| 1 | // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/globals.h" // Needed here to get TARGET_ARCH_X64. |
| 6 | #if defined(TARGET_ARCH_X64) |
| 7 | |
| 8 | #include "vm/compiler/backend/il.h" |
| 9 | |
| 10 | #include "vm/compiler/assembler/assembler.h" |
| 11 | #include "vm/compiler/backend/flow_graph.h" |
| 12 | #include "vm/compiler/backend/flow_graph_compiler.h" |
| 13 | #include "vm/compiler/backend/locations.h" |
| 14 | #include "vm/compiler/backend/locations_helpers.h" |
| 15 | #include "vm/compiler/backend/range_analysis.h" |
| 16 | #include "vm/compiler/ffi/native_calling_convention.h" |
| 17 | #include "vm/compiler/jit/compiler.h" |
| 18 | #include "vm/dart_entry.h" |
| 19 | #include "vm/instructions.h" |
| 20 | #include "vm/object_store.h" |
| 21 | #include "vm/parser.h" |
| 22 | #include "vm/stack_frame.h" |
| 23 | #include "vm/stub_code.h" |
| 24 | #include "vm/symbols.h" |
| 25 | #include "vm/type_testing_stubs.h" |
| 26 | |
| 27 | #define __ compiler->assembler()-> |
| 28 | #define Z (compiler->zone()) |
| 29 | |
| 30 | namespace dart { |
| 31 | |
| 32 | // Generic summary for call instructions that have all arguments pushed |
| 33 | // on the stack and return the result in a fixed register RAX (or XMM0 if |
| 34 | // the return type is double). |
| 35 | LocationSummary* Instruction::MakeCallSummary(Zone* zone, |
| 36 | const Instruction* instr, |
| 37 | LocationSummary* locs) { |
| 38 | ASSERT(locs == nullptr || locs->always_calls()); |
| 39 | LocationSummary* result = |
| 40 | ((locs == nullptr) |
| 41 | ? (new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall)) |
| 42 | : locs); |
| 43 | const auto representation = instr->representation(); |
| 44 | switch (representation) { |
| 45 | case kTagged: |
| 46 | case kUnboxedInt64: |
| 47 | result->set_out( |
| 48 | 0, Location::RegisterLocation(CallingConventions::kReturnReg)); |
| 49 | break; |
| 50 | case kUnboxedDouble: |
| 51 | result->set_out( |
| 52 | 0, Location::FpuRegisterLocation(CallingConventions::kReturnFpuReg)); |
| 53 | break; |
| 54 | default: |
| 55 | UNREACHABLE(); |
| 56 | break; |
| 57 | } |
| 58 | return result; |
| 59 | } |
| 60 | |
| 61 | LocationSummary* LoadIndexedUnsafeInstr::MakeLocationSummary(Zone* zone, |
| 62 | bool opt) const { |
| 63 | const intptr_t kNumInputs = 1; |
| 64 | const intptr_t kNumTemps = 0; |
| 65 | LocationSummary* locs = new (zone) |
| 66 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 67 | |
| 68 | locs->set_in(0, Location::RequiresRegister()); |
| 69 | switch (representation()) { |
| 70 | case kTagged: |
| 71 | case kUnboxedInt64: |
| 72 | locs->set_out(0, Location::RequiresRegister()); |
| 73 | break; |
| 74 | case kUnboxedDouble: |
| 75 | locs->set_out(0, Location::RequiresFpuRegister()); |
| 76 | break; |
| 77 | default: |
| 78 | UNREACHABLE(); |
| 79 | break; |
| 80 | } |
| 81 | return locs; |
| 82 | } |
| 83 | |
| 84 | void LoadIndexedUnsafeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 85 | ASSERT(RequiredInputRepresentation(0) == kTagged); // It is a Smi. |
| 86 | ASSERT(kSmiTag == 0); |
| 87 | ASSERT(kSmiTagSize == 1); |
| 88 | |
| 89 | const Register index = locs()->in(0).reg(); |
| 90 | |
| 91 | switch (representation()) { |
| 92 | case kTagged: |
| 93 | case kUnboxedInt64: { |
| 94 | const auto out = locs()->out(0).reg(); |
| 95 | __ movq(out, compiler::Address(base_reg(), index, TIMES_4, offset())); |
| 96 | break; |
| 97 | } |
| 98 | case kUnboxedDouble: { |
| 99 | const auto out = locs()->out(0).fpu_reg(); |
| 100 | __ movsd(out, compiler::Address(base_reg(), index, TIMES_4, offset())); |
| 101 | break; |
| 102 | } |
| 103 | default: |
| 104 | UNREACHABLE(); |
| 105 | break; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | DEFINE_BACKEND(StoreIndexedUnsafe, |
| 110 | (NoLocation, Register index, Register value)) { |
| 111 | ASSERT(instr->RequiredInputRepresentation( |
| 112 | StoreIndexedUnsafeInstr::kIndexPos) == kTagged); // It is a Smi. |
| 113 | __ movq(compiler::Address(instr->base_reg(), index, TIMES_4, instr->offset()), |
| 114 | value); |
| 115 | |
| 116 | ASSERT(kSmiTag == 0); |
| 117 | ASSERT(kSmiTagSize == 1); |
| 118 | } |
| 119 | |
| 120 | DEFINE_BACKEND(TailCall, (NoLocation, Fixed<Register, ARGS_DESC_REG>)) { |
| 121 | compiler->EmitTailCallToStub(instr->code()); |
| 122 | |
| 123 | // Even though the TailCallInstr will be the last instruction in a basic |
| 124 | // block, the flow graph compiler will emit native code for other blocks after |
| 125 | // the one containing this instruction and needs to be able to use the pool. |
| 126 | // (The `LeaveDartFrame` above disables usages of the pool.) |
| 127 | __ set_constant_pool_allowed(true); |
| 128 | } |
| 129 | |
| 130 | LocationSummary* MemoryCopyInstr::MakeLocationSummary(Zone* zone, |
| 131 | bool opt) const { |
| 132 | const intptr_t kNumInputs = 5; |
| 133 | const intptr_t kNumTemps = 0; |
| 134 | LocationSummary* locs = new (zone) |
| 135 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 136 | locs->set_in(kSrcPos, Location::RegisterLocation(RSI)); |
| 137 | locs->set_in(kDestPos, Location::RegisterLocation(RDI)); |
| 138 | locs->set_in(kSrcStartPos, Location::WritableRegister()); |
| 139 | locs->set_in(kDestStartPos, Location::WritableRegister()); |
| 140 | locs->set_in(kLengthPos, Location::RegisterLocation(RCX)); |
| 141 | return locs; |
| 142 | } |
| 143 | |
| 144 | void MemoryCopyInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 145 | const Register src_start_reg = locs()->in(kSrcStartPos).reg(); |
| 146 | const Register dest_start_reg = locs()->in(kDestStartPos).reg(); |
| 147 | |
| 148 | EmitComputeStartPointer(compiler, src_cid_, src_start(), RSI, src_start_reg); |
| 149 | EmitComputeStartPointer(compiler, dest_cid_, dest_start(), RDI, |
| 150 | dest_start_reg); |
| 151 | if (element_size_ <= 8) { |
| 152 | __ SmiUntag(RCX); |
| 153 | } |
| 154 | switch (element_size_) { |
| 155 | case 1: |
| 156 | __ rep_movsb(); |
| 157 | break; |
| 158 | case 2: |
| 159 | __ rep_movsw(); |
| 160 | break; |
| 161 | case 4: |
| 162 | __ rep_movsl(); |
| 163 | break; |
| 164 | case 8: |
| 165 | case 16: |
| 166 | __ rep_movsq(); |
| 167 | break; |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | void MemoryCopyInstr::EmitComputeStartPointer(FlowGraphCompiler* compiler, |
| 172 | classid_t array_cid, |
| 173 | Value* start, |
| 174 | Register array_reg, |
| 175 | Register start_reg) { |
| 176 | intptr_t offset; |
| 177 | if (IsTypedDataBaseClassId(array_cid)) { |
| 178 | __ movq( |
| 179 | array_reg, |
| 180 | compiler::FieldAddress( |
| 181 | array_reg, compiler::target::TypedDataBase::data_field_offset())); |
| 182 | offset = 0; |
| 183 | } else { |
| 184 | switch (array_cid) { |
| 185 | case kOneByteStringCid: |
| 186 | offset = |
| 187 | compiler::target::OneByteString::data_offset() - kHeapObjectTag; |
| 188 | break; |
| 189 | case kTwoByteStringCid: |
| 190 | offset = |
| 191 | compiler::target::TwoByteString::data_offset() - kHeapObjectTag; |
| 192 | break; |
| 193 | case kExternalOneByteStringCid: |
| 194 | __ movq(array_reg, |
| 195 | compiler::FieldAddress(array_reg, |
| 196 | compiler::target::ExternalOneByteString:: |
| 197 | external_data_offset())); |
| 198 | offset = 0; |
| 199 | break; |
| 200 | case kExternalTwoByteStringCid: |
| 201 | __ movq(array_reg, |
| 202 | compiler::FieldAddress(array_reg, |
| 203 | compiler::target::ExternalTwoByteString:: |
| 204 | external_data_offset())); |
| 205 | offset = 0; |
| 206 | break; |
| 207 | default: |
| 208 | UNREACHABLE(); |
| 209 | break; |
| 210 | } |
| 211 | } |
| 212 | ScaleFactor scale; |
| 213 | switch (element_size_) { |
| 214 | case 1: |
| 215 | __ SmiUntag(start_reg); |
| 216 | scale = TIMES_1; |
| 217 | break; |
| 218 | case 2: |
| 219 | scale = TIMES_1; |
| 220 | break; |
| 221 | case 4: |
| 222 | scale = TIMES_2; |
| 223 | break; |
| 224 | case 8: |
| 225 | scale = TIMES_4; |
| 226 | break; |
| 227 | case 16: |
| 228 | scale = TIMES_8; |
| 229 | break; |
| 230 | default: |
| 231 | UNREACHABLE(); |
| 232 | break; |
| 233 | } |
| 234 | __ leaq(array_reg, compiler::Address(array_reg, start_reg, scale, offset)); |
| 235 | } |
| 236 | |
| 237 | LocationSummary* PushArgumentInstr::MakeLocationSummary(Zone* zone, |
| 238 | bool opt) const { |
| 239 | const intptr_t kNumInputs = 1; |
| 240 | const intptr_t kNumTemps = 0; |
| 241 | LocationSummary* locs = new (zone) |
| 242 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 243 | if (representation() == kUnboxedDouble) { |
| 244 | locs->set_in(0, Location::RequiresFpuRegister()); |
| 245 | } else if (representation() == kUnboxedInt64) { |
| 246 | locs->set_in(0, Location::RequiresRegister()); |
| 247 | } else { |
| 248 | locs->set_in(0, LocationAnyOrConstant(value())); |
| 249 | } |
| 250 | return locs; |
| 251 | } |
| 252 | |
| 253 | void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 254 | // In SSA mode, we need an explicit push. Nothing to do in non-SSA mode |
| 255 | // where arguments are pushed by their definitions. |
| 256 | if (compiler->is_optimizing()) { |
| 257 | Location value = locs()->in(0); |
| 258 | if (value.IsRegister()) { |
| 259 | __ pushq(value.reg()); |
| 260 | } else if (value.IsConstant()) { |
| 261 | __ PushObject(value.constant()); |
| 262 | } else if (value.IsFpuRegister()) { |
| 263 | __ AddImmediate(RSP, compiler::Immediate(-kDoubleSize)); |
| 264 | __ movsd(compiler::Address(RSP, 0), value.fpu_reg()); |
| 265 | } else { |
| 266 | ASSERT(value.IsStackSlot()); |
| 267 | __ pushq(LocationToStackSlotAddress(value)); |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | LocationSummary* ReturnInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 273 | const intptr_t kNumInputs = 1; |
| 274 | const intptr_t kNumTemps = 0; |
| 275 | LocationSummary* locs = new (zone) |
| 276 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 277 | switch (representation()) { |
| 278 | case kTagged: |
| 279 | case kUnboxedInt64: |
| 280 | locs->set_in(0, |
| 281 | Location::RegisterLocation(CallingConventions::kReturnReg)); |
| 282 | break; |
| 283 | case kUnboxedDouble: |
| 284 | locs->set_in( |
| 285 | 0, Location::FpuRegisterLocation(CallingConventions::kReturnFpuReg)); |
| 286 | break; |
| 287 | default: |
| 288 | UNREACHABLE(); |
| 289 | break; |
| 290 | } |
| 291 | return locs; |
| 292 | } |
| 293 | |
| 294 | // Attempt optimized compilation at return instruction instead of at the entry. |
| 295 | // The entry needs to be patchable, no inlined objects are allowed in the area |
| 296 | // that will be overwritten by the patch instruction: a jump). |
| 297 | void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 298 | if (locs()->in(0).IsRegister()) { |
| 299 | const Register result = locs()->in(0).reg(); |
| 300 | ASSERT(result == CallingConventions::kReturnReg); |
| 301 | } else { |
| 302 | ASSERT(locs()->in(0).IsFpuRegister()); |
| 303 | const FpuRegister result = locs()->in(0).fpu_reg(); |
| 304 | ASSERT(result == CallingConventions::kReturnFpuReg); |
| 305 | } |
| 306 | |
| 307 | if (compiler->intrinsic_mode()) { |
| 308 | // Intrinsics don't have a frame. |
| 309 | __ ret(); |
| 310 | return; |
| 311 | } |
| 312 | |
| 313 | #if defined(DEBUG) |
| 314 | __ Comment("Stack Check" ); |
| 315 | compiler::Label done; |
| 316 | const intptr_t fp_sp_dist = |
| 317 | (compiler::target::frame_layout.first_local_from_fp + 1 - |
| 318 | compiler->StackSize()) * |
| 319 | kWordSize; |
| 320 | ASSERT(fp_sp_dist <= 0); |
| 321 | __ movq(RDI, RSP); |
| 322 | __ subq(RDI, RBP); |
| 323 | __ CompareImmediate(RDI, compiler::Immediate(fp_sp_dist)); |
| 324 | __ j(EQUAL, &done, compiler::Assembler::kNearJump); |
| 325 | __ int3(); |
| 326 | __ Bind(&done); |
| 327 | #endif |
| 328 | ASSERT(__ constant_pool_allowed()); |
| 329 | if (yield_index() != PcDescriptorsLayout::kInvalidYieldIndex) { |
| 330 | compiler->EmitYieldPositionMetadata(token_pos(), yield_index()); |
| 331 | } |
| 332 | __ LeaveDartFrame(); // Disallows constant pool use. |
| 333 | __ ret(); |
| 334 | // This ReturnInstr may be emitted out of order by the optimizer. The next |
| 335 | // block may be a target expecting a properly set constant pool pointer. |
| 336 | __ set_constant_pool_allowed(true); |
| 337 | } |
| 338 | |
| 339 | void NativeReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 340 | EmitReturnMoves(compiler); |
| 341 | |
| 342 | __ LeaveDartFrame(); |
| 343 | |
| 344 | // Pop dummy return address. |
| 345 | __ popq(TMP); |
| 346 | |
| 347 | // Anything besides the return register. |
| 348 | const Register vm_tag_reg = RBX; |
| 349 | const Register old_exit_frame_reg = RCX; |
| 350 | const Register old_exit_through_ffi_reg = RDI; |
| 351 | |
| 352 | __ popq(old_exit_frame_reg); |
| 353 | |
| 354 | __ popq(old_exit_through_ffi_reg); |
| 355 | |
| 356 | // Restore top_resource. |
| 357 | __ popq(TMP); |
| 358 | __ movq( |
| 359 | compiler::Address(THR, compiler::target::Thread::top_resource_offset()), |
| 360 | TMP); |
| 361 | |
| 362 | __ popq(vm_tag_reg); |
| 363 | |
| 364 | // If we were called by a trampoline, it will enter the safepoint on our |
| 365 | // behalf. |
| 366 | __ TransitionGeneratedToNative( |
| 367 | vm_tag_reg, old_exit_frame_reg, old_exit_through_ffi_reg, |
| 368 | /*enter_safepoint=*/!NativeCallbackTrampolines::Enabled()); |
| 369 | |
| 370 | // Restore C++ ABI callee-saved registers. |
| 371 | __ PopRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
| 372 | CallingConventions::kCalleeSaveXmmRegisters); |
| 373 | |
| 374 | #if defined(TARGET_OS_FUCHSIA) |
| 375 | UNREACHABLE(); // Fuchsia does not allow dart:ffi. |
| 376 | #elif defined(USING_SHADOW_CALL_STACK) |
| 377 | #error Unimplemented |
| 378 | #endif |
| 379 | |
| 380 | // Leave the entry frame. |
| 381 | __ LeaveFrame(); |
| 382 | |
| 383 | // Leave the dummy frame holding the pushed arguments. |
| 384 | __ LeaveFrame(); |
| 385 | |
| 386 | __ ret(); |
| 387 | |
| 388 | // For following blocks. |
| 389 | __ set_constant_pool_allowed(true); |
| 390 | } |
| 391 | |
| 392 | // Detect pattern when one value is zero and another is a power of 2. |
| 393 | static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) { |
| 394 | return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) || |
| 395 | (Utils::IsPowerOfTwo(v2) && (v1 == 0)); |
| 396 | } |
| 397 | |
| 398 | LocationSummary* IfThenElseInstr::MakeLocationSummary(Zone* zone, |
| 399 | bool opt) const { |
| 400 | comparison()->InitializeLocationSummary(zone, opt); |
| 401 | // TODO(dartbug.com/30952) support convertion of Register to corresponding |
| 402 | // least significant byte register (e.g. RAX -> AL, RSI -> SIL, r15 -> r15b). |
| 403 | comparison()->locs()->set_out(0, Location::RegisterLocation(RDX)); |
| 404 | return comparison()->locs(); |
| 405 | } |
| 406 | |
| 407 | void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 408 | ASSERT(locs()->out(0).reg() == RDX); |
| 409 | |
| 410 | // Clear upper part of the out register. We are going to use setcc on it |
| 411 | // which is a byte move. |
| 412 | __ xorq(RDX, RDX); |
| 413 | |
| 414 | // Emit comparison code. This must not overwrite the result register. |
| 415 | // IfThenElseInstr::Supports() should prevent EmitComparisonCode from using |
| 416 | // the labels or returning an invalid condition. |
| 417 | BranchLabels labels = {NULL, NULL, NULL}; |
| 418 | Condition true_condition = comparison()->EmitComparisonCode(compiler, labels); |
| 419 | ASSERT(true_condition != kInvalidCondition); |
| 420 | |
| 421 | const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_); |
| 422 | |
| 423 | intptr_t true_value = if_true_; |
| 424 | intptr_t false_value = if_false_; |
| 425 | |
| 426 | if (is_power_of_two_kind) { |
| 427 | if (true_value == 0) { |
| 428 | // We need to have zero in RDX on true_condition. |
| 429 | true_condition = InvertCondition(true_condition); |
| 430 | } |
| 431 | } else { |
| 432 | if (true_value == 0) { |
| 433 | // Swap values so that false_value is zero. |
| 434 | intptr_t temp = true_value; |
| 435 | true_value = false_value; |
| 436 | false_value = temp; |
| 437 | } else { |
| 438 | true_condition = InvertCondition(true_condition); |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | __ setcc(true_condition, DL); |
| 443 | |
| 444 | if (is_power_of_two_kind) { |
| 445 | const intptr_t shift = |
| 446 | Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value)); |
| 447 | __ shlq(RDX, compiler::Immediate(shift + kSmiTagSize)); |
| 448 | } else { |
| 449 | __ decq(RDX); |
| 450 | __ AndImmediate(RDX, compiler::Immediate(Smi::RawValue(true_value) - |
| 451 | Smi::RawValue(false_value))); |
| 452 | if (false_value != 0) { |
| 453 | __ AddImmediate(RDX, compiler::Immediate(Smi::RawValue(false_value))); |
| 454 | } |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone, |
| 459 | bool opt) const { |
| 460 | const intptr_t kNumInputs = 0; |
| 461 | const intptr_t stack_index = |
| 462 | compiler::target::frame_layout.FrameSlotForVariable(&local()); |
| 463 | return LocationSummary::Make(zone, kNumInputs, |
| 464 | Location::StackSlot(stack_index, FPREG), |
| 465 | LocationSummary::kNoCall); |
| 466 | } |
| 467 | |
| 468 | void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 469 | ASSERT(!compiler->is_optimizing()); |
| 470 | // Nothing to do. |
| 471 | } |
| 472 | |
| 473 | LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone, |
| 474 | bool opt) const { |
| 475 | const intptr_t kNumInputs = 1; |
| 476 | return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(), |
| 477 | LocationSummary::kNoCall); |
| 478 | } |
| 479 | |
| 480 | void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 481 | Register value = locs()->in(0).reg(); |
| 482 | Register result = locs()->out(0).reg(); |
| 483 | ASSERT(result == value); // Assert that register assignment is correct. |
| 484 | __ movq(compiler::Address( |
| 485 | RBP, compiler::target::FrameOffsetInBytesForVariable(&local())), |
| 486 | value); |
| 487 | } |
| 488 | |
| 489 | LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone, |
| 490 | bool opt) const { |
| 491 | const intptr_t kNumInputs = 0; |
| 492 | return LocationSummary::Make(zone, kNumInputs, |
| 493 | compiler::Assembler::IsSafe(value()) |
| 494 | ? Location::Constant(this) |
| 495 | : Location::RequiresRegister(), |
| 496 | LocationSummary::kNoCall); |
| 497 | } |
| 498 | |
| 499 | void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 500 | // The register allocator drops constant definitions that have no uses. |
| 501 | Location out = locs()->out(0); |
| 502 | ASSERT(out.IsRegister() || out.IsConstant() || out.IsInvalid()); |
| 503 | if (out.IsRegister()) { |
| 504 | Register result = out.reg(); |
| 505 | __ LoadObject(result, value()); |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | void ConstantInstr::EmitMoveToLocation(FlowGraphCompiler* compiler, |
| 510 | const Location& destination, |
| 511 | Register tmp) { |
| 512 | if (destination.IsRegister()) { |
| 513 | if (representation() == kUnboxedInt32 || |
| 514 | representation() == kUnboxedInt64) { |
| 515 | const int64_t value = Integer::Cast(value_).AsInt64Value(); |
| 516 | if (value == 0) { |
| 517 | __ xorl(destination.reg(), destination.reg()); |
| 518 | } else { |
| 519 | __ movq(destination.reg(), compiler::Immediate(value)); |
| 520 | } |
| 521 | } else { |
| 522 | ASSERT(representation() == kTagged); |
| 523 | __ LoadObject(destination.reg(), value_); |
| 524 | } |
| 525 | } else if (destination.IsFpuRegister()) { |
| 526 | if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0)) { |
| 527 | __ xorps(destination.fpu_reg(), destination.fpu_reg()); |
| 528 | } else { |
| 529 | ASSERT(tmp != kNoRegister); |
| 530 | __ LoadObject(tmp, value_); |
| 531 | __ movsd(destination.fpu_reg(), |
| 532 | compiler::FieldAddress(tmp, Double::value_offset())); |
| 533 | } |
| 534 | } else if (destination.IsDoubleStackSlot()) { |
| 535 | if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0)) { |
| 536 | __ xorps(FpuTMP, FpuTMP); |
| 537 | } else { |
| 538 | ASSERT(tmp != kNoRegister); |
| 539 | __ LoadObject(tmp, value_); |
| 540 | __ movsd(FpuTMP, compiler::FieldAddress(tmp, Double::value_offset())); |
| 541 | } |
| 542 | __ movsd(LocationToStackSlotAddress(destination), FpuTMP); |
| 543 | } else { |
| 544 | ASSERT(destination.IsStackSlot()); |
| 545 | if (representation() == kUnboxedInt32 || |
| 546 | representation() == kUnboxedInt64) { |
| 547 | const int64_t value = Integer::Cast(value_).AsInt64Value(); |
| 548 | __ movq(LocationToStackSlotAddress(destination), |
| 549 | compiler::Immediate(value)); |
| 550 | } else { |
| 551 | ASSERT(representation() == kTagged); |
| 552 | __ StoreObject(LocationToStackSlotAddress(destination), value_); |
| 553 | } |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone, |
| 558 | bool opt) const { |
| 559 | const intptr_t kNumInputs = 0; |
| 560 | const intptr_t kNumTemps = IsUnboxedSignedIntegerConstant() ? 0 : 1; |
| 561 | LocationSummary* locs = new (zone) |
| 562 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 563 | switch (representation()) { |
| 564 | case kUnboxedDouble: |
| 565 | locs->set_out(0, Location::RequiresFpuRegister()); |
| 566 | locs->set_temp(0, Location::RequiresRegister()); |
| 567 | break; |
| 568 | case kUnboxedInt32: |
| 569 | case kUnboxedInt64: |
| 570 | locs->set_out(0, Location::RequiresRegister()); |
| 571 | break; |
| 572 | default: |
| 573 | UNREACHABLE(); |
| 574 | break; |
| 575 | } |
| 576 | return locs; |
| 577 | } |
| 578 | |
| 579 | void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 580 | // The register allocator drops constant definitions that have no uses. |
| 581 | if (!locs()->out(0).IsInvalid()) { |
| 582 | const Register scratch = |
| 583 | IsUnboxedSignedIntegerConstant() ? kNoRegister : locs()->temp(0).reg(); |
| 584 | EmitMoveToLocation(compiler, locs()->out(0), scratch); |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone, |
| 589 | bool opt) const { |
| 590 | auto const dst_type_loc = |
| 591 | LocationFixedRegisterOrConstant(dst_type(), TypeTestABI::kDstTypeReg); |
| 592 | |
| 593 | // When using a type testing stub, we want to prevent spilling of the |
| 594 | // function/instantiator type argument vectors, since stub preserves them. So |
| 595 | // we make this a `kNoCall` summary, even though most other registers can be |
| 596 | // modified by the stub. To tell the register allocator about it, we reserve |
| 597 | // all the other registers as temporary registers. |
| 598 | // TODO(http://dartbug.com/32788): Simplify this. |
| 599 | const bool using_stub = dst_type_loc.IsConstant() && |
| 600 | FlowGraphCompiler::ShouldUseTypeTestingStubFor( |
| 601 | opt, AbstractType::Cast(dst_type_loc.constant())); |
| 602 | |
| 603 | const intptr_t kNonChangeableInputRegs = |
| 604 | (1 << TypeTestABI::kInstanceReg) | |
| 605 | ((dst_type_loc.IsRegister() ? 1 : 0) << TypeTestABI::kDstTypeReg) | |
| 606 | (1 << TypeTestABI::kInstantiatorTypeArgumentsReg) | |
| 607 | (1 << TypeTestABI::kFunctionTypeArgumentsReg); |
| 608 | |
| 609 | const intptr_t kNumInputs = 4; |
| 610 | |
| 611 | // We invoke a stub that can potentially clobber any CPU register |
| 612 | // but can only clobber FPU registers on the slow path when |
| 613 | // entering runtime. Preserve all FPU registers that are |
| 614 | // not guarateed to be preserved by the ABI. |
| 615 | const intptr_t kCpuRegistersToPreserve = |
| 616 | kDartAvailableCpuRegs & ~kNonChangeableInputRegs; |
| 617 | const intptr_t kFpuRegistersToPreserve = |
| 618 | CallingConventions::kVolatileXmmRegisters & ~(1 << FpuTMP); |
| 619 | |
| 620 | const intptr_t kNumTemps = |
| 621 | using_stub ? (Utils::CountOneBits64(kCpuRegistersToPreserve) + |
| 622 | Utils::CountOneBits64(kFpuRegistersToPreserve)) |
| 623 | : 0; |
| 624 | |
| 625 | LocationSummary* summary = new (zone) LocationSummary( |
| 626 | zone, kNumInputs, kNumTemps, |
| 627 | using_stub ? LocationSummary::kCallCalleeSafe : LocationSummary::kCall); |
| 628 | summary->set_in(0, Location::RegisterLocation(TypeTestABI::kInstanceReg)); |
| 629 | summary->set_in(1, dst_type_loc); |
| 630 | summary->set_in(2, Location::RegisterLocation( |
| 631 | TypeTestABI::kInstantiatorTypeArgumentsReg)); |
| 632 | summary->set_in( |
| 633 | 3, Location::RegisterLocation(TypeTestABI::kFunctionTypeArgumentsReg)); |
| 634 | summary->set_out(0, Location::SameAsFirstInput()); |
| 635 | |
| 636 | if (using_stub) { |
| 637 | // Let's reserve all registers except for the input ones. |
| 638 | intptr_t next_temp = 0; |
| 639 | for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { |
| 640 | const bool should_preserve = ((1 << i) & kCpuRegistersToPreserve) != 0; |
| 641 | if (should_preserve) { |
| 642 | summary->set_temp(next_temp++, |
| 643 | Location::RegisterLocation(static_cast<Register>(i))); |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) { |
| 648 | const bool should_preserve = ((1 << i) & kFpuRegistersToPreserve) != 0; |
| 649 | if (should_preserve) { |
| 650 | summary->set_temp(next_temp++, Location::FpuRegisterLocation( |
| 651 | static_cast<FpuRegister>(i))); |
| 652 | } |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | return summary; |
| 657 | } |
| 658 | |
| 659 | static Condition TokenKindToIntCondition(Token::Kind kind) { |
| 660 | switch (kind) { |
| 661 | case Token::kEQ: |
| 662 | return EQUAL; |
| 663 | case Token::kNE: |
| 664 | return NOT_EQUAL; |
| 665 | case Token::kLT: |
| 666 | return LESS; |
| 667 | case Token::kGT: |
| 668 | return GREATER; |
| 669 | case Token::kLTE: |
| 670 | return LESS_EQUAL; |
| 671 | case Token::kGTE: |
| 672 | return GREATER_EQUAL; |
| 673 | default: |
| 674 | UNREACHABLE(); |
| 675 | return OVERFLOW; |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone, |
| 680 | bool opt) const { |
| 681 | const intptr_t kNumInputs = 2; |
| 682 | if (operation_cid() == kDoubleCid) { |
| 683 | const intptr_t kNumTemps = 0; |
| 684 | LocationSummary* locs = new (zone) |
| 685 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 686 | locs->set_in(0, Location::RequiresFpuRegister()); |
| 687 | locs->set_in(1, Location::RequiresFpuRegister()); |
| 688 | locs->set_out(0, Location::RequiresRegister()); |
| 689 | return locs; |
| 690 | } |
| 691 | if (operation_cid() == kSmiCid || operation_cid() == kMintCid) { |
| 692 | const intptr_t kNumTemps = 0; |
| 693 | LocationSummary* locs = new (zone) |
| 694 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 695 | locs->set_in(0, LocationRegisterOrConstant(left())); |
| 696 | // Only one input can be a constant operand. The case of two constant |
| 697 | // operands should be handled by constant propagation. |
| 698 | // Only right can be a stack slot. |
| 699 | locs->set_in(1, locs->in(0).IsConstant() |
| 700 | ? Location::RequiresRegister() |
| 701 | : LocationRegisterOrConstant(right())); |
| 702 | locs->set_out(0, Location::RequiresRegister()); |
| 703 | return locs; |
| 704 | } |
| 705 | UNREACHABLE(); |
| 706 | return NULL; |
| 707 | } |
| 708 | |
| 709 | static void LoadValueCid(FlowGraphCompiler* compiler, |
| 710 | Register value_cid_reg, |
| 711 | Register value_reg, |
| 712 | compiler::Label* value_is_smi = NULL) { |
| 713 | compiler::Label done; |
| 714 | if (value_is_smi == NULL) { |
| 715 | __ LoadImmediate(value_cid_reg, compiler::Immediate(kSmiCid)); |
| 716 | } |
| 717 | __ testq(value_reg, compiler::Immediate(kSmiTagMask)); |
| 718 | if (value_is_smi == NULL) { |
| 719 | __ j(ZERO, &done, compiler::Assembler::kNearJump); |
| 720 | } else { |
| 721 | __ j(ZERO, value_is_smi); |
| 722 | } |
| 723 | __ LoadClassId(value_cid_reg, value_reg); |
| 724 | __ Bind(&done); |
| 725 | } |
| 726 | |
| 727 | static Condition FlipCondition(Condition condition) { |
| 728 | switch (condition) { |
| 729 | case EQUAL: |
| 730 | return EQUAL; |
| 731 | case NOT_EQUAL: |
| 732 | return NOT_EQUAL; |
| 733 | case LESS: |
| 734 | return GREATER; |
| 735 | case LESS_EQUAL: |
| 736 | return GREATER_EQUAL; |
| 737 | case GREATER: |
| 738 | return LESS; |
| 739 | case GREATER_EQUAL: |
| 740 | return LESS_EQUAL; |
| 741 | case BELOW: |
| 742 | return ABOVE; |
| 743 | case BELOW_EQUAL: |
| 744 | return ABOVE_EQUAL; |
| 745 | case ABOVE: |
| 746 | return BELOW; |
| 747 | case ABOVE_EQUAL: |
| 748 | return BELOW_EQUAL; |
| 749 | default: |
| 750 | UNIMPLEMENTED(); |
| 751 | return EQUAL; |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | static void EmitBranchOnCondition(FlowGraphCompiler* compiler, |
| 756 | Condition true_condition, |
| 757 | BranchLabels labels) { |
| 758 | if (labels.fall_through == labels.false_label) { |
| 759 | // If the next block is the false successor, fall through to it. |
| 760 | __ j(true_condition, labels.true_label); |
| 761 | } else { |
| 762 | // If the next block is not the false successor, branch to it. |
| 763 | Condition false_condition = InvertCondition(true_condition); |
| 764 | __ j(false_condition, labels.false_label); |
| 765 | |
| 766 | // Fall through or jump to the true successor. |
| 767 | if (labels.fall_through != labels.true_label) { |
| 768 | __ jmp(labels.true_label); |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | static Condition EmitInt64ComparisonOp(FlowGraphCompiler* compiler, |
| 774 | const LocationSummary& locs, |
| 775 | Token::Kind kind) { |
| 776 | Location left = locs.in(0); |
| 777 | Location right = locs.in(1); |
| 778 | ASSERT(!left.IsConstant() || !right.IsConstant()); |
| 779 | |
| 780 | Condition true_condition = TokenKindToIntCondition(kind); |
| 781 | if (left.IsConstant() || right.IsConstant()) { |
| 782 | // Ensure constant is on the right. |
| 783 | ConstantInstr* constant = NULL; |
| 784 | if (left.IsConstant()) { |
| 785 | constant = left.constant_instruction(); |
| 786 | Location tmp = right; |
| 787 | right = left; |
| 788 | left = tmp; |
| 789 | true_condition = FlipCondition(true_condition); |
| 790 | } else { |
| 791 | constant = right.constant_instruction(); |
| 792 | } |
| 793 | |
| 794 | if (constant->IsUnboxedSignedIntegerConstant()) { |
| 795 | __ cmpq(left.reg(), |
| 796 | compiler::Immediate( |
| 797 | constant->GetUnboxedSignedIntegerConstantValue())); |
| 798 | } else { |
| 799 | ASSERT(constant->representation() == kTagged); |
| 800 | __ CompareObject(left.reg(), right.constant()); |
| 801 | } |
| 802 | } else if (right.IsStackSlot()) { |
| 803 | __ cmpq(left.reg(), LocationToStackSlotAddress(right)); |
| 804 | } else { |
| 805 | __ cmpq(left.reg(), right.reg()); |
| 806 | } |
| 807 | return true_condition; |
| 808 | } |
| 809 | |
| 810 | static Condition TokenKindToDoubleCondition(Token::Kind kind) { |
| 811 | switch (kind) { |
| 812 | case Token::kEQ: |
| 813 | return EQUAL; |
| 814 | case Token::kNE: |
| 815 | return NOT_EQUAL; |
| 816 | case Token::kLT: |
| 817 | return BELOW; |
| 818 | case Token::kGT: |
| 819 | return ABOVE; |
| 820 | case Token::kLTE: |
| 821 | return BELOW_EQUAL; |
| 822 | case Token::kGTE: |
| 823 | return ABOVE_EQUAL; |
| 824 | default: |
| 825 | UNREACHABLE(); |
| 826 | return OVERFLOW; |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler, |
| 831 | const LocationSummary& locs, |
| 832 | Token::Kind kind, |
| 833 | BranchLabels labels) { |
| 834 | XmmRegister left = locs.in(0).fpu_reg(); |
| 835 | XmmRegister right = locs.in(1).fpu_reg(); |
| 836 | |
| 837 | __ comisd(left, right); |
| 838 | |
| 839 | Condition true_condition = TokenKindToDoubleCondition(kind); |
| 840 | compiler::Label* nan_result = |
| 841 | (true_condition == NOT_EQUAL) ? labels.true_label : labels.false_label; |
| 842 | __ j(PARITY_EVEN, nan_result); |
| 843 | return true_condition; |
| 844 | } |
| 845 | |
| 846 | Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| 847 | BranchLabels labels) { |
| 848 | if ((operation_cid() == kSmiCid) || (operation_cid() == kMintCid)) { |
| 849 | return EmitInt64ComparisonOp(compiler, *locs(), kind()); |
| 850 | } else { |
| 851 | ASSERT(operation_cid() == kDoubleCid); |
| 852 | return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | void ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 857 | compiler::Label is_true, is_false; |
| 858 | BranchLabels labels = {&is_true, &is_false, &is_false}; |
| 859 | Condition true_condition = EmitComparisonCode(compiler, labels); |
| 860 | if (true_condition != kInvalidCondition) { |
| 861 | EmitBranchOnCondition(compiler, true_condition, labels); |
| 862 | } |
| 863 | |
| 864 | Register result = locs()->out(0).reg(); |
| 865 | compiler::Label done; |
| 866 | __ Bind(&is_false); |
| 867 | __ LoadObject(result, Bool::False()); |
| 868 | __ jmp(&done); |
| 869 | __ Bind(&is_true); |
| 870 | __ LoadObject(result, Bool::True()); |
| 871 | __ Bind(&done); |
| 872 | } |
| 873 | |
| 874 | void ComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler, |
| 875 | BranchInstr* branch) { |
| 876 | BranchLabels labels = compiler->CreateBranchLabels(branch); |
| 877 | Condition true_condition = EmitComparisonCode(compiler, labels); |
| 878 | if (true_condition != kInvalidCondition) { |
| 879 | EmitBranchOnCondition(compiler, true_condition, labels); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | LocationSummary* TestSmiInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 884 | const intptr_t kNumInputs = 2; |
| 885 | const intptr_t kNumTemps = 0; |
| 886 | LocationSummary* locs = new (zone) |
| 887 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 888 | locs->set_in(0, Location::RequiresRegister()); |
| 889 | // Only one input can be a constant operand. The case of two constant |
| 890 | // operands should be handled by constant propagation. |
| 891 | locs->set_in(1, LocationRegisterOrConstant(right())); |
| 892 | return locs; |
| 893 | } |
| 894 | |
| 895 | Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| 896 | BranchLabels labels) { |
| 897 | Register left_reg = locs()->in(0).reg(); |
| 898 | Location right = locs()->in(1); |
| 899 | if (right.IsConstant()) { |
| 900 | ASSERT(right.constant().IsSmi()); |
| 901 | const int64_t imm = static_cast<int64_t>(right.constant().raw()); |
| 902 | __ TestImmediate(left_reg, compiler::Immediate(imm)); |
| 903 | } else { |
| 904 | __ testq(left_reg, right.reg()); |
| 905 | } |
| 906 | Condition true_condition = (kind() == Token::kNE) ? NOT_ZERO : ZERO; |
| 907 | return true_condition; |
| 908 | } |
| 909 | |
| 910 | LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone, |
| 911 | bool opt) const { |
| 912 | const intptr_t kNumInputs = 1; |
| 913 | const intptr_t kNumTemps = 1; |
| 914 | LocationSummary* locs = new (zone) |
| 915 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 916 | locs->set_in(0, Location::RequiresRegister()); |
| 917 | locs->set_temp(0, Location::RequiresRegister()); |
| 918 | locs->set_out(0, Location::RequiresRegister()); |
| 919 | return locs; |
| 920 | } |
| 921 | |
| 922 | Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| 923 | BranchLabels labels) { |
| 924 | ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT)); |
| 925 | Register val_reg = locs()->in(0).reg(); |
| 926 | Register cid_reg = locs()->temp(0).reg(); |
| 927 | |
| 928 | compiler::Label* deopt = |
| 929 | CanDeoptimize() |
| 930 | ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptTestCids, |
| 931 | licm_hoisted_ ? ICData::kHoisted : 0) |
| 932 | : NULL; |
| 933 | |
| 934 | const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0; |
| 935 | const ZoneGrowableArray<intptr_t>& data = cid_results(); |
| 936 | ASSERT(data[0] == kSmiCid); |
| 937 | bool result = data[1] == true_result; |
| 938 | __ testq(val_reg, compiler::Immediate(kSmiTagMask)); |
| 939 | __ j(ZERO, result ? labels.true_label : labels.false_label); |
| 940 | __ LoadClassId(cid_reg, val_reg); |
| 941 | for (intptr_t i = 2; i < data.length(); i += 2) { |
| 942 | const intptr_t test_cid = data[i]; |
| 943 | ASSERT(test_cid != kSmiCid); |
| 944 | result = data[i + 1] == true_result; |
| 945 | __ cmpq(cid_reg, compiler::Immediate(test_cid)); |
| 946 | __ j(EQUAL, result ? labels.true_label : labels.false_label); |
| 947 | } |
| 948 | // No match found, deoptimize or default action. |
| 949 | if (deopt == NULL) { |
| 950 | // If the cid is not in the list, jump to the opposite label from the cids |
| 951 | // that are in the list. These must be all the same (see asserts in the |
| 952 | // constructor). |
| 953 | compiler::Label* target = result ? labels.false_label : labels.true_label; |
| 954 | if (target != labels.fall_through) { |
| 955 | __ jmp(target); |
| 956 | } |
| 957 | } else { |
| 958 | __ jmp(deopt); |
| 959 | } |
| 960 | // Dummy result as this method already did the jump, there's no need |
| 961 | // for the caller to branch on a condition. |
| 962 | return kInvalidCondition; |
| 963 | } |
| 964 | |
| 965 | LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone, |
| 966 | bool opt) const { |
| 967 | const intptr_t kNumInputs = 2; |
| 968 | const intptr_t kNumTemps = 0; |
| 969 | if (operation_cid() == kDoubleCid) { |
| 970 | LocationSummary* summary = new (zone) |
| 971 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 972 | summary->set_in(0, Location::RequiresFpuRegister()); |
| 973 | summary->set_in(1, Location::RequiresFpuRegister()); |
| 974 | summary->set_out(0, Location::RequiresRegister()); |
| 975 | return summary; |
| 976 | } |
| 977 | if (operation_cid() == kSmiCid || operation_cid() == kMintCid) { |
| 978 | LocationSummary* summary = new (zone) |
| 979 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 980 | summary->set_in(0, LocationRegisterOrConstant(left())); |
| 981 | // Only one input can be a constant operand. The case of two constant |
| 982 | // operands should be handled by constant propagation. |
| 983 | summary->set_in(1, summary->in(0).IsConstant() |
| 984 | ? Location::RequiresRegister() |
| 985 | : LocationRegisterOrConstant(right())); |
| 986 | summary->set_out(0, Location::RequiresRegister()); |
| 987 | return summary; |
| 988 | } |
| 989 | UNREACHABLE(); |
| 990 | return NULL; |
| 991 | } |
| 992 | |
| 993 | Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| 994 | BranchLabels labels) { |
| 995 | if (operation_cid() == kSmiCid || operation_cid() == kMintCid) { |
| 996 | return EmitInt64ComparisonOp(compiler, *locs(), kind()); |
| 997 | } else { |
| 998 | ASSERT(operation_cid() == kDoubleCid); |
| 999 | return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); |
| 1000 | } |
| 1001 | } |
| 1002 | |
| 1003 | void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1004 | SetupNative(); |
| 1005 | Register result = locs()->out(0).reg(); |
| 1006 | const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function()); |
| 1007 | |
| 1008 | // All arguments are already @RSP due to preceding PushArgument()s. |
| 1009 | ASSERT(ArgumentCount() == |
| 1010 | function().NumParameters() + (function().IsGeneric() ? 1 : 0)); |
| 1011 | |
| 1012 | // Push the result place holder initialized to NULL. |
| 1013 | __ PushObject(Object::null_object()); |
| 1014 | |
| 1015 | // Pass a pointer to the first argument in RAX. |
| 1016 | __ leaq(RAX, compiler::Address(RSP, ArgumentCount() * kWordSize)); |
| 1017 | |
| 1018 | __ LoadImmediate(R10, compiler::Immediate(argc_tag)); |
| 1019 | const Code* stub; |
| 1020 | if (link_lazily()) { |
| 1021 | stub = &StubCode::CallBootstrapNative(); |
| 1022 | compiler::ExternalLabel label(NativeEntry::LinkNativeCallEntry()); |
| 1023 | __ LoadNativeEntry(RBX, &label, |
| 1024 | compiler::ObjectPoolBuilderEntry::kPatchable); |
| 1025 | compiler->GeneratePatchableCall(token_pos(), *stub, |
| 1026 | PcDescriptorsLayout::kOther, locs()); |
| 1027 | } else { |
| 1028 | if (is_bootstrap_native()) { |
| 1029 | stub = &StubCode::CallBootstrapNative(); |
| 1030 | } else if (is_auto_scope()) { |
| 1031 | stub = &StubCode::CallAutoScopeNative(); |
| 1032 | } else { |
| 1033 | stub = &StubCode::CallNoScopeNative(); |
| 1034 | } |
| 1035 | const compiler::ExternalLabel label( |
| 1036 | reinterpret_cast<uword>(native_c_function())); |
| 1037 | __ LoadNativeEntry(RBX, &label, |
| 1038 | compiler::ObjectPoolBuilderEntry::kNotPatchable); |
| 1039 | compiler->GenerateStubCall(token_pos(), *stub, PcDescriptorsLayout::kOther, |
| 1040 | locs()); |
| 1041 | } |
| 1042 | __ popq(result); |
| 1043 | |
| 1044 | __ Drop(ArgumentCount()); // Drop the arguments. |
| 1045 | } |
| 1046 | |
| 1047 | void FfiCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1048 | const Register saved_fp = locs()->temp(0).reg(); |
| 1049 | const Register target_address = locs()->in(TargetAddressIndex()).reg(); |
| 1050 | |
| 1051 | // Save frame pointer because we're going to update it when we enter the exit |
| 1052 | // frame. |
| 1053 | __ movq(saved_fp, FPREG); |
| 1054 | |
| 1055 | // Make a space to put the return address. |
| 1056 | __ pushq(compiler::Immediate(0)); |
| 1057 | |
| 1058 | // We need to create a dummy "exit frame". It will share the same pool pointer |
| 1059 | // but have a null code object. |
| 1060 | __ LoadObject(CODE_REG, Object::null_object()); |
| 1061 | __ set_constant_pool_allowed(false); |
| 1062 | __ EnterDartFrame(marshaller_.StackTopInBytes(), PP); |
| 1063 | |
| 1064 | // Align frame before entering C++ world. |
| 1065 | if (OS::ActivationFrameAlignment() > 1) { |
| 1066 | __ andq(SPREG, compiler::Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| 1067 | } |
| 1068 | |
| 1069 | EmitParamMoves(compiler); |
| 1070 | |
| 1071 | // We need to copy a dummy return address up into the dummy stack frame so the |
| 1072 | // stack walker will know which safepoint to use. RIP points to the *next* |
| 1073 | // instruction, so 'AddressRIPRelative' loads the address of the following |
| 1074 | // 'movq'. |
| 1075 | __ leaq(TMP, compiler::Address::AddressRIPRelative(0)); |
| 1076 | compiler->EmitCallsiteMetadata(TokenPosition::kNoSource, deopt_id(), |
| 1077 | PcDescriptorsLayout::Kind::kOther, locs()); |
| 1078 | __ movq(compiler::Address(FPREG, kSavedCallerPcSlotFromFp * kWordSize), TMP); |
| 1079 | |
| 1080 | if (CanExecuteGeneratedCodeInSafepoint()) { |
| 1081 | // Update information in the thread object and enter a safepoint. |
| 1082 | __ movq(TMP, |
| 1083 | compiler::Immediate(compiler::target::Thread::exit_through_ffi())); |
| 1084 | __ TransitionGeneratedToNative(target_address, FPREG, TMP, |
| 1085 | /*enter_safepoint=*/true); |
| 1086 | |
| 1087 | __ CallCFunction(target_address); |
| 1088 | |
| 1089 | // Update information in the thread object and leave the safepoint. |
| 1090 | __ TransitionNativeToGenerated(/*leave_safepoint=*/true); |
| 1091 | } else { |
| 1092 | // We cannot trust that this code will be executable within a safepoint. |
| 1093 | // Therefore we delegate the responsibility of entering/exiting the |
| 1094 | // safepoint to a stub which in the VM isolate's heap, which will never lose |
| 1095 | // execute permission. |
| 1096 | __ movq(TMP, |
| 1097 | compiler::Address( |
| 1098 | THR, compiler::target::Thread:: |
| 1099 | call_native_through_safepoint_entry_point_offset())); |
| 1100 | |
| 1101 | // Calls RBX within a safepoint. |
| 1102 | ASSERT(saved_fp == RBX); |
| 1103 | __ movq(RBX, target_address); |
| 1104 | __ call(TMP); |
| 1105 | } |
| 1106 | |
| 1107 | EmitReturnMoves(compiler); |
| 1108 | |
| 1109 | // Although PP is a callee-saved register, it may have been moved by the GC. |
| 1110 | __ LeaveDartFrame(compiler::kRestoreCallerPP); |
| 1111 | |
| 1112 | // Restore the global object pool after returning from runtime (old space is |
| 1113 | // moving, so the GOP could have been relocated). |
| 1114 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| 1115 | __ movq(PP, compiler::Address(THR, Thread::global_object_pool_offset())); |
| 1116 | } |
| 1117 | |
| 1118 | __ set_constant_pool_allowed(true); |
| 1119 | |
| 1120 | // Instead of returning to the "fake" return address, we just pop it. |
| 1121 | __ popq(TMP); |
| 1122 | } |
| 1123 | |
| 1124 | void NativeEntryInstr::SaveArgument( |
| 1125 | FlowGraphCompiler* compiler, |
| 1126 | const compiler::ffi::NativeLocation& nloc) const { |
| 1127 | if (nloc.IsStack()) return; |
| 1128 | |
| 1129 | if (nloc.IsRegisters()) { |
| 1130 | const auto& regs_loc = nloc.AsRegisters(); |
| 1131 | ASSERT(regs_loc.num_regs() == 1); |
| 1132 | __ pushq(regs_loc.reg_at(0)); |
| 1133 | } else if (nloc.IsFpuRegisters()) { |
| 1134 | // TODO(dartbug.com/40469): Reduce code size. |
| 1135 | __ movq(TMP, nloc.AsFpuRegisters().fpu_reg()); |
| 1136 | __ pushq(TMP); |
| 1137 | } else { |
| 1138 | UNREACHABLE(); |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | void NativeEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1143 | __ Bind(compiler->GetJumpLabel(this)); |
| 1144 | |
| 1145 | // Create a dummy frame holding the pushed arguments. This simplifies |
| 1146 | // NativeReturnInstr::EmitNativeCode. |
| 1147 | __ EnterFrame(0); |
| 1148 | |
| 1149 | #if defined(TARGET_OS_FUCHSIA) |
| 1150 | UNREACHABLE(); // Fuchsia does not allow dart:ffi. |
| 1151 | #elif defined(USING_SHADOW_CALL_STACK) |
| 1152 | #error Unimplemented |
| 1153 | #endif |
| 1154 | |
| 1155 | // Save the argument registers, in reverse order. |
| 1156 | for (intptr_t i = marshaller_.num_args(); i-- > 0;) { |
| 1157 | SaveArgument(compiler, marshaller_.Location(i)); |
| 1158 | } |
| 1159 | |
| 1160 | // Enter the entry frame. Push a dummy return address for consistency with |
| 1161 | // EnterFrame on ARM(64). |
| 1162 | __ PushImmediate(compiler::Immediate(0)); |
| 1163 | __ EnterFrame(0); |
| 1164 | |
| 1165 | // Save a space for the code object. |
| 1166 | __ PushImmediate(compiler::Immediate(0)); |
| 1167 | |
| 1168 | // InvokeDartCodeStub saves the arguments descriptor here. We don't have one, |
| 1169 | // but we need to follow the same frame layout for the stack walker. |
| 1170 | __ PushImmediate(compiler::Immediate(0)); |
| 1171 | |
| 1172 | // Save ABI callee-saved registers. |
| 1173 | __ PushRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
| 1174 | CallingConventions::kCalleeSaveXmmRegisters); |
| 1175 | |
| 1176 | // Load the address of DLRT_GetThreadForNativeCallback without using Thread. |
| 1177 | if (FLAG_precompiled_mode) { |
| 1178 | compiler->LoadBSSEntry(BSS::Relocation::DRT_GetThreadForNativeCallback, RAX, |
| 1179 | RCX); |
| 1180 | } else if (!NativeCallbackTrampolines::Enabled()) { |
| 1181 | // In JIT mode, we can just paste the address of the runtime entry into the |
| 1182 | // generated code directly. This is not a problem since we don't save |
| 1183 | // callbacks into JIT snapshots. |
| 1184 | __ movq(RAX, compiler::Immediate(reinterpret_cast<intptr_t>( |
| 1185 | DLRT_GetThreadForNativeCallback))); |
| 1186 | } |
| 1187 | |
| 1188 | // Create another frame to align the frame before continuing in "native" code. |
| 1189 | // If we were called by a trampoline, it has already loaded the thread. |
| 1190 | if (!NativeCallbackTrampolines::Enabled()) { |
| 1191 | __ EnterFrame(0); |
| 1192 | __ ReserveAlignedFrameSpace(0); |
| 1193 | |
| 1194 | COMPILE_ASSERT(RAX != CallingConventions::kArg1Reg); |
| 1195 | __ movq(CallingConventions::kArg1Reg, compiler::Immediate(callback_id_)); |
| 1196 | __ CallCFunction(RAX); |
| 1197 | __ movq(THR, RAX); |
| 1198 | |
| 1199 | __ LeaveFrame(); |
| 1200 | } |
| 1201 | |
| 1202 | // Save the current VMTag on the stack. |
| 1203 | __ movq(RAX, compiler::Assembler::VMTagAddress()); |
| 1204 | __ pushq(RAX); |
| 1205 | |
| 1206 | // Save top resource. |
| 1207 | __ pushq( |
| 1208 | compiler::Address(THR, compiler::target::Thread::top_resource_offset())); |
| 1209 | __ movq( |
| 1210 | compiler::Address(THR, compiler::target::Thread::top_resource_offset()), |
| 1211 | compiler::Immediate(0)); |
| 1212 | |
| 1213 | __ pushq(compiler::Address( |
| 1214 | THR, compiler::target::Thread::exit_through_ffi_offset())); |
| 1215 | |
| 1216 | // Save top exit frame info. Stack walker expects it to be here. |
| 1217 | __ pushq(compiler::Address( |
| 1218 | THR, compiler::target::Thread::top_exit_frame_info_offset())); |
| 1219 | |
| 1220 | // In debug mode, verify that we've pushed the top exit frame info at the |
| 1221 | // correct offset from FP. |
| 1222 | __ EmitEntryFrameVerification(); |
| 1223 | |
| 1224 | // Either DLRT_GetThreadForNativeCallback or the callback trampoline (caller) |
| 1225 | // will leave the safepoint for us. |
| 1226 | __ TransitionNativeToGenerated(/*exit_safepoint=*/false); |
| 1227 | |
| 1228 | // Load the code object. |
| 1229 | __ movq(RAX, compiler::Address( |
| 1230 | THR, compiler::target::Thread::callback_code_offset())); |
| 1231 | __ movq(RAX, compiler::FieldAddress( |
| 1232 | RAX, compiler::target::GrowableObjectArray::data_offset())); |
| 1233 | __ movq(CODE_REG, compiler::FieldAddress( |
| 1234 | RAX, compiler::target::Array::data_offset() + |
| 1235 | callback_id_ * compiler::target::kWordSize)); |
| 1236 | |
| 1237 | // Put the code object in the reserved slot. |
| 1238 | __ movq(compiler::Address(FPREG, |
| 1239 | kPcMarkerSlotFromFp * compiler::target::kWordSize), |
| 1240 | CODE_REG); |
| 1241 | |
| 1242 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| 1243 | __ movq(PP, |
| 1244 | compiler::Address( |
| 1245 | THR, compiler::target::Thread::global_object_pool_offset())); |
| 1246 | } else { |
| 1247 | __ xorq(PP, PP); // GC-safe value into PP. |
| 1248 | } |
| 1249 | |
| 1250 | // Load a GC-safe value for arguments descriptor (unused but tagged). |
| 1251 | __ xorq(ARGS_DESC_REG, ARGS_DESC_REG); |
| 1252 | |
| 1253 | // Push a dummy return address which suggests that we are inside of |
| 1254 | // InvokeDartCodeStub. This is how the stack walker detects an entry frame. |
| 1255 | __ movq(RAX, |
| 1256 | compiler::Address( |
| 1257 | THR, compiler::target::Thread::invoke_dart_code_stub_offset())); |
| 1258 | __ pushq(compiler::FieldAddress( |
| 1259 | RAX, compiler::target::Code::entry_point_offset())); |
| 1260 | |
| 1261 | // Continue with Dart frame setup. |
| 1262 | FunctionEntryInstr::EmitNativeCode(compiler); |
| 1263 | } |
| 1264 | |
| 1265 | static bool CanBeImmediateIndex(Value* index, intptr_t cid) { |
| 1266 | if (!index->definition()->IsConstant()) return false; |
| 1267 | const Object& constant = index->definition()->AsConstant()->value(); |
| 1268 | if (!constant.IsSmi()) return false; |
| 1269 | const Smi& smi_const = Smi::Cast(constant); |
| 1270 | const intptr_t scale = Instance::ElementSizeFor(cid); |
| 1271 | const intptr_t data_offset = Instance::DataOffsetFor(cid); |
| 1272 | const int64_t disp = smi_const.AsInt64Value() * scale + data_offset; |
| 1273 | return Utils::IsInt(32, disp); |
| 1274 | } |
| 1275 | |
| 1276 | LocationSummary* OneByteStringFromCharCodeInstr::MakeLocationSummary( |
| 1277 | Zone* zone, |
| 1278 | bool opt) const { |
| 1279 | const intptr_t kNumInputs = 1; |
| 1280 | // TODO(fschneider): Allow immediate operands for the char code. |
| 1281 | return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| 1282 | LocationSummary::kNoCall); |
| 1283 | } |
| 1284 | |
| 1285 | void OneByteStringFromCharCodeInstr::EmitNativeCode( |
| 1286 | FlowGraphCompiler* compiler) { |
| 1287 | ASSERT(compiler->is_optimizing()); |
| 1288 | Register char_code = locs()->in(0).reg(); |
| 1289 | Register result = locs()->out(0).reg(); |
| 1290 | |
| 1291 | __ movq(result, |
| 1292 | compiler::Address(THR, Thread::predefined_symbols_address_offset())); |
| 1293 | __ movq(result, |
| 1294 | compiler::Address(result, char_code, |
| 1295 | TIMES_HALF_WORD_SIZE, // Char code is a smi. |
| 1296 | Symbols::kNullCharCodeSymbolOffset * kWordSize)); |
| 1297 | } |
| 1298 | |
| 1299 | LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone, |
| 1300 | bool opt) const { |
| 1301 | const intptr_t kNumInputs = 1; |
| 1302 | return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| 1303 | LocationSummary::kNoCall); |
| 1304 | } |
| 1305 | |
| 1306 | void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1307 | ASSERT(cid_ == kOneByteStringCid); |
| 1308 | Register str = locs()->in(0).reg(); |
| 1309 | Register result = locs()->out(0).reg(); |
| 1310 | compiler::Label is_one, done; |
| 1311 | __ movq(result, compiler::FieldAddress(str, String::length_offset())); |
| 1312 | __ cmpq(result, compiler::Immediate(Smi::RawValue(1))); |
| 1313 | __ j(EQUAL, &is_one, compiler::Assembler::kNearJump); |
| 1314 | __ movq(result, compiler::Immediate(Smi::RawValue(-1))); |
| 1315 | __ jmp(&done); |
| 1316 | __ Bind(&is_one); |
| 1317 | __ movzxb(result, compiler::FieldAddress(str, OneByteString::data_offset())); |
| 1318 | __ SmiTag(result); |
| 1319 | __ Bind(&done); |
| 1320 | } |
| 1321 | |
| 1322 | LocationSummary* StringInterpolateInstr::MakeLocationSummary(Zone* zone, |
| 1323 | bool opt) const { |
| 1324 | const intptr_t kNumInputs = 1; |
| 1325 | const intptr_t kNumTemps = 0; |
| 1326 | LocationSummary* summary = new (zone) |
| 1327 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 1328 | summary->set_in(0, Location::RegisterLocation(RAX)); |
| 1329 | summary->set_out(0, Location::RegisterLocation(RAX)); |
| 1330 | return summary; |
| 1331 | } |
| 1332 | |
| 1333 | void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1334 | Register array = locs()->in(0).reg(); |
| 1335 | __ pushq(array); |
| 1336 | const int kTypeArgsLen = 0; |
| 1337 | const int kNumberOfArguments = 1; |
| 1338 | constexpr int kSizeOfArguments = 1; |
| 1339 | const Array& kNoArgumentNames = Object::null_array(); |
| 1340 | ArgumentsInfo args_info(kTypeArgsLen, kNumberOfArguments, kSizeOfArguments, |
| 1341 | kNoArgumentNames); |
| 1342 | compiler->GenerateStaticCall(deopt_id(), token_pos(), CallFunction(), |
| 1343 | args_info, locs(), ICData::Handle(), |
| 1344 | ICData::kStatic); |
| 1345 | ASSERT(locs()->out(0).reg() == RAX); |
| 1346 | } |
| 1347 | |
| 1348 | LocationSummary* Utf8ScanInstr::MakeLocationSummary(Zone* zone, |
| 1349 | bool opt) const { |
| 1350 | const intptr_t kNumInputs = 5; |
| 1351 | const intptr_t kNumTemps = 1; |
| 1352 | LocationSummary* summary = new (zone) |
| 1353 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 1354 | summary->set_in(0, Location::Any()); // decoder |
| 1355 | summary->set_in(1, Location::WritableRegister()); // bytes |
| 1356 | summary->set_in(2, Location::WritableRegister()); // start |
| 1357 | summary->set_in(3, Location::WritableRegister()); // end |
| 1358 | summary->set_in(4, Location::RequiresRegister()); // table |
| 1359 | summary->set_temp(0, Location::RequiresRegister()); |
| 1360 | summary->set_out(0, Location::RequiresRegister()); |
| 1361 | return summary; |
| 1362 | } |
| 1363 | |
| 1364 | void Utf8ScanInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1365 | const Register bytes_reg = locs()->in(1).reg(); |
| 1366 | const Register start_reg = locs()->in(2).reg(); |
| 1367 | const Register end_reg = locs()->in(3).reg(); |
| 1368 | const Register table_reg = locs()->in(4).reg(); |
| 1369 | const Register size_reg = locs()->out(0).reg(); |
| 1370 | |
| 1371 | const Register bytes_ptr_reg = start_reg; |
| 1372 | const Register bytes_end_reg = end_reg; |
| 1373 | const Register bytes_end_minus_16_reg = bytes_reg; |
| 1374 | const Register flags_reg = locs()->temp(0).reg(); |
| 1375 | const Register temp_reg = TMP; |
| 1376 | const XmmRegister vector_reg = FpuTMP; |
| 1377 | |
| 1378 | static const intptr_t kSizeMask = 0x03; |
| 1379 | static const intptr_t kFlagsMask = 0x3C; |
| 1380 | |
| 1381 | compiler::Label scan_ascii, ascii_loop, ascii_loop_in, nonascii_loop; |
| 1382 | compiler::Label rest, rest_loop, rest_loop_in, done; |
| 1383 | |
| 1384 | // Address of input bytes. |
| 1385 | __ movq(bytes_reg, |
| 1386 | compiler::FieldAddress( |
| 1387 | bytes_reg, compiler::target::TypedDataBase::data_field_offset())); |
| 1388 | |
| 1389 | // Pointers to start, end and end-16. |
| 1390 | __ leaq(bytes_ptr_reg, compiler::Address(bytes_reg, start_reg, TIMES_1, 0)); |
| 1391 | __ leaq(bytes_end_reg, compiler::Address(bytes_reg, end_reg, TIMES_1, 0)); |
| 1392 | __ leaq(bytes_end_minus_16_reg, compiler::Address(bytes_end_reg, -16)); |
| 1393 | |
| 1394 | // Initialize size and flags. |
| 1395 | __ xorq(size_reg, size_reg); |
| 1396 | __ xorq(flags_reg, flags_reg); |
| 1397 | |
| 1398 | __ jmp(&scan_ascii, compiler::Assembler::kNearJump); |
| 1399 | |
| 1400 | // Loop scanning through ASCII bytes one 16-byte vector at a time. |
| 1401 | // While scanning, the size register contains the size as it was at the start |
| 1402 | // of the current block of ASCII bytes, minus the address of the start of the |
| 1403 | // block. After the block, the end address of the block is added to update the |
| 1404 | // size to include the bytes in the block. |
| 1405 | __ Bind(&ascii_loop); |
| 1406 | __ addq(bytes_ptr_reg, compiler::Immediate(16)); |
| 1407 | __ Bind(&ascii_loop_in); |
| 1408 | |
| 1409 | // Exit vectorized loop when there are less than 16 bytes left. |
| 1410 | __ cmpq(bytes_ptr_reg, bytes_end_minus_16_reg); |
| 1411 | __ j(UNSIGNED_GREATER, &rest, compiler::Assembler::kNearJump); |
| 1412 | |
| 1413 | // Find next non-ASCII byte within the next 16 bytes. |
| 1414 | // Note: In principle, we should use MOVDQU here, since the loaded value is |
| 1415 | // used as input to an integer instruction. In practice, according to Agner |
| 1416 | // Fog, there is no penalty for using the wrong kind of load. |
| 1417 | __ movups(vector_reg, compiler::Address(bytes_ptr_reg, 0)); |
| 1418 | __ pmovmskb(temp_reg, vector_reg); |
| 1419 | __ bsfq(temp_reg, temp_reg); |
| 1420 | __ j(EQUAL, &ascii_loop, compiler::Assembler::kNearJump); |
| 1421 | |
| 1422 | // Point to non-ASCII byte and update size. |
| 1423 | __ addq(bytes_ptr_reg, temp_reg); |
| 1424 | __ addq(size_reg, bytes_ptr_reg); |
| 1425 | |
| 1426 | // Read first non-ASCII byte. |
| 1427 | __ movzxb(temp_reg, compiler::Address(bytes_ptr_reg, 0)); |
| 1428 | |
| 1429 | // Loop over block of non-ASCII bytes. |
| 1430 | __ Bind(&nonascii_loop); |
| 1431 | __ addq(bytes_ptr_reg, compiler::Immediate(1)); |
| 1432 | |
| 1433 | // Update size and flags based on byte value. |
| 1434 | __ movzxb(temp_reg, compiler::FieldAddress( |
| 1435 | table_reg, temp_reg, TIMES_1, |
| 1436 | compiler::target::OneByteString::data_offset())); |
| 1437 | __ orq(flags_reg, temp_reg); |
| 1438 | __ andq(temp_reg, compiler::Immediate(kSizeMask)); |
| 1439 | __ addq(size_reg, temp_reg); |
| 1440 | |
| 1441 | // Stop if end is reached. |
| 1442 | __ cmpq(bytes_ptr_reg, bytes_end_reg); |
| 1443 | __ j(UNSIGNED_GREATER_EQUAL, &done, compiler::Assembler::kNearJump); |
| 1444 | |
| 1445 | // Go to ASCII scan if next byte is ASCII, otherwise loop. |
| 1446 | __ movzxb(temp_reg, compiler::Address(bytes_ptr_reg, 0)); |
| 1447 | __ testq(temp_reg, compiler::Immediate(0x80)); |
| 1448 | __ j(NOT_EQUAL, &nonascii_loop, compiler::Assembler::kNearJump); |
| 1449 | |
| 1450 | // Enter the ASCII scanning loop. |
| 1451 | __ Bind(&scan_ascii); |
| 1452 | __ subq(size_reg, bytes_ptr_reg); |
| 1453 | __ jmp(&ascii_loop_in); |
| 1454 | |
| 1455 | // Less than 16 bytes left. Process the remaining bytes individually. |
| 1456 | __ Bind(&rest); |
| 1457 | |
| 1458 | // Update size after ASCII scanning loop. |
| 1459 | __ addq(size_reg, bytes_ptr_reg); |
| 1460 | __ jmp(&rest_loop_in, compiler::Assembler::kNearJump); |
| 1461 | |
| 1462 | __ Bind(&rest_loop); |
| 1463 | |
| 1464 | // Read byte and increment pointer. |
| 1465 | __ movzxb(temp_reg, compiler::Address(bytes_ptr_reg, 0)); |
| 1466 | __ addq(bytes_ptr_reg, compiler::Immediate(1)); |
| 1467 | |
| 1468 | // Update size and flags based on byte value. |
| 1469 | __ movzxb(temp_reg, compiler::FieldAddress( |
| 1470 | table_reg, temp_reg, TIMES_1, |
| 1471 | compiler::target::OneByteString::data_offset())); |
| 1472 | __ orq(flags_reg, temp_reg); |
| 1473 | __ andq(temp_reg, compiler::Immediate(kSizeMask)); |
| 1474 | __ addq(size_reg, temp_reg); |
| 1475 | |
| 1476 | // Stop if end is reached. |
| 1477 | __ Bind(&rest_loop_in); |
| 1478 | __ cmpq(bytes_ptr_reg, bytes_end_reg); |
| 1479 | __ j(UNSIGNED_LESS, &rest_loop, compiler::Assembler::kNearJump); |
| 1480 | __ Bind(&done); |
| 1481 | |
| 1482 | // Write flags to field. |
| 1483 | __ andq(flags_reg, compiler::Immediate(kFlagsMask)); |
| 1484 | if (!IsScanFlagsUnboxed()) { |
| 1485 | __ SmiTag(flags_reg); |
| 1486 | } |
| 1487 | Register decoder_reg; |
| 1488 | const Location decoder_location = locs()->in(0); |
| 1489 | if (decoder_location.IsStackSlot()) { |
| 1490 | __ movq(temp_reg, LocationToStackSlotAddress(decoder_location)); |
| 1491 | decoder_reg = temp_reg; |
| 1492 | } else { |
| 1493 | decoder_reg = decoder_location.reg(); |
| 1494 | } |
| 1495 | const auto scan_flags_field_offset = scan_flags_field_.offset_in_bytes(); |
| 1496 | __ orq(compiler::FieldAddress(decoder_reg, scan_flags_field_offset), |
| 1497 | flags_reg); |
| 1498 | } |
| 1499 | |
| 1500 | LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Zone* zone, |
| 1501 | bool opt) const { |
| 1502 | const intptr_t kNumInputs = 1; |
| 1503 | return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| 1504 | LocationSummary::kNoCall); |
| 1505 | } |
| 1506 | |
| 1507 | void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1508 | Register obj = locs()->in(0).reg(); |
| 1509 | Register result = locs()->out(0).reg(); |
| 1510 | if (object()->definition()->representation() == kUntagged) { |
| 1511 | __ movq(result, compiler::Address(obj, offset())); |
| 1512 | } else { |
| 1513 | ASSERT(object()->definition()->representation() == kTagged); |
| 1514 | __ movq(result, compiler::FieldAddress(obj, offset())); |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | DEFINE_BACKEND(StoreUntagged, (NoLocation, Register obj, Register value)) { |
| 1519 | __ movq(compiler::Address(obj, instr->offset_from_tagged()), value); |
| 1520 | } |
| 1521 | |
| 1522 | class BoxAllocationSlowPath : public TemplateSlowPathCode<Instruction> { |
| 1523 | public: |
| 1524 | BoxAllocationSlowPath(Instruction* instruction, |
| 1525 | const Class& cls, |
| 1526 | Register result) |
| 1527 | : TemplateSlowPathCode(instruction), cls_(cls), result_(result) {} |
| 1528 | |
| 1529 | virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1530 | if (compiler::Assembler::EmittingComments()) { |
| 1531 | __ Comment("%s slow path allocation of %s" , instruction()->DebugName(), |
| 1532 | String::Handle(cls_.ScrubbedName()).ToCString()); |
| 1533 | } |
| 1534 | __ Bind(entry_label()); |
| 1535 | const Code& stub = Code::ZoneHandle( |
| 1536 | compiler->zone(), StubCode::GetAllocationStubForClass(cls_)); |
| 1537 | |
| 1538 | LocationSummary* locs = instruction()->locs(); |
| 1539 | |
| 1540 | locs->live_registers()->Remove(Location::RegisterLocation(result_)); |
| 1541 | |
| 1542 | compiler->SaveLiveRegisters(locs); |
| 1543 | compiler->GenerateStubCall(TokenPosition::kNoSource, // No token position. |
| 1544 | stub, PcDescriptorsLayout::kOther, locs); |
| 1545 | __ MoveRegister(result_, RAX); |
| 1546 | compiler->RestoreLiveRegisters(locs); |
| 1547 | __ jmp(exit_label()); |
| 1548 | } |
| 1549 | |
| 1550 | static void Allocate(FlowGraphCompiler* compiler, |
| 1551 | Instruction* instruction, |
| 1552 | const Class& cls, |
| 1553 | Register result, |
| 1554 | Register temp) { |
| 1555 | if (compiler->intrinsic_mode()) { |
| 1556 | __ TryAllocate(cls, compiler->intrinsic_slow_path_label(), |
| 1557 | compiler::Assembler::kFarJump, result, temp); |
| 1558 | } else { |
| 1559 | BoxAllocationSlowPath* slow_path = |
| 1560 | new BoxAllocationSlowPath(instruction, cls, result); |
| 1561 | compiler->AddSlowPathCode(slow_path); |
| 1562 | |
| 1563 | __ TryAllocate(cls, slow_path->entry_label(), |
| 1564 | compiler::Assembler::kFarJump, result, temp); |
| 1565 | __ Bind(slow_path->exit_label()); |
| 1566 | } |
| 1567 | } |
| 1568 | |
| 1569 | private: |
| 1570 | const Class& cls_; |
| 1571 | const Register result_; |
| 1572 | }; |
| 1573 | |
| 1574 | Representation LoadIndexedInstr::representation() const { |
| 1575 | switch (class_id_) { |
| 1576 | case kArrayCid: |
| 1577 | case kImmutableArrayCid: |
| 1578 | return kTagged; |
| 1579 | case kOneByteStringCid: |
| 1580 | case kTwoByteStringCid: |
| 1581 | case kTypedDataInt8ArrayCid: |
| 1582 | case kTypedDataInt16ArrayCid: |
| 1583 | case kTypedDataUint8ArrayCid: |
| 1584 | case kTypedDataUint8ClampedArrayCid: |
| 1585 | case kTypedDataUint16ArrayCid: |
| 1586 | case kExternalOneByteStringCid: |
| 1587 | case kExternalTwoByteStringCid: |
| 1588 | case kExternalTypedDataUint8ArrayCid: |
| 1589 | case kExternalTypedDataUint8ClampedArrayCid: |
| 1590 | return kUnboxedIntPtr; |
| 1591 | case kTypedDataInt32ArrayCid: |
| 1592 | return kUnboxedInt32; |
| 1593 | case kTypedDataUint32ArrayCid: |
| 1594 | return kUnboxedUint32; |
| 1595 | case kTypedDataInt64ArrayCid: |
| 1596 | case kTypedDataUint64ArrayCid: |
| 1597 | return kUnboxedInt64; |
| 1598 | case kTypedDataFloat32ArrayCid: |
| 1599 | case kTypedDataFloat64ArrayCid: |
| 1600 | return kUnboxedDouble; |
| 1601 | case kTypedDataInt32x4ArrayCid: |
| 1602 | return kUnboxedInt32x4; |
| 1603 | case kTypedDataFloat32x4ArrayCid: |
| 1604 | return kUnboxedFloat32x4; |
| 1605 | case kTypedDataFloat64x2ArrayCid: |
| 1606 | return kUnboxedFloat64x2; |
| 1607 | default: |
| 1608 | UNIMPLEMENTED(); |
| 1609 | return kTagged; |
| 1610 | } |
| 1611 | } |
| 1612 | |
| 1613 | LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone, |
| 1614 | bool opt) const { |
| 1615 | const intptr_t kNumInputs = 2; |
| 1616 | const intptr_t kNumTemps = 0; |
| 1617 | LocationSummary* locs = new (zone) |
| 1618 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 1619 | locs->set_in(0, Location::RequiresRegister()); |
| 1620 | // For tagged index with index_scale=1 as well as untagged index with |
| 1621 | // index_scale=16 we need a writable register due to assdressing mode |
| 1622 | // restrictions on X64. |
| 1623 | const bool need_writable_index_register = |
| 1624 | (index_scale() == 1 && !index_unboxed_) || |
| 1625 | (index_scale() == 16 && index_unboxed_); |
| 1626 | locs->set_in( |
| 1627 | 1, CanBeImmediateIndex(index(), class_id()) |
| 1628 | ? Location::Constant(index()->definition()->AsConstant()) |
| 1629 | : (need_writable_index_register ? Location::WritableRegister() |
| 1630 | : Location::RequiresRegister())); |
| 1631 | if ((representation() == kUnboxedDouble) || |
| 1632 | (representation() == kUnboxedFloat32x4) || |
| 1633 | (representation() == kUnboxedInt32x4) || |
| 1634 | (representation() == kUnboxedFloat64x2)) { |
| 1635 | locs->set_out(0, Location::RequiresFpuRegister()); |
| 1636 | } else { |
| 1637 | locs->set_out(0, Location::RequiresRegister()); |
| 1638 | } |
| 1639 | return locs; |
| 1640 | } |
| 1641 | |
| 1642 | void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1643 | // The array register points to the backing store for external arrays. |
| 1644 | const Register array = locs()->in(0).reg(); |
| 1645 | const Location index = locs()->in(1); |
| 1646 | |
| 1647 | intptr_t index_scale = index_scale_; |
| 1648 | if (index.IsRegister()) { |
| 1649 | if (index_scale == 1 && !index_unboxed_) { |
| 1650 | __ SmiUntag(index.reg()); |
| 1651 | } else if (index_scale == 16 && index_unboxed_) { |
| 1652 | // X64 does not support addressing mode using TIMES_16. |
| 1653 | __ SmiTag(index.reg()); |
| 1654 | index_scale >>= 1; |
| 1655 | } |
| 1656 | } else { |
| 1657 | ASSERT(index.IsConstant()); |
| 1658 | } |
| 1659 | |
| 1660 | compiler::Address element_address = |
| 1661 | index.IsRegister() ? compiler::Assembler::ElementAddressForRegIndex( |
| 1662 | IsExternal(), class_id(), index_scale, |
| 1663 | index_unboxed_, array, index.reg()) |
| 1664 | : compiler::Assembler::ElementAddressForIntIndex( |
| 1665 | IsExternal(), class_id(), index_scale, array, |
| 1666 | Smi::Cast(index.constant()).Value()); |
| 1667 | |
| 1668 | if (representation() == kUnboxedDouble || |
| 1669 | representation() == kUnboxedFloat32x4 || |
| 1670 | representation() == kUnboxedInt32x4 || |
| 1671 | representation() == kUnboxedFloat64x2) { |
| 1672 | XmmRegister result = locs()->out(0).fpu_reg(); |
| 1673 | if (class_id() == kTypedDataFloat32ArrayCid) { |
| 1674 | // Load single precision float. |
| 1675 | __ movss(result, element_address); |
| 1676 | } else if (class_id() == kTypedDataFloat64ArrayCid) { |
| 1677 | __ movsd(result, element_address); |
| 1678 | } else { |
| 1679 | ASSERT((class_id() == kTypedDataInt32x4ArrayCid) || |
| 1680 | (class_id() == kTypedDataFloat32x4ArrayCid) || |
| 1681 | (class_id() == kTypedDataFloat64x2ArrayCid)); |
| 1682 | __ movups(result, element_address); |
| 1683 | } |
| 1684 | return; |
| 1685 | } |
| 1686 | |
| 1687 | Register result = locs()->out(0).reg(); |
| 1688 | switch (class_id()) { |
| 1689 | case kTypedDataInt32ArrayCid: |
| 1690 | ASSERT(representation() == kUnboxedInt32); |
| 1691 | __ movsxd(result, element_address); |
| 1692 | break; |
| 1693 | case kTypedDataUint32ArrayCid: |
| 1694 | ASSERT(representation() == kUnboxedUint32); |
| 1695 | __ movl(result, element_address); |
| 1696 | break; |
| 1697 | case kTypedDataInt64ArrayCid: |
| 1698 | case kTypedDataUint64ArrayCid: |
| 1699 | ASSERT(representation() == kUnboxedInt64); |
| 1700 | __ movq(result, element_address); |
| 1701 | break; |
| 1702 | case kTypedDataInt8ArrayCid: |
| 1703 | ASSERT(representation() == kUnboxedIntPtr); |
| 1704 | __ movsxb(result, element_address); |
| 1705 | break; |
| 1706 | case kTypedDataUint8ArrayCid: |
| 1707 | case kTypedDataUint8ClampedArrayCid: |
| 1708 | case kExternalTypedDataUint8ArrayCid: |
| 1709 | case kExternalTypedDataUint8ClampedArrayCid: |
| 1710 | case kOneByteStringCid: |
| 1711 | case kExternalOneByteStringCid: |
| 1712 | ASSERT(representation() == kUnboxedIntPtr); |
| 1713 | __ movzxb(result, element_address); |
| 1714 | break; |
| 1715 | case kTypedDataInt16ArrayCid: |
| 1716 | ASSERT(representation() == kUnboxedIntPtr); |
| 1717 | __ movsxw(result, element_address); |
| 1718 | break; |
| 1719 | case kTypedDataUint16ArrayCid: |
| 1720 | case kTwoByteStringCid: |
| 1721 | case kExternalTwoByteStringCid: |
| 1722 | ASSERT(representation() == kUnboxedIntPtr); |
| 1723 | __ movzxw(result, element_address); |
| 1724 | break; |
| 1725 | default: |
| 1726 | ASSERT(representation() == kTagged); |
| 1727 | ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid)); |
| 1728 | __ movq(result, element_address); |
| 1729 | break; |
| 1730 | } |
| 1731 | } |
| 1732 | |
| 1733 | LocationSummary* LoadCodeUnitsInstr::MakeLocationSummary(Zone* zone, |
| 1734 | bool opt) const { |
| 1735 | const intptr_t kNumInputs = 2; |
| 1736 | const intptr_t kNumTemps = 0; |
| 1737 | LocationSummary* summary = new (zone) |
| 1738 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 1739 | summary->set_in(0, Location::RequiresRegister()); |
| 1740 | // The smi index is either untagged (element size == 1), or it is left smi |
| 1741 | // tagged (for all element sizes > 1). |
| 1742 | summary->set_in(1, index_scale() == 1 ? Location::WritableRegister() |
| 1743 | : Location::RequiresRegister()); |
| 1744 | summary->set_out(0, Location::RequiresRegister()); |
| 1745 | return summary; |
| 1746 | } |
| 1747 | |
| 1748 | void LoadCodeUnitsInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1749 | // The string register points to the backing store for external strings. |
| 1750 | const Register str = locs()->in(0).reg(); |
| 1751 | const Location index = locs()->in(1); |
| 1752 | |
| 1753 | compiler::Address element_address = |
| 1754 | compiler::Assembler::ElementAddressForRegIndex( |
| 1755 | IsExternal(), class_id(), index_scale(), /*index_unboxed=*/false, str, |
| 1756 | index.reg()); |
| 1757 | |
| 1758 | if ((index_scale() == 1)) { |
| 1759 | __ SmiUntag(index.reg()); |
| 1760 | } |
| 1761 | Register result = locs()->out(0).reg(); |
| 1762 | switch (class_id()) { |
| 1763 | case kOneByteStringCid: |
| 1764 | case kExternalOneByteStringCid: |
| 1765 | switch (element_count()) { |
| 1766 | case 1: |
| 1767 | __ movzxb(result, element_address); |
| 1768 | break; |
| 1769 | case 2: |
| 1770 | __ movzxw(result, element_address); |
| 1771 | break; |
| 1772 | case 4: |
| 1773 | __ movl(result, element_address); |
| 1774 | break; |
| 1775 | default: |
| 1776 | UNREACHABLE(); |
| 1777 | } |
| 1778 | __ SmiTag(result); |
| 1779 | break; |
| 1780 | case kTwoByteStringCid: |
| 1781 | case kExternalTwoByteStringCid: |
| 1782 | switch (element_count()) { |
| 1783 | case 1: |
| 1784 | __ movzxw(result, element_address); |
| 1785 | break; |
| 1786 | case 2: |
| 1787 | __ movl(result, element_address); |
| 1788 | break; |
| 1789 | default: |
| 1790 | UNREACHABLE(); |
| 1791 | } |
| 1792 | __ SmiTag(result); |
| 1793 | break; |
| 1794 | default: |
| 1795 | UNREACHABLE(); |
| 1796 | break; |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | Representation StoreIndexedInstr::RequiredInputRepresentation( |
| 1801 | intptr_t idx) const { |
| 1802 | if (idx == 0) return kNoRepresentation; |
| 1803 | if (idx == 1) { |
| 1804 | if (index_unboxed_) { |
| 1805 | return kUnboxedInt64; |
| 1806 | } else { |
| 1807 | return kTagged; // Index is a smi. |
| 1808 | } |
| 1809 | } |
| 1810 | ASSERT(idx == 2); |
| 1811 | switch (class_id_) { |
| 1812 | case kArrayCid: |
| 1813 | return kTagged; |
| 1814 | case kOneByteStringCid: |
| 1815 | case kTwoByteStringCid: |
| 1816 | case kTypedDataInt8ArrayCid: |
| 1817 | case kTypedDataInt16ArrayCid: |
| 1818 | case kTypedDataUint8ArrayCid: |
| 1819 | case kTypedDataUint8ClampedArrayCid: |
| 1820 | case kTypedDataUint16ArrayCid: |
| 1821 | case kExternalTypedDataUint8ArrayCid: |
| 1822 | case kExternalTypedDataUint8ClampedArrayCid: |
| 1823 | return kUnboxedIntPtr; |
| 1824 | case kTypedDataInt32ArrayCid: |
| 1825 | return kUnboxedInt32; |
| 1826 | case kTypedDataUint32ArrayCid: |
| 1827 | return kUnboxedUint32; |
| 1828 | case kTypedDataInt64ArrayCid: |
| 1829 | case kTypedDataUint64ArrayCid: |
| 1830 | return kUnboxedInt64; |
| 1831 | case kTypedDataFloat32ArrayCid: |
| 1832 | case kTypedDataFloat64ArrayCid: |
| 1833 | return kUnboxedDouble; |
| 1834 | case kTypedDataFloat32x4ArrayCid: |
| 1835 | return kUnboxedFloat32x4; |
| 1836 | case kTypedDataInt32x4ArrayCid: |
| 1837 | return kUnboxedInt32x4; |
| 1838 | case kTypedDataFloat64x2ArrayCid: |
| 1839 | return kUnboxedFloat64x2; |
| 1840 | default: |
| 1841 | UNIMPLEMENTED(); |
| 1842 | return kTagged; |
| 1843 | } |
| 1844 | } |
| 1845 | |
| 1846 | LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone, |
| 1847 | bool opt) const { |
| 1848 | const intptr_t kNumInputs = 3; |
| 1849 | const intptr_t kNumTemps = |
| 1850 | class_id() == kArrayCid && ShouldEmitStoreBarrier() ? 1 : 0; |
| 1851 | LocationSummary* locs = new (zone) |
| 1852 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 1853 | locs->set_in(0, Location::RequiresRegister()); |
| 1854 | // For tagged index with index_scale=1 as well as untagged index with |
| 1855 | // index_scale=16 we need a writable register due to assdressing mode |
| 1856 | // restrictions on X64. |
| 1857 | const bool need_writable_index_register = |
| 1858 | (index_scale() == 1 && !index_unboxed_) || |
| 1859 | (index_scale() == 16 && index_unboxed_); |
| 1860 | locs->set_in( |
| 1861 | 1, CanBeImmediateIndex(index(), class_id()) |
| 1862 | ? Location::Constant(index()->definition()->AsConstant()) |
| 1863 | : (need_writable_index_register ? Location::WritableRegister() |
| 1864 | : Location::RequiresRegister())); |
| 1865 | switch (class_id()) { |
| 1866 | case kArrayCid: |
| 1867 | locs->set_in(2, ShouldEmitStoreBarrier() |
| 1868 | ? Location::RegisterLocation(kWriteBarrierValueReg) |
| 1869 | : LocationRegisterOrConstant(value())); |
| 1870 | if (ShouldEmitStoreBarrier()) { |
| 1871 | locs->set_in(0, Location::RegisterLocation(kWriteBarrierObjectReg)); |
| 1872 | locs->set_temp(0, Location::RegisterLocation(kWriteBarrierSlotReg)); |
| 1873 | } |
| 1874 | break; |
| 1875 | case kExternalTypedDataUint8ArrayCid: |
| 1876 | case kExternalTypedDataUint8ClampedArrayCid: |
| 1877 | case kTypedDataInt8ArrayCid: |
| 1878 | case kTypedDataUint8ArrayCid: |
| 1879 | case kTypedDataUint8ClampedArrayCid: |
| 1880 | case kOneByteStringCid: |
| 1881 | case kTwoByteStringCid: |
| 1882 | // TODO(fschneider): Add location constraint for byte registers (RAX, |
| 1883 | // RBX, RCX, RDX) instead of using a fixed register. |
| 1884 | locs->set_in(2, LocationFixedRegisterOrSmiConstant(value(), RAX)); |
| 1885 | break; |
| 1886 | case kTypedDataInt16ArrayCid: |
| 1887 | case kTypedDataUint16ArrayCid: |
| 1888 | // Writable register because the value must be untagged before storing. |
| 1889 | locs->set_in(2, Location::WritableRegister()); |
| 1890 | break; |
| 1891 | case kTypedDataInt32ArrayCid: |
| 1892 | case kTypedDataUint32ArrayCid: |
| 1893 | case kTypedDataInt64ArrayCid: |
| 1894 | case kTypedDataUint64ArrayCid: |
| 1895 | locs->set_in(2, Location::RequiresRegister()); |
| 1896 | break; |
| 1897 | case kTypedDataFloat32ArrayCid: |
| 1898 | case kTypedDataFloat64ArrayCid: |
| 1899 | // TODO(srdjan): Support Float64 constants. |
| 1900 | locs->set_in(2, Location::RequiresFpuRegister()); |
| 1901 | break; |
| 1902 | case kTypedDataInt32x4ArrayCid: |
| 1903 | case kTypedDataFloat64x2ArrayCid: |
| 1904 | case kTypedDataFloat32x4ArrayCid: |
| 1905 | locs->set_in(2, Location::RequiresFpuRegister()); |
| 1906 | break; |
| 1907 | default: |
| 1908 | UNREACHABLE(); |
| 1909 | return NULL; |
| 1910 | } |
| 1911 | return locs; |
| 1912 | } |
| 1913 | |
| 1914 | void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 1915 | // The array register points to the backing store for external arrays. |
| 1916 | const Register array = locs()->in(0).reg(); |
| 1917 | const Location index = locs()->in(1); |
| 1918 | |
| 1919 | intptr_t index_scale = index_scale_; |
| 1920 | if (index.IsRegister()) { |
| 1921 | if (index_scale == 1 && !index_unboxed_) { |
| 1922 | __ SmiUntag(index.reg()); |
| 1923 | } else if (index_scale == 16 && index_unboxed_) { |
| 1924 | // X64 does not support addressing mode using TIMES_16. |
| 1925 | __ SmiTag(index.reg()); |
| 1926 | index_scale >>= 1; |
| 1927 | } |
| 1928 | } else { |
| 1929 | ASSERT(index.IsConstant()); |
| 1930 | } |
| 1931 | |
| 1932 | compiler::Address element_address = |
| 1933 | index.IsRegister() ? compiler::Assembler::ElementAddressForRegIndex( |
| 1934 | IsExternal(), class_id(), index_scale, |
| 1935 | index_unboxed_, array, index.reg()) |
| 1936 | : compiler::Assembler::ElementAddressForIntIndex( |
| 1937 | IsExternal(), class_id(), index_scale, array, |
| 1938 | Smi::Cast(index.constant()).Value()); |
| 1939 | |
| 1940 | switch (class_id()) { |
| 1941 | case kArrayCid: |
| 1942 | if (ShouldEmitStoreBarrier()) { |
| 1943 | Register value = locs()->in(2).reg(); |
| 1944 | Register slot = locs()->temp(0).reg(); |
| 1945 | __ leaq(slot, element_address); |
| 1946 | __ StoreIntoArray(array, slot, value, CanValueBeSmi()); |
| 1947 | } else if (locs()->in(2).IsConstant()) { |
| 1948 | const Object& constant = locs()->in(2).constant(); |
| 1949 | __ StoreIntoObjectNoBarrier(array, element_address, constant); |
| 1950 | } else { |
| 1951 | Register value = locs()->in(2).reg(); |
| 1952 | __ StoreIntoObjectNoBarrier(array, element_address, value); |
| 1953 | } |
| 1954 | break; |
| 1955 | case kOneByteStringCid: |
| 1956 | case kTypedDataInt8ArrayCid: |
| 1957 | case kTypedDataUint8ArrayCid: |
| 1958 | case kExternalTypedDataUint8ArrayCid: |
| 1959 | ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr); |
| 1960 | if (locs()->in(2).IsConstant()) { |
| 1961 | const Smi& constant = Smi::Cast(locs()->in(2).constant()); |
| 1962 | __ movb(element_address, |
| 1963 | compiler::Immediate(static_cast<int8_t>(constant.Value()))); |
| 1964 | } else { |
| 1965 | ASSERT(locs()->in(2).reg() == RAX); |
| 1966 | __ movb(element_address, RAX); |
| 1967 | } |
| 1968 | break; |
| 1969 | case kTypedDataUint8ClampedArrayCid: |
| 1970 | case kExternalTypedDataUint8ClampedArrayCid: { |
| 1971 | ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr); |
| 1972 | if (locs()->in(2).IsConstant()) { |
| 1973 | const Smi& constant = Smi::Cast(locs()->in(2).constant()); |
| 1974 | intptr_t value = constant.Value(); |
| 1975 | // Clamp to 0x0 or 0xFF respectively. |
| 1976 | if (value > 0xFF) { |
| 1977 | value = 0xFF; |
| 1978 | } else if (value < 0) { |
| 1979 | value = 0; |
| 1980 | } |
| 1981 | __ movb(element_address, |
| 1982 | compiler::Immediate(static_cast<int8_t>(value))); |
| 1983 | } else { |
| 1984 | ASSERT(locs()->in(2).reg() == RAX); |
| 1985 | compiler::Label store_value, store_0xff; |
| 1986 | __ CompareImmediate(RAX, compiler::Immediate(0xFF)); |
| 1987 | __ j(BELOW_EQUAL, &store_value, compiler::Assembler::kNearJump); |
| 1988 | // Clamp to 0x0 or 0xFF respectively. |
| 1989 | __ j(GREATER, &store_0xff); |
| 1990 | __ xorq(RAX, RAX); |
| 1991 | __ jmp(&store_value, compiler::Assembler::kNearJump); |
| 1992 | __ Bind(&store_0xff); |
| 1993 | __ LoadImmediate(RAX, compiler::Immediate(0xFF)); |
| 1994 | __ Bind(&store_value); |
| 1995 | __ movb(element_address, RAX); |
| 1996 | } |
| 1997 | break; |
| 1998 | } |
| 1999 | case kTwoByteStringCid: |
| 2000 | case kTypedDataInt16ArrayCid: |
| 2001 | case kTypedDataUint16ArrayCid: { |
| 2002 | ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr); |
| 2003 | Register value = locs()->in(2).reg(); |
| 2004 | __ movw(element_address, value); |
| 2005 | break; |
| 2006 | } |
| 2007 | case kTypedDataInt32ArrayCid: |
| 2008 | case kTypedDataUint32ArrayCid: { |
| 2009 | Register value = locs()->in(2).reg(); |
| 2010 | __ movl(element_address, value); |
| 2011 | break; |
| 2012 | } |
| 2013 | case kTypedDataInt64ArrayCid: |
| 2014 | case kTypedDataUint64ArrayCid: { |
| 2015 | Register value = locs()->in(2).reg(); |
| 2016 | __ movq(element_address, value); |
| 2017 | break; |
| 2018 | } |
| 2019 | case kTypedDataFloat32ArrayCid: |
| 2020 | __ movss(element_address, locs()->in(2).fpu_reg()); |
| 2021 | break; |
| 2022 | case kTypedDataFloat64ArrayCid: |
| 2023 | __ movsd(element_address, locs()->in(2).fpu_reg()); |
| 2024 | break; |
| 2025 | case kTypedDataInt32x4ArrayCid: |
| 2026 | case kTypedDataFloat64x2ArrayCid: |
| 2027 | case kTypedDataFloat32x4ArrayCid: |
| 2028 | __ movups(element_address, locs()->in(2).fpu_reg()); |
| 2029 | break; |
| 2030 | default: |
| 2031 | UNREACHABLE(); |
| 2032 | } |
| 2033 | } |
| 2034 | |
| 2035 | LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone, |
| 2036 | bool opt) const { |
| 2037 | const intptr_t kNumInputs = 1; |
| 2038 | |
| 2039 | const intptr_t value_cid = value()->Type()->ToCid(); |
| 2040 | const intptr_t field_cid = field().guarded_cid(); |
| 2041 | |
| 2042 | const bool emit_full_guard = !opt || (field_cid == kIllegalCid); |
| 2043 | const bool needs_value_cid_temp_reg = |
| 2044 | (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); |
| 2045 | const bool needs_field_temp_reg = emit_full_guard; |
| 2046 | |
| 2047 | intptr_t num_temps = 0; |
| 2048 | if (needs_value_cid_temp_reg) { |
| 2049 | num_temps++; |
| 2050 | } |
| 2051 | if (needs_field_temp_reg) { |
| 2052 | num_temps++; |
| 2053 | } |
| 2054 | |
| 2055 | LocationSummary* summary = new (zone) |
| 2056 | LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall); |
| 2057 | summary->set_in(0, Location::RequiresRegister()); |
| 2058 | |
| 2059 | for (intptr_t i = 0; i < num_temps; i++) { |
| 2060 | summary->set_temp(i, Location::RequiresRegister()); |
| 2061 | } |
| 2062 | |
| 2063 | return summary; |
| 2064 | } |
| 2065 | |
| 2066 | void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2067 | ASSERT(compiler::target::ObjectLayout::kClassIdTagSize == 16); |
| 2068 | ASSERT(sizeof(FieldLayout::guarded_cid_) == 2); |
| 2069 | ASSERT(sizeof(FieldLayout::is_nullable_) == 2); |
| 2070 | |
| 2071 | const intptr_t value_cid = value()->Type()->ToCid(); |
| 2072 | const intptr_t field_cid = field().guarded_cid(); |
| 2073 | const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid; |
| 2074 | |
| 2075 | if (field_cid == kDynamicCid) { |
| 2076 | return; // Nothing to emit. |
| 2077 | } |
| 2078 | |
| 2079 | const bool emit_full_guard = |
| 2080 | !compiler->is_optimizing() || (field_cid == kIllegalCid); |
| 2081 | |
| 2082 | const bool needs_value_cid_temp_reg = |
| 2083 | (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); |
| 2084 | |
| 2085 | const bool needs_field_temp_reg = emit_full_guard; |
| 2086 | |
| 2087 | const Register value_reg = locs()->in(0).reg(); |
| 2088 | |
| 2089 | const Register value_cid_reg = |
| 2090 | needs_value_cid_temp_reg ? locs()->temp(0).reg() : kNoRegister; |
| 2091 | |
| 2092 | const Register field_reg = needs_field_temp_reg |
| 2093 | ? locs()->temp(locs()->temp_count() - 1).reg() |
| 2094 | : kNoRegister; |
| 2095 | |
| 2096 | compiler::Label ok, fail_label; |
| 2097 | |
| 2098 | compiler::Label* deopt = NULL; |
| 2099 | if (compiler->is_optimizing()) { |
| 2100 | deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField); |
| 2101 | } |
| 2102 | |
| 2103 | compiler::Label* fail = (deopt != NULL) ? deopt : &fail_label; |
| 2104 | |
| 2105 | if (emit_full_guard) { |
| 2106 | __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); |
| 2107 | |
| 2108 | compiler::FieldAddress field_cid_operand(field_reg, |
| 2109 | Field::guarded_cid_offset()); |
| 2110 | compiler::FieldAddress field_nullability_operand( |
| 2111 | field_reg, Field::is_nullable_offset()); |
| 2112 | |
| 2113 | if (value_cid == kDynamicCid) { |
| 2114 | LoadValueCid(compiler, value_cid_reg, value_reg); |
| 2115 | |
| 2116 | __ cmpw(value_cid_reg, field_cid_operand); |
| 2117 | __ j(EQUAL, &ok); |
| 2118 | __ cmpw(value_cid_reg, field_nullability_operand); |
| 2119 | } else if (value_cid == kNullCid) { |
| 2120 | __ cmpw(field_nullability_operand, compiler::Immediate(value_cid)); |
| 2121 | } else { |
| 2122 | __ cmpw(field_cid_operand, compiler::Immediate(value_cid)); |
| 2123 | } |
| 2124 | __ j(EQUAL, &ok); |
| 2125 | |
| 2126 | // Check if the tracked state of the guarded field can be initialized |
| 2127 | // inline. If the field needs length check or requires type arguments and |
| 2128 | // class hierarchy processing for exactness tracking then we fall through |
| 2129 | // into runtime which is responsible for computing offset of the length |
| 2130 | // field based on the class id. |
| 2131 | const bool is_complicated_field = |
| 2132 | field().needs_length_check() || |
| 2133 | field().static_type_exactness_state().IsUninitialized(); |
| 2134 | if (!is_complicated_field) { |
| 2135 | // Uninitialized field can be handled inline. Check if the |
| 2136 | // field is still unitialized. |
| 2137 | __ cmpw(field_cid_operand, compiler::Immediate(kIllegalCid)); |
| 2138 | __ j(NOT_EQUAL, fail); |
| 2139 | |
| 2140 | if (value_cid == kDynamicCid) { |
| 2141 | __ movw(field_cid_operand, value_cid_reg); |
| 2142 | __ movw(field_nullability_operand, value_cid_reg); |
| 2143 | } else { |
| 2144 | ASSERT(field_reg != kNoRegister); |
| 2145 | __ movw(field_cid_operand, compiler::Immediate(value_cid)); |
| 2146 | __ movw(field_nullability_operand, compiler::Immediate(value_cid)); |
| 2147 | } |
| 2148 | |
| 2149 | __ jmp(&ok); |
| 2150 | } |
| 2151 | |
| 2152 | if (deopt == NULL) { |
| 2153 | ASSERT(!compiler->is_optimizing()); |
| 2154 | __ Bind(fail); |
| 2155 | |
| 2156 | __ cmpw(compiler::FieldAddress(field_reg, Field::guarded_cid_offset()), |
| 2157 | compiler::Immediate(kDynamicCid)); |
| 2158 | __ j(EQUAL, &ok); |
| 2159 | |
| 2160 | __ pushq(field_reg); |
| 2161 | __ pushq(value_reg); |
| 2162 | __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| 2163 | __ Drop(2); // Drop the field and the value. |
| 2164 | } else { |
| 2165 | __ jmp(fail); |
| 2166 | } |
| 2167 | } else { |
| 2168 | ASSERT(compiler->is_optimizing()); |
| 2169 | ASSERT(deopt != NULL); |
| 2170 | |
| 2171 | // Field guard class has been initialized and is known. |
| 2172 | if (value_cid == kDynamicCid) { |
| 2173 | // Value's class id is not known. |
| 2174 | __ testq(value_reg, compiler::Immediate(kSmiTagMask)); |
| 2175 | |
| 2176 | if (field_cid != kSmiCid) { |
| 2177 | __ j(ZERO, fail); |
| 2178 | __ LoadClassId(value_cid_reg, value_reg); |
| 2179 | __ CompareImmediate(value_cid_reg, compiler::Immediate(field_cid)); |
| 2180 | } |
| 2181 | |
| 2182 | if (field().is_nullable() && (field_cid != kNullCid)) { |
| 2183 | __ j(EQUAL, &ok); |
| 2184 | __ CompareObject(value_reg, Object::null_object()); |
| 2185 | } |
| 2186 | |
| 2187 | __ j(NOT_EQUAL, fail); |
| 2188 | } else if (value_cid == field_cid) { |
| 2189 | // This would normaly be caught by Canonicalize, but RemoveRedefinitions |
| 2190 | // may sometimes produce the situation after the last Canonicalize pass. |
| 2191 | } else { |
| 2192 | // Both value's and field's class id is known. |
| 2193 | ASSERT(value_cid != nullability); |
| 2194 | __ jmp(fail); |
| 2195 | } |
| 2196 | } |
| 2197 | __ Bind(&ok); |
| 2198 | } |
| 2199 | |
| 2200 | LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone, |
| 2201 | bool opt) const { |
| 2202 | const intptr_t kNumInputs = 1; |
| 2203 | if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) { |
| 2204 | const intptr_t kNumTemps = 3; |
| 2205 | LocationSummary* summary = new (zone) |
| 2206 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 2207 | summary->set_in(0, Location::RequiresRegister()); |
| 2208 | // We need temporaries for field object, length offset and expected length. |
| 2209 | summary->set_temp(0, Location::RequiresRegister()); |
| 2210 | summary->set_temp(1, Location::RequiresRegister()); |
| 2211 | summary->set_temp(2, Location::RequiresRegister()); |
| 2212 | return summary; |
| 2213 | } else { |
| 2214 | LocationSummary* summary = new (zone) |
| 2215 | LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall); |
| 2216 | summary->set_in(0, Location::RequiresRegister()); |
| 2217 | return summary; |
| 2218 | } |
| 2219 | UNREACHABLE(); |
| 2220 | } |
| 2221 | |
| 2222 | void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2223 | if (field().guarded_list_length() == Field::kNoFixedLength) { |
| 2224 | return; // Nothing to emit. |
| 2225 | } |
| 2226 | |
| 2227 | compiler::Label* deopt = |
| 2228 | compiler->is_optimizing() |
| 2229 | ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) |
| 2230 | : NULL; |
| 2231 | |
| 2232 | const Register value_reg = locs()->in(0).reg(); |
| 2233 | |
| 2234 | if (!compiler->is_optimizing() || |
| 2235 | (field().guarded_list_length() == Field::kUnknownFixedLength)) { |
| 2236 | const Register field_reg = locs()->temp(0).reg(); |
| 2237 | const Register offset_reg = locs()->temp(1).reg(); |
| 2238 | const Register length_reg = locs()->temp(2).reg(); |
| 2239 | |
| 2240 | compiler::Label ok; |
| 2241 | |
| 2242 | __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); |
| 2243 | |
| 2244 | __ movsxb( |
| 2245 | offset_reg, |
| 2246 | compiler::FieldAddress( |
| 2247 | field_reg, Field::guarded_list_length_in_object_offset_offset())); |
| 2248 | __ movq(length_reg, compiler::FieldAddress( |
| 2249 | field_reg, Field::guarded_list_length_offset())); |
| 2250 | |
| 2251 | __ cmpq(offset_reg, compiler::Immediate(0)); |
| 2252 | __ j(NEGATIVE, &ok); |
| 2253 | |
| 2254 | // Load the length from the value. GuardFieldClass already verified that |
| 2255 | // value's class matches guarded class id of the field. |
| 2256 | // offset_reg contains offset already corrected by -kHeapObjectTag that is |
| 2257 | // why we use Address instead of FieldAddress. |
| 2258 | __ cmpq(length_reg, compiler::Address(value_reg, offset_reg, TIMES_1, 0)); |
| 2259 | |
| 2260 | if (deopt == NULL) { |
| 2261 | __ j(EQUAL, &ok); |
| 2262 | |
| 2263 | __ pushq(field_reg); |
| 2264 | __ pushq(value_reg); |
| 2265 | __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| 2266 | __ Drop(2); // Drop the field and the value. |
| 2267 | } else { |
| 2268 | __ j(NOT_EQUAL, deopt); |
| 2269 | } |
| 2270 | |
| 2271 | __ Bind(&ok); |
| 2272 | } else { |
| 2273 | ASSERT(compiler->is_optimizing()); |
| 2274 | ASSERT(field().guarded_list_length() >= 0); |
| 2275 | ASSERT(field().guarded_list_length_in_object_offset() != |
| 2276 | Field::kUnknownLengthOffset); |
| 2277 | |
| 2278 | __ CompareImmediate( |
| 2279 | compiler::FieldAddress(value_reg, |
| 2280 | field().guarded_list_length_in_object_offset()), |
| 2281 | compiler::Immediate(Smi::RawValue(field().guarded_list_length()))); |
| 2282 | __ j(NOT_EQUAL, deopt); |
| 2283 | } |
| 2284 | } |
| 2285 | |
| 2286 | LocationSummary* GuardFieldTypeInstr::MakeLocationSummary(Zone* zone, |
| 2287 | bool opt) const { |
| 2288 | const intptr_t kNumInputs = 1; |
| 2289 | const intptr_t kNumTemps = 1; |
| 2290 | LocationSummary* summary = new (zone) |
| 2291 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 2292 | summary->set_in(0, Location::RequiresRegister()); |
| 2293 | summary->set_temp(0, Location::RequiresRegister()); |
| 2294 | return summary; |
| 2295 | } |
| 2296 | |
| 2297 | void GuardFieldTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2298 | // Should never emit GuardFieldType for fields that are marked as NotTracking. |
| 2299 | ASSERT(field().static_type_exactness_state().IsTracking()); |
| 2300 | if (!field().static_type_exactness_state().NeedsFieldGuard()) { |
| 2301 | // Nothing to do: we only need to perform checks for trivially invariant |
| 2302 | // fields. If optimizing Canonicalize pass should have removed |
| 2303 | // this instruction. |
| 2304 | return; |
| 2305 | } |
| 2306 | |
| 2307 | compiler::Label* deopt = |
| 2308 | compiler->is_optimizing() |
| 2309 | ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) |
| 2310 | : NULL; |
| 2311 | |
| 2312 | compiler::Label ok; |
| 2313 | |
| 2314 | const Register value_reg = locs()->in(0).reg(); |
| 2315 | const Register temp = locs()->temp(0).reg(); |
| 2316 | |
| 2317 | // Skip null values for nullable fields. |
| 2318 | if (!compiler->is_optimizing() || field().is_nullable()) { |
| 2319 | __ CompareObject(value_reg, Object::Handle()); |
| 2320 | __ j(EQUAL, &ok); |
| 2321 | } |
| 2322 | |
| 2323 | // Get the state. |
| 2324 | const Field& original = |
| 2325 | Field::ZoneHandle(compiler->zone(), field().Original()); |
| 2326 | __ LoadObject(temp, original); |
| 2327 | __ movsxb(temp, compiler::FieldAddress( |
| 2328 | temp, Field::static_type_exactness_state_offset())); |
| 2329 | |
| 2330 | if (!compiler->is_optimizing()) { |
| 2331 | // Check if field requires checking (it is in unitialized or trivially |
| 2332 | // exact state). |
| 2333 | __ cmpq(temp, |
| 2334 | compiler::Immediate(StaticTypeExactnessState::kUninitialized)); |
| 2335 | __ j(LESS, &ok); |
| 2336 | } |
| 2337 | |
| 2338 | compiler::Label call_runtime; |
| 2339 | if (field().static_type_exactness_state().IsUninitialized()) { |
| 2340 | // Can't initialize the field state inline in optimized code. |
| 2341 | __ cmpq(temp, |
| 2342 | compiler::Immediate(StaticTypeExactnessState::kUninitialized)); |
| 2343 | __ j(EQUAL, compiler->is_optimizing() ? deopt : &call_runtime); |
| 2344 | } |
| 2345 | |
| 2346 | // At this point temp is known to be type arguments offset in words. |
| 2347 | __ movq(temp, compiler::FieldAddress(value_reg, temp, TIMES_8, 0)); |
| 2348 | __ CompareObject(temp, TypeArguments::ZoneHandle( |
| 2349 | compiler->zone(), |
| 2350 | AbstractType::Handle(field().type()).arguments())); |
| 2351 | if (deopt != nullptr) { |
| 2352 | __ j(NOT_EQUAL, deopt); |
| 2353 | } else { |
| 2354 | __ j(EQUAL, &ok); |
| 2355 | |
| 2356 | __ Bind(&call_runtime); |
| 2357 | __ PushObject(original); |
| 2358 | __ pushq(value_reg); |
| 2359 | __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| 2360 | __ Drop(2); |
| 2361 | } |
| 2362 | |
| 2363 | __ Bind(&ok); |
| 2364 | } |
| 2365 | |
| 2366 | LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Zone* zone, |
| 2367 | bool opt) const { |
| 2368 | const intptr_t kNumInputs = 2; |
| 2369 | const intptr_t kNumTemps = (IsUnboxedStore() && opt) |
| 2370 | ? (FLAG_precompiled_mode ? 0 : 2) |
| 2371 | : (IsPotentialUnboxedStore() ? 3 : 0); |
| 2372 | LocationSummary* summary = new (zone) |
| 2373 | LocationSummary(zone, kNumInputs, kNumTemps, |
| 2374 | (!FLAG_precompiled_mode && |
| 2375 | ((IsUnboxedStore() && opt && is_initialization()) || |
| 2376 | IsPotentialUnboxedStore())) |
| 2377 | ? LocationSummary::kCallOnSlowPath |
| 2378 | : LocationSummary::kNoCall); |
| 2379 | |
| 2380 | summary->set_in(0, Location::RequiresRegister()); |
| 2381 | if (IsUnboxedStore() && opt) { |
| 2382 | if (slot().field().is_non_nullable_integer()) { |
| 2383 | ASSERT(FLAG_precompiled_mode); |
| 2384 | summary->set_in(1, Location::RequiresRegister()); |
| 2385 | } else { |
| 2386 | summary->set_in(1, Location::RequiresFpuRegister()); |
| 2387 | } |
| 2388 | if (!FLAG_precompiled_mode) { |
| 2389 | summary->set_temp(0, Location::RequiresRegister()); |
| 2390 | summary->set_temp(1, Location::RequiresRegister()); |
| 2391 | } |
| 2392 | } else if (IsPotentialUnboxedStore()) { |
| 2393 | summary->set_in(1, ShouldEmitStoreBarrier() ? Location::WritableRegister() |
| 2394 | : Location::RequiresRegister()); |
| 2395 | summary->set_temp(0, Location::RequiresRegister()); |
| 2396 | summary->set_temp(1, Location::RequiresRegister()); |
| 2397 | summary->set_temp(2, opt ? Location::RequiresFpuRegister() |
| 2398 | : Location::FpuRegisterLocation(XMM1)); |
| 2399 | } else { |
| 2400 | summary->set_in(1, ShouldEmitStoreBarrier() |
| 2401 | ? Location::RegisterLocation(kWriteBarrierValueReg) |
| 2402 | : LocationRegisterOrConstant(value())); |
| 2403 | } |
| 2404 | return summary; |
| 2405 | } |
| 2406 | |
| 2407 | static void EnsureMutableBox(FlowGraphCompiler* compiler, |
| 2408 | StoreInstanceFieldInstr* instruction, |
| 2409 | Register box_reg, |
| 2410 | const Class& cls, |
| 2411 | Register instance_reg, |
| 2412 | intptr_t offset, |
| 2413 | Register temp) { |
| 2414 | compiler::Label done; |
| 2415 | __ movq(box_reg, compiler::FieldAddress(instance_reg, offset)); |
| 2416 | __ CompareObject(box_reg, Object::null_object()); |
| 2417 | __ j(NOT_EQUAL, &done); |
| 2418 | BoxAllocationSlowPath::Allocate(compiler, instruction, cls, box_reg, temp); |
| 2419 | __ movq(temp, box_reg); |
| 2420 | __ StoreIntoObject(instance_reg, compiler::FieldAddress(instance_reg, offset), |
| 2421 | temp, compiler::Assembler::kValueIsNotSmi); |
| 2422 | |
| 2423 | __ Bind(&done); |
| 2424 | } |
| 2425 | |
| 2426 | void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2427 | ASSERT(compiler::target::ObjectLayout::kClassIdTagSize == 16); |
| 2428 | ASSERT(sizeof(FieldLayout::guarded_cid_) == 2); |
| 2429 | ASSERT(sizeof(FieldLayout::is_nullable_) == 2); |
| 2430 | |
| 2431 | compiler::Label skip_store; |
| 2432 | |
| 2433 | const Register instance_reg = locs()->in(0).reg(); |
| 2434 | const intptr_t offset_in_bytes = OffsetInBytes(); |
| 2435 | ASSERT(offset_in_bytes > 0); // Field is finalized and points after header. |
| 2436 | |
| 2437 | if (IsUnboxedStore() && compiler->is_optimizing()) { |
| 2438 | if (slot().field().is_non_nullable_integer()) { |
| 2439 | const Register value = locs()->in(1).reg(); |
| 2440 | __ Comment("UnboxedIntegerStoreInstanceFieldInstr" ); |
| 2441 | __ movq(compiler::FieldAddress(instance_reg, offset_in_bytes), value); |
| 2442 | return; |
| 2443 | } |
| 2444 | |
| 2445 | XmmRegister value = locs()->in(1).fpu_reg(); |
| 2446 | const intptr_t cid = slot().field().UnboxedFieldCid(); |
| 2447 | |
| 2448 | // Real unboxed field |
| 2449 | if (FLAG_precompiled_mode) { |
| 2450 | switch (cid) { |
| 2451 | case kDoubleCid: |
| 2452 | __ Comment("UnboxedDoubleStoreInstanceFieldInstr" ); |
| 2453 | __ movsd(compiler::FieldAddress(instance_reg, offset_in_bytes), |
| 2454 | value); |
| 2455 | return; |
| 2456 | case kFloat32x4Cid: |
| 2457 | __ Comment("UnboxedFloat32x4StoreInstanceFieldInstr" ); |
| 2458 | __ movups(compiler::FieldAddress(instance_reg, offset_in_bytes), |
| 2459 | value); |
| 2460 | return; |
| 2461 | case kFloat64x2Cid: |
| 2462 | __ Comment("UnboxedFloat64x2StoreInstanceFieldInstr" ); |
| 2463 | __ movups(compiler::FieldAddress(instance_reg, offset_in_bytes), |
| 2464 | value); |
| 2465 | return; |
| 2466 | default: |
| 2467 | UNREACHABLE(); |
| 2468 | } |
| 2469 | } |
| 2470 | |
| 2471 | Register temp = locs()->temp(0).reg(); |
| 2472 | Register temp2 = locs()->temp(1).reg(); |
| 2473 | |
| 2474 | if (is_initialization()) { |
| 2475 | const Class* cls = NULL; |
| 2476 | switch (cid) { |
| 2477 | case kDoubleCid: |
| 2478 | cls = &compiler->double_class(); |
| 2479 | break; |
| 2480 | case kFloat32x4Cid: |
| 2481 | cls = &compiler->float32x4_class(); |
| 2482 | break; |
| 2483 | case kFloat64x2Cid: |
| 2484 | cls = &compiler->float64x2_class(); |
| 2485 | break; |
| 2486 | default: |
| 2487 | UNREACHABLE(); |
| 2488 | } |
| 2489 | |
| 2490 | BoxAllocationSlowPath::Allocate(compiler, this, *cls, temp, temp2); |
| 2491 | __ movq(temp2, temp); |
| 2492 | __ StoreIntoObject(instance_reg, |
| 2493 | compiler::FieldAddress(instance_reg, offset_in_bytes), |
| 2494 | temp2, compiler::Assembler::kValueIsNotSmi); |
| 2495 | } else { |
| 2496 | __ movq(temp, compiler::FieldAddress(instance_reg, offset_in_bytes)); |
| 2497 | } |
| 2498 | switch (cid) { |
| 2499 | case kDoubleCid: |
| 2500 | __ Comment("UnboxedDoubleStoreInstanceFieldInstr" ); |
| 2501 | __ movsd(compiler::FieldAddress(temp, Double::value_offset()), value); |
| 2502 | break; |
| 2503 | case kFloat32x4Cid: |
| 2504 | __ Comment("UnboxedFloat32x4StoreInstanceFieldInstr" ); |
| 2505 | __ movups(compiler::FieldAddress(temp, Float32x4::value_offset()), |
| 2506 | value); |
| 2507 | break; |
| 2508 | case kFloat64x2Cid: |
| 2509 | __ Comment("UnboxedFloat64x2StoreInstanceFieldInstr" ); |
| 2510 | __ movups(compiler::FieldAddress(temp, Float64x2::value_offset()), |
| 2511 | value); |
| 2512 | break; |
| 2513 | default: |
| 2514 | UNREACHABLE(); |
| 2515 | } |
| 2516 | return; |
| 2517 | } |
| 2518 | |
| 2519 | if (IsPotentialUnboxedStore()) { |
| 2520 | Register value_reg = locs()->in(1).reg(); |
| 2521 | Register temp = locs()->temp(0).reg(); |
| 2522 | Register temp2 = locs()->temp(1).reg(); |
| 2523 | FpuRegister fpu_temp = locs()->temp(2).fpu_reg(); |
| 2524 | |
| 2525 | if (ShouldEmitStoreBarrier()) { |
| 2526 | // Value input is a writable register and should be manually preserved |
| 2527 | // across allocation slow-path. |
| 2528 | locs()->live_registers()->Add(locs()->in(1), kTagged); |
| 2529 | } |
| 2530 | |
| 2531 | compiler::Label store_pointer; |
| 2532 | compiler::Label store_double; |
| 2533 | compiler::Label store_float32x4; |
| 2534 | compiler::Label store_float64x2; |
| 2535 | |
| 2536 | __ LoadObject(temp, Field::ZoneHandle(Z, slot().field().Original())); |
| 2537 | |
| 2538 | __ cmpw(compiler::FieldAddress(temp, Field::is_nullable_offset()), |
| 2539 | compiler::Immediate(kNullCid)); |
| 2540 | __ j(EQUAL, &store_pointer); |
| 2541 | |
| 2542 | __ movzxb(temp2, compiler::FieldAddress(temp, Field::kind_bits_offset())); |
| 2543 | __ testq(temp2, compiler::Immediate(1 << Field::kUnboxingCandidateBit)); |
| 2544 | __ j(ZERO, &store_pointer); |
| 2545 | |
| 2546 | __ cmpw(compiler::FieldAddress(temp, Field::guarded_cid_offset()), |
| 2547 | compiler::Immediate(kDoubleCid)); |
| 2548 | __ j(EQUAL, &store_double); |
| 2549 | |
| 2550 | __ cmpw(compiler::FieldAddress(temp, Field::guarded_cid_offset()), |
| 2551 | compiler::Immediate(kFloat32x4Cid)); |
| 2552 | __ j(EQUAL, &store_float32x4); |
| 2553 | |
| 2554 | __ cmpw(compiler::FieldAddress(temp, Field::guarded_cid_offset()), |
| 2555 | compiler::Immediate(kFloat64x2Cid)); |
| 2556 | __ j(EQUAL, &store_float64x2); |
| 2557 | |
| 2558 | // Fall through. |
| 2559 | __ jmp(&store_pointer); |
| 2560 | |
| 2561 | if (!compiler->is_optimizing()) { |
| 2562 | locs()->live_registers()->Add(locs()->in(0)); |
| 2563 | locs()->live_registers()->Add(locs()->in(1)); |
| 2564 | } |
| 2565 | |
| 2566 | { |
| 2567 | __ Bind(&store_double); |
| 2568 | EnsureMutableBox(compiler, this, temp, compiler->double_class(), |
| 2569 | instance_reg, offset_in_bytes, temp2); |
| 2570 | __ movsd(fpu_temp, |
| 2571 | compiler::FieldAddress(value_reg, Double::value_offset())); |
| 2572 | __ movsd(compiler::FieldAddress(temp, Double::value_offset()), fpu_temp); |
| 2573 | __ jmp(&skip_store); |
| 2574 | } |
| 2575 | |
| 2576 | { |
| 2577 | __ Bind(&store_float32x4); |
| 2578 | EnsureMutableBox(compiler, this, temp, compiler->float32x4_class(), |
| 2579 | instance_reg, offset_in_bytes, temp2); |
| 2580 | __ movups(fpu_temp, |
| 2581 | compiler::FieldAddress(value_reg, Float32x4::value_offset())); |
| 2582 | __ movups(compiler::FieldAddress(temp, Float32x4::value_offset()), |
| 2583 | fpu_temp); |
| 2584 | __ jmp(&skip_store); |
| 2585 | } |
| 2586 | |
| 2587 | { |
| 2588 | __ Bind(&store_float64x2); |
| 2589 | EnsureMutableBox(compiler, this, temp, compiler->float64x2_class(), |
| 2590 | instance_reg, offset_in_bytes, temp2); |
| 2591 | __ movups(fpu_temp, |
| 2592 | compiler::FieldAddress(value_reg, Float64x2::value_offset())); |
| 2593 | __ movups(compiler::FieldAddress(temp, Float64x2::value_offset()), |
| 2594 | fpu_temp); |
| 2595 | __ jmp(&skip_store); |
| 2596 | } |
| 2597 | |
| 2598 | __ Bind(&store_pointer); |
| 2599 | } |
| 2600 | |
| 2601 | if (ShouldEmitStoreBarrier()) { |
| 2602 | Register value_reg = locs()->in(1).reg(); |
| 2603 | __ StoreIntoObject(instance_reg, |
| 2604 | compiler::FieldAddress(instance_reg, offset_in_bytes), |
| 2605 | value_reg, CanValueBeSmi()); |
| 2606 | } else { |
| 2607 | if (locs()->in(1).IsConstant()) { |
| 2608 | __ StoreIntoObjectNoBarrier( |
| 2609 | instance_reg, compiler::FieldAddress(instance_reg, offset_in_bytes), |
| 2610 | locs()->in(1).constant()); |
| 2611 | } else { |
| 2612 | Register value_reg = locs()->in(1).reg(); |
| 2613 | __ StoreIntoObjectNoBarrier( |
| 2614 | instance_reg, compiler::FieldAddress(instance_reg, offset_in_bytes), |
| 2615 | value_reg); |
| 2616 | } |
| 2617 | } |
| 2618 | __ Bind(&skip_store); |
| 2619 | } |
| 2620 | |
| 2621 | LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| 2622 | bool opt) const { |
| 2623 | const intptr_t kNumInputs = 1; |
| 2624 | const intptr_t kNumTemps = 1; |
| 2625 | LocationSummary* locs = new (zone) |
| 2626 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 2627 | locs->set_in(0, Location::RegisterLocation(kWriteBarrierValueReg)); |
| 2628 | locs->set_temp(0, Location::RequiresRegister()); |
| 2629 | return locs; |
| 2630 | } |
| 2631 | |
| 2632 | void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2633 | Register value = locs()->in(0).reg(); |
| 2634 | Register temp = locs()->temp(0).reg(); |
| 2635 | |
| 2636 | compiler->used_static_fields().Add(&field()); |
| 2637 | |
| 2638 | __ movq(temp, |
| 2639 | compiler::Address( |
| 2640 | THR, compiler::target::Thread::field_table_values_offset())); |
| 2641 | // Note: static fields ids won't be changed by hot-reload. |
| 2642 | __ movq( |
| 2643 | compiler::Address(temp, compiler::target::FieldTable::OffsetOf(field())), |
| 2644 | value); |
| 2645 | } |
| 2646 | |
| 2647 | LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone, |
| 2648 | bool opt) const { |
| 2649 | const intptr_t kNumInputs = 3; |
| 2650 | const intptr_t kNumTemps = 0; |
| 2651 | LocationSummary* summary = new (zone) |
| 2652 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 2653 | summary->set_in(0, Location::RegisterLocation(TypeTestABI::kInstanceReg)); |
| 2654 | summary->set_in(1, Location::RegisterLocation( |
| 2655 | TypeTestABI::kInstantiatorTypeArgumentsReg)); |
| 2656 | summary->set_in( |
| 2657 | 2, Location::RegisterLocation(TypeTestABI::kFunctionTypeArgumentsReg)); |
| 2658 | summary->set_out(0, Location::RegisterLocation(RAX)); |
| 2659 | return summary; |
| 2660 | } |
| 2661 | |
| 2662 | void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2663 | ASSERT(locs()->in(0).reg() == TypeTestABI::kInstanceReg); |
| 2664 | ASSERT(locs()->in(1).reg() == TypeTestABI::kInstantiatorTypeArgumentsReg); |
| 2665 | ASSERT(locs()->in(2).reg() == TypeTestABI::kFunctionTypeArgumentsReg); |
| 2666 | |
| 2667 | compiler->GenerateInstanceOf(token_pos(), deopt_id(), type(), locs()); |
| 2668 | ASSERT(locs()->out(0).reg() == RAX); |
| 2669 | } |
| 2670 | |
| 2671 | // TODO(srdjan): In case of constant inputs make CreateArray kNoCall and |
| 2672 | // use slow path stub. |
| 2673 | LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone, |
| 2674 | bool opt) const { |
| 2675 | const intptr_t kNumInputs = 2; |
| 2676 | const intptr_t kNumTemps = 0; |
| 2677 | LocationSummary* locs = new (zone) |
| 2678 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 2679 | locs->set_in(0, Location::RegisterLocation(RBX)); |
| 2680 | locs->set_in(1, Location::RegisterLocation(R10)); |
| 2681 | locs->set_out(0, Location::RegisterLocation(RAX)); |
| 2682 | return locs; |
| 2683 | } |
| 2684 | |
| 2685 | // Inlines array allocation for known constant values. |
| 2686 | static void InlineArrayAllocation(FlowGraphCompiler* compiler, |
| 2687 | intptr_t num_elements, |
| 2688 | compiler::Label* slow_path, |
| 2689 | compiler::Label* done) { |
| 2690 | const int kInlineArraySize = 12; // Same as kInlineInstanceSize. |
| 2691 | const Register kLengthReg = R10; |
| 2692 | const Register kElemTypeReg = RBX; |
| 2693 | const intptr_t instance_size = Array::InstanceSize(num_elements); |
| 2694 | |
| 2695 | __ TryAllocateArray(kArrayCid, instance_size, slow_path, |
| 2696 | compiler::Assembler::kFarJump, |
| 2697 | RAX, // instance |
| 2698 | RCX, // end address |
| 2699 | R13); // temp |
| 2700 | |
| 2701 | // RAX: new object start as a tagged pointer. |
| 2702 | // Store the type argument field. |
| 2703 | __ StoreIntoObjectNoBarrier( |
| 2704 | RAX, compiler::FieldAddress(RAX, Array::type_arguments_offset()), |
| 2705 | kElemTypeReg); |
| 2706 | |
| 2707 | // Set the length field. |
| 2708 | __ StoreIntoObjectNoBarrier( |
| 2709 | RAX, compiler::FieldAddress(RAX, Array::length_offset()), kLengthReg); |
| 2710 | |
| 2711 | // Initialize all array elements to raw_null. |
| 2712 | // RAX: new object start as a tagged pointer. |
| 2713 | // RCX: new object end address. |
| 2714 | // RDI: iterator which initially points to the start of the variable |
| 2715 | // data area to be initialized. |
| 2716 | if (num_elements > 0) { |
| 2717 | const intptr_t array_size = instance_size - sizeof(ArrayLayout); |
| 2718 | __ LoadObject(R12, Object::null_object()); |
| 2719 | __ leaq(RDI, compiler::FieldAddress(RAX, sizeof(ArrayLayout))); |
| 2720 | if (array_size < (kInlineArraySize * kWordSize)) { |
| 2721 | intptr_t current_offset = 0; |
| 2722 | while (current_offset < array_size) { |
| 2723 | __ StoreIntoObjectNoBarrier(RAX, compiler::Address(RDI, current_offset), |
| 2724 | R12); |
| 2725 | current_offset += kWordSize; |
| 2726 | } |
| 2727 | } else { |
| 2728 | compiler::Label init_loop; |
| 2729 | __ Bind(&init_loop); |
| 2730 | __ StoreIntoObjectNoBarrier(RAX, compiler::Address(RDI, 0), R12); |
| 2731 | __ addq(RDI, compiler::Immediate(kWordSize)); |
| 2732 | __ cmpq(RDI, RCX); |
| 2733 | __ j(BELOW, &init_loop, compiler::Assembler::kNearJump); |
| 2734 | } |
| 2735 | } |
| 2736 | __ jmp(done, compiler::Assembler::kNearJump); |
| 2737 | } |
| 2738 | |
| 2739 | void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2740 | TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info(); |
| 2741 | if (type_usage_info != nullptr) { |
| 2742 | const Class& list_class = Class::Handle( |
| 2743 | compiler->thread()->isolate()->class_table()->At(kArrayCid)); |
| 2744 | RegisterTypeArgumentsUse(compiler->function(), type_usage_info, list_class, |
| 2745 | element_type()->definition()); |
| 2746 | } |
| 2747 | |
| 2748 | // Allocate the array. R10 = length, RBX = element type. |
| 2749 | const Register kLengthReg = R10; |
| 2750 | const Register kElemTypeReg = RBX; |
| 2751 | const Register kResultReg = RAX; |
| 2752 | ASSERT(locs()->in(0).reg() == kElemTypeReg); |
| 2753 | ASSERT(locs()->in(1).reg() == kLengthReg); |
| 2754 | |
| 2755 | compiler::Label slow_path, done; |
| 2756 | if (compiler->is_optimizing() && !FLAG_precompiled_mode && |
| 2757 | num_elements()->BindsToConstant() && |
| 2758 | num_elements()->BoundConstant().IsSmi()) { |
| 2759 | const intptr_t length = Smi::Cast(num_elements()->BoundConstant()).Value(); |
| 2760 | if (Array::IsValidLength(length)) { |
| 2761 | InlineArrayAllocation(compiler, length, &slow_path, &done); |
| 2762 | } |
| 2763 | } |
| 2764 | |
| 2765 | __ Bind(&slow_path); |
| 2766 | auto object_store = compiler->isolate()->object_store(); |
| 2767 | const auto& allocate_array_stub = |
| 2768 | Code::ZoneHandle(compiler->zone(), object_store->allocate_array_stub()); |
| 2769 | compiler->GenerateStubCall(token_pos(), allocate_array_stub, |
| 2770 | PcDescriptorsLayout::kOther, locs(), deopt_id()); |
| 2771 | __ Bind(&done); |
| 2772 | ASSERT(locs()->out(0).reg() == kResultReg); |
| 2773 | } |
| 2774 | |
| 2775 | LocationSummary* LoadFieldInstr::MakeLocationSummary(Zone* zone, |
| 2776 | bool opt) const { |
| 2777 | const intptr_t kNumInputs = 1; |
| 2778 | const intptr_t kNumTemps = (IsUnboxedLoad() && opt) |
| 2779 | ? (FLAG_precompiled_mode ? 0 : 1) |
| 2780 | : (IsPotentialUnboxedLoad() ? 2 : 0); |
| 2781 | const auto contains_call = |
| 2782 | (IsUnboxedLoad() && opt) |
| 2783 | ? LocationSummary::kNoCall |
| 2784 | : (IsPotentialUnboxedLoad() |
| 2785 | ? LocationSummary::kCallOnSlowPath |
| 2786 | : (calls_initializer() ? LocationSummary::kCall |
| 2787 | : LocationSummary::kNoCall)); |
| 2788 | |
| 2789 | LocationSummary* locs = |
| 2790 | new (zone) LocationSummary(zone, kNumInputs, kNumTemps, contains_call); |
| 2791 | |
| 2792 | locs->set_in(0, calls_initializer() ? Location::RegisterLocation( |
| 2793 | InitInstanceFieldABI::kInstanceReg) |
| 2794 | : Location::RequiresRegister()); |
| 2795 | |
| 2796 | if (IsUnboxedLoad() && opt) { |
| 2797 | ASSERT(!calls_initializer()); |
| 2798 | if (!FLAG_precompiled_mode) { |
| 2799 | locs->set_temp(0, Location::RequiresRegister()); |
| 2800 | } |
| 2801 | if (slot().field().is_non_nullable_integer()) { |
| 2802 | ASSERT(FLAG_precompiled_mode); |
| 2803 | locs->set_out(0, Location::RequiresRegister()); |
| 2804 | } else { |
| 2805 | locs->set_out(0, Location::RequiresFpuRegister()); |
| 2806 | } |
| 2807 | } else if (IsPotentialUnboxedLoad()) { |
| 2808 | ASSERT(!calls_initializer()); |
| 2809 | locs->set_temp(0, opt ? Location::RequiresFpuRegister() |
| 2810 | : Location::FpuRegisterLocation(XMM1)); |
| 2811 | locs->set_temp(1, Location::RequiresRegister()); |
| 2812 | locs->set_out(0, Location::RequiresRegister()); |
| 2813 | } else if (calls_initializer()) { |
| 2814 | locs->set_out(0, |
| 2815 | Location::RegisterLocation(InitInstanceFieldABI::kResultReg)); |
| 2816 | } else { |
| 2817 | locs->set_out(0, Location::RequiresRegister()); |
| 2818 | } |
| 2819 | return locs; |
| 2820 | } |
| 2821 | |
| 2822 | void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2823 | ASSERT(compiler::target::ObjectLayout::kClassIdTagSize == 16); |
| 2824 | ASSERT(sizeof(FieldLayout::guarded_cid_) == 2); |
| 2825 | ASSERT(sizeof(FieldLayout::is_nullable_) == 2); |
| 2826 | |
| 2827 | Register instance_reg = locs()->in(0).reg(); |
| 2828 | if (IsUnboxedLoad() && compiler->is_optimizing()) { |
| 2829 | ASSERT(!calls_initializer()); |
| 2830 | if (slot().field().is_non_nullable_integer()) { |
| 2831 | const Register result = locs()->out(0).reg(); |
| 2832 | __ Comment("UnboxedIntegerLoadFieldInstr" ); |
| 2833 | __ movq(result, compiler::FieldAddress(instance_reg, OffsetInBytes())); |
| 2834 | return; |
| 2835 | } |
| 2836 | |
| 2837 | XmmRegister result = locs()->out(0).fpu_reg(); |
| 2838 | const intptr_t cid = slot().field().UnboxedFieldCid(); |
| 2839 | |
| 2840 | // Real unboxed field |
| 2841 | if (FLAG_precompiled_mode) { |
| 2842 | switch (cid) { |
| 2843 | case kDoubleCid: |
| 2844 | __ Comment("UnboxedDoubleLoadFieldInstr" ); |
| 2845 | __ movsd(result, |
| 2846 | compiler::FieldAddress(instance_reg, OffsetInBytes())); |
| 2847 | break; |
| 2848 | case kFloat32x4Cid: |
| 2849 | __ Comment("UnboxedFloat32x4LoadFieldInstr" ); |
| 2850 | __ movups(result, |
| 2851 | compiler::FieldAddress(instance_reg, OffsetInBytes())); |
| 2852 | break; |
| 2853 | case kFloat64x2Cid: |
| 2854 | __ Comment("UnboxedFloat64x2LoadFieldInstr" ); |
| 2855 | __ movups(result, |
| 2856 | compiler::FieldAddress(instance_reg, OffsetInBytes())); |
| 2857 | break; |
| 2858 | default: |
| 2859 | UNREACHABLE(); |
| 2860 | } |
| 2861 | return; |
| 2862 | } |
| 2863 | |
| 2864 | Register temp = locs()->temp(0).reg(); |
| 2865 | __ movq(temp, compiler::FieldAddress(instance_reg, OffsetInBytes())); |
| 2866 | switch (cid) { |
| 2867 | case kDoubleCid: |
| 2868 | __ Comment("UnboxedDoubleLoadFieldInstr" ); |
| 2869 | __ movsd(result, compiler::FieldAddress(temp, Double::value_offset())); |
| 2870 | break; |
| 2871 | case kFloat32x4Cid: |
| 2872 | __ Comment("UnboxedFloat32x4LoadFieldInstr" ); |
| 2873 | __ movups(result, |
| 2874 | compiler::FieldAddress(temp, Float32x4::value_offset())); |
| 2875 | break; |
| 2876 | case kFloat64x2Cid: |
| 2877 | __ Comment("UnboxedFloat64x2LoadFieldInstr" ); |
| 2878 | __ movups(result, |
| 2879 | compiler::FieldAddress(temp, Float64x2::value_offset())); |
| 2880 | break; |
| 2881 | default: |
| 2882 | UNREACHABLE(); |
| 2883 | } |
| 2884 | return; |
| 2885 | } |
| 2886 | |
| 2887 | compiler::Label done; |
| 2888 | Register result = locs()->out(0).reg(); |
| 2889 | if (IsPotentialUnboxedLoad()) { |
| 2890 | ASSERT(!calls_initializer()); |
| 2891 | Register temp = locs()->temp(1).reg(); |
| 2892 | XmmRegister value = locs()->temp(0).fpu_reg(); |
| 2893 | |
| 2894 | compiler::Label load_pointer; |
| 2895 | compiler::Label load_double; |
| 2896 | compiler::Label load_float32x4; |
| 2897 | compiler::Label load_float64x2; |
| 2898 | |
| 2899 | __ LoadObject(result, Field::ZoneHandle(slot().field().Original())); |
| 2900 | |
| 2901 | compiler::FieldAddress field_cid_operand(result, |
| 2902 | Field::guarded_cid_offset()); |
| 2903 | compiler::FieldAddress field_nullability_operand( |
| 2904 | result, Field::is_nullable_offset()); |
| 2905 | |
| 2906 | __ cmpw(field_nullability_operand, compiler::Immediate(kNullCid)); |
| 2907 | __ j(EQUAL, &load_pointer); |
| 2908 | |
| 2909 | __ cmpw(field_cid_operand, compiler::Immediate(kDoubleCid)); |
| 2910 | __ j(EQUAL, &load_double); |
| 2911 | |
| 2912 | __ cmpw(field_cid_operand, compiler::Immediate(kFloat32x4Cid)); |
| 2913 | __ j(EQUAL, &load_float32x4); |
| 2914 | |
| 2915 | __ cmpw(field_cid_operand, compiler::Immediate(kFloat64x2Cid)); |
| 2916 | __ j(EQUAL, &load_float64x2); |
| 2917 | |
| 2918 | // Fall through. |
| 2919 | __ jmp(&load_pointer); |
| 2920 | |
| 2921 | if (!compiler->is_optimizing()) { |
| 2922 | locs()->live_registers()->Add(locs()->in(0)); |
| 2923 | } |
| 2924 | |
| 2925 | { |
| 2926 | __ Bind(&load_double); |
| 2927 | BoxAllocationSlowPath::Allocate(compiler, this, compiler->double_class(), |
| 2928 | result, temp); |
| 2929 | __ movq(temp, compiler::FieldAddress(instance_reg, OffsetInBytes())); |
| 2930 | __ movsd(value, compiler::FieldAddress(temp, Double::value_offset())); |
| 2931 | __ movsd(compiler::FieldAddress(result, Double::value_offset()), value); |
| 2932 | __ jmp(&done); |
| 2933 | } |
| 2934 | |
| 2935 | { |
| 2936 | __ Bind(&load_float32x4); |
| 2937 | BoxAllocationSlowPath::Allocate( |
| 2938 | compiler, this, compiler->float32x4_class(), result, temp); |
| 2939 | __ movq(temp, compiler::FieldAddress(instance_reg, OffsetInBytes())); |
| 2940 | __ movups(value, compiler::FieldAddress(temp, Float32x4::value_offset())); |
| 2941 | __ movups(compiler::FieldAddress(result, Float32x4::value_offset()), |
| 2942 | value); |
| 2943 | __ jmp(&done); |
| 2944 | } |
| 2945 | |
| 2946 | { |
| 2947 | __ Bind(&load_float64x2); |
| 2948 | BoxAllocationSlowPath::Allocate( |
| 2949 | compiler, this, compiler->float64x2_class(), result, temp); |
| 2950 | __ movq(temp, compiler::FieldAddress(instance_reg, OffsetInBytes())); |
| 2951 | __ movups(value, compiler::FieldAddress(temp, Float64x2::value_offset())); |
| 2952 | __ movups(compiler::FieldAddress(result, Float64x2::value_offset()), |
| 2953 | value); |
| 2954 | __ jmp(&done); |
| 2955 | } |
| 2956 | |
| 2957 | __ Bind(&load_pointer); |
| 2958 | } |
| 2959 | |
| 2960 | __ movq(result, compiler::FieldAddress(instance_reg, OffsetInBytes())); |
| 2961 | |
| 2962 | if (calls_initializer()) { |
| 2963 | EmitNativeCodeForInitializerCall(compiler); |
| 2964 | } |
| 2965 | |
| 2966 | __ Bind(&done); |
| 2967 | } |
| 2968 | |
| 2969 | LocationSummary* InstantiateTypeInstr::MakeLocationSummary(Zone* zone, |
| 2970 | bool opt) const { |
| 2971 | const intptr_t kNumInputs = 2; |
| 2972 | const intptr_t kNumTemps = 0; |
| 2973 | LocationSummary* locs = new (zone) |
| 2974 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 2975 | locs->set_in(0, Location::RegisterLocation( |
| 2976 | InstantiationABI::kInstantiatorTypeArgumentsReg)); |
| 2977 | locs->set_in(1, Location::RegisterLocation( |
| 2978 | InstantiationABI::kFunctionTypeArgumentsReg)); |
| 2979 | locs->set_out(0, |
| 2980 | Location::RegisterLocation(InstantiationABI::kResultTypeReg)); |
| 2981 | return locs; |
| 2982 | } |
| 2983 | |
| 2984 | void InstantiateTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 2985 | Register instantiator_type_args_reg = locs()->in(0).reg(); |
| 2986 | Register function_type_args_reg = locs()->in(1).reg(); |
| 2987 | Register result_reg = locs()->out(0).reg(); |
| 2988 | |
| 2989 | // 'instantiator_type_args_reg' is a TypeArguments object (or null). |
| 2990 | // 'function_type_args_reg' is a TypeArguments object (or null). |
| 2991 | // A runtime call to instantiate the type is required. |
| 2992 | __ PushObject(Object::null_object()); // Make room for the result. |
| 2993 | __ PushObject(type()); |
| 2994 | __ pushq(instantiator_type_args_reg); // Push instantiator type arguments. |
| 2995 | __ pushq(function_type_args_reg); // Push function type arguments. |
| 2996 | compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| 2997 | kInstantiateTypeRuntimeEntry, 3, locs()); |
| 2998 | __ Drop(3); // Drop 2 type vectors, and uninstantiated type. |
| 2999 | __ popq(result_reg); // Pop instantiated type. |
| 3000 | } |
| 3001 | |
| 3002 | LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary( |
| 3003 | Zone* zone, |
| 3004 | bool opt) const { |
| 3005 | const intptr_t kNumInputs = 2; |
| 3006 | const intptr_t kNumTemps = 0; |
| 3007 | LocationSummary* locs = new (zone) |
| 3008 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 3009 | locs->set_in(0, Location::RegisterLocation( |
| 3010 | InstantiationABI::kInstantiatorTypeArgumentsReg)); |
| 3011 | locs->set_in(1, Location::RegisterLocation( |
| 3012 | InstantiationABI::kFunctionTypeArgumentsReg)); |
| 3013 | locs->set_out( |
| 3014 | 0, Location::RegisterLocation(InstantiationABI::kResultTypeArgumentsReg)); |
| 3015 | return locs; |
| 3016 | } |
| 3017 | |
| 3018 | void InstantiateTypeArgumentsInstr::EmitNativeCode( |
| 3019 | FlowGraphCompiler* compiler) { |
| 3020 | Register instantiator_type_args_reg = locs()->in(0).reg(); |
| 3021 | Register function_type_args_reg = locs()->in(1).reg(); |
| 3022 | Register result_reg = locs()->out(0).reg(); |
| 3023 | |
| 3024 | // 'instantiator_type_args_reg' is a TypeArguments object (or null). |
| 3025 | // 'function_type_args_reg' is a TypeArguments object (or null). |
| 3026 | |
| 3027 | // If both the instantiator and function type arguments are null and if the |
| 3028 | // type argument vector instantiated from null becomes a vector of dynamic, |
| 3029 | // then use null as the type arguments. |
| 3030 | compiler::Label type_arguments_instantiated; |
| 3031 | const intptr_t len = type_arguments().Length(); |
| 3032 | const bool can_function_type_args_be_null = |
| 3033 | function_type_arguments()->CanBe(Object::null_object()); |
| 3034 | if (type_arguments().IsRawWhenInstantiatedFromRaw(len) && |
| 3035 | can_function_type_args_be_null) { |
| 3036 | compiler::Label non_null_type_args; |
| 3037 | ASSERT(result_reg != instantiator_type_args_reg && |
| 3038 | result_reg != function_type_args_reg); |
| 3039 | __ LoadObject(result_reg, Object::null_object()); |
| 3040 | __ cmpq(instantiator_type_args_reg, result_reg); |
| 3041 | if (!function_type_arguments()->BindsToConstant()) { |
| 3042 | __ j(NOT_EQUAL, &non_null_type_args, compiler::Assembler::kNearJump); |
| 3043 | __ cmpq(function_type_args_reg, result_reg); |
| 3044 | } |
| 3045 | __ j(EQUAL, &type_arguments_instantiated, compiler::Assembler::kNearJump); |
| 3046 | __ Bind(&non_null_type_args); |
| 3047 | } |
| 3048 | __ LoadObject(InstantiationABI::kUninstantiatedTypeArgumentsReg, |
| 3049 | type_arguments()); |
| 3050 | compiler->GenerateStubCall(token_pos(), GetStub(), |
| 3051 | PcDescriptorsLayout::kOther, locs()); |
| 3052 | __ Bind(&type_arguments_instantiated); |
| 3053 | } |
| 3054 | |
| 3055 | LocationSummary* AllocateUninitializedContextInstr::MakeLocationSummary( |
| 3056 | Zone* zone, |
| 3057 | bool opt) const { |
| 3058 | ASSERT(opt); |
| 3059 | const intptr_t kNumInputs = 0; |
| 3060 | const intptr_t kNumTemps = 2; |
| 3061 | LocationSummary* locs = new (zone) LocationSummary( |
| 3062 | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| 3063 | locs->set_temp(0, Location::RegisterLocation(R10)); |
| 3064 | locs->set_temp(1, Location::RegisterLocation(R13)); |
| 3065 | locs->set_out(0, Location::RegisterLocation(RAX)); |
| 3066 | return locs; |
| 3067 | } |
| 3068 | |
| 3069 | class AllocateContextSlowPath |
| 3070 | : public TemplateSlowPathCode<AllocateUninitializedContextInstr> { |
| 3071 | public: |
| 3072 | explicit AllocateContextSlowPath( |
| 3073 | AllocateUninitializedContextInstr* instruction) |
| 3074 | : TemplateSlowPathCode(instruction) {} |
| 3075 | |
| 3076 | virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3077 | __ Comment("AllocateContextSlowPath" ); |
| 3078 | __ Bind(entry_label()); |
| 3079 | |
| 3080 | LocationSummary* locs = instruction()->locs(); |
| 3081 | locs->live_registers()->Remove(locs->out(0)); |
| 3082 | |
| 3083 | compiler->SaveLiveRegisters(locs); |
| 3084 | |
| 3085 | auto object_store = compiler->isolate()->object_store(); |
| 3086 | const auto& allocate_context_stub = Code::ZoneHandle( |
| 3087 | compiler->zone(), object_store->allocate_context_stub()); |
| 3088 | |
| 3089 | __ LoadImmediate( |
| 3090 | R10, compiler::Immediate(instruction()->num_context_variables())); |
| 3091 | compiler->GenerateStubCall(instruction()->token_pos(), |
| 3092 | allocate_context_stub, |
| 3093 | PcDescriptorsLayout::kOther, locs); |
| 3094 | ASSERT(instruction()->locs()->out(0).reg() == RAX); |
| 3095 | compiler->RestoreLiveRegisters(instruction()->locs()); |
| 3096 | __ jmp(exit_label()); |
| 3097 | } |
| 3098 | }; |
| 3099 | |
| 3100 | void AllocateUninitializedContextInstr::EmitNativeCode( |
| 3101 | FlowGraphCompiler* compiler) { |
| 3102 | ASSERT(compiler->is_optimizing()); |
| 3103 | Register temp = locs()->temp(0).reg(); |
| 3104 | Register result = locs()->out(0).reg(); |
| 3105 | // Try allocate the object. |
| 3106 | AllocateContextSlowPath* slow_path = new AllocateContextSlowPath(this); |
| 3107 | compiler->AddSlowPathCode(slow_path); |
| 3108 | intptr_t instance_size = Context::InstanceSize(num_context_variables()); |
| 3109 | |
| 3110 | __ TryAllocateArray(kContextCid, instance_size, slow_path->entry_label(), |
| 3111 | compiler::Assembler::kFarJump, |
| 3112 | result, // instance |
| 3113 | temp, // end address |
| 3114 | locs()->temp(1).reg()); |
| 3115 | |
| 3116 | // Setup up number of context variables field. |
| 3117 | __ movq(compiler::FieldAddress(result, Context::num_variables_offset()), |
| 3118 | compiler::Immediate(num_context_variables())); |
| 3119 | |
| 3120 | __ Bind(slow_path->exit_label()); |
| 3121 | } |
| 3122 | |
| 3123 | LocationSummary* AllocateContextInstr::MakeLocationSummary(Zone* zone, |
| 3124 | bool opt) const { |
| 3125 | const intptr_t kNumInputs = 0; |
| 3126 | const intptr_t kNumTemps = 1; |
| 3127 | LocationSummary* locs = new (zone) |
| 3128 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 3129 | locs->set_temp(0, Location::RegisterLocation(R10)); |
| 3130 | locs->set_out(0, Location::RegisterLocation(RAX)); |
| 3131 | return locs; |
| 3132 | } |
| 3133 | |
| 3134 | void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3135 | ASSERT(locs()->temp(0).reg() == R10); |
| 3136 | ASSERT(locs()->out(0).reg() == RAX); |
| 3137 | |
| 3138 | auto object_store = compiler->isolate()->object_store(); |
| 3139 | const auto& allocate_context_stub = |
| 3140 | Code::ZoneHandle(compiler->zone(), object_store->allocate_context_stub()); |
| 3141 | |
| 3142 | __ LoadImmediate(R10, compiler::Immediate(num_context_variables())); |
| 3143 | compiler->GenerateStubCall(token_pos(), allocate_context_stub, |
| 3144 | PcDescriptorsLayout::kOther, locs()); |
| 3145 | } |
| 3146 | |
| 3147 | LocationSummary* CloneContextInstr::MakeLocationSummary(Zone* zone, |
| 3148 | bool opt) const { |
| 3149 | const intptr_t kNumInputs = 1; |
| 3150 | const intptr_t kNumTemps = 0; |
| 3151 | LocationSummary* locs = new (zone) |
| 3152 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 3153 | locs->set_in(0, Location::RegisterLocation(R9)); |
| 3154 | locs->set_out(0, Location::RegisterLocation(RAX)); |
| 3155 | return locs; |
| 3156 | } |
| 3157 | |
| 3158 | void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3159 | ASSERT(locs()->in(0).reg() == R9); |
| 3160 | ASSERT(locs()->out(0).reg() == RAX); |
| 3161 | |
| 3162 | auto object_store = compiler->isolate()->object_store(); |
| 3163 | const auto& clone_context_stub = |
| 3164 | Code::ZoneHandle(compiler->zone(), object_store->clone_context_stub()); |
| 3165 | compiler->GenerateStubCall(token_pos(), clone_context_stub, |
| 3166 | /*kind=*/PcDescriptorsLayout::kOther, locs()); |
| 3167 | } |
| 3168 | |
| 3169 | LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(Zone* zone, |
| 3170 | bool opt) const { |
| 3171 | UNREACHABLE(); |
| 3172 | return NULL; |
| 3173 | } |
| 3174 | |
| 3175 | void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3176 | __ Bind(compiler->GetJumpLabel(this)); |
| 3177 | compiler->AddExceptionHandler( |
| 3178 | catch_try_index(), try_index(), compiler->assembler()->CodeSize(), |
| 3179 | is_generated(), catch_handler_types_, needs_stacktrace()); |
| 3180 | if (!FLAG_precompiled_mode) { |
| 3181 | // On lazy deoptimization we patch the optimized code here to enter the |
| 3182 | // deoptimization stub. |
| 3183 | const intptr_t deopt_id = DeoptId::ToDeoptAfter(GetDeoptId()); |
| 3184 | if (compiler->is_optimizing()) { |
| 3185 | compiler->AddDeoptIndexAtCall(deopt_id); |
| 3186 | } else { |
| 3187 | compiler->AddCurrentDescriptor(PcDescriptorsLayout::kDeopt, deopt_id, |
| 3188 | TokenPosition::kNoSource); |
| 3189 | } |
| 3190 | } |
| 3191 | if (HasParallelMove()) { |
| 3192 | compiler->parallel_move_resolver()->EmitNativeCode(parallel_move()); |
| 3193 | } |
| 3194 | |
| 3195 | // Restore RSP from RBP as we are coming from a throw and the code for |
| 3196 | // popping arguments has not been run. |
| 3197 | const intptr_t fp_sp_dist = |
| 3198 | (compiler::target::frame_layout.first_local_from_fp + 1 - |
| 3199 | compiler->StackSize()) * |
| 3200 | kWordSize; |
| 3201 | ASSERT(fp_sp_dist <= 0); |
| 3202 | __ leaq(RSP, compiler::Address(RBP, fp_sp_dist)); |
| 3203 | |
| 3204 | if (!compiler->is_optimizing()) { |
| 3205 | if (raw_exception_var_ != nullptr) { |
| 3206 | __ movq(compiler::Address(RBP, |
| 3207 | compiler::target::FrameOffsetInBytesForVariable( |
| 3208 | raw_exception_var_)), |
| 3209 | kExceptionObjectReg); |
| 3210 | } |
| 3211 | if (raw_stacktrace_var_ != nullptr) { |
| 3212 | __ movq(compiler::Address(RBP, |
| 3213 | compiler::target::FrameOffsetInBytesForVariable( |
| 3214 | raw_stacktrace_var_)), |
| 3215 | kStackTraceObjectReg); |
| 3216 | } |
| 3217 | } |
| 3218 | } |
| 3219 | |
| 3220 | LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(Zone* zone, |
| 3221 | bool opt) const { |
| 3222 | const intptr_t kNumInputs = 0; |
| 3223 | const intptr_t kNumTemps = 1; |
| 3224 | const bool using_shared_stub = UseSharedSlowPathStub(opt); |
| 3225 | LocationSummary* summary = new (zone) |
| 3226 | LocationSummary(zone, kNumInputs, kNumTemps, |
| 3227 | using_shared_stub ? LocationSummary::kCallOnSharedSlowPath |
| 3228 | : LocationSummary::kCallOnSlowPath); |
| 3229 | summary->set_temp(0, Location::RequiresRegister()); |
| 3230 | return summary; |
| 3231 | } |
| 3232 | |
| 3233 | class CheckStackOverflowSlowPath |
| 3234 | : public TemplateSlowPathCode<CheckStackOverflowInstr> { |
| 3235 | public: |
| 3236 | static constexpr intptr_t kNumSlowPathArgs = 0; |
| 3237 | |
| 3238 | explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction) |
| 3239 | : TemplateSlowPathCode(instruction) {} |
| 3240 | |
| 3241 | virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3242 | if (compiler->isolate()->use_osr() && osr_entry_label()->IsLinked()) { |
| 3243 | __ Comment("CheckStackOverflowSlowPathOsr" ); |
| 3244 | __ Bind(osr_entry_label()); |
| 3245 | __ movq(compiler::Address(THR, Thread::stack_overflow_flags_offset()), |
| 3246 | compiler::Immediate(Thread::kOsrRequest)); |
| 3247 | } |
| 3248 | __ Comment("CheckStackOverflowSlowPath" ); |
| 3249 | __ Bind(entry_label()); |
| 3250 | const bool using_shared_stub = |
| 3251 | instruction()->locs()->call_on_shared_slow_path(); |
| 3252 | if (!using_shared_stub) { |
| 3253 | compiler->SaveLiveRegisters(instruction()->locs()); |
| 3254 | } |
| 3255 | // pending_deoptimization_env_ is needed to generate a runtime call that |
| 3256 | // may throw an exception. |
| 3257 | ASSERT(compiler->pending_deoptimization_env_ == NULL); |
| 3258 | Environment* env = |
| 3259 | compiler->SlowPathEnvironmentFor(instruction(), kNumSlowPathArgs); |
| 3260 | compiler->pending_deoptimization_env_ = env; |
| 3261 | |
| 3262 | if (using_shared_stub) { |
| 3263 | const uword entry_point_offset = |
| 3264 | Thread::stack_overflow_shared_stub_entry_point_offset( |
| 3265 | instruction()->locs()->live_registers()->FpuRegisterCount() > 0); |
| 3266 | __ call(compiler::Address(THR, entry_point_offset)); |
| 3267 | compiler->RecordSafepoint(instruction()->locs(), kNumSlowPathArgs); |
| 3268 | compiler->RecordCatchEntryMoves(); |
| 3269 | compiler->AddDescriptor( |
| 3270 | PcDescriptorsLayout::kOther, compiler->assembler()->CodeSize(), |
| 3271 | instruction()->deopt_id(), instruction()->token_pos(), |
| 3272 | compiler->CurrentTryIndex()); |
| 3273 | } else { |
| 3274 | compiler->GenerateRuntimeCall( |
| 3275 | instruction()->token_pos(), instruction()->deopt_id(), |
| 3276 | kStackOverflowRuntimeEntry, kNumSlowPathArgs, instruction()->locs()); |
| 3277 | } |
| 3278 | |
| 3279 | if (compiler->isolate()->use_osr() && !compiler->is_optimizing() && |
| 3280 | instruction()->in_loop()) { |
| 3281 | // In unoptimized code, record loop stack checks as possible OSR entries. |
| 3282 | compiler->AddCurrentDescriptor(PcDescriptorsLayout::kOsrEntry, |
| 3283 | instruction()->deopt_id(), |
| 3284 | TokenPosition::kNoSource); |
| 3285 | } |
| 3286 | compiler->pending_deoptimization_env_ = NULL; |
| 3287 | if (!using_shared_stub) { |
| 3288 | compiler->RestoreLiveRegisters(instruction()->locs()); |
| 3289 | } |
| 3290 | __ jmp(exit_label()); |
| 3291 | } |
| 3292 | |
| 3293 | compiler::Label* osr_entry_label() { |
| 3294 | ASSERT(Isolate::Current()->use_osr()); |
| 3295 | return &osr_entry_label_; |
| 3296 | } |
| 3297 | |
| 3298 | private: |
| 3299 | compiler::Label osr_entry_label_; |
| 3300 | }; |
| 3301 | |
| 3302 | void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3303 | CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this); |
| 3304 | compiler->AddSlowPathCode(slow_path); |
| 3305 | |
| 3306 | Register temp = locs()->temp(0).reg(); |
| 3307 | // Generate stack overflow check. |
| 3308 | __ cmpq(RSP, compiler::Address(THR, Thread::stack_limit_offset())); |
| 3309 | __ j(BELOW_EQUAL, slow_path->entry_label()); |
| 3310 | if (compiler->CanOSRFunction() && in_loop()) { |
| 3311 | // In unoptimized code check the usage counter to trigger OSR at loop |
| 3312 | // stack checks. Use progressively higher thresholds for more deeply |
| 3313 | // nested loops to attempt to hit outer loops with OSR when possible. |
| 3314 | __ LoadObject(temp, compiler->parsed_function().function()); |
| 3315 | int32_t threshold = |
| 3316 | FLAG_optimization_counter_threshold * (loop_depth() + 1); |
| 3317 | __ incl(compiler::FieldAddress(temp, Function::usage_counter_offset())); |
| 3318 | __ cmpl(compiler::FieldAddress(temp, Function::usage_counter_offset()), |
| 3319 | compiler::Immediate(threshold)); |
| 3320 | __ j(GREATER_EQUAL, slow_path->osr_entry_label()); |
| 3321 | } |
| 3322 | if (compiler->ForceSlowPathForStackOverflow()) { |
| 3323 | __ jmp(slow_path->entry_label()); |
| 3324 | } |
| 3325 | __ Bind(slow_path->exit_label()); |
| 3326 | } |
| 3327 | |
| 3328 | static void EmitSmiShiftLeft(FlowGraphCompiler* compiler, |
| 3329 | BinarySmiOpInstr* shift_left) { |
| 3330 | const LocationSummary& locs = *shift_left->locs(); |
| 3331 | Register left = locs.in(0).reg(); |
| 3332 | Register result = locs.out(0).reg(); |
| 3333 | ASSERT(left == result); |
| 3334 | compiler::Label* deopt = |
| 3335 | shift_left->CanDeoptimize() |
| 3336 | ? compiler->AddDeoptStub(shift_left->deopt_id(), |
| 3337 | ICData::kDeoptBinarySmiOp) |
| 3338 | : NULL; |
| 3339 | if (locs.in(1).IsConstant()) { |
| 3340 | const Object& constant = locs.in(1).constant(); |
| 3341 | ASSERT(constant.IsSmi()); |
| 3342 | // shlq operation masks the count to 6 bits. |
| 3343 | const intptr_t kCountLimit = 0x3F; |
| 3344 | const intptr_t value = Smi::Cast(constant).Value(); |
| 3345 | ASSERT((0 < value) && (value < kCountLimit)); |
| 3346 | if (shift_left->can_overflow()) { |
| 3347 | if (value == 1) { |
| 3348 | // Use overflow flag. |
| 3349 | __ shlq(left, compiler::Immediate(1)); |
| 3350 | __ j(OVERFLOW, deopt); |
| 3351 | return; |
| 3352 | } |
| 3353 | // Check for overflow. |
| 3354 | Register temp = locs.temp(0).reg(); |
| 3355 | __ movq(temp, left); |
| 3356 | __ shlq(left, compiler::Immediate(value)); |
| 3357 | __ sarq(left, compiler::Immediate(value)); |
| 3358 | __ cmpq(left, temp); |
| 3359 | __ j(NOT_EQUAL, deopt); // Overflow. |
| 3360 | } |
| 3361 | // Shift for result now we know there is no overflow. |
| 3362 | __ shlq(left, compiler::Immediate(value)); |
| 3363 | return; |
| 3364 | } |
| 3365 | |
| 3366 | // Right (locs.in(1)) is not constant. |
| 3367 | Register right = locs.in(1).reg(); |
| 3368 | Range* right_range = shift_left->right_range(); |
| 3369 | if (shift_left->left()->BindsToConstant() && shift_left->can_overflow()) { |
| 3370 | // TODO(srdjan): Implement code below for is_truncating(). |
| 3371 | // If left is constant, we know the maximal allowed size for right. |
| 3372 | const Object& obj = shift_left->left()->BoundConstant(); |
| 3373 | if (obj.IsSmi()) { |
| 3374 | const intptr_t left_int = Smi::Cast(obj).Value(); |
| 3375 | if (left_int == 0) { |
| 3376 | __ CompareImmediate(right, compiler::Immediate(0)); |
| 3377 | __ j(NEGATIVE, deopt); |
| 3378 | return; |
| 3379 | } |
| 3380 | const intptr_t max_right = kSmiBits - Utils::HighestBit(left_int); |
| 3381 | const bool right_needs_check = |
| 3382 | !RangeUtils::IsWithin(right_range, 0, max_right - 1); |
| 3383 | if (right_needs_check) { |
| 3384 | __ CompareImmediate( |
| 3385 | right, |
| 3386 | compiler::Immediate(static_cast<int64_t>(Smi::New(max_right)))); |
| 3387 | __ j(ABOVE_EQUAL, deopt); |
| 3388 | } |
| 3389 | __ SmiUntag(right); |
| 3390 | __ shlq(left, right); |
| 3391 | } |
| 3392 | return; |
| 3393 | } |
| 3394 | |
| 3395 | const bool right_needs_check = |
| 3396 | !RangeUtils::IsWithin(right_range, 0, (Smi::kBits - 1)); |
| 3397 | ASSERT(right == RCX); // Count must be in RCX |
| 3398 | if (!shift_left->can_overflow()) { |
| 3399 | if (right_needs_check) { |
| 3400 | const bool right_may_be_negative = |
| 3401 | (right_range == NULL) || !right_range->IsPositive(); |
| 3402 | if (right_may_be_negative) { |
| 3403 | ASSERT(shift_left->CanDeoptimize()); |
| 3404 | __ CompareImmediate(right, compiler::Immediate(0)); |
| 3405 | __ j(NEGATIVE, deopt); |
| 3406 | } |
| 3407 | compiler::Label done, is_not_zero; |
| 3408 | __ CompareImmediate( |
| 3409 | right, |
| 3410 | compiler::Immediate(static_cast<int64_t>(Smi::New(Smi::kBits)))); |
| 3411 | __ j(BELOW, &is_not_zero, compiler::Assembler::kNearJump); |
| 3412 | __ xorq(left, left); |
| 3413 | __ jmp(&done, compiler::Assembler::kNearJump); |
| 3414 | __ Bind(&is_not_zero); |
| 3415 | __ SmiUntag(right); |
| 3416 | __ shlq(left, right); |
| 3417 | __ Bind(&done); |
| 3418 | } else { |
| 3419 | __ SmiUntag(right); |
| 3420 | __ shlq(left, right); |
| 3421 | } |
| 3422 | } else { |
| 3423 | if (right_needs_check) { |
| 3424 | ASSERT(shift_left->CanDeoptimize()); |
| 3425 | __ CompareImmediate( |
| 3426 | right, |
| 3427 | compiler::Immediate(static_cast<int64_t>(Smi::New(Smi::kBits)))); |
| 3428 | __ j(ABOVE_EQUAL, deopt); |
| 3429 | } |
| 3430 | // Left is not a constant. |
| 3431 | Register temp = locs.temp(0).reg(); |
| 3432 | // Check if count too large for handling it inlined. |
| 3433 | __ movq(temp, left); |
| 3434 | __ SmiUntag(right); |
| 3435 | // Overflow test (preserve temp and right); |
| 3436 | __ shlq(left, right); |
| 3437 | __ sarq(left, right); |
| 3438 | __ cmpq(left, temp); |
| 3439 | __ j(NOT_EQUAL, deopt); // Overflow. |
| 3440 | // Shift for result now we know there is no overflow. |
| 3441 | __ shlq(left, right); |
| 3442 | } |
| 3443 | } |
| 3444 | |
| 3445 | class CheckedSmiSlowPath : public TemplateSlowPathCode<CheckedSmiOpInstr> { |
| 3446 | public: |
| 3447 | CheckedSmiSlowPath(CheckedSmiOpInstr* instruction, intptr_t try_index) |
| 3448 | : TemplateSlowPathCode(instruction), try_index_(try_index) {} |
| 3449 | |
| 3450 | static constexpr intptr_t kNumSlowPathArgs = 2; |
| 3451 | |
| 3452 | virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3453 | if (compiler::Assembler::EmittingComments()) { |
| 3454 | __ Comment("slow path smi operation" ); |
| 3455 | } |
| 3456 | __ Bind(entry_label()); |
| 3457 | LocationSummary* locs = instruction()->locs(); |
| 3458 | Register result = locs->out(0).reg(); |
| 3459 | locs->live_registers()->Remove(Location::RegisterLocation(result)); |
| 3460 | |
| 3461 | compiler->SaveLiveRegisters(locs); |
| 3462 | if (instruction()->env() != NULL) { |
| 3463 | Environment* env = |
| 3464 | compiler->SlowPathEnvironmentFor(instruction(), kNumSlowPathArgs); |
| 3465 | compiler->pending_deoptimization_env_ = env; |
| 3466 | } |
| 3467 | __ pushq(locs->in(0).reg()); |
| 3468 | __ pushq(locs->in(1).reg()); |
| 3469 | const auto& selector = String::Handle(instruction()->call()->Selector()); |
| 3470 | const auto& arguments_descriptor = |
| 3471 | Array::Handle(ArgumentsDescriptor::NewBoxed( |
| 3472 | /*type_args_len=*/0, /*num_arguments=*/2)); |
| 3473 | compiler->EmitMegamorphicInstanceCall( |
| 3474 | selector, arguments_descriptor, instruction()->call()->deopt_id(), |
| 3475 | instruction()->token_pos(), locs, try_index_, kNumSlowPathArgs); |
| 3476 | __ MoveRegister(result, RAX); |
| 3477 | compiler->RestoreLiveRegisters(locs); |
| 3478 | __ jmp(exit_label()); |
| 3479 | compiler->pending_deoptimization_env_ = NULL; |
| 3480 | } |
| 3481 | |
| 3482 | private: |
| 3483 | intptr_t try_index_; |
| 3484 | }; |
| 3485 | |
| 3486 | LocationSummary* CheckedSmiOpInstr::MakeLocationSummary(Zone* zone, |
| 3487 | bool opt) const { |
| 3488 | bool is_shift = (op_kind() == Token::kSHL) || (op_kind() == Token::kSHR); |
| 3489 | const intptr_t kNumInputs = 2; |
| 3490 | const intptr_t kNumTemps = is_shift ? 1 : 0; |
| 3491 | LocationSummary* summary = new (zone) LocationSummary( |
| 3492 | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| 3493 | summary->set_in(0, Location::RequiresRegister()); |
| 3494 | summary->set_in(1, Location::RequiresRegister()); |
| 3495 | switch (op_kind()) { |
| 3496 | case Token::kADD: |
| 3497 | case Token::kSUB: |
| 3498 | case Token::kMUL: |
| 3499 | case Token::kSHL: |
| 3500 | case Token::kSHR: |
| 3501 | summary->set_out(0, Location::RequiresRegister()); |
| 3502 | break; |
| 3503 | case Token::kBIT_OR: |
| 3504 | case Token::kBIT_AND: |
| 3505 | case Token::kBIT_XOR: |
| 3506 | summary->set_out(0, Location::SameAsFirstInput()); |
| 3507 | break; |
| 3508 | default: |
| 3509 | UNIMPLEMENTED(); |
| 3510 | } |
| 3511 | if (is_shift) { |
| 3512 | summary->set_temp(0, Location::RegisterLocation(RCX)); |
| 3513 | } |
| 3514 | return summary; |
| 3515 | } |
| 3516 | |
| 3517 | void CheckedSmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3518 | CheckedSmiSlowPath* slow_path = |
| 3519 | new CheckedSmiSlowPath(this, compiler->CurrentTryIndex()); |
| 3520 | compiler->AddSlowPathCode(slow_path); |
| 3521 | // Test operands if necessary. |
| 3522 | |
| 3523 | intptr_t left_cid = left()->Type()->ToCid(); |
| 3524 | intptr_t right_cid = right()->Type()->ToCid(); |
| 3525 | Register left = locs()->in(0).reg(); |
| 3526 | Register right = locs()->in(1).reg(); |
| 3527 | if (this->left()->definition() == this->right()->definition()) { |
| 3528 | __ testq(left, compiler::Immediate(kSmiTagMask)); |
| 3529 | } else if (left_cid == kSmiCid) { |
| 3530 | __ testq(right, compiler::Immediate(kSmiTagMask)); |
| 3531 | } else if (right_cid == kSmiCid) { |
| 3532 | __ testq(left, compiler::Immediate(kSmiTagMask)); |
| 3533 | } else { |
| 3534 | __ movq(TMP, left); |
| 3535 | __ orq(TMP, right); |
| 3536 | __ testq(TMP, compiler::Immediate(kSmiTagMask)); |
| 3537 | } |
| 3538 | __ j(NOT_ZERO, slow_path->entry_label()); |
| 3539 | Register result = locs()->out(0).reg(); |
| 3540 | switch (op_kind()) { |
| 3541 | case Token::kADD: |
| 3542 | __ movq(result, left); |
| 3543 | __ addq(result, right); |
| 3544 | __ j(OVERFLOW, slow_path->entry_label()); |
| 3545 | break; |
| 3546 | case Token::kSUB: |
| 3547 | __ movq(result, left); |
| 3548 | __ subq(result, right); |
| 3549 | __ j(OVERFLOW, slow_path->entry_label()); |
| 3550 | break; |
| 3551 | case Token::kMUL: |
| 3552 | __ movq(result, left); |
| 3553 | __ SmiUntag(result); |
| 3554 | __ imulq(result, right); |
| 3555 | __ j(OVERFLOW, slow_path->entry_label()); |
| 3556 | break; |
| 3557 | case Token::kBIT_OR: |
| 3558 | ASSERT(left == result); |
| 3559 | __ orq(result, right); |
| 3560 | break; |
| 3561 | case Token::kBIT_AND: |
| 3562 | ASSERT(left == result); |
| 3563 | __ andq(result, right); |
| 3564 | break; |
| 3565 | case Token::kBIT_XOR: |
| 3566 | ASSERT(left == result); |
| 3567 | __ xorq(result, right); |
| 3568 | break; |
| 3569 | case Token::kSHL: |
| 3570 | ASSERT(result != right); |
| 3571 | ASSERT(locs()->temp(0).reg() == RCX); |
| 3572 | __ cmpq(right, compiler::Immediate(Smi::RawValue(Smi::kBits))); |
| 3573 | __ j(ABOVE_EQUAL, slow_path->entry_label()); |
| 3574 | |
| 3575 | __ movq(RCX, right); |
| 3576 | __ SmiUntag(RCX); |
| 3577 | __ movq(result, left); |
| 3578 | __ shlq(result, RCX); |
| 3579 | __ movq(TMP, result); |
| 3580 | __ sarq(TMP, RCX); |
| 3581 | __ cmpq(TMP, left); |
| 3582 | __ j(NOT_EQUAL, slow_path->entry_label()); |
| 3583 | break; |
| 3584 | case Token::kSHR: { |
| 3585 | compiler::Label shift_count_ok; |
| 3586 | ASSERT(result != right); |
| 3587 | ASSERT(locs()->temp(0).reg() == RCX); |
| 3588 | __ cmpq(right, compiler::Immediate(Smi::RawValue(Smi::kBits))); |
| 3589 | __ j(ABOVE_EQUAL, slow_path->entry_label()); |
| 3590 | |
| 3591 | __ movq(RCX, right); |
| 3592 | __ SmiUntag(RCX); |
| 3593 | __ movq(result, left); |
| 3594 | __ SmiUntag(result); |
| 3595 | __ sarq(result, RCX); |
| 3596 | __ SmiTag(result); |
| 3597 | break; |
| 3598 | } |
| 3599 | default: |
| 3600 | UNIMPLEMENTED(); |
| 3601 | } |
| 3602 | __ Bind(slow_path->exit_label()); |
| 3603 | } |
| 3604 | |
| 3605 | class CheckedSmiComparisonSlowPath |
| 3606 | : public TemplateSlowPathCode<CheckedSmiComparisonInstr> { |
| 3607 | public: |
| 3608 | static constexpr intptr_t kNumSlowPathArgs = 2; |
| 3609 | |
| 3610 | CheckedSmiComparisonSlowPath(CheckedSmiComparisonInstr* instruction, |
| 3611 | Environment* env, |
| 3612 | intptr_t try_index, |
| 3613 | BranchLabels labels, |
| 3614 | bool merged) |
| 3615 | : TemplateSlowPathCode(instruction), |
| 3616 | try_index_(try_index), |
| 3617 | labels_(labels), |
| 3618 | merged_(merged), |
| 3619 | env_(env) { |
| 3620 | // The environment must either come from the comparison or the environment |
| 3621 | // was cleared from the comparison (and moved to a branch). |
| 3622 | ASSERT(env == instruction->env() || |
| 3623 | (merged && instruction->env() == nullptr)); |
| 3624 | } |
| 3625 | |
| 3626 | virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3627 | if (compiler::Assembler::EmittingComments()) { |
| 3628 | __ Comment("slow path smi comparison" ); |
| 3629 | } |
| 3630 | __ Bind(entry_label()); |
| 3631 | LocationSummary* locs = instruction()->locs(); |
| 3632 | Register result = merged_ ? locs->temp(0).reg() : locs->out(0).reg(); |
| 3633 | locs->live_registers()->Remove(Location::RegisterLocation(result)); |
| 3634 | |
| 3635 | compiler->SaveLiveRegisters(locs); |
| 3636 | if (env_ != nullptr) { |
| 3637 | compiler->pending_deoptimization_env_ = |
| 3638 | compiler->SlowPathEnvironmentFor(env_, locs, kNumSlowPathArgs); |
| 3639 | } |
| 3640 | __ pushq(locs->in(0).reg()); |
| 3641 | __ pushq(locs->in(1).reg()); |
| 3642 | |
| 3643 | const auto& selector = String::Handle(instruction()->call()->Selector()); |
| 3644 | const auto& arguments_descriptor = |
| 3645 | Array::Handle(ArgumentsDescriptor::NewBoxed( |
| 3646 | /*type_args_len=*/0, /*num_arguments=*/2)); |
| 3647 | |
| 3648 | compiler->EmitMegamorphicInstanceCall( |
| 3649 | selector, arguments_descriptor, instruction()->call()->deopt_id(), |
| 3650 | instruction()->token_pos(), locs, try_index_, kNumSlowPathArgs); |
| 3651 | __ MoveRegister(result, RAX); |
| 3652 | compiler->RestoreLiveRegisters(locs); |
| 3653 | compiler->pending_deoptimization_env_ = nullptr; |
| 3654 | if (merged_) { |
| 3655 | __ CompareObject(result, Bool::True()); |
| 3656 | __ j(EQUAL, instruction()->is_negated() ? labels_.false_label |
| 3657 | : labels_.true_label); |
| 3658 | __ jmp(instruction()->is_negated() ? labels_.true_label |
| 3659 | : labels_.false_label); |
| 3660 | ASSERT(exit_label()->IsUnused()); |
| 3661 | } else { |
| 3662 | ASSERT(!instruction()->is_negated()); |
| 3663 | __ jmp(exit_label()); |
| 3664 | } |
| 3665 | } |
| 3666 | |
| 3667 | private: |
| 3668 | intptr_t try_index_; |
| 3669 | BranchLabels labels_; |
| 3670 | bool merged_; |
| 3671 | Environment* env_; |
| 3672 | }; |
| 3673 | |
| 3674 | LocationSummary* CheckedSmiComparisonInstr::MakeLocationSummary( |
| 3675 | Zone* zone, |
| 3676 | bool opt) const { |
| 3677 | const intptr_t kNumInputs = 2; |
| 3678 | const intptr_t kNumTemps = 1; |
| 3679 | LocationSummary* summary = new (zone) LocationSummary( |
| 3680 | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| 3681 | summary->set_in(0, Location::RequiresRegister()); |
| 3682 | summary->set_in(1, Location::RequiresRegister()); |
| 3683 | summary->set_temp(0, Location::RequiresRegister()); |
| 3684 | summary->set_out(0, Location::RequiresRegister()); |
| 3685 | return summary; |
| 3686 | } |
| 3687 | |
| 3688 | Condition CheckedSmiComparisonInstr::EmitComparisonCode( |
| 3689 | FlowGraphCompiler* compiler, |
| 3690 | BranchLabels labels) { |
| 3691 | return EmitInt64ComparisonOp(compiler, *locs(), kind()); |
| 3692 | } |
| 3693 | |
| 3694 | #define EMIT_SMI_CHECK \ |
| 3695 | intptr_t left_cid = left()->Type()->ToCid(); \ |
| 3696 | intptr_t right_cid = right()->Type()->ToCid(); \ |
| 3697 | Register left = locs()->in(0).reg(); \ |
| 3698 | Register right = locs()->in(1).reg(); \ |
| 3699 | if (this->left()->definition() == this->right()->definition()) { \ |
| 3700 | __ testq(left, compiler::Immediate(kSmiTagMask)); \ |
| 3701 | } else if (left_cid == kSmiCid) { \ |
| 3702 | __ testq(right, compiler::Immediate(kSmiTagMask)); \ |
| 3703 | } else if (right_cid == kSmiCid) { \ |
| 3704 | __ testq(left, compiler::Immediate(kSmiTagMask)); \ |
| 3705 | } else { \ |
| 3706 | __ movq(TMP, left); \ |
| 3707 | __ orq(TMP, right); \ |
| 3708 | __ testq(TMP, compiler::Immediate(kSmiTagMask)); \ |
| 3709 | } \ |
| 3710 | __ j(NOT_ZERO, slow_path->entry_label()) |
| 3711 | |
| 3712 | void CheckedSmiComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler, |
| 3713 | BranchInstr* branch) { |
| 3714 | BranchLabels labels = compiler->CreateBranchLabels(branch); |
| 3715 | CheckedSmiComparisonSlowPath* slow_path = new CheckedSmiComparisonSlowPath( |
| 3716 | this, branch->env(), compiler->CurrentTryIndex(), labels, |
| 3717 | /* merged = */ true); |
| 3718 | compiler->AddSlowPathCode(slow_path); |
| 3719 | EMIT_SMI_CHECK; |
| 3720 | Condition true_condition = EmitComparisonCode(compiler, labels); |
| 3721 | ASSERT(true_condition != kInvalidCondition); |
| 3722 | EmitBranchOnCondition(compiler, true_condition, labels); |
| 3723 | // No need to bind slow_path->exit_label() as slow path exits through |
| 3724 | // true/false branch labels. |
| 3725 | } |
| 3726 | |
| 3727 | void CheckedSmiComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3728 | // Zone-allocate labels to pass them to slow-path which outlives local scope. |
| 3729 | compiler::Label* true_label = new (Z) compiler::Label(); |
| 3730 | compiler::Label* false_label = new (Z) compiler::Label(); |
| 3731 | compiler::Label done; |
| 3732 | BranchLabels labels = {true_label, false_label, false_label}; |
| 3733 | // In case of negated comparison result of a slow path call should be negated. |
| 3734 | // For this purpose, 'merged' slow path is generated: it tests |
| 3735 | // result of a call and jumps directly to true or false label. |
| 3736 | CheckedSmiComparisonSlowPath* slow_path = new CheckedSmiComparisonSlowPath( |
| 3737 | this, env(), compiler->CurrentTryIndex(), labels, |
| 3738 | /* merged = */ is_negated()); |
| 3739 | compiler->AddSlowPathCode(slow_path); |
| 3740 | EMIT_SMI_CHECK; |
| 3741 | Condition true_condition = EmitComparisonCode(compiler, labels); |
| 3742 | ASSERT(true_condition != kInvalidCondition); |
| 3743 | EmitBranchOnCondition(compiler, true_condition, labels); |
| 3744 | Register result = locs()->out(0).reg(); |
| 3745 | __ Bind(false_label); |
| 3746 | __ LoadObject(result, Bool::False()); |
| 3747 | __ jmp(&done); |
| 3748 | __ Bind(true_label); |
| 3749 | __ LoadObject(result, Bool::True()); |
| 3750 | __ Bind(&done); |
| 3751 | // In case of negated comparison slow path exits through true/false labels. |
| 3752 | if (!is_negated()) { |
| 3753 | __ Bind(slow_path->exit_label()); |
| 3754 | } |
| 3755 | } |
| 3756 | |
| 3757 | static bool CanBeImmediate(const Object& constant) { |
| 3758 | return constant.IsSmi() && |
| 3759 | compiler::Immediate(static_cast<int64_t>(constant.raw())).is_int32(); |
| 3760 | } |
| 3761 | |
| 3762 | static bool IsSmiValue(const Object& constant, intptr_t value) { |
| 3763 | return constant.IsSmi() && (Smi::Cast(constant).Value() == value); |
| 3764 | } |
| 3765 | |
| 3766 | LocationSummary* BinarySmiOpInstr::MakeLocationSummary(Zone* zone, |
| 3767 | bool opt) const { |
| 3768 | const intptr_t kNumInputs = 2; |
| 3769 | |
| 3770 | ConstantInstr* right_constant = right()->definition()->AsConstant(); |
| 3771 | if ((right_constant != NULL) && (op_kind() != Token::kTRUNCDIV) && |
| 3772 | (op_kind() != Token::kSHL) && (op_kind() != Token::kMUL) && |
| 3773 | (op_kind() != Token::kMOD) && CanBeImmediate(right_constant->value())) { |
| 3774 | const intptr_t kNumTemps = 0; |
| 3775 | LocationSummary* summary = new (zone) |
| 3776 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 3777 | summary->set_in(0, Location::RequiresRegister()); |
| 3778 | summary->set_in(1, Location::Constant(right_constant)); |
| 3779 | summary->set_out(0, Location::SameAsFirstInput()); |
| 3780 | return summary; |
| 3781 | } |
| 3782 | |
| 3783 | if (op_kind() == Token::kTRUNCDIV) { |
| 3784 | const intptr_t kNumTemps = 1; |
| 3785 | LocationSummary* summary = new (zone) |
| 3786 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 3787 | if (RightIsPowerOfTwoConstant()) { |
| 3788 | summary->set_in(0, Location::RequiresRegister()); |
| 3789 | ConstantInstr* right_constant = right()->definition()->AsConstant(); |
| 3790 | summary->set_in(1, Location::Constant(right_constant)); |
| 3791 | summary->set_temp(0, Location::RequiresRegister()); |
| 3792 | summary->set_out(0, Location::SameAsFirstInput()); |
| 3793 | } else { |
| 3794 | // Both inputs must be writable because they will be untagged. |
| 3795 | summary->set_in(0, Location::RegisterLocation(RAX)); |
| 3796 | summary->set_in(1, Location::WritableRegister()); |
| 3797 | summary->set_out(0, Location::SameAsFirstInput()); |
| 3798 | // Will be used for sign extension and division. |
| 3799 | summary->set_temp(0, Location::RegisterLocation(RDX)); |
| 3800 | } |
| 3801 | return summary; |
| 3802 | } else if (op_kind() == Token::kMOD) { |
| 3803 | const intptr_t kNumTemps = 1; |
| 3804 | LocationSummary* summary = new (zone) |
| 3805 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 3806 | // Both inputs must be writable because they will be untagged. |
| 3807 | summary->set_in(0, Location::RegisterLocation(RDX)); |
| 3808 | summary->set_in(1, Location::WritableRegister()); |
| 3809 | summary->set_out(0, Location::SameAsFirstInput()); |
| 3810 | // Will be used for sign extension and division. |
| 3811 | summary->set_temp(0, Location::RegisterLocation(RAX)); |
| 3812 | return summary; |
| 3813 | } else if (op_kind() == Token::kSHR) { |
| 3814 | const intptr_t kNumTemps = 0; |
| 3815 | LocationSummary* summary = new (zone) |
| 3816 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 3817 | summary->set_in(0, Location::RequiresRegister()); |
| 3818 | summary->set_in(1, LocationFixedRegisterOrSmiConstant(right(), RCX)); |
| 3819 | summary->set_out(0, Location::SameAsFirstInput()); |
| 3820 | return summary; |
| 3821 | } else if (op_kind() == Token::kSHL) { |
| 3822 | // Shift-by-1 overflow checking can use flags, otherwise we need a temp. |
| 3823 | const bool shiftBy1 = |
| 3824 | (right_constant != NULL) && IsSmiValue(right_constant->value(), 1); |
| 3825 | const intptr_t kNumTemps = (can_overflow() && !shiftBy1) ? 1 : 0; |
| 3826 | LocationSummary* summary = new (zone) |
| 3827 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 3828 | summary->set_in(0, Location::RequiresRegister()); |
| 3829 | summary->set_in(1, LocationFixedRegisterOrSmiConstant(right(), RCX)); |
| 3830 | if (kNumTemps == 1) { |
| 3831 | summary->set_temp(0, Location::RequiresRegister()); |
| 3832 | } |
| 3833 | summary->set_out(0, Location::SameAsFirstInput()); |
| 3834 | return summary; |
| 3835 | } else { |
| 3836 | const intptr_t kNumTemps = 0; |
| 3837 | LocationSummary* summary = new (zone) |
| 3838 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 3839 | summary->set_in(0, Location::RequiresRegister()); |
| 3840 | ConstantInstr* constant = right()->definition()->AsConstant(); |
| 3841 | if (constant != NULL) { |
| 3842 | summary->set_in(1, LocationRegisterOrSmiConstant(right())); |
| 3843 | } else { |
| 3844 | summary->set_in(1, Location::PrefersRegister()); |
| 3845 | } |
| 3846 | summary->set_out(0, Location::SameAsFirstInput()); |
| 3847 | return summary; |
| 3848 | } |
| 3849 | } |
| 3850 | |
| 3851 | void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3852 | if (op_kind() == Token::kSHL) { |
| 3853 | EmitSmiShiftLeft(compiler, this); |
| 3854 | return; |
| 3855 | } |
| 3856 | |
| 3857 | Register left = locs()->in(0).reg(); |
| 3858 | Register result = locs()->out(0).reg(); |
| 3859 | ASSERT(left == result); |
| 3860 | compiler::Label* deopt = NULL; |
| 3861 | if (CanDeoptimize()) { |
| 3862 | deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp); |
| 3863 | } |
| 3864 | |
| 3865 | if (locs()->in(1).IsConstant()) { |
| 3866 | const Object& constant = locs()->in(1).constant(); |
| 3867 | ASSERT(constant.IsSmi()); |
| 3868 | const int64_t imm = static_cast<int64_t>(constant.raw()); |
| 3869 | switch (op_kind()) { |
| 3870 | case Token::kADD: { |
| 3871 | __ AddImmediate(left, compiler::Immediate(imm)); |
| 3872 | if (deopt != NULL) __ j(OVERFLOW, deopt); |
| 3873 | break; |
| 3874 | } |
| 3875 | case Token::kSUB: { |
| 3876 | __ SubImmediate(left, compiler::Immediate(imm)); |
| 3877 | if (deopt != NULL) __ j(OVERFLOW, deopt); |
| 3878 | break; |
| 3879 | } |
| 3880 | case Token::kMUL: { |
| 3881 | // Keep left value tagged and untag right value. |
| 3882 | const intptr_t value = Smi::Cast(constant).Value(); |
| 3883 | __ MulImmediate(left, compiler::Immediate(value)); |
| 3884 | if (deopt != NULL) __ j(OVERFLOW, deopt); |
| 3885 | break; |
| 3886 | } |
| 3887 | case Token::kTRUNCDIV: { |
| 3888 | const intptr_t value = Smi::Cast(constant).Value(); |
| 3889 | ASSERT(value != kIntptrMin); |
| 3890 | ASSERT(Utils::IsPowerOfTwo(Utils::Abs(value))); |
| 3891 | const intptr_t shift_count = |
| 3892 | Utils::ShiftForPowerOfTwo(Utils::Abs(value)) + kSmiTagSize; |
| 3893 | ASSERT(kSmiTagSize == 1); |
| 3894 | Register temp = locs()->temp(0).reg(); |
| 3895 | __ movq(temp, left); |
| 3896 | __ sarq(temp, compiler::Immediate(63)); |
| 3897 | ASSERT(shift_count > 1); // 1, -1 case handled above. |
| 3898 | __ shrq(temp, compiler::Immediate(64 - shift_count)); |
| 3899 | __ addq(left, temp); |
| 3900 | ASSERT(shift_count > 0); |
| 3901 | __ sarq(left, compiler::Immediate(shift_count)); |
| 3902 | if (value < 0) { |
| 3903 | __ negq(left); |
| 3904 | } |
| 3905 | __ SmiTag(left); |
| 3906 | break; |
| 3907 | } |
| 3908 | case Token::kBIT_AND: { |
| 3909 | // No overflow check. |
| 3910 | __ AndImmediate(left, compiler::Immediate(imm)); |
| 3911 | break; |
| 3912 | } |
| 3913 | case Token::kBIT_OR: { |
| 3914 | // No overflow check. |
| 3915 | __ OrImmediate(left, compiler::Immediate(imm)); |
| 3916 | break; |
| 3917 | } |
| 3918 | case Token::kBIT_XOR: { |
| 3919 | // No overflow check. |
| 3920 | __ XorImmediate(left, compiler::Immediate(imm)); |
| 3921 | break; |
| 3922 | } |
| 3923 | |
| 3924 | case Token::kSHR: { |
| 3925 | // sarq operation masks the count to 6 bits. |
| 3926 | const intptr_t kCountLimit = 0x3F; |
| 3927 | const intptr_t value = Smi::Cast(constant).Value(); |
| 3928 | __ sarq(left, compiler::Immediate( |
| 3929 | Utils::Minimum(value + kSmiTagSize, kCountLimit))); |
| 3930 | __ SmiTag(left); |
| 3931 | break; |
| 3932 | } |
| 3933 | |
| 3934 | default: |
| 3935 | UNREACHABLE(); |
| 3936 | break; |
| 3937 | } |
| 3938 | return; |
| 3939 | } // locs()->in(1).IsConstant(). |
| 3940 | |
| 3941 | if (locs()->in(1).IsStackSlot()) { |
| 3942 | const compiler::Address& right = LocationToStackSlotAddress(locs()->in(1)); |
| 3943 | switch (op_kind()) { |
| 3944 | case Token::kADD: { |
| 3945 | __ addq(left, right); |
| 3946 | if (deopt != NULL) __ j(OVERFLOW, deopt); |
| 3947 | break; |
| 3948 | } |
| 3949 | case Token::kSUB: { |
| 3950 | __ subq(left, right); |
| 3951 | if (deopt != NULL) __ j(OVERFLOW, deopt); |
| 3952 | break; |
| 3953 | } |
| 3954 | case Token::kMUL: { |
| 3955 | __ SmiUntag(left); |
| 3956 | __ imulq(left, right); |
| 3957 | if (deopt != NULL) __ j(OVERFLOW, deopt); |
| 3958 | break; |
| 3959 | } |
| 3960 | case Token::kBIT_AND: { |
| 3961 | // No overflow check. |
| 3962 | __ andq(left, right); |
| 3963 | break; |
| 3964 | } |
| 3965 | case Token::kBIT_OR: { |
| 3966 | // No overflow check. |
| 3967 | __ orq(left, right); |
| 3968 | break; |
| 3969 | } |
| 3970 | case Token::kBIT_XOR: { |
| 3971 | // No overflow check. |
| 3972 | __ xorq(left, right); |
| 3973 | break; |
| 3974 | } |
| 3975 | default: |
| 3976 | UNREACHABLE(); |
| 3977 | break; |
| 3978 | } |
| 3979 | return; |
| 3980 | } // locs()->in(1).IsStackSlot(). |
| 3981 | |
| 3982 | // if locs()->in(1).IsRegister. |
| 3983 | Register right = locs()->in(1).reg(); |
| 3984 | switch (op_kind()) { |
| 3985 | case Token::kADD: { |
| 3986 | __ addq(left, right); |
| 3987 | if (deopt != NULL) __ j(OVERFLOW, deopt); |
| 3988 | break; |
| 3989 | } |
| 3990 | case Token::kSUB: { |
| 3991 | __ subq(left, right); |
| 3992 | if (deopt != NULL) __ j(OVERFLOW, deopt); |
| 3993 | break; |
| 3994 | } |
| 3995 | case Token::kMUL: { |
| 3996 | __ SmiUntag(left); |
| 3997 | __ imulq(left, right); |
| 3998 | if (deopt != NULL) __ j(OVERFLOW, deopt); |
| 3999 | break; |
| 4000 | } |
| 4001 | case Token::kBIT_AND: { |
| 4002 | // No overflow check. |
| 4003 | __ andq(left, right); |
| 4004 | break; |
| 4005 | } |
| 4006 | case Token::kBIT_OR: { |
| 4007 | // No overflow check. |
| 4008 | __ orq(left, right); |
| 4009 | break; |
| 4010 | } |
| 4011 | case Token::kBIT_XOR: { |
| 4012 | // No overflow check. |
| 4013 | __ xorq(left, right); |
| 4014 | break; |
| 4015 | } |
| 4016 | case Token::kTRUNCDIV: { |
| 4017 | compiler::Label not_32bit, done; |
| 4018 | |
| 4019 | Register temp = locs()->temp(0).reg(); |
| 4020 | ASSERT(left == RAX); |
| 4021 | ASSERT((right != RDX) && (right != RAX)); |
| 4022 | ASSERT(temp == RDX); |
| 4023 | ASSERT(result == RAX); |
| 4024 | if (RangeUtils::CanBeZero(right_range())) { |
| 4025 | // Handle divide by zero in runtime. |
| 4026 | __ testq(right, right); |
| 4027 | __ j(ZERO, deopt); |
| 4028 | } |
| 4029 | // Check if both operands fit into 32bits as idiv with 64bit operands |
| 4030 | // requires twice as many cycles and has much higher latency. |
| 4031 | // We are checking this before untagging them to avoid corner case |
| 4032 | // dividing INT_MAX by -1 that raises exception because quotient is |
| 4033 | // too large for 32bit register. |
| 4034 | __ movsxd(temp, left); |
| 4035 | __ cmpq(temp, left); |
| 4036 | __ j(NOT_EQUAL, ¬_32bit); |
| 4037 | __ movsxd(temp, right); |
| 4038 | __ cmpq(temp, right); |
| 4039 | __ j(NOT_EQUAL, ¬_32bit); |
| 4040 | |
| 4041 | // Both operands are 31bit smis. Divide using 32bit idiv. |
| 4042 | __ SmiUntag(left); |
| 4043 | __ SmiUntag(right); |
| 4044 | __ cdq(); |
| 4045 | __ idivl(right); |
| 4046 | __ movsxd(result, result); |
| 4047 | __ jmp(&done); |
| 4048 | |
| 4049 | // Divide using 64bit idiv. |
| 4050 | __ Bind(¬_32bit); |
| 4051 | __ SmiUntag(left); |
| 4052 | __ SmiUntag(right); |
| 4053 | __ cqo(); // Sign extend RAX -> RDX:RAX. |
| 4054 | __ idivq(right); // RAX: quotient, RDX: remainder. |
| 4055 | if (RangeUtils::Overlaps(right_range(), -1, -1)) { |
| 4056 | // Check the corner case of dividing the 'MIN_SMI' with -1, in which |
| 4057 | // case we cannot tag the result. |
| 4058 | __ CompareImmediate(result, compiler::Immediate(0x4000000000000000)); |
| 4059 | __ j(EQUAL, deopt); |
| 4060 | } |
| 4061 | __ Bind(&done); |
| 4062 | __ SmiTag(result); |
| 4063 | break; |
| 4064 | } |
| 4065 | case Token::kMOD: { |
| 4066 | compiler::Label not_32bit, div_done; |
| 4067 | |
| 4068 | Register temp = locs()->temp(0).reg(); |
| 4069 | ASSERT(left == RDX); |
| 4070 | ASSERT((right != RDX) && (right != RAX)); |
| 4071 | ASSERT(temp == RAX); |
| 4072 | ASSERT(result == RDX); |
| 4073 | if (RangeUtils::CanBeZero(right_range())) { |
| 4074 | // Handle divide by zero in runtime. |
| 4075 | __ testq(right, right); |
| 4076 | __ j(ZERO, deopt); |
| 4077 | } |
| 4078 | // Check if both operands fit into 32bits as idiv with 64bit operands |
| 4079 | // requires twice as many cycles and has much higher latency. |
| 4080 | // We are checking this before untagging them to avoid corner case |
| 4081 | // dividing INT_MAX by -1 that raises exception because quotient is |
| 4082 | // too large for 32bit register. |
| 4083 | __ movsxd(temp, left); |
| 4084 | __ cmpq(temp, left); |
| 4085 | __ j(NOT_EQUAL, ¬_32bit); |
| 4086 | __ movsxd(temp, right); |
| 4087 | __ cmpq(temp, right); |
| 4088 | __ j(NOT_EQUAL, ¬_32bit); |
| 4089 | // Both operands are 31bit smis. Divide using 32bit idiv. |
| 4090 | __ SmiUntag(left); |
| 4091 | __ SmiUntag(right); |
| 4092 | __ movq(RAX, RDX); |
| 4093 | __ cdq(); |
| 4094 | __ idivl(right); |
| 4095 | __ movsxd(result, result); |
| 4096 | __ jmp(&div_done); |
| 4097 | |
| 4098 | // Divide using 64bit idiv. |
| 4099 | __ Bind(¬_32bit); |
| 4100 | __ SmiUntag(left); |
| 4101 | __ SmiUntag(right); |
| 4102 | __ movq(RAX, RDX); |
| 4103 | __ cqo(); // Sign extend RAX -> RDX:RAX. |
| 4104 | __ idivq(right); // RAX: quotient, RDX: remainder. |
| 4105 | __ Bind(&div_done); |
| 4106 | // res = left % right; |
| 4107 | // if (res < 0) { |
| 4108 | // if (right < 0) { |
| 4109 | // res = res - right; |
| 4110 | // } else { |
| 4111 | // res = res + right; |
| 4112 | // } |
| 4113 | // } |
| 4114 | compiler::Label all_done; |
| 4115 | __ cmpq(result, compiler::Immediate(0)); |
| 4116 | __ j(GREATER_EQUAL, &all_done, compiler::Assembler::kNearJump); |
| 4117 | // Result is negative, adjust it. |
| 4118 | if (RangeUtils::Overlaps(right_range(), -1, 1)) { |
| 4119 | compiler::Label subtract; |
| 4120 | __ cmpq(right, compiler::Immediate(0)); |
| 4121 | __ j(LESS, &subtract, compiler::Assembler::kNearJump); |
| 4122 | __ addq(result, right); |
| 4123 | __ jmp(&all_done, compiler::Assembler::kNearJump); |
| 4124 | __ Bind(&subtract); |
| 4125 | __ subq(result, right); |
| 4126 | } else if (right_range()->IsPositive()) { |
| 4127 | // Right is positive. |
| 4128 | __ addq(result, right); |
| 4129 | } else { |
| 4130 | // Right is negative. |
| 4131 | __ subq(result, right); |
| 4132 | } |
| 4133 | __ Bind(&all_done); |
| 4134 | __ SmiTag(result); |
| 4135 | break; |
| 4136 | } |
| 4137 | case Token::kSHR: { |
| 4138 | if (CanDeoptimize()) { |
| 4139 | __ CompareImmediate(right, compiler::Immediate(0)); |
| 4140 | __ j(LESS, deopt); |
| 4141 | } |
| 4142 | __ SmiUntag(right); |
| 4143 | // sarq operation masks the count to 6 bits. |
| 4144 | const intptr_t kCountLimit = 0x3F; |
| 4145 | if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(), kCountLimit)) { |
| 4146 | __ CompareImmediate(right, compiler::Immediate(kCountLimit)); |
| 4147 | compiler::Label count_ok; |
| 4148 | __ j(LESS, &count_ok, compiler::Assembler::kNearJump); |
| 4149 | __ LoadImmediate(right, compiler::Immediate(kCountLimit)); |
| 4150 | __ Bind(&count_ok); |
| 4151 | } |
| 4152 | ASSERT(right == RCX); // Count must be in RCX |
| 4153 | __ SmiUntag(left); |
| 4154 | __ sarq(left, right); |
| 4155 | __ SmiTag(left); |
| 4156 | break; |
| 4157 | } |
| 4158 | case Token::kDIV: { |
| 4159 | // Dispatches to 'Double./'. |
| 4160 | // TODO(srdjan): Implement as conversion to double and double division. |
| 4161 | UNREACHABLE(); |
| 4162 | break; |
| 4163 | } |
| 4164 | case Token::kOR: |
| 4165 | case Token::kAND: { |
| 4166 | // Flow graph builder has dissected this operation to guarantee correct |
| 4167 | // behavior (short-circuit evaluation). |
| 4168 | UNREACHABLE(); |
| 4169 | break; |
| 4170 | } |
| 4171 | default: |
| 4172 | UNREACHABLE(); |
| 4173 | break; |
| 4174 | } |
| 4175 | } |
| 4176 | |
| 4177 | LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary(Zone* zone, |
| 4178 | bool opt) const { |
| 4179 | intptr_t left_cid = left()->Type()->ToCid(); |
| 4180 | intptr_t right_cid = right()->Type()->ToCid(); |
| 4181 | ASSERT((left_cid != kDoubleCid) && (right_cid != kDoubleCid)); |
| 4182 | const intptr_t kNumInputs = 2; |
| 4183 | const bool need_temp = (left()->definition() != right()->definition()) && |
| 4184 | (left_cid != kSmiCid) && (right_cid != kSmiCid); |
| 4185 | const intptr_t kNumTemps = need_temp ? 1 : 0; |
| 4186 | LocationSummary* summary = new (zone) |
| 4187 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 4188 | summary->set_in(0, Location::RequiresRegister()); |
| 4189 | summary->set_in(1, Location::RequiresRegister()); |
| 4190 | if (need_temp) summary->set_temp(0, Location::RequiresRegister()); |
| 4191 | return summary; |
| 4192 | } |
| 4193 | |
| 4194 | void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4195 | compiler::Label* deopt = |
| 4196 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryDoubleOp, |
| 4197 | licm_hoisted_ ? ICData::kHoisted : 0); |
| 4198 | intptr_t left_cid = left()->Type()->ToCid(); |
| 4199 | intptr_t right_cid = right()->Type()->ToCid(); |
| 4200 | Register left = locs()->in(0).reg(); |
| 4201 | Register right = locs()->in(1).reg(); |
| 4202 | if (this->left()->definition() == this->right()->definition()) { |
| 4203 | __ testq(left, compiler::Immediate(kSmiTagMask)); |
| 4204 | } else if (left_cid == kSmiCid) { |
| 4205 | __ testq(right, compiler::Immediate(kSmiTagMask)); |
| 4206 | } else if (right_cid == kSmiCid) { |
| 4207 | __ testq(left, compiler::Immediate(kSmiTagMask)); |
| 4208 | } else { |
| 4209 | Register temp = locs()->temp(0).reg(); |
| 4210 | __ movq(temp, left); |
| 4211 | __ orq(temp, right); |
| 4212 | __ testq(temp, compiler::Immediate(kSmiTagMask)); |
| 4213 | } |
| 4214 | __ j(ZERO, deopt); |
| 4215 | } |
| 4216 | |
| 4217 | LocationSummary* BoxInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 4218 | const intptr_t kNumInputs = 1; |
| 4219 | const intptr_t kNumTemps = 1; |
| 4220 | LocationSummary* summary = new (zone) LocationSummary( |
| 4221 | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| 4222 | summary->set_in(0, Location::RequiresFpuRegister()); |
| 4223 | summary->set_temp(0, Location::RequiresRegister()); |
| 4224 | summary->set_out(0, Location::RequiresRegister()); |
| 4225 | return summary; |
| 4226 | } |
| 4227 | |
| 4228 | void BoxInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4229 | Register out_reg = locs()->out(0).reg(); |
| 4230 | Register temp = locs()->temp(0).reg(); |
| 4231 | XmmRegister value = locs()->in(0).fpu_reg(); |
| 4232 | |
| 4233 | BoxAllocationSlowPath::Allocate(compiler, this, |
| 4234 | compiler->BoxClassFor(from_representation()), |
| 4235 | out_reg, temp); |
| 4236 | |
| 4237 | switch (from_representation()) { |
| 4238 | case kUnboxedDouble: |
| 4239 | __ movsd(compiler::FieldAddress(out_reg, ValueOffset()), value); |
| 4240 | break; |
| 4241 | case kUnboxedFloat: { |
| 4242 | __ cvtss2sd(FpuTMP, value); |
| 4243 | __ movsd(compiler::FieldAddress(out_reg, ValueOffset()), FpuTMP); |
| 4244 | break; |
| 4245 | } |
| 4246 | case kUnboxedFloat32x4: |
| 4247 | case kUnboxedFloat64x2: |
| 4248 | case kUnboxedInt32x4: |
| 4249 | __ movups(compiler::FieldAddress(out_reg, ValueOffset()), value); |
| 4250 | break; |
| 4251 | default: |
| 4252 | UNREACHABLE(); |
| 4253 | break; |
| 4254 | } |
| 4255 | } |
| 4256 | |
| 4257 | LocationSummary* UnboxInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 4258 | const intptr_t kNumInputs = 1; |
| 4259 | const intptr_t kNumTemps = 0; |
| 4260 | const bool needs_writable_input = |
| 4261 | (representation() != kUnboxedInt64) && |
| 4262 | (value()->Type()->ToNullableCid() != BoxCid()); |
| 4263 | LocationSummary* summary = new (zone) |
| 4264 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 4265 | summary->set_in(0, needs_writable_input ? Location::WritableRegister() |
| 4266 | : Location::RequiresRegister()); |
| 4267 | if (representation() == kUnboxedInt64 || representation() == kUnboxedInt32) { |
| 4268 | summary->set_out(0, Location::SameAsFirstInput()); |
| 4269 | } else { |
| 4270 | summary->set_out(0, Location::RequiresFpuRegister()); |
| 4271 | } |
| 4272 | return summary; |
| 4273 | } |
| 4274 | |
| 4275 | void UnboxInstr::EmitLoadFromBox(FlowGraphCompiler* compiler) { |
| 4276 | const Register box = locs()->in(0).reg(); |
| 4277 | |
| 4278 | switch (representation()) { |
| 4279 | case kUnboxedInt64: { |
| 4280 | const Register result = locs()->out(0).reg(); |
| 4281 | __ movq(result, compiler::FieldAddress(box, ValueOffset())); |
| 4282 | break; |
| 4283 | } |
| 4284 | |
| 4285 | case kUnboxedDouble: { |
| 4286 | const FpuRegister result = locs()->out(0).fpu_reg(); |
| 4287 | __ movsd(result, compiler::FieldAddress(box, ValueOffset())); |
| 4288 | break; |
| 4289 | } |
| 4290 | |
| 4291 | case kUnboxedFloat: { |
| 4292 | const FpuRegister result = locs()->out(0).fpu_reg(); |
| 4293 | __ movsd(result, compiler::FieldAddress(box, ValueOffset())); |
| 4294 | __ cvtsd2ss(result, result); |
| 4295 | break; |
| 4296 | } |
| 4297 | |
| 4298 | case kUnboxedFloat32x4: |
| 4299 | case kUnboxedFloat64x2: |
| 4300 | case kUnboxedInt32x4: { |
| 4301 | const FpuRegister result = locs()->out(0).fpu_reg(); |
| 4302 | __ movups(result, compiler::FieldAddress(box, ValueOffset())); |
| 4303 | break; |
| 4304 | } |
| 4305 | |
| 4306 | default: |
| 4307 | UNREACHABLE(); |
| 4308 | break; |
| 4309 | } |
| 4310 | } |
| 4311 | |
| 4312 | void UnboxInstr::EmitSmiConversion(FlowGraphCompiler* compiler) { |
| 4313 | const Register box = locs()->in(0).reg(); |
| 4314 | |
| 4315 | switch (representation()) { |
| 4316 | case kUnboxedInt64: { |
| 4317 | const Register result = locs()->out(0).reg(); |
| 4318 | ASSERT(result == box); |
| 4319 | __ SmiUntag(box); |
| 4320 | break; |
| 4321 | } |
| 4322 | |
| 4323 | case kUnboxedDouble: { |
| 4324 | const FpuRegister result = locs()->out(0).fpu_reg(); |
| 4325 | __ SmiUntag(box); |
| 4326 | __ cvtsi2sdq(result, box); |
| 4327 | break; |
| 4328 | } |
| 4329 | |
| 4330 | default: |
| 4331 | UNREACHABLE(); |
| 4332 | break; |
| 4333 | } |
| 4334 | } |
| 4335 | |
| 4336 | void UnboxInstr::EmitLoadInt32FromBoxOrSmi(FlowGraphCompiler* compiler) { |
| 4337 | const Register value = locs()->in(0).reg(); |
| 4338 | const Register result = locs()->out(0).reg(); |
| 4339 | ASSERT(value == result); |
| 4340 | compiler::Label done; |
| 4341 | __ SmiUntag(value); |
| 4342 | __ j(NOT_CARRY, &done, compiler::Assembler::kNearJump); |
| 4343 | __ movsxw(result, compiler::Address(value, TIMES_2, Mint::value_offset())); |
| 4344 | __ Bind(&done); |
| 4345 | } |
| 4346 | |
| 4347 | void UnboxInstr::EmitLoadInt64FromBoxOrSmi(FlowGraphCompiler* compiler) { |
| 4348 | const Register value = locs()->in(0).reg(); |
| 4349 | const Register result = locs()->out(0).reg(); |
| 4350 | ASSERT(value == result); |
| 4351 | compiler::Label done; |
| 4352 | __ SmiUntag(value); |
| 4353 | __ j(NOT_CARRY, &done, compiler::Assembler::kNearJump); |
| 4354 | __ movq(value, compiler::Address(value, TIMES_2, Mint::value_offset())); |
| 4355 | __ Bind(&done); |
| 4356 | } |
| 4357 | |
| 4358 | LocationSummary* UnboxInteger32Instr::MakeLocationSummary(Zone* zone, |
| 4359 | bool opt) const { |
| 4360 | const intptr_t kNumInputs = 1; |
| 4361 | const intptr_t kNumTemps = (!is_truncating() && CanDeoptimize()) ? 1 : 0; |
| 4362 | LocationSummary* summary = new (zone) |
| 4363 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 4364 | summary->set_in(0, Location::RequiresRegister()); |
| 4365 | summary->set_out(0, Location::SameAsFirstInput()); |
| 4366 | if (kNumTemps > 0) { |
| 4367 | summary->set_temp(0, Location::RequiresRegister()); |
| 4368 | } |
| 4369 | return summary; |
| 4370 | } |
| 4371 | |
| 4372 | void UnboxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4373 | const intptr_t value_cid = value()->Type()->ToCid(); |
| 4374 | const Register value = locs()->in(0).reg(); |
| 4375 | compiler::Label* deopt = |
| 4376 | CanDeoptimize() |
| 4377 | ? compiler->AddDeoptStub(GetDeoptId(), ICData::kDeoptUnboxInteger) |
| 4378 | : NULL; |
| 4379 | ASSERT(value == locs()->out(0).reg()); |
| 4380 | |
| 4381 | if (value_cid == kSmiCid) { |
| 4382 | __ SmiUntag(value); |
| 4383 | } else if (value_cid == kMintCid) { |
| 4384 | __ movq(value, compiler::FieldAddress(value, Mint::value_offset())); |
| 4385 | } else if (!CanDeoptimize()) { |
| 4386 | // Type information is not conclusive, but range analysis found |
| 4387 | // the value to be in int64 range. Therefore it must be a smi |
| 4388 | // or mint value. |
| 4389 | ASSERT(is_truncating()); |
| 4390 | compiler::Label done; |
| 4391 | __ SmiUntag(value); |
| 4392 | __ j(NOT_CARRY, &done, compiler::Assembler::kNearJump); |
| 4393 | __ movq(value, compiler::Address(value, TIMES_2, Mint::value_offset())); |
| 4394 | __ Bind(&done); |
| 4395 | return; |
| 4396 | } else { |
| 4397 | compiler::Label done; |
| 4398 | // Optimistically untag value. |
| 4399 | __ SmiUntagOrCheckClass(value, kMintCid, &done); |
| 4400 | __ j(NOT_EQUAL, deopt); |
| 4401 | // Undo untagging by multiplying value with 2. |
| 4402 | __ movq(value, compiler::Address(value, TIMES_2, Mint::value_offset())); |
| 4403 | __ Bind(&done); |
| 4404 | } |
| 4405 | |
| 4406 | // TODO(vegorov): as it is implemented right now truncating unboxing would |
| 4407 | // leave "garbage" in the higher word. |
| 4408 | if (!is_truncating() && (deopt != NULL)) { |
| 4409 | ASSERT(representation() == kUnboxedInt32); |
| 4410 | Register temp = locs()->temp(0).reg(); |
| 4411 | __ movsxd(temp, value); |
| 4412 | __ cmpq(temp, value); |
| 4413 | __ j(NOT_EQUAL, deopt); |
| 4414 | } |
| 4415 | } |
| 4416 | |
| 4417 | LocationSummary* BoxInteger32Instr::MakeLocationSummary(Zone* zone, |
| 4418 | bool opt) const { |
| 4419 | ASSERT((from_representation() == kUnboxedInt32) || |
| 4420 | (from_representation() == kUnboxedUint32)); |
| 4421 | const intptr_t kNumInputs = 1; |
| 4422 | const intptr_t kNumTemps = 0; |
| 4423 | LocationSummary* summary = new (zone) |
| 4424 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 4425 | summary->set_in(0, Location::RequiresRegister()); |
| 4426 | summary->set_out(0, Location::RequiresRegister()); |
| 4427 | return summary; |
| 4428 | } |
| 4429 | |
| 4430 | void BoxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4431 | const Register value = locs()->in(0).reg(); |
| 4432 | const Register out = locs()->out(0).reg(); |
| 4433 | ASSERT(value != out); |
| 4434 | |
| 4435 | ASSERT(kSmiTagSize == 1); |
| 4436 | if (from_representation() == kUnboxedInt32) { |
| 4437 | __ movsxd(out, value); |
| 4438 | } else { |
| 4439 | ASSERT(from_representation() == kUnboxedUint32); |
| 4440 | __ movl(out, value); |
| 4441 | } |
| 4442 | __ SmiTag(out); |
| 4443 | } |
| 4444 | |
| 4445 | LocationSummary* BoxInt64Instr::MakeLocationSummary(Zone* zone, |
| 4446 | bool opt) const { |
| 4447 | const intptr_t kNumInputs = 1; |
| 4448 | const intptr_t kNumTemps = ValueFitsSmi() ? 0 : 1; |
| 4449 | // Shared slow path is used in BoxInt64Instr::EmitNativeCode in |
| 4450 | // FLAG_use_bare_instructions mode and only after VM isolate stubs where |
| 4451 | // replaced with isolate-specific stubs. |
| 4452 | auto object_store = Isolate::Current()->object_store(); |
| 4453 | const bool stubs_in_vm_isolate = |
| 4454 | object_store->allocate_mint_with_fpu_regs_stub() |
| 4455 | ->ptr() |
| 4456 | ->InVMIsolateHeap() || |
| 4457 | object_store->allocate_mint_without_fpu_regs_stub() |
| 4458 | ->ptr() |
| 4459 | ->InVMIsolateHeap(); |
| 4460 | const bool shared_slow_path_call = SlowPathSharingSupported(opt) && |
| 4461 | FLAG_use_bare_instructions && |
| 4462 | !stubs_in_vm_isolate; |
| 4463 | LocationSummary* summary = new (zone) LocationSummary( |
| 4464 | zone, kNumInputs, kNumTemps, |
| 4465 | ValueFitsSmi() |
| 4466 | ? LocationSummary::kNoCall |
| 4467 | : ((shared_slow_path_call ? LocationSummary::kCallOnSharedSlowPath |
| 4468 | : LocationSummary::kCallOnSlowPath))); |
| 4469 | summary->set_in(0, Location::RequiresRegister()); |
| 4470 | if (ValueFitsSmi()) { |
| 4471 | summary->set_out(0, Location::RequiresRegister()); |
| 4472 | } else if (shared_slow_path_call) { |
| 4473 | summary->set_out(0, |
| 4474 | Location::RegisterLocation(AllocateMintABI::kResultReg)); |
| 4475 | summary->set_temp(0, Location::RegisterLocation(AllocateMintABI::kTempReg)); |
| 4476 | } else { |
| 4477 | summary->set_out(0, Location::RequiresRegister()); |
| 4478 | summary->set_temp(0, Location::RequiresRegister()); |
| 4479 | } |
| 4480 | return summary; |
| 4481 | } |
| 4482 | |
| 4483 | void BoxInt64Instr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4484 | const Register out = locs()->out(0).reg(); |
| 4485 | const Register value = locs()->in(0).reg(); |
| 4486 | __ MoveRegister(out, value); |
| 4487 | __ SmiTag(out); |
| 4488 | if (ValueFitsSmi()) { |
| 4489 | return; |
| 4490 | } |
| 4491 | // If the value doesn't fit in a smi, the tagging changes the sign, |
| 4492 | // which causes the overflow flag to be set. |
| 4493 | compiler::Label done; |
| 4494 | __ j(NO_OVERFLOW, &done); |
| 4495 | |
| 4496 | const Register temp = locs()->temp(0).reg(); |
| 4497 | if (compiler->intrinsic_mode()) { |
| 4498 | __ TryAllocate(compiler->mint_class(), |
| 4499 | compiler->intrinsic_slow_path_label(), |
| 4500 | /*near_jump=*/true, out, temp); |
| 4501 | } else if (locs()->call_on_shared_slow_path()) { |
| 4502 | auto object_store = compiler->isolate()->object_store(); |
| 4503 | const bool live_fpu_regs = locs()->live_registers()->FpuRegisterCount() > 0; |
| 4504 | const auto& stub = Code::ZoneHandle( |
| 4505 | compiler->zone(), |
| 4506 | live_fpu_regs ? object_store->allocate_mint_with_fpu_regs_stub() |
| 4507 | : object_store->allocate_mint_without_fpu_regs_stub()); |
| 4508 | |
| 4509 | ASSERT(!locs()->live_registers()->ContainsRegister( |
| 4510 | AllocateMintABI::kResultReg)); |
| 4511 | auto extended_env = compiler->SlowPathEnvironmentFor(this, 0); |
| 4512 | compiler->GenerateStubCall(token_pos(), stub, PcDescriptorsLayout::kOther, |
| 4513 | locs(), DeoptId::kNone, extended_env); |
| 4514 | } else { |
| 4515 | BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(), out, |
| 4516 | temp); |
| 4517 | } |
| 4518 | |
| 4519 | __ movq(compiler::FieldAddress(out, Mint::value_offset()), value); |
| 4520 | __ Bind(&done); |
| 4521 | } |
| 4522 | |
| 4523 | LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary(Zone* zone, |
| 4524 | bool opt) const { |
| 4525 | const intptr_t kNumInputs = 2; |
| 4526 | const intptr_t kNumTemps = 0; |
| 4527 | LocationSummary* summary = new (zone) |
| 4528 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 4529 | summary->set_in(0, Location::RequiresFpuRegister()); |
| 4530 | summary->set_in(1, Location::RequiresFpuRegister()); |
| 4531 | summary->set_out(0, Location::SameAsFirstInput()); |
| 4532 | return summary; |
| 4533 | } |
| 4534 | |
| 4535 | void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4536 | XmmRegister left = locs()->in(0).fpu_reg(); |
| 4537 | XmmRegister right = locs()->in(1).fpu_reg(); |
| 4538 | |
| 4539 | ASSERT(locs()->out(0).fpu_reg() == left); |
| 4540 | |
| 4541 | switch (op_kind()) { |
| 4542 | case Token::kADD: |
| 4543 | __ addsd(left, right); |
| 4544 | break; |
| 4545 | case Token::kSUB: |
| 4546 | __ subsd(left, right); |
| 4547 | break; |
| 4548 | case Token::kMUL: |
| 4549 | __ mulsd(left, right); |
| 4550 | break; |
| 4551 | case Token::kDIV: |
| 4552 | __ divsd(left, right); |
| 4553 | break; |
| 4554 | default: |
| 4555 | UNREACHABLE(); |
| 4556 | } |
| 4557 | } |
| 4558 | |
| 4559 | LocationSummary* DoubleTestOpInstr::MakeLocationSummary(Zone* zone, |
| 4560 | bool opt) const { |
| 4561 | const intptr_t kNumInputs = 1; |
| 4562 | const intptr_t kNumTemps = |
| 4563 | (op_kind() == MethodRecognizer::kDouble_getIsInfinite) ? 1 : 0; |
| 4564 | LocationSummary* summary = new (zone) |
| 4565 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 4566 | summary->set_in(0, Location::RequiresFpuRegister()); |
| 4567 | if (op_kind() == MethodRecognizer::kDouble_getIsInfinite) { |
| 4568 | summary->set_temp(0, Location::RequiresRegister()); |
| 4569 | } |
| 4570 | summary->set_out(0, Location::RequiresRegister()); |
| 4571 | return summary; |
| 4572 | } |
| 4573 | |
| 4574 | Condition DoubleTestOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| 4575 | BranchLabels labels) { |
| 4576 | ASSERT(compiler->is_optimizing()); |
| 4577 | const XmmRegister value = locs()->in(0).fpu_reg(); |
| 4578 | const bool is_negated = kind() != Token::kEQ; |
| 4579 | if (op_kind() == MethodRecognizer::kDouble_getIsNaN) { |
| 4580 | compiler::Label is_nan; |
| 4581 | __ comisd(value, value); |
| 4582 | return is_negated ? PARITY_ODD : PARITY_EVEN; |
| 4583 | } else { |
| 4584 | ASSERT(op_kind() == MethodRecognizer::kDouble_getIsInfinite); |
| 4585 | const Register temp = locs()->temp(0).reg(); |
| 4586 | __ AddImmediate(RSP, compiler::Immediate(-kDoubleSize)); |
| 4587 | __ movsd(compiler::Address(RSP, 0), value); |
| 4588 | __ movq(temp, compiler::Address(RSP, 0)); |
| 4589 | __ AddImmediate(RSP, compiler::Immediate(kDoubleSize)); |
| 4590 | // Mask off the sign. |
| 4591 | __ AndImmediate(temp, compiler::Immediate(0x7FFFFFFFFFFFFFFFLL)); |
| 4592 | // Compare with +infinity. |
| 4593 | __ CompareImmediate(temp, compiler::Immediate(0x7FF0000000000000LL)); |
| 4594 | return is_negated ? NOT_EQUAL : EQUAL; |
| 4595 | } |
| 4596 | } |
| 4597 | |
| 4598 | // SIMD |
| 4599 | |
| 4600 | #define DEFINE_EMIT(Name, Args) \ |
| 4601 | static void Emit##Name(FlowGraphCompiler* compiler, SimdOpInstr* instr, \ |
| 4602 | PP_APPLY(PP_UNPACK, Args)) |
| 4603 | |
| 4604 | #define SIMD_OP_FLOAT_ARITH(V, Name, op) \ |
| 4605 | V(Float32x4##Name, op##ps) \ |
| 4606 | V(Float64x2##Name, op##pd) |
| 4607 | |
| 4608 | #define SIMD_OP_SIMPLE_BINARY(V) \ |
| 4609 | SIMD_OP_FLOAT_ARITH(V, Add, add) \ |
| 4610 | SIMD_OP_FLOAT_ARITH(V, Sub, sub) \ |
| 4611 | SIMD_OP_FLOAT_ARITH(V, Mul, mul) \ |
| 4612 | SIMD_OP_FLOAT_ARITH(V, Div, div) \ |
| 4613 | SIMD_OP_FLOAT_ARITH(V, Min, min) \ |
| 4614 | SIMD_OP_FLOAT_ARITH(V, Max, max) \ |
| 4615 | V(Int32x4Add, addpl) \ |
| 4616 | V(Int32x4Sub, subpl) \ |
| 4617 | V(Int32x4BitAnd, andps) \ |
| 4618 | V(Int32x4BitOr, orps) \ |
| 4619 | V(Int32x4BitXor, xorps) \ |
| 4620 | V(Float32x4Equal, cmppseq) \ |
| 4621 | V(Float32x4NotEqual, cmppsneq) \ |
| 4622 | V(Float32x4GreaterThan, cmppsnle) \ |
| 4623 | V(Float32x4GreaterThanOrEqual, cmppsnlt) \ |
| 4624 | V(Float32x4LessThan, cmppslt) \ |
| 4625 | V(Float32x4LessThanOrEqual, cmppsle) |
| 4626 | |
| 4627 | DEFINE_EMIT(SimdBinaryOp, |
| 4628 | (SameAsFirstInput, XmmRegister left, XmmRegister right)) { |
| 4629 | switch (instr->kind()) { |
| 4630 | #define EMIT(Name, op) \ |
| 4631 | case SimdOpInstr::k##Name: \ |
| 4632 | __ op(left, right); \ |
| 4633 | break; |
| 4634 | SIMD_OP_SIMPLE_BINARY(EMIT) |
| 4635 | #undef EMIT |
| 4636 | case SimdOpInstr::kFloat32x4Scale: |
| 4637 | __ cvtsd2ss(left, left); |
| 4638 | __ shufps(left, left, compiler::Immediate(0x00)); |
| 4639 | __ mulps(left, right); |
| 4640 | break; |
| 4641 | case SimdOpInstr::kFloat32x4ShuffleMix: |
| 4642 | case SimdOpInstr::kInt32x4ShuffleMix: |
| 4643 | __ shufps(left, right, compiler::Immediate(instr->mask())); |
| 4644 | break; |
| 4645 | case SimdOpInstr::kFloat64x2FromDoubles: |
| 4646 | // shufpd mask 0x0 results in: |
| 4647 | // Lower 64-bits of left = Lower 64-bits of left. |
| 4648 | // Upper 64-bits of left = Lower 64-bits of right. |
| 4649 | __ shufpd(left, right, compiler::Immediate(0x0)); |
| 4650 | break; |
| 4651 | case SimdOpInstr::kFloat64x2Scale: |
| 4652 | __ shufpd(right, right, compiler::Immediate(0x00)); |
| 4653 | __ mulpd(left, right); |
| 4654 | break; |
| 4655 | case SimdOpInstr::kFloat64x2WithX: |
| 4656 | case SimdOpInstr::kFloat64x2WithY: { |
| 4657 | // TODO(dartbug.com/30949) avoid transfer through memory. |
| 4658 | COMPILE_ASSERT(SimdOpInstr::kFloat64x2WithY == |
| 4659 | (SimdOpInstr::kFloat64x2WithX + 1)); |
| 4660 | const intptr_t lane_index = instr->kind() - SimdOpInstr::kFloat64x2WithX; |
| 4661 | ASSERT(0 <= lane_index && lane_index < 2); |
| 4662 | |
| 4663 | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4664 | __ movups(compiler::Address(RSP, 0), left); |
| 4665 | __ movsd(compiler::Address(RSP, lane_index * kDoubleSize), right); |
| 4666 | __ movups(left, compiler::Address(RSP, 0)); |
| 4667 | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4668 | break; |
| 4669 | } |
| 4670 | case SimdOpInstr::kFloat32x4WithX: |
| 4671 | case SimdOpInstr::kFloat32x4WithY: |
| 4672 | case SimdOpInstr::kFloat32x4WithZ: |
| 4673 | case SimdOpInstr::kFloat32x4WithW: { |
| 4674 | // TODO(dartbug.com/30949) avoid transfer through memory. SSE4.1 has |
| 4675 | // insertps. SSE2 these instructions can be implemented via a combination |
| 4676 | // of shufps/movss/movlhps. |
| 4677 | COMPILE_ASSERT( |
| 4678 | SimdOpInstr::kFloat32x4WithY == (SimdOpInstr::kFloat32x4WithX + 1) && |
| 4679 | SimdOpInstr::kFloat32x4WithZ == (SimdOpInstr::kFloat32x4WithX + 2) && |
| 4680 | SimdOpInstr::kFloat32x4WithW == (SimdOpInstr::kFloat32x4WithX + 3)); |
| 4681 | const intptr_t lane_index = instr->kind() - SimdOpInstr::kFloat32x4WithX; |
| 4682 | ASSERT(0 <= lane_index && lane_index < 4); |
| 4683 | __ cvtsd2ss(left, left); |
| 4684 | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4685 | __ movups(compiler::Address(RSP, 0), right); |
| 4686 | __ movss(compiler::Address(RSP, lane_index * kFloatSize), left); |
| 4687 | __ movups(left, compiler::Address(RSP, 0)); |
| 4688 | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4689 | break; |
| 4690 | } |
| 4691 | |
| 4692 | default: |
| 4693 | UNREACHABLE(); |
| 4694 | } |
| 4695 | } |
| 4696 | |
| 4697 | #define SIMD_OP_SIMPLE_UNARY(V) \ |
| 4698 | SIMD_OP_FLOAT_ARITH(V, Sqrt, sqrt) \ |
| 4699 | SIMD_OP_FLOAT_ARITH(V, Negate, negate) \ |
| 4700 | SIMD_OP_FLOAT_ARITH(V, Abs, abs) \ |
| 4701 | V(Float32x4Reciprocal, rcpps) \ |
| 4702 | V(Float32x4ReciprocalSqrt, rsqrtps) |
| 4703 | |
| 4704 | DEFINE_EMIT(SimdUnaryOp, (SameAsFirstInput, XmmRegister value)) { |
| 4705 | // TODO(dartbug.com/30949) select better register constraints to avoid |
| 4706 | // redundant move of input into a different register. |
| 4707 | switch (instr->kind()) { |
| 4708 | #define EMIT(Name, op) \ |
| 4709 | case SimdOpInstr::k##Name: \ |
| 4710 | __ op(value, value); \ |
| 4711 | break; |
| 4712 | SIMD_OP_SIMPLE_UNARY(EMIT) |
| 4713 | #undef EMIT |
| 4714 | case SimdOpInstr::kFloat32x4ShuffleX: |
| 4715 | // Shuffle not necessary. |
| 4716 | __ cvtss2sd(value, value); |
| 4717 | break; |
| 4718 | case SimdOpInstr::kFloat32x4ShuffleY: |
| 4719 | __ shufps(value, value, compiler::Immediate(0x55)); |
| 4720 | __ cvtss2sd(value, value); |
| 4721 | break; |
| 4722 | case SimdOpInstr::kFloat32x4ShuffleZ: |
| 4723 | __ shufps(value, value, compiler::Immediate(0xAA)); |
| 4724 | __ cvtss2sd(value, value); |
| 4725 | break; |
| 4726 | case SimdOpInstr::kFloat32x4ShuffleW: |
| 4727 | __ shufps(value, value, compiler::Immediate(0xFF)); |
| 4728 | __ cvtss2sd(value, value); |
| 4729 | break; |
| 4730 | case SimdOpInstr::kFloat32x4Shuffle: |
| 4731 | case SimdOpInstr::kInt32x4Shuffle: |
| 4732 | __ shufps(value, value, compiler::Immediate(instr->mask())); |
| 4733 | break; |
| 4734 | case SimdOpInstr::kFloat32x4Splat: |
| 4735 | // Convert to Float32. |
| 4736 | __ cvtsd2ss(value, value); |
| 4737 | // Splat across all lanes. |
| 4738 | __ shufps(value, value, compiler::Immediate(0x00)); |
| 4739 | break; |
| 4740 | case SimdOpInstr::kFloat32x4ToFloat64x2: |
| 4741 | __ cvtps2pd(value, value); |
| 4742 | break; |
| 4743 | case SimdOpInstr::kFloat64x2ToFloat32x4: |
| 4744 | __ cvtpd2ps(value, value); |
| 4745 | break; |
| 4746 | case SimdOpInstr::kInt32x4ToFloat32x4: |
| 4747 | case SimdOpInstr::kFloat32x4ToInt32x4: |
| 4748 | // TODO(dartbug.com/30949) these operations are essentially nop and should |
| 4749 | // not generate any code. They should be removed from the graph before |
| 4750 | // code generation. |
| 4751 | break; |
| 4752 | case SimdOpInstr::kFloat64x2GetX: |
| 4753 | // NOP. |
| 4754 | break; |
| 4755 | case SimdOpInstr::kFloat64x2GetY: |
| 4756 | __ shufpd(value, value, compiler::Immediate(0x33)); |
| 4757 | break; |
| 4758 | case SimdOpInstr::kFloat64x2Splat: |
| 4759 | __ shufpd(value, value, compiler::Immediate(0x0)); |
| 4760 | break; |
| 4761 | default: |
| 4762 | UNREACHABLE(); |
| 4763 | break; |
| 4764 | } |
| 4765 | } |
| 4766 | |
| 4767 | DEFINE_EMIT(SimdGetSignMask, (Register out, XmmRegister value)) { |
| 4768 | switch (instr->kind()) { |
| 4769 | case SimdOpInstr::kFloat32x4GetSignMask: |
| 4770 | case SimdOpInstr::kInt32x4GetSignMask: |
| 4771 | __ movmskps(out, value); |
| 4772 | break; |
| 4773 | case SimdOpInstr::kFloat64x2GetSignMask: |
| 4774 | __ movmskpd(out, value); |
| 4775 | break; |
| 4776 | default: |
| 4777 | UNREACHABLE(); |
| 4778 | break; |
| 4779 | } |
| 4780 | } |
| 4781 | |
| 4782 | DEFINE_EMIT( |
| 4783 | Float32x4FromDoubles, |
| 4784 | (SameAsFirstInput, XmmRegister v0, XmmRegister, XmmRegister, XmmRegister)) { |
| 4785 | // TODO(dartbug.com/30949) avoid transfer through memory. SSE4.1 has |
| 4786 | // insertps, with SSE2 this instruction can be implemented through unpcklps. |
| 4787 | const XmmRegister out = v0; |
| 4788 | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4789 | for (intptr_t i = 0; i < 4; i++) { |
| 4790 | __ cvtsd2ss(out, instr->locs()->in(i).fpu_reg()); |
| 4791 | __ movss(compiler::Address(RSP, i * kFloatSize), out); |
| 4792 | } |
| 4793 | __ movups(out, compiler::Address(RSP, 0)); |
| 4794 | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4795 | } |
| 4796 | |
| 4797 | DEFINE_EMIT(Float32x4Zero, (XmmRegister value)) { |
| 4798 | __ xorps(value, value); |
| 4799 | } |
| 4800 | |
| 4801 | DEFINE_EMIT(Float64x2Zero, (XmmRegister value)) { |
| 4802 | __ xorpd(value, value); |
| 4803 | } |
| 4804 | |
| 4805 | DEFINE_EMIT(Float32x4Clamp, |
| 4806 | (SameAsFirstInput, |
| 4807 | XmmRegister value, |
| 4808 | XmmRegister lower, |
| 4809 | XmmRegister upper)) { |
| 4810 | __ minps(value, upper); |
| 4811 | __ maxps(value, lower); |
| 4812 | } |
| 4813 | |
| 4814 | DEFINE_EMIT(Int32x4FromInts, |
| 4815 | (XmmRegister result, Register, Register, Register, Register)) { |
| 4816 | // TODO(dartbug.com/30949) avoid transfer through memory. |
| 4817 | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4818 | for (intptr_t i = 0; i < 4; i++) { |
| 4819 | __ movl(compiler::Address(RSP, i * kInt32Size), instr->locs()->in(i).reg()); |
| 4820 | } |
| 4821 | __ movups(result, compiler::Address(RSP, 0)); |
| 4822 | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4823 | } |
| 4824 | |
| 4825 | DEFINE_EMIT(Int32x4FromBools, |
| 4826 | (XmmRegister result, |
| 4827 | Register, |
| 4828 | Register, |
| 4829 | Register, |
| 4830 | Register, |
| 4831 | Temp<Register> temp)) { |
| 4832 | // TODO(dartbug.com/30949) avoid transfer through memory. |
| 4833 | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4834 | for (intptr_t i = 0; i < 4; i++) { |
| 4835 | compiler::Label done, load_false; |
| 4836 | __ xorq(temp, temp); |
| 4837 | __ CompareObject(instr->locs()->in(i).reg(), Bool::True()); |
| 4838 | __ setcc(EQUAL, ByteRegisterOf(temp)); |
| 4839 | __ negl(temp); // temp = input ? -1 : 0 |
| 4840 | __ movl(compiler::Address(RSP, kInt32Size * i), temp); |
| 4841 | } |
| 4842 | __ movups(result, compiler::Address(RSP, 0)); |
| 4843 | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4844 | } |
| 4845 | |
| 4846 | static void EmitToBoolean(FlowGraphCompiler* compiler, Register out) { |
| 4847 | ASSERT_BOOL_FALSE_FOLLOWS_BOOL_TRUE(); |
| 4848 | __ testl(out, out); |
| 4849 | __ setcc(ZERO, ByteRegisterOf(out)); |
| 4850 | __ movzxb(out, out); |
| 4851 | __ movq(out, |
| 4852 | compiler::Address(THR, out, TIMES_8, Thread::bool_true_offset())); |
| 4853 | } |
| 4854 | |
| 4855 | DEFINE_EMIT(Int32x4GetFlagZorW, |
| 4856 | (Register out, XmmRegister value, Temp<XmmRegister> temp)) { |
| 4857 | __ movhlps(temp, value); // extract upper half. |
| 4858 | __ movq(out, temp); |
| 4859 | if (instr->kind() == SimdOpInstr::kInt32x4GetFlagW) { |
| 4860 | __ shrq(out, compiler::Immediate(32)); // extract upper 32bits. |
| 4861 | } |
| 4862 | EmitToBoolean(compiler, out); |
| 4863 | } |
| 4864 | |
| 4865 | DEFINE_EMIT(Int32x4GetFlagXorY, (Register out, XmmRegister value)) { |
| 4866 | __ movq(out, value); |
| 4867 | if (instr->kind() == SimdOpInstr::kInt32x4GetFlagY) { |
| 4868 | __ shrq(out, compiler::Immediate(32)); // extract upper 32bits. |
| 4869 | } |
| 4870 | EmitToBoolean(compiler, out); |
| 4871 | } |
| 4872 | |
| 4873 | DEFINE_EMIT( |
| 4874 | Int32x4WithFlag, |
| 4875 | (SameAsFirstInput, XmmRegister mask, Register flag, Temp<Register> temp)) { |
| 4876 | // TODO(dartbug.com/30949) avoid transfer through memory. |
| 4877 | COMPILE_ASSERT( |
| 4878 | SimdOpInstr::kInt32x4WithFlagY == (SimdOpInstr::kInt32x4WithFlagX + 1) && |
| 4879 | SimdOpInstr::kInt32x4WithFlagZ == (SimdOpInstr::kInt32x4WithFlagX + 2) && |
| 4880 | SimdOpInstr::kInt32x4WithFlagW == (SimdOpInstr::kInt32x4WithFlagX + 3)); |
| 4881 | const intptr_t lane_index = instr->kind() - SimdOpInstr::kInt32x4WithFlagX; |
| 4882 | ASSERT(0 <= lane_index && lane_index < 4); |
| 4883 | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4884 | __ movups(compiler::Address(RSP, 0), mask); |
| 4885 | |
| 4886 | // temp = flag == true ? -1 : 0 |
| 4887 | __ xorq(temp, temp); |
| 4888 | __ CompareObject(flag, Bool::True()); |
| 4889 | __ setcc(EQUAL, ByteRegisterOf(temp)); |
| 4890 | __ negl(temp); |
| 4891 | |
| 4892 | __ movl(compiler::Address(RSP, lane_index * kInt32Size), temp); |
| 4893 | __ movups(mask, compiler::Address(RSP, 0)); |
| 4894 | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); |
| 4895 | } |
| 4896 | |
| 4897 | DEFINE_EMIT(Int32x4Select, |
| 4898 | (SameAsFirstInput, |
| 4899 | XmmRegister mask, |
| 4900 | XmmRegister trueValue, |
| 4901 | XmmRegister falseValue, |
| 4902 | Temp<XmmRegister> temp)) { |
| 4903 | // Copy mask. |
| 4904 | __ movaps(temp, mask); |
| 4905 | // Invert it. |
| 4906 | __ notps(temp, temp); |
| 4907 | // mask = mask & trueValue. |
| 4908 | __ andps(mask, trueValue); |
| 4909 | // temp = temp & falseValue. |
| 4910 | __ andps(temp, falseValue); |
| 4911 | // out = mask | temp. |
| 4912 | __ orps(mask, temp); |
| 4913 | } |
| 4914 | |
| 4915 | // Map SimdOpInstr::Kind-s to corresponding emit functions. Uses the following |
| 4916 | // format: |
| 4917 | // |
| 4918 | // CASE(OpA) CASE(OpB) ____(Emitter) - Emitter is used to emit OpA and OpB. |
| 4919 | // SIMPLE(OpA) - Emitter with name OpA is used to emit OpA. |
| 4920 | // |
| 4921 | #define SIMD_OP_VARIANTS(CASE, ____, SIMPLE) \ |
| 4922 | SIMD_OP_SIMPLE_BINARY(CASE) \ |
| 4923 | CASE(Float32x4Scale) \ |
| 4924 | CASE(Float32x4ShuffleMix) \ |
| 4925 | CASE(Int32x4ShuffleMix) \ |
| 4926 | CASE(Float64x2FromDoubles) \ |
| 4927 | CASE(Float64x2Scale) \ |
| 4928 | CASE(Float64x2WithX) \ |
| 4929 | CASE(Float64x2WithY) \ |
| 4930 | CASE(Float32x4WithX) \ |
| 4931 | CASE(Float32x4WithY) \ |
| 4932 | CASE(Float32x4WithZ) \ |
| 4933 | CASE(Float32x4WithW) \ |
| 4934 | ____(SimdBinaryOp) \ |
| 4935 | SIMD_OP_SIMPLE_UNARY(CASE) \ |
| 4936 | CASE(Float32x4ShuffleX) \ |
| 4937 | CASE(Float32x4ShuffleY) \ |
| 4938 | CASE(Float32x4ShuffleZ) \ |
| 4939 | CASE(Float32x4ShuffleW) \ |
| 4940 | CASE(Float32x4Shuffle) \ |
| 4941 | CASE(Int32x4Shuffle) \ |
| 4942 | CASE(Float32x4Splat) \ |
| 4943 | CASE(Float32x4ToFloat64x2) \ |
| 4944 | CASE(Float64x2ToFloat32x4) \ |
| 4945 | CASE(Int32x4ToFloat32x4) \ |
| 4946 | CASE(Float32x4ToInt32x4) \ |
| 4947 | CASE(Float64x2GetX) \ |
| 4948 | CASE(Float64x2GetY) \ |
| 4949 | CASE(Float64x2Splat) \ |
| 4950 | ____(SimdUnaryOp) \ |
| 4951 | CASE(Float32x4GetSignMask) \ |
| 4952 | CASE(Int32x4GetSignMask) \ |
| 4953 | CASE(Float64x2GetSignMask) \ |
| 4954 | ____(SimdGetSignMask) \ |
| 4955 | SIMPLE(Float32x4FromDoubles) \ |
| 4956 | SIMPLE(Int32x4FromInts) \ |
| 4957 | SIMPLE(Int32x4FromBools) \ |
| 4958 | SIMPLE(Float32x4Zero) \ |
| 4959 | SIMPLE(Float64x2Zero) \ |
| 4960 | SIMPLE(Float32x4Clamp) \ |
| 4961 | CASE(Int32x4GetFlagX) \ |
| 4962 | CASE(Int32x4GetFlagY) \ |
| 4963 | ____(Int32x4GetFlagXorY) \ |
| 4964 | CASE(Int32x4GetFlagZ) \ |
| 4965 | CASE(Int32x4GetFlagW) \ |
| 4966 | ____(Int32x4GetFlagZorW) \ |
| 4967 | CASE(Int32x4WithFlagX) \ |
| 4968 | CASE(Int32x4WithFlagY) \ |
| 4969 | CASE(Int32x4WithFlagZ) \ |
| 4970 | CASE(Int32x4WithFlagW) \ |
| 4971 | ____(Int32x4WithFlag) \ |
| 4972 | SIMPLE(Int32x4Select) |
| 4973 | |
| 4974 | LocationSummary* SimdOpInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 4975 | switch (kind()) { |
| 4976 | #define CASE(Name, ...) case k##Name: |
| 4977 | #define EMIT(Name) \ |
| 4978 | return MakeLocationSummaryFromEmitter(zone, this, &Emit##Name); |
| 4979 | #define SIMPLE(Name) CASE(Name) EMIT(Name) |
| 4980 | SIMD_OP_VARIANTS(CASE, EMIT, SIMPLE) |
| 4981 | #undef CASE |
| 4982 | #undef EMIT |
| 4983 | #undef SIMPLE |
| 4984 | case kIllegalSimdOp: |
| 4985 | break; |
| 4986 | } |
| 4987 | UNREACHABLE(); |
| 4988 | return NULL; |
| 4989 | } |
| 4990 | |
| 4991 | void SimdOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4992 | switch (kind()) { |
| 4993 | #define CASE(Name, ...) case k##Name: |
| 4994 | #define EMIT(Name) \ |
| 4995 | InvokeEmitter(compiler, this, &Emit##Name); \ |
| 4996 | break; |
| 4997 | #define SIMPLE(Name) CASE(Name) EMIT(Name) |
| 4998 | SIMD_OP_VARIANTS(CASE, EMIT, SIMPLE) |
| 4999 | #undef CASE |
| 5000 | #undef EMIT |
| 5001 | #undef SIMPLE |
| 5002 | case kIllegalSimdOp: |
| 5003 | UNREACHABLE(); |
| 5004 | break; |
| 5005 | } |
| 5006 | } |
| 5007 | |
| 5008 | #undef DEFINE_EMIT |
| 5009 | |
| 5010 | LocationSummary* MathUnaryInstr::MakeLocationSummary(Zone* zone, |
| 5011 | bool opt) const { |
| 5012 | ASSERT((kind() == MathUnaryInstr::kSqrt) || |
| 5013 | (kind() == MathUnaryInstr::kDoubleSquare)); |
| 5014 | const intptr_t kNumInputs = 1; |
| 5015 | const intptr_t kNumTemps = 0; |
| 5016 | LocationSummary* summary = new (zone) |
| 5017 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5018 | summary->set_in(0, Location::RequiresFpuRegister()); |
| 5019 | if (kind() == MathUnaryInstr::kDoubleSquare) { |
| 5020 | summary->set_out(0, Location::SameAsFirstInput()); |
| 5021 | } else { |
| 5022 | summary->set_out(0, Location::RequiresFpuRegister()); |
| 5023 | } |
| 5024 | return summary; |
| 5025 | } |
| 5026 | |
| 5027 | void MathUnaryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5028 | if (kind() == MathUnaryInstr::kSqrt) { |
| 5029 | __ sqrtsd(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg()); |
| 5030 | } else if (kind() == MathUnaryInstr::kDoubleSquare) { |
| 5031 | XmmRegister value_reg = locs()->in(0).fpu_reg(); |
| 5032 | __ mulsd(value_reg, value_reg); |
| 5033 | ASSERT(value_reg == locs()->out(0).fpu_reg()); |
| 5034 | } else { |
| 5035 | UNREACHABLE(); |
| 5036 | } |
| 5037 | } |
| 5038 | |
| 5039 | LocationSummary* CaseInsensitiveCompareInstr::MakeLocationSummary( |
| 5040 | Zone* zone, |
| 5041 | bool opt) const { |
| 5042 | const intptr_t kNumTemps = 0; |
| 5043 | LocationSummary* summary = new (zone) |
| 5044 | LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall); |
| 5045 | summary->set_in(0, Location::RegisterLocation(CallingConventions::kArg1Reg)); |
| 5046 | summary->set_in(1, Location::RegisterLocation(CallingConventions::kArg2Reg)); |
| 5047 | summary->set_in(2, Location::RegisterLocation(CallingConventions::kArg3Reg)); |
| 5048 | summary->set_in(3, Location::RegisterLocation(CallingConventions::kArg4Reg)); |
| 5049 | summary->set_out(0, Location::RegisterLocation(RAX)); |
| 5050 | return summary; |
| 5051 | } |
| 5052 | |
| 5053 | void CaseInsensitiveCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5054 | // Save RSP. R13 is chosen because it is callee saved so we do not need to |
| 5055 | // back it up before calling into the runtime. |
| 5056 | static const Register kSavedSPReg = R13; |
| 5057 | __ movq(kSavedSPReg, RSP); |
| 5058 | __ ReserveAlignedFrameSpace(0); |
| 5059 | |
| 5060 | // Call the function. Parameters are already in their correct spots. |
| 5061 | __ CallRuntime(TargetFunction(), TargetFunction().argument_count()); |
| 5062 | |
| 5063 | // Restore RSP. |
| 5064 | __ movq(RSP, kSavedSPReg); |
| 5065 | } |
| 5066 | |
| 5067 | LocationSummary* UnarySmiOpInstr::MakeLocationSummary(Zone* zone, |
| 5068 | bool opt) const { |
| 5069 | const intptr_t kNumInputs = 1; |
| 5070 | return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(), |
| 5071 | LocationSummary::kNoCall); |
| 5072 | } |
| 5073 | |
| 5074 | void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5075 | Register value = locs()->in(0).reg(); |
| 5076 | ASSERT(value == locs()->out(0).reg()); |
| 5077 | switch (op_kind()) { |
| 5078 | case Token::kNEGATE: { |
| 5079 | compiler::Label* deopt = |
| 5080 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnaryOp); |
| 5081 | __ negq(value); |
| 5082 | __ j(OVERFLOW, deopt); |
| 5083 | break; |
| 5084 | } |
| 5085 | case Token::kBIT_NOT: |
| 5086 | __ notq(value); |
| 5087 | // Remove inverted smi-tag. |
| 5088 | __ AndImmediate(value, compiler::Immediate(~kSmiTagMask)); |
| 5089 | break; |
| 5090 | default: |
| 5091 | UNREACHABLE(); |
| 5092 | } |
| 5093 | } |
| 5094 | |
| 5095 | LocationSummary* UnaryDoubleOpInstr::MakeLocationSummary(Zone* zone, |
| 5096 | bool opt) const { |
| 5097 | const intptr_t kNumInputs = 1; |
| 5098 | const intptr_t kNumTemps = 0; |
| 5099 | LocationSummary* summary = new (zone) |
| 5100 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5101 | summary->set_in(0, Location::RequiresFpuRegister()); |
| 5102 | summary->set_out(0, Location::SameAsFirstInput()); |
| 5103 | return summary; |
| 5104 | } |
| 5105 | |
| 5106 | void UnaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5107 | XmmRegister value = locs()->in(0).fpu_reg(); |
| 5108 | ASSERT(locs()->out(0).fpu_reg() == value); |
| 5109 | __ DoubleNegate(value, value); |
| 5110 | } |
| 5111 | |
| 5112 | LocationSummary* MathMinMaxInstr::MakeLocationSummary(Zone* zone, |
| 5113 | bool opt) const { |
| 5114 | if (result_cid() == kDoubleCid) { |
| 5115 | const intptr_t kNumInputs = 2; |
| 5116 | const intptr_t kNumTemps = 1; |
| 5117 | LocationSummary* summary = new (zone) |
| 5118 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5119 | summary->set_in(0, Location::RequiresFpuRegister()); |
| 5120 | summary->set_in(1, Location::RequiresFpuRegister()); |
| 5121 | // Reuse the left register so that code can be made shorter. |
| 5122 | summary->set_out(0, Location::SameAsFirstInput()); |
| 5123 | summary->set_temp(0, Location::RequiresRegister()); |
| 5124 | return summary; |
| 5125 | } |
| 5126 | ASSERT(result_cid() == kSmiCid); |
| 5127 | const intptr_t kNumInputs = 2; |
| 5128 | const intptr_t kNumTemps = 0; |
| 5129 | LocationSummary* summary = new (zone) |
| 5130 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5131 | summary->set_in(0, Location::RequiresRegister()); |
| 5132 | summary->set_in(1, Location::RequiresRegister()); |
| 5133 | // Reuse the left register so that code can be made shorter. |
| 5134 | summary->set_out(0, Location::SameAsFirstInput()); |
| 5135 | return summary; |
| 5136 | } |
| 5137 | |
| 5138 | void MathMinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5139 | ASSERT((op_kind() == MethodRecognizer::kMathMin) || |
| 5140 | (op_kind() == MethodRecognizer::kMathMax)); |
| 5141 | const bool is_min = op_kind() == MethodRecognizer::kMathMin; |
| 5142 | if (result_cid() == kDoubleCid) { |
| 5143 | compiler::Label done, returns_nan, are_equal; |
| 5144 | XmmRegister left = locs()->in(0).fpu_reg(); |
| 5145 | XmmRegister right = locs()->in(1).fpu_reg(); |
| 5146 | XmmRegister result = locs()->out(0).fpu_reg(); |
| 5147 | Register temp = locs()->temp(0).reg(); |
| 5148 | __ comisd(left, right); |
| 5149 | __ j(PARITY_EVEN, &returns_nan, compiler::Assembler::kNearJump); |
| 5150 | __ j(EQUAL, &are_equal, compiler::Assembler::kNearJump); |
| 5151 | const Condition double_condition = |
| 5152 | is_min ? TokenKindToDoubleCondition(Token::kLT) |
| 5153 | : TokenKindToDoubleCondition(Token::kGT); |
| 5154 | ASSERT(left == result); |
| 5155 | __ j(double_condition, &done, compiler::Assembler::kNearJump); |
| 5156 | __ movsd(result, right); |
| 5157 | __ jmp(&done, compiler::Assembler::kNearJump); |
| 5158 | |
| 5159 | __ Bind(&returns_nan); |
| 5160 | __ movq(temp, compiler::Address(THR, Thread::double_nan_address_offset())); |
| 5161 | __ movsd(result, compiler::Address(temp, 0)); |
| 5162 | __ jmp(&done, compiler::Assembler::kNearJump); |
| 5163 | |
| 5164 | __ Bind(&are_equal); |
| 5165 | compiler::Label left_is_negative; |
| 5166 | // Check for negative zero: -0.0 is equal 0.0 but min or max must return |
| 5167 | // -0.0 or 0.0 respectively. |
| 5168 | // Check for negative left value (get the sign bit): |
| 5169 | // - min -> left is negative ? left : right. |
| 5170 | // - max -> left is negative ? right : left |
| 5171 | // Check the sign bit. |
| 5172 | __ movmskpd(temp, left); |
| 5173 | __ testq(temp, compiler::Immediate(1)); |
| 5174 | if (is_min) { |
| 5175 | ASSERT(left == result); |
| 5176 | __ j(NOT_ZERO, &done, |
| 5177 | compiler::Assembler::kNearJump); // Negative -> return left. |
| 5178 | } else { |
| 5179 | ASSERT(left == result); |
| 5180 | __ j(ZERO, &done, |
| 5181 | compiler::Assembler::kNearJump); // Positive -> return left. |
| 5182 | } |
| 5183 | __ movsd(result, right); |
| 5184 | __ Bind(&done); |
| 5185 | return; |
| 5186 | } |
| 5187 | |
| 5188 | ASSERT(result_cid() == kSmiCid); |
| 5189 | Register left = locs()->in(0).reg(); |
| 5190 | Register right = locs()->in(1).reg(); |
| 5191 | Register result = locs()->out(0).reg(); |
| 5192 | __ cmpq(left, right); |
| 5193 | ASSERT(result == left); |
| 5194 | if (is_min) { |
| 5195 | __ cmovgeq(result, right); |
| 5196 | } else { |
| 5197 | __ cmovlq(result, right); |
| 5198 | } |
| 5199 | } |
| 5200 | |
| 5201 | LocationSummary* Int32ToDoubleInstr::MakeLocationSummary(Zone* zone, |
| 5202 | bool opt) const { |
| 5203 | const intptr_t kNumInputs = 1; |
| 5204 | const intptr_t kNumTemps = 0; |
| 5205 | LocationSummary* result = new (zone) |
| 5206 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5207 | result->set_in(0, Location::RequiresRegister()); |
| 5208 | result->set_out(0, Location::RequiresFpuRegister()); |
| 5209 | return result; |
| 5210 | } |
| 5211 | |
| 5212 | void Int32ToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5213 | Register value = locs()->in(0).reg(); |
| 5214 | FpuRegister result = locs()->out(0).fpu_reg(); |
| 5215 | __ cvtsi2sdl(result, value); |
| 5216 | } |
| 5217 | |
| 5218 | LocationSummary* SmiToDoubleInstr::MakeLocationSummary(Zone* zone, |
| 5219 | bool opt) const { |
| 5220 | const intptr_t kNumInputs = 1; |
| 5221 | const intptr_t kNumTemps = 0; |
| 5222 | LocationSummary* result = new (zone) |
| 5223 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5224 | result->set_in(0, Location::WritableRegister()); |
| 5225 | result->set_out(0, Location::RequiresFpuRegister()); |
| 5226 | return result; |
| 5227 | } |
| 5228 | |
| 5229 | void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5230 | Register value = locs()->in(0).reg(); |
| 5231 | FpuRegister result = locs()->out(0).fpu_reg(); |
| 5232 | __ SmiUntag(value); |
| 5233 | __ cvtsi2sdq(result, value); |
| 5234 | } |
| 5235 | |
| 5236 | DEFINE_BACKEND(Int64ToDouble, (FpuRegister result, Register value)) { |
| 5237 | __ cvtsi2sdq(result, value); |
| 5238 | } |
| 5239 | |
| 5240 | LocationSummary* DoubleToIntegerInstr::MakeLocationSummary(Zone* zone, |
| 5241 | bool opt) const { |
| 5242 | const intptr_t kNumInputs = 1; |
| 5243 | const intptr_t kNumTemps = 1; |
| 5244 | LocationSummary* result = new (zone) |
| 5245 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 5246 | result->set_in(0, Location::RegisterLocation(RCX)); |
| 5247 | result->set_out(0, Location::RegisterLocation(RAX)); |
| 5248 | result->set_temp(0, Location::RegisterLocation(RBX)); |
| 5249 | return result; |
| 5250 | } |
| 5251 | |
| 5252 | void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5253 | Register result = locs()->out(0).reg(); |
| 5254 | Register value_obj = locs()->in(0).reg(); |
| 5255 | Register temp = locs()->temp(0).reg(); |
| 5256 | XmmRegister value_double = FpuTMP; |
| 5257 | ASSERT(result == RAX); |
| 5258 | ASSERT(result != value_obj); |
| 5259 | ASSERT(result != temp); |
| 5260 | __ movsd(value_double, |
| 5261 | compiler::FieldAddress(value_obj, Double::value_offset())); |
| 5262 | __ cvttsd2siq(result, value_double); |
| 5263 | // Overflow is signalled with minint. |
| 5264 | compiler::Label do_call, done; |
| 5265 | // Check for overflow and that it fits into Smi. |
| 5266 | __ movq(temp, result); |
| 5267 | __ shlq(temp, compiler::Immediate(1)); |
| 5268 | __ j(OVERFLOW, &do_call, compiler::Assembler::kNearJump); |
| 5269 | __ SmiTag(result); |
| 5270 | __ jmp(&done); |
| 5271 | __ Bind(&do_call); |
| 5272 | __ pushq(value_obj); |
| 5273 | ASSERT(instance_call()->HasICData()); |
| 5274 | const ICData& ic_data = *instance_call()->ic_data(); |
| 5275 | ASSERT(ic_data.NumberOfChecksIs(1)); |
| 5276 | const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(0)); |
| 5277 | const int kTypeArgsLen = 0; |
| 5278 | const int kNumberOfArguments = 1; |
| 5279 | constexpr int kSizeOfArguments = 1; |
| 5280 | const Array& kNoArgumentNames = Object::null_array(); |
| 5281 | ArgumentsInfo args_info(kTypeArgsLen, kNumberOfArguments, kSizeOfArguments, |
| 5282 | kNoArgumentNames); |
| 5283 | compiler->GenerateStaticCall(deopt_id(), instance_call()->token_pos(), target, |
| 5284 | args_info, locs(), ICData::Handle(), |
| 5285 | ICData::kStatic); |
| 5286 | __ Bind(&done); |
| 5287 | } |
| 5288 | |
| 5289 | LocationSummary* DoubleToSmiInstr::MakeLocationSummary(Zone* zone, |
| 5290 | bool opt) const { |
| 5291 | const intptr_t kNumInputs = 1; |
| 5292 | const intptr_t kNumTemps = 1; |
| 5293 | LocationSummary* result = new (zone) |
| 5294 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5295 | result->set_in(0, Location::RequiresFpuRegister()); |
| 5296 | result->set_out(0, Location::RequiresRegister()); |
| 5297 | result->set_temp(0, Location::RequiresRegister()); |
| 5298 | return result; |
| 5299 | } |
| 5300 | |
| 5301 | void DoubleToSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5302 | compiler::Label* deopt = |
| 5303 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptDoubleToSmi); |
| 5304 | Register result = locs()->out(0).reg(); |
| 5305 | XmmRegister value = locs()->in(0).fpu_reg(); |
| 5306 | Register temp = locs()->temp(0).reg(); |
| 5307 | |
| 5308 | __ cvttsd2siq(result, value); |
| 5309 | // Overflow is signalled with minint. |
| 5310 | compiler::Label do_call, done; |
| 5311 | // Check for overflow and that it fits into Smi. |
| 5312 | __ movq(temp, result); |
| 5313 | __ shlq(temp, compiler::Immediate(1)); |
| 5314 | __ j(OVERFLOW, deopt); |
| 5315 | __ SmiTag(result); |
| 5316 | } |
| 5317 | |
| 5318 | LocationSummary* DoubleToDoubleInstr::MakeLocationSummary(Zone* zone, |
| 5319 | bool opt) const { |
| 5320 | const intptr_t kNumInputs = 1; |
| 5321 | const intptr_t kNumTemps = 0; |
| 5322 | LocationSummary* result = new (zone) |
| 5323 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5324 | result->set_in(0, Location::RequiresFpuRegister()); |
| 5325 | result->set_out(0, Location::RequiresFpuRegister()); |
| 5326 | return result; |
| 5327 | } |
| 5328 | |
| 5329 | void DoubleToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5330 | XmmRegister value = locs()->in(0).fpu_reg(); |
| 5331 | XmmRegister result = locs()->out(0).fpu_reg(); |
| 5332 | switch (recognized_kind()) { |
| 5333 | case MethodRecognizer::kDoubleTruncate: |
| 5334 | __ roundsd(result, value, compiler::Assembler::kRoundToZero); |
| 5335 | break; |
| 5336 | case MethodRecognizer::kDoubleFloor: |
| 5337 | __ roundsd(result, value, compiler::Assembler::kRoundDown); |
| 5338 | break; |
| 5339 | case MethodRecognizer::kDoubleCeil: |
| 5340 | __ roundsd(result, value, compiler::Assembler::kRoundUp); |
| 5341 | break; |
| 5342 | default: |
| 5343 | UNREACHABLE(); |
| 5344 | } |
| 5345 | } |
| 5346 | |
| 5347 | LocationSummary* DoubleToFloatInstr::MakeLocationSummary(Zone* zone, |
| 5348 | bool opt) const { |
| 5349 | const intptr_t kNumInputs = 1; |
| 5350 | const intptr_t kNumTemps = 0; |
| 5351 | LocationSummary* result = new (zone) |
| 5352 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5353 | result->set_in(0, Location::RequiresFpuRegister()); |
| 5354 | result->set_out(0, Location::SameAsFirstInput()); |
| 5355 | return result; |
| 5356 | } |
| 5357 | |
| 5358 | void DoubleToFloatInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5359 | __ cvtsd2ss(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg()); |
| 5360 | } |
| 5361 | |
| 5362 | LocationSummary* FloatToDoubleInstr::MakeLocationSummary(Zone* zone, |
| 5363 | bool opt) const { |
| 5364 | const intptr_t kNumInputs = 1; |
| 5365 | const intptr_t kNumTemps = 0; |
| 5366 | LocationSummary* result = new (zone) |
| 5367 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5368 | result->set_in(0, Location::RequiresFpuRegister()); |
| 5369 | result->set_out(0, Location::SameAsFirstInput()); |
| 5370 | return result; |
| 5371 | } |
| 5372 | |
| 5373 | void FloatToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5374 | __ cvtss2sd(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg()); |
| 5375 | } |
| 5376 | |
| 5377 | LocationSummary* InvokeMathCFunctionInstr::MakeLocationSummary(Zone* zone, |
| 5378 | bool opt) const { |
| 5379 | // Calling convention on x64 uses XMM0 and XMM1 to pass the first two |
| 5380 | // double arguments and XMM0 to return the result. |
| 5381 | // |
| 5382 | // TODO(sjindel): allow XMM0 to be used. Requires refactoring InvokeDoublePow |
| 5383 | // to allow input 1/output register to be equal. |
| 5384 | ASSERT((InputCount() == 1) || (InputCount() == 2)); |
| 5385 | const intptr_t kNumTemps = |
| 5386 | (recognized_kind() == MethodRecognizer::kMathDoublePow) ? 4 : 1; |
| 5387 | LocationSummary* result = new (zone) |
| 5388 | LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall); |
| 5389 | ASSERT(R13 != CALLEE_SAVED_TEMP); |
| 5390 | ASSERT(((1 << R13) & CallingConventions::kCalleeSaveCpuRegisters) != 0); |
| 5391 | result->set_temp(0, Location::RegisterLocation(R13)); |
| 5392 | result->set_in(0, Location::FpuRegisterLocation(XMM2)); |
| 5393 | if (InputCount() == 2) { |
| 5394 | result->set_in(1, Location::FpuRegisterLocation(XMM1)); |
| 5395 | } |
| 5396 | if (recognized_kind() == MethodRecognizer::kMathDoublePow) { |
| 5397 | // Temp index 1. |
| 5398 | result->set_temp(1, Location::RegisterLocation(RAX)); |
| 5399 | // Temp index 2. |
| 5400 | result->set_temp(2, Location::FpuRegisterLocation(XMM4)); |
| 5401 | // Block XMM0 for the calling convention. |
| 5402 | result->set_temp(3, Location::FpuRegisterLocation(XMM0)); |
| 5403 | } |
| 5404 | result->set_out(0, Location::FpuRegisterLocation(XMM3)); |
| 5405 | return result; |
| 5406 | } |
| 5407 | |
| 5408 | // Pseudo code: |
| 5409 | // if (exponent == 0.0) return 1.0; |
| 5410 | // // Speed up simple cases. |
| 5411 | // if (exponent == 1.0) return base; |
| 5412 | // if (exponent == 2.0) return base * base; |
| 5413 | // if (exponent == 3.0) return base * base * base; |
| 5414 | // if (base == 1.0) return 1.0; |
| 5415 | // if (base.isNaN || exponent.isNaN) { |
| 5416 | // return double.NAN; |
| 5417 | // } |
| 5418 | // if (base != -Infinity && exponent == 0.5) { |
| 5419 | // if (base == 0.0) return 0.0; |
| 5420 | // return sqrt(value); |
| 5421 | // } |
| 5422 | // TODO(srdjan): Move into a stub? |
| 5423 | static void InvokeDoublePow(FlowGraphCompiler* compiler, |
| 5424 | InvokeMathCFunctionInstr* instr) { |
| 5425 | ASSERT(instr->recognized_kind() == MethodRecognizer::kMathDoublePow); |
| 5426 | const intptr_t kInputCount = 2; |
| 5427 | ASSERT(instr->InputCount() == kInputCount); |
| 5428 | LocationSummary* locs = instr->locs(); |
| 5429 | |
| 5430 | XmmRegister base = locs->in(0).fpu_reg(); |
| 5431 | XmmRegister exp = locs->in(1).fpu_reg(); |
| 5432 | XmmRegister result = locs->out(0).fpu_reg(); |
| 5433 | Register temp = locs->temp(InvokeMathCFunctionInstr::kObjectTempIndex).reg(); |
| 5434 | XmmRegister zero_temp = |
| 5435 | locs->temp(InvokeMathCFunctionInstr::kDoubleTempIndex).fpu_reg(); |
| 5436 | |
| 5437 | __ xorps(zero_temp, zero_temp); |
| 5438 | __ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(1))); |
| 5439 | __ movsd(result, compiler::FieldAddress(temp, Double::value_offset())); |
| 5440 | |
| 5441 | compiler::Label check_base, skip_call; |
| 5442 | // exponent == 0.0 -> return 1.0; |
| 5443 | __ comisd(exp, zero_temp); |
| 5444 | __ j(PARITY_EVEN, &check_base, compiler::Assembler::kNearJump); |
| 5445 | __ j(EQUAL, &skip_call); // 'result' is 1.0. |
| 5446 | |
| 5447 | // exponent == 1.0 ? |
| 5448 | __ comisd(exp, result); |
| 5449 | compiler::Label return_base; |
| 5450 | __ j(EQUAL, &return_base, compiler::Assembler::kNearJump); |
| 5451 | |
| 5452 | // exponent == 2.0 ? |
| 5453 | __ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(2.0))); |
| 5454 | __ movsd(XMM0, compiler::FieldAddress(temp, Double::value_offset())); |
| 5455 | __ comisd(exp, XMM0); |
| 5456 | compiler::Label return_base_times_2; |
| 5457 | __ j(EQUAL, &return_base_times_2, compiler::Assembler::kNearJump); |
| 5458 | |
| 5459 | // exponent == 3.0 ? |
| 5460 | __ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(3.0))); |
| 5461 | __ movsd(XMM0, compiler::FieldAddress(temp, Double::value_offset())); |
| 5462 | __ comisd(exp, XMM0); |
| 5463 | __ j(NOT_EQUAL, &check_base); |
| 5464 | |
| 5465 | // Base times 3. |
| 5466 | __ movsd(result, base); |
| 5467 | __ mulsd(result, base); |
| 5468 | __ mulsd(result, base); |
| 5469 | __ jmp(&skip_call); |
| 5470 | |
| 5471 | __ Bind(&return_base); |
| 5472 | __ movsd(result, base); |
| 5473 | __ jmp(&skip_call); |
| 5474 | |
| 5475 | __ Bind(&return_base_times_2); |
| 5476 | __ movsd(result, base); |
| 5477 | __ mulsd(result, base); |
| 5478 | __ jmp(&skip_call); |
| 5479 | |
| 5480 | __ Bind(&check_base); |
| 5481 | // Note: 'exp' could be NaN. |
| 5482 | |
| 5483 | compiler::Label return_nan; |
| 5484 | // base == 1.0 -> return 1.0; |
| 5485 | __ comisd(base, result); |
| 5486 | __ j(PARITY_EVEN, &return_nan, compiler::Assembler::kNearJump); |
| 5487 | __ j(EQUAL, &skip_call, compiler::Assembler::kNearJump); |
| 5488 | // Note: 'base' could be NaN. |
| 5489 | __ comisd(exp, base); |
| 5490 | // Neither 'exp' nor 'base' is NaN. |
| 5491 | compiler::Label try_sqrt; |
| 5492 | __ j(PARITY_ODD, &try_sqrt, compiler::Assembler::kNearJump); |
| 5493 | // Return NaN. |
| 5494 | __ Bind(&return_nan); |
| 5495 | __ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(NAN))); |
| 5496 | __ movsd(result, compiler::FieldAddress(temp, Double::value_offset())); |
| 5497 | __ jmp(&skip_call); |
| 5498 | |
| 5499 | compiler::Label do_pow, return_zero; |
| 5500 | __ Bind(&try_sqrt); |
| 5501 | // Before calling pow, check if we could use sqrt instead of pow. |
| 5502 | __ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(kNegInfinity))); |
| 5503 | __ movsd(result, compiler::FieldAddress(temp, Double::value_offset())); |
| 5504 | // base == -Infinity -> call pow; |
| 5505 | __ comisd(base, result); |
| 5506 | __ j(EQUAL, &do_pow, compiler::Assembler::kNearJump); |
| 5507 | |
| 5508 | // exponent == 0.5 ? |
| 5509 | __ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(0.5))); |
| 5510 | __ movsd(result, compiler::FieldAddress(temp, Double::value_offset())); |
| 5511 | __ comisd(exp, result); |
| 5512 | __ j(NOT_EQUAL, &do_pow, compiler::Assembler::kNearJump); |
| 5513 | |
| 5514 | // base == 0 -> return 0; |
| 5515 | __ comisd(base, zero_temp); |
| 5516 | __ j(EQUAL, &return_zero, compiler::Assembler::kNearJump); |
| 5517 | |
| 5518 | __ sqrtsd(result, base); |
| 5519 | __ jmp(&skip_call, compiler::Assembler::kNearJump); |
| 5520 | |
| 5521 | __ Bind(&return_zero); |
| 5522 | __ movsd(result, zero_temp); |
| 5523 | __ jmp(&skip_call); |
| 5524 | |
| 5525 | __ Bind(&do_pow); |
| 5526 | |
| 5527 | // Save RSP. |
| 5528 | __ movq(locs->temp(InvokeMathCFunctionInstr::kSavedSpTempIndex).reg(), RSP); |
| 5529 | __ ReserveAlignedFrameSpace(0); |
| 5530 | __ movaps(XMM0, locs->in(0).fpu_reg()); |
| 5531 | ASSERT(locs->in(1).fpu_reg() == XMM1); |
| 5532 | |
| 5533 | __ CallRuntime(instr->TargetFunction(), kInputCount); |
| 5534 | __ movaps(locs->out(0).fpu_reg(), XMM0); |
| 5535 | // Restore RSP. |
| 5536 | __ movq(RSP, locs->temp(InvokeMathCFunctionInstr::kSavedSpTempIndex).reg()); |
| 5537 | __ Bind(&skip_call); |
| 5538 | } |
| 5539 | |
| 5540 | void InvokeMathCFunctionInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5541 | if (recognized_kind() == MethodRecognizer::kMathDoublePow) { |
| 5542 | InvokeDoublePow(compiler, this); |
| 5543 | return; |
| 5544 | } |
| 5545 | // Save RSP. |
| 5546 | __ movq(locs()->temp(kSavedSpTempIndex).reg(), RSP); |
| 5547 | __ ReserveAlignedFrameSpace(0); |
| 5548 | __ movaps(XMM0, locs()->in(0).fpu_reg()); |
| 5549 | if (InputCount() == 2) { |
| 5550 | ASSERT(locs()->in(1).fpu_reg() == XMM1); |
| 5551 | } |
| 5552 | |
| 5553 | __ CallRuntime(TargetFunction(), InputCount()); |
| 5554 | __ movaps(locs()->out(0).fpu_reg(), XMM0); |
| 5555 | // Restore RSP. |
| 5556 | __ movq(RSP, locs()->temp(kSavedSpTempIndex).reg()); |
| 5557 | } |
| 5558 | |
| 5559 | LocationSummary* ExtractNthOutputInstr::(Zone* zone, |
| 5560 | bool opt) const { |
| 5561 | // Only use this instruction in optimized code. |
| 5562 | ASSERT(opt); |
| 5563 | const intptr_t kNumInputs = 1; |
| 5564 | LocationSummary* summary = |
| 5565 | new (zone) LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall); |
| 5566 | if (representation() == kUnboxedDouble) { |
| 5567 | if (index() == 0) { |
| 5568 | summary->set_in( |
| 5569 | 0, Location::Pair(Location::RequiresFpuRegister(), Location::Any())); |
| 5570 | } else { |
| 5571 | ASSERT(index() == 1); |
| 5572 | summary->set_in( |
| 5573 | 0, Location::Pair(Location::Any(), Location::RequiresFpuRegister())); |
| 5574 | } |
| 5575 | summary->set_out(0, Location::RequiresFpuRegister()); |
| 5576 | } else { |
| 5577 | ASSERT(representation() == kTagged); |
| 5578 | if (index() == 0) { |
| 5579 | summary->set_in( |
| 5580 | 0, Location::Pair(Location::RequiresRegister(), Location::Any())); |
| 5581 | } else { |
| 5582 | ASSERT(index() == 1); |
| 5583 | summary->set_in( |
| 5584 | 0, Location::Pair(Location::Any(), Location::RequiresRegister())); |
| 5585 | } |
| 5586 | summary->set_out(0, Location::RequiresRegister()); |
| 5587 | } |
| 5588 | return summary; |
| 5589 | } |
| 5590 | |
| 5591 | void ExtractNthOutputInstr::(FlowGraphCompiler* compiler) { |
| 5592 | ASSERT(locs()->in(0).IsPairLocation()); |
| 5593 | PairLocation* pair = locs()->in(0).AsPairLocation(); |
| 5594 | Location in_loc = pair->At(index()); |
| 5595 | if (representation() == kUnboxedDouble) { |
| 5596 | XmmRegister out = locs()->out(0).fpu_reg(); |
| 5597 | XmmRegister in = in_loc.fpu_reg(); |
| 5598 | __ movaps(out, in); |
| 5599 | } else { |
| 5600 | ASSERT(representation() == kTagged); |
| 5601 | Register out = locs()->out(0).reg(); |
| 5602 | Register in = in_loc.reg(); |
| 5603 | __ movq(out, in); |
| 5604 | } |
| 5605 | } |
| 5606 | |
| 5607 | LocationSummary* TruncDivModInstr::MakeLocationSummary(Zone* zone, |
| 5608 | bool opt) const { |
| 5609 | const intptr_t kNumInputs = 2; |
| 5610 | const intptr_t kNumTemps = 0; |
| 5611 | LocationSummary* summary = new (zone) |
| 5612 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5613 | // Both inputs must be writable because they will be untagged. |
| 5614 | summary->set_in(0, Location::RegisterLocation(RAX)); |
| 5615 | summary->set_in(1, Location::WritableRegister()); |
| 5616 | summary->set_out(0, Location::Pair(Location::RegisterLocation(RAX), |
| 5617 | Location::RegisterLocation(RDX))); |
| 5618 | return summary; |
| 5619 | } |
| 5620 | |
| 5621 | void TruncDivModInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5622 | ASSERT(CanDeoptimize()); |
| 5623 | compiler::Label* deopt = |
| 5624 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp); |
| 5625 | Register left = locs()->in(0).reg(); |
| 5626 | Register right = locs()->in(1).reg(); |
| 5627 | ASSERT(locs()->out(0).IsPairLocation()); |
| 5628 | PairLocation* pair = locs()->out(0).AsPairLocation(); |
| 5629 | Register result1 = pair->At(0).reg(); |
| 5630 | Register result2 = pair->At(1).reg(); |
| 5631 | compiler::Label not_32bit, done; |
| 5632 | Register temp = RDX; |
| 5633 | ASSERT(left == RAX); |
| 5634 | ASSERT((right != RDX) && (right != RAX)); |
| 5635 | ASSERT(result1 == RAX); |
| 5636 | ASSERT(result2 == RDX); |
| 5637 | if (RangeUtils::CanBeZero(divisor_range())) { |
| 5638 | // Handle divide by zero in runtime. |
| 5639 | __ testq(right, right); |
| 5640 | __ j(ZERO, deopt); |
| 5641 | } |
| 5642 | // Check if both operands fit into 32bits as idiv with 64bit operands |
| 5643 | // requires twice as many cycles and has much higher latency. |
| 5644 | // We are checking this before untagging them to avoid corner case |
| 5645 | // dividing INT_MAX by -1 that raises exception because quotient is |
| 5646 | // too large for 32bit register. |
| 5647 | __ movsxd(temp, left); |
| 5648 | __ cmpq(temp, left); |
| 5649 | __ j(NOT_EQUAL, ¬_32bit); |
| 5650 | __ movsxd(temp, right); |
| 5651 | __ cmpq(temp, right); |
| 5652 | __ j(NOT_EQUAL, ¬_32bit); |
| 5653 | |
| 5654 | // Both operands are 31bit smis. Divide using 32bit idiv. |
| 5655 | __ SmiUntag(left); |
| 5656 | __ SmiUntag(right); |
| 5657 | __ cdq(); |
| 5658 | __ idivl(right); |
| 5659 | __ movsxd(RAX, RAX); |
| 5660 | __ movsxd(RDX, RDX); |
| 5661 | __ jmp(&done); |
| 5662 | |
| 5663 | // Divide using 64bit idiv. |
| 5664 | __ Bind(¬_32bit); |
| 5665 | __ SmiUntag(left); |
| 5666 | __ SmiUntag(right); |
| 5667 | __ cqo(); // Sign extend RAX -> RDX:RAX. |
| 5668 | __ idivq(right); // RAX: quotient, RDX: remainder. |
| 5669 | // Check the corner case of dividing the 'MIN_SMI' with -1, in which |
| 5670 | // case we cannot tag the result. |
| 5671 | __ CompareImmediate(RAX, compiler::Immediate(0x4000000000000000)); |
| 5672 | __ j(EQUAL, deopt); |
| 5673 | __ Bind(&done); |
| 5674 | |
| 5675 | // Modulo correction (RDX). |
| 5676 | // res = left % right; |
| 5677 | // if (res < 0) { |
| 5678 | // if (right < 0) { |
| 5679 | // res = res - right; |
| 5680 | // } else { |
| 5681 | // res = res + right; |
| 5682 | // } |
| 5683 | // } |
| 5684 | compiler::Label all_done; |
| 5685 | __ cmpq(RDX, compiler::Immediate(0)); |
| 5686 | __ j(GREATER_EQUAL, &all_done, compiler::Assembler::kNearJump); |
| 5687 | // Result is negative, adjust it. |
| 5688 | if ((divisor_range() == NULL) || divisor_range()->Overlaps(-1, 1)) { |
| 5689 | compiler::Label subtract; |
| 5690 | __ cmpq(right, compiler::Immediate(0)); |
| 5691 | __ j(LESS, &subtract, compiler::Assembler::kNearJump); |
| 5692 | __ addq(RDX, right); |
| 5693 | __ jmp(&all_done, compiler::Assembler::kNearJump); |
| 5694 | __ Bind(&subtract); |
| 5695 | __ subq(RDX, right); |
| 5696 | } else if (divisor_range()->IsPositive()) { |
| 5697 | // Right is positive. |
| 5698 | __ addq(RDX, right); |
| 5699 | } else { |
| 5700 | // Right is negative. |
| 5701 | __ subq(RDX, right); |
| 5702 | } |
| 5703 | __ Bind(&all_done); |
| 5704 | |
| 5705 | __ SmiTag(RAX); |
| 5706 | __ SmiTag(RDX); |
| 5707 | // Note that the result of an integer division/modulo of two |
| 5708 | // in-range arguments, cannot create out-of-range result. |
| 5709 | } |
| 5710 | |
| 5711 | LocationSummary* BranchInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 5712 | comparison()->InitializeLocationSummary(zone, opt); |
| 5713 | // Branches don't produce a result. |
| 5714 | comparison()->locs()->set_out(0, Location::NoLocation()); |
| 5715 | return comparison()->locs(); |
| 5716 | } |
| 5717 | |
| 5718 | void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5719 | comparison()->EmitBranchCode(compiler, this); |
| 5720 | } |
| 5721 | |
| 5722 | LocationSummary* CheckClassInstr::MakeLocationSummary(Zone* zone, |
| 5723 | bool opt) const { |
| 5724 | const intptr_t kNumInputs = 1; |
| 5725 | const bool need_mask_temp = IsBitTest(); |
| 5726 | const intptr_t kNumTemps = !IsNullCheck() ? (need_mask_temp ? 2 : 1) : 0; |
| 5727 | LocationSummary* summary = new (zone) |
| 5728 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5729 | summary->set_in(0, Location::RequiresRegister()); |
| 5730 | if (!IsNullCheck()) { |
| 5731 | summary->set_temp(0, Location::RequiresRegister()); |
| 5732 | if (need_mask_temp) { |
| 5733 | summary->set_temp(1, Location::RequiresRegister()); |
| 5734 | } |
| 5735 | } |
| 5736 | return summary; |
| 5737 | } |
| 5738 | |
| 5739 | void CheckClassInstr::EmitNullCheck(FlowGraphCompiler* compiler, |
| 5740 | compiler::Label* deopt) { |
| 5741 | __ CompareObject(locs()->in(0).reg(), Object::null_object()); |
| 5742 | Condition cond = IsDeoptIfNull() ? EQUAL : NOT_EQUAL; |
| 5743 | __ j(cond, deopt); |
| 5744 | } |
| 5745 | |
| 5746 | void CheckClassInstr::EmitBitTest(FlowGraphCompiler* compiler, |
| 5747 | intptr_t min, |
| 5748 | intptr_t max, |
| 5749 | intptr_t mask, |
| 5750 | compiler::Label* deopt) { |
| 5751 | Register biased_cid = locs()->temp(0).reg(); |
| 5752 | __ subq(biased_cid, compiler::Immediate(min)); |
| 5753 | __ cmpq(biased_cid, compiler::Immediate(max - min)); |
| 5754 | __ j(ABOVE, deopt); |
| 5755 | |
| 5756 | Register mask_reg = locs()->temp(1).reg(); |
| 5757 | __ movq(mask_reg, compiler::Immediate(mask)); |
| 5758 | __ btq(mask_reg, biased_cid); |
| 5759 | __ j(NOT_CARRY, deopt); |
| 5760 | } |
| 5761 | |
| 5762 | int CheckClassInstr::EmitCheckCid(FlowGraphCompiler* compiler, |
| 5763 | int bias, |
| 5764 | intptr_t cid_start, |
| 5765 | intptr_t cid_end, |
| 5766 | bool is_last, |
| 5767 | compiler::Label* is_ok, |
| 5768 | compiler::Label* deopt, |
| 5769 | bool use_near_jump) { |
| 5770 | Register biased_cid = locs()->temp(0).reg(); |
| 5771 | Condition no_match, match; |
| 5772 | if (cid_start == cid_end) { |
| 5773 | __ cmpl(biased_cid, compiler::Immediate(cid_start - bias)); |
| 5774 | no_match = NOT_EQUAL; |
| 5775 | match = EQUAL; |
| 5776 | } else { |
| 5777 | // For class ID ranges use a subtract followed by an unsigned |
| 5778 | // comparison to check both ends of the ranges with one comparison. |
| 5779 | __ addl(biased_cid, compiler::Immediate(bias - cid_start)); |
| 5780 | bias = cid_start; |
| 5781 | __ cmpl(biased_cid, compiler::Immediate(cid_end - cid_start)); |
| 5782 | no_match = ABOVE; |
| 5783 | match = BELOW_EQUAL; |
| 5784 | } |
| 5785 | |
| 5786 | if (is_last) { |
| 5787 | __ j(no_match, deopt); |
| 5788 | } else { |
| 5789 | if (use_near_jump) { |
| 5790 | __ j(match, is_ok, compiler::Assembler::kNearJump); |
| 5791 | } else { |
| 5792 | __ j(match, is_ok); |
| 5793 | } |
| 5794 | } |
| 5795 | return bias; |
| 5796 | } |
| 5797 | |
| 5798 | LocationSummary* CheckSmiInstr::MakeLocationSummary(Zone* zone, |
| 5799 | bool opt) const { |
| 5800 | const intptr_t kNumInputs = 1; |
| 5801 | const intptr_t kNumTemps = 0; |
| 5802 | LocationSummary* summary = new (zone) |
| 5803 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5804 | summary->set_in(0, Location::RequiresRegister()); |
| 5805 | return summary; |
| 5806 | } |
| 5807 | |
| 5808 | void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5809 | Register value = locs()->in(0).reg(); |
| 5810 | compiler::Label* deopt = compiler->AddDeoptStub( |
| 5811 | deopt_id(), ICData::kDeoptCheckSmi, licm_hoisted_ ? ICData::kHoisted : 0); |
| 5812 | __ BranchIfNotSmi(value, deopt); |
| 5813 | } |
| 5814 | |
| 5815 | void CheckNullInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5816 | ThrowErrorSlowPathCode* slow_path = |
| 5817 | new NullErrorSlowPath(this, compiler->CurrentTryIndex()); |
| 5818 | compiler->AddSlowPathCode(slow_path); |
| 5819 | |
| 5820 | Register value_reg = locs()->in(0).reg(); |
| 5821 | // TODO(dartbug.com/30480): Consider passing `null` literal as an argument |
| 5822 | // in order to be able to allocate it on register. |
| 5823 | __ CompareObject(value_reg, Object::null_object()); |
| 5824 | __ BranchIf(EQUAL, slow_path->entry_label()); |
| 5825 | } |
| 5826 | |
| 5827 | LocationSummary* CheckClassIdInstr::MakeLocationSummary(Zone* zone, |
| 5828 | bool opt) const { |
| 5829 | const intptr_t kNumInputs = 1; |
| 5830 | const intptr_t kNumTemps = 0; |
| 5831 | LocationSummary* summary = new (zone) |
| 5832 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5833 | summary->set_in(0, cids_.IsSingleCid() ? Location::RequiresRegister() |
| 5834 | : Location::WritableRegister()); |
| 5835 | return summary; |
| 5836 | } |
| 5837 | |
| 5838 | void CheckClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5839 | Register value = locs()->in(0).reg(); |
| 5840 | compiler::Label* deopt = |
| 5841 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckClass); |
| 5842 | if (cids_.IsSingleCid()) { |
| 5843 | __ CompareImmediate(value, |
| 5844 | compiler::Immediate(Smi::RawValue(cids_.cid_start))); |
| 5845 | __ j(NOT_ZERO, deopt); |
| 5846 | } else { |
| 5847 | __ AddImmediate(value, |
| 5848 | compiler::Immediate(-Smi::RawValue(cids_.cid_start))); |
| 5849 | __ cmpq(value, compiler::Immediate(Smi::RawValue(cids_.Extent()))); |
| 5850 | __ j(ABOVE, deopt); |
| 5851 | } |
| 5852 | } |
| 5853 | |
| 5854 | LocationSummary* CheckConditionInstr::MakeLocationSummary(Zone* zone, |
| 5855 | bool opt) const { |
| 5856 | comparison()->InitializeLocationSummary(zone, opt); |
| 5857 | comparison()->locs()->set_out(0, Location::NoLocation()); |
| 5858 | return comparison()->locs(); |
| 5859 | } |
| 5860 | |
| 5861 | void CheckConditionInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5862 | compiler::Label if_true; |
| 5863 | compiler::Label* if_false = |
| 5864 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnknown); |
| 5865 | BranchLabels labels = {&if_true, if_false, &if_true}; |
| 5866 | Condition true_condition = comparison()->EmitComparisonCode(compiler, labels); |
| 5867 | if (true_condition != kInvalidCondition) { |
| 5868 | __ j(InvertCondition(true_condition), if_false); |
| 5869 | } |
| 5870 | __ Bind(&if_true); |
| 5871 | } |
| 5872 | |
| 5873 | LocationSummary* CheckArrayBoundInstr::MakeLocationSummary(Zone* zone, |
| 5874 | bool opt) const { |
| 5875 | const intptr_t kNumInputs = 2; |
| 5876 | const intptr_t kNumTemps = 0; |
| 5877 | LocationSummary* locs = new (zone) |
| 5878 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 5879 | locs->set_in(kLengthPos, LocationRegisterOrSmiConstant(length())); |
| 5880 | locs->set_in(kIndexPos, LocationRegisterOrSmiConstant(index())); |
| 5881 | return locs; |
| 5882 | } |
| 5883 | |
| 5884 | void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5885 | uint32_t flags = generalized_ ? ICData::kGeneralized : 0; |
| 5886 | flags |= licm_hoisted_ ? ICData::kHoisted : 0; |
| 5887 | compiler::Label* deopt = |
| 5888 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckArrayBound, flags); |
| 5889 | |
| 5890 | Location length_loc = locs()->in(kLengthPos); |
| 5891 | Location index_loc = locs()->in(kIndexPos); |
| 5892 | |
| 5893 | if (length_loc.IsConstant() && index_loc.IsConstant()) { |
| 5894 | ASSERT((Smi::Cast(length_loc.constant()).Value() <= |
| 5895 | Smi::Cast(index_loc.constant()).Value()) || |
| 5896 | (Smi::Cast(index_loc.constant()).Value() < 0)); |
| 5897 | // Unconditionally deoptimize for constant bounds checks because they |
| 5898 | // only occur only when index is out-of-bounds. |
| 5899 | __ jmp(deopt); |
| 5900 | return; |
| 5901 | } |
| 5902 | |
| 5903 | const intptr_t index_cid = index()->Type()->ToCid(); |
| 5904 | if (index_loc.IsConstant()) { |
| 5905 | Register length = length_loc.reg(); |
| 5906 | const Smi& index = Smi::Cast(index_loc.constant()); |
| 5907 | __ CompareImmediate(length, |
| 5908 | compiler::Immediate(static_cast<int64_t>(index.raw()))); |
| 5909 | __ j(BELOW_EQUAL, deopt); |
| 5910 | } else if (length_loc.IsConstant()) { |
| 5911 | const Smi& length = Smi::Cast(length_loc.constant()); |
| 5912 | Register index = index_loc.reg(); |
| 5913 | if (index_cid != kSmiCid) { |
| 5914 | __ BranchIfNotSmi(index, deopt); |
| 5915 | } |
| 5916 | if (length.Value() == Smi::kMaxValue) { |
| 5917 | __ testq(index, index); |
| 5918 | __ j(NEGATIVE, deopt); |
| 5919 | } else { |
| 5920 | __ CompareImmediate( |
| 5921 | index, compiler::Immediate(static_cast<int64_t>(length.raw()))); |
| 5922 | __ j(ABOVE_EQUAL, deopt); |
| 5923 | } |
| 5924 | } else { |
| 5925 | Register length = length_loc.reg(); |
| 5926 | Register index = index_loc.reg(); |
| 5927 | if (index_cid != kSmiCid) { |
| 5928 | __ BranchIfNotSmi(index, deopt); |
| 5929 | } |
| 5930 | __ cmpq(index, length); |
| 5931 | __ j(ABOVE_EQUAL, deopt); |
| 5932 | } |
| 5933 | } |
| 5934 | |
| 5935 | class Int64DivideSlowPath : public ThrowErrorSlowPathCode { |
| 5936 | public: |
| 5937 | static const intptr_t kNumberOfArguments = 0; |
| 5938 | |
| 5939 | Int64DivideSlowPath(BinaryInt64OpInstr* instruction, |
| 5940 | Register divisor, |
| 5941 | Range* divisor_range, |
| 5942 | intptr_t try_index) |
| 5943 | : ThrowErrorSlowPathCode(instruction, |
| 5944 | kIntegerDivisionByZeroExceptionRuntimeEntry, |
| 5945 | kNumberOfArguments, |
| 5946 | try_index), |
| 5947 | is_mod_(instruction->op_kind() == Token::kMOD), |
| 5948 | divisor_(divisor), |
| 5949 | divisor_range_(divisor_range), |
| 5950 | div_by_minus_one_label_(), |
| 5951 | adjust_sign_label_() {} |
| 5952 | |
| 5953 | void EmitNativeCode(FlowGraphCompiler* compiler) override { |
| 5954 | // Handle modulo/division by zero, if needed. Use superclass code. |
| 5955 | if (has_divide_by_zero()) { |
| 5956 | ThrowErrorSlowPathCode::EmitNativeCode(compiler); |
| 5957 | } else { |
| 5958 | __ Bind(entry_label()); // not used, but keeps destructor happy |
| 5959 | if (compiler::Assembler::EmittingComments()) { |
| 5960 | __ Comment("slow path %s operation (no throw)" , name()); |
| 5961 | } |
| 5962 | } |
| 5963 | // Handle modulo/division by minus one, if needed. |
| 5964 | // Note: an exact -1 divisor is best optimized prior to codegen. |
| 5965 | if (has_divide_by_minus_one()) { |
| 5966 | __ Bind(div_by_minus_one_label()); |
| 5967 | if (is_mod_) { |
| 5968 | __ xorq(RDX, RDX); // x % -1 = 0 |
| 5969 | } else { |
| 5970 | __ negq(RAX); // x / -1 = -x |
| 5971 | } |
| 5972 | __ jmp(exit_label()); |
| 5973 | } |
| 5974 | // Adjust modulo for negative sign, optimized for known ranges. |
| 5975 | // if (divisor < 0) |
| 5976 | // out -= divisor; |
| 5977 | // else |
| 5978 | // out += divisor; |
| 5979 | if (has_adjust_sign()) { |
| 5980 | __ Bind(adjust_sign_label()); |
| 5981 | if (RangeUtils::Overlaps(divisor_range_, -1, 1)) { |
| 5982 | // General case. |
| 5983 | compiler::Label subtract; |
| 5984 | __ testq(divisor_, divisor_); |
| 5985 | __ j(LESS, &subtract, compiler::Assembler::kNearJump); |
| 5986 | __ addq(RDX, divisor_); |
| 5987 | __ jmp(exit_label()); |
| 5988 | __ Bind(&subtract); |
| 5989 | __ subq(RDX, divisor_); |
| 5990 | } else if (divisor_range_->IsPositive()) { |
| 5991 | // Always positive. |
| 5992 | __ addq(RDX, divisor_); |
| 5993 | } else { |
| 5994 | // Always negative. |
| 5995 | __ subq(RDX, divisor_); |
| 5996 | } |
| 5997 | __ jmp(exit_label()); |
| 5998 | } |
| 5999 | } |
| 6000 | |
| 6001 | const char* name() override { return "int64 divide" ; } |
| 6002 | |
| 6003 | bool has_divide_by_zero() { return RangeUtils::CanBeZero(divisor_range_); } |
| 6004 | |
| 6005 | bool has_divide_by_minus_one() { |
| 6006 | return RangeUtils::Overlaps(divisor_range_, -1, -1); |
| 6007 | } |
| 6008 | |
| 6009 | bool has_adjust_sign() { return is_mod_; } |
| 6010 | |
| 6011 | bool is_needed() { |
| 6012 | return has_divide_by_zero() || has_divide_by_minus_one() || |
| 6013 | has_adjust_sign(); |
| 6014 | } |
| 6015 | |
| 6016 | compiler::Label* div_by_minus_one_label() { |
| 6017 | ASSERT(has_divide_by_minus_one()); |
| 6018 | return &div_by_minus_one_label_; |
| 6019 | } |
| 6020 | |
| 6021 | compiler::Label* adjust_sign_label() { |
| 6022 | ASSERT(has_adjust_sign()); |
| 6023 | return &adjust_sign_label_; |
| 6024 | } |
| 6025 | |
| 6026 | private: |
| 6027 | bool is_mod_; |
| 6028 | Register divisor_; |
| 6029 | Range* divisor_range_; |
| 6030 | compiler::Label div_by_minus_one_label_; |
| 6031 | compiler::Label adjust_sign_label_; |
| 6032 | }; |
| 6033 | |
| 6034 | static void EmitInt64ModTruncDiv(FlowGraphCompiler* compiler, |
| 6035 | BinaryInt64OpInstr* instruction, |
| 6036 | Token::Kind op_kind, |
| 6037 | Register left, |
| 6038 | Register right, |
| 6039 | Register tmp, |
| 6040 | Register out) { |
| 6041 | ASSERT(op_kind == Token::kMOD || op_kind == Token::kTRUNCDIV); |
| 6042 | |
| 6043 | // Special case 64-bit div/mod by compile-time constant. Note that various |
| 6044 | // special constants (such as powers of two) should have been optimized |
| 6045 | // earlier in the pipeline. Div or mod by zero falls into general code |
| 6046 | // to implement the exception. |
| 6047 | if (auto c = instruction->right()->definition()->AsConstant()) { |
| 6048 | if (c->value().IsInteger()) { |
| 6049 | const int64_t divisor = Integer::Cast(c->value()).AsInt64Value(); |
| 6050 | if (divisor <= -2 || divisor >= 2) { |
| 6051 | // For x DIV c or x MOD c: use magic operations. |
| 6052 | compiler::Label pos; |
| 6053 | int64_t magic = 0; |
| 6054 | int64_t shift = 0; |
| 6055 | Utils::CalculateMagicAndShiftForDivRem(divisor, &magic, &shift); |
| 6056 | // RDX:RAX = magic * numerator. |
| 6057 | ASSERT(left == RAX); |
| 6058 | __ MoveRegister(TMP, RAX); // save numerator |
| 6059 | __ LoadImmediate(RAX, compiler::Immediate(magic)); |
| 6060 | __ imulq(TMP); |
| 6061 | // RDX +/-= numerator. |
| 6062 | if (divisor > 0 && magic < 0) { |
| 6063 | __ addq(RDX, TMP); |
| 6064 | } else if (divisor < 0 && magic > 0) { |
| 6065 | __ subq(RDX, TMP); |
| 6066 | } |
| 6067 | // Shift if needed. |
| 6068 | if (shift != 0) { |
| 6069 | __ sarq(RDX, compiler::Immediate(shift)); |
| 6070 | } |
| 6071 | // RDX += 1 if RDX < 0. |
| 6072 | __ movq(RAX, RDX); |
| 6073 | __ shrq(RDX, compiler::Immediate(63)); |
| 6074 | __ addq(RDX, RAX); |
| 6075 | // Finalize DIV or MOD. |
| 6076 | if (op_kind == Token::kTRUNCDIV) { |
| 6077 | ASSERT(out == RAX && tmp == RDX); |
| 6078 | __ movq(RAX, RDX); |
| 6079 | } else { |
| 6080 | ASSERT(out == RDX && tmp == RAX); |
| 6081 | __ movq(RAX, TMP); |
| 6082 | __ LoadImmediate(TMP, compiler::Immediate(divisor)); |
| 6083 | __ imulq(RDX, TMP); |
| 6084 | __ subq(RAX, RDX); |
| 6085 | // Compensate for Dart's Euclidean view of MOD. |
| 6086 | __ testq(RAX, RAX); |
| 6087 | __ j(GREATER_EQUAL, &pos); |
| 6088 | if (divisor > 0) { |
| 6089 | __ addq(RAX, TMP); |
| 6090 | } else { |
| 6091 | __ subq(RAX, TMP); |
| 6092 | } |
| 6093 | __ Bind(&pos); |
| 6094 | __ movq(RDX, RAX); |
| 6095 | } |
| 6096 | return; |
| 6097 | } |
| 6098 | } |
| 6099 | } |
| 6100 | |
| 6101 | // Prepare a slow path. |
| 6102 | Range* right_range = instruction->right()->definition()->range(); |
| 6103 | Int64DivideSlowPath* slow_path = new (Z) Int64DivideSlowPath( |
| 6104 | instruction, right, right_range, compiler->CurrentTryIndex()); |
| 6105 | |
| 6106 | // Handle modulo/division by zero exception on slow path. |
| 6107 | if (slow_path->has_divide_by_zero()) { |
| 6108 | __ testq(right, right); |
| 6109 | __ j(EQUAL, slow_path->entry_label()); |
| 6110 | } |
| 6111 | |
| 6112 | // Handle modulo/division by minus one explicitly on slow path |
| 6113 | // (to avoid arithmetic exception on 0x8000000000000000 / -1). |
| 6114 | if (slow_path->has_divide_by_minus_one()) { |
| 6115 | __ cmpq(right, compiler::Immediate(-1)); |
| 6116 | __ j(EQUAL, slow_path->div_by_minus_one_label()); |
| 6117 | } |
| 6118 | |
| 6119 | // Perform actual operation |
| 6120 | // out = left % right |
| 6121 | // or |
| 6122 | // out = left / right. |
| 6123 | // |
| 6124 | // Note that since 64-bit division requires twice as many cycles |
| 6125 | // and has much higher latency compared to the 32-bit division, |
| 6126 | // even for this non-speculative 64-bit path we add a "fast path". |
| 6127 | // Integers are untagged at this stage, so testing if sign extending |
| 6128 | // the lower half of each operand equals the full operand, effectively |
| 6129 | // tests if the values fit in 32-bit operands (and the slightly |
| 6130 | // dangerous division by -1 has been handled above already). |
| 6131 | ASSERT(left == RAX); |
| 6132 | ASSERT(right != RDX); // available at this stage |
| 6133 | compiler::Label div_64; |
| 6134 | compiler::Label div_merge; |
| 6135 | __ movsxd(RDX, left); |
| 6136 | __ cmpq(RDX, left); |
| 6137 | __ j(NOT_EQUAL, &div_64, compiler::Assembler::kNearJump); |
| 6138 | __ movsxd(RDX, right); |
| 6139 | __ cmpq(RDX, right); |
| 6140 | __ j(NOT_EQUAL, &div_64, compiler::Assembler::kNearJump); |
| 6141 | __ cdq(); // sign-ext eax into edx:eax |
| 6142 | __ idivl(right); // quotient eax, remainder edx |
| 6143 | __ movsxd(out, out); |
| 6144 | __ jmp(&div_merge, compiler::Assembler::kNearJump); |
| 6145 | __ Bind(&div_64); |
| 6146 | __ cqo(); // sign-ext rax into rdx:rax |
| 6147 | __ idivq(right); // quotient rax, remainder rdx |
| 6148 | __ Bind(&div_merge); |
| 6149 | if (op_kind == Token::kMOD) { |
| 6150 | ASSERT(out == RDX); |
| 6151 | ASSERT(tmp == RAX); |
| 6152 | // For the % operator, again the idiv instruction does |
| 6153 | // not quite do what we want. Adjust for sign on slow path. |
| 6154 | __ testq(out, out); |
| 6155 | __ j(LESS, slow_path->adjust_sign_label()); |
| 6156 | } else { |
| 6157 | ASSERT(out == RAX); |
| 6158 | ASSERT(tmp == RDX); |
| 6159 | } |
| 6160 | |
| 6161 | if (slow_path->is_needed()) { |
| 6162 | __ Bind(slow_path->exit_label()); |
| 6163 | compiler->AddSlowPathCode(slow_path); |
| 6164 | } |
| 6165 | } |
| 6166 | |
| 6167 | template <typename OperandType> |
| 6168 | static void EmitInt64Arithmetic(FlowGraphCompiler* compiler, |
| 6169 | Token::Kind op_kind, |
| 6170 | Register left, |
| 6171 | const OperandType& right) { |
| 6172 | switch (op_kind) { |
| 6173 | case Token::kADD: |
| 6174 | __ addq(left, right); |
| 6175 | break; |
| 6176 | case Token::kSUB: |
| 6177 | __ subq(left, right); |
| 6178 | break; |
| 6179 | case Token::kBIT_AND: |
| 6180 | __ andq(left, right); |
| 6181 | break; |
| 6182 | case Token::kBIT_OR: |
| 6183 | __ orq(left, right); |
| 6184 | break; |
| 6185 | case Token::kBIT_XOR: |
| 6186 | __ xorq(left, right); |
| 6187 | break; |
| 6188 | case Token::kMUL: |
| 6189 | __ imulq(left, right); |
| 6190 | break; |
| 6191 | default: |
| 6192 | UNREACHABLE(); |
| 6193 | } |
| 6194 | } |
| 6195 | |
| 6196 | LocationSummary* BinaryInt64OpInstr::MakeLocationSummary(Zone* zone, |
| 6197 | bool opt) const { |
| 6198 | switch (op_kind()) { |
| 6199 | case Token::kMOD: |
| 6200 | case Token::kTRUNCDIV: { |
| 6201 | const intptr_t kNumInputs = 2; |
| 6202 | const intptr_t kNumTemps = 1; |
| 6203 | LocationSummary* summary = new (zone) LocationSummary( |
| 6204 | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| 6205 | summary->set_in(0, Location::RegisterLocation(RAX)); |
| 6206 | summary->set_in(1, Location::RequiresRegister()); |
| 6207 | // Intel uses rdx:rax with quotient rax and remainder rdx. Pick the |
| 6208 | // appropriate one for output and reserve the other as temp. |
| 6209 | summary->set_out( |
| 6210 | 0, Location::RegisterLocation(op_kind() == Token::kMOD ? RDX : RAX)); |
| 6211 | summary->set_temp( |
| 6212 | 0, Location::RegisterLocation(op_kind() == Token::kMOD ? RAX : RDX)); |
| 6213 | return summary; |
| 6214 | } |
| 6215 | default: { |
| 6216 | const intptr_t kNumInputs = 2; |
| 6217 | const intptr_t kNumTemps = 0; |
| 6218 | LocationSummary* summary = new (zone) LocationSummary( |
| 6219 | zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 6220 | summary->set_in(0, Location::RequiresRegister()); |
| 6221 | summary->set_in(1, LocationRegisterOrConstant(right())); |
| 6222 | summary->set_out(0, Location::SameAsFirstInput()); |
| 6223 | return summary; |
| 6224 | } |
| 6225 | } |
| 6226 | } |
| 6227 | |
| 6228 | void BinaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6229 | const Location left = locs()->in(0); |
| 6230 | const Location right = locs()->in(1); |
| 6231 | const Location out = locs()->out(0); |
| 6232 | ASSERT(!can_overflow()); |
| 6233 | ASSERT(!CanDeoptimize()); |
| 6234 | |
| 6235 | if (op_kind() == Token::kMOD || op_kind() == Token::kTRUNCDIV) { |
| 6236 | const Location temp = locs()->temp(0); |
| 6237 | EmitInt64ModTruncDiv(compiler, this, op_kind(), left.reg(), right.reg(), |
| 6238 | temp.reg(), out.reg()); |
| 6239 | } else if (right.IsConstant()) { |
| 6240 | ASSERT(out.reg() == left.reg()); |
| 6241 | ConstantInstr* constant_instr = right.constant_instruction(); |
| 6242 | const int64_t value = |
| 6243 | constant_instr->GetUnboxedSignedIntegerConstantValue(); |
| 6244 | EmitInt64Arithmetic(compiler, op_kind(), left.reg(), |
| 6245 | compiler::Immediate(value)); |
| 6246 | } else { |
| 6247 | ASSERT(out.reg() == left.reg()); |
| 6248 | EmitInt64Arithmetic(compiler, op_kind(), left.reg(), right.reg()); |
| 6249 | } |
| 6250 | } |
| 6251 | |
| 6252 | LocationSummary* UnaryInt64OpInstr::MakeLocationSummary(Zone* zone, |
| 6253 | bool opt) const { |
| 6254 | const intptr_t kNumInputs = 1; |
| 6255 | const intptr_t kNumTemps = 0; |
| 6256 | LocationSummary* summary = new (zone) |
| 6257 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 6258 | summary->set_in(0, Location::RequiresRegister()); |
| 6259 | summary->set_out(0, Location::SameAsFirstInput()); |
| 6260 | return summary; |
| 6261 | } |
| 6262 | |
| 6263 | void UnaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6264 | const Register left = locs()->in(0).reg(); |
| 6265 | const Register out = locs()->out(0).reg(); |
| 6266 | ASSERT(out == left); |
| 6267 | switch (op_kind()) { |
| 6268 | case Token::kBIT_NOT: |
| 6269 | __ notq(left); |
| 6270 | break; |
| 6271 | case Token::kNEGATE: |
| 6272 | __ negq(left); |
| 6273 | break; |
| 6274 | default: |
| 6275 | UNREACHABLE(); |
| 6276 | } |
| 6277 | } |
| 6278 | |
| 6279 | static void EmitShiftInt64ByConstant(FlowGraphCompiler* compiler, |
| 6280 | Token::Kind op_kind, |
| 6281 | Register left, |
| 6282 | const Object& right) { |
| 6283 | const int64_t shift = Integer::Cast(right).AsInt64Value(); |
| 6284 | ASSERT(shift >= 0); |
| 6285 | switch (op_kind) { |
| 6286 | case Token::kSHR: |
| 6287 | __ sarq(left, compiler::Immediate( |
| 6288 | Utils::Minimum<int64_t>(shift, kBitsPerWord - 1))); |
| 6289 | break; |
| 6290 | case Token::kSHL: { |
| 6291 | ASSERT(shift < 64); |
| 6292 | __ shlq(left, compiler::Immediate(shift)); |
| 6293 | break; |
| 6294 | } |
| 6295 | default: |
| 6296 | UNREACHABLE(); |
| 6297 | } |
| 6298 | } |
| 6299 | |
| 6300 | static void EmitShiftInt64ByRCX(FlowGraphCompiler* compiler, |
| 6301 | Token::Kind op_kind, |
| 6302 | Register left) { |
| 6303 | switch (op_kind) { |
| 6304 | case Token::kSHR: { |
| 6305 | __ sarq(left, RCX); |
| 6306 | break; |
| 6307 | } |
| 6308 | case Token::kSHL: { |
| 6309 | __ shlq(left, RCX); |
| 6310 | break; |
| 6311 | } |
| 6312 | default: |
| 6313 | UNREACHABLE(); |
| 6314 | } |
| 6315 | } |
| 6316 | |
| 6317 | static void EmitShiftUint32ByConstant(FlowGraphCompiler* compiler, |
| 6318 | Token::Kind op_kind, |
| 6319 | Register left, |
| 6320 | const Object& right) { |
| 6321 | const int64_t shift = Integer::Cast(right).AsInt64Value(); |
| 6322 | ASSERT(shift >= 0); |
| 6323 | if (shift >= 32) { |
| 6324 | __ xorl(left, left); |
| 6325 | } else { |
| 6326 | switch (op_kind) { |
| 6327 | case Token::kSHR: { |
| 6328 | __ shrl(left, compiler::Immediate(shift)); |
| 6329 | break; |
| 6330 | } |
| 6331 | case Token::kSHL: { |
| 6332 | __ shll(left, compiler::Immediate(shift)); |
| 6333 | break; |
| 6334 | } |
| 6335 | default: |
| 6336 | UNREACHABLE(); |
| 6337 | } |
| 6338 | } |
| 6339 | } |
| 6340 | |
| 6341 | static void EmitShiftUint32ByRCX(FlowGraphCompiler* compiler, |
| 6342 | Token::Kind op_kind, |
| 6343 | Register left) { |
| 6344 | switch (op_kind) { |
| 6345 | case Token::kSHR: { |
| 6346 | __ shrl(left, RCX); |
| 6347 | break; |
| 6348 | } |
| 6349 | case Token::kSHL: { |
| 6350 | __ shll(left, RCX); |
| 6351 | break; |
| 6352 | } |
| 6353 | default: |
| 6354 | UNREACHABLE(); |
| 6355 | } |
| 6356 | } |
| 6357 | |
| 6358 | class ShiftInt64OpSlowPath : public ThrowErrorSlowPathCode { |
| 6359 | public: |
| 6360 | static const intptr_t kNumberOfArguments = 0; |
| 6361 | |
| 6362 | ShiftInt64OpSlowPath(ShiftInt64OpInstr* instruction, intptr_t try_index) |
| 6363 | : ThrowErrorSlowPathCode(instruction, |
| 6364 | kArgumentErrorUnboxedInt64RuntimeEntry, |
| 6365 | kNumberOfArguments, |
| 6366 | try_index) {} |
| 6367 | |
| 6368 | const char* name() override { return "int64 shift" ; } |
| 6369 | |
| 6370 | void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override { |
| 6371 | const Register out = instruction()->locs()->out(0).reg(); |
| 6372 | ASSERT(out == instruction()->locs()->in(0).reg()); |
| 6373 | |
| 6374 | compiler::Label throw_error; |
| 6375 | __ testq(RCX, RCX); |
| 6376 | __ j(LESS, &throw_error); |
| 6377 | |
| 6378 | switch (instruction()->AsShiftInt64Op()->op_kind()) { |
| 6379 | case Token::kSHR: |
| 6380 | __ sarq(out, compiler::Immediate(kBitsPerInt64 - 1)); |
| 6381 | break; |
| 6382 | case Token::kSHL: |
| 6383 | __ xorq(out, out); |
| 6384 | break; |
| 6385 | default: |
| 6386 | UNREACHABLE(); |
| 6387 | } |
| 6388 | __ jmp(exit_label()); |
| 6389 | |
| 6390 | __ Bind(&throw_error); |
| 6391 | |
| 6392 | // Can't pass unboxed int64 value directly to runtime call, as all |
| 6393 | // arguments are expected to be tagged (boxed). |
| 6394 | // The unboxed int64 argument is passed through a dedicated slot in Thread. |
| 6395 | // TODO(dartbug.com/33549): Clean this up when unboxed values |
| 6396 | // could be passed as arguments. |
| 6397 | __ movq(compiler::Address(THR, Thread::unboxed_int64_runtime_arg_offset()), |
| 6398 | RCX); |
| 6399 | } |
| 6400 | }; |
| 6401 | |
| 6402 | LocationSummary* ShiftInt64OpInstr::MakeLocationSummary(Zone* zone, |
| 6403 | bool opt) const { |
| 6404 | const intptr_t kNumInputs = 2; |
| 6405 | const intptr_t kNumTemps = 0; |
| 6406 | LocationSummary* summary = new (zone) LocationSummary( |
| 6407 | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| 6408 | summary->set_in(0, Location::RequiresRegister()); |
| 6409 | summary->set_in(1, RangeUtils::IsPositive(shift_range()) |
| 6410 | ? LocationFixedRegisterOrConstant(right(), RCX) |
| 6411 | : Location::RegisterLocation(RCX)); |
| 6412 | summary->set_out(0, Location::SameAsFirstInput()); |
| 6413 | return summary; |
| 6414 | } |
| 6415 | |
| 6416 | void ShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6417 | const Register left = locs()->in(0).reg(); |
| 6418 | const Register out = locs()->out(0).reg(); |
| 6419 | ASSERT(left == out); |
| 6420 | ASSERT(!can_overflow()); |
| 6421 | |
| 6422 | if (locs()->in(1).IsConstant()) { |
| 6423 | EmitShiftInt64ByConstant(compiler, op_kind(), left, |
| 6424 | locs()->in(1).constant()); |
| 6425 | } else { |
| 6426 | // Code for a variable shift amount (or constant that throws). |
| 6427 | ASSERT(locs()->in(1).reg() == RCX); |
| 6428 | |
| 6429 | // Jump to a slow path if shift count is > 63 or negative. |
| 6430 | ShiftInt64OpSlowPath* slow_path = NULL; |
| 6431 | if (!IsShiftCountInRange()) { |
| 6432 | slow_path = |
| 6433 | new (Z) ShiftInt64OpSlowPath(this, compiler->CurrentTryIndex()); |
| 6434 | compiler->AddSlowPathCode(slow_path); |
| 6435 | |
| 6436 | __ cmpq(RCX, compiler::Immediate(kShiftCountLimit)); |
| 6437 | __ j(ABOVE, slow_path->entry_label()); |
| 6438 | } |
| 6439 | |
| 6440 | EmitShiftInt64ByRCX(compiler, op_kind(), left); |
| 6441 | |
| 6442 | if (slow_path != NULL) { |
| 6443 | __ Bind(slow_path->exit_label()); |
| 6444 | } |
| 6445 | } |
| 6446 | } |
| 6447 | |
| 6448 | LocationSummary* SpeculativeShiftInt64OpInstr::MakeLocationSummary( |
| 6449 | Zone* zone, |
| 6450 | bool opt) const { |
| 6451 | const intptr_t kNumInputs = 2; |
| 6452 | const intptr_t kNumTemps = 0; |
| 6453 | LocationSummary* summary = new (zone) |
| 6454 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 6455 | summary->set_in(0, Location::RequiresRegister()); |
| 6456 | summary->set_in(1, LocationFixedRegisterOrSmiConstant(right(), RCX)); |
| 6457 | summary->set_out(0, Location::SameAsFirstInput()); |
| 6458 | return summary; |
| 6459 | } |
| 6460 | |
| 6461 | void SpeculativeShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6462 | const Register left = locs()->in(0).reg(); |
| 6463 | const Register out = locs()->out(0).reg(); |
| 6464 | ASSERT(left == out); |
| 6465 | ASSERT(!can_overflow()); |
| 6466 | |
| 6467 | if (locs()->in(1).IsConstant()) { |
| 6468 | EmitShiftInt64ByConstant(compiler, op_kind(), left, |
| 6469 | locs()->in(1).constant()); |
| 6470 | } else { |
| 6471 | ASSERT(locs()->in(1).reg() == RCX); |
| 6472 | __ SmiUntag(RCX); |
| 6473 | |
| 6474 | // Deoptimize if shift count is > 63 or negative (or not a smi). |
| 6475 | if (!IsShiftCountInRange()) { |
| 6476 | ASSERT(CanDeoptimize()); |
| 6477 | compiler::Label* deopt = |
| 6478 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op); |
| 6479 | |
| 6480 | __ cmpq(RCX, compiler::Immediate(kShiftCountLimit)); |
| 6481 | __ j(ABOVE, deopt); |
| 6482 | } |
| 6483 | |
| 6484 | EmitShiftInt64ByRCX(compiler, op_kind(), left); |
| 6485 | } |
| 6486 | } |
| 6487 | |
| 6488 | class ShiftUint32OpSlowPath : public ThrowErrorSlowPathCode { |
| 6489 | public: |
| 6490 | static const intptr_t kNumberOfArguments = 0; |
| 6491 | |
| 6492 | ShiftUint32OpSlowPath(ShiftUint32OpInstr* instruction, intptr_t try_index) |
| 6493 | : ThrowErrorSlowPathCode(instruction, |
| 6494 | kArgumentErrorUnboxedInt64RuntimeEntry, |
| 6495 | kNumberOfArguments, |
| 6496 | try_index) {} |
| 6497 | |
| 6498 | const char* name() override { return "uint32 shift" ; } |
| 6499 | |
| 6500 | void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override { |
| 6501 | const Register out = instruction()->locs()->out(0).reg(); |
| 6502 | ASSERT(out == instruction()->locs()->in(0).reg()); |
| 6503 | |
| 6504 | compiler::Label throw_error; |
| 6505 | __ testq(RCX, RCX); |
| 6506 | __ j(LESS, &throw_error); |
| 6507 | |
| 6508 | __ xorl(out, out); |
| 6509 | __ jmp(exit_label()); |
| 6510 | |
| 6511 | __ Bind(&throw_error); |
| 6512 | |
| 6513 | // Can't pass unboxed int64 value directly to runtime call, as all |
| 6514 | // arguments are expected to be tagged (boxed). |
| 6515 | // The unboxed int64 argument is passed through a dedicated slot in Thread. |
| 6516 | // TODO(dartbug.com/33549): Clean this up when unboxed values |
| 6517 | // could be passed as arguments. |
| 6518 | __ movq(compiler::Address(THR, Thread::unboxed_int64_runtime_arg_offset()), |
| 6519 | RCX); |
| 6520 | } |
| 6521 | }; |
| 6522 | |
| 6523 | LocationSummary* ShiftUint32OpInstr::MakeLocationSummary(Zone* zone, |
| 6524 | bool opt) const { |
| 6525 | const intptr_t kNumInputs = 2; |
| 6526 | const intptr_t kNumTemps = 0; |
| 6527 | LocationSummary* summary = new (zone) LocationSummary( |
| 6528 | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| 6529 | summary->set_in(0, Location::RequiresRegister()); |
| 6530 | summary->set_in(1, RangeUtils::IsPositive(shift_range()) |
| 6531 | ? LocationFixedRegisterOrConstant(right(), RCX) |
| 6532 | : Location::RegisterLocation(RCX)); |
| 6533 | summary->set_out(0, Location::SameAsFirstInput()); |
| 6534 | return summary; |
| 6535 | } |
| 6536 | |
| 6537 | void ShiftUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6538 | Register left = locs()->in(0).reg(); |
| 6539 | Register out = locs()->out(0).reg(); |
| 6540 | ASSERT(left == out); |
| 6541 | |
| 6542 | if (locs()->in(1).IsConstant()) { |
| 6543 | EmitShiftUint32ByConstant(compiler, op_kind(), left, |
| 6544 | locs()->in(1).constant()); |
| 6545 | } else { |
| 6546 | // Code for a variable shift amount (or constant that throws). |
| 6547 | ASSERT(locs()->in(1).reg() == RCX); |
| 6548 | |
| 6549 | // Jump to a slow path if shift count is > 31 or negative. |
| 6550 | ShiftUint32OpSlowPath* slow_path = NULL; |
| 6551 | if (!IsShiftCountInRange(kUint32ShiftCountLimit)) { |
| 6552 | slow_path = |
| 6553 | new (Z) ShiftUint32OpSlowPath(this, compiler->CurrentTryIndex()); |
| 6554 | compiler->AddSlowPathCode(slow_path); |
| 6555 | |
| 6556 | __ cmpq(RCX, compiler::Immediate(kUint32ShiftCountLimit)); |
| 6557 | __ j(ABOVE, slow_path->entry_label()); |
| 6558 | } |
| 6559 | |
| 6560 | EmitShiftUint32ByRCX(compiler, op_kind(), left); |
| 6561 | |
| 6562 | if (slow_path != NULL) { |
| 6563 | __ Bind(slow_path->exit_label()); |
| 6564 | } |
| 6565 | } |
| 6566 | } |
| 6567 | |
| 6568 | LocationSummary* SpeculativeShiftUint32OpInstr::MakeLocationSummary( |
| 6569 | Zone* zone, |
| 6570 | bool opt) const { |
| 6571 | const intptr_t kNumInputs = 2; |
| 6572 | const intptr_t kNumTemps = 0; |
| 6573 | LocationSummary* summary = new (zone) |
| 6574 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 6575 | summary->set_in(0, Location::RequiresRegister()); |
| 6576 | summary->set_in(1, LocationFixedRegisterOrSmiConstant(right(), RCX)); |
| 6577 | summary->set_out(0, Location::SameAsFirstInput()); |
| 6578 | return summary; |
| 6579 | } |
| 6580 | |
| 6581 | void SpeculativeShiftUint32OpInstr::EmitNativeCode( |
| 6582 | FlowGraphCompiler* compiler) { |
| 6583 | Register left = locs()->in(0).reg(); |
| 6584 | Register out = locs()->out(0).reg(); |
| 6585 | ASSERT(left == out); |
| 6586 | |
| 6587 | if (locs()->in(1).IsConstant()) { |
| 6588 | EmitShiftUint32ByConstant(compiler, op_kind(), left, |
| 6589 | locs()->in(1).constant()); |
| 6590 | } else { |
| 6591 | ASSERT(locs()->in(1).reg() == RCX); |
| 6592 | __ SmiUntag(RCX); |
| 6593 | |
| 6594 | if (!IsShiftCountInRange(kUint32ShiftCountLimit)) { |
| 6595 | if (!IsShiftCountInRange()) { |
| 6596 | // Deoptimize if shift count is negative. |
| 6597 | ASSERT(CanDeoptimize()); |
| 6598 | compiler::Label* deopt = |
| 6599 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op); |
| 6600 | |
| 6601 | __ testq(RCX, RCX); |
| 6602 | __ j(LESS, deopt); |
| 6603 | } |
| 6604 | |
| 6605 | compiler::Label cont; |
| 6606 | __ cmpq(RCX, compiler::Immediate(kUint32ShiftCountLimit)); |
| 6607 | __ j(LESS_EQUAL, &cont); |
| 6608 | |
| 6609 | __ xorl(left, left); |
| 6610 | |
| 6611 | __ Bind(&cont); |
| 6612 | } |
| 6613 | |
| 6614 | EmitShiftUint32ByRCX(compiler, op_kind(), left); |
| 6615 | } |
| 6616 | } |
| 6617 | |
| 6618 | LocationSummary* BinaryUint32OpInstr::MakeLocationSummary(Zone* zone, |
| 6619 | bool opt) const { |
| 6620 | const intptr_t kNumInputs = 2; |
| 6621 | const intptr_t kNumTemps = 0; |
| 6622 | LocationSummary* summary = new (zone) |
| 6623 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 6624 | summary->set_in(0, Location::RequiresRegister()); |
| 6625 | summary->set_in(1, Location::RequiresRegister()); |
| 6626 | summary->set_out(0, Location::SameAsFirstInput()); |
| 6627 | return summary; |
| 6628 | } |
| 6629 | |
| 6630 | template <typename OperandType> |
| 6631 | static void EmitIntegerArithmetic(FlowGraphCompiler* compiler, |
| 6632 | Token::Kind op_kind, |
| 6633 | Register left, |
| 6634 | const OperandType& right) { |
| 6635 | switch (op_kind) { |
| 6636 | case Token::kADD: |
| 6637 | __ addl(left, right); |
| 6638 | break; |
| 6639 | case Token::kSUB: |
| 6640 | __ subl(left, right); |
| 6641 | break; |
| 6642 | case Token::kBIT_AND: |
| 6643 | __ andl(left, right); |
| 6644 | break; |
| 6645 | case Token::kBIT_OR: |
| 6646 | __ orl(left, right); |
| 6647 | break; |
| 6648 | case Token::kBIT_XOR: |
| 6649 | __ xorl(left, right); |
| 6650 | break; |
| 6651 | case Token::kMUL: |
| 6652 | __ imull(left, right); |
| 6653 | break; |
| 6654 | default: |
| 6655 | UNREACHABLE(); |
| 6656 | } |
| 6657 | } |
| 6658 | |
| 6659 | void BinaryUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6660 | Register left = locs()->in(0).reg(); |
| 6661 | Register right = locs()->in(1).reg(); |
| 6662 | Register out = locs()->out(0).reg(); |
| 6663 | ASSERT(out == left); |
| 6664 | switch (op_kind()) { |
| 6665 | case Token::kBIT_AND: |
| 6666 | case Token::kBIT_OR: |
| 6667 | case Token::kBIT_XOR: |
| 6668 | case Token::kADD: |
| 6669 | case Token::kSUB: |
| 6670 | case Token::kMUL: |
| 6671 | EmitIntegerArithmetic(compiler, op_kind(), left, right); |
| 6672 | return; |
| 6673 | default: |
| 6674 | UNREACHABLE(); |
| 6675 | } |
| 6676 | } |
| 6677 | |
| 6678 | DEFINE_BACKEND(UnaryUint32Op, (SameAsFirstInput, Register value)) { |
| 6679 | ASSERT(instr->op_kind() == Token::kBIT_NOT); |
| 6680 | __ notl(value); |
| 6681 | } |
| 6682 | |
| 6683 | DEFINE_UNIMPLEMENTED_INSTRUCTION(BinaryInt32OpInstr) |
| 6684 | |
| 6685 | LocationSummary* IntConverterInstr::MakeLocationSummary(Zone* zone, |
| 6686 | bool opt) const { |
| 6687 | const intptr_t kNumInputs = 1; |
| 6688 | const intptr_t kNumTemps = 0; |
| 6689 | LocationSummary* summary = new (zone) |
| 6690 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 6691 | if (from() == kUntagged || to() == kUntagged) { |
| 6692 | ASSERT((from() == kUntagged && to() == kUnboxedIntPtr) || |
| 6693 | (from() == kUnboxedIntPtr && to() == kUntagged)); |
| 6694 | ASSERT(!CanDeoptimize()); |
| 6695 | } else if (from() == kUnboxedInt64) { |
| 6696 | ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32); |
| 6697 | } else if (to() == kUnboxedInt64) { |
| 6698 | ASSERT(from() == kUnboxedInt32 || from() == kUnboxedUint32); |
| 6699 | } else { |
| 6700 | ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32); |
| 6701 | ASSERT(from() == kUnboxedUint32 || from() == kUnboxedInt32); |
| 6702 | } |
| 6703 | |
| 6704 | summary->set_in(0, Location::RequiresRegister()); |
| 6705 | summary->set_out(0, Location::SameAsFirstInput()); |
| 6706 | |
| 6707 | return summary; |
| 6708 | } |
| 6709 | |
| 6710 | void IntConverterInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6711 | const bool is_nop_conversion = |
| 6712 | (from() == kUntagged && to() == kUnboxedIntPtr) || |
| 6713 | (from() == kUnboxedIntPtr && to() == kUntagged); |
| 6714 | if (is_nop_conversion) { |
| 6715 | ASSERT(locs()->in(0).reg() == locs()->out(0).reg()); |
| 6716 | return; |
| 6717 | } |
| 6718 | |
| 6719 | if (from() == kUnboxedInt32 && to() == kUnboxedUint32) { |
| 6720 | const Register value = locs()->in(0).reg(); |
| 6721 | const Register out = locs()->out(0).reg(); |
| 6722 | // Representations are bitwise equivalent but we want to normalize |
| 6723 | // upperbits for safety reasons. |
| 6724 | // TODO(vegorov) if we ensure that we never use upperbits we could |
| 6725 | // avoid this. |
| 6726 | __ movl(out, value); |
| 6727 | } else if (from() == kUnboxedUint32 && to() == kUnboxedInt32) { |
| 6728 | // Representations are bitwise equivalent. |
| 6729 | const Register value = locs()->in(0).reg(); |
| 6730 | const Register out = locs()->out(0).reg(); |
| 6731 | __ movsxd(out, value); |
| 6732 | if (CanDeoptimize()) { |
| 6733 | compiler::Label* deopt = |
| 6734 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger); |
| 6735 | __ testl(out, out); |
| 6736 | __ j(NEGATIVE, deopt); |
| 6737 | } |
| 6738 | } else if (from() == kUnboxedInt64) { |
| 6739 | ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32); |
| 6740 | const Register value = locs()->in(0).reg(); |
| 6741 | const Register out = locs()->out(0).reg(); |
| 6742 | if (!CanDeoptimize()) { |
| 6743 | // Copy low. |
| 6744 | __ movl(out, value); |
| 6745 | } else { |
| 6746 | compiler::Label* deopt = |
| 6747 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger); |
| 6748 | // Sign extend. |
| 6749 | __ movsxd(out, value); |
| 6750 | // Compare with original value. |
| 6751 | __ cmpq(out, value); |
| 6752 | // Value cannot be held in Int32, deopt. |
| 6753 | __ j(NOT_EQUAL, deopt); |
| 6754 | } |
| 6755 | } else if (to() == kUnboxedInt64) { |
| 6756 | ASSERT((from() == kUnboxedUint32) || (from() == kUnboxedInt32)); |
| 6757 | const Register value = locs()->in(0).reg(); |
| 6758 | const Register out = locs()->out(0).reg(); |
| 6759 | if (from() == kUnboxedUint32) { |
| 6760 | // Zero extend. |
| 6761 | __ movl(out, value); |
| 6762 | } else { |
| 6763 | // Sign extend. |
| 6764 | ASSERT(from() == kUnboxedInt32); |
| 6765 | __ movsxd(out, value); |
| 6766 | } |
| 6767 | } else { |
| 6768 | UNREACHABLE(); |
| 6769 | } |
| 6770 | } |
| 6771 | |
| 6772 | LocationSummary* StopInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 6773 | return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall); |
| 6774 | } |
| 6775 | |
| 6776 | void StopInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6777 | __ Stop(message()); |
| 6778 | } |
| 6779 | |
| 6780 | void GraphEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6781 | BlockEntryInstr* entry = normal_entry(); |
| 6782 | if (entry != nullptr) { |
| 6783 | if (!compiler->CanFallThroughTo(entry)) { |
| 6784 | FATAL("Checked function entry must have no offset" ); |
| 6785 | } |
| 6786 | } else { |
| 6787 | entry = osr_entry(); |
| 6788 | if (!compiler->CanFallThroughTo(entry)) { |
| 6789 | __ jmp(compiler->GetJumpLabel(entry)); |
| 6790 | } |
| 6791 | } |
| 6792 | } |
| 6793 | |
| 6794 | LocationSummary* GotoInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 6795 | return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall); |
| 6796 | } |
| 6797 | |
| 6798 | void GotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6799 | if (!compiler->is_optimizing()) { |
| 6800 | if (FLAG_reorder_basic_blocks) { |
| 6801 | compiler->EmitEdgeCounter(block()->preorder_number()); |
| 6802 | } |
| 6803 | // Add a deoptimization descriptor for deoptimizing instructions that |
| 6804 | // may be inserted before this instruction. |
| 6805 | compiler->AddCurrentDescriptor(PcDescriptorsLayout::kDeopt, GetDeoptId(), |
| 6806 | TokenPosition::kNoSource); |
| 6807 | } |
| 6808 | if (HasParallelMove()) { |
| 6809 | compiler->parallel_move_resolver()->EmitNativeCode(parallel_move()); |
| 6810 | } |
| 6811 | |
| 6812 | // We can fall through if the successor is the next block in the list. |
| 6813 | // Otherwise, we need a jump. |
| 6814 | if (!compiler->CanFallThroughTo(successor())) { |
| 6815 | __ jmp(compiler->GetJumpLabel(successor())); |
| 6816 | } |
| 6817 | } |
| 6818 | |
| 6819 | LocationSummary* IndirectGotoInstr::MakeLocationSummary(Zone* zone, |
| 6820 | bool opt) const { |
| 6821 | const intptr_t kNumInputs = 1; |
| 6822 | const intptr_t kNumTemps = 1; |
| 6823 | |
| 6824 | LocationSummary* summary = new (zone) |
| 6825 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 6826 | |
| 6827 | summary->set_in(0, Location::RequiresRegister()); |
| 6828 | summary->set_temp(0, Location::RequiresRegister()); |
| 6829 | |
| 6830 | return summary; |
| 6831 | } |
| 6832 | |
| 6833 | void IndirectGotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6834 | Register offset_reg = locs()->in(0).reg(); |
| 6835 | Register target_address_reg = locs()->temp(0).reg(); |
| 6836 | |
| 6837 | { |
| 6838 | const intptr_t kRIPRelativeLeaqSize = 7; |
| 6839 | const intptr_t entry_to_rip_offset = __ CodeSize() + kRIPRelativeLeaqSize; |
| 6840 | __ leaq(target_address_reg, |
| 6841 | compiler::Address::AddressRIPRelative(-entry_to_rip_offset)); |
| 6842 | ASSERT(__ CodeSize() == entry_to_rip_offset); |
| 6843 | } |
| 6844 | |
| 6845 | // Load from FP+compiler::target::frame_layout.code_from_fp. |
| 6846 | |
| 6847 | // Calculate the final absolute address. |
| 6848 | if (offset()->definition()->representation() == kTagged) { |
| 6849 | __ SmiUntag(offset_reg); |
| 6850 | } |
| 6851 | __ addq(target_address_reg, offset_reg); |
| 6852 | |
| 6853 | // Jump to the absolute address. |
| 6854 | __ jmp(target_address_reg); |
| 6855 | } |
| 6856 | |
| 6857 | LocationSummary* StrictCompareInstr::MakeLocationSummary(Zone* zone, |
| 6858 | bool opt) const { |
| 6859 | const intptr_t kNumInputs = 2; |
| 6860 | const intptr_t kNumTemps = 0; |
| 6861 | if (needs_number_check()) { |
| 6862 | LocationSummary* locs = new (zone) |
| 6863 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 6864 | locs->set_in(0, Location::RegisterLocation(RAX)); |
| 6865 | locs->set_in(1, Location::RegisterLocation(RCX)); |
| 6866 | locs->set_out(0, Location::RegisterLocation(RAX)); |
| 6867 | return locs; |
| 6868 | } |
| 6869 | LocationSummary* locs = new (zone) |
| 6870 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 6871 | locs->set_in(0, LocationRegisterOrConstant(left())); |
| 6872 | // Only one of the inputs can be a constant. Choose register if the first one |
| 6873 | // is a constant. |
| 6874 | locs->set_in(1, locs->in(0).IsConstant() |
| 6875 | ? Location::RequiresRegister() |
| 6876 | : LocationRegisterOrConstant(right())); |
| 6877 | locs->set_out(0, Location::RequiresRegister()); |
| 6878 | return locs; |
| 6879 | } |
| 6880 | |
| 6881 | Condition StrictCompareInstr::EmitComparisonCodeRegConstant( |
| 6882 | FlowGraphCompiler* compiler, |
| 6883 | BranchLabels labels, |
| 6884 | Register reg, |
| 6885 | const Object& obj) { |
| 6886 | return compiler->EmitEqualityRegConstCompare(reg, obj, needs_number_check(), |
| 6887 | token_pos(), deopt_id()); |
| 6888 | } |
| 6889 | |
| 6890 | LocationSummary* DispatchTableCallInstr::MakeLocationSummary(Zone* zone, |
| 6891 | bool opt) const { |
| 6892 | const intptr_t kNumInputs = 1; |
| 6893 | const intptr_t kNumTemps = 0; |
| 6894 | LocationSummary* summary = new (zone) |
| 6895 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 6896 | summary->set_in(0, Location::RegisterLocation(RCX)); // ClassId |
| 6897 | return MakeCallSummary(zone, this, summary); |
| 6898 | } |
| 6899 | |
| 6900 | LocationSummary* ClosureCallInstr::MakeLocationSummary(Zone* zone, |
| 6901 | bool opt) const { |
| 6902 | const intptr_t kNumInputs = 1; |
| 6903 | const intptr_t kNumTemps = 0; |
| 6904 | LocationSummary* summary = new (zone) |
| 6905 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 6906 | summary->set_in(0, Location::RegisterLocation(RAX)); // Function. |
| 6907 | return MakeCallSummary(zone, this, summary); |
| 6908 | } |
| 6909 | |
| 6910 | void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6911 | // Arguments descriptor is expected in R10. |
| 6912 | const intptr_t argument_count = ArgumentCount(); // Includes type args. |
| 6913 | const Array& arguments_descriptor = |
| 6914 | Array::ZoneHandle(Z, GetArgumentsDescriptor()); |
| 6915 | __ LoadObject(R10, arguments_descriptor); |
| 6916 | |
| 6917 | // Function in RAX. |
| 6918 | ASSERT(locs()->in(0).reg() == RAX); |
| 6919 | if (!FLAG_precompiled_mode || !FLAG_use_bare_instructions) { |
| 6920 | __ movq(CODE_REG, compiler::FieldAddress( |
| 6921 | RAX, compiler::target::Function::code_offset())); |
| 6922 | } |
| 6923 | __ movq( |
| 6924 | RCX, |
| 6925 | compiler::FieldAddress( |
| 6926 | RAX, compiler::target::Function::entry_point_offset(entry_kind()))); |
| 6927 | |
| 6928 | // RAX: Function. |
| 6929 | // R10: Arguments descriptor array. |
| 6930 | if (!FLAG_precompiled_mode) { |
| 6931 | // RBX: Smi 0 (no IC data; the lazy-compile stub expects a GC-safe value). |
| 6932 | __ xorq(RBX, RBX); |
| 6933 | } |
| 6934 | __ call(RCX); |
| 6935 | compiler->EmitCallsiteMetadata(token_pos(), deopt_id(), |
| 6936 | PcDescriptorsLayout::kOther, locs()); |
| 6937 | __ Drop(argument_count); |
| 6938 | } |
| 6939 | |
| 6940 | LocationSummary* BooleanNegateInstr::MakeLocationSummary(Zone* zone, |
| 6941 | bool opt) const { |
| 6942 | return LocationSummary::Make(zone, 1, |
| 6943 | value()->Type()->ToCid() == kBoolCid |
| 6944 | ? Location::SameAsFirstInput() |
| 6945 | : Location::RequiresRegister(), |
| 6946 | LocationSummary::kNoCall); |
| 6947 | } |
| 6948 | |
| 6949 | void BooleanNegateInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6950 | Register input = locs()->in(0).reg(); |
| 6951 | Register result = locs()->out(0).reg(); |
| 6952 | |
| 6953 | if (value()->Type()->ToCid() == kBoolCid) { |
| 6954 | ASSERT(input == result); |
| 6955 | __ xorq(result, compiler::Immediate( |
| 6956 | compiler::target::ObjectAlignment::kBoolValueMask)); |
| 6957 | } else { |
| 6958 | ASSERT(input != result); |
| 6959 | compiler::Label done; |
| 6960 | __ LoadObject(result, Bool::True()); |
| 6961 | __ CompareRegisters(result, input); |
| 6962 | __ j(NOT_EQUAL, &done, compiler::Assembler::kNearJump); |
| 6963 | __ LoadObject(result, Bool::False()); |
| 6964 | __ Bind(&done); |
| 6965 | } |
| 6966 | } |
| 6967 | |
| 6968 | LocationSummary* AllocateObjectInstr::MakeLocationSummary(Zone* zone, |
| 6969 | bool opt) const { |
| 6970 | const intptr_t kNumInputs = (type_arguments() != nullptr) ? 1 : 0; |
| 6971 | const intptr_t kNumTemps = 0; |
| 6972 | LocationSummary* locs = new (zone) |
| 6973 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 6974 | if (type_arguments() != nullptr) { |
| 6975 | locs->set_in(0, |
| 6976 | Location::RegisterLocation(kAllocationStubTypeArgumentsReg)); |
| 6977 | } |
| 6978 | locs->set_out(0, Location::RegisterLocation(RAX)); |
| 6979 | return locs; |
| 6980 | } |
| 6981 | |
| 6982 | void AllocateObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6983 | if (type_arguments() != nullptr) { |
| 6984 | TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info(); |
| 6985 | if (type_usage_info != nullptr) { |
| 6986 | RegisterTypeArgumentsUse(compiler->function(), type_usage_info, cls_, |
| 6987 | type_arguments()->definition()); |
| 6988 | } |
| 6989 | } |
| 6990 | const Code& stub = Code::ZoneHandle( |
| 6991 | compiler->zone(), StubCode::GetAllocationStubForClass(cls())); |
| 6992 | compiler->GenerateStubCall(token_pos(), stub, PcDescriptorsLayout::kOther, |
| 6993 | locs()); |
| 6994 | } |
| 6995 | |
| 6996 | void DebugStepCheckInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6997 | #ifdef PRODUCT |
| 6998 | UNREACHABLE(); |
| 6999 | #else |
| 7000 | ASSERT(!compiler->is_optimizing()); |
| 7001 | __ CallPatchable(StubCode::DebugStepCheck()); |
| 7002 | compiler->AddCurrentDescriptor(stub_kind_, deopt_id_, token_pos()); |
| 7003 | compiler->RecordSafepoint(locs()); |
| 7004 | #endif |
| 7005 | } |
| 7006 | |
| 7007 | } // namespace dart |
| 7008 | |
| 7009 | #undef __ |
| 7010 | |
| 7011 | #endif // defined(TARGET_ARCH_X64) |
| 7012 | |