1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] |
56 | */ |
57 | /* ==================================================================== |
58 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. |
59 | * |
60 | * Redistribution and use in source and binary forms, with or without |
61 | * modification, are permitted provided that the following conditions |
62 | * are met: |
63 | * |
64 | * 1. Redistributions of source code must retain the above copyright |
65 | * notice, this list of conditions and the following disclaimer. |
66 | * |
67 | * 2. Redistributions in binary form must reproduce the above copyright |
68 | * notice, this list of conditions and the following disclaimer in |
69 | * the documentation and/or other materials provided with the |
70 | * distribution. |
71 | * |
72 | * 3. All advertising materials mentioning features or use of this |
73 | * software must display the following acknowledgment: |
74 | * "This product includes software developed by the OpenSSL Project |
75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
76 | * |
77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
78 | * endorse or promote products derived from this software without |
79 | * prior written permission. For written permission, please contact |
80 | * openssl-core@openssl.org. |
81 | * |
82 | * 5. Products derived from this software may not be called "OpenSSL" |
83 | * nor may "OpenSSL" appear in their names without prior written |
84 | * permission of the OpenSSL Project. |
85 | * |
86 | * 6. Redistributions of any form whatsoever must retain the following |
87 | * acknowledgment: |
88 | * "This product includes software developed by the OpenSSL Project |
89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
90 | * |
91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
103 | * ==================================================================== |
104 | * |
105 | * This product includes cryptographic software written by Eric Young |
106 | * (eay@cryptsoft.com). This product includes software written by Tim |
107 | * Hudson (tjh@cryptsoft.com). */ |
108 | |
109 | #include <openssl/ssl.h> |
110 | |
111 | #include <assert.h> |
112 | #include <string.h> |
113 | |
114 | #include <openssl/bytestring.h> |
115 | #include <openssl/err.h> |
116 | #include <openssl/mem.h> |
117 | |
118 | #include "internal.h" |
119 | #include "../crypto/internal.h" |
120 | |
121 | |
122 | BSSL_NAMESPACE_BEGIN |
123 | |
124 | // kMaxEmptyRecords is the number of consecutive, empty records that will be |
125 | // processed. Without this limit an attacker could send empty records at a |
126 | // faster rate than we can process and cause record processing to loop |
127 | // forever. |
128 | static const uint8_t kMaxEmptyRecords = 32; |
129 | |
130 | // kMaxEarlyDataSkipped is the maximum number of rejected early data bytes that |
131 | // will be skipped. Without this limit an attacker could send records at a |
132 | // faster rate than we can process and cause trial decryption to loop forever. |
133 | // This value should be slightly above kMaxEarlyDataAccepted, which is measured |
134 | // in plaintext. |
135 | static const size_t kMaxEarlyDataSkipped = 16384; |
136 | |
137 | // kMaxWarningAlerts is the number of consecutive warning alerts that will be |
138 | // processed. |
139 | static const uint8_t kMaxWarningAlerts = 4; |
140 | |
141 | // ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher |
142 | // state needs record-splitting and zero otherwise. |
143 | static bool ssl_needs_record_splitting(const SSL *ssl) { |
144 | #if !defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
145 | return !ssl->s3->aead_write_ctx->is_null_cipher() && |
146 | ssl->s3->aead_write_ctx->ProtocolVersion() < TLS1_1_VERSION && |
147 | (ssl->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0 && |
148 | SSL_CIPHER_is_block_cipher(ssl->s3->aead_write_ctx->cipher()); |
149 | #else |
150 | return false; |
151 | #endif |
152 | } |
153 | |
154 | bool ssl_record_sequence_update(uint8_t *seq, size_t seq_len) { |
155 | for (size_t i = seq_len - 1; i < seq_len; i--) { |
156 | ++seq[i]; |
157 | if (seq[i] != 0) { |
158 | return true; |
159 | } |
160 | } |
161 | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
162 | return false; |
163 | } |
164 | |
165 | size_t ssl_record_prefix_len(const SSL *ssl) { |
166 | size_t ; |
167 | if (SSL_is_dtls(ssl)) { |
168 | header_len = DTLS1_RT_HEADER_LENGTH; |
169 | } else { |
170 | header_len = SSL3_RT_HEADER_LENGTH; |
171 | } |
172 | |
173 | return header_len + ssl->s3->aead_read_ctx->ExplicitNonceLen(); |
174 | } |
175 | |
176 | size_t ssl_seal_align_prefix_len(const SSL *ssl) { |
177 | if (SSL_is_dtls(ssl)) { |
178 | return DTLS1_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen(); |
179 | } |
180 | |
181 | size_t ret = |
182 | SSL3_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen(); |
183 | if (ssl_needs_record_splitting(ssl)) { |
184 | ret += SSL3_RT_HEADER_LENGTH; |
185 | ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher()); |
186 | } |
187 | return ret; |
188 | } |
189 | |
190 | static ssl_open_record_t skip_early_data(SSL *ssl, uint8_t *out_alert, |
191 | size_t consumed) { |
192 | ssl->s3->early_data_skipped += consumed; |
193 | if (ssl->s3->early_data_skipped < consumed) { |
194 | ssl->s3->early_data_skipped = kMaxEarlyDataSkipped + 1; |
195 | } |
196 | |
197 | if (ssl->s3->early_data_skipped > kMaxEarlyDataSkipped) { |
198 | OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MUCH_SKIPPED_EARLY_DATA); |
199 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
200 | return ssl_open_record_error; |
201 | } |
202 | |
203 | return ssl_open_record_discard; |
204 | } |
205 | |
206 | ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, |
207 | Span<uint8_t> *out, size_t *out_consumed, |
208 | uint8_t *out_alert, Span<uint8_t> in) { |
209 | *out_consumed = 0; |
210 | if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) { |
211 | return ssl_open_record_close_notify; |
212 | } |
213 | |
214 | // If there is an unprocessed handshake message or we are already buffering |
215 | // too much, stop before decrypting another handshake record. |
216 | if (!tls_can_accept_handshake_data(ssl, out_alert)) { |
217 | return ssl_open_record_error; |
218 | } |
219 | |
220 | CBS cbs = CBS(in); |
221 | |
222 | // Decode the record header. |
223 | uint8_t type; |
224 | uint16_t version, ciphertext_len; |
225 | if (!CBS_get_u8(&cbs, &type) || |
226 | !CBS_get_u16(&cbs, &version) || |
227 | !CBS_get_u16(&cbs, &ciphertext_len)) { |
228 | *out_consumed = SSL3_RT_HEADER_LENGTH; |
229 | return ssl_open_record_partial; |
230 | } |
231 | |
232 | bool version_ok; |
233 | if (ssl->s3->aead_read_ctx->is_null_cipher()) { |
234 | // Only check the first byte. Enforcing beyond that can prevent decoding |
235 | // version negotiation failure alerts. |
236 | version_ok = (version >> 8) == SSL3_VERSION_MAJOR; |
237 | } else { |
238 | version_ok = version == ssl->s3->aead_read_ctx->RecordVersion(); |
239 | } |
240 | |
241 | if (!version_ok) { |
242 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER); |
243 | *out_alert = SSL_AD_PROTOCOL_VERSION; |
244 | return ssl_open_record_error; |
245 | } |
246 | |
247 | // Check the ciphertext length. |
248 | if (ciphertext_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
249 | OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
250 | *out_alert = SSL_AD_RECORD_OVERFLOW; |
251 | return ssl_open_record_error; |
252 | } |
253 | |
254 | // Extract the body. |
255 | CBS body; |
256 | if (!CBS_get_bytes(&cbs, &body, ciphertext_len)) { |
257 | *out_consumed = SSL3_RT_HEADER_LENGTH + (size_t)ciphertext_len; |
258 | return ssl_open_record_partial; |
259 | } |
260 | |
261 | Span<const uint8_t> = in.subspan(0, SSL3_RT_HEADER_LENGTH); |
262 | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, header); |
263 | |
264 | *out_consumed = in.size() - CBS_len(&cbs); |
265 | |
266 | if (ssl->s3->have_version && |
267 | ssl_protocol_version(ssl) >= TLS1_3_VERSION && |
268 | SSL_in_init(ssl) && |
269 | type == SSL3_RT_CHANGE_CIPHER_SPEC && |
270 | ciphertext_len == 1 && |
271 | CBS_data(&body)[0] == 1) { |
272 | ssl->s3->empty_record_count++; |
273 | if (ssl->s3->empty_record_count > kMaxEmptyRecords) { |
274 | OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS); |
275 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
276 | return ssl_open_record_error; |
277 | } |
278 | return ssl_open_record_discard; |
279 | } |
280 | |
281 | // Skip early data received when expecting a second ClientHello if we rejected |
282 | // 0RTT. |
283 | if (ssl->s3->skip_early_data && |
284 | ssl->s3->aead_read_ctx->is_null_cipher() && |
285 | type == SSL3_RT_APPLICATION_DATA) { |
286 | return skip_early_data(ssl, out_alert, *out_consumed); |
287 | } |
288 | |
289 | // Decrypt the body in-place. |
290 | if (!ssl->s3->aead_read_ctx->Open( |
291 | out, type, version, ssl->s3->read_sequence, header, |
292 | MakeSpan(const_cast<uint8_t *>(CBS_data(&body)), CBS_len(&body)))) { |
293 | if (ssl->s3->skip_early_data && !ssl->s3->aead_read_ctx->is_null_cipher()) { |
294 | ERR_clear_error(); |
295 | return skip_early_data(ssl, out_alert, *out_consumed); |
296 | } |
297 | |
298 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
299 | *out_alert = SSL_AD_BAD_RECORD_MAC; |
300 | return ssl_open_record_error; |
301 | } |
302 | |
303 | ssl->s3->skip_early_data = false; |
304 | |
305 | if (!ssl_record_sequence_update(ssl->s3->read_sequence, 8)) { |
306 | *out_alert = SSL_AD_INTERNAL_ERROR; |
307 | return ssl_open_record_error; |
308 | } |
309 | |
310 | // TLS 1.3 hides the record type inside the encrypted data. |
311 | bool has_padding = |
312 | !ssl->s3->aead_read_ctx->is_null_cipher() && |
313 | ssl->s3->aead_read_ctx->ProtocolVersion() >= TLS1_3_VERSION; |
314 | |
315 | // If there is padding, the plaintext limit includes the padding, but includes |
316 | // extra room for the inner content type. |
317 | size_t plaintext_limit = |
318 | has_padding ? SSL3_RT_MAX_PLAIN_LENGTH + 1 : SSL3_RT_MAX_PLAIN_LENGTH; |
319 | if (out->size() > plaintext_limit) { |
320 | OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
321 | *out_alert = SSL_AD_RECORD_OVERFLOW; |
322 | return ssl_open_record_error; |
323 | } |
324 | |
325 | if (has_padding) { |
326 | // The outer record type is always application_data. |
327 | if (type != SSL3_RT_APPLICATION_DATA) { |
328 | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_OUTER_RECORD_TYPE); |
329 | *out_alert = SSL_AD_DECODE_ERROR; |
330 | return ssl_open_record_error; |
331 | } |
332 | |
333 | do { |
334 | if (out->empty()) { |
335 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
336 | *out_alert = SSL_AD_DECRYPT_ERROR; |
337 | return ssl_open_record_error; |
338 | } |
339 | type = out->back(); |
340 | *out = out->subspan(0, out->size() - 1); |
341 | } while (type == 0); |
342 | } |
343 | |
344 | // Limit the number of consecutive empty records. |
345 | if (out->empty()) { |
346 | ssl->s3->empty_record_count++; |
347 | if (ssl->s3->empty_record_count > kMaxEmptyRecords) { |
348 | OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS); |
349 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
350 | return ssl_open_record_error; |
351 | } |
352 | // Apart from the limit, empty records are returned up to the caller. This |
353 | // allows the caller to reject records of the wrong type. |
354 | } else { |
355 | ssl->s3->empty_record_count = 0; |
356 | } |
357 | |
358 | if (type == SSL3_RT_ALERT) { |
359 | return ssl_process_alert(ssl, out_alert, *out); |
360 | } |
361 | |
362 | // Handshake messages may not interleave with any other record type. |
363 | if (type != SSL3_RT_HANDSHAKE && |
364 | tls_has_unprocessed_handshake_data(ssl)) { |
365 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
366 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
367 | return ssl_open_record_error; |
368 | } |
369 | |
370 | ssl->s3->warning_alert_count = 0; |
371 | |
372 | *out_type = type; |
373 | return ssl_open_record_success; |
374 | } |
375 | |
376 | static bool do_seal_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out, |
377 | uint8_t *out_suffix, uint8_t type, const uint8_t *in, |
378 | const size_t in_len) { |
379 | SSLAEADContext *aead = ssl->s3->aead_write_ctx.get(); |
380 | uint8_t * = NULL; |
381 | size_t = 0; |
382 | if (!aead->is_null_cipher() && |
383 | aead->ProtocolVersion() >= TLS1_3_VERSION) { |
384 | // TLS 1.3 hides the actual record type inside the encrypted data. |
385 | extra_in = &type; |
386 | extra_in_len = 1; |
387 | } |
388 | |
389 | size_t suffix_len, ciphertext_len; |
390 | if (!aead->SuffixLen(&suffix_len, in_len, extra_in_len) || |
391 | !aead->CiphertextLen(&ciphertext_len, in_len, extra_in_len)) { |
392 | OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
393 | return false; |
394 | } |
395 | |
396 | assert(in == out || !buffers_alias(in, in_len, out, in_len)); |
397 | assert(!buffers_alias(in, in_len, out_prefix, ssl_record_prefix_len(ssl))); |
398 | assert(!buffers_alias(in, in_len, out_suffix, suffix_len)); |
399 | |
400 | if (extra_in_len) { |
401 | out_prefix[0] = SSL3_RT_APPLICATION_DATA; |
402 | } else { |
403 | out_prefix[0] = type; |
404 | } |
405 | |
406 | uint16_t record_version = aead->RecordVersion(); |
407 | |
408 | out_prefix[1] = record_version >> 8; |
409 | out_prefix[2] = record_version & 0xff; |
410 | out_prefix[3] = ciphertext_len >> 8; |
411 | out_prefix[4] = ciphertext_len & 0xff; |
412 | Span<const uint8_t> = MakeSpan(out_prefix, SSL3_RT_HEADER_LENGTH); |
413 | |
414 | if (!aead->SealScatter(out_prefix + SSL3_RT_HEADER_LENGTH, out, out_suffix, |
415 | out_prefix[0], record_version, ssl->s3->write_sequence, |
416 | header, in, in_len, extra_in, extra_in_len) || |
417 | !ssl_record_sequence_update(ssl->s3->write_sequence, 8)) { |
418 | return false; |
419 | } |
420 | |
421 | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header); |
422 | return true; |
423 | } |
424 | |
425 | static size_t tls_seal_scatter_prefix_len(const SSL *ssl, uint8_t type, |
426 | size_t in_len) { |
427 | size_t ret = SSL3_RT_HEADER_LENGTH; |
428 | if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 && |
429 | ssl_needs_record_splitting(ssl)) { |
430 | // In the case of record splitting, the 1-byte record (of the 1/n-1 split) |
431 | // will be placed in the prefix, as will four of the five bytes of the |
432 | // record header for the main record. The final byte will replace the first |
433 | // byte of the plaintext that was used in the small record. |
434 | ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher()); |
435 | ret += SSL3_RT_HEADER_LENGTH - 1; |
436 | } else { |
437 | ret += ssl->s3->aead_write_ctx->ExplicitNonceLen(); |
438 | } |
439 | return ret; |
440 | } |
441 | |
442 | static bool tls_seal_scatter_suffix_len(const SSL *ssl, size_t *out_suffix_len, |
443 | uint8_t type, size_t in_len) { |
444 | size_t = 0; |
445 | if (!ssl->s3->aead_write_ctx->is_null_cipher() && |
446 | ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) { |
447 | // TLS 1.3 adds an extra byte for encrypted record type. |
448 | extra_in_len = 1; |
449 | } |
450 | if (type == SSL3_RT_APPLICATION_DATA && // clang-format off |
451 | in_len > 1 && |
452 | ssl_needs_record_splitting(ssl)) { |
453 | // With record splitting enabled, the first byte gets sealed into a separate |
454 | // record which is written into the prefix. |
455 | in_len -= 1; |
456 | } |
457 | return ssl->s3->aead_write_ctx->SuffixLen(out_suffix_len, in_len, extra_in_len); |
458 | } |
459 | |
460 | // tls_seal_scatter_record seals a new record of type |type| and body |in| and |
461 | // splits it between |out_prefix|, |out|, and |out_suffix|. Exactly |
462 | // |tls_seal_scatter_prefix_len| bytes are written to |out_prefix|, |in_len| |
463 | // bytes to |out|, and |tls_seal_scatter_suffix_len| bytes to |out_suffix|. It |
464 | // returns one on success and zero on error. If enabled, |
465 | // |tls_seal_scatter_record| implements TLS 1.0 CBC 1/n-1 record splitting and |
466 | // may write two records concatenated. |
467 | static bool tls_seal_scatter_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out, |
468 | uint8_t *out_suffix, uint8_t type, |
469 | const uint8_t *in, size_t in_len) { |
470 | if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 && |
471 | ssl_needs_record_splitting(ssl)) { |
472 | assert(ssl->s3->aead_write_ctx->ExplicitNonceLen() == 0); |
473 | const size_t prefix_len = SSL3_RT_HEADER_LENGTH; |
474 | |
475 | // Write the 1-byte fragment into |out_prefix|. |
476 | uint8_t *split_body = out_prefix + prefix_len; |
477 | uint8_t *split_suffix = split_body + 1; |
478 | |
479 | if (!do_seal_record(ssl, out_prefix, split_body, split_suffix, type, in, |
480 | 1)) { |
481 | return false; |
482 | } |
483 | |
484 | size_t split_record_suffix_len; |
485 | if (!ssl->s3->aead_write_ctx->SuffixLen(&split_record_suffix_len, 1, 0)) { |
486 | assert(false); |
487 | return false; |
488 | } |
489 | const size_t split_record_len = prefix_len + 1 + split_record_suffix_len; |
490 | assert(SSL3_RT_HEADER_LENGTH + ssl_cipher_get_record_split_len( |
491 | ssl->s3->aead_write_ctx->cipher()) == |
492 | split_record_len); |
493 | |
494 | // Write the n-1-byte fragment. The header gets split between |out_prefix| |
495 | // (header[:-1]) and |out| (header[-1:]). |
496 | uint8_t tmp_prefix[SSL3_RT_HEADER_LENGTH]; |
497 | if (!do_seal_record(ssl, tmp_prefix, out + 1, out_suffix, type, in + 1, |
498 | in_len - 1)) { |
499 | return false; |
500 | } |
501 | assert(tls_seal_scatter_prefix_len(ssl, type, in_len) == |
502 | split_record_len + SSL3_RT_HEADER_LENGTH - 1); |
503 | OPENSSL_memcpy(out_prefix + split_record_len, tmp_prefix, |
504 | SSL3_RT_HEADER_LENGTH - 1); |
505 | OPENSSL_memcpy(out, tmp_prefix + SSL3_RT_HEADER_LENGTH - 1, 1); |
506 | return true; |
507 | } |
508 | |
509 | return do_seal_record(ssl, out_prefix, out, out_suffix, type, in, in_len); |
510 | } |
511 | |
512 | bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, |
513 | size_t max_out_len, uint8_t type, const uint8_t *in, |
514 | size_t in_len) { |
515 | if (buffers_alias(in, in_len, out, max_out_len)) { |
516 | OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); |
517 | return false; |
518 | } |
519 | |
520 | const size_t prefix_len = tls_seal_scatter_prefix_len(ssl, type, in_len); |
521 | size_t suffix_len; |
522 | if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, type, in_len)) { |
523 | return false; |
524 | } |
525 | if (in_len + prefix_len < in_len || |
526 | prefix_len + in_len + suffix_len < prefix_len + in_len) { |
527 | OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
528 | return false; |
529 | } |
530 | if (max_out_len < in_len + prefix_len + suffix_len) { |
531 | OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); |
532 | return false; |
533 | } |
534 | |
535 | uint8_t *prefix = out; |
536 | uint8_t *body = out + prefix_len; |
537 | uint8_t *suffix = body + in_len; |
538 | if (!tls_seal_scatter_record(ssl, prefix, body, suffix, type, in, in_len)) { |
539 | return false; |
540 | } |
541 | |
542 | *out_len = prefix_len + in_len + suffix_len; |
543 | return true; |
544 | } |
545 | |
546 | enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert, |
547 | Span<const uint8_t> in) { |
548 | // Alerts records may not contain fragmented or multiple alerts. |
549 | if (in.size() != 2) { |
550 | *out_alert = SSL_AD_DECODE_ERROR; |
551 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT); |
552 | return ssl_open_record_error; |
553 | } |
554 | |
555 | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_ALERT, in); |
556 | |
557 | const uint8_t alert_level = in[0]; |
558 | const uint8_t alert_descr = in[1]; |
559 | |
560 | uint16_t alert = (alert_level << 8) | alert_descr; |
561 | ssl_do_info_callback(ssl, SSL_CB_READ_ALERT, alert); |
562 | |
563 | if (alert_level == SSL3_AL_WARNING) { |
564 | if (alert_descr == SSL_AD_CLOSE_NOTIFY) { |
565 | ssl->s3->read_shutdown = ssl_shutdown_close_notify; |
566 | return ssl_open_record_close_notify; |
567 | } |
568 | |
569 | // Warning alerts do not exist in TLS 1.3. |
570 | if (ssl->s3->have_version && |
571 | ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
572 | *out_alert = SSL_AD_DECODE_ERROR; |
573 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT); |
574 | return ssl_open_record_error; |
575 | } |
576 | |
577 | ssl->s3->warning_alert_count++; |
578 | if (ssl->s3->warning_alert_count > kMaxWarningAlerts) { |
579 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
580 | OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_WARNING_ALERTS); |
581 | return ssl_open_record_error; |
582 | } |
583 | return ssl_open_record_discard; |
584 | } |
585 | |
586 | if (alert_level == SSL3_AL_FATAL) { |
587 | OPENSSL_PUT_ERROR(SSL, SSL_AD_REASON_OFFSET + alert_descr); |
588 | ERR_add_error_dataf("SSL alert number %d" , alert_descr); |
589 | *out_alert = 0; // No alert to send back to the peer. |
590 | return ssl_open_record_error; |
591 | } |
592 | |
593 | *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
594 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_ALERT_TYPE); |
595 | return ssl_open_record_error; |
596 | } |
597 | |
598 | OpenRecordResult OpenRecord(SSL *ssl, Span<uint8_t> *out, |
599 | size_t *out_record_len, uint8_t *out_alert, |
600 | const Span<uint8_t> in) { |
601 | // This API is a work in progress and currently only works for TLS 1.2 servers |
602 | // and below. |
603 | if (SSL_in_init(ssl) || |
604 | SSL_is_dtls(ssl) || |
605 | ssl_protocol_version(ssl) > TLS1_2_VERSION) { |
606 | assert(false); |
607 | *out_alert = SSL_AD_INTERNAL_ERROR; |
608 | return OpenRecordResult::kError; |
609 | } |
610 | |
611 | Span<uint8_t> plaintext; |
612 | uint8_t type = 0; |
613 | const ssl_open_record_t result = tls_open_record( |
614 | ssl, &type, &plaintext, out_record_len, out_alert, in); |
615 | |
616 | switch (result) { |
617 | case ssl_open_record_success: |
618 | if (type != SSL3_RT_APPLICATION_DATA && type != SSL3_RT_ALERT) { |
619 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
620 | return OpenRecordResult::kError; |
621 | } |
622 | *out = plaintext; |
623 | return OpenRecordResult::kOK; |
624 | case ssl_open_record_discard: |
625 | return OpenRecordResult::kDiscard; |
626 | case ssl_open_record_partial: |
627 | return OpenRecordResult::kIncompleteRecord; |
628 | case ssl_open_record_close_notify: |
629 | return OpenRecordResult::kAlertCloseNotify; |
630 | case ssl_open_record_error: |
631 | return OpenRecordResult::kError; |
632 | } |
633 | assert(false); |
634 | return OpenRecordResult::kError; |
635 | } |
636 | |
637 | size_t SealRecordPrefixLen(const SSL *ssl, const size_t record_len) { |
638 | return tls_seal_scatter_prefix_len(ssl, SSL3_RT_APPLICATION_DATA, record_len); |
639 | } |
640 | |
641 | size_t SealRecordSuffixLen(const SSL *ssl, const size_t plaintext_len) { |
642 | assert(plaintext_len <= SSL3_RT_MAX_PLAIN_LENGTH); |
643 | size_t suffix_len; |
644 | if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, SSL3_RT_APPLICATION_DATA, |
645 | plaintext_len)) { |
646 | assert(false); |
647 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
648 | return 0; |
649 | } |
650 | assert(suffix_len <= SSL3_RT_MAX_ENCRYPTED_OVERHEAD); |
651 | return suffix_len; |
652 | } |
653 | |
654 | bool SealRecord(SSL *ssl, const Span<uint8_t> out_prefix, |
655 | const Span<uint8_t> out, Span<uint8_t> out_suffix, |
656 | const Span<const uint8_t> in) { |
657 | // This API is a work in progress and currently only works for TLS 1.2 servers |
658 | // and below. |
659 | if (SSL_in_init(ssl) || |
660 | SSL_is_dtls(ssl) || |
661 | ssl_protocol_version(ssl) > TLS1_2_VERSION) { |
662 | assert(false); |
663 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
664 | return false; |
665 | } |
666 | |
667 | if (out_prefix.size() != SealRecordPrefixLen(ssl, in.size()) || |
668 | out.size() != in.size() || |
669 | out_suffix.size() != SealRecordSuffixLen(ssl, in.size())) { |
670 | OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); |
671 | return false; |
672 | } |
673 | return tls_seal_scatter_record(ssl, out_prefix.data(), out.data(), |
674 | out_suffix.data(), SSL3_RT_APPLICATION_DATA, |
675 | in.data(), in.size()); |
676 | } |
677 | |
678 | BSSL_NAMESPACE_END |
679 | |
680 | using namespace bssl; |
681 | |
682 | size_t SSL_max_seal_overhead(const SSL *ssl) { |
683 | if (SSL_is_dtls(ssl)) { |
684 | return dtls_max_seal_overhead(ssl, dtls1_use_current_epoch); |
685 | } |
686 | |
687 | size_t ret = SSL3_RT_HEADER_LENGTH; |
688 | ret += ssl->s3->aead_write_ctx->MaxOverhead(); |
689 | // TLS 1.3 needs an extra byte for the encrypted record type. |
690 | if (!ssl->s3->aead_write_ctx->is_null_cipher() && |
691 | ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) { |
692 | ret += 1; |
693 | } |
694 | if (ssl_needs_record_splitting(ssl)) { |
695 | ret *= 2; |
696 | } |
697 | return ret; |
698 | } |
699 | |