| 1 | // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/compiler/backend/flow_graph_compiler.h" |
| 6 | #include "vm/globals.h" // Needed here to get TARGET_ARCH_XXX. |
| 7 | |
| 8 | #include "platform/utils.h" |
| 9 | #include "vm/bit_vector.h" |
| 10 | #include "vm/compiler/backend/code_statistics.h" |
| 11 | #include "vm/compiler/backend/il_printer.h" |
| 12 | #include "vm/compiler/backend/inliner.h" |
| 13 | #include "vm/compiler/backend/linearscan.h" |
| 14 | #include "vm/compiler/backend/locations.h" |
| 15 | #include "vm/compiler/backend/loops.h" |
| 16 | #include "vm/compiler/cha.h" |
| 17 | #include "vm/compiler/intrinsifier.h" |
| 18 | #include "vm/compiler/jit/compiler.h" |
| 19 | #include "vm/dart_entry.h" |
| 20 | #include "vm/debugger.h" |
| 21 | #include "vm/deopt_instructions.h" |
| 22 | #include "vm/exceptions.h" |
| 23 | #include "vm/flags.h" |
| 24 | #include "vm/kernel_isolate.h" |
| 25 | #include "vm/log.h" |
| 26 | #include "vm/longjump.h" |
| 27 | #include "vm/object_store.h" |
| 28 | #include "vm/parser.h" |
| 29 | #include "vm/raw_object.h" |
| 30 | #include "vm/resolver.h" |
| 31 | #include "vm/service_isolate.h" |
| 32 | #include "vm/stack_frame.h" |
| 33 | #include "vm/stub_code.h" |
| 34 | #include "vm/symbols.h" |
| 35 | #include "vm/timeline.h" |
| 36 | #include "vm/type_testing_stubs.h" |
| 37 | |
| 38 | namespace dart { |
| 39 | |
| 40 | DEFINE_FLAG(bool, |
| 41 | trace_inlining_intervals, |
| 42 | false, |
| 43 | "Inlining interval diagnostics" ); |
| 44 | |
| 45 | DEFINE_FLAG(bool, enable_peephole, true, "Enable peephole optimization" ); |
| 46 | |
| 47 | DEFINE_FLAG(bool, |
| 48 | enable_simd_inline, |
| 49 | true, |
| 50 | "Enable inlining of SIMD related method calls." ); |
| 51 | DEFINE_FLAG(int, |
| 52 | min_optimization_counter_threshold, |
| 53 | 5000, |
| 54 | "The minimum invocation count for a function." ); |
| 55 | DEFINE_FLAG(int, |
| 56 | optimization_counter_scale, |
| 57 | 2000, |
| 58 | "The scale of invocation count, by size of the function." ); |
| 59 | DEFINE_FLAG(bool, source_lines, false, "Emit source line as assembly comment." ); |
| 60 | |
| 61 | DECLARE_FLAG(charp, deoptimize_filter); |
| 62 | DECLARE_FLAG(bool, intrinsify); |
| 63 | DECLARE_FLAG(int, regexp_optimization_counter_threshold); |
| 64 | DECLARE_FLAG(int, reoptimization_counter_threshold); |
| 65 | DECLARE_FLAG(int, stacktrace_every); |
| 66 | DECLARE_FLAG(charp, stacktrace_filter); |
| 67 | DECLARE_FLAG(int, gc_every); |
| 68 | DECLARE_FLAG(bool, trace_compiler); |
| 69 | |
| 70 | // Assign locations to incoming arguments, i.e., values pushed above spill slots |
| 71 | // with PushArgument. Recursively allocates from outermost to innermost |
| 72 | // environment. |
| 73 | void CompilerDeoptInfo::AllocateIncomingParametersRecursive( |
| 74 | Environment* env, |
| 75 | intptr_t* stack_height) { |
| 76 | if (env == NULL) return; |
| 77 | AllocateIncomingParametersRecursive(env->outer(), stack_height); |
| 78 | for (Environment::ShallowIterator it(env); !it.Done(); it.Advance()) { |
| 79 | if (it.CurrentLocation().IsInvalid() && |
| 80 | it.CurrentValue()->definition()->IsPushArgument()) { |
| 81 | it.SetCurrentLocation(Location::StackSlot( |
| 82 | compiler::target::frame_layout.FrameSlotForVariableIndex( |
| 83 | -*stack_height), |
| 84 | FPREG)); |
| 85 | (*stack_height)++; |
| 86 | } |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | void CompilerDeoptInfo::EmitMaterializations(Environment* env, |
| 91 | DeoptInfoBuilder* builder) { |
| 92 | for (Environment::DeepIterator it(env); !it.Done(); it.Advance()) { |
| 93 | if (it.CurrentLocation().IsInvalid()) { |
| 94 | MaterializeObjectInstr* mat = |
| 95 | it.CurrentValue()->definition()->AsMaterializeObject(); |
| 96 | ASSERT(mat != NULL); |
| 97 | builder->AddMaterialization(mat); |
| 98 | } |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | FlowGraphCompiler::FlowGraphCompiler( |
| 103 | compiler::Assembler* assembler, |
| 104 | FlowGraph* flow_graph, |
| 105 | const ParsedFunction& parsed_function, |
| 106 | bool is_optimizing, |
| 107 | SpeculativeInliningPolicy* speculative_policy, |
| 108 | const GrowableArray<const Function*>& inline_id_to_function, |
| 109 | const GrowableArray<TokenPosition>& inline_id_to_token_pos, |
| 110 | const GrowableArray<intptr_t>& caller_inline_id, |
| 111 | ZoneGrowableArray<const ICData*>* deopt_id_to_ic_data, |
| 112 | CodeStatistics* stats /* = NULL */) |
| 113 | : thread_(Thread::Current()), |
| 114 | zone_(Thread::Current()->zone()), |
| 115 | assembler_(assembler), |
| 116 | parsed_function_(parsed_function), |
| 117 | flow_graph_(*flow_graph), |
| 118 | block_order_(*flow_graph->CodegenBlockOrder(is_optimizing)), |
| 119 | current_block_(nullptr), |
| 120 | exception_handlers_list_(nullptr), |
| 121 | pc_descriptors_list_(nullptr), |
| 122 | compressed_stackmaps_builder_(nullptr), |
| 123 | code_source_map_builder_(nullptr), |
| 124 | catch_entry_moves_maps_builder_(nullptr), |
| 125 | block_info_(block_order_.length()), |
| 126 | deopt_infos_(), |
| 127 | static_calls_target_table_(), |
| 128 | indirect_gotos_(), |
| 129 | is_optimizing_(is_optimizing), |
| 130 | speculative_policy_(speculative_policy), |
| 131 | may_reoptimize_(false), |
| 132 | intrinsic_mode_(false), |
| 133 | stats_(stats), |
| 134 | double_class_( |
| 135 | Class::ZoneHandle(isolate()->object_store()->double_class())), |
| 136 | mint_class_(Class::ZoneHandle(isolate()->object_store()->mint_class())), |
| 137 | float32x4_class_( |
| 138 | Class::ZoneHandle(isolate()->object_store()->float32x4_class())), |
| 139 | float64x2_class_( |
| 140 | Class::ZoneHandle(isolate()->object_store()->float64x2_class())), |
| 141 | int32x4_class_( |
| 142 | Class::ZoneHandle(isolate()->object_store()->int32x4_class())), |
| 143 | list_class_(Class::ZoneHandle(Library::Handle(Library::CoreLibrary()) |
| 144 | .LookupClass(Symbols::List()))), |
| 145 | parallel_move_resolver_(this), |
| 146 | pending_deoptimization_env_(NULL), |
| 147 | deopt_id_to_ic_data_(deopt_id_to_ic_data), |
| 148 | edge_counters_array_(Array::ZoneHandle()) { |
| 149 | ASSERT(flow_graph->parsed_function().function().raw() == |
| 150 | parsed_function.function().raw()); |
| 151 | if (is_optimizing) { |
| 152 | // No need to collect extra ICData objects created during compilation. |
| 153 | deopt_id_to_ic_data_ = nullptr; |
| 154 | } else { |
| 155 | const intptr_t len = thread()->compiler_state().deopt_id(); |
| 156 | deopt_id_to_ic_data_->EnsureLength(len, nullptr); |
| 157 | } |
| 158 | ASSERT(assembler != NULL); |
| 159 | ASSERT(!list_class_.IsNull()); |
| 160 | |
| 161 | #if defined(PRODUCT) |
| 162 | const bool stack_traces_only = true; |
| 163 | #else |
| 164 | const bool stack_traces_only = false; |
| 165 | #endif |
| 166 | code_source_map_builder_ = new (zone_) |
| 167 | CodeSourceMapBuilder(stack_traces_only, caller_inline_id, |
| 168 | inline_id_to_token_pos, inline_id_to_function); |
| 169 | |
| 170 | ArchSpecificInitialization(); |
| 171 | } |
| 172 | |
| 173 | bool FlowGraphCompiler::IsUnboxedField(const Field& field) { |
| 174 | // The `field.is_non_nullable_integer()` is set in the kernel loader and can |
| 175 | // only be set if we consume a AOT kernel (annotated with inferred types). |
| 176 | ASSERT(!field.is_non_nullable_integer() || FLAG_precompiled_mode); |
| 177 | const bool valid_class = |
| 178 | (SupportsUnboxedDoubles() && (field.guarded_cid() == kDoubleCid)) || |
| 179 | (SupportsUnboxedSimd128() && (field.guarded_cid() == kFloat32x4Cid)) || |
| 180 | (SupportsUnboxedSimd128() && (field.guarded_cid() == kFloat64x2Cid)) || |
| 181 | field.is_non_nullable_integer(); |
| 182 | return field.is_unboxing_candidate() && !field.is_nullable() && valid_class; |
| 183 | } |
| 184 | |
| 185 | bool FlowGraphCompiler::IsPotentialUnboxedField(const Field& field) { |
| 186 | if (FLAG_precompiled_mode) { |
| 187 | // kernel_loader.cc:ReadInferredType sets the guarded cid for fields based |
| 188 | // on inferred types from TFA (if available). The guarded cid is therefore |
| 189 | // proven to be correct. |
| 190 | return IsUnboxedField(field); |
| 191 | } |
| 192 | return field.is_unboxing_candidate() && |
| 193 | (FlowGraphCompiler::IsUnboxedField(field) || |
| 194 | (field.guarded_cid() == kIllegalCid)); |
| 195 | } |
| 196 | |
| 197 | void FlowGraphCompiler::InitCompiler() { |
| 198 | pc_descriptors_list_ = new (zone()) DescriptorList(64); |
| 199 | exception_handlers_list_ = new (zone()) ExceptionHandlerList(); |
| 200 | #if defined(DART_PRECOMPILER) |
| 201 | catch_entry_moves_maps_builder_ = new (zone()) CatchEntryMovesMapBuilder(); |
| 202 | #endif |
| 203 | block_info_.Clear(); |
| 204 | // Initialize block info and search optimized (non-OSR) code for calls |
| 205 | // indicating a non-leaf routine and calls without IC data indicating |
| 206 | // possible reoptimization. |
| 207 | |
| 208 | for (int i = 0; i < block_order_.length(); ++i) { |
| 209 | block_info_.Add(new (zone()) BlockInfo()); |
| 210 | if (is_optimizing() && !flow_graph().IsCompiledForOsr()) { |
| 211 | BlockEntryInstr* entry = block_order_[i]; |
| 212 | for (ForwardInstructionIterator it(entry); !it.Done(); it.Advance()) { |
| 213 | Instruction* current = it.Current(); |
| 214 | if (current->IsBranch()) { |
| 215 | current = current->AsBranch()->comparison(); |
| 216 | } |
| 217 | // In optimized code, ICData is always set in the instructions. |
| 218 | const ICData* ic_data = NULL; |
| 219 | if (current->IsInstanceCall()) { |
| 220 | ic_data = current->AsInstanceCall()->ic_data(); |
| 221 | } |
| 222 | if ((ic_data != NULL) && (ic_data->NumberOfUsedChecks() == 0)) { |
| 223 | may_reoptimize_ = true; |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | if (!is_optimizing() && FLAG_reorder_basic_blocks) { |
| 230 | // Initialize edge counter array. |
| 231 | const intptr_t num_counters = flow_graph_.preorder().length(); |
| 232 | const Array& edge_counters = |
| 233 | Array::Handle(Array::New(num_counters, Heap::kOld)); |
| 234 | for (intptr_t i = 0; i < num_counters; ++i) { |
| 235 | edge_counters.SetAt(i, Object::smi_zero()); |
| 236 | } |
| 237 | edge_counters_array_ = edge_counters.raw(); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | bool FlowGraphCompiler::CanOptimize() { |
| 242 | return FLAG_optimization_counter_threshold >= 0; |
| 243 | } |
| 244 | |
| 245 | bool FlowGraphCompiler::CanOptimizeFunction() const { |
| 246 | return CanOptimize() && !parsed_function().function().HasBreakpoint(); |
| 247 | } |
| 248 | |
| 249 | bool FlowGraphCompiler::CanOSRFunction() const { |
| 250 | return isolate()->use_osr() && CanOptimizeFunction() && !is_optimizing(); |
| 251 | } |
| 252 | |
| 253 | void FlowGraphCompiler::InsertBSSRelocation(BSS::Relocation reloc) { |
| 254 | const intptr_t offset = assembler()->InsertAlignedRelocation(reloc); |
| 255 | AddDescriptor(PcDescriptorsLayout::kBSSRelocation, /*pc_offset=*/offset, |
| 256 | /*deopt_id=*/DeoptId::kNone, TokenPosition::kNoSource, |
| 257 | /*try_index=*/-1); |
| 258 | } |
| 259 | |
| 260 | bool FlowGraphCompiler::ForceSlowPathForStackOverflow() const { |
| 261 | #if !defined(PRODUCT) |
| 262 | if ((FLAG_stacktrace_every > 0) || (FLAG_deoptimize_every > 0) || |
| 263 | (FLAG_gc_every > 0) || |
| 264 | (isolate()->reload_every_n_stack_overflow_checks() > 0)) { |
| 265 | if (!Isolate::IsVMInternalIsolate(isolate())) { |
| 266 | return true; |
| 267 | } |
| 268 | } |
| 269 | if (FLAG_stacktrace_filter != NULL && |
| 270 | strstr(parsed_function().function().ToFullyQualifiedCString(), |
| 271 | FLAG_stacktrace_filter) != NULL) { |
| 272 | return true; |
| 273 | } |
| 274 | if (is_optimizing() && FLAG_deoptimize_filter != NULL && |
| 275 | strstr(parsed_function().function().ToFullyQualifiedCString(), |
| 276 | FLAG_deoptimize_filter) != NULL) { |
| 277 | return true; |
| 278 | } |
| 279 | #endif // !defined(PRODUCT) |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | bool FlowGraphCompiler::IsEmptyBlock(BlockEntryInstr* block) const { |
| 284 | // Entry-points cannot be merged because they must have assembly |
| 285 | // prologue emitted which should not be included in any block they jump to. |
| 286 | return !block->IsGraphEntry() && !block->IsFunctionEntry() && |
| 287 | !block->IsCatchBlockEntry() && !block->IsOsrEntry() && |
| 288 | !block->IsIndirectEntry() && !block->HasNonRedundantParallelMove() && |
| 289 | block->next()->IsGoto() && |
| 290 | !block->next()->AsGoto()->HasNonRedundantParallelMove(); |
| 291 | } |
| 292 | |
| 293 | void FlowGraphCompiler::CompactBlock(BlockEntryInstr* block) { |
| 294 | BlockInfo* block_info = block_info_[block->postorder_number()]; |
| 295 | |
| 296 | // Break out of cycles in the control flow graph. |
| 297 | if (block_info->is_marked()) { |
| 298 | return; |
| 299 | } |
| 300 | block_info->mark(); |
| 301 | |
| 302 | if (IsEmptyBlock(block)) { |
| 303 | // For empty blocks, record a corresponding nonempty target as their |
| 304 | // jump label. |
| 305 | BlockEntryInstr* target = block->next()->AsGoto()->successor(); |
| 306 | CompactBlock(target); |
| 307 | block_info->set_jump_label(GetJumpLabel(target)); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | void FlowGraphCompiler::CompactBlocks() { |
| 312 | // This algorithm does not garbage collect blocks in place, but merely |
| 313 | // records forwarding label information. In this way it avoids having to |
| 314 | // change join and target entries. |
| 315 | compiler::Label* nonempty_label = NULL; |
| 316 | for (intptr_t i = block_order().length() - 1; i >= 1; --i) { |
| 317 | BlockEntryInstr* block = block_order()[i]; |
| 318 | |
| 319 | // Unoptimized code must emit all possible deoptimization points. |
| 320 | if (is_optimizing()) { |
| 321 | CompactBlock(block); |
| 322 | } |
| 323 | |
| 324 | // For nonempty blocks, record the next nonempty block in the block |
| 325 | // order. Since no code is emitted for empty blocks, control flow is |
| 326 | // eligible to fall through to the next nonempty one. |
| 327 | if (!WasCompacted(block)) { |
| 328 | BlockInfo* block_info = block_info_[block->postorder_number()]; |
| 329 | block_info->set_next_nonempty_label(nonempty_label); |
| 330 | nonempty_label = GetJumpLabel(block); |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | ASSERT(block_order()[0]->IsGraphEntry()); |
| 335 | BlockInfo* block_info = block_info_[block_order()[0]->postorder_number()]; |
| 336 | block_info->set_next_nonempty_label(nonempty_label); |
| 337 | } |
| 338 | |
| 339 | #if defined(DART_PRECOMPILER) |
| 340 | static intptr_t LocationToStackIndex(const Location& src) { |
| 341 | ASSERT(src.HasStackIndex()); |
| 342 | return -compiler::target::frame_layout.VariableIndexForFrameSlot( |
| 343 | src.stack_index()); |
| 344 | } |
| 345 | |
| 346 | static CatchEntryMove CatchEntryMoveFor(compiler::Assembler* assembler, |
| 347 | Representation src_type, |
| 348 | const Location& src, |
| 349 | intptr_t dst_index) { |
| 350 | if (src.IsConstant()) { |
| 351 | // Skip dead locations. |
| 352 | if (src.constant().raw() == Symbols::OptimizedOut().raw()) { |
| 353 | return CatchEntryMove(); |
| 354 | } |
| 355 | const intptr_t pool_index = |
| 356 | assembler->object_pool_builder().FindObject(src.constant()); |
| 357 | return CatchEntryMove::FromSlot(CatchEntryMove::SourceKind::kConstant, |
| 358 | pool_index, dst_index); |
| 359 | } |
| 360 | |
| 361 | if (src.IsPairLocation()) { |
| 362 | const auto lo_loc = src.AsPairLocation()->At(0); |
| 363 | const auto hi_loc = src.AsPairLocation()->At(1); |
| 364 | ASSERT(lo_loc.IsStackSlot() && hi_loc.IsStackSlot()); |
| 365 | return CatchEntryMove::FromSlot( |
| 366 | CatchEntryMove::SourceKind::kInt64PairSlot, |
| 367 | CatchEntryMove::EncodePairSource(LocationToStackIndex(lo_loc), |
| 368 | LocationToStackIndex(hi_loc)), |
| 369 | dst_index); |
| 370 | } |
| 371 | |
| 372 | CatchEntryMove::SourceKind src_kind; |
| 373 | switch (src_type) { |
| 374 | case kTagged: |
| 375 | src_kind = CatchEntryMove::SourceKind::kTaggedSlot; |
| 376 | break; |
| 377 | case kUnboxedInt64: |
| 378 | src_kind = CatchEntryMove::SourceKind::kInt64Slot; |
| 379 | break; |
| 380 | case kUnboxedInt32: |
| 381 | src_kind = CatchEntryMove::SourceKind::kInt32Slot; |
| 382 | break; |
| 383 | case kUnboxedUint32: |
| 384 | src_kind = CatchEntryMove::SourceKind::kUint32Slot; |
| 385 | break; |
| 386 | case kUnboxedDouble: |
| 387 | src_kind = CatchEntryMove::SourceKind::kDoubleSlot; |
| 388 | break; |
| 389 | case kUnboxedFloat32x4: |
| 390 | src_kind = CatchEntryMove::SourceKind::kFloat32x4Slot; |
| 391 | break; |
| 392 | case kUnboxedFloat64x2: |
| 393 | src_kind = CatchEntryMove::SourceKind::kFloat64x2Slot; |
| 394 | break; |
| 395 | case kUnboxedInt32x4: |
| 396 | src_kind = CatchEntryMove::SourceKind::kInt32x4Slot; |
| 397 | break; |
| 398 | default: |
| 399 | UNREACHABLE(); |
| 400 | break; |
| 401 | } |
| 402 | |
| 403 | return CatchEntryMove::FromSlot(src_kind, LocationToStackIndex(src), |
| 404 | dst_index); |
| 405 | } |
| 406 | #endif |
| 407 | |
| 408 | void FlowGraphCompiler::RecordCatchEntryMoves(Environment* env, |
| 409 | intptr_t try_index) { |
| 410 | #if defined(DART_PRECOMPILER) |
| 411 | env = env ? env : pending_deoptimization_env_; |
| 412 | try_index = try_index != kInvalidTryIndex ? try_index : CurrentTryIndex(); |
| 413 | if (is_optimizing() && env != nullptr && (try_index != kInvalidTryIndex)) { |
| 414 | env = env->Outermost(); |
| 415 | CatchBlockEntryInstr* catch_block = |
| 416 | flow_graph().graph_entry()->GetCatchEntry(try_index); |
| 417 | const GrowableArray<Definition*>* idefs = |
| 418 | catch_block->initial_definitions(); |
| 419 | catch_entry_moves_maps_builder_->NewMapping(assembler()->CodeSize()); |
| 420 | |
| 421 | const intptr_t num_direct_parameters = flow_graph().num_direct_parameters(); |
| 422 | const intptr_t ex_idx = |
| 423 | catch_block->raw_exception_var() != nullptr |
| 424 | ? flow_graph().EnvIndex(catch_block->raw_exception_var()) |
| 425 | : -1; |
| 426 | const intptr_t st_idx = |
| 427 | catch_block->raw_stacktrace_var() != nullptr |
| 428 | ? flow_graph().EnvIndex(catch_block->raw_stacktrace_var()) |
| 429 | : -1; |
| 430 | for (intptr_t i = 0; i < flow_graph().variable_count(); ++i) { |
| 431 | // Don't sync captured parameters. They are not in the environment. |
| 432 | if (flow_graph().captured_parameters()->Contains(i)) continue; |
| 433 | // Don't sync exception or stack trace variables. |
| 434 | if (i == ex_idx || i == st_idx) continue; |
| 435 | // Don't sync values that have been replaced with constants. |
| 436 | if ((*idefs)[i]->IsConstant()) continue; |
| 437 | |
| 438 | Location src = env->LocationAt(i); |
| 439 | // Can only occur if AllocationSinking is enabled - and it is disabled |
| 440 | // in functions with try. |
| 441 | ASSERT(!src.IsInvalid()); |
| 442 | const Representation src_type = |
| 443 | env->ValueAt(i)->definition()->representation(); |
| 444 | intptr_t dest_index = i - num_direct_parameters; |
| 445 | const auto move = |
| 446 | CatchEntryMoveFor(assembler(), src_type, src, dest_index); |
| 447 | if (!move.IsRedundant()) { |
| 448 | catch_entry_moves_maps_builder_->Append(move); |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | catch_entry_moves_maps_builder_->EndMapping(); |
| 453 | } |
| 454 | #endif // defined(DART_PRECOMPILER) || defined(DART_PRECOMPILED_RUNTIME) |
| 455 | } |
| 456 | |
| 457 | void FlowGraphCompiler::EmitCallsiteMetadata(TokenPosition token_pos, |
| 458 | intptr_t deopt_id, |
| 459 | PcDescriptorsLayout::Kind kind, |
| 460 | LocationSummary* locs, |
| 461 | Environment* env) { |
| 462 | AddCurrentDescriptor(kind, deopt_id, token_pos); |
| 463 | RecordSafepoint(locs); |
| 464 | RecordCatchEntryMoves(env); |
| 465 | if ((deopt_id != DeoptId::kNone) && !FLAG_precompiled_mode) { |
| 466 | // Marks either the continuation point in unoptimized code or the |
| 467 | // deoptimization point in optimized code, after call. |
| 468 | const intptr_t deopt_id_after = DeoptId::ToDeoptAfter(deopt_id); |
| 469 | if (is_optimizing()) { |
| 470 | AddDeoptIndexAtCall(deopt_id_after); |
| 471 | } else { |
| 472 | // Add deoptimization continuation point after the call and before the |
| 473 | // arguments are removed. |
| 474 | AddCurrentDescriptor(PcDescriptorsLayout::kDeopt, deopt_id_after, |
| 475 | token_pos); |
| 476 | } |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | void FlowGraphCompiler::EmitYieldPositionMetadata(TokenPosition token_pos, |
| 481 | intptr_t yield_index) { |
| 482 | AddDescriptor(PcDescriptorsLayout::kOther, assembler()->CodeSize(), |
| 483 | DeoptId::kNone, token_pos, CurrentTryIndex(), yield_index); |
| 484 | } |
| 485 | |
| 486 | void FlowGraphCompiler::EmitInstructionPrologue(Instruction* instr) { |
| 487 | if (!is_optimizing()) { |
| 488 | if (instr->CanBecomeDeoptimizationTarget() && !instr->IsGoto()) { |
| 489 | // Instructions that can be deoptimization targets need to record kDeopt |
| 490 | // PcDescriptor corresponding to their deopt id. GotoInstr records its |
| 491 | // own so that it can control the placement. |
| 492 | AddCurrentDescriptor(PcDescriptorsLayout::kDeopt, instr->deopt_id(), |
| 493 | instr->token_pos()); |
| 494 | } |
| 495 | AllocateRegistersLocally(instr); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | void FlowGraphCompiler::EmitSourceLine(Instruction* instr) { |
| 500 | if (!instr->token_pos().IsReal() || (instr->env() == NULL)) { |
| 501 | return; |
| 502 | } |
| 503 | const Script& script = |
| 504 | Script::Handle(zone(), instr->env()->function().script()); |
| 505 | intptr_t line_nr; |
| 506 | intptr_t column_nr; |
| 507 | script.GetTokenLocation(instr->token_pos(), &line_nr, &column_nr); |
| 508 | const String& line = String::Handle(zone(), script.GetLine(line_nr)); |
| 509 | assembler()->Comment("Line %" Pd " in '%s':\n %s" , line_nr, |
| 510 | instr->env()->function().ToFullyQualifiedCString(), |
| 511 | line.ToCString()); |
| 512 | } |
| 513 | |
| 514 | static bool IsPusher(Instruction* instr) { |
| 515 | if (auto def = instr->AsDefinition()) { |
| 516 | return def->HasTemp(); |
| 517 | } |
| 518 | return false; |
| 519 | } |
| 520 | |
| 521 | static bool IsPopper(Instruction* instr) { |
| 522 | // TODO(ajcbik): even allow deopt targets by making environment aware? |
| 523 | if (!instr->CanBecomeDeoptimizationTarget()) { |
| 524 | return !instr->IsPushArgument() && instr->ArgumentCount() == 0 && |
| 525 | instr->InputCount() > 0; |
| 526 | } |
| 527 | return false; |
| 528 | } |
| 529 | |
| 530 | bool FlowGraphCompiler::IsPeephole(Instruction* instr) const { |
| 531 | if (FLAG_enable_peephole && !is_optimizing()) { |
| 532 | return IsPusher(instr) && IsPopper(instr->next()); |
| 533 | } |
| 534 | return false; |
| 535 | } |
| 536 | |
| 537 | void FlowGraphCompiler::VisitBlocks() { |
| 538 | CompactBlocks(); |
| 539 | if (compiler::Assembler::EmittingComments()) { |
| 540 | // The loop_info fields were cleared, recompute. |
| 541 | flow_graph().ComputeLoops(); |
| 542 | } |
| 543 | |
| 544 | // In precompiled mode, we require the function entry to come first (after the |
| 545 | // graph entry), since the polymorphic check is performed in the function |
| 546 | // entry (see Instructions::EntryPoint). |
| 547 | if (FLAG_precompiled_mode) { |
| 548 | ASSERT(block_order()[1] == flow_graph().graph_entry()->normal_entry()); |
| 549 | } |
| 550 | |
| 551 | for (intptr_t i = 0; i < block_order().length(); ++i) { |
| 552 | // Compile the block entry. |
| 553 | BlockEntryInstr* entry = block_order()[i]; |
| 554 | assembler()->Comment("B%" Pd "" , entry->block_id()); |
| 555 | set_current_block(entry); |
| 556 | |
| 557 | if (WasCompacted(entry)) { |
| 558 | continue; |
| 559 | } |
| 560 | |
| 561 | #if defined(DEBUG) |
| 562 | if (!is_optimizing()) { |
| 563 | FrameStateClear(); |
| 564 | } |
| 565 | #endif |
| 566 | |
| 567 | if (compiler::Assembler::EmittingComments()) { |
| 568 | for (LoopInfo* l = entry->loop_info(); l != nullptr; l = l->outer()) { |
| 569 | assembler()->Comment(" Loop %" Pd "" , l->id()); |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | BeginCodeSourceRange(); |
| 574 | ASSERT(pending_deoptimization_env_ == NULL); |
| 575 | pending_deoptimization_env_ = entry->env(); |
| 576 | set_current_instruction(entry); |
| 577 | StatsBegin(entry); |
| 578 | entry->EmitNativeCode(this); |
| 579 | StatsEnd(entry); |
| 580 | set_current_instruction(nullptr); |
| 581 | pending_deoptimization_env_ = NULL; |
| 582 | EndCodeSourceRange(entry->token_pos()); |
| 583 | |
| 584 | if (skip_body_compilation()) { |
| 585 | ASSERT(entry == flow_graph().graph_entry()->normal_entry()); |
| 586 | break; |
| 587 | } |
| 588 | |
| 589 | // Compile all successors until an exit, branch, or a block entry. |
| 590 | for (ForwardInstructionIterator it(entry); !it.Done(); it.Advance()) { |
| 591 | Instruction* instr = it.Current(); |
| 592 | set_current_instruction(instr); |
| 593 | StatsBegin(instr); |
| 594 | |
| 595 | // Compose intervals. |
| 596 | code_source_map_builder_->StartInliningInterval(assembler()->CodeSize(), |
| 597 | instr->inlining_id()); |
| 598 | if (FLAG_code_comments || FLAG_disassemble || |
| 599 | FLAG_disassemble_optimized) { |
| 600 | if (FLAG_source_lines) { |
| 601 | EmitSourceLine(instr); |
| 602 | } |
| 603 | EmitComment(instr); |
| 604 | } |
| 605 | if (instr->IsParallelMove()) { |
| 606 | parallel_move_resolver_.EmitNativeCode(instr->AsParallelMove()); |
| 607 | } else { |
| 608 | BeginCodeSourceRange(); |
| 609 | EmitInstructionPrologue(instr); |
| 610 | ASSERT(pending_deoptimization_env_ == NULL); |
| 611 | pending_deoptimization_env_ = instr->env(); |
| 612 | DEBUG_ONLY(current_instruction_ = instr); |
| 613 | instr->EmitNativeCode(this); |
| 614 | DEBUG_ONLY(current_instruction_ = nullptr); |
| 615 | pending_deoptimization_env_ = NULL; |
| 616 | if (IsPeephole(instr)) { |
| 617 | ASSERT(top_of_stack_ == nullptr); |
| 618 | top_of_stack_ = instr->AsDefinition(); |
| 619 | } else { |
| 620 | EmitInstructionEpilogue(instr); |
| 621 | } |
| 622 | EndCodeSourceRange(instr->token_pos()); |
| 623 | } |
| 624 | |
| 625 | #if defined(DEBUG) |
| 626 | if (!is_optimizing()) { |
| 627 | FrameStateUpdateWith(instr); |
| 628 | } |
| 629 | #endif |
| 630 | StatsEnd(instr); |
| 631 | set_current_instruction(nullptr); |
| 632 | |
| 633 | if (auto indirect_goto = instr->AsIndirectGoto()) { |
| 634 | indirect_gotos_.Add(indirect_goto); |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | #if defined(DEBUG) |
| 639 | ASSERT(is_optimizing() || FrameStateIsSafeToCall()); |
| 640 | #endif |
| 641 | } |
| 642 | |
| 643 | set_current_block(NULL); |
| 644 | } |
| 645 | |
| 646 | void FlowGraphCompiler::Bailout(const char* reason) { |
| 647 | parsed_function_.Bailout("FlowGraphCompiler" , reason); |
| 648 | } |
| 649 | |
| 650 | intptr_t FlowGraphCompiler::StackSize() const { |
| 651 | if (is_optimizing_) { |
| 652 | return flow_graph_.graph_entry()->spill_slot_count(); |
| 653 | } else { |
| 654 | return parsed_function_.num_stack_locals(); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | intptr_t FlowGraphCompiler::() const { |
| 659 | ASSERT(flow_graph().IsCompiledForOsr()); |
| 660 | const intptr_t stack_depth = |
| 661 | flow_graph().graph_entry()->osr_entry()->stack_depth(); |
| 662 | const intptr_t num_stack_locals = flow_graph().num_stack_locals(); |
| 663 | return StackSize() - stack_depth - num_stack_locals; |
| 664 | } |
| 665 | |
| 666 | compiler::Label* FlowGraphCompiler::GetJumpLabel( |
| 667 | BlockEntryInstr* block_entry) const { |
| 668 | const intptr_t block_index = block_entry->postorder_number(); |
| 669 | return block_info_[block_index]->jump_label(); |
| 670 | } |
| 671 | |
| 672 | bool FlowGraphCompiler::WasCompacted(BlockEntryInstr* block_entry) const { |
| 673 | const intptr_t block_index = block_entry->postorder_number(); |
| 674 | return block_info_[block_index]->WasCompacted(); |
| 675 | } |
| 676 | |
| 677 | compiler::Label* FlowGraphCompiler::NextNonEmptyLabel() const { |
| 678 | const intptr_t current_index = current_block()->postorder_number(); |
| 679 | return block_info_[current_index]->next_nonempty_label(); |
| 680 | } |
| 681 | |
| 682 | bool FlowGraphCompiler::CanFallThroughTo(BlockEntryInstr* block_entry) const { |
| 683 | return NextNonEmptyLabel() == GetJumpLabel(block_entry); |
| 684 | } |
| 685 | |
| 686 | BranchLabels FlowGraphCompiler::CreateBranchLabels(BranchInstr* branch) const { |
| 687 | compiler::Label* true_label = GetJumpLabel(branch->true_successor()); |
| 688 | compiler::Label* false_label = GetJumpLabel(branch->false_successor()); |
| 689 | compiler::Label* fall_through = NextNonEmptyLabel(); |
| 690 | BranchLabels result = {true_label, false_label, fall_through}; |
| 691 | return result; |
| 692 | } |
| 693 | |
| 694 | void FlowGraphCompiler::AddSlowPathCode(SlowPathCode* code) { |
| 695 | slow_path_code_.Add(code); |
| 696 | } |
| 697 | |
| 698 | void FlowGraphCompiler::GenerateDeferredCode() { |
| 699 | for (intptr_t i = 0; i < slow_path_code_.length(); i++) { |
| 700 | SlowPathCode* const slow_path = slow_path_code_[i]; |
| 701 | const CombinedCodeStatistics::EntryCounter stats_tag = |
| 702 | CombinedCodeStatistics::SlowPathCounterFor( |
| 703 | slow_path->instruction()->tag()); |
| 704 | set_current_instruction(slow_path->instruction()); |
| 705 | SpecialStatsBegin(stats_tag); |
| 706 | BeginCodeSourceRange(); |
| 707 | DEBUG_ONLY(current_instruction_ = slow_path->instruction()); |
| 708 | slow_path->GenerateCode(this); |
| 709 | DEBUG_ONLY(current_instruction_ = nullptr); |
| 710 | EndCodeSourceRange(slow_path->instruction()->token_pos()); |
| 711 | SpecialStatsEnd(stats_tag); |
| 712 | set_current_instruction(nullptr); |
| 713 | } |
| 714 | for (intptr_t i = 0; i < deopt_infos_.length(); i++) { |
| 715 | BeginCodeSourceRange(); |
| 716 | deopt_infos_[i]->GenerateCode(this, i); |
| 717 | EndCodeSourceRange(TokenPosition::kDeferredDeoptInfo); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | void FlowGraphCompiler::AddExceptionHandler(intptr_t try_index, |
| 722 | intptr_t outer_try_index, |
| 723 | intptr_t pc_offset, |
| 724 | bool is_generated, |
| 725 | const Array& handler_types, |
| 726 | bool needs_stacktrace) { |
| 727 | exception_handlers_list_->AddHandler(try_index, outer_try_index, pc_offset, |
| 728 | is_generated, handler_types, |
| 729 | needs_stacktrace); |
| 730 | } |
| 731 | |
| 732 | void FlowGraphCompiler::SetNeedsStackTrace(intptr_t try_index) { |
| 733 | exception_handlers_list_->SetNeedsStackTrace(try_index); |
| 734 | } |
| 735 | |
| 736 | void FlowGraphCompiler::AddDescriptor(PcDescriptorsLayout::Kind kind, |
| 737 | intptr_t pc_offset, |
| 738 | intptr_t deopt_id, |
| 739 | TokenPosition token_pos, |
| 740 | intptr_t try_index, |
| 741 | intptr_t yield_index) { |
| 742 | code_source_map_builder_->NoteDescriptor(kind, pc_offset, token_pos); |
| 743 | // Don't emit deopt-descriptors in AOT mode. |
| 744 | if (FLAG_precompiled_mode && (kind == PcDescriptorsLayout::kDeopt)) return; |
| 745 | pc_descriptors_list_->AddDescriptor(kind, pc_offset, deopt_id, token_pos, |
| 746 | try_index, yield_index); |
| 747 | } |
| 748 | |
| 749 | // Uses current pc position and try-index. |
| 750 | void FlowGraphCompiler::AddCurrentDescriptor(PcDescriptorsLayout::Kind kind, |
| 751 | intptr_t deopt_id, |
| 752 | TokenPosition token_pos) { |
| 753 | AddDescriptor(kind, assembler()->CodeSize(), deopt_id, token_pos, |
| 754 | CurrentTryIndex()); |
| 755 | } |
| 756 | |
| 757 | void FlowGraphCompiler::AddNullCheck(TokenPosition token_pos, |
| 758 | const String& name) { |
| 759 | #if defined(DART_PRECOMPILER) |
| 760 | // If we are generating an AOT snapshot and have DWARF stack traces enabled, |
| 761 | // the AOT runtime is unable to obtain the pool index at runtime. Therefore, |
| 762 | // there is no reason to put the name into the pool in the first place. |
| 763 | // TODO(dartbug.com/40605): Move this info to the pc descriptors. |
| 764 | if (FLAG_precompiled_mode && FLAG_dwarf_stack_traces_mode) return; |
| 765 | #endif |
| 766 | const intptr_t name_index = |
| 767 | assembler()->object_pool_builder().FindObject(name); |
| 768 | code_source_map_builder_->NoteNullCheck(assembler()->CodeSize(), token_pos, |
| 769 | name_index); |
| 770 | } |
| 771 | |
| 772 | void FlowGraphCompiler::AddPcRelativeCallTarget(const Function& function, |
| 773 | Code::EntryKind entry_kind) { |
| 774 | ASSERT(function.IsZoneHandle()); |
| 775 | const auto entry_point = entry_kind == Code::EntryKind::kUnchecked |
| 776 | ? Code::kUncheckedEntry |
| 777 | : Code::kDefaultEntry; |
| 778 | static_calls_target_table_.Add(new (zone()) StaticCallsStruct( |
| 779 | Code::kPcRelativeCall, entry_point, assembler()->CodeSize(), &function, |
| 780 | nullptr, nullptr)); |
| 781 | } |
| 782 | |
| 783 | void FlowGraphCompiler::AddPcRelativeCallStubTarget(const Code& stub_code) { |
| 784 | ASSERT(stub_code.IsZoneHandle() || stub_code.IsReadOnlyHandle()); |
| 785 | ASSERT(!stub_code.IsNull()); |
| 786 | static_calls_target_table_.Add(new (zone()) StaticCallsStruct( |
| 787 | Code::kPcRelativeCall, Code::kDefaultEntry, assembler()->CodeSize(), |
| 788 | nullptr, &stub_code, nullptr)); |
| 789 | } |
| 790 | |
| 791 | void FlowGraphCompiler::AddPcRelativeTailCallStubTarget(const Code& stub_code) { |
| 792 | ASSERT(stub_code.IsZoneHandle() || stub_code.IsReadOnlyHandle()); |
| 793 | ASSERT(!stub_code.IsNull()); |
| 794 | static_calls_target_table_.Add(new (zone()) StaticCallsStruct( |
| 795 | Code::kPcRelativeTailCall, Code::kDefaultEntry, assembler()->CodeSize(), |
| 796 | nullptr, &stub_code, nullptr)); |
| 797 | } |
| 798 | |
| 799 | void FlowGraphCompiler::AddPcRelativeTTSCallTypeTarget( |
| 800 | const AbstractType& dst_type) { |
| 801 | ASSERT(dst_type.IsZoneHandle() || dst_type.IsReadOnlyHandle()); |
| 802 | ASSERT(!dst_type.IsNull()); |
| 803 | static_calls_target_table_.Add(new (zone()) StaticCallsStruct( |
| 804 | Code::kPcRelativeTTSCall, Code::kDefaultEntry, assembler()->CodeSize(), |
| 805 | nullptr, nullptr, &dst_type)); |
| 806 | } |
| 807 | |
| 808 | void FlowGraphCompiler::AddStaticCallTarget(const Function& func, |
| 809 | Code::EntryKind entry_kind) { |
| 810 | ASSERT(func.IsZoneHandle()); |
| 811 | const auto entry_point = entry_kind == Code::EntryKind::kUnchecked |
| 812 | ? Code::kUncheckedEntry |
| 813 | : Code::kDefaultEntry; |
| 814 | static_calls_target_table_.Add(new (zone()) StaticCallsStruct( |
| 815 | Code::kCallViaCode, entry_point, assembler()->CodeSize(), &func, nullptr, |
| 816 | nullptr)); |
| 817 | } |
| 818 | |
| 819 | void FlowGraphCompiler::AddStubCallTarget(const Code& code) { |
| 820 | ASSERT(code.IsZoneHandle() || code.IsReadOnlyHandle()); |
| 821 | static_calls_target_table_.Add(new (zone()) StaticCallsStruct( |
| 822 | Code::kCallViaCode, Code::kDefaultEntry, assembler()->CodeSize(), nullptr, |
| 823 | &code, nullptr)); |
| 824 | } |
| 825 | |
| 826 | void FlowGraphCompiler::AddDispatchTableCallTarget( |
| 827 | const compiler::TableSelector* selector) { |
| 828 | dispatch_table_call_targets_.Add(selector); |
| 829 | } |
| 830 | |
| 831 | CompilerDeoptInfo* FlowGraphCompiler::AddDeoptIndexAtCall(intptr_t deopt_id) { |
| 832 | ASSERT(is_optimizing()); |
| 833 | ASSERT(!intrinsic_mode()); |
| 834 | ASSERT(!FLAG_precompiled_mode); |
| 835 | CompilerDeoptInfo* info = |
| 836 | new (zone()) CompilerDeoptInfo(deopt_id, ICData::kDeoptAtCall, |
| 837 | 0, // No flags. |
| 838 | pending_deoptimization_env_); |
| 839 | info->set_pc_offset(assembler()->CodeSize()); |
| 840 | deopt_infos_.Add(info); |
| 841 | return info; |
| 842 | } |
| 843 | |
| 844 | CompilerDeoptInfo* FlowGraphCompiler::AddSlowPathDeoptInfo(intptr_t deopt_id, |
| 845 | Environment* env) { |
| 846 | ASSERT(deopt_id != DeoptId::kNone); |
| 847 | CompilerDeoptInfo* info = |
| 848 | new (zone()) CompilerDeoptInfo(deopt_id, ICData::kDeoptUnknown, 0, env); |
| 849 | info->set_pc_offset(assembler()->CodeSize()); |
| 850 | deopt_infos_.Add(info); |
| 851 | return info; |
| 852 | } |
| 853 | |
| 854 | // This function must be in sync with FlowGraphCompiler::SaveLiveRegisters |
| 855 | // and FlowGraphCompiler::SlowPathEnvironmentFor. |
| 856 | // See StackFrame::VisitObjectPointers for the details of how stack map is |
| 857 | // interpreted. |
| 858 | void FlowGraphCompiler::RecordSafepoint(LocationSummary* locs, |
| 859 | intptr_t slow_path_argument_count) { |
| 860 | if (is_optimizing() || locs->live_registers()->HasUntaggedValues()) { |
| 861 | const intptr_t spill_area_size = |
| 862 | is_optimizing() ? flow_graph_.graph_entry()->spill_slot_count() : 0; |
| 863 | |
| 864 | RegisterSet* registers = locs->live_registers(); |
| 865 | ASSERT(registers != NULL); |
| 866 | const intptr_t kFpuRegisterSpillFactor = |
| 867 | kFpuRegisterSize / compiler::target::kWordSize; |
| 868 | intptr_t saved_registers_size = 0; |
| 869 | const bool using_shared_stub = locs->call_on_shared_slow_path(); |
| 870 | if (using_shared_stub) { |
| 871 | saved_registers_size = |
| 872 | Utils::CountOneBitsWord(kDartAvailableCpuRegs) + |
| 873 | (registers->FpuRegisterCount() > 0 |
| 874 | ? kFpuRegisterSpillFactor * kNumberOfFpuRegisters |
| 875 | : 0) + |
| 876 | 1 /*saved PC*/; |
| 877 | } else { |
| 878 | saved_registers_size = |
| 879 | registers->CpuRegisterCount() + |
| 880 | (registers->FpuRegisterCount() * kFpuRegisterSpillFactor); |
| 881 | } |
| 882 | |
| 883 | BitmapBuilder* bitmap = locs->stack_bitmap(); |
| 884 | |
| 885 | // An instruction may have two safepoints in deferred code. The |
| 886 | // call to RecordSafepoint has the side-effect of appending the live |
| 887 | // registers to the bitmap. This is why the second call to RecordSafepoint |
| 888 | // with the same instruction (and same location summary) sees a bitmap that |
| 889 | // is larger that StackSize(). It will never be larger than StackSize() + |
| 890 | // unboxed_arg_bits_count + live_registers_size. |
| 891 | // The first safepoint will grow the bitmap to be the size of |
| 892 | // spill_area_size but the second safepoint will truncate the bitmap and |
| 893 | // append the bits for arguments and live registers to it again. |
| 894 | const intptr_t bitmap_previous_length = bitmap->Length(); |
| 895 | bitmap->SetLength(spill_area_size); |
| 896 | |
| 897 | intptr_t unboxed_arg_bits_count = 0; |
| 898 | |
| 899 | auto instr = current_instruction(); |
| 900 | const intptr_t args_count = instr->ArgumentCount(); |
| 901 | bool pushed_unboxed = false; |
| 902 | |
| 903 | for (intptr_t i = 0; i < args_count; i++) { |
| 904 | auto push_arg = |
| 905 | instr->ArgumentValueAt(i)->instruction()->AsPushArgument(); |
| 906 | switch (push_arg->representation()) { |
| 907 | case kUnboxedInt64: |
| 908 | bitmap->SetRange( |
| 909 | bitmap->Length(), |
| 910 | bitmap->Length() + compiler::target::kIntSpillFactor - 1, false); |
| 911 | unboxed_arg_bits_count += compiler::target::kIntSpillFactor; |
| 912 | pushed_unboxed = true; |
| 913 | break; |
| 914 | case kUnboxedDouble: |
| 915 | bitmap->SetRange( |
| 916 | bitmap->Length(), |
| 917 | bitmap->Length() + compiler::target::kDoubleSpillFactor - 1, |
| 918 | false); |
| 919 | unboxed_arg_bits_count += compiler::target::kDoubleSpillFactor; |
| 920 | pushed_unboxed = true; |
| 921 | break; |
| 922 | case kTagged: |
| 923 | if (!pushed_unboxed) { |
| 924 | // GC considers everything to be tagged between prefix of stack |
| 925 | // frame (spill area size) and postfix of stack frame (e.g. slow |
| 926 | // path arguments, shared pushed registers). |
| 927 | // From the first unboxed argument on we will include bits in the |
| 928 | // postfix. |
| 929 | continue; |
| 930 | } |
| 931 | bitmap->Set(bitmap->Length(), true); |
| 932 | unboxed_arg_bits_count++; |
| 933 | break; |
| 934 | default: |
| 935 | UNREACHABLE(); |
| 936 | break; |
| 937 | } |
| 938 | } |
| 939 | ASSERT(bitmap_previous_length <= |
| 940 | (spill_area_size + unboxed_arg_bits_count + saved_registers_size)); |
| 941 | |
| 942 | ASSERT(slow_path_argument_count == 0 || !using_shared_stub); |
| 943 | |
| 944 | // Mark the bits in the stack map in the same order we push registers in |
| 945 | // slow path code (see FlowGraphCompiler::SaveLiveRegisters). |
| 946 | // |
| 947 | // Slow path code can have registers at the safepoint. |
| 948 | if (!locs->always_calls() && !using_shared_stub) { |
| 949 | RegisterSet* regs = locs->live_registers(); |
| 950 | if (regs->FpuRegisterCount() > 0) { |
| 951 | // Denote FPU registers with 0 bits in the stackmap. Based on the |
| 952 | // assumption that there are normally few live FPU registers, this |
| 953 | // encoding is simpler and roughly as compact as storing a separate |
| 954 | // count of FPU registers. |
| 955 | // |
| 956 | // FPU registers have the highest register number at the highest |
| 957 | // address (i.e., first in the stackmap). |
| 958 | for (intptr_t i = kNumberOfFpuRegisters - 1; i >= 0; --i) { |
| 959 | FpuRegister reg = static_cast<FpuRegister>(i); |
| 960 | if (regs->ContainsFpuRegister(reg)) { |
| 961 | for (intptr_t j = 0; j < kFpuRegisterSpillFactor; ++j) { |
| 962 | bitmap->Set(bitmap->Length(), false); |
| 963 | } |
| 964 | } |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | // General purpose registers have the highest register number at the |
| 969 | // highest address (i.e., first in the stackmap). |
| 970 | for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; --i) { |
| 971 | Register reg = static_cast<Register>(i); |
| 972 | if (locs->live_registers()->ContainsRegister(reg)) { |
| 973 | bitmap->Set(bitmap->Length(), locs->live_registers()->IsTagged(reg)); |
| 974 | } |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | if (using_shared_stub) { |
| 979 | // To simplify the code in the shared stub, we create an untagged hole |
| 980 | // in the stack frame where the shared stub can leave the return address |
| 981 | // before saving registers. |
| 982 | bitmap->Set(bitmap->Length(), false); |
| 983 | if (registers->FpuRegisterCount() > 0) { |
| 984 | bitmap->SetRange(bitmap->Length(), |
| 985 | bitmap->Length() + |
| 986 | kNumberOfFpuRegisters * kFpuRegisterSpillFactor - |
| 987 | 1, |
| 988 | false); |
| 989 | } |
| 990 | for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; --i) { |
| 991 | if ((kReservedCpuRegisters & (1 << i)) != 0) continue; |
| 992 | const Register reg = static_cast<Register>(i); |
| 993 | bitmap->Set(bitmap->Length(), |
| 994 | locs->live_registers()->ContainsRegister(reg) && |
| 995 | locs->live_registers()->IsTagged(reg)); |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | // Arguments pushed after live registers in the slow path are tagged. |
| 1000 | for (intptr_t i = 0; i < slow_path_argument_count; ++i) { |
| 1001 | bitmap->Set(bitmap->Length(), true); |
| 1002 | } |
| 1003 | |
| 1004 | compressed_stackmaps_builder()->AddEntry(assembler()->CodeSize(), bitmap, |
| 1005 | spill_area_size); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | // This function must be kept in sync with: |
| 1010 | // |
| 1011 | // FlowGraphCompiler::RecordSafepoint |
| 1012 | // FlowGraphCompiler::SaveLiveRegisters |
| 1013 | // MaterializeObjectInstr::RemapRegisters |
| 1014 | // |
| 1015 | Environment* FlowGraphCompiler::SlowPathEnvironmentFor( |
| 1016 | Environment* env, |
| 1017 | LocationSummary* locs, |
| 1018 | intptr_t num_slow_path_args) { |
| 1019 | const bool using_shared_stub = locs->call_on_shared_slow_path(); |
| 1020 | const bool shared_stub_save_fpu_registers = |
| 1021 | using_shared_stub && locs->live_registers()->FpuRegisterCount() > 0; |
| 1022 | // TODO(sjindel): Modify logic below to account for slow-path args with shared |
| 1023 | // stubs. |
| 1024 | ASSERT(!using_shared_stub || num_slow_path_args == 0); |
| 1025 | if (env == nullptr) { |
| 1026 | // In AOT, environments can be removed by EliminateEnvironments pass |
| 1027 | // (if not in a try block). |
| 1028 | ASSERT(!is_optimizing() || FLAG_precompiled_mode); |
| 1029 | return nullptr; |
| 1030 | } |
| 1031 | |
| 1032 | Environment* slow_path_env = env->DeepCopy(zone()); |
| 1033 | // 1. Iterate the registers in the order they will be spilled to compute |
| 1034 | // the slots they will be spilled to. |
| 1035 | intptr_t next_slot = StackSize() + slow_path_env->CountArgsPushed(); |
| 1036 | if (using_shared_stub) { |
| 1037 | // The PC from the call to the shared stub is pushed here. |
| 1038 | next_slot++; |
| 1039 | } |
| 1040 | RegisterSet* regs = locs->live_registers(); |
| 1041 | intptr_t fpu_reg_slots[kNumberOfFpuRegisters]; |
| 1042 | intptr_t cpu_reg_slots[kNumberOfCpuRegisters]; |
| 1043 | const intptr_t kFpuRegisterSpillFactor = |
| 1044 | kFpuRegisterSize / compiler::target::kWordSize; |
| 1045 | // FPU registers are spilled first from highest to lowest register number. |
| 1046 | for (intptr_t i = kNumberOfFpuRegisters - 1; i >= 0; --i) { |
| 1047 | FpuRegister reg = static_cast<FpuRegister>(i); |
| 1048 | if (regs->ContainsFpuRegister(reg)) { |
| 1049 | // We use the lowest address (thus highest index) to identify a |
| 1050 | // multi-word spill slot. |
| 1051 | next_slot += kFpuRegisterSpillFactor; |
| 1052 | fpu_reg_slots[i] = (next_slot - 1); |
| 1053 | } else { |
| 1054 | if (using_shared_stub && shared_stub_save_fpu_registers) { |
| 1055 | next_slot += kFpuRegisterSpillFactor; |
| 1056 | } |
| 1057 | fpu_reg_slots[i] = -1; |
| 1058 | } |
| 1059 | } |
| 1060 | // General purpose registers are spilled from highest to lowest register |
| 1061 | // number. |
| 1062 | for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; --i) { |
| 1063 | if ((kReservedCpuRegisters & (1 << i)) != 0) continue; |
| 1064 | Register reg = static_cast<Register>(i); |
| 1065 | if (regs->ContainsRegister(reg)) { |
| 1066 | cpu_reg_slots[i] = next_slot++; |
| 1067 | } else { |
| 1068 | if (using_shared_stub) next_slot++; |
| 1069 | cpu_reg_slots[i] = -1; |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | // 2. Iterate the environment and replace register locations with the |
| 1074 | // corresponding spill slot locations. |
| 1075 | for (Environment::DeepIterator it(slow_path_env); !it.Done(); it.Advance()) { |
| 1076 | Location loc = it.CurrentLocation(); |
| 1077 | Value* value = it.CurrentValue(); |
| 1078 | it.SetCurrentLocation(LocationRemapForSlowPath( |
| 1079 | loc, value->definition(), cpu_reg_slots, fpu_reg_slots)); |
| 1080 | } |
| 1081 | |
| 1082 | return slow_path_env; |
| 1083 | } |
| 1084 | |
| 1085 | compiler::Label* FlowGraphCompiler::AddDeoptStub(intptr_t deopt_id, |
| 1086 | ICData::DeoptReasonId reason, |
| 1087 | uint32_t flags) { |
| 1088 | if (intrinsic_mode()) { |
| 1089 | return intrinsic_slow_path_label_; |
| 1090 | } |
| 1091 | |
| 1092 | // No deoptimization allowed when 'FLAG_precompiled_mode' is set. |
| 1093 | if (FLAG_precompiled_mode) { |
| 1094 | if (FLAG_trace_compiler) { |
| 1095 | THR_Print( |
| 1096 | "Retrying compilation %s, suppressing inlining of deopt_id:%" Pd "\n" , |
| 1097 | parsed_function_.function().ToFullyQualifiedCString(), deopt_id); |
| 1098 | } |
| 1099 | ASSERT(speculative_policy_->AllowsSpeculativeInlining()); |
| 1100 | ASSERT(deopt_id != 0); // longjmp must return non-zero value. |
| 1101 | Thread::Current()->long_jump_base()->Jump( |
| 1102 | deopt_id, Object::speculative_inlining_error()); |
| 1103 | } |
| 1104 | |
| 1105 | ASSERT(is_optimizing_); |
| 1106 | CompilerDeoptInfoWithStub* stub = new (zone()) CompilerDeoptInfoWithStub( |
| 1107 | deopt_id, reason, flags, pending_deoptimization_env_); |
| 1108 | deopt_infos_.Add(stub); |
| 1109 | return stub->entry_label(); |
| 1110 | } |
| 1111 | |
| 1112 | void FlowGraphCompiler::FinalizeExceptionHandlers(const Code& code) { |
| 1113 | ASSERT(exception_handlers_list_ != NULL); |
| 1114 | const ExceptionHandlers& handlers = ExceptionHandlers::Handle( |
| 1115 | exception_handlers_list_->FinalizeExceptionHandlers(code.PayloadStart())); |
| 1116 | code.set_exception_handlers(handlers); |
| 1117 | } |
| 1118 | |
| 1119 | void FlowGraphCompiler::FinalizePcDescriptors(const Code& code) { |
| 1120 | ASSERT(pc_descriptors_list_ != NULL); |
| 1121 | const PcDescriptors& descriptors = PcDescriptors::Handle( |
| 1122 | pc_descriptors_list_->FinalizePcDescriptors(code.PayloadStart())); |
| 1123 | if (!is_optimizing_) descriptors.Verify(parsed_function_.function()); |
| 1124 | code.set_pc_descriptors(descriptors); |
| 1125 | } |
| 1126 | |
| 1127 | ArrayPtr FlowGraphCompiler::CreateDeoptInfo(compiler::Assembler* assembler) { |
| 1128 | // No deopt information if we precompile (no deoptimization allowed). |
| 1129 | if (FLAG_precompiled_mode) { |
| 1130 | return Array::empty_array().raw(); |
| 1131 | } |
| 1132 | // For functions with optional arguments, all incoming arguments are copied |
| 1133 | // to spill slots. The deoptimization environment does not track them. |
| 1134 | const Function& function = parsed_function().function(); |
| 1135 | const intptr_t incoming_arg_count = |
| 1136 | function.HasOptionalParameters() ? 0 : function.num_fixed_parameters(); |
| 1137 | DeoptInfoBuilder builder(zone(), incoming_arg_count, assembler); |
| 1138 | |
| 1139 | intptr_t deopt_info_table_size = DeoptTable::SizeFor(deopt_infos_.length()); |
| 1140 | if (deopt_info_table_size == 0) { |
| 1141 | return Object::empty_array().raw(); |
| 1142 | } else { |
| 1143 | const Array& array = |
| 1144 | Array::Handle(Array::New(deopt_info_table_size, Heap::kOld)); |
| 1145 | Smi& offset = Smi::Handle(); |
| 1146 | TypedData& info = TypedData::Handle(); |
| 1147 | Smi& reason_and_flags = Smi::Handle(); |
| 1148 | for (intptr_t i = 0; i < deopt_infos_.length(); i++) { |
| 1149 | offset = Smi::New(deopt_infos_[i]->pc_offset()); |
| 1150 | info = deopt_infos_[i]->CreateDeoptInfo(this, &builder, array); |
| 1151 | reason_and_flags = DeoptTable::EncodeReasonAndFlags( |
| 1152 | deopt_infos_[i]->reason(), deopt_infos_[i]->flags()); |
| 1153 | DeoptTable::SetEntry(array, i, offset, info, reason_and_flags); |
| 1154 | } |
| 1155 | return array.raw(); |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | void FlowGraphCompiler::FinalizeStackMaps(const Code& code) { |
| 1160 | if (compressed_stackmaps_builder_ == NULL) { |
| 1161 | code.set_compressed_stackmaps( |
| 1162 | CompressedStackMaps::Handle(CompressedStackMaps::null())); |
| 1163 | } else { |
| 1164 | // Finalize the compressed stack maps and add it to the code object. |
| 1165 | const auto& maps = |
| 1166 | CompressedStackMaps::Handle(compressed_stackmaps_builder_->Finalize()); |
| 1167 | code.set_compressed_stackmaps(maps); |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | void FlowGraphCompiler::FinalizeVarDescriptors(const Code& code) { |
| 1172 | #if defined(PRODUCT) |
| 1173 | // No debugger: no var descriptors. |
| 1174 | #else |
| 1175 | if (code.is_optimized()) { |
| 1176 | // Optimized code does not need variable descriptors. They are |
| 1177 | // only stored in the unoptimized version. |
| 1178 | code.set_var_descriptors(Object::empty_var_descriptors()); |
| 1179 | return; |
| 1180 | } |
| 1181 | LocalVarDescriptors& var_descs = LocalVarDescriptors::Handle(); |
| 1182 | if (flow_graph().IsIrregexpFunction()) { |
| 1183 | // Eager local var descriptors computation for Irregexp function as it is |
| 1184 | // complicated to factor out. |
| 1185 | // TODO(srdjan): Consider canonicalizing and reusing the local var |
| 1186 | // descriptor for IrregexpFunction. |
| 1187 | ASSERT(parsed_function().scope() == nullptr); |
| 1188 | var_descs = LocalVarDescriptors::New(1); |
| 1189 | LocalVarDescriptorsLayout::VarInfo info; |
| 1190 | info.set_kind(LocalVarDescriptorsLayout::kSavedCurrentContext); |
| 1191 | info.scope_id = 0; |
| 1192 | info.begin_pos = TokenPosition::kMinSource; |
| 1193 | info.end_pos = TokenPosition::kMinSource; |
| 1194 | info.set_index(compiler::target::frame_layout.FrameSlotForVariable( |
| 1195 | parsed_function().current_context_var())); |
| 1196 | var_descs.SetVar(0, Symbols::CurrentContextVar(), &info); |
| 1197 | } |
| 1198 | code.set_var_descriptors(var_descs); |
| 1199 | #endif |
| 1200 | } |
| 1201 | |
| 1202 | void FlowGraphCompiler::FinalizeCatchEntryMovesMap(const Code& code) { |
| 1203 | #if defined(DART_PRECOMPILER) |
| 1204 | if (FLAG_precompiled_mode) { |
| 1205 | TypedData& maps = TypedData::Handle( |
| 1206 | catch_entry_moves_maps_builder_->FinalizeCatchEntryMovesMap()); |
| 1207 | code.set_catch_entry_moves_maps(maps); |
| 1208 | return; |
| 1209 | } |
| 1210 | #endif |
| 1211 | code.set_num_variables(flow_graph().variable_count()); |
| 1212 | } |
| 1213 | |
| 1214 | void FlowGraphCompiler::FinalizeStaticCallTargetsTable(const Code& code) { |
| 1215 | ASSERT(code.static_calls_target_table() == Array::null()); |
| 1216 | const auto& calls = static_calls_target_table_; |
| 1217 | const intptr_t array_length = calls.length() * Code::kSCallTableEntryLength; |
| 1218 | const auto& targets = |
| 1219 | Array::Handle(zone(), Array::New(array_length, Heap::kOld)); |
| 1220 | |
| 1221 | StaticCallsTable entries(targets); |
| 1222 | auto& kind_type_and_offset = Smi::Handle(zone()); |
| 1223 | for (intptr_t i = 0; i < calls.length(); i++) { |
| 1224 | auto entry = calls[i]; |
| 1225 | kind_type_and_offset = |
| 1226 | Smi::New(Code::KindField::encode(entry->call_kind) | |
| 1227 | Code::EntryPointField::encode(entry->entry_point) | |
| 1228 | Code::OffsetField::encode(entry->offset)); |
| 1229 | auto view = entries[i]; |
| 1230 | view.Set<Code::kSCallTableKindAndOffset>(kind_type_and_offset); |
| 1231 | const Object* target = nullptr; |
| 1232 | if (entry->function != nullptr) { |
| 1233 | target = entry->function; |
| 1234 | view.Set<Code::kSCallTableFunctionTarget>(*entry->function); |
| 1235 | } |
| 1236 | if (entry->code != nullptr) { |
| 1237 | ASSERT(target == nullptr); |
| 1238 | target = entry->code; |
| 1239 | view.Set<Code::kSCallTableCodeOrTypeTarget>(*entry->code); |
| 1240 | } |
| 1241 | if (entry->dst_type != nullptr) { |
| 1242 | ASSERT(target == nullptr); |
| 1243 | view.Set<Code::kSCallTableCodeOrTypeTarget>(*entry->dst_type); |
| 1244 | } |
| 1245 | } |
| 1246 | code.set_static_calls_target_table(targets); |
| 1247 | } |
| 1248 | |
| 1249 | void FlowGraphCompiler::FinalizeCodeSourceMap(const Code& code) { |
| 1250 | const Array& inlined_id_array = |
| 1251 | Array::Handle(zone(), code_source_map_builder_->InliningIdToFunction()); |
| 1252 | code.set_inlined_id_to_function(inlined_id_array); |
| 1253 | |
| 1254 | const CodeSourceMap& map = |
| 1255 | CodeSourceMap::Handle(code_source_map_builder_->Finalize()); |
| 1256 | code.set_code_source_map(map); |
| 1257 | |
| 1258 | #if defined(DEBUG) |
| 1259 | // Force simulation through the last pc offset. This checks we can decode |
| 1260 | // the whole CodeSourceMap without hitting an unknown opcode, stack underflow, |
| 1261 | // etc. |
| 1262 | GrowableArray<const Function*> fs; |
| 1263 | GrowableArray<TokenPosition> tokens; |
| 1264 | code.GetInlinedFunctionsAtInstruction(code.Size() - 1, &fs, &tokens); |
| 1265 | #endif |
| 1266 | } |
| 1267 | |
| 1268 | // Returns 'true' if regular code generation should be skipped. |
| 1269 | bool FlowGraphCompiler::TryIntrinsify() { |
| 1270 | if (TryIntrinsifyHelper()) { |
| 1271 | fully_intrinsified_ = true; |
| 1272 | return true; |
| 1273 | } |
| 1274 | return false; |
| 1275 | } |
| 1276 | |
| 1277 | bool FlowGraphCompiler::TryIntrinsifyHelper() { |
| 1278 | compiler::Label exit; |
| 1279 | set_intrinsic_slow_path_label(&exit); |
| 1280 | |
| 1281 | if (FLAG_intrinsify) { |
| 1282 | const auto& function = parsed_function().function(); |
| 1283 | if (function.IsMethodExtractor()) { |
| 1284 | #if !defined(TARGET_ARCH_IA32) |
| 1285 | auto& = |
| 1286 | Function::ZoneHandle(function.extracted_method_closure()); |
| 1287 | auto& klass = Class::Handle(extracted_method.Owner()); |
| 1288 | const intptr_t type_arguments_field_offset = |
| 1289 | compiler::target::Class::HasTypeArgumentsField(klass) |
| 1290 | ? (compiler::target::Class::TypeArgumentsFieldOffset(klass) - |
| 1291 | kHeapObjectTag) |
| 1292 | : 0; |
| 1293 | |
| 1294 | SpecialStatsBegin(CombinedCodeStatistics::kTagIntrinsics); |
| 1295 | GenerateMethodExtractorIntrinsic(extracted_method, |
| 1296 | type_arguments_field_offset); |
| 1297 | SpecialStatsEnd(CombinedCodeStatistics::kTagIntrinsics); |
| 1298 | return true; |
| 1299 | #endif // !defined(TARGET_ARCH_IA32) |
| 1300 | } |
| 1301 | } |
| 1302 | |
| 1303 | EnterIntrinsicMode(); |
| 1304 | |
| 1305 | SpecialStatsBegin(CombinedCodeStatistics::kTagIntrinsics); |
| 1306 | bool complete = compiler::Intrinsifier::Intrinsify(parsed_function(), this); |
| 1307 | SpecialStatsEnd(CombinedCodeStatistics::kTagIntrinsics); |
| 1308 | |
| 1309 | ExitIntrinsicMode(); |
| 1310 | |
| 1311 | // "Deoptimization" from intrinsic continues here. All deoptimization |
| 1312 | // branches from intrinsic code redirect to here where the slow-path |
| 1313 | // (normal function body) starts. |
| 1314 | // This means that there must not be any side-effects in intrinsic code |
| 1315 | // before any deoptimization point. |
| 1316 | assembler()->Bind(intrinsic_slow_path_label()); |
| 1317 | set_intrinsic_slow_path_label(nullptr); |
| 1318 | return complete; |
| 1319 | } |
| 1320 | |
| 1321 | void FlowGraphCompiler::GenerateStubCall(TokenPosition token_pos, |
| 1322 | const Code& stub, |
| 1323 | PcDescriptorsLayout::Kind kind, |
| 1324 | LocationSummary* locs, |
| 1325 | intptr_t deopt_id, |
| 1326 | Environment* env) { |
| 1327 | EmitCallToStub(stub); |
| 1328 | EmitCallsiteMetadata(token_pos, deopt_id, kind, locs, env); |
| 1329 | } |
| 1330 | |
| 1331 | static const Code& StubEntryFor(const ICData& ic_data, bool optimized) { |
| 1332 | switch (ic_data.NumArgsTested()) { |
| 1333 | case 1: |
| 1334 | #if defined(TARGET_ARCH_X64) |
| 1335 | if (ic_data.is_tracking_exactness()) { |
| 1336 | if (optimized) { |
| 1337 | return StubCode::OneArgOptimizedCheckInlineCacheWithExactnessCheck(); |
| 1338 | } else { |
| 1339 | return StubCode::OneArgCheckInlineCacheWithExactnessCheck(); |
| 1340 | } |
| 1341 | } |
| 1342 | #else |
| 1343 | // TODO(dartbug.com/34170) Port exactness tracking to other platforms. |
| 1344 | ASSERT(!ic_data.is_tracking_exactness()); |
| 1345 | #endif |
| 1346 | return optimized ? StubCode::OneArgOptimizedCheckInlineCache() |
| 1347 | : StubCode::OneArgCheckInlineCache(); |
| 1348 | case 2: |
| 1349 | ASSERT(!ic_data.is_tracking_exactness()); |
| 1350 | return optimized ? StubCode::TwoArgsOptimizedCheckInlineCache() |
| 1351 | : StubCode::TwoArgsCheckInlineCache(); |
| 1352 | default: |
| 1353 | ic_data.Print(); |
| 1354 | UNIMPLEMENTED(); |
| 1355 | return Code::Handle(); |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | void FlowGraphCompiler::GenerateInstanceCall(intptr_t deopt_id, |
| 1360 | TokenPosition token_pos, |
| 1361 | LocationSummary* locs, |
| 1362 | const ICData& ic_data_in, |
| 1363 | Code::EntryKind entry_kind, |
| 1364 | bool receiver_can_be_smi) { |
| 1365 | ICData& ic_data = ICData::ZoneHandle(ic_data_in.Original()); |
| 1366 | if (FLAG_precompiled_mode) { |
| 1367 | ic_data = ic_data.AsUnaryClassChecks(); |
| 1368 | EmitInstanceCallAOT(ic_data, deopt_id, token_pos, locs, entry_kind, |
| 1369 | receiver_can_be_smi); |
| 1370 | return; |
| 1371 | } |
| 1372 | ASSERT(!ic_data.IsNull()); |
| 1373 | if (is_optimizing() && (ic_data_in.NumberOfUsedChecks() == 0)) { |
| 1374 | // Emit IC call that will count and thus may need reoptimization at |
| 1375 | // function entry. |
| 1376 | ASSERT(may_reoptimize() || flow_graph().IsCompiledForOsr()); |
| 1377 | EmitOptimizedInstanceCall(StubEntryFor(ic_data, /*optimized=*/true), |
| 1378 | ic_data, deopt_id, token_pos, locs, entry_kind); |
| 1379 | return; |
| 1380 | } |
| 1381 | |
| 1382 | if (is_optimizing()) { |
| 1383 | EmitMegamorphicInstanceCall(ic_data_in, deopt_id, token_pos, locs, |
| 1384 | kInvalidTryIndex); |
| 1385 | return; |
| 1386 | } |
| 1387 | |
| 1388 | EmitInstanceCallJIT(StubEntryFor(ic_data, /*optimized=*/false), ic_data, |
| 1389 | deopt_id, token_pos, locs, entry_kind); |
| 1390 | } |
| 1391 | |
| 1392 | void FlowGraphCompiler::GenerateStaticCall(intptr_t deopt_id, |
| 1393 | TokenPosition token_pos, |
| 1394 | const Function& function, |
| 1395 | ArgumentsInfo args_info, |
| 1396 | LocationSummary* locs, |
| 1397 | const ICData& ic_data_in, |
| 1398 | ICData::RebindRule rebind_rule, |
| 1399 | Code::EntryKind entry_kind) { |
| 1400 | const ICData& ic_data = ICData::ZoneHandle(ic_data_in.Original()); |
| 1401 | const Array& arguments_descriptor = Array::ZoneHandle( |
| 1402 | zone(), ic_data.IsNull() ? args_info.ToArgumentsDescriptor() |
| 1403 | : ic_data.arguments_descriptor()); |
| 1404 | ASSERT(ArgumentsDescriptor(arguments_descriptor).TypeArgsLen() == |
| 1405 | args_info.type_args_len); |
| 1406 | ASSERT(ArgumentsDescriptor(arguments_descriptor).Count() == |
| 1407 | args_info.count_without_type_args); |
| 1408 | ASSERT(ArgumentsDescriptor(arguments_descriptor).Size() == |
| 1409 | args_info.size_without_type_args); |
| 1410 | // Force-optimized functions lack the deopt info which allows patching of |
| 1411 | // optimized static calls. |
| 1412 | if (is_optimizing() && (!ForcedOptimization() || FLAG_precompiled_mode)) { |
| 1413 | EmitOptimizedStaticCall(function, arguments_descriptor, |
| 1414 | args_info.size_with_type_args, deopt_id, token_pos, |
| 1415 | locs, entry_kind); |
| 1416 | } else { |
| 1417 | ICData& call_ic_data = ICData::ZoneHandle(zone(), ic_data.raw()); |
| 1418 | if (call_ic_data.IsNull()) { |
| 1419 | const intptr_t kNumArgsChecked = 0; |
| 1420 | call_ic_data = |
| 1421 | GetOrAddStaticCallICData(deopt_id, function, arguments_descriptor, |
| 1422 | kNumArgsChecked, rebind_rule) |
| 1423 | ->raw(); |
| 1424 | call_ic_data = call_ic_data.Original(); |
| 1425 | } |
| 1426 | AddCurrentDescriptor(PcDescriptorsLayout::kRewind, deopt_id, token_pos); |
| 1427 | EmitUnoptimizedStaticCall(args_info.size_with_type_args, deopt_id, |
| 1428 | token_pos, locs, call_ic_data, entry_kind); |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | void FlowGraphCompiler::GenerateNumberTypeCheck( |
| 1433 | Register class_id_reg, |
| 1434 | const AbstractType& type, |
| 1435 | compiler::Label* is_instance_lbl, |
| 1436 | compiler::Label* is_not_instance_lbl) { |
| 1437 | assembler()->Comment("NumberTypeCheck" ); |
| 1438 | GrowableArray<intptr_t> args; |
| 1439 | if (type.IsNumberType()) { |
| 1440 | args.Add(kDoubleCid); |
| 1441 | args.Add(kMintCid); |
| 1442 | } else if (type.IsIntType()) { |
| 1443 | args.Add(kMintCid); |
| 1444 | } else if (type.IsDoubleType()) { |
| 1445 | args.Add(kDoubleCid); |
| 1446 | } |
| 1447 | CheckClassIds(class_id_reg, args, is_instance_lbl, is_not_instance_lbl); |
| 1448 | } |
| 1449 | |
| 1450 | void FlowGraphCompiler::GenerateStringTypeCheck( |
| 1451 | Register class_id_reg, |
| 1452 | compiler::Label* is_instance_lbl, |
| 1453 | compiler::Label* is_not_instance_lbl) { |
| 1454 | assembler()->Comment("StringTypeCheck" ); |
| 1455 | GrowableArray<intptr_t> args; |
| 1456 | args.Add(kOneByteStringCid); |
| 1457 | args.Add(kTwoByteStringCid); |
| 1458 | args.Add(kExternalOneByteStringCid); |
| 1459 | args.Add(kExternalTwoByteStringCid); |
| 1460 | CheckClassIds(class_id_reg, args, is_instance_lbl, is_not_instance_lbl); |
| 1461 | } |
| 1462 | |
| 1463 | void FlowGraphCompiler::GenerateListTypeCheck( |
| 1464 | Register class_id_reg, |
| 1465 | compiler::Label* is_instance_lbl) { |
| 1466 | assembler()->Comment("ListTypeCheck" ); |
| 1467 | compiler::Label unknown; |
| 1468 | GrowableArray<intptr_t> args; |
| 1469 | args.Add(kArrayCid); |
| 1470 | args.Add(kGrowableObjectArrayCid); |
| 1471 | args.Add(kImmutableArrayCid); |
| 1472 | CheckClassIds(class_id_reg, args, is_instance_lbl, &unknown); |
| 1473 | assembler()->Bind(&unknown); |
| 1474 | } |
| 1475 | |
| 1476 | void FlowGraphCompiler::(Instruction* instr) { |
| 1477 | if (!FLAG_support_il_printer || !FLAG_support_disassembler) { |
| 1478 | return; |
| 1479 | } |
| 1480 | #ifndef PRODUCT |
| 1481 | char buffer[256]; |
| 1482 | BufferFormatter f(buffer, sizeof(buffer)); |
| 1483 | instr->PrintTo(&f); |
| 1484 | assembler()->Comment("%s" , buffer); |
| 1485 | #endif |
| 1486 | } |
| 1487 | |
| 1488 | bool FlowGraphCompiler::NeedsEdgeCounter(BlockEntryInstr* block) { |
| 1489 | // Only emit an edge counter if there is not goto at the end of the block, |
| 1490 | // except for the entry block. |
| 1491 | return FLAG_reorder_basic_blocks && |
| 1492 | (!block->last_instruction()->IsGoto() || block->IsFunctionEntry()); |
| 1493 | } |
| 1494 | |
| 1495 | // Allocate a register that is not explictly blocked. |
| 1496 | static Register AllocateFreeRegister(bool* blocked_registers) { |
| 1497 | for (intptr_t regno = 0; regno < kNumberOfCpuRegisters; regno++) { |
| 1498 | if (!blocked_registers[regno]) { |
| 1499 | blocked_registers[regno] = true; |
| 1500 | return static_cast<Register>(regno); |
| 1501 | } |
| 1502 | } |
| 1503 | UNREACHABLE(); |
| 1504 | return kNoRegister; |
| 1505 | } |
| 1506 | |
| 1507 | void FlowGraphCompiler::AllocateRegistersLocally(Instruction* instr) { |
| 1508 | ASSERT(!is_optimizing()); |
| 1509 | instr->InitializeLocationSummary(zone(), false); // Not optimizing. |
| 1510 | |
| 1511 | LocationSummary* locs = instr->locs(); |
| 1512 | |
| 1513 | bool blocked_registers[kNumberOfCpuRegisters]; |
| 1514 | |
| 1515 | // Connect input with peephole output for some special cases. All other |
| 1516 | // cases are handled by simply allocating registers and generating code. |
| 1517 | if (top_of_stack_ != nullptr) { |
| 1518 | const intptr_t p = locs->input_count() - 1; |
| 1519 | Location peephole = top_of_stack_->locs()->out(0); |
| 1520 | if (locs->in(p).IsUnallocated() || locs->in(p).IsConstant()) { |
| 1521 | // If input is unallocated, match with an output register, if set. Also, |
| 1522 | // if input is a direct constant, but the peephole output is a register, |
| 1523 | // use that register to avoid wasting the already generated code. |
| 1524 | if (peephole.IsRegister()) { |
| 1525 | locs->set_in(p, Location::RegisterLocation(peephole.reg())); |
| 1526 | } |
| 1527 | } |
| 1528 | } |
| 1529 | |
| 1530 | // Block all registers globally reserved by the assembler, etc and mark |
| 1531 | // the rest as free. |
| 1532 | for (intptr_t i = 0; i < kNumberOfCpuRegisters; i++) { |
| 1533 | blocked_registers[i] = (kDartAvailableCpuRegs & (1 << i)) == 0; |
| 1534 | } |
| 1535 | |
| 1536 | // Mark all fixed input, temp and output registers as used. |
| 1537 | for (intptr_t i = 0; i < locs->input_count(); i++) { |
| 1538 | Location loc = locs->in(i); |
| 1539 | if (loc.IsRegister()) { |
| 1540 | // Check that a register is not specified twice in the summary. |
| 1541 | ASSERT(!blocked_registers[loc.reg()]); |
| 1542 | blocked_registers[loc.reg()] = true; |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | for (intptr_t i = 0; i < locs->temp_count(); i++) { |
| 1547 | Location loc = locs->temp(i); |
| 1548 | if (loc.IsRegister()) { |
| 1549 | // Check that a register is not specified twice in the summary. |
| 1550 | ASSERT(!blocked_registers[loc.reg()]); |
| 1551 | blocked_registers[loc.reg()] = true; |
| 1552 | } |
| 1553 | } |
| 1554 | |
| 1555 | if (locs->out(0).IsRegister()) { |
| 1556 | // Fixed output registers are allowed to overlap with |
| 1557 | // temps and inputs. |
| 1558 | blocked_registers[locs->out(0).reg()] = true; |
| 1559 | } |
| 1560 | |
| 1561 | // Allocate all unallocated input locations. |
| 1562 | const bool should_pop = !instr->IsPushArgument(); |
| 1563 | for (intptr_t i = locs->input_count() - 1; i >= 0; i--) { |
| 1564 | Location loc = locs->in(i); |
| 1565 | Register reg = kNoRegister; |
| 1566 | if (loc.IsRegister()) { |
| 1567 | reg = loc.reg(); |
| 1568 | } else if (loc.IsUnallocated()) { |
| 1569 | ASSERT((loc.policy() == Location::kRequiresRegister) || |
| 1570 | (loc.policy() == Location::kWritableRegister) || |
| 1571 | (loc.policy() == Location::kPrefersRegister) || |
| 1572 | (loc.policy() == Location::kAny)); |
| 1573 | reg = AllocateFreeRegister(blocked_registers); |
| 1574 | locs->set_in(i, Location::RegisterLocation(reg)); |
| 1575 | } |
| 1576 | ASSERT(reg != kNoRegister || loc.IsConstant()); |
| 1577 | |
| 1578 | // Inputs are consumed from the simulated frame (or a peephole push/pop). |
| 1579 | // In case of a call argument we leave it until the call instruction. |
| 1580 | if (should_pop) { |
| 1581 | if (top_of_stack_ != nullptr) { |
| 1582 | if (!loc.IsConstant()) { |
| 1583 | // Moves top of stack location of the peephole into the required |
| 1584 | // input. None of the required moves needs a temp register allocator. |
| 1585 | EmitMove(locs->in(i), top_of_stack_->locs()->out(0), nullptr); |
| 1586 | } |
| 1587 | top_of_stack_ = nullptr; // consumed! |
| 1588 | } else if (loc.IsConstant()) { |
| 1589 | assembler()->Drop(1); |
| 1590 | } else { |
| 1591 | assembler()->PopRegister(reg); |
| 1592 | } |
| 1593 | } |
| 1594 | } |
| 1595 | |
| 1596 | // Allocate all unallocated temp locations. |
| 1597 | for (intptr_t i = 0; i < locs->temp_count(); i++) { |
| 1598 | Location loc = locs->temp(i); |
| 1599 | if (loc.IsUnallocated()) { |
| 1600 | ASSERT(loc.policy() == Location::kRequiresRegister); |
| 1601 | loc = Location::RegisterLocation(AllocateFreeRegister(blocked_registers)); |
| 1602 | locs->set_temp(i, loc); |
| 1603 | } |
| 1604 | } |
| 1605 | |
| 1606 | Location result_location = locs->out(0); |
| 1607 | if (result_location.IsUnallocated()) { |
| 1608 | switch (result_location.policy()) { |
| 1609 | case Location::kAny: |
| 1610 | case Location::kPrefersRegister: |
| 1611 | case Location::kRequiresRegister: |
| 1612 | case Location::kWritableRegister: |
| 1613 | result_location = |
| 1614 | Location::RegisterLocation(AllocateFreeRegister(blocked_registers)); |
| 1615 | break; |
| 1616 | case Location::kSameAsFirstInput: |
| 1617 | result_location = locs->in(0); |
| 1618 | break; |
| 1619 | case Location::kRequiresFpuRegister: |
| 1620 | UNREACHABLE(); |
| 1621 | break; |
| 1622 | } |
| 1623 | locs->set_out(0, result_location); |
| 1624 | } |
| 1625 | } |
| 1626 | |
| 1627 | static uword RegMaskBit(Register reg) { |
| 1628 | return ((reg) != kNoRegister) ? (1 << (reg)) : 0; |
| 1629 | } |
| 1630 | |
| 1631 | ParallelMoveResolver::ParallelMoveResolver(FlowGraphCompiler* compiler) |
| 1632 | : compiler_(compiler), moves_(32) {} |
| 1633 | |
| 1634 | void ParallelMoveResolver::EmitNativeCode(ParallelMoveInstr* parallel_move) { |
| 1635 | ASSERT(moves_.is_empty()); |
| 1636 | // Build up a worklist of moves. |
| 1637 | BuildInitialMoveList(parallel_move); |
| 1638 | |
| 1639 | for (int i = 0; i < moves_.length(); ++i) { |
| 1640 | const MoveOperands& move = *moves_[i]; |
| 1641 | // Skip constants to perform them last. They don't block other moves |
| 1642 | // and skipping such moves with register destinations keeps those |
| 1643 | // registers free for the whole algorithm. |
| 1644 | if (!move.IsEliminated() && !move.src().IsConstant()) PerformMove(i); |
| 1645 | } |
| 1646 | |
| 1647 | // Perform the moves with constant sources. |
| 1648 | for (int i = 0; i < moves_.length(); ++i) { |
| 1649 | const MoveOperands& move = *moves_[i]; |
| 1650 | if (!move.IsEliminated()) { |
| 1651 | ASSERT(move.src().IsConstant()); |
| 1652 | compiler_->BeginCodeSourceRange(); |
| 1653 | EmitMove(i); |
| 1654 | compiler_->EndCodeSourceRange(TokenPosition::kParallelMove); |
| 1655 | } |
| 1656 | } |
| 1657 | |
| 1658 | moves_.Clear(); |
| 1659 | } |
| 1660 | |
| 1661 | void ParallelMoveResolver::BuildInitialMoveList( |
| 1662 | ParallelMoveInstr* parallel_move) { |
| 1663 | // Perform a linear sweep of the moves to add them to the initial list of |
| 1664 | // moves to perform, ignoring any move that is redundant (the source is |
| 1665 | // the same as the destination, the destination is ignored and |
| 1666 | // unallocated, or the move was already eliminated). |
| 1667 | for (int i = 0; i < parallel_move->NumMoves(); i++) { |
| 1668 | MoveOperands* move = parallel_move->MoveOperandsAt(i); |
| 1669 | if (!move->IsRedundant()) moves_.Add(move); |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | void ParallelMoveResolver::PerformMove(int index) { |
| 1674 | // Each call to this function performs a move and deletes it from the move |
| 1675 | // graph. We first recursively perform any move blocking this one. We |
| 1676 | // mark a move as "pending" on entry to PerformMove in order to detect |
| 1677 | // cycles in the move graph. We use operand swaps to resolve cycles, |
| 1678 | // which means that a call to PerformMove could change any source operand |
| 1679 | // in the move graph. |
| 1680 | |
| 1681 | ASSERT(!moves_[index]->IsPending()); |
| 1682 | ASSERT(!moves_[index]->IsRedundant()); |
| 1683 | |
| 1684 | // Clear this move's destination to indicate a pending move. The actual |
| 1685 | // destination is saved in a stack-allocated local. Recursion may allow |
| 1686 | // multiple moves to be pending. |
| 1687 | ASSERT(!moves_[index]->src().IsInvalid()); |
| 1688 | Location destination = moves_[index]->MarkPending(); |
| 1689 | |
| 1690 | // Perform a depth-first traversal of the move graph to resolve |
| 1691 | // dependencies. Any unperformed, unpending move with a source the same |
| 1692 | // as this one's destination blocks this one so recursively perform all |
| 1693 | // such moves. |
| 1694 | for (int i = 0; i < moves_.length(); ++i) { |
| 1695 | const MoveOperands& other_move = *moves_[i]; |
| 1696 | if (other_move.Blocks(destination) && !other_move.IsPending()) { |
| 1697 | // Though PerformMove can change any source operand in the move graph, |
| 1698 | // this call cannot create a blocking move via a swap (this loop does |
| 1699 | // not miss any). Assume there is a non-blocking move with source A |
| 1700 | // and this move is blocked on source B and there is a swap of A and |
| 1701 | // B. Then A and B must be involved in the same cycle (or they would |
| 1702 | // not be swapped). Since this move's destination is B and there is |
| 1703 | // only a single incoming edge to an operand, this move must also be |
| 1704 | // involved in the same cycle. In that case, the blocking move will |
| 1705 | // be created but will be "pending" when we return from PerformMove. |
| 1706 | PerformMove(i); |
| 1707 | } |
| 1708 | } |
| 1709 | |
| 1710 | // We are about to resolve this move and don't need it marked as |
| 1711 | // pending, so restore its destination. |
| 1712 | moves_[index]->ClearPending(destination); |
| 1713 | |
| 1714 | // This move's source may have changed due to swaps to resolve cycles and |
| 1715 | // so it may now be the last move in the cycle. If so remove it. |
| 1716 | if (moves_[index]->src().Equals(destination)) { |
| 1717 | moves_[index]->Eliminate(); |
| 1718 | return; |
| 1719 | } |
| 1720 | |
| 1721 | // The move may be blocked on a (at most one) pending move, in which case |
| 1722 | // we have a cycle. Search for such a blocking move and perform a swap to |
| 1723 | // resolve it. |
| 1724 | for (int i = 0; i < moves_.length(); ++i) { |
| 1725 | const MoveOperands& other_move = *moves_[i]; |
| 1726 | if (other_move.Blocks(destination)) { |
| 1727 | ASSERT(other_move.IsPending()); |
| 1728 | compiler_->BeginCodeSourceRange(); |
| 1729 | EmitSwap(index); |
| 1730 | compiler_->EndCodeSourceRange(TokenPosition::kParallelMove); |
| 1731 | return; |
| 1732 | } |
| 1733 | } |
| 1734 | |
| 1735 | // This move is not blocked. |
| 1736 | compiler_->BeginCodeSourceRange(); |
| 1737 | EmitMove(index); |
| 1738 | compiler_->EndCodeSourceRange(TokenPosition::kParallelMove); |
| 1739 | } |
| 1740 | |
| 1741 | void ParallelMoveResolver::EmitMove(int index) { |
| 1742 | MoveOperands* const move = moves_[index]; |
| 1743 | const Location dst = move->dest(); |
| 1744 | if (dst.IsStackSlot() || dst.IsDoubleStackSlot()) { |
| 1745 | ASSERT((dst.base_reg() != FPREG) || |
| 1746 | ((-compiler::target::frame_layout.VariableIndexForFrameSlot( |
| 1747 | dst.stack_index())) < compiler_->StackSize())); |
| 1748 | } |
| 1749 | const Location src = move->src(); |
| 1750 | ParallelMoveResolver::TemporaryAllocator temp(this, /*blocked=*/kNoRegister); |
| 1751 | compiler_->EmitMove(dst, src, &temp); |
| 1752 | #if defined(DEBUG) |
| 1753 | // Allocating a scratch register here may cause stack spilling. Neither the |
| 1754 | // source nor destination register should be SP-relative in that case. |
| 1755 | for (const Location& loc : {dst, src}) { |
| 1756 | ASSERT(!temp.DidAllocateTemporary() || !loc.HasStackIndex() || |
| 1757 | loc.base_reg() != SPREG); |
| 1758 | } |
| 1759 | #endif |
| 1760 | move->Eliminate(); |
| 1761 | } |
| 1762 | |
| 1763 | bool ParallelMoveResolver::IsScratchLocation(Location loc) { |
| 1764 | for (int i = 0; i < moves_.length(); ++i) { |
| 1765 | if (moves_[i]->Blocks(loc)) { |
| 1766 | return false; |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | for (int i = 0; i < moves_.length(); ++i) { |
| 1771 | if (moves_[i]->dest().Equals(loc)) { |
| 1772 | return true; |
| 1773 | } |
| 1774 | } |
| 1775 | |
| 1776 | return false; |
| 1777 | } |
| 1778 | |
| 1779 | intptr_t ParallelMoveResolver::AllocateScratchRegister( |
| 1780 | Location::Kind kind, |
| 1781 | uword blocked_mask, |
| 1782 | intptr_t first_free_register, |
| 1783 | intptr_t last_free_register, |
| 1784 | bool* spilled) { |
| 1785 | COMPILE_ASSERT(static_cast<intptr_t>(sizeof(blocked_mask)) * kBitsPerByte >= |
| 1786 | kNumberOfFpuRegisters); |
| 1787 | COMPILE_ASSERT(static_cast<intptr_t>(sizeof(blocked_mask)) * kBitsPerByte >= |
| 1788 | kNumberOfCpuRegisters); |
| 1789 | intptr_t scratch = -1; |
| 1790 | for (intptr_t reg = first_free_register; reg <= last_free_register; reg++) { |
| 1791 | if ((((1 << reg) & blocked_mask) == 0) && |
| 1792 | IsScratchLocation(Location::MachineRegisterLocation(kind, reg))) { |
| 1793 | scratch = reg; |
| 1794 | break; |
| 1795 | } |
| 1796 | } |
| 1797 | |
| 1798 | if (scratch == -1) { |
| 1799 | *spilled = true; |
| 1800 | for (intptr_t reg = first_free_register; reg <= last_free_register; reg++) { |
| 1801 | if (((1 << reg) & blocked_mask) == 0) { |
| 1802 | scratch = reg; |
| 1803 | break; |
| 1804 | } |
| 1805 | } |
| 1806 | } else { |
| 1807 | *spilled = false; |
| 1808 | } |
| 1809 | |
| 1810 | return scratch; |
| 1811 | } |
| 1812 | |
| 1813 | ParallelMoveResolver::ScratchFpuRegisterScope::ScratchFpuRegisterScope( |
| 1814 | ParallelMoveResolver* resolver, |
| 1815 | FpuRegister blocked) |
| 1816 | : resolver_(resolver), reg_(kNoFpuRegister), spilled_(false) { |
| 1817 | COMPILE_ASSERT(FpuTMP != kNoFpuRegister); |
| 1818 | uword blocked_mask = |
| 1819 | ((blocked != kNoFpuRegister) ? 1 << blocked : 0) | 1 << FpuTMP; |
| 1820 | reg_ = static_cast<FpuRegister>(resolver_->AllocateScratchRegister( |
| 1821 | Location::kFpuRegister, blocked_mask, 0, kNumberOfFpuRegisters - 1, |
| 1822 | &spilled_)); |
| 1823 | |
| 1824 | if (spilled_) { |
| 1825 | resolver->SpillFpuScratch(reg_); |
| 1826 | } |
| 1827 | } |
| 1828 | |
| 1829 | ParallelMoveResolver::ScratchFpuRegisterScope::~ScratchFpuRegisterScope() { |
| 1830 | if (spilled_) { |
| 1831 | resolver_->RestoreFpuScratch(reg_); |
| 1832 | } |
| 1833 | } |
| 1834 | |
| 1835 | ParallelMoveResolver::TemporaryAllocator::TemporaryAllocator( |
| 1836 | ParallelMoveResolver* resolver, |
| 1837 | Register blocked) |
| 1838 | : resolver_(resolver), |
| 1839 | blocked_(blocked), |
| 1840 | reg_(kNoRegister), |
| 1841 | spilled_(false) {} |
| 1842 | |
| 1843 | Register ParallelMoveResolver::TemporaryAllocator::AllocateTemporary() { |
| 1844 | ASSERT(reg_ == kNoRegister); |
| 1845 | |
| 1846 | uword blocked_mask = RegMaskBit(blocked_) | kReservedCpuRegisters; |
| 1847 | if (resolver_->compiler_->intrinsic_mode()) { |
| 1848 | // Block additional registers that must be preserved for intrinsics. |
| 1849 | blocked_mask |= RegMaskBit(ARGS_DESC_REG); |
| 1850 | #if !defined(TARGET_ARCH_IA32) |
| 1851 | // Need to preserve CODE_REG to be able to store the PC marker |
| 1852 | // and load the pool pointer. |
| 1853 | blocked_mask |= RegMaskBit(CODE_REG); |
| 1854 | #endif |
| 1855 | } |
| 1856 | reg_ = static_cast<Register>( |
| 1857 | resolver_->AllocateScratchRegister(Location::kRegister, blocked_mask, 0, |
| 1858 | kNumberOfCpuRegisters - 1, &spilled_)); |
| 1859 | |
| 1860 | if (spilled_) { |
| 1861 | resolver_->SpillScratch(reg_); |
| 1862 | } |
| 1863 | |
| 1864 | DEBUG_ONLY(allocated_ = true;) |
| 1865 | return reg_; |
| 1866 | } |
| 1867 | |
| 1868 | void ParallelMoveResolver::TemporaryAllocator::ReleaseTemporary() { |
| 1869 | if (spilled_) { |
| 1870 | resolver_->RestoreScratch(reg_); |
| 1871 | } |
| 1872 | reg_ = kNoRegister; |
| 1873 | } |
| 1874 | |
| 1875 | ParallelMoveResolver::ScratchRegisterScope::ScratchRegisterScope( |
| 1876 | ParallelMoveResolver* resolver, |
| 1877 | Register blocked) |
| 1878 | : allocator_(resolver, blocked) { |
| 1879 | reg_ = allocator_.AllocateTemporary(); |
| 1880 | } |
| 1881 | |
| 1882 | ParallelMoveResolver::ScratchRegisterScope::~ScratchRegisterScope() { |
| 1883 | allocator_.ReleaseTemporary(); |
| 1884 | } |
| 1885 | |
| 1886 | const ICData* FlowGraphCompiler::GetOrAddInstanceCallICData( |
| 1887 | intptr_t deopt_id, |
| 1888 | const String& target_name, |
| 1889 | const Array& arguments_descriptor, |
| 1890 | intptr_t num_args_tested, |
| 1891 | const AbstractType& receiver_type) { |
| 1892 | if ((deopt_id_to_ic_data_ != NULL) && |
| 1893 | ((*deopt_id_to_ic_data_)[deopt_id] != NULL)) { |
| 1894 | const ICData* res = (*deopt_id_to_ic_data_)[deopt_id]; |
| 1895 | ASSERT(res->deopt_id() == deopt_id); |
| 1896 | ASSERT(res->target_name() == target_name.raw()); |
| 1897 | ASSERT(res->NumArgsTested() == num_args_tested); |
| 1898 | ASSERT(res->TypeArgsLen() == |
| 1899 | ArgumentsDescriptor(arguments_descriptor).TypeArgsLen()); |
| 1900 | ASSERT(!res->is_static_call()); |
| 1901 | ASSERT(res->receivers_static_type() == receiver_type.raw()); |
| 1902 | return res; |
| 1903 | } |
| 1904 | const ICData& ic_data = ICData::ZoneHandle( |
| 1905 | zone(), ICData::New(parsed_function().function(), target_name, |
| 1906 | arguments_descriptor, deopt_id, num_args_tested, |
| 1907 | ICData::kInstance, receiver_type)); |
| 1908 | if (deopt_id_to_ic_data_ != NULL) { |
| 1909 | (*deopt_id_to_ic_data_)[deopt_id] = &ic_data; |
| 1910 | } |
| 1911 | ASSERT(!ic_data.is_static_call()); |
| 1912 | return &ic_data; |
| 1913 | } |
| 1914 | |
| 1915 | const ICData* FlowGraphCompiler::GetOrAddStaticCallICData( |
| 1916 | intptr_t deopt_id, |
| 1917 | const Function& target, |
| 1918 | const Array& arguments_descriptor, |
| 1919 | intptr_t num_args_tested, |
| 1920 | ICData::RebindRule rebind_rule) { |
| 1921 | if ((deopt_id_to_ic_data_ != NULL) && |
| 1922 | ((*deopt_id_to_ic_data_)[deopt_id] != NULL)) { |
| 1923 | const ICData* res = (*deopt_id_to_ic_data_)[deopt_id]; |
| 1924 | ASSERT(res->deopt_id() == deopt_id); |
| 1925 | ASSERT(res->target_name() == target.name()); |
| 1926 | ASSERT(res->NumArgsTested() == num_args_tested); |
| 1927 | ASSERT(res->TypeArgsLen() == |
| 1928 | ArgumentsDescriptor(arguments_descriptor).TypeArgsLen()); |
| 1929 | ASSERT(res->is_static_call()); |
| 1930 | return res; |
| 1931 | } |
| 1932 | |
| 1933 | const ICData& ic_data = ICData::ZoneHandle( |
| 1934 | zone(), |
| 1935 | ICData::New(parsed_function().function(), |
| 1936 | String::Handle(zone(), target.name()), arguments_descriptor, |
| 1937 | deopt_id, num_args_tested, rebind_rule)); |
| 1938 | ic_data.AddTarget(target); |
| 1939 | if (deopt_id_to_ic_data_ != NULL) { |
| 1940 | (*deopt_id_to_ic_data_)[deopt_id] = &ic_data; |
| 1941 | } |
| 1942 | return &ic_data; |
| 1943 | } |
| 1944 | |
| 1945 | intptr_t FlowGraphCompiler::GetOptimizationThreshold() const { |
| 1946 | intptr_t threshold; |
| 1947 | if (is_optimizing()) { |
| 1948 | threshold = FLAG_reoptimization_counter_threshold; |
| 1949 | } else if (parsed_function_.function().IsIrregexpFunction()) { |
| 1950 | threshold = FLAG_regexp_optimization_counter_threshold; |
| 1951 | } else if (FLAG_randomize_optimization_counter) { |
| 1952 | threshold = Thread::Current()->GetRandomUInt64() % |
| 1953 | FLAG_optimization_counter_threshold; |
| 1954 | } else { |
| 1955 | const intptr_t basic_blocks = flow_graph().preorder().length(); |
| 1956 | ASSERT(basic_blocks > 0); |
| 1957 | threshold = FLAG_optimization_counter_scale * basic_blocks + |
| 1958 | FLAG_min_optimization_counter_threshold; |
| 1959 | if (threshold > FLAG_optimization_counter_threshold) { |
| 1960 | threshold = FLAG_optimization_counter_threshold; |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | // Threshold = 0 doesn't make sense because we increment the counter before |
| 1965 | // testing against the threshold. Perhaps we could interpret it to mean |
| 1966 | // "generate optimized code immediately without unoptimized compilation |
| 1967 | // first", but this isn't supported in our pipeline because there would be no |
| 1968 | // code for the optimized code to deoptimize into. |
| 1969 | if (threshold == 0) threshold = 1; |
| 1970 | |
| 1971 | // See Compiler::CanOptimizeFunction. In short, we have to allow the |
| 1972 | // unoptimized code to run at least once to prevent an infinite compilation |
| 1973 | // loop. |
| 1974 | if (threshold == 1 && parsed_function().function().HasBreakpoint()) { |
| 1975 | threshold = 2; |
| 1976 | } |
| 1977 | |
| 1978 | return threshold; |
| 1979 | } |
| 1980 | |
| 1981 | const Class& FlowGraphCompiler::BoxClassFor(Representation rep) { |
| 1982 | switch (rep) { |
| 1983 | case kUnboxedFloat: |
| 1984 | case kUnboxedDouble: |
| 1985 | return double_class(); |
| 1986 | case kUnboxedFloat32x4: |
| 1987 | return float32x4_class(); |
| 1988 | case kUnboxedFloat64x2: |
| 1989 | return float64x2_class(); |
| 1990 | case kUnboxedInt32x4: |
| 1991 | return int32x4_class(); |
| 1992 | case kUnboxedInt64: |
| 1993 | return mint_class(); |
| 1994 | default: |
| 1995 | UNREACHABLE(); |
| 1996 | return Class::ZoneHandle(); |
| 1997 | } |
| 1998 | } |
| 1999 | |
| 2000 | void FlowGraphCompiler::BeginCodeSourceRange() { |
| 2001 | code_source_map_builder_->BeginCodeSourceRange(assembler()->CodeSize()); |
| 2002 | } |
| 2003 | |
| 2004 | void FlowGraphCompiler::EndCodeSourceRange(TokenPosition token_pos) { |
| 2005 | code_source_map_builder_->EndCodeSourceRange(assembler()->CodeSize(), |
| 2006 | token_pos); |
| 2007 | } |
| 2008 | |
| 2009 | const CallTargets* FlowGraphCompiler::ResolveCallTargetsForReceiverCid( |
| 2010 | intptr_t cid, |
| 2011 | const String& selector, |
| 2012 | const Array& args_desc_array) { |
| 2013 | Zone* zone = Thread::Current()->zone(); |
| 2014 | |
| 2015 | ArgumentsDescriptor args_desc(args_desc_array); |
| 2016 | |
| 2017 | Function& fn = Function::ZoneHandle(zone); |
| 2018 | if (!LookupMethodFor(cid, selector, args_desc, &fn)) return NULL; |
| 2019 | |
| 2020 | CallTargets* targets = new (zone) CallTargets(zone); |
| 2021 | targets->Add(new (zone) TargetInfo(cid, cid, &fn, /* count = */ 1, |
| 2022 | StaticTypeExactnessState::NotTracking())); |
| 2023 | |
| 2024 | return targets; |
| 2025 | } |
| 2026 | |
| 2027 | bool FlowGraphCompiler::LookupMethodFor(int class_id, |
| 2028 | const String& name, |
| 2029 | const ArgumentsDescriptor& args_desc, |
| 2030 | Function* fn_return, |
| 2031 | bool* class_is_abstract_return) { |
| 2032 | Thread* thread = Thread::Current(); |
| 2033 | Isolate* isolate = thread->isolate(); |
| 2034 | Zone* zone = thread->zone(); |
| 2035 | if (class_id < 0) return false; |
| 2036 | if (class_id >= isolate->class_table()->NumCids()) return false; |
| 2037 | |
| 2038 | ClassPtr raw_class = isolate->class_table()->At(class_id); |
| 2039 | if (raw_class == nullptr) return false; |
| 2040 | Class& cls = Class::Handle(zone, raw_class); |
| 2041 | if (cls.IsNull()) return false; |
| 2042 | if (!cls.is_finalized()) return false; |
| 2043 | if (Array::Handle(cls.functions()).IsNull()) return false; |
| 2044 | |
| 2045 | if (class_is_abstract_return != NULL) { |
| 2046 | *class_is_abstract_return = cls.is_abstract(); |
| 2047 | } |
| 2048 | const bool allow_add = false; |
| 2049 | Function& target_function = |
| 2050 | Function::Handle(zone, Resolver::ResolveDynamicForReceiverClass( |
| 2051 | cls, name, args_desc, allow_add)); |
| 2052 | if (target_function.IsNull()) return false; |
| 2053 | *fn_return = target_function.raw(); |
| 2054 | return true; |
| 2055 | } |
| 2056 | |
| 2057 | void FlowGraphCompiler::EmitPolymorphicInstanceCall( |
| 2058 | const PolymorphicInstanceCallInstr* call, |
| 2059 | const CallTargets& targets, |
| 2060 | ArgumentsInfo args_info, |
| 2061 | intptr_t deopt_id, |
| 2062 | TokenPosition token_pos, |
| 2063 | LocationSummary* locs, |
| 2064 | bool complete, |
| 2065 | intptr_t total_ic_calls, |
| 2066 | bool receiver_can_be_smi) { |
| 2067 | ASSERT(call != nullptr); |
| 2068 | if (FLAG_polymorphic_with_deopt) { |
| 2069 | compiler::Label* deopt = |
| 2070 | AddDeoptStub(deopt_id, ICData::kDeoptPolymorphicInstanceCallTestFail); |
| 2071 | compiler::Label ok; |
| 2072 | EmitTestAndCall(targets, call->function_name(), args_info, |
| 2073 | deopt, // No cid match. |
| 2074 | &ok, // Found cid. |
| 2075 | deopt_id, token_pos, locs, complete, total_ic_calls, |
| 2076 | call->entry_kind()); |
| 2077 | assembler()->Bind(&ok); |
| 2078 | } else { |
| 2079 | if (complete) { |
| 2080 | compiler::Label ok; |
| 2081 | EmitTestAndCall(targets, call->function_name(), args_info, |
| 2082 | NULL, // No cid match. |
| 2083 | &ok, // Found cid. |
| 2084 | deopt_id, token_pos, locs, true, total_ic_calls, |
| 2085 | call->entry_kind()); |
| 2086 | assembler()->Bind(&ok); |
| 2087 | } else { |
| 2088 | const ICData& unary_checks = |
| 2089 | ICData::ZoneHandle(zone(), call->ic_data()->AsUnaryClassChecks()); |
| 2090 | EmitInstanceCallAOT(unary_checks, deopt_id, token_pos, locs, |
| 2091 | call->entry_kind(), receiver_can_be_smi); |
| 2092 | } |
| 2093 | } |
| 2094 | } |
| 2095 | |
| 2096 | #define __ assembler()-> |
| 2097 | void FlowGraphCompiler::EmitTestAndCall(const CallTargets& targets, |
| 2098 | const String& function_name, |
| 2099 | ArgumentsInfo args_info, |
| 2100 | compiler::Label* failed, |
| 2101 | compiler::Label* match_found, |
| 2102 | intptr_t deopt_id, |
| 2103 | TokenPosition token_index, |
| 2104 | LocationSummary* locs, |
| 2105 | bool complete, |
| 2106 | intptr_t total_ic_calls, |
| 2107 | Code::EntryKind entry_kind) { |
| 2108 | ASSERT(is_optimizing()); |
| 2109 | ASSERT(complete || (failed != nullptr)); // Complete calls can't fail. |
| 2110 | |
| 2111 | const Array& arguments_descriptor = |
| 2112 | Array::ZoneHandle(zone(), args_info.ToArgumentsDescriptor()); |
| 2113 | EmitTestAndCallLoadReceiver(args_info.count_without_type_args, |
| 2114 | arguments_descriptor); |
| 2115 | |
| 2116 | static const int kNoCase = -1; |
| 2117 | int smi_case = kNoCase; |
| 2118 | int which_case_to_skip = kNoCase; |
| 2119 | |
| 2120 | const int length = targets.length(); |
| 2121 | ASSERT(length > 0); |
| 2122 | int non_smi_length = length; |
| 2123 | |
| 2124 | // Find out if one of the classes in one of the cases is the Smi class. We |
| 2125 | // will be handling that specially. |
| 2126 | for (int i = 0; i < length; i++) { |
| 2127 | const intptr_t start = targets[i].cid_start; |
| 2128 | if (start > kSmiCid) continue; |
| 2129 | const intptr_t end = targets[i].cid_end; |
| 2130 | if (end >= kSmiCid) { |
| 2131 | smi_case = i; |
| 2132 | if (start == kSmiCid && end == kSmiCid) { |
| 2133 | // If this case has only the Smi class then we won't need to emit it at |
| 2134 | // all later. |
| 2135 | which_case_to_skip = i; |
| 2136 | non_smi_length--; |
| 2137 | } |
| 2138 | break; |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | if (smi_case != kNoCase) { |
| 2143 | compiler::Label after_smi_test; |
| 2144 | // If the call is complete and there are no other possible receiver |
| 2145 | // classes - then receiver can only be a smi value and we don't need |
| 2146 | // to check if it is a smi. |
| 2147 | if (!(complete && non_smi_length == 0)) { |
| 2148 | EmitTestAndCallSmiBranch(non_smi_length == 0 ? failed : &after_smi_test, |
| 2149 | /* jump_if_smi= */ false); |
| 2150 | } |
| 2151 | |
| 2152 | // Do not use the code from the function, but let the code be patched so |
| 2153 | // that we can record the outgoing edges to other code. |
| 2154 | const Function& function = *targets.TargetAt(smi_case)->target; |
| 2155 | GenerateStaticDartCall(deopt_id, token_index, PcDescriptorsLayout::kOther, |
| 2156 | locs, function, entry_kind); |
| 2157 | __ Drop(args_info.size_with_type_args); |
| 2158 | if (match_found != NULL) { |
| 2159 | __ Jump(match_found); |
| 2160 | } |
| 2161 | __ Bind(&after_smi_test); |
| 2162 | } else { |
| 2163 | if (!complete) { |
| 2164 | // Smi is not a valid class. |
| 2165 | EmitTestAndCallSmiBranch(failed, /* jump_if_smi = */ true); |
| 2166 | } |
| 2167 | } |
| 2168 | |
| 2169 | if (non_smi_length == 0) { |
| 2170 | // If non_smi_length is 0 then only a Smi check was needed; the Smi check |
| 2171 | // above will fail if there was only one check and receiver is not Smi. |
| 2172 | return; |
| 2173 | } |
| 2174 | |
| 2175 | bool add_megamorphic_call = false; |
| 2176 | int bias = 0; |
| 2177 | |
| 2178 | // Value is not Smi. |
| 2179 | EmitTestAndCallLoadCid(EmitTestCidRegister()); |
| 2180 | |
| 2181 | int last_check = which_case_to_skip == length - 1 ? length - 2 : length - 1; |
| 2182 | |
| 2183 | for (intptr_t i = 0; i < length; i++) { |
| 2184 | if (i == which_case_to_skip) continue; |
| 2185 | const bool is_last_check = (i == last_check); |
| 2186 | const int count = targets.TargetAt(i)->count; |
| 2187 | if (!is_last_check && !complete && count < (total_ic_calls >> 5)) { |
| 2188 | // This case is hit too rarely to be worth writing class-id checks inline |
| 2189 | // for. Note that we can't do this for calls with only one target because |
| 2190 | // the type propagator may have made use of that and expects a deopt if |
| 2191 | // a new class is seen at this calls site. See IsMonomorphic. |
| 2192 | add_megamorphic_call = true; |
| 2193 | break; |
| 2194 | } |
| 2195 | compiler::Label next_test; |
| 2196 | if (!complete || !is_last_check) { |
| 2197 | bias = EmitTestAndCallCheckCid(assembler(), |
| 2198 | is_last_check ? failed : &next_test, |
| 2199 | EmitTestCidRegister(), targets[i], bias, |
| 2200 | /*jump_on_miss =*/true); |
| 2201 | } |
| 2202 | // Do not use the code from the function, but let the code be patched so |
| 2203 | // that we can record the outgoing edges to other code. |
| 2204 | const Function& function = *targets.TargetAt(i)->target; |
| 2205 | GenerateStaticDartCall(deopt_id, token_index, PcDescriptorsLayout::kOther, |
| 2206 | locs, function, entry_kind); |
| 2207 | __ Drop(args_info.size_with_type_args); |
| 2208 | if (!is_last_check || add_megamorphic_call) { |
| 2209 | __ Jump(match_found); |
| 2210 | } |
| 2211 | __ Bind(&next_test); |
| 2212 | } |
| 2213 | if (add_megamorphic_call) { |
| 2214 | int try_index = kInvalidTryIndex; |
| 2215 | EmitMegamorphicInstanceCall(function_name, arguments_descriptor, deopt_id, |
| 2216 | token_index, locs, try_index); |
| 2217 | } |
| 2218 | } |
| 2219 | |
| 2220 | bool FlowGraphCompiler::GenerateSubtypeRangeCheck(Register class_id_reg, |
| 2221 | const Class& type_class, |
| 2222 | compiler::Label* is_subtype) { |
| 2223 | HierarchyInfo* hi = Thread::Current()->hierarchy_info(); |
| 2224 | if (hi != NULL) { |
| 2225 | const CidRangeVector& ranges = |
| 2226 | hi->SubtypeRangesForClass(type_class, |
| 2227 | /*include_abstract=*/false, |
| 2228 | /*exclude_null=*/false); |
| 2229 | if (ranges.length() <= kMaxNumberOfCidRangesToTest) { |
| 2230 | GenerateCidRangesCheck(assembler(), class_id_reg, ranges, is_subtype); |
| 2231 | return true; |
| 2232 | } |
| 2233 | } |
| 2234 | |
| 2235 | // We don't have cid-ranges for subclasses, so we'll just test against the |
| 2236 | // class directly if it's non-abstract. |
| 2237 | if (!type_class.is_abstract()) { |
| 2238 | __ CompareImmediate(class_id_reg, type_class.id()); |
| 2239 | __ BranchIf(EQUAL, is_subtype); |
| 2240 | } |
| 2241 | return false; |
| 2242 | } |
| 2243 | |
| 2244 | void FlowGraphCompiler::GenerateCidRangesCheck( |
| 2245 | compiler::Assembler* assembler, |
| 2246 | Register class_id_reg, |
| 2247 | const CidRangeVector& cid_ranges, |
| 2248 | compiler::Label* inside_range_lbl, |
| 2249 | compiler::Label* outside_range_lbl, |
| 2250 | bool fall_through_if_inside) { |
| 2251 | // If there are no valid class ranges, the check will fail. If we are |
| 2252 | // supposed to fall-through in the positive case, we'll explicitly jump to |
| 2253 | // the [outside_range_lbl]. |
| 2254 | if (cid_ranges.length() == 1 && cid_ranges[0].IsIllegalRange()) { |
| 2255 | if (fall_through_if_inside) { |
| 2256 | assembler->Jump(outside_range_lbl); |
| 2257 | } |
| 2258 | return; |
| 2259 | } |
| 2260 | |
| 2261 | int bias = 0; |
| 2262 | for (intptr_t i = 0; i < cid_ranges.length(); ++i) { |
| 2263 | const CidRangeValue& range = cid_ranges[i]; |
| 2264 | RELEASE_ASSERT(!range.IsIllegalRange()); |
| 2265 | const bool last_round = i == (cid_ranges.length() - 1); |
| 2266 | |
| 2267 | compiler::Label* jump_label = last_round && fall_through_if_inside |
| 2268 | ? outside_range_lbl |
| 2269 | : inside_range_lbl; |
| 2270 | const bool jump_on_miss = last_round && fall_through_if_inside; |
| 2271 | |
| 2272 | bias = EmitTestAndCallCheckCid(assembler, jump_label, class_id_reg, range, |
| 2273 | bias, jump_on_miss); |
| 2274 | } |
| 2275 | } |
| 2276 | |
| 2277 | bool FlowGraphCompiler::CheckAssertAssignableTypeTestingABILocations( |
| 2278 | const LocationSummary& locs) { |
| 2279 | ASSERT(locs.in(0).IsRegister() && |
| 2280 | locs.in(0).reg() == TypeTestABI::kInstanceReg); |
| 2281 | ASSERT((locs.in(1).IsConstant() && locs.in(1).constant().IsAbstractType()) || |
| 2282 | (locs.in(1).IsRegister() && |
| 2283 | locs.in(1).reg() == TypeTestABI::kDstTypeReg)); |
| 2284 | ASSERT(locs.in(2).IsRegister() && |
| 2285 | locs.in(2).reg() == TypeTestABI::kInstantiatorTypeArgumentsReg); |
| 2286 | ASSERT(locs.in(3).IsRegister() && |
| 2287 | locs.in(3).reg() == TypeTestABI::kFunctionTypeArgumentsReg); |
| 2288 | ASSERT(locs.out(0).IsRegister() && |
| 2289 | locs.out(0).reg() == TypeTestABI::kInstanceReg); |
| 2290 | return true; |
| 2291 | } |
| 2292 | |
| 2293 | bool FlowGraphCompiler::ShouldUseTypeTestingStubFor(bool optimizing, |
| 2294 | const AbstractType& type) { |
| 2295 | return FLAG_precompiled_mode || |
| 2296 | (optimizing && |
| 2297 | (type.IsTypeParameter() || (type.IsType() && type.IsInstantiated()))); |
| 2298 | } |
| 2299 | |
| 2300 | FlowGraphCompiler::TypeTestStubKind |
| 2301 | FlowGraphCompiler::GetTypeTestStubKindForTypeParameter( |
| 2302 | const TypeParameter& type_param) { |
| 2303 | // If it's guaranteed, by type-parameter bound, that the type parameter will |
| 2304 | // never have a value of a function type, then we can safely do a 4-type |
| 2305 | // test instead of a 6-type test. |
| 2306 | AbstractType& bound = AbstractType::Handle(zone(), type_param.bound()); |
| 2307 | bound = bound.UnwrapFutureOr(); |
| 2308 | return !bound.IsTopTypeForSubtyping() && !bound.IsObjectType() && |
| 2309 | !bound.IsFunctionType() && !bound.IsDartFunctionType() && |
| 2310 | bound.IsType() |
| 2311 | ? kTestTypeFourArgs |
| 2312 | : kTestTypeSixArgs; |
| 2313 | } |
| 2314 | |
| 2315 | void FlowGraphCompiler::GenerateAssertAssignableViaTypeTestingStub( |
| 2316 | CompileType* receiver_type, |
| 2317 | const AbstractType& dst_type, |
| 2318 | const String& dst_name, |
| 2319 | const Register dst_type_reg_to_call, |
| 2320 | const Register scratch_reg, |
| 2321 | compiler::Label* done) { |
| 2322 | #if defined(TARGET_ARCH_IA32) |
| 2323 | // ia32 does not have support for TypeTestingStubs. |
| 2324 | UNREACHABLE(); |
| 2325 | #else |
| 2326 | TypeUsageInfo* type_usage_info = thread()->type_usage_info(); |
| 2327 | |
| 2328 | // Special case: non-nullable Object. |
| 2329 | // Top types should be handled by the caller and cannot reach here. |
| 2330 | ASSERT(!dst_type.IsTopTypeForSubtyping()); |
| 2331 | if (dst_type.IsObjectType()) { |
| 2332 | ASSERT(dst_type.IsNonNullable() && isolate()->null_safety()); |
| 2333 | __ CompareObject(TypeTestABI::kInstanceReg, Object::null_object()); |
| 2334 | __ BranchIf(NOT_EQUAL, done); |
| 2335 | // Fall back to type testing stub. |
| 2336 | __ LoadObject(TypeTestABI::kDstTypeReg, dst_type); |
| 2337 | return; |
| 2338 | } |
| 2339 | |
| 2340 | // If the int type is assignable to [dst_type] we special case it on the |
| 2341 | // caller side! |
| 2342 | const Type& int_type = Type::Handle(zone(), Type::IntType()); |
| 2343 | bool is_non_smi = false; |
| 2344 | if (int_type.IsSubtypeOf(dst_type, Heap::kOld)) { |
| 2345 | __ BranchIfSmi(TypeTestABI::kInstanceReg, done); |
| 2346 | is_non_smi = true; |
| 2347 | } else if (!receiver_type->CanBeSmi()) { |
| 2348 | is_non_smi = true; |
| 2349 | } |
| 2350 | |
| 2351 | // We use two type registers iff the dst type is a type parameter. |
| 2352 | // We "dereference" the type parameter for the TTS call but leave the type |
| 2353 | // parameter in the TypeTestABI::kDstTypeReg for fallback into |
| 2354 | // SubtypeTestCache. |
| 2355 | ASSERT(dst_type_reg_to_call == kNoRegister || |
| 2356 | (dst_type.IsTypeParameter() == |
| 2357 | (TypeTestABI::kDstTypeReg != dst_type_reg_to_call))); |
| 2358 | |
| 2359 | // We can handle certain types very efficiently on the call site (with a |
| 2360 | // bailout to the normal stub, which will do a runtime call). |
| 2361 | if (dst_type.IsTypeParameter()) { |
| 2362 | // In NNBD strong mode we need to handle null instance before calling TTS |
| 2363 | // if type parameter is nullable or legacy because type parameter can be |
| 2364 | // instantiated with a non-nullable type which rejects null. |
| 2365 | // In NNBD weak mode or if type parameter is non-nullable or has |
| 2366 | // undetermined nullability null instance is correctly handled by TTS. |
| 2367 | if (isolate()->null_safety() && |
| 2368 | (dst_type.IsNullable() || dst_type.IsLegacy())) { |
| 2369 | __ CompareObject(TypeTestABI::kInstanceReg, Object::null_object()); |
| 2370 | __ BranchIf(EQUAL, done); |
| 2371 | } |
| 2372 | const TypeParameter& type_param = TypeParameter::Cast(dst_type); |
| 2373 | const Register kTypeArgumentsReg = |
| 2374 | type_param.IsClassTypeParameter() |
| 2375 | ? TypeTestABI::kInstantiatorTypeArgumentsReg |
| 2376 | : TypeTestABI::kFunctionTypeArgumentsReg; |
| 2377 | |
| 2378 | // Check if type arguments are null, i.e. equivalent to vector of dynamic. |
| 2379 | __ CompareObject(kTypeArgumentsReg, Object::null_object()); |
| 2380 | __ BranchIf(EQUAL, done); |
| 2381 | __ LoadField( |
| 2382 | dst_type_reg_to_call, |
| 2383 | compiler::FieldAddress(kTypeArgumentsReg, |
| 2384 | compiler::target::TypeArguments::type_at_offset( |
| 2385 | type_param.index()))); |
| 2386 | __ LoadObject(TypeTestABI::kDstTypeReg, type_param); |
| 2387 | if (type_usage_info != NULL) { |
| 2388 | type_usage_info->UseTypeInAssertAssignable(dst_type); |
| 2389 | } |
| 2390 | } else { |
| 2391 | HierarchyInfo* hi = Thread::Current()->hierarchy_info(); |
| 2392 | if (hi != NULL) { |
| 2393 | const Class& type_class = Class::Handle(zone(), dst_type.type_class()); |
| 2394 | |
| 2395 | bool check_handled_at_callsite = false; |
| 2396 | bool used_cid_range_check = false; |
| 2397 | const bool can_use_simple_cid_range_test = |
| 2398 | hi->CanUseSubtypeRangeCheckFor(dst_type); |
| 2399 | if (can_use_simple_cid_range_test) { |
| 2400 | const CidRangeVector& ranges = hi->SubtypeRangesForClass( |
| 2401 | type_class, |
| 2402 | /*include_abstract=*/false, |
| 2403 | /*exclude_null=*/!Instance::NullIsAssignableTo(dst_type)); |
| 2404 | if (ranges.length() <= kMaxNumberOfCidRangesToTest) { |
| 2405 | if (is_non_smi) { |
| 2406 | __ LoadClassId(scratch_reg, TypeTestABI::kInstanceReg); |
| 2407 | } else { |
| 2408 | __ LoadClassIdMayBeSmi(scratch_reg, TypeTestABI::kInstanceReg); |
| 2409 | } |
| 2410 | GenerateCidRangesCheck(assembler(), scratch_reg, ranges, done); |
| 2411 | used_cid_range_check = true; |
| 2412 | check_handled_at_callsite = true; |
| 2413 | } |
| 2414 | } |
| 2415 | |
| 2416 | if (!used_cid_range_check && can_use_simple_cid_range_test && |
| 2417 | IsListClass(type_class)) { |
| 2418 | __ LoadClassIdMayBeSmi(scratch_reg, TypeTestABI::kInstanceReg); |
| 2419 | GenerateListTypeCheck(scratch_reg, done); |
| 2420 | used_cid_range_check = true; |
| 2421 | } |
| 2422 | |
| 2423 | // If we haven't handled the positive case of the type check on the |
| 2424 | // call-site, we want an optimized type testing stub and therefore record |
| 2425 | // it in the [TypeUsageInfo]. |
| 2426 | if (!check_handled_at_callsite) { |
| 2427 | if (type_usage_info != NULL) { |
| 2428 | type_usage_info->UseTypeInAssertAssignable(dst_type); |
| 2429 | } else { |
| 2430 | ASSERT(!FLAG_precompiled_mode); |
| 2431 | } |
| 2432 | } |
| 2433 | } |
| 2434 | __ LoadObject(TypeTestABI::kDstTypeReg, dst_type); |
| 2435 | } |
| 2436 | #endif // defined(TARGET_ARCH_IA32) |
| 2437 | } |
| 2438 | |
| 2439 | #undef __ |
| 2440 | |
| 2441 | #if defined(DEBUG) |
| 2442 | void FlowGraphCompiler::FrameStateUpdateWith(Instruction* instr) { |
| 2443 | ASSERT(!is_optimizing()); |
| 2444 | |
| 2445 | switch (instr->tag()) { |
| 2446 | case Instruction::kPushArgument: |
| 2447 | // Do nothing. |
| 2448 | break; |
| 2449 | |
| 2450 | case Instruction::kDropTemps: |
| 2451 | FrameStatePop(instr->locs()->input_count() + |
| 2452 | instr->AsDropTemps()->num_temps()); |
| 2453 | break; |
| 2454 | |
| 2455 | default: |
| 2456 | FrameStatePop(instr->locs()->input_count()); |
| 2457 | break; |
| 2458 | } |
| 2459 | |
| 2460 | ASSERT(!instr->locs()->can_call() || FrameStateIsSafeToCall()); |
| 2461 | |
| 2462 | FrameStatePop(instr->ArgumentCount()); |
| 2463 | Definition* defn = instr->AsDefinition(); |
| 2464 | if ((defn != NULL) && defn->HasTemp()) { |
| 2465 | FrameStatePush(defn); |
| 2466 | } |
| 2467 | } |
| 2468 | |
| 2469 | void FlowGraphCompiler::FrameStatePush(Definition* defn) { |
| 2470 | Representation rep = defn->representation(); |
| 2471 | if ((rep == kUnboxedDouble) || (rep == kUnboxedFloat64x2) || |
| 2472 | (rep == kUnboxedFloat32x4)) { |
| 2473 | // LoadField instruction lies about its representation in the unoptimized |
| 2474 | // code because Definition::representation() can't depend on the type of |
| 2475 | // compilation but MakeLocationSummary and EmitNativeCode can. |
| 2476 | ASSERT(defn->IsLoadField() && defn->AsLoadField()->IsUnboxedLoad()); |
| 2477 | ASSERT(defn->locs()->out(0).IsRegister()); |
| 2478 | rep = kTagged; |
| 2479 | } |
| 2480 | ASSERT(!is_optimizing()); |
| 2481 | ASSERT((rep == kTagged) || (rep == kUntagged)); |
| 2482 | ASSERT(rep != kUntagged || flow_graph_.IsIrregexpFunction()); |
| 2483 | frame_state_.Add(rep); |
| 2484 | } |
| 2485 | |
| 2486 | void FlowGraphCompiler::FrameStatePop(intptr_t count) { |
| 2487 | ASSERT(!is_optimizing()); |
| 2488 | frame_state_.TruncateTo( |
| 2489 | Utils::Maximum(static_cast<intptr_t>(0), frame_state_.length() - count)); |
| 2490 | } |
| 2491 | |
| 2492 | bool FlowGraphCompiler::FrameStateIsSafeToCall() { |
| 2493 | ASSERT(!is_optimizing()); |
| 2494 | for (intptr_t i = 0; i < frame_state_.length(); i++) { |
| 2495 | if (frame_state_[i] != kTagged) { |
| 2496 | return false; |
| 2497 | } |
| 2498 | } |
| 2499 | return true; |
| 2500 | } |
| 2501 | |
| 2502 | void FlowGraphCompiler::FrameStateClear() { |
| 2503 | ASSERT(!is_optimizing()); |
| 2504 | frame_state_.TruncateTo(0); |
| 2505 | } |
| 2506 | #endif // defined(DEBUG) |
| 2507 | |
| 2508 | #define __ compiler->assembler()-> |
| 2509 | |
| 2510 | void ThrowErrorSlowPathCode::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2511 | if (compiler::Assembler::EmittingComments()) { |
| 2512 | __ Comment("slow path %s operation" , name()); |
| 2513 | } |
| 2514 | const bool use_shared_stub = |
| 2515 | instruction()->UseSharedSlowPathStub(compiler->is_optimizing()); |
| 2516 | const bool live_fpu_registers = |
| 2517 | instruction()->locs()->live_registers()->FpuRegisterCount() > 0; |
| 2518 | __ Bind(entry_label()); |
| 2519 | EmitCodeAtSlowPathEntry(compiler); |
| 2520 | LocationSummary* locs = instruction()->locs(); |
| 2521 | // Save registers as they are needed for lazy deopt / exception handling. |
| 2522 | if (use_shared_stub) { |
| 2523 | EmitSharedStubCall(compiler, live_fpu_registers); |
| 2524 | } else { |
| 2525 | compiler->SaveLiveRegisters(locs); |
| 2526 | intptr_t i = 0; |
| 2527 | if (num_args_ % 2 != 0) { |
| 2528 | __ PushRegister(locs->in(i).reg()); |
| 2529 | ++i; |
| 2530 | } |
| 2531 | for (; i < num_args_; i += 2) { |
| 2532 | __ PushRegisterPair(locs->in(i + 1).reg(), locs->in(i).reg()); |
| 2533 | } |
| 2534 | __ CallRuntime(runtime_entry_, num_args_); |
| 2535 | } |
| 2536 | const intptr_t deopt_id = instruction()->deopt_id(); |
| 2537 | compiler->AddDescriptor(PcDescriptorsLayout::kOther, |
| 2538 | compiler->assembler()->CodeSize(), deopt_id, |
| 2539 | instruction()->token_pos(), try_index_); |
| 2540 | AddMetadataForRuntimeCall(compiler); |
| 2541 | compiler->RecordSafepoint(locs, num_args_); |
| 2542 | if ((try_index_ != kInvalidTryIndex) || |
| 2543 | (compiler->CurrentTryIndex() != kInvalidTryIndex)) { |
| 2544 | Environment* env = |
| 2545 | compiler->SlowPathEnvironmentFor(instruction(), num_args_); |
| 2546 | if (FLAG_precompiled_mode) { |
| 2547 | compiler->RecordCatchEntryMoves(env, try_index_); |
| 2548 | } else if (env != nullptr) { |
| 2549 | compiler->AddSlowPathDeoptInfo(deopt_id, env); |
| 2550 | } |
| 2551 | } |
| 2552 | if (!use_shared_stub) { |
| 2553 | __ Breakpoint(); |
| 2554 | } |
| 2555 | } |
| 2556 | |
| 2557 | const char* NullErrorSlowPath::name() { |
| 2558 | switch (exception_type()) { |
| 2559 | case CheckNullInstr::kNoSuchMethod: |
| 2560 | return "check null (nsm)" ; |
| 2561 | case CheckNullInstr::kArgumentError: |
| 2562 | return "check null (arg)" ; |
| 2563 | case CheckNullInstr::kCastError: |
| 2564 | return "check null (cast)" ; |
| 2565 | } |
| 2566 | UNREACHABLE(); |
| 2567 | } |
| 2568 | |
| 2569 | const RuntimeEntry& NullErrorSlowPath::GetRuntimeEntry( |
| 2570 | CheckNullInstr::ExceptionType exception_type) { |
| 2571 | switch (exception_type) { |
| 2572 | case CheckNullInstr::kNoSuchMethod: |
| 2573 | return kNullErrorRuntimeEntry; |
| 2574 | case CheckNullInstr::kArgumentError: |
| 2575 | return kArgumentNullErrorRuntimeEntry; |
| 2576 | case CheckNullInstr::kCastError: |
| 2577 | return kNullCastErrorRuntimeEntry; |
| 2578 | } |
| 2579 | UNREACHABLE(); |
| 2580 | } |
| 2581 | |
| 2582 | CodePtr NullErrorSlowPath::GetStub(FlowGraphCompiler* compiler, |
| 2583 | CheckNullInstr::ExceptionType exception_type, |
| 2584 | bool save_fpu_registers) { |
| 2585 | auto object_store = compiler->isolate()->object_store(); |
| 2586 | switch (exception_type) { |
| 2587 | case CheckNullInstr::kNoSuchMethod: |
| 2588 | return save_fpu_registers |
| 2589 | ? object_store->null_error_stub_with_fpu_regs_stub() |
| 2590 | : object_store->null_error_stub_without_fpu_regs_stub(); |
| 2591 | case CheckNullInstr::kArgumentError: |
| 2592 | return save_fpu_registers |
| 2593 | ? object_store->null_arg_error_stub_with_fpu_regs_stub() |
| 2594 | : object_store->null_arg_error_stub_without_fpu_regs_stub(); |
| 2595 | case CheckNullInstr::kCastError: |
| 2596 | return save_fpu_registers |
| 2597 | ? object_store->null_cast_error_stub_with_fpu_regs_stub() |
| 2598 | : object_store->null_cast_error_stub_without_fpu_regs_stub(); |
| 2599 | } |
| 2600 | UNREACHABLE(); |
| 2601 | } |
| 2602 | |
| 2603 | void NullErrorSlowPath::EmitSharedStubCall(FlowGraphCompiler* compiler, |
| 2604 | bool save_fpu_registers) { |
| 2605 | #if defined(TARGET_ARCH_IA32) |
| 2606 | UNREACHABLE(); |
| 2607 | #else |
| 2608 | const auto& stub = |
| 2609 | Code::ZoneHandle(compiler->zone(), |
| 2610 | GetStub(compiler, exception_type(), save_fpu_registers)); |
| 2611 | compiler->EmitCallToStub(stub); |
| 2612 | #endif |
| 2613 | } |
| 2614 | |
| 2615 | void FlowGraphCompiler::EmitNativeMove( |
| 2616 | const compiler::ffi::NativeLocation& destination, |
| 2617 | const compiler::ffi::NativeLocation& source, |
| 2618 | TemporaryRegisterAllocator* temp) { |
| 2619 | const auto& src_payload_type = source.payload_type(); |
| 2620 | const auto& dst_payload_type = destination.payload_type(); |
| 2621 | const auto& src_container_type = source.container_type(); |
| 2622 | const auto& dst_container_type = destination.container_type(); |
| 2623 | const intptr_t src_payload_size = src_payload_type.SizeInBytes(); |
| 2624 | const intptr_t dst_payload_size = dst_payload_type.SizeInBytes(); |
| 2625 | const intptr_t src_container_size = src_container_type.SizeInBytes(); |
| 2626 | const intptr_t dst_container_size = dst_container_type.SizeInBytes(); |
| 2627 | |
| 2628 | // This function does not know how to do larger mem copy moves yet. |
| 2629 | ASSERT(src_payload_type.IsFundamental()); |
| 2630 | ASSERT(dst_payload_type.IsFundamental()); |
| 2631 | |
| 2632 | // This function does not deal with sign conversions yet. |
| 2633 | ASSERT(src_payload_type.IsSigned() == dst_payload_type.IsSigned()); |
| 2634 | |
| 2635 | // This function does not deal with bit casts yet. |
| 2636 | ASSERT(src_container_type.IsFloat() == dst_container_type.IsFloat()); |
| 2637 | ASSERT(src_container_type.IsInt() == dst_container_type.IsInt()); |
| 2638 | |
| 2639 | // If the location, payload, and container are equal, we're done. |
| 2640 | if (source.Equals(destination) && src_payload_type.Equals(dst_payload_type) && |
| 2641 | src_container_type.Equals(dst_container_type)) { |
| 2642 | return; |
| 2643 | } |
| 2644 | |
| 2645 | // Solve descrepancies between container size and payload size. |
| 2646 | if (src_payload_type.IsInt() && dst_payload_type.IsInt() && |
| 2647 | (src_payload_size != src_container_size || |
| 2648 | dst_payload_size != dst_container_size)) { |
| 2649 | if (src_payload_size <= dst_payload_size && |
| 2650 | src_container_size >= dst_container_size) { |
| 2651 | // The upper bits of the source are already properly sign or zero |
| 2652 | // extended, so just copy the required amount of bits. |
| 2653 | return EmitNativeMove(destination.WithOtherNativeType( |
| 2654 | dst_container_type, dst_container_type, zone_), |
| 2655 | source.WithOtherNativeType( |
| 2656 | dst_container_type, dst_container_type, zone_), |
| 2657 | temp); |
| 2658 | } |
| 2659 | if (src_payload_size >= dst_payload_size && |
| 2660 | dst_container_size > dst_payload_size) { |
| 2661 | // The upper bits of the source are not properly sign or zero extended |
| 2662 | // to be copied to the target, so regard the source as smaller. |
| 2663 | return EmitNativeMove( |
| 2664 | destination.WithOtherNativeType(dst_container_type, |
| 2665 | dst_container_type, zone_), |
| 2666 | source.WithOtherNativeType(dst_payload_type, dst_payload_type, zone_), |
| 2667 | temp); |
| 2668 | } |
| 2669 | UNREACHABLE(); |
| 2670 | } |
| 2671 | ASSERT(src_payload_size == src_container_size); |
| 2672 | ASSERT(dst_payload_size == dst_container_size); |
| 2673 | |
| 2674 | // Split moves that are larger than kWordSize, these require separate |
| 2675 | // instructions on all architectures. |
| 2676 | if (compiler::target::kWordSize == 4 && src_container_size == 8 && |
| 2677 | dst_container_size == 8 && !source.IsFpuRegisters() && |
| 2678 | !destination.IsFpuRegisters()) { |
| 2679 | // TODO(40209): If this is stack to stack, we could use FpuTMP. |
| 2680 | // Test the impact on code size and speed. |
| 2681 | EmitNativeMove(destination.Split(0, zone_), source.Split(0, zone_), temp); |
| 2682 | EmitNativeMove(destination.Split(1, zone_), source.Split(1, zone_), temp); |
| 2683 | return; |
| 2684 | } |
| 2685 | |
| 2686 | // Split moves from stack to stack, none of the architectures provides |
| 2687 | // memory to memory move instructions. |
| 2688 | if (source.IsStack() && destination.IsStack()) { |
| 2689 | Register scratch = TMP; |
| 2690 | if (TMP == kNoRegister) { |
| 2691 | scratch = temp->AllocateTemporary(); |
| 2692 | } |
| 2693 | const auto& intermediate = |
| 2694 | *new (zone_) compiler::ffi::NativeRegistersLocation( |
| 2695 | dst_payload_type, dst_container_type, scratch); |
| 2696 | EmitNativeMove(intermediate, source, temp); |
| 2697 | EmitNativeMove(destination, intermediate, temp); |
| 2698 | if (TMP == kNoRegister) { |
| 2699 | temp->ReleaseTemporary(); |
| 2700 | } |
| 2701 | return; |
| 2702 | } |
| 2703 | |
| 2704 | const bool sign_or_zero_extend = dst_container_size > src_container_size; |
| 2705 | |
| 2706 | // No architecture supports sign extending with memory as destination. |
| 2707 | if (sign_or_zero_extend && destination.IsStack()) { |
| 2708 | ASSERT(source.IsRegisters()); |
| 2709 | const auto& intermediate = |
| 2710 | source.WithOtherNativeType(dst_payload_type, dst_container_type, zone_); |
| 2711 | EmitNativeMove(intermediate, source, temp); |
| 2712 | EmitNativeMove(destination, intermediate, temp); |
| 2713 | return; |
| 2714 | } |
| 2715 | |
| 2716 | #if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64) |
| 2717 | // Arm does not support sign extending from a memory location, x86 does. |
| 2718 | if (sign_or_zero_extend && source.IsStack()) { |
| 2719 | ASSERT(destination.IsRegisters()); |
| 2720 | const auto& intermediate = destination.WithOtherNativeType( |
| 2721 | src_payload_type, src_container_type, zone_); |
| 2722 | EmitNativeMove(intermediate, source, temp); |
| 2723 | EmitNativeMove(destination, intermediate, temp); |
| 2724 | return; |
| 2725 | } |
| 2726 | #endif |
| 2727 | |
| 2728 | // If we're not sign extending, and we're moving 8 or 16 bits into a |
| 2729 | // register, upgrade the move to take upper bits of garbage from the |
| 2730 | // source location. This is the same as leaving the previous garbage in |
| 2731 | // there. |
| 2732 | // |
| 2733 | // TODO(40210): If our assemblers would support moving 1 and 2 bytes into |
| 2734 | // registers, this code can be removed. |
| 2735 | if (!sign_or_zero_extend && destination.IsRegisters() && |
| 2736 | destination.container_type().SizeInBytes() <= 2) { |
| 2737 | ASSERT(source.payload_type().IsInt()); |
| 2738 | return EmitNativeMove(destination.WidenTo4Bytes(zone_), |
| 2739 | source.WidenTo4Bytes(zone_), temp); |
| 2740 | } |
| 2741 | |
| 2742 | // Do the simple architecture specific moves. |
| 2743 | EmitNativeMoveArchitecture(destination, source); |
| 2744 | } |
| 2745 | |
| 2746 | // TODO(dartbug.com/36730): Remove this if PairLocations can be converted |
| 2747 | // into NativeLocations. |
| 2748 | void FlowGraphCompiler::EmitMoveToNative( |
| 2749 | const compiler::ffi::NativeLocation& dst, |
| 2750 | Location src_loc, |
| 2751 | Representation src_type, |
| 2752 | TemporaryRegisterAllocator* temp) { |
| 2753 | if (src_loc.IsPairLocation()) { |
| 2754 | for (intptr_t i : {0, 1}) { |
| 2755 | const auto& src_split = compiler::ffi::NativeLocation::FromPairLocation( |
| 2756 | src_loc, src_type, i, zone_); |
| 2757 | EmitNativeMove(dst.Split(i, zone_), src_split, temp); |
| 2758 | } |
| 2759 | } else { |
| 2760 | const auto& src = |
| 2761 | compiler::ffi::NativeLocation::FromLocation(src_loc, src_type, zone_); |
| 2762 | EmitNativeMove(dst, src, temp); |
| 2763 | } |
| 2764 | } |
| 2765 | |
| 2766 | // TODO(dartbug.com/36730): Remove this if PairLocations can be converted |
| 2767 | // into NativeLocations. |
| 2768 | void FlowGraphCompiler::EmitMoveFromNative( |
| 2769 | Location dst_loc, |
| 2770 | Representation dst_type, |
| 2771 | const compiler::ffi::NativeLocation& src, |
| 2772 | TemporaryRegisterAllocator* temp) { |
| 2773 | if (dst_loc.IsPairLocation()) { |
| 2774 | for (intptr_t i : {0, 1}) { |
| 2775 | const auto& dest_split = compiler::ffi::NativeLocation::FromPairLocation( |
| 2776 | dst_loc, dst_type, i, zone_); |
| 2777 | EmitNativeMove(dest_split, src.Split(i, zone_), temp); |
| 2778 | } |
| 2779 | } else { |
| 2780 | const auto& dest = |
| 2781 | compiler::ffi::NativeLocation::FromLocation(dst_loc, dst_type, zone_); |
| 2782 | EmitNativeMove(dest, src, temp); |
| 2783 | } |
| 2784 | } |
| 2785 | |
| 2786 | void FlowGraphCompiler::EmitMoveConst(const compiler::ffi::NativeLocation& dst, |
| 2787 | Location src, |
| 2788 | Representation src_type, |
| 2789 | TemporaryRegisterAllocator* temp) { |
| 2790 | ASSERT(src.IsConstant()); |
| 2791 | const auto& dst_type = dst.payload_type(); |
| 2792 | if (dst.IsExpressibleAsLocation() && |
| 2793 | dst_type.IsExpressibleAsRepresentation() && |
| 2794 | dst_type.AsRepresentationOverApprox(zone_) == src_type) { |
| 2795 | // We can directly emit the const in the right place and representation. |
| 2796 | const Location dst_loc = dst.AsLocation(); |
| 2797 | EmitMove(dst_loc, src, temp); |
| 2798 | } else { |
| 2799 | // We need an intermediate location. |
| 2800 | Location intermediate; |
| 2801 | if (dst_type.IsInt()) { |
| 2802 | if (TMP == kNoRegister) { |
| 2803 | Register scratch = temp->AllocateTemporary(); |
| 2804 | Location::RegisterLocation(scratch); |
| 2805 | } else { |
| 2806 | intermediate = Location::RegisterLocation(TMP); |
| 2807 | } |
| 2808 | } else { |
| 2809 | ASSERT(dst_type.IsFloat()); |
| 2810 | intermediate = Location::FpuRegisterLocation(FpuTMP); |
| 2811 | } |
| 2812 | |
| 2813 | if (src.IsPairLocation()) { |
| 2814 | for (intptr_t i : {0, 1}) { |
| 2815 | const Representation src_type_split = |
| 2816 | compiler::ffi::NativeType::FromUnboxedRepresentation(src_type, |
| 2817 | zone_) |
| 2818 | .Split(i, zone_) |
| 2819 | .AsRepresentation(); |
| 2820 | const auto& intermediate_native = |
| 2821 | compiler::ffi::NativeLocation::FromLocation(intermediate, |
| 2822 | src_type_split, zone_); |
| 2823 | EmitMove(intermediate, src.AsPairLocation()->At(i), temp); |
| 2824 | EmitNativeMove(dst.Split(i, zone_), intermediate_native, temp); |
| 2825 | } |
| 2826 | } else { |
| 2827 | const auto& intermediate_native = |
| 2828 | compiler::ffi::NativeLocation::FromLocation(intermediate, src_type, |
| 2829 | zone_); |
| 2830 | EmitMove(intermediate, src, temp); |
| 2831 | EmitNativeMove(dst, intermediate_native, temp); |
| 2832 | } |
| 2833 | |
| 2834 | if (dst_type.IsInt() && TMP == kNoRegister) { |
| 2835 | temp->ReleaseTemporary(); |
| 2836 | } |
| 2837 | } |
| 2838 | return; |
| 2839 | } |
| 2840 | |
| 2841 | // The assignment to loading units here must match that in |
| 2842 | // AssignLoadingUnitsCodeVisitor, which runs after compilation is done. |
| 2843 | static intptr_t LoadingUnitOf(Zone* zone, const Function& function) { |
| 2844 | const Class& cls = Class::Handle(zone, function.Owner()); |
| 2845 | const Library& lib = Library::Handle(zone, cls.library()); |
| 2846 | const LoadingUnit& unit = LoadingUnit::Handle(zone, lib.loading_unit()); |
| 2847 | ASSERT(!unit.IsNull()); |
| 2848 | return unit.id(); |
| 2849 | } |
| 2850 | |
| 2851 | static intptr_t LoadingUnitOf(Zone* zone, const Code& code) { |
| 2852 | // No WeakSerializationReference owners here because those are only |
| 2853 | // introduced during AOT serialization. |
| 2854 | if (code.IsStubCode() || code.IsTypeTestStubCode()) { |
| 2855 | return LoadingUnit::kRootId; |
| 2856 | } else if (code.IsAllocationStubCode()) { |
| 2857 | const Class& cls = Class::Cast(Object::Handle(zone, code.owner())); |
| 2858 | const Library& lib = Library::Handle(zone, cls.library()); |
| 2859 | const LoadingUnit& unit = LoadingUnit::Handle(zone, lib.loading_unit()); |
| 2860 | ASSERT(!unit.IsNull()); |
| 2861 | return unit.id(); |
| 2862 | } else if (code.IsFunctionCode()) { |
| 2863 | return LoadingUnitOf(zone, |
| 2864 | Function::Cast(Object::Handle(zone, code.owner()))); |
| 2865 | } else { |
| 2866 | UNREACHABLE(); |
| 2867 | return LoadingUnit::kIllegalId; |
| 2868 | } |
| 2869 | } |
| 2870 | |
| 2871 | bool FlowGraphCompiler::CanPcRelativeCall(const Function& target) const { |
| 2872 | return FLAG_precompiled_mode && FLAG_use_bare_instructions && |
| 2873 | (LoadingUnitOf(zone_, function()) == LoadingUnitOf(zone_, target)); |
| 2874 | } |
| 2875 | |
| 2876 | bool FlowGraphCompiler::CanPcRelativeCall(const Code& target) const { |
| 2877 | return FLAG_precompiled_mode && FLAG_use_bare_instructions && |
| 2878 | !target.InVMIsolateHeap() && |
| 2879 | (LoadingUnitOf(zone_, function()) == LoadingUnitOf(zone_, target)); |
| 2880 | } |
| 2881 | |
| 2882 | bool FlowGraphCompiler::CanPcRelativeCall(const AbstractType& target) const { |
| 2883 | return FLAG_precompiled_mode && FLAG_use_bare_instructions && |
| 2884 | !target.InVMIsolateHeap() && |
| 2885 | (LoadingUnitOf(zone_, function()) == LoadingUnit::kRootId); |
| 2886 | } |
| 2887 | |
| 2888 | #undef __ |
| 2889 | |
| 2890 | } // namespace dart |
| 2891 | |