshake hash to |out| which must have room for at
621 // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
622 // the number of bytes written. Otherwise, it returns false.
623 bool GetHash(uint8_t *out, size_t *out_len);
624
625 // GetFinishedMAC computes the MAC for the Finished message into the bytes
626 // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
627 // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
628 // on failure.
629 bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
630 bool from_server);
631
632 private:
633 // buffer_, if non-null, contains the handshake transcript.
634 UniquePtr<BUF_MEM> buffer_;
635 // hash, if initialized with an |EVP_MD|, maintains the handshake hash.
636 ScopedEVP_MD_CTX hash_;
637};
638
639// tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
640// as the secret and |label| as the label. |seed1| and |seed2| are concatenated
641// to form the seed parameter. It returns true on success and false on failure.
642bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
643 Span<const uint8_t> secret, Span<const char> label,
644 Span<const uint8_t> seed1, Span<const uint8_t> seed2);
645
646
647// Encryption layer.
648
649// SSLAEADContext contains information about an AEAD that is being used to
650// encrypt an SSL connection.
651class SSLAEADContext {
652 public:
653 SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
654 ~SSLAEADContext();
655 static constexpr bool kAllowUniquePtr = true;
656
657 SSLAEADContext(const SSLAEADContext &&) = delete;
658 SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
659
660 // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
661 static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
662
663 // Create creates an |SSLAEADContext| using the supplied key material. It
664 // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
665 // resulting object, depending on |direction|. |version| is the normalized
666 // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
667 static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
668 uint16_t version, bool is_dtls,
669 const SSL_CIPHER *cipher,
670 Span<const uint8_t> enc_key,
671 Span<const uint8_t> mac_key,
672 Span<const uint8_t> fixed_iv);
673
674 // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the
675 // given cipher and version. The resulting object can be queried for various
676 // properties but cannot encrypt or decrypt data.
677 static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC(
678 uint16_t version, const SSL_CIPHER *cipher);
679
680 // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
681 // cipher, to make version-specific determinations in the record layer prior
682 // to a cipher being selected.
683 void SetVersionIfNullCipher(uint16_t version);
684
685 // ProtocolVersion returns the protocol version associated with this
686 // SSLAEADContext. It can only be called once |version_| has been set to a
687 // valid value.
688 uint16_t ProtocolVersion() const;
689
690 // RecordVersion returns the record version that should be used with this
691 // SSLAEADContext for record construction and crypto.
692 uint16_t RecordVersion() const;
693
694 const SSL_CIPHER *cipher() const { return cipher_; }
695
696 // is_null_cipher returns true if this is the null cipher.
697 bool is_null_cipher() const { return !cipher_; }
698
699 // ExplicitNonceLen returns the length of the explicit nonce.
700 size_t ExplicitNonceLen() const;
701
702 // MaxOverhead returns the maximum overhead of calling |Seal|.
703 size_t MaxOverhead() const;
704
705 // SuffixLen calculates the suffix length written by |SealScatter| and writes
706 // it to |*out_suffix_len|. It returns true on success and false on error.
707 // |in_len| and |extra_in_len| should equal the argument of the same names
708 // passed to |SealScatter|.
709 bool SuffixLen(size_t *out_suffix_len, size_t in_len,
710 size_t extra_in_len) const;
711
712 // CiphertextLen calculates the total ciphertext length written by
713 // |SealScatter| and writes it to |*out_len|. It returns true on success and
714 // false on error. |in_len| and |extra_in_len| should equal the argument of
715 // the same names passed to |SealScatter|.
716 bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const;
717
718 // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
719 // to the plaintext in |in| and returns true. Otherwise, it returns
720 // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
721 bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
722 const uint8_t seqnum[8], Span<const uint8_t> header,
723 Span<uint8_t> in);
724
725 // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
726 // result to |out|. It returns true on success and false on error.
727 //
728 // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
729 bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
730 uint16_t record_version, const uint8_t seqnum[8],
731 Span<const uint8_t> header, const uint8_t *in, size_t in_len);
732
733 // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
734 // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
735 // success and zero on error.
736 //
737 // On successful return, exactly |ExplicitNonceLen| bytes are written to
738 // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
739 // |out_suffix|.
740 //
741 // |extra_in| may point to an additional plaintext buffer. If present,
742 // |extra_in_len| additional bytes are encrypted and authenticated, and the
743 // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
744 // be used to size |out_suffix| accordingly.
745 //
746 // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
747 // alias anything.
748 bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
749 uint8_t type, uint16_t record_version,
750 const uint8_t seqnum[8], Span<const uint8_t> header,
751 const uint8_t *in, size_t in_len, const uint8_t *extra_in,
752 size_t extra_in_len);
753
754 bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
755
756 private:
757 // GetAdditionalData returns the additional data, writing into |storage| if
758 // necessary.
759 Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type,
760 uint16_t record_version,
761 const uint8_t seqnum[8],
762 size_t plaintext_len,
763 Span<const uint8_t> header);
764
765 const SSL_CIPHER *cipher_;
766 ScopedEVP_AEAD_CTX ctx_;
767 // fixed_nonce_ contains any bytes of the nonce that are fixed for all
768 // records.
769 uint8_t fixed_nonce_[12];
770 uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
771 // version_ is the wire version that should be used with this AEAD.
772 uint16_t version_;
773 // is_dtls_ is whether DTLS is being used with this AEAD.
774 bool is_dtls_;
775 // variable_nonce_included_in_record_ is true if the variable nonce
776 // for a record is included as a prefix before the ciphertext.
777 bool variable_nonce_included_in_record_ : 1;
778 // random_variable_nonce_ is true if the variable nonce is
779 // randomly generated, rather than derived from the sequence
780 // number.
781 bool random_variable_nonce_ : 1;
782 // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
783 // variable nonce rather than prepended.
784 bool xor_fixed_nonce_ : 1;
785 // omit_length_in_ad_ is true if the length should be omitted in the
786 // AEAD's ad parameter.
787 bool omit_length_in_ad_ : 1;
788 // ad_is_header_ is true if the AEAD's ad parameter is the record header.
789 bool ad_is_header_ : 1;
790};
791
792
793// DTLS replay bitmap.
794
795// DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
796// replayed packets. It should be initialized by zeroing every field.
797struct DTLS1_BITMAP {
798 // map is a bit mask of the last 64 sequence numbers. Bit
799 // |1<<i| corresponds to |max_seq_num - i|.
800 uint64_t map = 0;
801 // max_seq_num is the largest sequence number seen so far as a 64-bit
802 // integer.
803 uint64_t max_seq_num = 0;
804};
805
806
807// Record layer.
808
809// ssl_record_sequence_update increments the sequence number in |seq|. It
810// returns true on success and false on wraparound.
811bool ssl_record_sequence_update(uint8_t *seq, size_t seq_len);
812
813// ssl_record_prefix_len returns the length of the prefix before the ciphertext
814// of a record for |ssl|.
815//
816// TODO(davidben): Expose this as part of public API once the high-level
817// buffer-free APIs are available.
818size_t ssl_record_prefix_len(const SSL *ssl);
819
820enum ssl_open_record_t {
821 ssl_open_record_success,
822 ssl_open_record_discard,
823 ssl_open_record_partial,
824 ssl_open_record_close_notify,
825 ssl_open_record_error,
826};
827
828// tls_open_record decrypts a record from |in| in-place.
829//
830// If the input did not contain a complete record, it returns
831// |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
832// bytes necessary. It is guaranteed that a successful call to |tls_open_record|
833// will consume at least that many bytes.
834//
835// Otherwise, it sets |*out_consumed| to the number of bytes of input
836// consumed. Note that input may be consumed on all return codes if a record was
837// decrypted.
838//
839// On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
840// record type and |*out| to the record body in |in|. Note that |*out| may be
841// empty.
842//
843// If a record was successfully processed but should be discarded, it returns
844// |ssl_open_record_discard|.
845//
846// If a record was successfully processed but is a close_notify, it returns
847// |ssl_open_record_close_notify|.
848//
849// On failure or fatal alert, it returns |ssl_open_record_error| and sets
850// |*out_alert| to an alert to emit, or zero if no alert should be emitted.
851enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
852 Span<uint8_t> *out, size_t *out_consumed,
853 uint8_t *out_alert, Span<uint8_t> in);
854
855// dtls_open_record implements |tls_open_record| for DTLS. It only returns
856// |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
857// zero. The caller should read one packet and try again.
858enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
859 Span<uint8_t> *out,
860 size_t *out_consumed,
861 uint8_t *out_alert, Span<uint8_t> in);
862
863// ssl_seal_align_prefix_len returns the length of the prefix before the start
864// of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
865// use this to align buffers.
866//
867// Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
868// record and is the offset into second record's ciphertext. Thus sealing a
869// small record may result in a smaller output than this value.
870//
871// TODO(davidben): Is this alignment valuable? Record-splitting makes this a
872// mess.
873size_t ssl_seal_align_prefix_len(const SSL *ssl);
874
875// tls_seal_record seals a new record of type |type| and body |in| and writes it
876// to |out|. At most |max_out| bytes will be written. It returns true on success
877// and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC
878// 1/n-1 record splitting and may write two records concatenated.
879//
880// For a large record, the bulk of the ciphertext will begin
881// |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
882// improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
883// bytes to |out|.
884//
885// |in| and |out| may not alias.
886bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
887 uint8_t type, const uint8_t *in, size_t in_len);
888
889enum dtls1_use_epoch_t {
890 dtls1_use_previous_epoch,
891 dtls1_use_current_epoch,
892};
893
894// dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
895// record.
896size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
897
898// dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
899// front of the plaintext when sealing a record in-place.
900size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
901
902// dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
903// which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
904// may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
905// ahead of |out|.
906bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
907 uint8_t type, const uint8_t *in, size_t in_len,
908 enum dtls1_use_epoch_t use_epoch);
909
910// ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
911// state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
912// |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
913// appropriate.
914enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
915 Span<const uint8_t> in);
916
917
918// Private key operations.
919
920// ssl_has_private_key returns whether |hs| has a private key configured.
921bool ssl_has_private_key(const SSL_HANDSHAKE *hs);
922
923// ssl_private_key_* perform the corresponding operation on
924// |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
925// call the corresponding function or |complete| depending on whether there is a
926// pending operation. Otherwise, they implement the operation with
927// |EVP_PKEY|.
928
929enum ssl_private_key_result_t ssl_private_key_sign(
930 SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
931 uint16_t sigalg, Span<const uint8_t> in);
932
933enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
934 uint8_t *out,
935 size_t *out_len,
936 size_t max_out,
937 Span<const uint8_t> in);
938
939// ssl_private_key_supports_signature_algorithm returns whether |hs|'s private
940// key supports |sigalg|.
941bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
942 uint16_t sigalg);
943
944// ssl_public_key_verify verifies that the |signature| is valid for the public
945// key |pkey| and input |in|, using the signature algorithm |sigalg|.
946bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
947 uint16_t sigalg, EVP_PKEY *pkey,
948 Span<const uint8_t> in);
949
950
951// Key shares.
952
953// SSLKeyShare abstracts over Diffie-Hellman-like key exchanges.
954class SSLKeyShare {
955 public:
956 virtual ~SSLKeyShare() {}
957 static constexpr bool kAllowUniquePtr = true;
958 HAS_VIRTUAL_DESTRUCTOR
959
960 // Create returns a SSLKeyShare instance for use with group |group_id| or
961 // nullptr on error.
962 static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
963
964 // Create deserializes an SSLKeyShare instance previously serialized by
965 // |Serialize|.
966 static UniquePtr<SSLKeyShare> Create(CBS *in);
967
968 // GroupID returns the group ID.
969 virtual uint16_t GroupID() const PURE_VIRTUAL;
970
971 // Offer generates a keypair and writes the public value to
972 // |out_public_key|. It returns true on success and false on error.
973 virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL;
974
975 // Accept performs a key exchange against the |peer_key| generated by |Offer|.
976 // On success, it returns true, writes the public value to |out_public_key|,
977 // and sets |*out_secret| to the shared secret. On failure, it returns false
978 // and sets |*out_alert| to an alert to send to the peer.
979 //
980 // The default implementation calls |Offer| and then |Finish|, assuming a key
981 // exchange protocol where the peers are symmetric.
982 virtual bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret,
983 uint8_t *out_alert, Span<const uint8_t> peer_key);
984
985 // Finish performs a key exchange against the |peer_key| generated by
986 // |Accept|. On success, it returns true and sets |*out_secret| to the shared
987 // secret. On failure, it returns false and sets |*out_alert| to an alert to
988 // send to the peer.
989 virtual bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert,
990 Span<const uint8_t> peer_key) PURE_VIRTUAL;
991
992 // Serialize writes the state of the key exchange to |out|, returning true if
993 // successful and false otherwise.
994 virtual bool Serialize(CBB *out) { return false; }
995
996 // Deserialize initializes the state of the key exchange from |in|, returning
997 // true if successful and false otherwise. It is called by |Create|.
998 virtual bool Deserialize(CBS *in) { return false; }
999};
1000
1001struct NamedGroup {
1002 int nid;
1003 uint16_t group_id;
1004 const char name[8], alias[11];
1005};
1006
1007// NamedGroups returns all supported groups.
1008Span<const NamedGroup> NamedGroups();
1009
1010// ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
1011// sets |*out_group_id| to the group ID and returns true. Otherwise, it returns
1012// false.
1013bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
1014
1015// ssl_name_to_group_id looks up the group corresponding to the |name| string of
1016// length |len|. On success, it sets |*out_group_id| to the group ID and returns
1017// true. Otherwise, it returns false.
1018bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
1019
1020
1021// Handshake messages.
1022
1023struct SSLMessage {
1024 bool is_v2_hello;
1025 uint8_t type;
1026 CBS body;
1027 // raw is the entire serialized handshake message, including the TLS or DTLS
1028 // message header.
1029 CBS raw;
1030};
1031
1032// SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
1033// ChangeCipherSpec, in the longest handshake flight. Currently this is the
1034// client's second leg in a full handshake when client certificates, NPN, and
1035// Channel ID, are all enabled.
1036#define SSL_MAX_HANDSHAKE_FLIGHT 7
1037
1038extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
1039extern const uint8_t kTLS12DowngradeRandom[8];
1040extern const uint8_t kTLS13DowngradeRandom[8];
1041extern const uint8_t kJDK11DowngradeRandom[8];
1042
1043// ssl_max_handshake_message_len returns the maximum number of bytes permitted
1044// in a handshake message for |ssl|.
1045size_t ssl_max_handshake_message_len(const SSL *ssl);
1046
1047// tls_can_accept_handshake_data returns whether |ssl| is able to accept more
1048// data into handshake buffer.
1049bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
1050
1051// tls_has_unprocessed_handshake_data returns whether there is buffered
1052// handshake data that has not been consumed by |get_message|.
1053bool tls_has_unprocessed_handshake_data(const SSL *ssl);
1054
1055// tls_append_handshake_data appends |data| to the handshake buffer. It returns
1056// true on success and false on allocation failure.
1057bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data);
1058
1059// dtls_has_unprocessed_handshake_data behaves like
1060// |tls_has_unprocessed_handshake_data| for DTLS.
1061bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
1062
1063// tls_flush_pending_hs_data flushes any handshake plaintext data.
1064bool tls_flush_pending_hs_data(SSL *ssl);
1065
1066struct DTLS_OUTGOING_MESSAGE {
1067 DTLS_OUTGOING_MESSAGE() {}
1068 DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
1069 DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
1070 ~DTLS_OUTGOING_MESSAGE() { Clear(); }
1071
1072 void Clear();
1073
1074 uint8_t *data = nullptr;
1075 uint32_t len = 0;
1076 uint16_t epoch = 0;
1077 bool is_ccs = false;
1078};
1079
1080// dtls_clear_outgoing_messages releases all buffered outgoing messages.
1081void dtls_clear_outgoing_messages(SSL *ssl);
1082
1083
1084// Callbacks.
1085
1086// ssl_do_info_callback calls |ssl|'s info callback, if set.
1087void ssl_do_info_callback(const SSL *ssl, int type, int value);
1088
1089// ssl_do_msg_callback calls |ssl|'s message callback, if set.
1090void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type,
1091 Span<const uint8_t> in);
1092
1093
1094// Transport buffers.
1095
1096class SSLBuffer {
1097 public:
1098 SSLBuffer() {}
1099 ~SSLBuffer() { Clear(); }
1100
1101 SSLBuffer(const SSLBuffer &) = delete;
1102 SSLBuffer &operator=(const SSLBuffer &) = delete;
1103
1104 uint8_t *data() { return buf_ + offset_; }
1105 size_t size() const { return size_; }
1106 bool empty() const { return size_ == 0; }
1107 size_t cap() const { return cap_; }
1108
1109 Span<uint8_t> span() { return MakeSpan(data(), size()); }
1110
1111 Span<uint8_t> remaining() {
1112 return MakeSpan(data() + size(), cap() - size());
1113 }
1114
1115 // Clear releases the buffer.
1116 void Clear();
1117
1118 // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
1119 // that data written after |header_len| is aligned to a
1120 // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
1121 // on error.
1122 bool EnsureCap(size_t header_len, size_t new_cap);
1123
1124 // DidWrite extends the buffer by |len|. The caller must have filled in to
1125 // this point.
1126 void DidWrite(size_t len);
1127
1128 // Consume consumes |len| bytes from the front of the buffer. The memory
1129 // consumed will remain valid until the next call to |DiscardConsumed| or
1130 // |Clear|.
1131 void Consume(size_t len);
1132
1133 // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
1134 // is now empty, it releases memory used by it.
1135 void DiscardConsumed();
1136
1137 private:
1138 // buf_ is the memory allocated for this buffer.
1139 uint8_t *buf_ = nullptr;
1140 // offset_ is the offset into |buf_| which the buffer contents start at.
1141 uint16_t offset_ = 0;
1142 // size_ is the size of the buffer contents from |buf_| + |offset_|.
1143 uint16_t size_ = 0;
1144 // cap_ is how much memory beyond |buf_| + |offset_| is available.
1145 uint16_t cap_ = 0;
1146};
1147
1148// ssl_read_buffer_extend_to extends the read buffer to the desired length. For
1149// TLS, it reads to the end of the buffer until the buffer is |len| bytes
1150// long. For DTLS, it reads a new packet and ignores |len|. It returns one on
1151// success, zero on EOF, and a negative number on error.
1152//
1153// It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
1154// non-empty.
1155int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
1156
1157// ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
1158// to a record-processing function. If |ret| is a success or if the caller
1159// should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
1160// 0.
1161int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
1162 size_t consumed, uint8_t alert);
1163
1164// ssl_write_buffer_flush flushes the write buffer to the transport. It returns
1165// one on success and <= 0 on error. For DTLS, whether or not the write
1166// succeeds, the write buffer will be cleared.
1167int ssl_write_buffer_flush(SSL *ssl);
1168
1169
1170// Certificate functions.
1171
1172// ssl_has_certificate returns whether a certificate and private key are
1173// configured.
1174bool ssl_has_certificate(const SSL_HANDSHAKE *hs);
1175
1176// ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
1177// by a TLS Certificate message. On success, it advances |cbs| and returns
1178// true. Otherwise, it returns false and sets |*out_alert| to an alert to send
1179// to the peer.
1180//
1181// If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
1182// the certificate chain and the leaf certificate's public key
1183// respectively. Otherwise, both will be set to nullptr.
1184//
1185// If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
1186// SHA-256 hash of the leaf to |out_leaf_sha256|.
1187bool ssl_parse_cert_chain(uint8_t *out_alert,
1188 UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
1189 UniquePtr<EVP_PKEY> *out_pubkey,
1190 uint8_t *out_leaf_sha256, CBS *cbs,
1191 CRYPTO_BUFFER_POOL *pool);
1192
1193// ssl_add_cert_chain adds |hs->ssl|'s certificate chain to |cbb| in the format
1194// used by a TLS Certificate message. If there is no certificate chain, it emits
1195// an empty certificate list. It returns true on success and false on error.
1196bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb);
1197
1198enum ssl_key_usage_t {
1199 key_usage_digital_signature = 0,
1200 key_usage_encipherment = 2,
1201};
1202
1203// ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in|
1204// and returns true if doesn't specify a key usage or, if it does, if it
1205// includes |bit|. Otherwise it pushes to the error queue and returns false.
1206bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit);
1207
1208// ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
1209// certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
1210// nullptr and pushes to the error queue.
1211UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
1212
1213// ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
1214// TLS CertificateRequest message. On success, it returns a newly-allocated
1215// |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
1216// sets |*out_alert| to an alert to send to the peer.
1217UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
1218 uint8_t *out_alert,
1219 CBS *cbs);
1220
1221// ssl_has_client_CAs returns there are configured CAs.
1222bool ssl_has_client_CAs(const SSL_CONFIG *cfg);
1223
1224// ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
1225// used by a TLS CertificateRequest message. It returns true on success and
1226// false on error.
1227bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb);
1228
1229// ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
1230// a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
1231// an error on the error queue.
1232bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
1233 const CRYPTO_BUFFER *leaf);
1234
1235// ssl_on_certificate_selected is called once the certificate has been selected.
1236// It finalizes the certificate and initializes |hs->local_pubkey|. It returns
1237// true on success and false on error.
1238bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs);
1239
1240
1241// TLS 1.3 key derivation.
1242
1243// tls13_init_key_schedule initializes the handshake hash and key derivation
1244// state, and incorporates the PSK. The cipher suite and PRF hash must have been
1245// selected at this point. It returns true on success and false on error.
1246bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk,
1247 size_t psk_len);
1248
1249// tls13_init_early_key_schedule initializes the handshake hash and key
1250// derivation state from the resumption secret and incorporates the PSK to
1251// derive the early secrets. It returns one on success and zero on error.
1252bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk,
1253 size_t psk_len);
1254
1255// tls13_advance_key_schedule incorporates |in| into the key schedule with
1256// HKDF-Extract. It returns true on success and false on error.
1257bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in,
1258 size_t len);
1259
1260// tls13_set_traffic_key sets the read or write traffic keys to
1261// |traffic_secret|. It returns true on success and false on error.
1262bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
1263 enum evp_aead_direction_t direction,
1264 const uint8_t *traffic_secret,
1265 size_t traffic_secret_len);
1266
1267// tls13_derive_early_secrets derives the early traffic secret. It returns true
1268// on success and false on error.
1269bool tls13_derive_early_secrets(SSL_HANDSHAKE *hs);
1270
1271// tls13_derive_handshake_secrets derives the handshake traffic secret. It
1272// returns true on success and false on error.
1273bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
1274
1275// tls13_rotate_traffic_key derives the next read or write traffic secret. It
1276// returns true on success and false on error.
1277bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
1278
1279// tls13_derive_application_secrets derives the initial application data traffic
1280// and exporter secrets based on the handshake transcripts and |master_secret|.
1281// It returns true on success and false on error.
1282bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
1283
1284// tls13_derive_resumption_secret derives the |resumption_secret|.
1285bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
1286
1287// tls13_export_keying_material provides an exporter interface to use the
1288// |exporter_secret|.
1289bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
1290 Span<const uint8_t> secret,
1291 Span<const char> label,
1292 Span<const uint8_t> context);
1293
1294// tls13_finished_mac calculates the MAC of the handshake transcript to verify
1295// the integrity of the Finished message, and stores the result in |out| and
1296// length in |out_len|. |is_server| is true if this is for the Server Finished
1297// and false for the Client Finished.
1298bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
1299 bool is_server);
1300
1301// tls13_derive_session_psk calculates the PSK for this session based on the
1302// resumption master secret and |nonce|. It returns true on success, and false
1303// on failure.
1304bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
1305
1306// tls13_write_psk_binder calculates the PSK binder value and replaces the last
1307// bytes of |msg| with the resulting value. It returns true on success, and
1308// false on failure.
1309bool tls13_write_psk_binder(SSL_HANDSHAKE *hs, uint8_t *msg, size_t len);
1310
1311// tls13_verify_psk_binder verifies that the handshake transcript, truncated up
1312// to the binders has a valid signature using the value of |session|'s
1313// resumption secret. It returns true on success, and false on failure.
1314bool tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session,
1315 const SSLMessage &msg, CBS *binders);
1316
1317
1318// Handshake functions.
1319
1320enum ssl_hs_wait_t {
1321 ssl_hs_error,
1322 ssl_hs_ok,
1323 ssl_hs_read_server_hello,
1324 ssl_hs_read_message,
1325 ssl_hs_flush,
1326 ssl_hs_certificate_selection_pending,
1327 ssl_hs_handoff,
1328 ssl_hs_handback,
1329 ssl_hs_x509_lookup,
1330 ssl_hs_channel_id_lookup,
1331 ssl_hs_private_key_operation,
1332 ssl_hs_pending_session,
1333 ssl_hs_pending_ticket,
1334 ssl_hs_early_return,
1335 ssl_hs_early_data_rejected,
1336 ssl_hs_read_end_of_early_data,
1337 ssl_hs_read_change_cipher_spec,
1338 ssl_hs_certificate_verify,
1339};
1340
1341enum ssl_grease_index_t {
1342 ssl_grease_cipher = 0,
1343 ssl_grease_group,
1344 ssl_grease_extension1,
1345 ssl_grease_extension2,
1346 ssl_grease_version,
1347 ssl_grease_ticket_extension,
1348 ssl_grease_last_index = ssl_grease_ticket_extension,
1349};
1350
1351enum tls12_server_hs_state_t {
1352 state12_start_accept = 0,
1353 state12_read_client_hello,
1354 state12_select_certificate,
1355 state12_tls13,
1356 state12_select_parameters,
1357 state12_send_server_hello,
1358 state12_send_server_certificate,
1359 state12_send_server_key_exchange,
1360 state12_send_server_hello_done,
1361 state12_read_client_certificate,
1362 state12_verify_client_certificate,
1363 state12_read_client_key_exchange,
1364 state12_read_client_certificate_verify,
1365 state12_read_change_cipher_spec,
1366 state12_process_change_cipher_spec,
1367 state12_read_next_proto,
1368 state12_read_channel_id,
1369 state12_read_client_finished,
1370 state12_send_server_finished,
1371 state12_finish_server_handshake,
1372 state12_done,
1373};
1374
1375// handback_t lists the points in the state machine where a handback can occur.
1376// These are the different points at which key material is no longer needed.
1377enum handback_t {
1378 handback_after_session_resumption,
1379 handback_after_ecdhe,
1380 handback_after_handshake,
1381};
1382
1383
1384// Delegated credentials.
1385
1386// This structure stores a delegated credential (DC) as defined by
1387// draft-ietf-tls-subcerts-03.
1388struct DC {
1389 static constexpr bool kAllowUniquePtr = true;
1390 ~DC();
1391
1392 // Dup returns a copy of this DC and takes references to |raw| and |pkey|.
1393 UniquePtr<DC> Dup();
1394
1395 // Parse parses the delegated credential stored in |in|. If successful it
1396 // returns the parsed structure, otherwise it returns |nullptr| and sets
1397 // |*out_alert|.
1398 static UniquePtr<DC> Parse(CRYPTO_BUFFER *in, uint8_t *out_alert);
1399
1400 // raw is the delegated credential encoded as specified in draft-ietf-tls-
1401 // subcerts-03.
1402 UniquePtr<CRYPTO_BUFFER> raw;
1403
1404 // expected_cert_verify_algorithm is the signature scheme of the DC public
1405 // key.
1406 uint16_t expected_cert_verify_algorithm = 0;
1407
1408 // pkey is the public key parsed from |public_key|.
1409 UniquePtr<EVP_PKEY> pkey;
1410
1411 private:
1412 friend DC* New<DC>();
1413 DC();
1414};
1415
1416// ssl_signing_with_dc returns true if the peer has indicated support for
1417// delegated credentials and this host has sent a delegated credential in
1418// response. If this is true then we've committed to using the DC in the
1419// handshake.
1420bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs);
1421
1422
1423struct SSL_HANDSHAKE {
1424 explicit SSL_HANDSHAKE(SSL *ssl);
1425 ~SSL_HANDSHAKE();
1426 static constexpr bool kAllowUniquePtr = true;
1427
1428 // ssl is a non-owning pointer to the parent |SSL| object.
1429 SSL *ssl;
1430
1431 // config is a non-owning pointer to the handshake configuration.
1432 SSL_CONFIG *config;
1433
1434 // wait contains the operation the handshake is currently blocking on or
1435 // |ssl_hs_ok| if none.
1436 enum ssl_hs_wait_t wait = ssl_hs_ok;
1437
1438 // state is the internal state for the TLS 1.2 and below handshake. Its
1439 // values depend on |do_handshake| but the starting state is always zero.
1440 int state = 0;
1441
1442 // tls13_state is the internal state for the TLS 1.3 handshake. Its values
1443 // depend on |do_handshake| but the starting state is always zero.
1444 int tls13_state = 0;
1445
1446 // min_version is the minimum accepted protocol version, taking account both
1447 // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
1448 uint16_t min_version = 0;
1449
1450 // max_version is the maximum accepted protocol version, taking account both
1451 // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
1452 uint16_t max_version = 0;
1453
1454 size_t hash_len = 0;
1455 uint8_t secret[EVP_MAX_MD_SIZE] = {0};
1456 uint8_t early_traffic_secret[EVP_MAX_MD_SIZE] = {0};
1457 uint8_t client_handshake_secret[EVP_MAX_MD_SIZE] = {0};
1458 uint8_t server_handshake_secret[EVP_MAX_MD_SIZE] = {0};
1459 uint8_t client_traffic_secret_0[EVP_MAX_MD_SIZE] = {0};
1460 uint8_t server_traffic_secret_0[EVP_MAX_MD_SIZE] = {0};
1461 uint8_t expected_client_finished[EVP_MAX_MD_SIZE] = {0};
1462
1463 union {
1464 // sent is a bitset where the bits correspond to elements of kExtensions
1465 // in t1_lib.c. Each bit is set if that extension was sent in a
1466 // ClientHello. It's not used by servers.
1467 uint32_t sent = 0;
1468 // received is a bitset, like |sent|, but is used by servers to record
1469 // which extensions were received from a client.
1470 uint32_t received;
1471 } extensions;
1472
1473 // retry_group is the group ID selected by the server in HelloRetryRequest in
1474 // TLS 1.3.
1475 uint16_t retry_group = 0;
1476
1477 // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
1478 UniquePtr<ERR_SAVE_STATE> error;
1479
1480 // key_shares are the current key exchange instances. The second is only used
1481 // as a client if we believe that we should offer two key shares in a
1482 // ClientHello.
1483 UniquePtr<SSLKeyShare> key_shares[2];
1484
1485 // transcript is the current handshake transcript.
1486 SSLTranscript transcript;
1487
1488 // cookie is the value of the cookie received from the server, if any.
1489 Array<uint8_t> cookie;
1490
1491 // key_share_bytes is the value of the previously sent KeyShare extension by
1492 // the client in TLS 1.3.
1493 Array<uint8_t> key_share_bytes;
1494
1495 // ecdh_public_key, for servers, is the key share to be sent to the client in
1496 // TLS 1.3.
1497 Array<uint8_t> ecdh_public_key;
1498
1499 // peer_sigalgs are the signature algorithms that the peer supports. These are
1500 // taken from the contents of the signature algorithms extension for a server
1501 // or from the CertificateRequest for a client.
1502 Array<uint16_t> peer_sigalgs;
1503
1504 // peer_supported_group_list contains the supported group IDs advertised by
1505 // the peer. This is only set on the server's end. The server does not
1506 // advertise this extension to the client.
1507 Array<uint16_t> peer_supported_group_list;
1508
1509 // peer_key is the peer's ECDH key for a TLS 1.2 client.
1510 Array<uint8_t> peer_key;
1511
1512 // negotiated_token_binding_version is used by a server to store the
1513 // on-the-wire encoding of the Token Binding protocol version to advertise in
1514 // the ServerHello/EncryptedExtensions if the Token Binding extension is to be
1515 // sent.
1516 uint16_t negotiated_token_binding_version;
1517
1518 // cert_compression_alg_id, for a server, contains the negotiated certificate
1519 // compression algorithm for this client. It is only valid if
1520 // |cert_compression_negotiated| is true.
1521 uint16_t cert_compression_alg_id;
1522
1523 // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
1524 // parameters. It has client and server randoms prepended for signing
1525 // convenience.
1526 Array<uint8_t> server_params;
1527
1528 // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
1529 // server when using a TLS 1.2 PSK key exchange.
1530 UniquePtr<char> peer_psk_identity_hint;
1531
1532 // ca_names, on the client, contains the list of CAs received in a
1533 // CertificateRequest message.
1534 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
1535
1536 // cached_x509_ca_names contains a cache of parsed versions of the elements of
1537 // |ca_names|. This pointer is left non-owning so only
1538 // |ssl_crypto_x509_method| needs to link against crypto/x509.
1539 STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
1540
1541 // certificate_types, on the client, contains the set of certificate types
1542 // received in a CertificateRequest message.
1543 Array<uint8_t> certificate_types;
1544
1545 // local_pubkey is the public key we are authenticating as.
1546 UniquePtr<EVP_PKEY> local_pubkey;
1547
1548 // peer_pubkey is the public key parsed from the peer's leaf certificate.
1549 UniquePtr<EVP_PKEY> peer_pubkey;
1550
1551 // new_session is the new mutable session being established by the current
1552 // handshake. It should not be cached.
1553 UniquePtr<SSL_SESSION> new_session;
1554
1555 // early_session is the session corresponding to the current 0-RTT state on
1556 // the client if |in_early_data| is true.
1557 UniquePtr<SSL_SESSION> early_session;
1558
1559 // new_cipher is the cipher being negotiated in this handshake.
1560 const SSL_CIPHER *new_cipher = nullptr;
1561
1562 // key_block is the record-layer key block for TLS 1.2 and earlier.
1563 Array<uint8_t> key_block;
1564
1565 // scts_requested is true if the SCT extension is in the ClientHello.
1566 bool scts_requested : 1;
1567
1568 // needs_psk_binder is true if the ClientHello has a placeholder PSK binder to
1569 // be filled in.
1570 bool needs_psk_binder : 1;
1571
1572 bool received_hello_retry_request : 1;
1573 bool sent_hello_retry_request : 1;
1574
1575 // handshake_finalized is true once the handshake has completed, at which
1576 // point accessors should use the established state.
1577 bool handshake_finalized : 1;
1578
1579 // accept_psk_mode stores whether the client's PSK mode is compatible with our
1580 // preferences.
1581 bool accept_psk_mode : 1;
1582
1583 // cert_request is true if a client certificate was requested.
1584 bool cert_request : 1;
1585
1586 // certificate_status_expected is true if OCSP stapling was negotiated and the
1587 // server is expected to send a CertificateStatus message. (This is used on
1588 // both the client and server sides.)
1589 bool certificate_status_expected : 1;
1590
1591 // ocsp_stapling_requested is true if a client requested OCSP stapling.
1592 bool ocsp_stapling_requested : 1;
1593
1594 // delegated_credential_requested is true if the peer indicated support for
1595 // the delegated credential extension.
1596 bool delegated_credential_requested : 1;
1597
1598 // should_ack_sni is used by a server and indicates that the SNI extension
1599 // should be echoed in the ServerHello.
1600 bool should_ack_sni : 1;
1601
1602 // in_false_start is true if there is a pending client handshake in False
1603 // Start. The client may write data at this point.
1604 bool in_false_start : 1;
1605
1606 // in_early_data is true if there is a pending handshake that has progressed
1607 // enough to send and receive early data.
1608 bool in_early_data : 1;
1609
1610 // early_data_offered is true if the client sent the early_data extension.
1611 bool early_data_offered : 1;
1612
1613 // can_early_read is true if application data may be read at this point in the
1614 // handshake.
1615 bool can_early_read : 1;
1616
1617 // can_early_write is true if application data may be written at this point in
1618 // the handshake.
1619 bool can_early_write : 1;
1620
1621 // next_proto_neg_seen is one of NPN was negotiated.
1622 bool next_proto_neg_seen : 1;
1623
1624 // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
1625 // or received.
1626 bool ticket_expected : 1;
1627
1628 // extended_master_secret is true if the extended master secret extension is
1629 // negotiated in this handshake.
1630 bool extended_master_secret : 1;
1631
1632 // pending_private_key_op is true if there is a pending private key operation
1633 // in progress.
1634 bool pending_private_key_op : 1;
1635
1636 // grease_seeded is true if |grease_seed| has been initialized.
1637 bool grease_seeded : 1;
1638
1639 // handback indicates that a server should pause the handshake after
1640 // finishing operations that require private key material, in such a way that
1641 // |SSL_get_error| returns |SSL_HANDBACK|. It is set by |SSL_apply_handoff|.
1642 bool handback : 1;
1643
1644 // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid.
1645 bool cert_compression_negotiated : 1;
1646
1647 // apply_jdk11_workaround is true if the peer is probably a JDK 11 client
1648 // which implemented TLS 1.3 incorrectly.
1649 bool apply_jdk11_workaround : 1;
1650
1651 // client_version is the value sent or received in the ClientHello version.
1652 uint16_t client_version = 0;
1653
1654 // early_data_read is the amount of early data that has been read by the
1655 // record layer.
1656 uint16_t early_data_read = 0;
1657
1658 // early_data_written is the amount of early data that has been written by the
1659 // record layer.
1660 uint16_t early_data_written = 0;
1661
1662 // session_id is the session ID in the ClientHello.
1663 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
1664 uint8_t session_id_len = 0;
1665
1666 // grease_seed is the entropy for GREASE values. It is valid if
1667 // |grease_seeded| is true.
1668 uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
1669};
1670
1671UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
1672
1673// ssl_check_message_type checks if |msg| has type |type|. If so it returns
1674// one. Otherwise, it sends an alert and returns zero.
1675bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
1676
1677// ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
1678// on error. It sets |out_early_return| to one if we've completed the handshake
1679// early.
1680int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
1681
1682// The following are implementations of |do_handshake| for the client and
1683// server.
1684enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
1685enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
1686enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
1687enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
1688
1689// The following functions return human-readable representations of the TLS
1690// handshake states for debugging.
1691const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
1692const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
1693const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
1694const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
1695
1696// tls13_add_key_update queues a KeyUpdate message on |ssl|. The
1697// |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or
1698// |SSL_KEY_UPDATE_NOT_REQUESTED|.
1699bool tls13_add_key_update(SSL *ssl, int update_requested);
1700
1701// tls13_post_handshake processes a post-handshake message. It returns true on
1702// success and false on failure.
1703bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
1704
1705bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
1706 bool allow_anonymous);
1707bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
1708
1709// tls13_process_finished processes |msg| as a Finished message from the
1710// peer. If |use_saved_value| is true, the verify_data is compared against
1711// |hs->expected_client_finished| rather than computed fresh.
1712bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
1713 bool use_saved_value);
1714
1715bool tls13_add_certificate(SSL_HANDSHAKE *hs);
1716
1717// tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
1718// handshake. If it returns |ssl_private_key_retry|, it should be called again
1719// to retry when the signing operation is completed.
1720enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
1721
1722bool tls13_add_finished(SSL_HANDSHAKE *hs);
1723bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
1724
1725bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
1726 Array<uint8_t> *out_secret,
1727 uint8_t *out_alert, CBS *contents);
1728bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
1729 Array<uint8_t> *out_secret,
1730 uint8_t *out_alert, CBS *contents);
1731bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
1732
1733bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
1734 uint8_t *out_alert,
1735 CBS *contents);
1736bool ssl_ext_pre_shared_key_parse_clienthello(
1737 SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
1738 uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, CBS *contents);
1739bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
1740
1741// ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
1742// returns whether it's valid.
1743bool ssl_is_sct_list_valid(const CBS *contents);
1744
1745bool ssl_write_client_hello(SSL_HANDSHAKE *hs);
1746
1747enum ssl_cert_verify_context_t {
1748 ssl_cert_verify_server,
1749 ssl_cert_verify_client,
1750 ssl_cert_verify_channel_id,
1751};
1752
1753// tls13_get_cert_verify_signature_input generates the message to be signed for
1754// TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
1755// type of signature. It sets |*out| to a newly allocated buffer containing the
1756// result. This function returns true on success and false on failure.
1757bool tls13_get_cert_verify_signature_input(
1758 SSL_HANDSHAKE *hs, Array<uint8_t> *out,
1759 enum ssl_cert_verify_context_t cert_verify_context);
1760
1761// ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
1762// selection for |hs->ssl|'s client preferences.
1763bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs,
1764 Span<const uint8_t> protocol);
1765
1766// ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
1767// true on successful negotiation or if nothing was negotiated. It returns false
1768// and sets |*out_alert| to an alert on error.
1769bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
1770 const SSL_CLIENT_HELLO *client_hello);
1771
1772struct SSL_EXTENSION_TYPE {
1773 uint16_t type;
1774 bool *out_present;
1775 CBS *out_data;
1776};
1777
1778// ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
1779// it. It writes the parsed extensions to pointers denoted by |ext_types|. On
1780// success, it fills in the |out_present| and |out_data| fields and returns one.
1781// Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown
1782// extensions are rejected unless |ignore_unknown| is 1.
1783int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
1784 const SSL_EXTENSION_TYPE *ext_types,
1785 size_t num_ext_types, int ignore_unknown);
1786
1787// ssl_verify_peer_cert verifies the peer certificate for |hs|.
1788enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
1789// ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a
1790// session.
1791enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs);
1792
1793enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
1794bool ssl_send_finished(SSL_HANDSHAKE *hs);
1795bool ssl_output_cert_chain(SSL_HANDSHAKE *hs);
1796
1797// SSLKEYLOGFILE functions.
1798
1799// ssl_log_secret logs |secret| with label |label|, if logging is enabled for
1800// |ssl|. It returns one on success and zero on failure.
1801int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret,
1802 size_t secret_len);
1803
1804
1805// ClientHello functions.
1806
1807bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out,
1808 const SSLMessage &msg);
1809
1810bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
1811 CBS *out, uint16_t extension_type);
1812
1813bool ssl_client_cipher_list_contains_cipher(
1814 const SSL_CLIENT_HELLO *client_hello, uint16_t id);
1815
1816
1817// GREASE.
1818
1819// ssl_get_grease_value returns a GREASE value for |hs|. For a given
1820// connection, the values for each index will be deterministic. This allows the
1821// same ClientHello be sent twice for a HelloRetryRequest or the same group be
1822// advertised in both supported_groups and key_shares.
1823uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs, enum ssl_grease_index_t index);
1824
1825
1826// Signature algorithms.
1827
1828// tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
1829// algorithms and saves them on |hs|. It returns true on success and false on
1830// error.
1831bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
1832
1833// tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
1834// that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
1835// success and false if |pkey| may not be used at those versions.
1836bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
1837
1838// tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
1839// with |hs|'s private key based on the peer's preferences and the algorithms
1840// supported. It returns true on success and false on error.
1841bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out);
1842
1843// tls1_get_peer_verify_algorithms returns the signature schemes for which the
1844// peer indicated support.
1845//
1846// NOTE: The related function |SSL_get0_peer_verify_algorithms| only has
1847// well-defined behavior during the callbacks set by |SSL_CTX_set_cert_cb| and
1848// |SSL_CTX_set_client_cert_cb|, or when the handshake is paused because of
1849// them.
1850Span<const uint16_t> tls1_get_peer_verify_algorithms(const SSL_HANDSHAKE *hs);
1851
1852// tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
1853// peer signature to |out|. It returns true on success and false on error. If
1854// |for_certs| is true, the potentially more restrictive list of algorithms for
1855// certificates is used. Otherwise, the online signature one is used.
1856bool tls12_add_verify_sigalgs(const SSL *ssl, CBB *out, bool for_certs);
1857
1858// tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
1859// signature. It returns true on success and false on error, setting
1860// |*out_alert| to an alert to send.
1861bool tls12_check_peer_sigalg(const SSL *ssl, uint8_t *out_alert,
1862 uint16_t sigalg);
1863
1864// tls12_has_different_verify_sigalgs_for_certs returns whether |ssl| has a
1865// different, more restrictive, list of signature algorithms acceptable for the
1866// certificate than the online signature.
1867bool tls12_has_different_verify_sigalgs_for_certs(const SSL *ssl);
1868
1869
1870// Underdocumented functions.
1871//
1872// Functions below here haven't been touched up and may be underdocumented.
1873
1874#define TLSEXT_CHANNEL_ID_SIZE 128
1875
1876// From RFC4492, used in encoding the curve type in ECParameters
1877#define NAMED_CURVE_TYPE 3
1878
1879struct CERT {
1880 static constexpr bool kAllowUniquePtr = true;
1881
1882 explicit CERT(const SSL_X509_METHOD *x509_method);
1883 ~CERT();
1884
1885 UniquePtr<EVP_PKEY> privatekey;
1886
1887 // chain contains the certificate chain, with the leaf at the beginning. The
1888 // first element of |chain| may be NULL to indicate that the leaf certificate
1889 // has not yet been set.
1890 // If |chain| != NULL -> len(chain) >= 1
1891 // If |chain[0]| == NULL -> len(chain) >= 2.
1892 // |chain[1..]| != NULL
1893 UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain;
1894
1895 // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as
1896 // a cache in order to implement “get0” functions that return a non-owning
1897 // pointer to the certificate chain.
1898 STACK_OF(X509) *x509_chain = nullptr;
1899
1900 // x509_leaf may contain a parsed copy of the first element of |chain|. This
1901 // is only used as a cache in order to implement “get0” functions that return
1902 // a non-owning pointer to the certificate chain.
1903 X509 *x509_leaf = nullptr;
1904
1905 // x509_stash contains the last |X509| object append to the chain. This is a
1906 // workaround for some third-party code that continue to use an |X509| object
1907 // even after passing ownership with an “add0” function.
1908 X509 *x509_stash = nullptr;
1909
1910 // key_method, if non-NULL, is a set of callbacks to call for private key
1911 // operations.
1912 const SSL_PRIVATE_KEY_METHOD *key_method = nullptr;
1913
1914 // x509_method contains pointers to functions that might deal with |X509|
1915 // compatibility, or might be a no-op, depending on the application.
1916 const SSL_X509_METHOD *x509_method = nullptr;
1917
1918 // sigalgs, if non-empty, is the set of signature algorithms supported by
1919 // |privatekey| in decreasing order of preference.
1920 Array<uint16_t> sigalgs;
1921
1922 // Certificate setup callback: if set is called whenever a
1923 // certificate may be required (client or server). the callback
1924 // can then examine any appropriate parameters and setup any
1925 // certificates required. This allows advanced applications
1926 // to select certificates on the fly: for example based on
1927 // supported signature algorithms or curves.
1928 int (*cert_cb)(SSL *ssl, void *arg) = nullptr;
1929 void *cert_cb_arg = nullptr;
1930
1931 // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
1932 // store is used instead.
1933 X509_STORE *verify_store = nullptr;
1934
1935 // Signed certificate timestamp list to be sent to the client, if requested
1936 UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
1937
1938 // OCSP response to be sent to the client, if requested.
1939 UniquePtr<CRYPTO_BUFFER> ocsp_response;
1940
1941 // sid_ctx partitions the session space within a shared session cache or
1942 // ticket key. Only sessions with a matching value will be accepted.
1943 uint8_t sid_ctx_length = 0;
1944 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
1945
1946 // Delegated credentials.
1947
1948 // dc is the delegated credential to send to the peer (if requested).
1949 UniquePtr<DC> dc = nullptr;
1950
1951 // dc_privatekey is used instead of |privatekey| or |key_method| to
1952 // authenticate the host if a delegated credential is used in the handshake.
1953 UniquePtr<EVP_PKEY> dc_privatekey = nullptr;
1954
1955 // dc_key_method, if not NULL, is used instead of |dc_privatekey| to
1956 // authenticate the host.
1957 const SSL_PRIVATE_KEY_METHOD *dc_key_method = nullptr;
1958};
1959
1960// |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
1961struct SSL_PROTOCOL_METHOD {
1962 bool is_dtls;
1963 bool (*ssl_new)(SSL *ssl);
1964 void (*ssl_free)(SSL *ssl);
1965 // get_message sets |*out| to the current handshake message and returns true
1966 // if one has been received. It returns false if more input is needed.
1967 bool (*get_message)(const SSL *ssl, SSLMessage *out);
1968 // next_message is called to release the current handshake message.
1969 void (*next_message)(SSL *ssl);
1970 // Use the |ssl_open_handshake| wrapper.
1971 ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
1972 uint8_t *out_alert, Span<uint8_t> in);
1973 // Use the |ssl_open_change_cipher_spec| wrapper.
1974 ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
1975 uint8_t *out_alert,
1976 Span<uint8_t> in);
1977 // Use the |ssl_open_app_data| wrapper.
1978 ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
1979 size_t *out_consumed, uint8_t *out_alert,
1980 Span<uint8_t> in);
1981 int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
1982 int len);
1983 int (*dispatch_alert)(SSL *ssl);
1984 // init_message begins a new handshake message of type |type|. |cbb| is the
1985 // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
1986 // the caller should write to. It returns true on success and false on error.
1987 bool (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
1988 // finish_message finishes a handshake message. It sets |*out_msg| to the
1989 // serialized message. It returns true on success and false on error.
1990 bool (*finish_message)(SSL *ssl, CBB *cbb, bssl::Array<uint8_t> *out_msg);
1991 // add_message adds a handshake message to the pending flight. It returns
1992 // true on success and false on error.
1993 bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
1994 // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
1995 // flight. It returns true on success and false on error.
1996 bool (*add_change_cipher_spec)(SSL *ssl);
1997 // flush_flight flushes the pending flight to the transport. It returns one on
1998 // success and <= 0 on error.
1999 int (*flush_flight)(SSL *ssl);
2000 // on_handshake_complete is called when the handshake is complete.
2001 void (*on_handshake_complete)(SSL *ssl);
2002 // set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It returns
2003 // true on success and false if changing the read state is forbidden at this
2004 // point.
2005 bool (*set_read_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
2006 // set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It returns
2007 // true on success and false if changing the write state is forbidden at this
2008 // point.
2009 bool (*set_write_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
2010};
2011
2012// The following wrappers call |open_*| but handle |read_shutdown| correctly.
2013
2014// ssl_open_handshake processes a record from |in| for reading a handshake
2015// message.
2016ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
2017 uint8_t *out_alert, Span<uint8_t> in);
2018
2019// ssl_open_change_cipher_spec processes a record from |in| for reading a
2020// ChangeCipherSpec.
2021ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2022 uint8_t *out_alert,
2023 Span<uint8_t> in);
2024
2025// ssl_open_app_data processes a record from |in| for reading application data.
2026// On success, it returns |ssl_open_record_success| and sets |*out| to the
2027// input. If it encounters a post-handshake message, it returns
2028// |ssl_open_record_discard|. The caller should then retry, after processing any
2029// messages received with |get_message|.
2030ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
2031 size_t *out_consumed, uint8_t *out_alert,
2032 Span<uint8_t> in);
2033
2034struct SSL_X509_METHOD {
2035 // check_client_CA_list returns one if |names| is a good list of X.509
2036 // distinguished names and zero otherwise. This is used to ensure that we can
2037 // reject unparsable values at handshake time when using crypto/x509.
2038 bool (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
2039
2040 // cert_clear frees and NULLs all X509 certificate-related state.
2041 void (*cert_clear)(CERT *cert);
2042 // cert_free frees all X509-related state.
2043 void (*cert_free)(CERT *cert);
2044 // cert_flush_cached_chain drops any cached |X509|-based certificate chain
2045 // from |cert|.
2046 // cert_dup duplicates any needed fields from |cert| to |new_cert|.
2047 void (*cert_dup)(CERT *new_cert, const CERT *cert);
2048 void (*cert_flush_cached_chain)(CERT *cert);
2049 // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
2050 // from |cert|.
2051 void (*cert_flush_cached_leaf)(CERT *cert);
2052
2053 // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
2054 // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
2055 // true on success or false on error.
2056 bool (*session_cache_objects)(SSL_SESSION *session);
2057 // session_dup duplicates any needed fields from |session| to |new_session|.
2058 // It returns true on success or false on error.
2059 bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
2060 // session_clear frees any X509-related state from |session|.
2061 void (*session_clear)(SSL_SESSION *session);
2062 // session_verify_cert_chain verifies the certificate chain in |session|,
2063 // sets |session->verify_result| and returns true on success or false on
2064 // error.
2065 bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl,
2066 uint8_t *out_alert);
2067
2068 // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
2069 void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs);
2070 // ssl_new does any necessary initialisation of |hs|. It returns true on
2071 // success or false on error.
2072 bool (*ssl_new)(SSL_HANDSHAKE *hs);
2073 // ssl_free frees anything created by |ssl_new|.
2074 void (*ssl_config_free)(SSL_CONFIG *cfg);
2075 // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
2076 void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg);
2077 // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
2078 // necessary. On success, it updates |ssl|'s certificate configuration as
2079 // needed and returns true. Otherwise, it returns false.
2080 bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs);
2081 // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on
2082 // success or false on error.
2083 bool (*ssl_ctx_new)(SSL_CTX *ctx);
2084 // ssl_ctx_free frees anything created by |ssl_ctx_new|.
2085 void (*ssl_ctx_free)(SSL_CTX *ctx);
2086 // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
2087 void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
2088};
2089
2090// ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
2091// crypto/x509.
2092extern const SSL_X509_METHOD ssl_crypto_x509_method;
2093
2094// ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
2095// crypto/x509.
2096extern const SSL_X509_METHOD ssl_noop_x509_method;
2097
2098struct TicketKey {
2099 static constexpr bool kAllowUniquePtr = true;
2100
2101 uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0};
2102 uint8_t hmac_key[16] = {0};
2103 uint8_t aes_key[16] = {0};
2104 // next_rotation_tv_sec is the time (in seconds from the epoch) when the
2105 // current key should be superseded by a new key, or the time when a previous
2106 // key should be dropped. If zero, then the key should not be automatically
2107 // rotated.
2108 uint64_t next_rotation_tv_sec = 0;
2109};
2110
2111struct CertCompressionAlg {
2112 static constexpr bool kAllowUniquePtr = true;
2113
2114 ssl_cert_compression_func_t compress = nullptr;
2115 ssl_cert_decompression_func_t decompress = nullptr;
2116 uint16_t alg_id = 0;
2117};
2118
2119BSSL_NAMESPACE_END
2120
2121DEFINE_LHASH_OF(SSL_SESSION)
2122
2123DEFINE_NAMED_STACK_OF(CertCompressionAlg, bssl::CertCompressionAlg)
2124
2125BSSL_NAMESPACE_BEGIN
2126
2127// An ssl_shutdown_t describes the shutdown state of one end of the connection,
2128// whether it is alive or has been shutdown via close_notify or fatal alert.
2129enum ssl_shutdown_t {
2130 ssl_shutdown_none = 0,
2131 ssl_shutdown_close_notify = 1,
2132 ssl_shutdown_error = 2,
2133};
2134
2135struct SSL3_STATE {
2136 static constexpr bool kAllowUniquePtr = true;
2137
2138 SSL3_STATE();
2139 ~SSL3_STATE();
2140
2141 uint8_t read_sequence[8] = {0};
2142 uint8_t write_sequence[8] = {0};
2143
2144 uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
2145 uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
2146
2147 // read_buffer holds data from the transport to be processed.
2148 SSLBuffer read_buffer;
2149 // write_buffer holds data to be written to the transport.
2150 SSLBuffer write_buffer;
2151
2152 // pending_app_data is the unconsumed application data. It points into
2153 // |read_buffer|.
2154 Span<uint8_t> pending_app_data;
2155
2156 // partial write - check the numbers match
2157 unsigned int wnum = 0; // number of bytes sent so far
2158 int wpend_tot = 0; // number bytes written
2159 int wpend_type = 0;
2160 int wpend_ret = 0; // number of bytes submitted
2161 const uint8_t *wpend_buf = nullptr;
2162
2163 // read_shutdown is the shutdown state for the read half of the connection.
2164 enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
2165
2166 // write_shutdown is the shutdown state for the write half of the connection.
2167 enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
2168
2169 // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
2170 // the receive half of the connection.
2171 UniquePtr<ERR_SAVE_STATE> read_error;
2172
2173 int alert_dispatch = 0;
2174
2175 int total_renegotiations = 0;
2176
2177 // This holds a variable that indicates what we were doing when a 0 or -1 is
2178 // returned. This is needed for non-blocking IO so we know what request
2179 // needs re-doing when in SSL_accept or SSL_connect
2180 int rwstate = SSL_NOTHING;
2181
2182 enum ssl_encryption_level_t read_level = ssl_encryption_initial;
2183 enum ssl_encryption_level_t write_level = ssl_encryption_initial;
2184
2185 // early_data_skipped is the amount of early data that has been skipped by the
2186 // record layer.
2187 uint16_t early_data_skipped = 0;
2188
2189 // empty_record_count is the number of consecutive empty records received.
2190 uint8_t empty_record_count = 0;
2191
2192 // warning_alert_count is the number of consecutive warning alerts
2193 // received.
2194 uint8_t warning_alert_count = 0;
2195
2196 // key_update_count is the number of consecutive KeyUpdates received.
2197 uint8_t key_update_count = 0;
2198
2199 // The negotiated Token Binding key parameter. Only valid if
2200 // |token_binding_negotiated| is set.
2201 uint8_t negotiated_token_binding_param = 0;
2202
2203 // skip_early_data instructs the record layer to skip unexpected early data
2204 // messages when 0RTT is rejected.
2205 bool skip_early_data : 1;
2206
2207 // have_version is true if the connection's final version is known. Otherwise
2208 // the version has not been negotiated yet.
2209 bool have_version : 1;
2210
2211 // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
2212 // and future messages should use the record layer.
2213 bool v2_hello_done : 1;
2214
2215 // is_v2_hello is true if the current handshake message was derived from a
2216 // V2ClientHello rather than received from the peer directly.
2217 bool is_v2_hello : 1;
2218
2219 // has_message is true if the current handshake message has been returned
2220 // at least once by |get_message| and false otherwise.
2221 bool has_message : 1;
2222
2223 // initial_handshake_complete is true if the initial handshake has
2224 // completed.
2225 bool initial_handshake_complete : 1;
2226
2227 // session_reused indicates whether a session was resumed.
2228 bool session_reused : 1;
2229
2230 // delegated_credential_used is whether we presented a delegated credential to
2231 // the peer.
2232 bool delegated_credential_used : 1;
2233
2234 bool send_connection_binding : 1;
2235
2236 // In a client, this means that the server supported Channel ID and that a
2237 // Channel ID was sent. In a server it means that we echoed support for
2238 // Channel IDs and that |channel_id| will be valid after the handshake.
2239 bool channel_id_valid : 1;
2240
2241 // key_update_pending is true if we have a KeyUpdate acknowledgment
2242 // outstanding.
2243 bool key_update_pending : 1;
2244
2245 // wpend_pending is true if we have a pending write outstanding.
2246 bool wpend_pending : 1;
2247
2248 // early_data_accepted is true if early data was accepted by the server.
2249 bool early_data_accepted : 1;
2250
2251 // tls13_downgrade is whether the TLS 1.3 anti-downgrade logic fired.
2252 bool tls13_downgrade : 1;
2253
2254 // token_binding_negotiated is set if Token Binding was negotiated.
2255 bool token_binding_negotiated : 1;
2256
2257 // pq_experimental_signal_seen is true if the peer was observed
2258 // sending/echoing the post-quantum experiment signal.
2259 bool pq_experiment_signal_seen : 1;
2260
2261 // hs_buf is the buffer of handshake data to process.
2262 UniquePtr<BUF_MEM> hs_buf;
2263
2264 // pending_hs_data contains the pending handshake data that has not yet
2265 // been encrypted to |pending_flight|. This allows packing the handshake into
2266 // fewer records.
2267 UniquePtr<BUF_MEM> pending_hs_data;
2268
2269 // pending_flight is the pending outgoing flight. This is used to flush each
2270 // handshake flight in a single write. |write_buffer| must be written out
2271 // before this data.
2272 UniquePtr<BUF_MEM> pending_flight;
2273
2274 // pending_flight_offset is the number of bytes of |pending_flight| which have
2275 // been successfully written.
2276 uint32_t pending_flight_offset = 0;
2277
2278 // ticket_age_skew is the difference, in seconds, between the client-sent
2279 // ticket age and the server-computed value in TLS 1.3 server connections
2280 // which resumed a session.
2281 int32_t ticket_age_skew = 0;
2282
2283 // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected.
2284 enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown;
2285
2286 // aead_read_ctx is the current read cipher state.
2287 UniquePtr<SSLAEADContext> aead_read_ctx;
2288
2289 // aead_write_ctx is the current write cipher state.
2290 UniquePtr<SSLAEADContext> aead_write_ctx;
2291
2292 // hs is the handshake state for the current handshake or NULL if there isn't
2293 // one.
2294 UniquePtr<SSL_HANDSHAKE> hs;
2295
2296 uint8_t write_traffic_secret[EVP_MAX_MD_SIZE] = {0};
2297 uint8_t read_traffic_secret[EVP_MAX_MD_SIZE] = {0};
2298 uint8_t exporter_secret[EVP_MAX_MD_SIZE] = {0};
2299 uint8_t early_exporter_secret[EVP_MAX_MD_SIZE] = {0};
2300 uint8_t write_traffic_secret_len = 0;
2301 uint8_t read_traffic_secret_len = 0;
2302 uint8_t exporter_secret_len = 0;
2303 uint8_t early_exporter_secret_len = 0;
2304
2305 // Connection binding to prevent renegotiation attacks
2306 uint8_t previous_client_finished[12] = {0};
2307 uint8_t previous_client_finished_len = 0;
2308 uint8_t previous_server_finished_len = 0;
2309 uint8_t previous_server_finished[12] = {0};
2310
2311 uint8_t send_alert[2] = {0};
2312
2313 // established_session is the session established by the connection. This
2314 // session is only filled upon the completion of the handshake and is
2315 // immutable.
2316 UniquePtr<SSL_SESSION> established_session;
2317
2318 // Next protocol negotiation. For the client, this is the protocol that we
2319 // sent in NextProtocol and is set when handling ServerHello extensions.
2320 //
2321 // For a server, this is the client's selected_protocol from NextProtocol and
2322 // is set when handling the NextProtocol message, before the Finished
2323 // message.
2324 Array<uint8_t> next_proto_negotiated;
2325
2326 // ALPN information
2327 // (we are in the process of transitioning from NPN to ALPN.)
2328
2329 // In a server these point to the selected ALPN protocol after the
2330 // ClientHello has been processed. In a client these contain the protocol
2331 // that the server selected once the ServerHello has been processed.
2332 Array<uint8_t> alpn_selected;
2333
2334 // hostname, on the server, is the value of the SNI extension.
2335 UniquePtr<char> hostname;
2336
2337 // For a server:
2338 // If |channel_id_valid| is true, then this contains the
2339 // verified Channel ID from the client: a P256 point, (x,y), where
2340 // each are big-endian values.
2341 uint8_t channel_id[64] = {0};
2342
2343 // Contains the QUIC transport params received by the peer.
2344 Array<uint8_t> peer_quic_transport_params;
2345
2346 // srtp_profile is the selected SRTP protection profile for
2347 // DTLS-SRTP.
2348 const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr;
2349};
2350
2351// lengths of messages
2352#define DTLS1_COOKIE_LENGTH 256
2353
2354#define DTLS1_RT_HEADER_LENGTH 13
2355
2356#define DTLS1_HM_HEADER_LENGTH 12
2357
2358#define DTLS1_CCS_HEADER_LENGTH 1
2359
2360#define DTLS1_AL_HEADER_LENGTH 2
2361
2362struct hm_header_st {
2363 uint8_t type;
2364 uint32_t msg_len;
2365 uint16_t seq;
2366 uint32_t frag_off;
2367 uint32_t frag_len;
2368};
2369
2370// An hm_fragment is an incoming DTLS message, possibly not yet assembled.
2371struct hm_fragment {
2372 static constexpr bool kAllowUniquePtr = true;
2373
2374 hm_fragment() {}
2375 hm_fragment(const hm_fragment &) = delete;
2376 hm_fragment &operator=(const hm_fragment &) = delete;
2377
2378 ~hm_fragment();
2379
2380 // type is the type of the message.
2381 uint8_t type = 0;
2382 // seq is the sequence number of this message.
2383 uint16_t seq = 0;
2384 // msg_len is the length of the message body.
2385 uint32_t msg_len = 0;
2386 // data is a pointer to the message, including message header. It has length
2387 // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
2388 uint8_t *data = nullptr;
2389 // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
2390 // the message have been received. It is NULL if the message is complete.
2391 uint8_t *reassembly = nullptr;
2392};
2393
2394struct OPENSSL_timeval {
2395 uint64_t tv_sec;
2396 uint32_t tv_usec;
2397};
2398
2399struct DTLS1_STATE {
2400 static constexpr bool kAllowUniquePtr = true;
2401
2402 DTLS1_STATE();
2403 ~DTLS1_STATE();
2404
2405 // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
2406 // the peer in this epoch.
2407 bool has_change_cipher_spec : 1;
2408
2409 // outgoing_messages_complete is true if |outgoing_messages| has been
2410 // completed by an attempt to flush it. Future calls to |add_message| and
2411 // |add_change_cipher_spec| will start a new flight.
2412 bool outgoing_messages_complete : 1;
2413
2414 // flight_has_reply is true if the current outgoing flight is complete and has
2415 // processed at least one message. This is used to detect whether we or the
2416 // peer sent the final flight.
2417 bool flight_has_reply : 1;
2418
2419 uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0};
2420 size_t cookie_len = 0;
2421
2422 // The current data and handshake epoch. This is initially undefined, and
2423 // starts at zero once the initial handshake is completed.
2424 uint16_t r_epoch = 0;
2425 uint16_t w_epoch = 0;
2426
2427 // records being received in the current epoch
2428 DTLS1_BITMAP bitmap;
2429
2430 uint16_t handshake_write_seq = 0;
2431 uint16_t handshake_read_seq = 0;
2432
2433 // save last sequence number for retransmissions
2434 uint8_t last_write_sequence[8] = {0};
2435 UniquePtr<SSLAEADContext> last_aead_write_ctx;
2436
2437 // incoming_messages is a ring buffer of incoming handshake messages that have
2438 // yet to be processed. The front of the ring buffer is message number
2439 // |handshake_read_seq|, at position |handshake_read_seq| %
2440 // |SSL_MAX_HANDSHAKE_FLIGHT|.
2441 UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
2442
2443 // outgoing_messages is the queue of outgoing messages from the last handshake
2444 // flight.
2445 DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
2446 uint8_t outgoing_messages_len = 0;
2447
2448 // outgoing_written is the number of outgoing messages that have been
2449 // written.
2450 uint8_t outgoing_written = 0;
2451 // outgoing_offset is the number of bytes of the next outgoing message have
2452 // been written.
2453 uint32_t outgoing_offset = 0;
2454
2455 unsigned mtu = 0; // max DTLS packet size
2456
2457 // num_timeouts is the number of times the retransmit timer has fired since
2458 // the last time it was reset.
2459 unsigned num_timeouts = 0;
2460
2461 // Indicates when the last handshake msg or heartbeat sent will
2462 // timeout.
2463 struct OPENSSL_timeval next_timeout = {0, 0};
2464
2465 // timeout_duration_ms is the timeout duration in milliseconds.
2466 unsigned timeout_duration_ms = 0;
2467};
2468
2469// SSL_CONFIG contains configuration bits that can be shed after the handshake
2470// completes. Objects of this type are not shared; they are unique to a
2471// particular |SSL|.
2472//
2473// See SSL_shed_handshake_config() for more about the conditions under which
2474// configuration can be shed.
2475struct SSL_CONFIG {
2476 static constexpr bool kAllowUniquePtr = true;
2477
2478 explicit SSL_CONFIG(SSL *ssl_arg);
2479 ~SSL_CONFIG();
2480
2481 // ssl is a non-owning pointer to the parent |SSL| object.
2482 SSL *const ssl = nullptr;
2483
2484 // conf_max_version is the maximum acceptable version configured by
2485 // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS
2486 // and is further constrained by |SSL_OP_NO_*|.
2487 uint16_t conf_max_version = 0;
2488
2489 // conf_min_version is the minimum acceptable version configured by
2490 // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS
2491 // and is further constrained by |SSL_OP_NO_*|.
2492 uint16_t conf_min_version = 0;
2493
2494 X509_VERIFY_PARAM *param = nullptr;
2495
2496 // crypto
2497 UniquePtr<SSLCipherPreferenceList> cipher_list;
2498
2499 // This is used to hold the local certificate used (i.e. the server
2500 // certificate for a server or the client certificate for a client).
2501 UniquePtr<CERT> cert;
2502
2503 int (*verify_callback)(int ok,
2504 X509_STORE_CTX *ctx) =
2505 nullptr; // fail if callback returns 0
2506
2507 enum ssl_verify_result_t (*custom_verify_callback)(
2508 SSL *ssl, uint8_t *out_alert) = nullptr;
2509 // Server-only: psk_identity_hint is the identity hint to send in
2510 // PSK-based key exchanges.
2511 UniquePtr<char> psk_identity_hint;
2512
2513 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
2514 unsigned max_identity_len, uint8_t *psk,
2515 unsigned max_psk_len) = nullptr;
2516 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
2517 unsigned max_psk_len) = nullptr;
2518
2519 // for server side, keep the list of CA_dn we can use
2520 UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
2521
2522 // cached_x509_client_CA is a cache of parsed versions of the elements of
2523 // |client_CA|.
2524 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
2525
2526 Array<uint16_t> supported_group_list; // our list
2527
2528 // The client's Channel ID private key.
2529 UniquePtr<EVP_PKEY> channel_id_private;
2530
2531 // For a client, this contains the list of supported protocols in wire
2532 // format.
2533 Array<uint8_t> alpn_client_proto_list;
2534
2535 // Contains a list of supported Token Binding key parameters.
2536 Array<uint8_t> token_binding_params;
2537
2538 // Contains the QUIC transport params that this endpoint will send.
2539 Array<uint8_t> quic_transport_params;
2540
2541 // verify_sigalgs, if not empty, is the set of signature algorithms
2542 // accepted from the peer in decreasing order of preference.
2543 Array<uint16_t> verify_sigalgs;
2544
2545 // srtp_profiles is the list of configured SRTP protection profiles for
2546 // DTLS-SRTP.
2547 UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
2548
2549 // verify_mode is a bitmask of |SSL_VERIFY_*| values.
2550 uint8_t verify_mode = SSL_VERIFY_NONE;
2551
2552 // Enable signed certificate time stamps. Currently client only.
2553 bool signed_cert_timestamps_enabled : 1;
2554
2555 // ocsp_stapling_enabled is only used by client connections and indicates
2556 // whether OCSP stapling will be requested.
2557 bool ocsp_stapling_enabled : 1;
2558
2559 // channel_id_enabled is copied from the |SSL_CTX|. For a server, means that
2560 // we'll accept Channel IDs from clients. For a client, means that we'll
2561 // advertise support.
2562 bool channel_id_enabled : 1;
2563
2564 // If enforce_rsa_key_usage is true, the handshake will fail if the
2565 // keyUsage extension is present and incompatible with the TLS usage.
2566 // This field is not read until after certificate verification.
2567 bool enforce_rsa_key_usage : 1;
2568
2569 // retain_only_sha256_of_client_certs is true if we should compute the SHA256
2570 // hash of the peer's certificate and then discard it to save memory and
2571 // session space. Only effective on the server side.
2572 bool retain_only_sha256_of_client_certs : 1;
2573
2574 // handoff indicates that a server should stop after receiving the
2575 // ClientHello and pause the handshake in such a way that |SSL_get_error|
2576 // returns |SSL_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
2577 // element of the same name and may be cleared if the handoff is declined.
2578 bool handoff : 1;
2579
2580 // shed_handshake_config indicates that the handshake config (this object!)
2581 // should be freed after the handshake completes.
2582 bool shed_handshake_config : 1;
2583
2584 // ignore_tls13_downgrade is whether the connection should continue when the
2585 // server random signals a downgrade.
2586 bool ignore_tls13_downgrade : 1;
2587
2588 // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a
2589 // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806.
2590 bool jdk11_workaround : 1;
2591};
2592
2593// From RFC 8446, used in determining PSK modes.
2594#define SSL_PSK_DHE_KE 0x1
2595
2596// kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
2597// data that will be accepted. This value should be slightly below
2598// kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
2599static const size_t kMaxEarlyDataAccepted = 14336;
2600
2601UniquePtr<CERT> ssl_cert_dup(CERT *cert);
2602void ssl_cert_clear_certs(CERT *cert);
2603bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
2604bool ssl_is_key_type_supported(int key_type);
2605// ssl_compare_public_and_private_key returns true if |pubkey| is the public
2606// counterpart to |privkey|. Otherwise it returns false and pushes a helpful
2607// message on the error queue.
2608bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
2609 const EVP_PKEY *privkey);
2610bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey);
2611int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server);
2612int ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, const SSL_SESSION *session);
2613int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
2614
2615// ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
2616// error.
2617UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
2618
2619// ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table
2620// keyed on session IDs.
2621uint32_t ssl_hash_session_id(Span<const uint8_t> session_id);
2622
2623// SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
2624// the parsed data.
2625OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse(
2626 CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool);
2627
2628// ssl_session_serialize writes |in| to |cbb| as if it were serialising a
2629// session for Session-ID resumption. It returns one on success and zero on
2630// error.
2631OPENSSL_EXPORT int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
2632
2633// ssl_session_is_context_valid returns one if |session|'s session ID context
2634// matches the one set on |hs| and zero otherwise.
2635int ssl_session_is_context_valid(const SSL_HANDSHAKE *hs,
2636 const SSL_SESSION *session);
2637
2638// ssl_session_is_time_valid returns one if |session| is still valid and zero if
2639// it has expired.
2640int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
2641
2642// ssl_session_is_resumable returns one if |session| is resumable for |hs| and
2643// zero otherwise.
2644int ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
2645 const SSL_SESSION *session);
2646
2647// ssl_session_protocol_version returns the protocol version associated with
2648// |session|. Note that despite the name, this is not the same as
2649// |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
2650uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
2651
2652// ssl_session_get_digest returns the digest used in |session|.
2653const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
2654
2655void ssl_set_session(SSL *ssl, SSL_SESSION *session);
2656
2657// ssl_get_prev_session looks up the previous session based on |client_hello|.
2658// On success, it sets |*out_session| to the session or nullptr if none was
2659// found. If the session could not be looked up synchronously, it returns
2660// |ssl_hs_pending_session| and should be called again. If a ticket could not be
2661// decrypted immediately it returns |ssl_hs_pending_ticket| and should also
2662// be called again. Otherwise, it returns |ssl_hs_error|.
2663enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs,
2664 UniquePtr<SSL_SESSION> *out_session,
2665 bool *out_tickets_supported,
2666 bool *out_renew_ticket,
2667 const SSL_CLIENT_HELLO *client_hello);
2668
2669// The following flags determine which parts of the session are duplicated.
2670#define SSL_SESSION_DUP_AUTH_ONLY 0x0
2671#define SSL_SESSION_INCLUDE_TICKET 0x1
2672#define SSL_SESSION_INCLUDE_NONAUTH 0x2
2673#define SSL_SESSION_DUP_ALL \
2674 (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
2675
2676// SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
2677// fields in |session| or nullptr on error. The new session is non-resumable and
2678// must be explicitly marked resumable once it has been filled in.
2679OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
2680 int dup_flags);
2681
2682// ssl_session_rebase_time updates |session|'s start time to the current time,
2683// adjusting the timeout so the expiration time is unchanged.
2684void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
2685
2686// ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
2687// |session|'s timeout to |timeout| (measured from the current time). The
2688// renewal is clamped to the session's auth_timeout.
2689void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
2690 uint32_t timeout);
2691
2692void ssl_update_cache(SSL_HANDSHAKE *hs, int mode);
2693
2694void ssl_send_alert(SSL *ssl, int level, int desc);
2695int ssl_send_alert_impl(SSL *ssl, int level, int desc);
2696bool ssl3_get_message(const SSL *ssl, SSLMessage *out);
2697ssl_open_record_t ssl3_open_handshake(SSL *ssl, size_t *out_consumed,
2698 uint8_t *out_alert, Span<uint8_t> in);
2699void ssl3_next_message(SSL *ssl);
2700
2701int ssl3_dispatch_alert(SSL *ssl);
2702ssl_open_record_t ssl3_open_app_data(SSL *ssl, Span<uint8_t> *out,
2703 size_t *out_consumed, uint8_t *out_alert,
2704 Span<uint8_t> in);
2705ssl_open_record_t ssl3_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2706 uint8_t *out_alert,
2707 Span<uint8_t> in);
2708int ssl3_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
2709 int len);
2710
2711bool ssl3_new(SSL *ssl);
2712void ssl3_free(SSL *ssl);
2713
2714bool ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2715bool ssl3_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
2716bool ssl3_add_message(SSL *ssl, Array<uint8_t> msg);
2717bool ssl3_add_change_cipher_spec(SSL *ssl);
2718int ssl3_flush_flight(SSL *ssl);
2719
2720bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2721bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
2722bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
2723bool dtls1_add_change_cipher_spec(SSL *ssl);
2724int dtls1_flush_flight(SSL *ssl);
2725
2726// ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
2727// the pending flight. It returns true on success and false on error.
2728bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
2729
2730// ssl_hash_message incorporates |msg| into the handshake hash. It returns true
2731// on success and false on allocation failure.
2732bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
2733
2734ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
2735 size_t *out_consumed, uint8_t *out_alert,
2736 Span<uint8_t> in);
2737ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2738 uint8_t *out_alert,
2739 Span<uint8_t> in);
2740
2741int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
2742 const uint8_t *buf, int len);
2743
2744// dtls1_write_record sends a record. It returns one on success and <= 0 on
2745// error.
2746int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len,
2747 enum dtls1_use_epoch_t use_epoch);
2748
2749int dtls1_retransmit_outgoing_messages(SSL *ssl);
2750bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
2751 CBS *out_body);
2752bool dtls1_check_timeout_num(SSL *ssl);
2753
2754void dtls1_start_timer(SSL *ssl);
2755void dtls1_stop_timer(SSL *ssl);
2756bool dtls1_is_timer_expired(SSL *ssl);
2757unsigned int dtls1_min_mtu(void);
2758
2759bool dtls1_new(SSL *ssl);
2760void dtls1_free(SSL *ssl);
2761
2762bool dtls1_get_message(const SSL *ssl, SSLMessage *out);
2763ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
2764 uint8_t *out_alert, Span<uint8_t> in);
2765void dtls1_next_message(SSL *ssl);
2766int dtls1_dispatch_alert(SSL *ssl);
2767
2768// tls1_configure_aead configures either the read or write direction AEAD (as
2769// determined by |direction|) using the keys generated by the TLS KDF. The
2770// |key_block_cache| argument is used to store the generated key block, if
2771// empty. Otherwise it's assumed that the key block is already contained within
2772// it. Returns one on success or zero on error.
2773int tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
2774 Array<uint8_t> *key_block_cache,
2775 const SSL_CIPHER *cipher,
2776 Span<const uint8_t> iv_override);
2777
2778int tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction);
2779int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
2780 Span<const uint8_t> premaster);
2781
2782// tls1_get_grouplist returns the locally-configured group preference list.
2783Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl);
2784
2785// tls1_check_group_id returns whether |group_id| is consistent with locally-
2786// configured group preferences.
2787bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id);
2788
2789// tls1_get_shared_group sets |*out_group_id| to the first preferred shared
2790// group between client and server preferences and returns true. If none may be
2791// found, it returns false.
2792bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
2793
2794// tls1_set_curves converts the array of NIDs in |curves| into a newly allocated
2795// array of TLS group IDs. On success, the function returns true and writes the
2796// array to |*out_group_ids|. Otherwise, it returns false.
2797bool tls1_set_curves(Array<uint16_t> *out_group_ids, Span<const int> curves);
2798
2799// tls1_set_curves_list converts the string of curves pointed to by |curves|
2800// into a newly allocated array of TLS group IDs. On success, the function
2801// returns true and writes the array to |*out_group_ids|. Otherwise, it returns
2802// false.
2803bool tls1_set_curves_list(Array<uint16_t> *out_group_ids, const char *curves);
2804
2805// ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It returns
2806// true on success and false on failure. The |header_len| argument is the length
2807// of the ClientHello written so far and is used to compute the padding length.
2808// (It does not include the record header.)
2809bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len);
2810
2811bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
2812bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
2813 const SSL_CLIENT_HELLO *client_hello);
2814bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs);
2815
2816#define tlsext_tick_md EVP_sha256
2817
2818// ssl_process_ticket processes a session ticket from the client. It returns
2819// one of:
2820// |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
2821// |*out_renew_ticket| is set to whether the ticket should be renewed.
2822// |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
2823// fresh ticket should be sent, but the given ticket cannot be used.
2824// |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
2825// Retry later.
2826// |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
2827enum ssl_ticket_aead_result_t ssl_process_ticket(
2828 SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session,
2829 bool *out_renew_ticket, Span<const uint8_t> ticket,
2830 Span<const uint8_t> session_id);
2831
2832// tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
2833// the signature. If the key is valid, it saves the Channel ID and returns true.
2834// Otherwise, it returns false.
2835bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
2836
2837// tls1_write_channel_id generates a Channel ID message and puts the output in
2838// |cbb|. |ssl->channel_id_private| must already be set before calling. This
2839// function returns true on success and false on error.
2840bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
2841
2842// tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
2843// it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
2844// true on success and false on failure.
2845bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
2846
2847// tls1_record_handshake_hashes_for_channel_id records the current handshake
2848// hashes in |hs->new_session| so that Channel ID resumptions can sign that
2849// data.
2850bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
2851
2852// ssl_do_channel_id_callback checks runs |hs->ssl->ctx->channel_id_cb| if
2853// necessary. It returns true on success and false on fatal error. Note that, on
2854// success, |hs->ssl->channel_id_private| may be unset, in which case the
2855// operation should be retried later.
2856bool ssl_do_channel_id_callback(SSL_HANDSHAKE *hs);
2857
2858// ssl_can_write returns whether |ssl| is allowed to write.
2859bool ssl_can_write(const SSL *ssl);
2860
2861// ssl_can_read returns wheter |ssl| is allowed to read.
2862bool ssl_can_read(const SSL *ssl);
2863
2864void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
2865void ssl_ctx_get_current_time(const SSL_CTX *ctx,
2866 struct OPENSSL_timeval *out_clock);
2867
2868// ssl_reset_error_state resets state for |SSL_get_error|.
2869void ssl_reset_error_state(SSL *ssl);
2870
2871// ssl_set_read_error sets |ssl|'s read half into an error state, saving the
2872// current state of the error queue.
2873void ssl_set_read_error(SSL *ssl);
2874
2875BSSL_NAMESPACE_END
2876
2877
2878// Opaque C types.
2879//
2880// The following types are exported to C code as public typedefs, so they must
2881// be defined outside of the namespace.
2882
2883// ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
2884// structure to support the legacy version-locked methods.
2885struct ssl_method_st {
2886 // version, if non-zero, is the only protocol version acceptable to an
2887 // SSL_CTX initialized from this method.
2888 uint16_t version;
2889 // method is the underlying SSL_PROTOCOL_METHOD that initializes the
2890 // SSL_CTX.
2891 const bssl::SSL_PROTOCOL_METHOD *method;
2892 // x509_method contains pointers to functions that might deal with |X509|
2893 // compatibility, or might be a no-op, depending on the application.
2894 const bssl::SSL_X509_METHOD *x509_method;
2895};
2896
2897struct ssl_ctx_st {
2898 explicit ssl_ctx_st(const SSL_METHOD *ssl_method);
2899 ssl_ctx_st(const ssl_ctx_st &) = delete;
2900 ssl_ctx_st &operator=(const ssl_ctx_st &) = delete;
2901
2902 const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
2903 const bssl::SSL_X509_METHOD *x509_method = nullptr;
2904
2905 // lock is used to protect various operations on this object.
2906 CRYPTO_MUTEX lock;
2907
2908 // conf_max_version is the maximum acceptable protocol version configured by
2909 // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
2910 // and is further constrainted by |SSL_OP_NO_*|.
2911 uint16_t conf_max_version = 0;
2912
2913 // conf_min_version is the minimum acceptable protocol version configured by
2914 // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
2915 // and is further constrainted by |SSL_OP_NO_*|.
2916 uint16_t conf_min_version = 0;
2917
2918 // quic_method is the method table corresponding to the QUIC hooks.
2919 const SSL_QUIC_METHOD *quic_method = nullptr;
2920
2921 bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list;
2922
2923 X509_STORE *cert_store = nullptr;
2924 LHASH_OF(SSL_SESSION) *sessions = nullptr;
2925 // Most session-ids that will be cached, default is
2926 // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
2927 unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2928 SSL_SESSION *session_cache_head = nullptr;
2929 SSL_SESSION *session_cache_tail = nullptr;
2930
2931 // handshakes_since_cache_flush is the number of successful handshakes since
2932 // the last cache flush.
2933 int handshakes_since_cache_flush = 0;
2934
2935 // This can have one of 2 values, ored together,
2936 // SSL_SESS_CACHE_CLIENT,
2937 // SSL_SESS_CACHE_SERVER,
2938 // Default is SSL_SESSION_CACHE_SERVER, which means only
2939 // SSL_accept which cache SSL_SESSIONS.
2940 int session_cache_mode = SSL_SESS_CACHE_SERVER;
2941
2942 // session_timeout is the default lifetime for new sessions in TLS 1.2 and
2943 // earlier, in seconds.
2944 uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
2945
2946 // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
2947 // 1.3, in seconds.
2948 uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT;
2949
2950 // If this callback is not null, it will be called each time a session id is
2951 // added to the cache. If this function returns 1, it means that the
2952 // callback will do a SSL_SESSION_free() when it has finished using it.
2953 // Otherwise, on 0, it means the callback has finished with it. If
2954 // remove_session_cb is not null, it will be called when a session-id is
2955 // removed from the cache. After the call, OpenSSL will SSL_SESSION_free()
2956 // it.
2957 int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr;
2958 void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr;
2959 SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
2960 int *copy) = nullptr;
2961
2962 CRYPTO_refcount_t references = 1;
2963
2964 // if defined, these override the X509_verify_cert() calls
2965 int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr;
2966 void *app_verify_arg = nullptr;
2967
2968 ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
2969 uint8_t *out_alert) = nullptr;
2970
2971 // Default password callback.
2972 pem_password_cb *default_passwd_callback = nullptr;
2973
2974 // Default password callback user data.
2975 void *default_passwd_callback_userdata = nullptr;
2976
2977 // get client cert callback
2978 int (*client_cert_cb)(SSL *ssl, X509 **out_x509,
2979 EVP_PKEY **out_pkey) = nullptr;
2980
2981 // get channel id callback
2982 void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey) = nullptr;
2983
2984 CRYPTO_EX_DATA ex_data;
2985
2986 // Default values used when no per-SSL value is defined follow
2987
2988 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
2989
2990 // what we put in client cert requests
2991 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
2992
2993 // cached_x509_client_CA is a cache of parsed versions of the elements of
2994 // |client_CA|.
2995 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
2996
2997
2998 // Default values to use in SSL structures follow (these are copied by
2999 // SSL_new)
3000
3001 uint32_t options = 0;
3002 // Disable the auto-chaining feature by default. wpa_supplicant relies on this
3003 // feature, but require callers opt into it.
3004 uint32_t mode = SSL_MODE_NO_AUTO_CHAIN;
3005 uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3006
3007 bssl::UniquePtr<bssl::CERT> cert;
3008
3009 // callback that allows applications to peek at protocol messages
3010 void (*msg_callback)(int write_p, int version, int content_type,
3011 const void *buf, size_t len, SSL *ssl,
3012 void *arg) = nullptr;
3013 void *msg_callback_arg = nullptr;
3014
3015 int verify_mode = SSL_VERIFY_NONE;
3016 int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) =
3017 nullptr; // called 'verify_callback' in the SSL
3018
3019 X509_VERIFY_PARAM *param = nullptr;
3020
3021 // select_certificate_cb is called before most ClientHello processing and
3022 // before the decision whether to resume a session is made. See
3023 // |ssl_select_cert_result_t| for details of the return values.
3024 ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) =
3025 nullptr;
3026
3027 // dos_protection_cb is called once the resumption decision for a ClientHello
3028 // has been made. It returns one to continue the handshake or zero to
3029 // abort.
3030 int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr;
3031
3032 // Controls whether to verify certificates when resuming connections. They
3033 // were already verified when the connection was first made, so the default is
3034 // false. For now, this is only respected on clients, not servers.
3035 bool reverify_on_resume = false;
3036
3037 // Maximum amount of data to send in one fragment. actual record size can be
3038 // more than this due to padding and MAC overheads.
3039 uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3040
3041 // TLS extensions servername callback
3042 int (*servername_callback)(SSL *, int *, void *) = nullptr;
3043 void *servername_arg = nullptr;
3044
3045 // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the
3046 // first handshake and |ticket_key_prev| may be NULL at any time.
3047 // Automatically generated ticket keys are rotated as needed at handshake
3048 // time. Hence, all access must be synchronized through |lock|.
3049 bssl::UniquePtr<bssl::TicketKey> ticket_key_current;
3050 bssl::UniquePtr<bssl::TicketKey> ticket_key_prev;
3051
3052 // Callback to support customisation of ticket key setting
3053 int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
3054 EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr;
3055
3056 // Server-only: psk_identity_hint is the default identity hint to send in
3057 // PSK-based key exchanges.
3058 bssl::UniquePtr<char> psk_identity_hint;
3059
3060 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3061 unsigned max_identity_len, uint8_t *psk,
3062 unsigned max_psk_len) = nullptr;
3063 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3064 unsigned max_psk_len) = nullptr;
3065
3066
3067 // Next protocol negotiation information
3068 // (for experimental NPN extension).
3069
3070 // For a server, this contains a callback function by which the set of
3071 // advertised protocols can be provided.
3072 int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
3073 unsigned *out_len, void *arg) = nullptr;
3074 void *next_protos_advertised_cb_arg = nullptr;
3075 // For a client, this contains a callback function that selects the
3076 // next protocol from the list provided by the server.
3077 int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
3078 const uint8_t *in, unsigned in_len,
3079 void *arg) = nullptr;
3080 void *next_proto_select_cb_arg = nullptr;
3081
3082 // ALPN information
3083 // (we are in the process of transitioning from NPN to ALPN.)
3084
3085 // For a server, this contains a callback function that allows the
3086 // server to select the protocol for the connection.
3087 // out: on successful return, this must point to the raw protocol
3088 // name (without the length prefix).
3089 // outlen: on successful return, this contains the length of |*out|.
3090 // in: points to the client's list of supported protocols in
3091 // wire-format.
3092 // inlen: the length of |in|.
3093 int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
3094 const uint8_t *in, unsigned in_len,
3095 void *arg) = nullptr;
3096 void *alpn_select_cb_arg = nullptr;
3097
3098 // For a client, this contains the list of supported protocols in wire
3099 // format.
3100 bssl::Array<uint8_t> alpn_client_proto_list;
3101
3102 // SRTP profiles we are willing to do from RFC 5764
3103 bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3104
3105 // Defined compression algorithms for certificates.
3106 bssl::UniquePtr<STACK_OF(CertCompressionAlg)> cert_compression_algs;
3107
3108 // Supported group values inherited by SSL structure
3109 bssl::Array<uint16_t> supported_group_list;
3110
3111 // The client's Channel ID private key.
3112 bssl::UniquePtr<EVP_PKEY> channel_id_private;
3113
3114 // keylog_callback, if not NULL, is the key logging callback. See
3115 // |SSL_CTX_set_keylog_callback|.
3116 void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr;
3117
3118 // current_time_cb, if not NULL, is the function to use to get the current
3119 // time. It sets |*out_clock| to the current time. The |ssl| argument is
3120 // always NULL. See |SSL_CTX_set_current_time_cb|.
3121 void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr;
3122
3123 // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
3124 // memory.
3125 CRYPTO_BUFFER_POOL *pool = nullptr;
3126
3127 // ticket_aead_method contains function pointers for opening and sealing
3128 // session tickets.
3129 const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr;
3130
3131 // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL
3132 // compatibility.
3133 int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr;
3134 void *legacy_ocsp_callback_arg = nullptr;
3135
3136 // verify_sigalgs, if not empty, is the set of signature algorithms
3137 // accepted from the peer in decreasing order of preference.
3138 bssl::Array<uint16_t> verify_sigalgs;
3139
3140 // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3141 // hash of the peer's certificate and then discard it to save memory and
3142 // session space. Only effective on the server side.
3143 bool retain_only_sha256_of_client_certs : 1;
3144
3145 // quiet_shutdown is true if the connection should not send a close_notify on
3146 // shutdown.
3147 bool quiet_shutdown : 1;
3148
3149 // ocsp_stapling_enabled is only used by client connections and indicates
3150 // whether OCSP stapling will be requested.
3151 bool ocsp_stapling_enabled : 1;
3152
3153 // If true, a client will request certificate timestamps.
3154 bool signed_cert_timestamps_enabled : 1;
3155
3156 // channel_id_enabled is whether Channel ID is enabled. For a server, means
3157 // that we'll accept Channel IDs from clients. For a client, means that we'll
3158 // advertise support.
3159 bool channel_id_enabled : 1;
3160
3161 // grease_enabled is whether draft-davidben-tls-grease-01 is enabled.
3162 bool grease_enabled : 1;
3163
3164 // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
3165 // protocols from the peer.
3166 bool allow_unknown_alpn_protos : 1;
3167
3168 // ed25519_enabled is whether Ed25519 is advertised in the handshake.
3169 bool ed25519_enabled : 1;
3170
3171 // rsa_pss_rsae_certs_enabled is whether rsa_pss_rsae_* are supported by the
3172 // certificate verifier.
3173 bool rsa_pss_rsae_certs_enabled : 1;
3174
3175 // false_start_allowed_without_alpn is whether False Start (if
3176 // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
3177 bool false_start_allowed_without_alpn : 1;
3178
3179 // ignore_tls13_downgrade is whether a connection should continue when the
3180 // server random signals a downgrade.
3181 bool ignore_tls13_downgrade:1;
3182
3183 // handoff indicates that a server should stop after receiving the
3184 // ClientHello and pause the handshake in such a way that |SSL_get_error|
3185 // returns |SSL_HANDOFF|.
3186 bool handoff : 1;
3187
3188 // If enable_early_data is true, early data can be sent and accepted.
3189 bool enable_early_data : 1;
3190
3191 // pq_experiment_signal indicates that an empty extension should be sent
3192 // (for clients) or echoed (for servers) to indicate participation in an
3193 // experiment of post-quantum key exchanges.
3194 bool pq_experiment_signal : 1;
3195
3196 private:
3197 ~ssl_ctx_st();
3198 friend void SSL_CTX_free(SSL_CTX *);
3199};
3200
3201struct ssl_st {
3202 explicit ssl_st(SSL_CTX *ctx_arg);
3203 ssl_st(const ssl_st &) = delete;
3204 ssl_st &operator=(const ssl_st &) = delete;
3205 ~ssl_st();
3206
3207 // method is the method table corresponding to the current protocol (DTLS or
3208 // TLS).
3209 const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3210
3211 // config is a container for handshake configuration. Accesses to this field
3212 // should check for nullptr, since configuration may be shed after the
3213 // handshake completes. (If you have the |SSL_HANDSHAKE| object at hand, use
3214 // that instead, and skip the null check.)
3215 bssl::UniquePtr<bssl::SSL_CONFIG> config;
3216
3217 // version is the protocol version.
3218 uint16_t version = 0;
3219
3220 uint16_t max_send_fragment = 0;
3221
3222 // There are 2 BIO's even though they are normally both the same. This is so
3223 // data can be read and written to different handlers
3224
3225 bssl::UniquePtr<BIO> rbio; // used by SSL_read
3226 bssl::UniquePtr<BIO> wbio; // used by SSL_write
3227
3228 // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
3229 // Otherwise, it returns a value corresponding to what operation is needed to
3230 // progress.
3231 bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr;
3232
3233 bssl::SSL3_STATE *s3 = nullptr; // TLS variables
3234 bssl::DTLS1_STATE *d1 = nullptr; // DTLS variables
3235
3236 // callback that allows applications to peek at protocol messages
3237 void (*msg_callback)(int write_p, int version, int content_type,
3238 const void *buf, size_t len, SSL *ssl,
3239 void *arg) = nullptr;
3240 void *msg_callback_arg = nullptr;
3241
3242 // session info
3243
3244 // initial_timeout_duration_ms is the default DTLS timeout duration in
3245 // milliseconds. It's used to initialize the timer any time it's restarted.
3246 //
3247 // RFC 6347 states that implementations SHOULD use an initial timer value of 1
3248 // second.
3249 unsigned initial_timeout_duration_ms = 1000;
3250
3251 // session is the configured session to be offered by the client. This session
3252 // is immutable.
3253 bssl::UniquePtr<SSL_SESSION> session;
3254
3255 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3256
3257 bssl::UniquePtr<SSL_CTX> ctx;
3258
3259 // session_ctx is the |SSL_CTX| used for the session cache and related
3260 // settings.
3261 bssl::UniquePtr<SSL_CTX> session_ctx;
3262
3263 // extra application data
3264 CRYPTO_EX_DATA ex_data;
3265
3266 uint32_t options = 0; // protocol behaviour
3267 uint32_t mode = 0; // API behaviour
3268 uint32_t max_cert_list = 0;
3269 bssl::UniquePtr<char> hostname;
3270
3271 // quic_method is the method table corresponding to the QUIC hooks.
3272 const SSL_QUIC_METHOD *quic_method = nullptr;
3273
3274 // renegotiate_mode controls how peer renegotiation attempts are handled.
3275 ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never;
3276
3277 // server is true iff the this SSL* is the server half. Note: before the SSL*
3278 // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
3279 // the side is not determined. In this state, server is always false.
3280 bool server : 1;
3281
3282 // quiet_shutdown is true if the connection should not send a close_notify on
3283 // shutdown.
3284 bool quiet_shutdown : 1;
3285
3286 // If enable_early_data is true, early data can be sent and accepted.
3287 bool enable_early_data : 1;
3288};
3289
3290struct ssl_session_st {
3291 explicit ssl_session_st(const bssl::SSL_X509_METHOD *method);
3292 ssl_session_st(const ssl_session_st &) = delete;
3293 ssl_session_st &operator=(const ssl_session_st &) = delete;
3294
3295 CRYPTO_refcount_t references = 1;
3296
3297 // ssl_version is the (D)TLS version that established the session.
3298 uint16_t ssl_version = 0;
3299
3300 // group_id is the ID of the ECDH group used to establish this session or zero
3301 // if not applicable or unknown.
3302 uint16_t group_id = 0;
3303
3304 // peer_signature_algorithm is the signature algorithm used to authenticate
3305 // the peer, or zero if not applicable or unknown.
3306 uint16_t peer_signature_algorithm = 0;
3307
3308 // master_key, in TLS 1.2 and below, is the master secret associated with the
3309 // session. In TLS 1.3 and up, it is the resumption secret.
3310 int master_key_length = 0;
3311 uint8_t master_key[SSL_MAX_MASTER_KEY_LENGTH] = {0};
3312
3313 // session_id - valid?
3314 unsigned session_id_length = 0;
3315 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
3316 // this is used to determine whether the session is being reused in
3317 // the appropriate context. It is up to the application to set this,
3318 // via SSL_new
3319 uint8_t sid_ctx_length = 0;
3320 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
3321
3322 bssl::UniquePtr<char> psk_identity;
3323
3324 // certs contains the certificate chain from the peer, starting with the leaf
3325 // certificate.
3326 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs;
3327
3328 const bssl::SSL_X509_METHOD *x509_method = nullptr;
3329
3330 // x509_peer is the peer's certificate.
3331 X509 *x509_peer = nullptr;
3332
3333 // x509_chain is the certificate chain sent by the peer. NOTE: for historical
3334 // reasons, when a client (so the peer is a server), the chain includes
3335 // |peer|, but when a server it does not.
3336 STACK_OF(X509) *x509_chain = nullptr;
3337
3338 // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that
3339 // omits the leaf certificate. This exists because OpenSSL, historically,
3340 // didn't include the leaf certificate in the chain for a server, but did for
3341 // a client. The |x509_chain| always includes it and, if an API call requires
3342 // a chain without, it is stored here.
3343 STACK_OF(X509) *x509_chain_without_leaf = nullptr;
3344
3345 // verify_result is the result of certificate verification in the case of
3346 // non-fatal certificate errors.
3347 long verify_result = X509_V_ERR_INVALID_CALL;
3348
3349 // timeout is the lifetime of the session in seconds, measured from |time|.
3350 // This is renewable up to |auth_timeout|.
3351 uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3352
3353 // auth_timeout is the non-renewable lifetime of the session in seconds,
3354 // measured from |time|.
3355 uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3356
3357 // time is the time the session was issued, measured in seconds from the UNIX
3358 // epoch.
3359 uint64_t time = 0;
3360
3361 const SSL_CIPHER *cipher = nullptr;
3362
3363 CRYPTO_EX_DATA ex_data; // application specific data
3364
3365 // These are used to make removal of session-ids more efficient and to
3366 // implement a maximum cache size.
3367 SSL_SESSION *prev = nullptr, *next = nullptr;
3368
3369 bssl::Array<uint8_t> ticket;
3370
3371 bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
3372
3373 // The OCSP response that came with the session.
3374 bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
3375
3376 // peer_sha256 contains the SHA-256 hash of the peer's certificate if
3377 // |peer_sha256_valid| is true.
3378 uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0};
3379
3380 // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or
3381 // SHA-2, depending on TLS version) for the original, full handshake that
3382 // created a session. This is used by Channel IDs during resumption.
3383 uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0};
3384 uint8_t original_handshake_hash_len = 0;
3385
3386 uint32_t ticket_lifetime_hint = 0; // Session lifetime hint in seconds
3387
3388 uint32_t ticket_age_add = 0;
3389
3390 // ticket_max_early_data is the maximum amount of data allowed to be sent as
3391 // early data. If zero, 0-RTT is disallowed.
3392 uint32_t ticket_max_early_data = 0;
3393
3394 // early_alpn is the ALPN protocol from the initial handshake. This is only
3395 // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT
3396 // resumptions.
3397 bssl::Array<uint8_t> early_alpn;
3398
3399 // extended_master_secret is whether the master secret in this session was
3400 // generated using EMS and thus isn't vulnerable to the Triple Handshake
3401 // attack.
3402 bool extended_master_secret : 1;
3403
3404 // peer_sha256_valid is whether |peer_sha256| is valid.
3405 bool peer_sha256_valid : 1; // Non-zero if peer_sha256 is valid
3406
3407 // not_resumable is used to indicate that session resumption is disallowed.
3408 bool not_resumable : 1;
3409
3410 // ticket_age_add_valid is whether |ticket_age_add| is valid.
3411 bool ticket_age_add_valid : 1;
3412
3413 // is_server is whether this session was created by a server.
3414 bool is_server : 1;
3415
3416 private:
3417 ~ssl_session_st();
3418 friend void SSL_SESSION_free(SSL_SESSION *);
3419};
3420
3421
3422#endif // OPENSSL_HEADER_SSL_INTERNAL_H
3423