| 1 | // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/compiler/backend/linearscan.h" |
| 6 | |
| 7 | #include "vm/bit_vector.h" |
| 8 | #include "vm/compiler/backend/flow_graph.h" |
| 9 | #include "vm/compiler/backend/flow_graph_compiler.h" |
| 10 | #include "vm/compiler/backend/il.h" |
| 11 | #include "vm/compiler/backend/il_printer.h" |
| 12 | #include "vm/compiler/backend/loops.h" |
| 13 | #include "vm/log.h" |
| 14 | #include "vm/parser.h" |
| 15 | #include "vm/stack_frame.h" |
| 16 | |
| 17 | namespace dart { |
| 18 | |
| 19 | #if !defined(PRODUCT) |
| 20 | #define INCLUDE_LINEAR_SCAN_TRACING_CODE |
| 21 | #endif |
| 22 | |
| 23 | #if defined(INCLUDE_LINEAR_SCAN_TRACING_CODE) |
| 24 | #define TRACE_ALLOC(statement) \ |
| 25 | do { \ |
| 26 | if (FLAG_trace_ssa_allocator && CompilerState::ShouldTrace()) statement; \ |
| 27 | } while (0) |
| 28 | #else |
| 29 | #define TRACE_ALLOC(statement) |
| 30 | #endif |
| 31 | |
| 32 | static const intptr_t kNoVirtualRegister = -1; |
| 33 | static const intptr_t kTempVirtualRegister = -2; |
| 34 | static const intptr_t kIllegalPosition = -1; |
| 35 | static const intptr_t kMaxPosition = 0x7FFFFFFF; |
| 36 | static const intptr_t kPairVirtualRegisterOffset = 1; |
| 37 | |
| 38 | // Definitions which have pair representations |
| 39 | // (kPairOfTagged) use two virtual register names. |
| 40 | // At SSA index allocation time each definition reserves two SSA indexes, |
| 41 | // the second index is only used for pairs. This function maps from the first |
| 42 | // SSA index to the second. |
| 43 | static intptr_t ToSecondPairVreg(intptr_t vreg) { |
| 44 | // Map vreg to its pair vreg. |
| 45 | ASSERT((vreg == kNoVirtualRegister) || vreg >= 0); |
| 46 | return (vreg == kNoVirtualRegister) ? kNoVirtualRegister |
| 47 | : (vreg + kPairVirtualRegisterOffset); |
| 48 | } |
| 49 | |
| 50 | static intptr_t MinPosition(intptr_t a, intptr_t b) { |
| 51 | return (a < b) ? a : b; |
| 52 | } |
| 53 | |
| 54 | static bool IsInstructionStartPosition(intptr_t pos) { |
| 55 | return (pos & 1) == 0; |
| 56 | } |
| 57 | |
| 58 | static bool IsInstructionEndPosition(intptr_t pos) { |
| 59 | return (pos & 1) == 1; |
| 60 | } |
| 61 | |
| 62 | static intptr_t ToInstructionStart(intptr_t pos) { |
| 63 | return (pos & ~1); |
| 64 | } |
| 65 | |
| 66 | static intptr_t ToInstructionEnd(intptr_t pos) { |
| 67 | return (pos | 1); |
| 68 | } |
| 69 | |
| 70 | // Additional information on loops during register allocation. |
| 71 | struct : public ZoneAllocated { |
| 72 | (intptr_t s, intptr_t e) |
| 73 | : start(s), end(e), backedge_interference(nullptr) {} |
| 74 | intptr_t ; |
| 75 | intptr_t ; |
| 76 | BitVector* ; |
| 77 | }; |
| 78 | |
| 79 | // Returns extra loop information. |
| 80 | static ExtraLoopInfo* (Zone* zone, LoopInfo* loop_info) { |
| 81 | intptr_t start = loop_info->header()->start_pos(); |
| 82 | intptr_t end = start; |
| 83 | for (auto back_edge : loop_info->back_edges()) { |
| 84 | intptr_t end_pos = back_edge->end_pos(); |
| 85 | if (end_pos > end) { |
| 86 | end = end_pos; |
| 87 | } |
| 88 | } |
| 89 | return new (zone) ExtraLoopInfo(start, end); |
| 90 | } |
| 91 | |
| 92 | FlowGraphAllocator::FlowGraphAllocator(const FlowGraph& flow_graph, |
| 93 | bool intrinsic_mode) |
| 94 | : flow_graph_(flow_graph), |
| 95 | reaching_defs_(flow_graph), |
| 96 | value_representations_(flow_graph.max_virtual_register_number()), |
| 97 | block_order_(flow_graph.reverse_postorder()), |
| 98 | postorder_(flow_graph.postorder()), |
| 99 | instructions_(), |
| 100 | block_entries_(), |
| 101 | extra_loop_info_(), |
| 102 | liveness_(flow_graph), |
| 103 | vreg_count_(flow_graph.max_virtual_register_number()), |
| 104 | live_ranges_(flow_graph.max_virtual_register_number()), |
| 105 | unallocated_cpu_(), |
| 106 | unallocated_xmm_(), |
| 107 | cpu_regs_(), |
| 108 | fpu_regs_(), |
| 109 | blocked_cpu_registers_(), |
| 110 | blocked_fpu_registers_(), |
| 111 | spilled_(), |
| 112 | safepoints_(), |
| 113 | register_kind_(), |
| 114 | number_of_registers_(0), |
| 115 | registers_(), |
| 116 | blocked_registers_(), |
| 117 | unallocated_(), |
| 118 | spill_slots_(), |
| 119 | quad_spill_slots_(), |
| 120 | untagged_spill_slots_(), |
| 121 | cpu_spill_slot_count_(0), |
| 122 | intrinsic_mode_(intrinsic_mode) { |
| 123 | for (intptr_t i = 0; i < vreg_count_; i++) { |
| 124 | live_ranges_.Add(NULL); |
| 125 | } |
| 126 | for (intptr_t i = 0; i < vreg_count_; i++) { |
| 127 | value_representations_.Add(kNoRepresentation); |
| 128 | } |
| 129 | |
| 130 | // All registers are marked as "not blocked" (array initialized to false). |
| 131 | // Mark the unavailable ones as "blocked" (true). |
| 132 | for (intptr_t i = 0; i < kNumberOfCpuRegisters; i++) { |
| 133 | if ((kDartAvailableCpuRegs & (1 << i)) == 0) { |
| 134 | blocked_cpu_registers_[i] = true; |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | // FpuTMP is used as scratch by optimized code and parallel move resolver. |
| 139 | blocked_fpu_registers_[FpuTMP] = true; |
| 140 | |
| 141 | // Block additional registers needed preserved when generating intrinsics. |
| 142 | // TODO(fschneider): Handle saving and restoring these registers when |
| 143 | // generating intrinsic code. |
| 144 | if (intrinsic_mode) { |
| 145 | blocked_cpu_registers_[ARGS_DESC_REG] = true; |
| 146 | |
| 147 | #if !defined(TARGET_ARCH_IA32) |
| 148 | // Need to preserve CODE_REG to be able to store the PC marker |
| 149 | // and load the pool pointer. |
| 150 | blocked_cpu_registers_[CODE_REG] = true; |
| 151 | #endif |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | static void DeepLiveness(MaterializeObjectInstr* mat, BitVector* live_in) { |
| 156 | if (mat->was_visited_for_liveness()) { |
| 157 | return; |
| 158 | } |
| 159 | mat->mark_visited_for_liveness(); |
| 160 | |
| 161 | for (intptr_t i = 0; i < mat->InputCount(); i++) { |
| 162 | if (!mat->InputAt(i)->BindsToConstant()) { |
| 163 | Definition* defn = mat->InputAt(i)->definition(); |
| 164 | MaterializeObjectInstr* inner_mat = defn->AsMaterializeObject(); |
| 165 | if (inner_mat != NULL) { |
| 166 | DeepLiveness(inner_mat, live_in); |
| 167 | } else { |
| 168 | intptr_t idx = defn->ssa_temp_index(); |
| 169 | live_in->Add(idx); |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | void SSALivenessAnalysis::ComputeInitialSets() { |
| 176 | const intptr_t block_count = postorder_.length(); |
| 177 | for (intptr_t i = 0; i < block_count; i++) { |
| 178 | BlockEntryInstr* block = postorder_[i]; |
| 179 | |
| 180 | BitVector* kill = kill_[i]; |
| 181 | BitVector* live_in = live_in_[i]; |
| 182 | |
| 183 | // Iterate backwards starting at the last instruction. |
| 184 | for (BackwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 185 | Instruction* current = it.Current(); |
| 186 | |
| 187 | // Initialize location summary for instruction. |
| 188 | current->InitializeLocationSummary(zone(), true); // opt |
| 189 | |
| 190 | LocationSummary* locs = current->locs(); |
| 191 | #if defined(DEBUG) |
| 192 | locs->DiscoverWritableInputs(); |
| 193 | #endif |
| 194 | |
| 195 | // Handle definitions. |
| 196 | Definition* current_def = current->AsDefinition(); |
| 197 | if ((current_def != NULL) && current_def->HasSSATemp()) { |
| 198 | kill->Add(current_def->ssa_temp_index()); |
| 199 | live_in->Remove(current_def->ssa_temp_index()); |
| 200 | if (current_def->HasPairRepresentation()) { |
| 201 | kill->Add(ToSecondPairVreg(current_def->ssa_temp_index())); |
| 202 | live_in->Remove(ToSecondPairVreg(current_def->ssa_temp_index())); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | // Handle uses. |
| 207 | ASSERT(locs->input_count() == current->InputCount()); |
| 208 | for (intptr_t j = 0; j < current->InputCount(); j++) { |
| 209 | Value* input = current->InputAt(j); |
| 210 | |
| 211 | ASSERT(!locs->in(j).IsConstant() || input->BindsToConstant()); |
| 212 | if (locs->in(j).IsConstant()) continue; |
| 213 | |
| 214 | live_in->Add(input->definition()->ssa_temp_index()); |
| 215 | if (input->definition()->HasPairRepresentation()) { |
| 216 | live_in->Add(ToSecondPairVreg(input->definition()->ssa_temp_index())); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | // Add non-argument uses from the deoptimization environment (pushed |
| 221 | // arguments are not allocated by the register allocator). |
| 222 | if (current->env() != NULL) { |
| 223 | for (Environment::DeepIterator env_it(current->env()); !env_it.Done(); |
| 224 | env_it.Advance()) { |
| 225 | Definition* defn = env_it.CurrentValue()->definition(); |
| 226 | if (defn->IsMaterializeObject()) { |
| 227 | // MaterializeObject instruction is not in the graph. |
| 228 | // Treat its inputs as part of the environment. |
| 229 | DeepLiveness(defn->AsMaterializeObject(), live_in); |
| 230 | } else if (!defn->IsPushArgument() && !defn->IsConstant()) { |
| 231 | live_in->Add(defn->ssa_temp_index()); |
| 232 | if (defn->HasPairRepresentation()) { |
| 233 | live_in->Add(ToSecondPairVreg(defn->ssa_temp_index())); |
| 234 | } |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | // Handle phis. |
| 241 | if (block->IsJoinEntry()) { |
| 242 | JoinEntryInstr* join = block->AsJoinEntry(); |
| 243 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 244 | PhiInstr* phi = it.Current(); |
| 245 | ASSERT(phi != NULL); |
| 246 | kill->Add(phi->ssa_temp_index()); |
| 247 | live_in->Remove(phi->ssa_temp_index()); |
| 248 | if (phi->HasPairRepresentation()) { |
| 249 | kill->Add(ToSecondPairVreg(phi->ssa_temp_index())); |
| 250 | live_in->Remove(ToSecondPairVreg(phi->ssa_temp_index())); |
| 251 | } |
| 252 | |
| 253 | // If a phi input is not defined by the corresponding predecessor it |
| 254 | // must be marked live-in for that predecessor. |
| 255 | for (intptr_t k = 0; k < phi->InputCount(); k++) { |
| 256 | Value* val = phi->InputAt(k); |
| 257 | if (val->BindsToConstant()) continue; |
| 258 | |
| 259 | BlockEntryInstr* pred = block->PredecessorAt(k); |
| 260 | const intptr_t use = val->definition()->ssa_temp_index(); |
| 261 | if (!kill_[pred->postorder_number()]->Contains(use)) { |
| 262 | live_in_[pred->postorder_number()]->Add(use); |
| 263 | } |
| 264 | if (phi->HasPairRepresentation()) { |
| 265 | const intptr_t second_use = ToSecondPairVreg(use); |
| 266 | if (!kill_[pred->postorder_number()]->Contains(second_use)) { |
| 267 | live_in_[pred->postorder_number()]->Add(second_use); |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | } |
| 272 | } else if (auto entry = block->AsBlockEntryWithInitialDefs()) { |
| 273 | // Process initial definitions, i.e. parameters and special parameters. |
| 274 | for (intptr_t i = 0; i < entry->initial_definitions()->length(); i++) { |
| 275 | Definition* def = (*entry->initial_definitions())[i]; |
| 276 | const intptr_t vreg = def->ssa_temp_index(); |
| 277 | kill_[entry->postorder_number()]->Add(vreg); |
| 278 | live_in_[entry->postorder_number()]->Remove(vreg); |
| 279 | if (def->HasPairRepresentation()) { |
| 280 | kill_[entry->postorder_number()]->Add(ToSecondPairVreg((vreg))); |
| 281 | live_in_[entry->postorder_number()]->Remove(ToSecondPairVreg(vreg)); |
| 282 | } |
| 283 | } |
| 284 | } |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | UsePosition* LiveRange::AddUse(intptr_t pos, Location* location_slot) { |
| 289 | ASSERT(location_slot != NULL); |
| 290 | ASSERT((first_use_interval_->start_ <= pos) && |
| 291 | (pos <= first_use_interval_->end_)); |
| 292 | if (uses_ != NULL) { |
| 293 | if ((uses_->pos() == pos) && (uses_->location_slot() == location_slot)) { |
| 294 | return uses_; |
| 295 | } else if (uses_->pos() < pos) { |
| 296 | // If an instruction at position P is using the same value both as |
| 297 | // a fixed register input and a non-fixed input (in this order) we will |
| 298 | // add uses both at position P-1 and *then* P which will make |
| 299 | // uses_ unsorted unless we account for it here. |
| 300 | UsePosition* insert_after = uses_; |
| 301 | while ((insert_after->next() != NULL) && |
| 302 | (insert_after->next()->pos() < pos)) { |
| 303 | insert_after = insert_after->next(); |
| 304 | } |
| 305 | |
| 306 | UsePosition* insert_before = insert_after->next(); |
| 307 | while (insert_before != NULL && (insert_before->pos() == pos)) { |
| 308 | if (insert_before->location_slot() == location_slot) { |
| 309 | return insert_before; |
| 310 | } |
| 311 | insert_before = insert_before->next(); |
| 312 | } |
| 313 | |
| 314 | insert_after->set_next( |
| 315 | new UsePosition(pos, insert_after->next(), location_slot)); |
| 316 | return insert_after->next(); |
| 317 | } |
| 318 | } |
| 319 | uses_ = new UsePosition(pos, uses_, location_slot); |
| 320 | return uses_; |
| 321 | } |
| 322 | |
| 323 | void LiveRange::AddSafepoint(intptr_t pos, LocationSummary* locs) { |
| 324 | ASSERT(IsInstructionStartPosition(pos)); |
| 325 | SafepointPosition* safepoint = |
| 326 | new SafepointPosition(ToInstructionEnd(pos), locs); |
| 327 | |
| 328 | if (first_safepoint_ == NULL) { |
| 329 | ASSERT(last_safepoint_ == NULL); |
| 330 | first_safepoint_ = last_safepoint_ = safepoint; |
| 331 | } else { |
| 332 | ASSERT(last_safepoint_ != NULL); |
| 333 | // We assume that safepoints list is sorted by position and that |
| 334 | // safepoints are added in this order. |
| 335 | ASSERT(last_safepoint_->pos() < pos); |
| 336 | last_safepoint_->set_next(safepoint); |
| 337 | last_safepoint_ = safepoint; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | void LiveRange::AddHintedUse(intptr_t pos, |
| 342 | Location* location_slot, |
| 343 | Location* hint) { |
| 344 | ASSERT(hint != NULL); |
| 345 | AddUse(pos, location_slot)->set_hint(hint); |
| 346 | } |
| 347 | |
| 348 | void LiveRange::AddUseInterval(intptr_t start, intptr_t end) { |
| 349 | ASSERT(start < end); |
| 350 | |
| 351 | // Live ranges are being build by visiting instructions in post-order. |
| 352 | // This implies that use intervals will be prepended in a monotonically |
| 353 | // decreasing order. |
| 354 | if (first_use_interval() != NULL) { |
| 355 | // If the first use interval and the use interval we are adding |
| 356 | // touch then we can just extend the first interval to cover their |
| 357 | // union. |
| 358 | if (start > first_use_interval()->start()) { |
| 359 | // The only case when we can add intervals with start greater than |
| 360 | // start of an already created interval is BlockLocation. |
| 361 | ASSERT(vreg() == kNoVirtualRegister); |
| 362 | ASSERT(end <= first_use_interval()->end()); |
| 363 | return; |
| 364 | } else if (start == first_use_interval()->start()) { |
| 365 | // Grow first interval if necessary. |
| 366 | if (end <= first_use_interval()->end()) return; |
| 367 | first_use_interval_->end_ = end; |
| 368 | return; |
| 369 | } else if (end == first_use_interval()->start()) { |
| 370 | first_use_interval()->start_ = start; |
| 371 | return; |
| 372 | } |
| 373 | |
| 374 | ASSERT(end < first_use_interval()->start()); |
| 375 | } |
| 376 | |
| 377 | first_use_interval_ = new UseInterval(start, end, first_use_interval_); |
| 378 | if (last_use_interval_ == NULL) { |
| 379 | ASSERT(first_use_interval_->next() == NULL); |
| 380 | last_use_interval_ = first_use_interval_; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | void LiveRange::DefineAt(intptr_t pos) { |
| 385 | // Live ranges are being build by visiting instructions in post-order. |
| 386 | // This implies that use intervals will be prepended in a monotonically |
| 387 | // decreasing order. |
| 388 | // When we encounter a use of a value inside a block we optimistically |
| 389 | // expand the first use interval to cover the block from the start |
| 390 | // to the last use in the block and then we shrink it if we encounter |
| 391 | // definition of the value inside the same block. |
| 392 | if (first_use_interval_ == NULL) { |
| 393 | // Definition without a use. |
| 394 | first_use_interval_ = new UseInterval(pos, pos + 1, NULL); |
| 395 | last_use_interval_ = first_use_interval_; |
| 396 | } else { |
| 397 | // Shrink the first use interval. It was optimistically expanded to |
| 398 | // cover the block from the start to the last use in the block. |
| 399 | ASSERT(first_use_interval_->start_ <= pos); |
| 400 | first_use_interval_->start_ = pos; |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | LiveRange* FlowGraphAllocator::GetLiveRange(intptr_t vreg) { |
| 405 | if (live_ranges_[vreg] == NULL) { |
| 406 | Representation rep = value_representations_[vreg]; |
| 407 | ASSERT(rep != kNoRepresentation); |
| 408 | live_ranges_[vreg] = new LiveRange(vreg, rep); |
| 409 | } |
| 410 | return live_ranges_[vreg]; |
| 411 | } |
| 412 | |
| 413 | LiveRange* FlowGraphAllocator::MakeLiveRangeForTemporary() { |
| 414 | // Representation does not matter for temps. |
| 415 | Representation ignored = kNoRepresentation; |
| 416 | LiveRange* range = new LiveRange(kTempVirtualRegister, ignored); |
| 417 | #if defined(DEBUG) |
| 418 | temporaries_.Add(range); |
| 419 | #endif |
| 420 | return range; |
| 421 | } |
| 422 | |
| 423 | void FlowGraphAllocator::BlockRegisterLocation(Location loc, |
| 424 | intptr_t from, |
| 425 | intptr_t to, |
| 426 | bool* blocked_registers, |
| 427 | LiveRange** blocking_ranges) { |
| 428 | if (blocked_registers[loc.register_code()]) { |
| 429 | return; |
| 430 | } |
| 431 | |
| 432 | if (blocking_ranges[loc.register_code()] == NULL) { |
| 433 | Representation ignored = kNoRepresentation; |
| 434 | LiveRange* range = new LiveRange(kNoVirtualRegister, ignored); |
| 435 | blocking_ranges[loc.register_code()] = range; |
| 436 | range->set_assigned_location(loc); |
| 437 | #if defined(DEBUG) |
| 438 | temporaries_.Add(range); |
| 439 | #endif |
| 440 | } |
| 441 | |
| 442 | blocking_ranges[loc.register_code()]->AddUseInterval(from, to); |
| 443 | } |
| 444 | |
| 445 | // Block location from the start of the instruction to its end. |
| 446 | void FlowGraphAllocator::BlockLocation(Location loc, |
| 447 | intptr_t from, |
| 448 | intptr_t to) { |
| 449 | if (loc.IsRegister()) { |
| 450 | BlockRegisterLocation(loc, from, to, blocked_cpu_registers_, cpu_regs_); |
| 451 | } else if (loc.IsFpuRegister()) { |
| 452 | BlockRegisterLocation(loc, from, to, blocked_fpu_registers_, fpu_regs_); |
| 453 | } else { |
| 454 | UNREACHABLE(); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | void LiveRange::Print() { |
| 459 | if (first_use_interval() == NULL) { |
| 460 | return; |
| 461 | } |
| 462 | |
| 463 | THR_Print(" live range v%" Pd " [%" Pd ", %" Pd ") in " , vreg(), Start(), |
| 464 | End()); |
| 465 | assigned_location().Print(); |
| 466 | if (spill_slot_.HasStackIndex()) { |
| 467 | const intptr_t stack_slot = |
| 468 | -compiler::target::frame_layout.VariableIndexForFrameSlot( |
| 469 | spill_slot_.stack_index()); |
| 470 | THR_Print(" allocated spill slot: %" Pd "" , stack_slot); |
| 471 | } |
| 472 | THR_Print("\n" ); |
| 473 | |
| 474 | SafepointPosition* safepoint = first_safepoint(); |
| 475 | while (safepoint != NULL) { |
| 476 | THR_Print(" Safepoint [%" Pd "]: " , safepoint->pos()); |
| 477 | safepoint->locs()->stack_bitmap()->Print(); |
| 478 | THR_Print("\n" ); |
| 479 | safepoint = safepoint->next(); |
| 480 | } |
| 481 | |
| 482 | UsePosition* use_pos = uses_; |
| 483 | for (UseInterval* interval = first_use_interval_; interval != NULL; |
| 484 | interval = interval->next()) { |
| 485 | THR_Print(" use interval [%" Pd ", %" Pd ")\n" , interval->start(), |
| 486 | interval->end()); |
| 487 | while ((use_pos != NULL) && (use_pos->pos() <= interval->end())) { |
| 488 | THR_Print(" use at %" Pd "" , use_pos->pos()); |
| 489 | if (use_pos->location_slot() != NULL) { |
| 490 | THR_Print(" as " ); |
| 491 | use_pos->location_slot()->Print(); |
| 492 | } |
| 493 | THR_Print("\n" ); |
| 494 | use_pos = use_pos->next(); |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | if (next_sibling() != NULL) { |
| 499 | next_sibling()->Print(); |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | void FlowGraphAllocator::PrintLiveRanges() { |
| 504 | #if defined(DEBUG) |
| 505 | for (intptr_t i = 0; i < temporaries_.length(); i++) { |
| 506 | temporaries_[i]->Print(); |
| 507 | } |
| 508 | #endif |
| 509 | |
| 510 | for (intptr_t i = 0; i < live_ranges_.length(); i++) { |
| 511 | if (live_ranges_[i] != NULL) { |
| 512 | live_ranges_[i]->Print(); |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | // Returns true if all uses of the given range inside the |
| 518 | // given loop boundary have Any allocation policy. |
| 519 | static bool HasOnlyUnconstrainedUsesInLoop(LiveRange* range, |
| 520 | intptr_t boundary) { |
| 521 | UsePosition* use = range->first_use(); |
| 522 | while ((use != NULL) && (use->pos() < boundary)) { |
| 523 | if (!use->location_slot()->Equals(Location::Any())) { |
| 524 | return false; |
| 525 | } |
| 526 | use = use->next(); |
| 527 | } |
| 528 | return true; |
| 529 | } |
| 530 | |
| 531 | // Returns true if all uses of the given range have Any allocation policy. |
| 532 | static bool HasOnlyUnconstrainedUses(LiveRange* range) { |
| 533 | UsePosition* use = range->first_use(); |
| 534 | while (use != NULL) { |
| 535 | if (!use->location_slot()->Equals(Location::Any())) { |
| 536 | return false; |
| 537 | } |
| 538 | use = use->next(); |
| 539 | } |
| 540 | return true; |
| 541 | } |
| 542 | |
| 543 | void FlowGraphAllocator::BuildLiveRanges() { |
| 544 | const intptr_t block_count = postorder_.length(); |
| 545 | ASSERT(postorder_.Last()->IsGraphEntry()); |
| 546 | BitVector* current_interference_set = NULL; |
| 547 | Zone* zone = flow_graph_.zone(); |
| 548 | for (intptr_t i = 0; i < (block_count - 1); i++) { |
| 549 | BlockEntryInstr* block = postorder_[i]; |
| 550 | ASSERT(BlockEntryAt(block->start_pos()) == block); |
| 551 | |
| 552 | // For every SSA value that is live out of this block, create an interval |
| 553 | // that covers the whole block. It will be shortened if we encounter a |
| 554 | // definition of this value in this block. |
| 555 | for (BitVector::Iterator it(liveness_.GetLiveOutSetAt(i)); !it.Done(); |
| 556 | it.Advance()) { |
| 557 | LiveRange* range = GetLiveRange(it.Current()); |
| 558 | range->AddUseInterval(block->start_pos(), block->end_pos()); |
| 559 | } |
| 560 | |
| 561 | LoopInfo* loop_info = block->loop_info(); |
| 562 | if ((loop_info != nullptr) && (loop_info->IsBackEdge(block))) { |
| 563 | BitVector* backedge_interference = |
| 564 | extra_loop_info_[loop_info->id()]->backedge_interference; |
| 565 | if (backedge_interference != nullptr) { |
| 566 | // Restore interference for subsequent backedge a loop |
| 567 | // (perhaps inner loop's header reset set in the meanwhile). |
| 568 | current_interference_set = backedge_interference; |
| 569 | } else { |
| 570 | // All values flowing into the loop header are live at the |
| 571 | // back edge and can interfere with phi moves. |
| 572 | current_interference_set = new (zone) |
| 573 | BitVector(zone, flow_graph_.max_virtual_register_number()); |
| 574 | current_interference_set->AddAll( |
| 575 | liveness_.GetLiveInSet(loop_info->header())); |
| 576 | extra_loop_info_[loop_info->id()]->backedge_interference = |
| 577 | current_interference_set; |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | // Connect outgoing phi-moves that were created in NumberInstructions |
| 582 | // and find last instruction that contributes to liveness. |
| 583 | Instruction* current = |
| 584 | ConnectOutgoingPhiMoves(block, current_interference_set); |
| 585 | |
| 586 | // Now process all instructions in reverse order. |
| 587 | while (current != block) { |
| 588 | // Skip parallel moves that we insert while processing instructions. |
| 589 | if (!current->IsParallelMove()) { |
| 590 | ProcessOneInstruction(block, current, current_interference_set); |
| 591 | } |
| 592 | current = current->previous(); |
| 593 | } |
| 594 | |
| 595 | // Check if any values live into the loop can be spilled for free. |
| 596 | if (block->IsLoopHeader()) { |
| 597 | ASSERT(loop_info != nullptr); |
| 598 | current_interference_set = nullptr; |
| 599 | for (BitVector::Iterator it(liveness_.GetLiveInSetAt(i)); !it.Done(); |
| 600 | it.Advance()) { |
| 601 | LiveRange* range = GetLiveRange(it.Current()); |
| 602 | intptr_t loop_end = extra_loop_info_[loop_info->id()]->end; |
| 603 | if (HasOnlyUnconstrainedUsesInLoop(range, loop_end)) { |
| 604 | range->MarkHasOnlyUnconstrainedUsesInLoop(loop_info->id()); |
| 605 | } |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | if (auto join_entry = block->AsJoinEntry()) { |
| 610 | ConnectIncomingPhiMoves(join_entry); |
| 611 | } else if (auto catch_entry = block->AsCatchBlockEntry()) { |
| 612 | // Process initial definitions. |
| 613 | ProcessEnvironmentUses(catch_entry, catch_entry); // For lazy deopt |
| 614 | for (intptr_t i = 0; i < catch_entry->initial_definitions()->length(); |
| 615 | i++) { |
| 616 | Definition* defn = (*catch_entry->initial_definitions())[i]; |
| 617 | LiveRange* range = GetLiveRange(defn->ssa_temp_index()); |
| 618 | range->DefineAt(catch_entry->start_pos()); // Defined at block entry. |
| 619 | ProcessInitialDefinition(defn, range, catch_entry); |
| 620 | } |
| 621 | } else if (auto entry = block->AsBlockEntryWithInitialDefs()) { |
| 622 | ASSERT(block->IsFunctionEntry() || block->IsOsrEntry()); |
| 623 | auto& initial_definitions = *entry->initial_definitions(); |
| 624 | for (intptr_t i = 0; i < initial_definitions.length(); i++) { |
| 625 | Definition* defn = initial_definitions[i]; |
| 626 | if (defn->HasPairRepresentation()) { |
| 627 | // The lower bits are pushed after the higher bits |
| 628 | LiveRange* range = |
| 629 | GetLiveRange(ToSecondPairVreg(defn->ssa_temp_index())); |
| 630 | range->AddUseInterval(entry->start_pos(), entry->start_pos() + 2); |
| 631 | range->DefineAt(entry->start_pos()); |
| 632 | ProcessInitialDefinition(defn, range, entry, |
| 633 | /*second_location_for_definition=*/true); |
| 634 | } |
| 635 | LiveRange* range = GetLiveRange(defn->ssa_temp_index()); |
| 636 | range->AddUseInterval(entry->start_pos(), entry->start_pos() + 2); |
| 637 | range->DefineAt(entry->start_pos()); |
| 638 | ProcessInitialDefinition(defn, range, entry); |
| 639 | } |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | // Process incoming parameters and constants. Do this after all other |
| 644 | // instructions so that safepoints for all calls have already been found. |
| 645 | GraphEntryInstr* graph_entry = flow_graph_.graph_entry(); |
| 646 | for (intptr_t i = 0; i < graph_entry->initial_definitions()->length(); i++) { |
| 647 | Definition* defn = (*graph_entry->initial_definitions())[i]; |
| 648 | ASSERT(!defn->HasPairRepresentation()); |
| 649 | LiveRange* range = GetLiveRange(defn->ssa_temp_index()); |
| 650 | range->AddUseInterval(graph_entry->start_pos(), graph_entry->end_pos()); |
| 651 | range->DefineAt(graph_entry->start_pos()); |
| 652 | ProcessInitialDefinition(defn, range, graph_entry); |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | void FlowGraphAllocator::SplitInitialDefinitionAt(LiveRange* range, |
| 657 | intptr_t pos) { |
| 658 | if (range->End() > pos) { |
| 659 | LiveRange* tail = range->SplitAt(pos); |
| 660 | CompleteRange(tail, Location::kRegister); |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | void FlowGraphAllocator::ProcessInitialDefinition( |
| 665 | Definition* defn, |
| 666 | LiveRange* range, |
| 667 | BlockEntryInstr* block, |
| 668 | bool second_location_for_definition) { |
| 669 | // Save the range end because it may change below. |
| 670 | const intptr_t range_end = range->End(); |
| 671 | |
| 672 | // TODO(31956): Clean up this code and factor common functionality out. |
| 673 | // Consider also making a separate [ProcessInitialDefinition] for |
| 674 | // [CatchBlockEntry]'s. |
| 675 | if (block->IsCatchBlockEntry()) { |
| 676 | if (SpecialParameterInstr* param = defn->AsSpecialParameter()) { |
| 677 | Location loc; |
| 678 | switch (param->kind()) { |
| 679 | case SpecialParameterInstr::kException: |
| 680 | loc = LocationExceptionLocation(); |
| 681 | break; |
| 682 | case SpecialParameterInstr::kStackTrace: |
| 683 | loc = LocationStackTraceLocation(); |
| 684 | break; |
| 685 | default: |
| 686 | UNREACHABLE(); |
| 687 | } |
| 688 | range->set_assigned_location(loc); |
| 689 | AssignSafepoints(defn, range); |
| 690 | range->finger()->Initialize(range); |
| 691 | SplitInitialDefinitionAt(range, GetLifetimePosition(block) + 1); |
| 692 | ConvertAllUses(range); |
| 693 | |
| 694 | // We have exception/stacktrace in a register and need to |
| 695 | // ensure this register is not available for register allocation during |
| 696 | // the [CatchBlockEntry] to ensure it's not overwritten. |
| 697 | if (loc.IsRegister()) { |
| 698 | BlockLocation(loc, GetLifetimePosition(block), |
| 699 | GetLifetimePosition(block) + 1); |
| 700 | } |
| 701 | return; |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | if (defn->IsParameter()) { |
| 706 | // Only function entries may have unboxed parameters, possibly making the |
| 707 | // parameters size different from the number of parameters on 32-bit |
| 708 | // architectures. |
| 709 | const intptr_t parameters_size = block->IsFunctionEntry() |
| 710 | ? flow_graph_.direct_parameters_size() |
| 711 | : flow_graph_.num_direct_parameters(); |
| 712 | ParameterInstr* param = defn->AsParameter(); |
| 713 | intptr_t slot_index = |
| 714 | param->param_offset() + (second_location_for_definition ? -1 : 0); |
| 715 | ASSERT(slot_index >= 0); |
| 716 | if (param->base_reg() == FPREG) { |
| 717 | // Slot index for the rightmost fixed parameter is -1. |
| 718 | slot_index -= parameters_size; |
| 719 | } else { |
| 720 | // Slot index for a "frameless" parameter is reversed. |
| 721 | ASSERT(param->base_reg() == SPREG); |
| 722 | ASSERT(slot_index < parameters_size); |
| 723 | slot_index = parameters_size - 1 - slot_index; |
| 724 | } |
| 725 | |
| 726 | if (param->base_reg() == FPREG) { |
| 727 | slot_index = |
| 728 | compiler::target::frame_layout.FrameSlotForVariableIndex(-slot_index); |
| 729 | } else { |
| 730 | ASSERT(param->base_reg() == SPREG); |
| 731 | slot_index += compiler::target::frame_layout.last_param_from_entry_sp; |
| 732 | } |
| 733 | |
| 734 | if (param->representation() == kUnboxedInt64 || |
| 735 | param->representation() == kTagged) { |
| 736 | const auto location = Location::StackSlot(slot_index, param->base_reg()); |
| 737 | range->set_assigned_location(location); |
| 738 | range->set_spill_slot(location); |
| 739 | } else { |
| 740 | ASSERT(param->representation() == kUnboxedDouble); |
| 741 | const auto location = |
| 742 | Location::DoubleStackSlot(slot_index, param->base_reg()); |
| 743 | range->set_assigned_location(location); |
| 744 | range->set_spill_slot(location); |
| 745 | } |
| 746 | } else if (defn->IsSpecialParameter()) { |
| 747 | SpecialParameterInstr* param = defn->AsSpecialParameter(); |
| 748 | ASSERT(param->kind() == SpecialParameterInstr::kArgDescriptor); |
| 749 | Location loc; |
| 750 | loc = Location::RegisterLocation(ARGS_DESC_REG); |
| 751 | range->set_assigned_location(loc); |
| 752 | if (loc.IsRegister()) { |
| 753 | AssignSafepoints(defn, range); |
| 754 | if (range->End() > (GetLifetimePosition(block) + 2)) { |
| 755 | SplitInitialDefinitionAt(range, GetLifetimePosition(block) + 2); |
| 756 | } |
| 757 | ConvertAllUses(range); |
| 758 | BlockLocation(loc, GetLifetimePosition(block), |
| 759 | GetLifetimePosition(block) + 2); |
| 760 | return; |
| 761 | } |
| 762 | } else { |
| 763 | ConstantInstr* constant = defn->AsConstant(); |
| 764 | ASSERT(constant != NULL); |
| 765 | range->set_assigned_location(Location::Constant(constant)); |
| 766 | range->set_spill_slot(Location::Constant(constant)); |
| 767 | } |
| 768 | AssignSafepoints(defn, range); |
| 769 | range->finger()->Initialize(range); |
| 770 | UsePosition* use = |
| 771 | range->finger()->FirstRegisterBeneficialUse(block->start_pos()); |
| 772 | if (use != NULL) { |
| 773 | LiveRange* tail = SplitBetween(range, block->start_pos(), use->pos()); |
| 774 | CompleteRange(tail, defn->RegisterKindForResult()); |
| 775 | } |
| 776 | ConvertAllUses(range); |
| 777 | Location spill_slot = range->spill_slot(); |
| 778 | if (spill_slot.IsStackSlot() && spill_slot.base_reg() == FPREG && |
| 779 | spill_slot.stack_index() <= |
| 780 | compiler::target::frame_layout.first_local_from_fp) { |
| 781 | // On entry to the function, range is stored on the stack above the FP in |
| 782 | // the same space which is used for spill slots. Update spill slot state to |
| 783 | // reflect that and prevent register allocator from reusing this space as a |
| 784 | // spill slot. |
| 785 | spill_slots_.Add(range_end); |
| 786 | quad_spill_slots_.Add(false); |
| 787 | untagged_spill_slots_.Add(false); |
| 788 | // Note, all incoming parameters are assumed to be tagged. |
| 789 | MarkAsObjectAtSafepoints(range); |
| 790 | } else if (defn->IsConstant() && block->IsCatchBlockEntry()) { |
| 791 | // Constants at catch block entries consume spill slots. |
| 792 | spill_slots_.Add(range_end); |
| 793 | quad_spill_slots_.Add(false); |
| 794 | untagged_spill_slots_.Add(false); |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | static Location::Kind RegisterKindFromPolicy(Location loc) { |
| 799 | if (loc.policy() == Location::kRequiresFpuRegister) { |
| 800 | return Location::kFpuRegister; |
| 801 | } else { |
| 802 | return Location::kRegister; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | // |
| 807 | // When describing shape of live ranges in comments below we are going to use |
| 808 | // the following notation: |
| 809 | // |
| 810 | // B block entry |
| 811 | // g g' start and end of goto instruction |
| 812 | // i i' start and end of any other instruction |
| 813 | // j j' start and end of any other instruction |
| 814 | |
| 815 | // - body of a use interval |
| 816 | // [ start of a use interval |
| 817 | // ) end of a use interval |
| 818 | // * use |
| 819 | // |
| 820 | // For example diagram |
| 821 | // |
| 822 | // i i' |
| 823 | // value --*--) |
| 824 | // |
| 825 | // can be read as: use interval for value starts somewhere before instruction |
| 826 | // and extends until currently processed instruction, there is a use of value |
| 827 | // at the start of the instruction. |
| 828 | // |
| 829 | |
| 830 | Instruction* FlowGraphAllocator::ConnectOutgoingPhiMoves( |
| 831 | BlockEntryInstr* block, |
| 832 | BitVector* interfere_at_backedge) { |
| 833 | Instruction* last = block->last_instruction(); |
| 834 | |
| 835 | GotoInstr* goto_instr = last->AsGoto(); |
| 836 | if (goto_instr == NULL) return last; |
| 837 | |
| 838 | // If we have a parallel move here then the successor block must be a |
| 839 | // join with phis. The phi inputs contribute uses to each predecessor |
| 840 | // block (and the phi outputs contribute definitions in the successor |
| 841 | // block). |
| 842 | if (!goto_instr->HasParallelMove()) return goto_instr->previous(); |
| 843 | ParallelMoveInstr* parallel_move = goto_instr->parallel_move(); |
| 844 | |
| 845 | // All uses are recorded at the position of parallel move preceding goto. |
| 846 | const intptr_t pos = GetLifetimePosition(goto_instr); |
| 847 | |
| 848 | JoinEntryInstr* join = goto_instr->successor(); |
| 849 | ASSERT(join != NULL); |
| 850 | |
| 851 | // Search for the index of the current block in the predecessors of |
| 852 | // the join. |
| 853 | const intptr_t pred_index = join->IndexOfPredecessor(block); |
| 854 | |
| 855 | // Record the corresponding phi input use for each phi. |
| 856 | intptr_t move_index = 0; |
| 857 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 858 | PhiInstr* phi = it.Current(); |
| 859 | Value* val = phi->InputAt(pred_index); |
| 860 | MoveOperands* move = parallel_move->MoveOperandsAt(move_index++); |
| 861 | |
| 862 | ConstantInstr* constant = val->definition()->AsConstant(); |
| 863 | if (constant != NULL) { |
| 864 | move->set_src(Location::Constant(constant)); |
| 865 | continue; |
| 866 | } |
| 867 | |
| 868 | // Expected shape of live ranges: |
| 869 | // |
| 870 | // g g' |
| 871 | // value --* |
| 872 | // |
| 873 | intptr_t vreg = val->definition()->ssa_temp_index(); |
| 874 | LiveRange* range = GetLiveRange(vreg); |
| 875 | if (interfere_at_backedge != NULL) interfere_at_backedge->Add(vreg); |
| 876 | |
| 877 | range->AddUseInterval(block->start_pos(), pos); |
| 878 | range->AddHintedUse( |
| 879 | pos, move->src_slot(), |
| 880 | GetLiveRange(phi->ssa_temp_index())->assigned_location_slot()); |
| 881 | move->set_src(Location::PrefersRegister()); |
| 882 | |
| 883 | if (val->definition()->HasPairRepresentation()) { |
| 884 | move = parallel_move->MoveOperandsAt(move_index++); |
| 885 | vreg = ToSecondPairVreg(vreg); |
| 886 | range = GetLiveRange(vreg); |
| 887 | if (interfere_at_backedge != NULL) { |
| 888 | interfere_at_backedge->Add(vreg); |
| 889 | } |
| 890 | range->AddUseInterval(block->start_pos(), pos); |
| 891 | range->AddHintedUse(pos, move->src_slot(), |
| 892 | GetLiveRange(ToSecondPairVreg(phi->ssa_temp_index())) |
| 893 | ->assigned_location_slot()); |
| 894 | move->set_src(Location::PrefersRegister()); |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | // Begin backward iteration with the instruction before the parallel |
| 899 | // move. |
| 900 | return goto_instr->previous(); |
| 901 | } |
| 902 | |
| 903 | void FlowGraphAllocator::ConnectIncomingPhiMoves(JoinEntryInstr* join) { |
| 904 | // For join blocks we need to add destinations of phi resolution moves |
| 905 | // to phi's live range so that register allocator will fill them with moves. |
| 906 | |
| 907 | // All uses are recorded at the start position in the block. |
| 908 | const intptr_t pos = join->start_pos(); |
| 909 | const bool = join->IsLoopHeader(); |
| 910 | |
| 911 | intptr_t move_idx = 0; |
| 912 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 913 | PhiInstr* phi = it.Current(); |
| 914 | ASSERT(phi != NULL); |
| 915 | const intptr_t vreg = phi->ssa_temp_index(); |
| 916 | ASSERT(vreg >= 0); |
| 917 | const bool is_pair_phi = phi->HasPairRepresentation(); |
| 918 | |
| 919 | // Expected shape of live range: |
| 920 | // |
| 921 | // B |
| 922 | // phi [-------- |
| 923 | // |
| 924 | LiveRange* range = GetLiveRange(vreg); |
| 925 | range->DefineAt(pos); // Shorten live range. |
| 926 | if (is_loop_header) range->mark_loop_phi(); |
| 927 | |
| 928 | if (is_pair_phi) { |
| 929 | LiveRange* second_range = GetLiveRange(ToSecondPairVreg(vreg)); |
| 930 | second_range->DefineAt(pos); // Shorten live range. |
| 931 | if (is_loop_header) second_range->mark_loop_phi(); |
| 932 | } |
| 933 | |
| 934 | for (intptr_t pred_idx = 0; pred_idx < phi->InputCount(); pred_idx++) { |
| 935 | BlockEntryInstr* pred = join->PredecessorAt(pred_idx); |
| 936 | GotoInstr* goto_instr = pred->last_instruction()->AsGoto(); |
| 937 | ASSERT((goto_instr != NULL) && (goto_instr->HasParallelMove())); |
| 938 | MoveOperands* move = |
| 939 | goto_instr->parallel_move()->MoveOperandsAt(move_idx); |
| 940 | move->set_dest(Location::PrefersRegister()); |
| 941 | range->AddUse(pos, move->dest_slot()); |
| 942 | if (is_pair_phi) { |
| 943 | LiveRange* second_range = GetLiveRange(ToSecondPairVreg(vreg)); |
| 944 | MoveOperands* second_move = |
| 945 | goto_instr->parallel_move()->MoveOperandsAt(move_idx + 1); |
| 946 | second_move->set_dest(Location::PrefersRegister()); |
| 947 | second_range->AddUse(pos, second_move->dest_slot()); |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | // All phi resolution moves are connected. Phi's live range is |
| 952 | // complete. |
| 953 | AssignSafepoints(phi, range); |
| 954 | CompleteRange(range, phi->RegisterKindForResult()); |
| 955 | if (is_pair_phi) { |
| 956 | LiveRange* second_range = GetLiveRange(ToSecondPairVreg(vreg)); |
| 957 | AssignSafepoints(phi, second_range); |
| 958 | CompleteRange(second_range, phi->RegisterKindForResult()); |
| 959 | } |
| 960 | |
| 961 | move_idx += is_pair_phi ? 2 : 1; |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | void FlowGraphAllocator::ProcessEnvironmentUses(BlockEntryInstr* block, |
| 966 | Instruction* current) { |
| 967 | ASSERT(current->env() != NULL); |
| 968 | Environment* env = current->env(); |
| 969 | while (env != NULL) { |
| 970 | // Any value mentioned in the deoptimization environment should survive |
| 971 | // until the end of instruction but it does not need to be in the register. |
| 972 | // Expected shape of live range: |
| 973 | // |
| 974 | // i i' |
| 975 | // value -----* |
| 976 | // |
| 977 | |
| 978 | if (env->Length() == 0) { |
| 979 | env = env->outer(); |
| 980 | continue; |
| 981 | } |
| 982 | |
| 983 | const intptr_t block_start_pos = block->start_pos(); |
| 984 | const intptr_t use_pos = GetLifetimePosition(current) + 1; |
| 985 | |
| 986 | Location* locations = flow_graph_.zone()->Alloc<Location>(env->Length()); |
| 987 | |
| 988 | for (intptr_t i = 0; i < env->Length(); ++i) { |
| 989 | Value* value = env->ValueAt(i); |
| 990 | Definition* def = value->definition(); |
| 991 | if (def->HasPairRepresentation()) { |
| 992 | locations[i] = Location::Pair(Location::Any(), Location::Any()); |
| 993 | } else { |
| 994 | locations[i] = Location::Any(); |
| 995 | } |
| 996 | |
| 997 | if (def->IsPushArgument()) { |
| 998 | // Frame size is unknown until after allocation. |
| 999 | locations[i] = Location::NoLocation(); |
| 1000 | continue; |
| 1001 | } |
| 1002 | |
| 1003 | ConstantInstr* constant = def->AsConstant(); |
| 1004 | if (constant != NULL) { |
| 1005 | locations[i] = Location::Constant(constant); |
| 1006 | continue; |
| 1007 | } |
| 1008 | |
| 1009 | MaterializeObjectInstr* mat = def->AsMaterializeObject(); |
| 1010 | if (mat != NULL) { |
| 1011 | // MaterializeObject itself produces no value. But its uses |
| 1012 | // are treated as part of the environment: allocated locations |
| 1013 | // will be used when building deoptimization data. |
| 1014 | locations[i] = Location::NoLocation(); |
| 1015 | ProcessMaterializationUses(block, block_start_pos, use_pos, mat); |
| 1016 | continue; |
| 1017 | } |
| 1018 | |
| 1019 | if (def->HasPairRepresentation()) { |
| 1020 | PairLocation* location_pair = locations[i].AsPairLocation(); |
| 1021 | { |
| 1022 | // First live range. |
| 1023 | LiveRange* range = GetLiveRange(def->ssa_temp_index()); |
| 1024 | range->AddUseInterval(block_start_pos, use_pos); |
| 1025 | range->AddUse(use_pos, location_pair->SlotAt(0)); |
| 1026 | } |
| 1027 | { |
| 1028 | // Second live range. |
| 1029 | LiveRange* range = |
| 1030 | GetLiveRange(ToSecondPairVreg(def->ssa_temp_index())); |
| 1031 | range->AddUseInterval(block_start_pos, use_pos); |
| 1032 | range->AddUse(use_pos, location_pair->SlotAt(1)); |
| 1033 | } |
| 1034 | } else { |
| 1035 | LiveRange* range = GetLiveRange(def->ssa_temp_index()); |
| 1036 | range->AddUseInterval(block_start_pos, use_pos); |
| 1037 | range->AddUse(use_pos, &locations[i]); |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | env->set_locations(locations); |
| 1042 | env = env->outer(); |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | void FlowGraphAllocator::ProcessMaterializationUses( |
| 1047 | BlockEntryInstr* block, |
| 1048 | const intptr_t block_start_pos, |
| 1049 | const intptr_t use_pos, |
| 1050 | MaterializeObjectInstr* mat) { |
| 1051 | // Materialization can occur several times in the same environment. |
| 1052 | // Check if we already processed this one. |
| 1053 | if (mat->locations() != NULL) { |
| 1054 | return; // Already processed. |
| 1055 | } |
| 1056 | |
| 1057 | // Initialize location for every input of the MaterializeObject instruction. |
| 1058 | Location* locations = flow_graph_.zone()->Alloc<Location>(mat->InputCount()); |
| 1059 | mat->set_locations(locations); |
| 1060 | |
| 1061 | for (intptr_t i = 0; i < mat->InputCount(); ++i) { |
| 1062 | Definition* def = mat->InputAt(i)->definition(); |
| 1063 | |
| 1064 | ConstantInstr* constant = def->AsConstant(); |
| 1065 | if (constant != NULL) { |
| 1066 | locations[i] = Location::Constant(constant); |
| 1067 | continue; |
| 1068 | } |
| 1069 | |
| 1070 | if (def->HasPairRepresentation()) { |
| 1071 | locations[i] = Location::Pair(Location::Any(), Location::Any()); |
| 1072 | PairLocation* location_pair = locations[i].AsPairLocation(); |
| 1073 | { |
| 1074 | // First live range. |
| 1075 | LiveRange* range = GetLiveRange(def->ssa_temp_index()); |
| 1076 | range->AddUseInterval(block_start_pos, use_pos); |
| 1077 | range->AddUse(use_pos, location_pair->SlotAt(0)); |
| 1078 | } |
| 1079 | { |
| 1080 | // Second live range. |
| 1081 | LiveRange* range = |
| 1082 | GetLiveRange(ToSecondPairVreg(def->ssa_temp_index())); |
| 1083 | range->AddUseInterval(block_start_pos, use_pos); |
| 1084 | range->AddUse(use_pos, location_pair->SlotAt(1)); |
| 1085 | } |
| 1086 | } else if (def->IsMaterializeObject()) { |
| 1087 | locations[i] = Location::NoLocation(); |
| 1088 | ProcessMaterializationUses(block, block_start_pos, use_pos, |
| 1089 | def->AsMaterializeObject()); |
| 1090 | } else { |
| 1091 | locations[i] = Location::Any(); |
| 1092 | LiveRange* range = GetLiveRange(def->ssa_temp_index()); |
| 1093 | range->AddUseInterval(block_start_pos, use_pos); |
| 1094 | range->AddUse(use_pos, &locations[i]); |
| 1095 | } |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | void FlowGraphAllocator::ProcessOneInput(BlockEntryInstr* block, |
| 1100 | intptr_t pos, |
| 1101 | Location* in_ref, |
| 1102 | Value* input, |
| 1103 | intptr_t vreg, |
| 1104 | RegisterSet* live_registers) { |
| 1105 | ASSERT(in_ref != NULL); |
| 1106 | ASSERT(!in_ref->IsPairLocation()); |
| 1107 | ASSERT(input != NULL); |
| 1108 | ASSERT(block != NULL); |
| 1109 | LiveRange* range = GetLiveRange(vreg); |
| 1110 | if (in_ref->IsMachineRegister()) { |
| 1111 | // Input is expected in a fixed register. Expected shape of |
| 1112 | // live ranges: |
| 1113 | // |
| 1114 | // j' i i' |
| 1115 | // value --* |
| 1116 | // register [-----) |
| 1117 | // |
| 1118 | if (live_registers != NULL) { |
| 1119 | live_registers->Add(*in_ref, range->representation()); |
| 1120 | } |
| 1121 | MoveOperands* move = AddMoveAt(pos - 1, *in_ref, Location::Any()); |
| 1122 | ASSERT(!in_ref->IsRegister() || |
| 1123 | ((1 << in_ref->reg()) & kDartAvailableCpuRegs) != 0); |
| 1124 | BlockLocation(*in_ref, pos - 1, pos + 1); |
| 1125 | range->AddUseInterval(block->start_pos(), pos - 1); |
| 1126 | range->AddHintedUse(pos - 1, move->src_slot(), in_ref); |
| 1127 | } else if (in_ref->IsUnallocated()) { |
| 1128 | if (in_ref->policy() == Location::kWritableRegister) { |
| 1129 | // Writable unallocated input. Expected shape of |
| 1130 | // live ranges: |
| 1131 | // |
| 1132 | // i i' |
| 1133 | // value --* |
| 1134 | // temp [--) |
| 1135 | MoveOperands* move = AddMoveAt(pos, Location::RequiresRegister(), |
| 1136 | Location::PrefersRegister()); |
| 1137 | |
| 1138 | // Add uses to the live range of the input. |
| 1139 | range->AddUseInterval(block->start_pos(), pos); |
| 1140 | range->AddUse(pos, move->src_slot()); |
| 1141 | |
| 1142 | // Create live range for the temporary. |
| 1143 | LiveRange* temp = MakeLiveRangeForTemporary(); |
| 1144 | temp->AddUseInterval(pos, pos + 1); |
| 1145 | temp->AddHintedUse(pos, in_ref, move->src_slot()); |
| 1146 | temp->AddUse(pos, move->dest_slot()); |
| 1147 | *in_ref = Location::RequiresRegister(); |
| 1148 | CompleteRange(temp, RegisterKindFromPolicy(*in_ref)); |
| 1149 | } else { |
| 1150 | // Normal unallocated input. Expected shape of |
| 1151 | // live ranges: |
| 1152 | // |
| 1153 | // i i' |
| 1154 | // value -----* |
| 1155 | // |
| 1156 | range->AddUseInterval(block->start_pos(), pos + 1); |
| 1157 | range->AddUse(pos + 1, in_ref); |
| 1158 | } |
| 1159 | } else { |
| 1160 | ASSERT(in_ref->IsConstant()); |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | void FlowGraphAllocator::ProcessOneOutput(BlockEntryInstr* block, |
| 1165 | intptr_t pos, |
| 1166 | Location* out, |
| 1167 | Definition* def, |
| 1168 | intptr_t vreg, |
| 1169 | bool output_same_as_first_input, |
| 1170 | Location* in_ref, |
| 1171 | Definition* input, |
| 1172 | intptr_t input_vreg, |
| 1173 | BitVector* interference_set) { |
| 1174 | ASSERT(out != NULL); |
| 1175 | ASSERT(!out->IsPairLocation()); |
| 1176 | ASSERT(def != NULL); |
| 1177 | ASSERT(block != NULL); |
| 1178 | |
| 1179 | LiveRange* range = |
| 1180 | vreg >= 0 ? GetLiveRange(vreg) : MakeLiveRangeForTemporary(); |
| 1181 | |
| 1182 | // Process output and finalize its liverange. |
| 1183 | if (out->IsMachineRegister()) { |
| 1184 | // Fixed output location. Expected shape of live range: |
| 1185 | // |
| 1186 | // i i' j j' |
| 1187 | // register [--) |
| 1188 | // output [------- |
| 1189 | // |
| 1190 | ASSERT(!out->IsRegister() || |
| 1191 | ((1 << out->reg()) & kDartAvailableCpuRegs) != 0); |
| 1192 | BlockLocation(*out, pos, pos + 1); |
| 1193 | |
| 1194 | if (range->vreg() == kTempVirtualRegister) return; |
| 1195 | |
| 1196 | // We need to emit move connecting fixed register with another location |
| 1197 | // that will be allocated for this output's live range. |
| 1198 | // Special case: fixed output followed by a fixed input last use. |
| 1199 | UsePosition* use = range->first_use(); |
| 1200 | |
| 1201 | // If the value has no uses we don't need to allocate it. |
| 1202 | if (use == NULL) return; |
| 1203 | |
| 1204 | // Connect fixed output to all inputs that immediately follow to avoid |
| 1205 | // allocating an intermediary register. |
| 1206 | for (; use != nullptr; use = use->next()) { |
| 1207 | if (use->pos() == (pos + 1)) { |
| 1208 | // Allocate and then drop this use. |
| 1209 | ASSERT(use->location_slot()->IsUnallocated()); |
| 1210 | *(use->location_slot()) = *out; |
| 1211 | range->set_first_use(use->next()); |
| 1212 | } else { |
| 1213 | ASSERT(use->pos() > (pos + 1)); // sorted |
| 1214 | break; |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | // Shorten live range to the point of definition, this might make the range |
| 1219 | // empty (if the only use immediately follows). If range is not empty add |
| 1220 | // move from a fixed register to an unallocated location. |
| 1221 | range->DefineAt(pos + 1); |
| 1222 | if (range->Start() == range->End()) return; |
| 1223 | |
| 1224 | MoveOperands* move = AddMoveAt(pos + 1, Location::Any(), *out); |
| 1225 | range->AddHintedUse(pos + 1, move->dest_slot(), out); |
| 1226 | } else if (output_same_as_first_input) { |
| 1227 | ASSERT(in_ref != NULL); |
| 1228 | ASSERT(input != NULL); |
| 1229 | // Output register will contain a value of the first input at instruction's |
| 1230 | // start. Expected shape of live ranges: |
| 1231 | // |
| 1232 | // i i' |
| 1233 | // input #0 --* |
| 1234 | // output [---- |
| 1235 | // |
| 1236 | ASSERT(in_ref->Equals(Location::RequiresRegister()) || |
| 1237 | in_ref->Equals(Location::RequiresFpuRegister())); |
| 1238 | *out = *in_ref; |
| 1239 | // Create move that will copy value between input and output. |
| 1240 | MoveOperands* move = |
| 1241 | AddMoveAt(pos, Location::RequiresRegister(), Location::Any()); |
| 1242 | |
| 1243 | // Add uses to the live range of the input. |
| 1244 | LiveRange* input_range = GetLiveRange(input_vreg); |
| 1245 | input_range->AddUseInterval(block->start_pos(), pos); |
| 1246 | input_range->AddUse(pos, move->src_slot()); |
| 1247 | |
| 1248 | // Shorten output live range to the point of definition and add both input |
| 1249 | // and output uses slots to be filled by allocator. |
| 1250 | range->DefineAt(pos); |
| 1251 | range->AddHintedUse(pos, out, move->src_slot()); |
| 1252 | range->AddUse(pos, move->dest_slot()); |
| 1253 | range->AddUse(pos, in_ref); |
| 1254 | |
| 1255 | if ((interference_set != NULL) && (range->vreg() >= 0) && |
| 1256 | interference_set->Contains(range->vreg())) { |
| 1257 | interference_set->Add(input->ssa_temp_index()); |
| 1258 | } |
| 1259 | } else { |
| 1260 | // Normal unallocated location that requires a register. Expected shape of |
| 1261 | // live range: |
| 1262 | // |
| 1263 | // i i' |
| 1264 | // output [------- |
| 1265 | // |
| 1266 | ASSERT(out->Equals(Location::RequiresRegister()) || |
| 1267 | out->Equals(Location::RequiresFpuRegister())); |
| 1268 | |
| 1269 | // Shorten live range to the point of definition and add use to be filled by |
| 1270 | // allocator. |
| 1271 | range->DefineAt(pos); |
| 1272 | range->AddUse(pos, out); |
| 1273 | } |
| 1274 | |
| 1275 | AssignSafepoints(def, range); |
| 1276 | CompleteRange(range, def->RegisterKindForResult()); |
| 1277 | } |
| 1278 | |
| 1279 | // Create and update live ranges corresponding to instruction's inputs, |
| 1280 | // temporaries and output. |
| 1281 | void FlowGraphAllocator::ProcessOneInstruction(BlockEntryInstr* block, |
| 1282 | Instruction* current, |
| 1283 | BitVector* interference_set) { |
| 1284 | LocationSummary* locs = current->locs(); |
| 1285 | |
| 1286 | Definition* def = current->AsDefinition(); |
| 1287 | if ((def != NULL) && (def->AsConstant() != NULL)) { |
| 1288 | ASSERT(!def->HasPairRepresentation()); |
| 1289 | LiveRange* range = (def->ssa_temp_index() != -1) |
| 1290 | ? GetLiveRange(def->ssa_temp_index()) |
| 1291 | : NULL; |
| 1292 | |
| 1293 | // Drop definitions of constants that have no uses. |
| 1294 | if ((range == NULL) || (range->first_use() == NULL)) { |
| 1295 | locs->set_out(0, Location::NoLocation()); |
| 1296 | return; |
| 1297 | } |
| 1298 | |
| 1299 | // If this constant has only unconstrained uses convert them all |
| 1300 | // to use the constant directly and drop this definition. |
| 1301 | // TODO(vegorov): improve allocation when we have enough registers to keep |
| 1302 | // constants used in the loop in them. |
| 1303 | if (HasOnlyUnconstrainedUses(range)) { |
| 1304 | ConstantInstr* constant_instr = def->AsConstant(); |
| 1305 | range->set_assigned_location(Location::Constant(constant_instr)); |
| 1306 | range->set_spill_slot(Location::Constant(constant_instr)); |
| 1307 | range->finger()->Initialize(range); |
| 1308 | ConvertAllUses(range); |
| 1309 | |
| 1310 | locs->set_out(0, Location::NoLocation()); |
| 1311 | return; |
| 1312 | } |
| 1313 | } |
| 1314 | |
| 1315 | const intptr_t pos = GetLifetimePosition(current); |
| 1316 | ASSERT(IsInstructionStartPosition(pos)); |
| 1317 | |
| 1318 | ASSERT(locs->input_count() == current->InputCount()); |
| 1319 | |
| 1320 | // Normalize same-as-first-input output if input is specified as |
| 1321 | // fixed register. |
| 1322 | if (locs->out(0).IsUnallocated() && |
| 1323 | (locs->out(0).policy() == Location::kSameAsFirstInput)) { |
| 1324 | if (locs->in(0).IsPairLocation()) { |
| 1325 | // Pair input, pair output. |
| 1326 | PairLocation* in_pair = locs->in(0).AsPairLocation(); |
| 1327 | ASSERT(in_pair->At(0).IsMachineRegister() == |
| 1328 | in_pair->At(1).IsMachineRegister()); |
| 1329 | if (in_pair->At(0).IsMachineRegister() && |
| 1330 | in_pair->At(1).IsMachineRegister()) { |
| 1331 | locs->set_out(0, Location::Pair(in_pair->At(0), in_pair->At(1))); |
| 1332 | } |
| 1333 | } else if (locs->in(0).IsMachineRegister()) { |
| 1334 | // Single input, single output. |
| 1335 | locs->set_out(0, locs->in(0)); |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | const bool output_same_as_first_input = |
| 1340 | locs->out(0).IsUnallocated() && |
| 1341 | (locs->out(0).policy() == Location::kSameAsFirstInput); |
| 1342 | |
| 1343 | // Output is same as first input which is a pair. |
| 1344 | if (output_same_as_first_input && locs->in(0).IsPairLocation()) { |
| 1345 | // Make out into a PairLocation. |
| 1346 | locs->set_out(0, Location::Pair(Location::RequiresRegister(), |
| 1347 | Location::RequiresRegister())); |
| 1348 | } |
| 1349 | // Add uses from the deoptimization environment. |
| 1350 | if (current->env() != NULL) ProcessEnvironmentUses(block, current); |
| 1351 | |
| 1352 | // Process inputs. |
| 1353 | // Skip the first input if output is specified with kSameAsFirstInput policy, |
| 1354 | // they will be processed together at the very end. |
| 1355 | { |
| 1356 | for (intptr_t j = output_same_as_first_input ? 1 : 0; |
| 1357 | j < locs->input_count(); j++) { |
| 1358 | // Determine if we are dealing with a value pair, and if so, whether |
| 1359 | // the location is the first register or second register. |
| 1360 | Value* input = current->InputAt(j); |
| 1361 | Location* in_ref = locs->in_slot(j); |
| 1362 | RegisterSet* live_registers = NULL; |
| 1363 | if (locs->HasCallOnSlowPath()) { |
| 1364 | live_registers = locs->live_registers(); |
| 1365 | } |
| 1366 | if (in_ref->IsPairLocation()) { |
| 1367 | ASSERT(input->definition()->HasPairRepresentation()); |
| 1368 | PairLocation* pair = in_ref->AsPairLocation(); |
| 1369 | const intptr_t vreg = input->definition()->ssa_temp_index(); |
| 1370 | // Each element of the pair is assigned it's own virtual register number |
| 1371 | // and is allocated its own LiveRange. |
| 1372 | ProcessOneInput(block, pos, pair->SlotAt(0), input, vreg, |
| 1373 | live_registers); |
| 1374 | ProcessOneInput(block, pos, pair->SlotAt(1), input, |
| 1375 | ToSecondPairVreg(vreg), live_registers); |
| 1376 | } else { |
| 1377 | ProcessOneInput(block, pos, in_ref, input, |
| 1378 | input->definition()->ssa_temp_index(), live_registers); |
| 1379 | } |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | // Process temps. |
| 1384 | for (intptr_t j = 0; j < locs->temp_count(); j++) { |
| 1385 | // Expected shape of live range: |
| 1386 | // |
| 1387 | // i i' |
| 1388 | // [--) |
| 1389 | // |
| 1390 | |
| 1391 | Location temp = locs->temp(j); |
| 1392 | // We do not support pair locations for temporaries. |
| 1393 | ASSERT(!temp.IsPairLocation()); |
| 1394 | if (temp.IsMachineRegister()) { |
| 1395 | ASSERT(!temp.IsRegister() || |
| 1396 | ((1 << temp.reg()) & kDartAvailableCpuRegs) != 0); |
| 1397 | BlockLocation(temp, pos, pos + 1); |
| 1398 | } else if (temp.IsUnallocated()) { |
| 1399 | LiveRange* range = MakeLiveRangeForTemporary(); |
| 1400 | range->AddUseInterval(pos, pos + 1); |
| 1401 | range->AddUse(pos, locs->temp_slot(j)); |
| 1402 | CompleteRange(range, RegisterKindFromPolicy(temp)); |
| 1403 | } else { |
| 1404 | UNREACHABLE(); |
| 1405 | } |
| 1406 | } |
| 1407 | |
| 1408 | // Block all allocatable registers for calls. |
| 1409 | if (locs->always_calls() && !locs->callee_safe_call()) { |
| 1410 | // Expected shape of live range: |
| 1411 | // |
| 1412 | // i i' |
| 1413 | // [--) |
| 1414 | // |
| 1415 | // The stack bitmap describes the position i. |
| 1416 | for (intptr_t reg = 0; reg < kNumberOfCpuRegisters; reg++) { |
| 1417 | BlockLocation(Location::RegisterLocation(static_cast<Register>(reg)), pos, |
| 1418 | pos + 1); |
| 1419 | } |
| 1420 | |
| 1421 | for (intptr_t reg = 0; reg < kNumberOfFpuRegisters; reg++) { |
| 1422 | BlockLocation( |
| 1423 | Location::FpuRegisterLocation(static_cast<FpuRegister>(reg)), pos, |
| 1424 | pos + 1); |
| 1425 | } |
| 1426 | |
| 1427 | #if defined(DEBUG) |
| 1428 | // Verify that temps, inputs and output were specified as fixed |
| 1429 | // locations. Every register is blocked now so attempt to |
| 1430 | // allocate will go on the stack. |
| 1431 | for (intptr_t j = 0; j < locs->temp_count(); j++) { |
| 1432 | ASSERT(!locs->temp(j).IsPairLocation()); |
| 1433 | ASSERT(!locs->temp(j).IsUnallocated()); |
| 1434 | } |
| 1435 | |
| 1436 | for (intptr_t j = 0; j < locs->input_count(); j++) { |
| 1437 | if (locs->in(j).IsPairLocation()) { |
| 1438 | PairLocation* pair = locs->in_slot(j)->AsPairLocation(); |
| 1439 | ASSERT(!pair->At(0).IsUnallocated() || |
| 1440 | pair->At(0).policy() == Location::kAny); |
| 1441 | ASSERT(!pair->At(1).IsUnallocated() || |
| 1442 | pair->At(1).policy() == Location::kAny); |
| 1443 | } else { |
| 1444 | ASSERT(!locs->in(j).IsUnallocated() || |
| 1445 | locs->in(j).policy() == Location::kAny); |
| 1446 | } |
| 1447 | } |
| 1448 | |
| 1449 | if (locs->out(0).IsPairLocation()) { |
| 1450 | PairLocation* pair = locs->out_slot(0)->AsPairLocation(); |
| 1451 | ASSERT(!pair->At(0).IsUnallocated()); |
| 1452 | ASSERT(!pair->At(1).IsUnallocated()); |
| 1453 | } else { |
| 1454 | ASSERT(!locs->out(0).IsUnallocated()); |
| 1455 | } |
| 1456 | #endif |
| 1457 | } |
| 1458 | |
| 1459 | if (locs->can_call()) { |
| 1460 | safepoints_.Add(current); |
| 1461 | } |
| 1462 | |
| 1463 | if (def == NULL) { |
| 1464 | ASSERT(locs->out(0).IsInvalid()); |
| 1465 | return; |
| 1466 | } |
| 1467 | |
| 1468 | if (locs->out(0).IsInvalid()) { |
| 1469 | ASSERT(def->ssa_temp_index() < 0); |
| 1470 | return; |
| 1471 | } |
| 1472 | |
| 1473 | ASSERT(locs->output_count() == 1); |
| 1474 | Location* out = locs->out_slot(0); |
| 1475 | if (out->IsPairLocation()) { |
| 1476 | ASSERT(def->HasPairRepresentation()); |
| 1477 | PairLocation* pair = out->AsPairLocation(); |
| 1478 | if (output_same_as_first_input) { |
| 1479 | ASSERT(locs->in_slot(0)->IsPairLocation()); |
| 1480 | PairLocation* in_pair = locs->in_slot(0)->AsPairLocation(); |
| 1481 | Definition* input = current->InputAt(0)->definition(); |
| 1482 | ASSERT(input->HasPairRepresentation()); |
| 1483 | // Each element of the pair is assigned it's own virtual register number |
| 1484 | // and is allocated its own LiveRange. |
| 1485 | ProcessOneOutput(block, pos, // BlockEntry, seq. |
| 1486 | pair->SlotAt(0), def, // (output) Location, Definition. |
| 1487 | def->ssa_temp_index(), // (output) virtual register. |
| 1488 | true, // output mapped to first input. |
| 1489 | in_pair->SlotAt(0), input, // (input) Location, Def. |
| 1490 | input->ssa_temp_index(), // (input) virtual register. |
| 1491 | interference_set); |
| 1492 | ProcessOneOutput( |
| 1493 | block, pos, pair->SlotAt(1), def, |
| 1494 | ToSecondPairVreg(def->ssa_temp_index()), true, in_pair->SlotAt(1), |
| 1495 | input, ToSecondPairVreg(input->ssa_temp_index()), interference_set); |
| 1496 | } else { |
| 1497 | // Each element of the pair is assigned it's own virtual register number |
| 1498 | // and is allocated its own LiveRange. |
| 1499 | ProcessOneOutput(block, pos, pair->SlotAt(0), def, def->ssa_temp_index(), |
| 1500 | false, // output is not mapped to first input. |
| 1501 | NULL, NULL, -1, // First input not needed. |
| 1502 | interference_set); |
| 1503 | ProcessOneOutput(block, pos, pair->SlotAt(1), def, |
| 1504 | ToSecondPairVreg(def->ssa_temp_index()), false, NULL, |
| 1505 | NULL, -1, interference_set); |
| 1506 | } |
| 1507 | } else { |
| 1508 | if (output_same_as_first_input) { |
| 1509 | Location* in_ref = locs->in_slot(0); |
| 1510 | Definition* input = current->InputAt(0)->definition(); |
| 1511 | ASSERT(!in_ref->IsPairLocation()); |
| 1512 | ProcessOneOutput(block, pos, // BlockEntry, Instruction, seq. |
| 1513 | out, def, // (output) Location, Definition. |
| 1514 | def->ssa_temp_index(), // (output) virtual register. |
| 1515 | true, // output mapped to first input. |
| 1516 | in_ref, input, // (input) Location, Def. |
| 1517 | input->ssa_temp_index(), // (input) virtual register. |
| 1518 | interference_set); |
| 1519 | } else { |
| 1520 | ProcessOneOutput(block, pos, out, def, def->ssa_temp_index(), |
| 1521 | false, // output is not mapped to first input. |
| 1522 | NULL, NULL, -1, // First input not needed. |
| 1523 | interference_set); |
| 1524 | } |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | static ParallelMoveInstr* CreateParallelMoveBefore(Instruction* instr, |
| 1529 | intptr_t pos) { |
| 1530 | ASSERT(pos > 0); |
| 1531 | Instruction* prev = instr->previous(); |
| 1532 | ParallelMoveInstr* move = prev->AsParallelMove(); |
| 1533 | if ((move == NULL) || |
| 1534 | (FlowGraphAllocator::GetLifetimePosition(move) != pos)) { |
| 1535 | move = new ParallelMoveInstr(); |
| 1536 | prev->LinkTo(move); |
| 1537 | move->LinkTo(instr); |
| 1538 | FlowGraphAllocator::SetLifetimePosition(move, pos); |
| 1539 | } |
| 1540 | return move; |
| 1541 | } |
| 1542 | |
| 1543 | static ParallelMoveInstr* CreateParallelMoveAfter(Instruction* instr, |
| 1544 | intptr_t pos) { |
| 1545 | Instruction* next = instr->next(); |
| 1546 | if (next->IsParallelMove() && |
| 1547 | (FlowGraphAllocator::GetLifetimePosition(next) == pos)) { |
| 1548 | return next->AsParallelMove(); |
| 1549 | } |
| 1550 | return CreateParallelMoveBefore(next, pos); |
| 1551 | } |
| 1552 | |
| 1553 | // Linearize the control flow graph. The chosen order will be used by the |
| 1554 | // linear-scan register allocator. Number most instructions with a pair of |
| 1555 | // numbers representing lifetime positions. Introduce explicit parallel |
| 1556 | // move instructions in the predecessors of join nodes. The moves are used |
| 1557 | // for phi resolution. |
| 1558 | void FlowGraphAllocator::NumberInstructions() { |
| 1559 | intptr_t pos = 0; |
| 1560 | |
| 1561 | // The basic block order is reverse postorder. |
| 1562 | const intptr_t block_count = postorder_.length(); |
| 1563 | for (intptr_t i = block_count - 1; i >= 0; i--) { |
| 1564 | BlockEntryInstr* block = postorder_[i]; |
| 1565 | |
| 1566 | instructions_.Add(block); |
| 1567 | block_entries_.Add(block); |
| 1568 | block->set_start_pos(pos); |
| 1569 | SetLifetimePosition(block, pos); |
| 1570 | pos += 2; |
| 1571 | |
| 1572 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 1573 | Instruction* current = it.Current(); |
| 1574 | // Do not assign numbers to parallel move instructions. |
| 1575 | if (!current->IsParallelMove()) { |
| 1576 | instructions_.Add(current); |
| 1577 | block_entries_.Add(block); |
| 1578 | SetLifetimePosition(current, pos); |
| 1579 | pos += 2; |
| 1580 | } |
| 1581 | } |
| 1582 | block->set_end_pos(pos); |
| 1583 | } |
| 1584 | |
| 1585 | // Create parallel moves in join predecessors. This must be done after |
| 1586 | // all instructions are numbered. |
| 1587 | for (intptr_t i = block_count - 1; i >= 0; i--) { |
| 1588 | BlockEntryInstr* block = postorder_[i]; |
| 1589 | |
| 1590 | // For join entry predecessors create phi resolution moves if |
| 1591 | // necessary. They will be populated by the register allocator. |
| 1592 | JoinEntryInstr* join = block->AsJoinEntry(); |
| 1593 | if (join != NULL) { |
| 1594 | intptr_t move_count = 0; |
| 1595 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 1596 | move_count += it.Current()->HasPairRepresentation() ? 2 : 1; |
| 1597 | } |
| 1598 | for (intptr_t i = 0; i < block->PredecessorCount(); i++) { |
| 1599 | // Insert the move between the last two instructions of the |
| 1600 | // predecessor block (all such blocks have at least two instructions: |
| 1601 | // the block entry and goto instructions.) |
| 1602 | Instruction* last = block->PredecessorAt(i)->last_instruction(); |
| 1603 | ASSERT(last->IsGoto()); |
| 1604 | |
| 1605 | ParallelMoveInstr* move = last->AsGoto()->GetParallelMove(); |
| 1606 | |
| 1607 | // Populate the ParallelMove with empty moves. |
| 1608 | for (intptr_t j = 0; j < move_count; j++) { |
| 1609 | move->AddMove(Location::NoLocation(), Location::NoLocation()); |
| 1610 | } |
| 1611 | } |
| 1612 | } |
| 1613 | } |
| 1614 | |
| 1615 | // Prepare some extra information for each loop. |
| 1616 | Zone* zone = flow_graph_.zone(); |
| 1617 | const LoopHierarchy& loop_hierarchy = flow_graph_.loop_hierarchy(); |
| 1618 | const intptr_t num_loops = loop_hierarchy.num_loops(); |
| 1619 | for (intptr_t i = 0; i < num_loops; i++) { |
| 1620 | extra_loop_info_.Add( |
| 1621 | ComputeExtraLoopInfo(zone, loop_hierarchy.headers()[i]->loop_info())); |
| 1622 | } |
| 1623 | } |
| 1624 | |
| 1625 | Instruction* FlowGraphAllocator::InstructionAt(intptr_t pos) const { |
| 1626 | return instructions_[pos / 2]; |
| 1627 | } |
| 1628 | |
| 1629 | BlockEntryInstr* FlowGraphAllocator::BlockEntryAt(intptr_t pos) const { |
| 1630 | return block_entries_[pos / 2]; |
| 1631 | } |
| 1632 | |
| 1633 | bool FlowGraphAllocator::IsBlockEntry(intptr_t pos) const { |
| 1634 | return IsInstructionStartPosition(pos) && InstructionAt(pos)->IsBlockEntry(); |
| 1635 | } |
| 1636 | |
| 1637 | void AllocationFinger::Initialize(LiveRange* range) { |
| 1638 | first_pending_use_interval_ = range->first_use_interval(); |
| 1639 | first_register_use_ = range->first_use(); |
| 1640 | first_register_beneficial_use_ = range->first_use(); |
| 1641 | first_hinted_use_ = range->first_use(); |
| 1642 | } |
| 1643 | |
| 1644 | bool AllocationFinger::Advance(const intptr_t start) { |
| 1645 | UseInterval* a = first_pending_use_interval_; |
| 1646 | while (a != NULL && a->end() <= start) |
| 1647 | a = a->next(); |
| 1648 | first_pending_use_interval_ = a; |
| 1649 | return (first_pending_use_interval_ == NULL); |
| 1650 | } |
| 1651 | |
| 1652 | Location AllocationFinger::FirstHint() { |
| 1653 | UsePosition* use = first_hinted_use_; |
| 1654 | |
| 1655 | while (use != NULL) { |
| 1656 | if (use->HasHint()) return use->hint(); |
| 1657 | use = use->next(); |
| 1658 | } |
| 1659 | |
| 1660 | return Location::NoLocation(); |
| 1661 | } |
| 1662 | |
| 1663 | static UsePosition* FirstUseAfter(UsePosition* use, intptr_t after) { |
| 1664 | while ((use != NULL) && (use->pos() < after)) { |
| 1665 | use = use->next(); |
| 1666 | } |
| 1667 | return use; |
| 1668 | } |
| 1669 | |
| 1670 | UsePosition* AllocationFinger::FirstRegisterUse(intptr_t after) { |
| 1671 | for (UsePosition* use = FirstUseAfter(first_register_use_, after); |
| 1672 | use != NULL; use = use->next()) { |
| 1673 | Location* loc = use->location_slot(); |
| 1674 | if (loc->IsUnallocated() && |
| 1675 | ((loc->policy() == Location::kRequiresRegister) || |
| 1676 | (loc->policy() == Location::kRequiresFpuRegister))) { |
| 1677 | first_register_use_ = use; |
| 1678 | return use; |
| 1679 | } |
| 1680 | } |
| 1681 | return NULL; |
| 1682 | } |
| 1683 | |
| 1684 | UsePosition* AllocationFinger::FirstRegisterBeneficialUse(intptr_t after) { |
| 1685 | for (UsePosition* use = FirstUseAfter(first_register_beneficial_use_, after); |
| 1686 | use != NULL; use = use->next()) { |
| 1687 | Location* loc = use->location_slot(); |
| 1688 | if (loc->IsUnallocated() && loc->IsRegisterBeneficial()) { |
| 1689 | first_register_beneficial_use_ = use; |
| 1690 | return use; |
| 1691 | } |
| 1692 | } |
| 1693 | return NULL; |
| 1694 | } |
| 1695 | |
| 1696 | UsePosition* AllocationFinger::FirstInterferingUse(intptr_t after) { |
| 1697 | if (IsInstructionEndPosition(after)) { |
| 1698 | // If after is a position at the end of the instruction disregard |
| 1699 | // any use occurring at it. |
| 1700 | after += 1; |
| 1701 | } |
| 1702 | return FirstRegisterUse(after); |
| 1703 | } |
| 1704 | |
| 1705 | void AllocationFinger::UpdateAfterSplit(intptr_t first_use_after_split_pos) { |
| 1706 | if ((first_register_use_ != NULL) && |
| 1707 | (first_register_use_->pos() >= first_use_after_split_pos)) { |
| 1708 | first_register_use_ = NULL; |
| 1709 | } |
| 1710 | |
| 1711 | if ((first_register_beneficial_use_ != NULL) && |
| 1712 | (first_register_beneficial_use_->pos() >= first_use_after_split_pos)) { |
| 1713 | first_register_beneficial_use_ = NULL; |
| 1714 | } |
| 1715 | } |
| 1716 | |
| 1717 | intptr_t UseInterval::Intersect(UseInterval* other) { |
| 1718 | if (this->start() <= other->start()) { |
| 1719 | if (other->start() < this->end()) return other->start(); |
| 1720 | } else if (this->start() < other->end()) { |
| 1721 | return this->start(); |
| 1722 | } |
| 1723 | return kIllegalPosition; |
| 1724 | } |
| 1725 | |
| 1726 | static intptr_t FirstIntersection(UseInterval* a, UseInterval* u) { |
| 1727 | while (a != NULL && u != NULL) { |
| 1728 | const intptr_t pos = a->Intersect(u); |
| 1729 | if (pos != kIllegalPosition) return pos; |
| 1730 | |
| 1731 | if (a->start() < u->start()) { |
| 1732 | a = a->next(); |
| 1733 | } else { |
| 1734 | u = u->next(); |
| 1735 | } |
| 1736 | } |
| 1737 | |
| 1738 | return kMaxPosition; |
| 1739 | } |
| 1740 | |
| 1741 | template <typename PositionType> |
| 1742 | PositionType* SplitListOfPositions(PositionType** head, |
| 1743 | intptr_t split_pos, |
| 1744 | bool split_at_start) { |
| 1745 | PositionType* last_before_split = NULL; |
| 1746 | PositionType* pos = *head; |
| 1747 | if (split_at_start) { |
| 1748 | while ((pos != NULL) && (pos->pos() < split_pos)) { |
| 1749 | last_before_split = pos; |
| 1750 | pos = pos->next(); |
| 1751 | } |
| 1752 | } else { |
| 1753 | while ((pos != NULL) && (pos->pos() <= split_pos)) { |
| 1754 | last_before_split = pos; |
| 1755 | pos = pos->next(); |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | if (last_before_split == NULL) { |
| 1760 | *head = NULL; |
| 1761 | } else { |
| 1762 | last_before_split->set_next(NULL); |
| 1763 | } |
| 1764 | |
| 1765 | return pos; |
| 1766 | } |
| 1767 | |
| 1768 | LiveRange* LiveRange::SplitAt(intptr_t split_pos) { |
| 1769 | if (Start() == split_pos) return this; |
| 1770 | |
| 1771 | UseInterval* interval = finger_.first_pending_use_interval(); |
| 1772 | if (interval == NULL) { |
| 1773 | finger_.Initialize(this); |
| 1774 | interval = finger_.first_pending_use_interval(); |
| 1775 | } |
| 1776 | |
| 1777 | ASSERT(split_pos < End()); |
| 1778 | |
| 1779 | // Corner case. Split position can be inside the a lifetime hole or at its |
| 1780 | // end. We need to start over to find the previous interval. |
| 1781 | if (split_pos <= interval->start()) interval = first_use_interval_; |
| 1782 | |
| 1783 | UseInterval* last_before_split = NULL; |
| 1784 | while (interval->end() <= split_pos) { |
| 1785 | last_before_split = interval; |
| 1786 | interval = interval->next(); |
| 1787 | } |
| 1788 | |
| 1789 | const bool split_at_start = (interval->start() == split_pos); |
| 1790 | |
| 1791 | UseInterval* first_after_split = interval; |
| 1792 | if (!split_at_start && interval->Contains(split_pos)) { |
| 1793 | first_after_split = |
| 1794 | new UseInterval(split_pos, interval->end(), interval->next()); |
| 1795 | interval->end_ = split_pos; |
| 1796 | interval->next_ = first_after_split; |
| 1797 | last_before_split = interval; |
| 1798 | } |
| 1799 | |
| 1800 | ASSERT(last_before_split != NULL); |
| 1801 | ASSERT(last_before_split->next() == first_after_split); |
| 1802 | ASSERT(last_before_split->end() <= split_pos); |
| 1803 | ASSERT(split_pos <= first_after_split->start()); |
| 1804 | |
| 1805 | UsePosition* first_use_after_split = |
| 1806 | SplitListOfPositions(&uses_, split_pos, split_at_start); |
| 1807 | |
| 1808 | SafepointPosition* first_safepoint_after_split = |
| 1809 | SplitListOfPositions(&first_safepoint_, split_pos, split_at_start); |
| 1810 | |
| 1811 | UseInterval* last_use_interval = (last_before_split == last_use_interval_) |
| 1812 | ? first_after_split |
| 1813 | : last_use_interval_; |
| 1814 | next_sibling_ = new LiveRange(vreg(), representation(), first_use_after_split, |
| 1815 | first_after_split, last_use_interval, |
| 1816 | first_safepoint_after_split, next_sibling_); |
| 1817 | |
| 1818 | TRACE_ALLOC(THR_Print(" split sibling [%" Pd ", %" Pd ")\n" , |
| 1819 | next_sibling_->Start(), next_sibling_->End())); |
| 1820 | |
| 1821 | last_use_interval_ = last_before_split; |
| 1822 | last_use_interval_->next_ = NULL; |
| 1823 | |
| 1824 | if (first_use_after_split != NULL) { |
| 1825 | finger_.UpdateAfterSplit(first_use_after_split->pos()); |
| 1826 | } |
| 1827 | |
| 1828 | return next_sibling_; |
| 1829 | } |
| 1830 | |
| 1831 | LiveRange* FlowGraphAllocator::SplitBetween(LiveRange* range, |
| 1832 | intptr_t from, |
| 1833 | intptr_t to) { |
| 1834 | TRACE_ALLOC(THR_Print("split v%" Pd " [%" Pd ", %" Pd ") between [%" Pd |
| 1835 | ", %" Pd ")\n" , |
| 1836 | range->vreg(), range->Start(), range->End(), from, to)); |
| 1837 | |
| 1838 | intptr_t split_pos = kIllegalPosition; |
| 1839 | |
| 1840 | BlockEntryInstr* split_block_entry = BlockEntryAt(to); |
| 1841 | ASSERT(split_block_entry == InstructionAt(to)->GetBlock()); |
| 1842 | |
| 1843 | if (from < GetLifetimePosition(split_block_entry)) { |
| 1844 | // Interval [from, to) spans multiple blocks. |
| 1845 | |
| 1846 | // If the last block is inside a loop, prefer splitting at the outermost |
| 1847 | // loop's header that follows the definition. Note that, as illustrated |
| 1848 | // below, if the potential split S linearly appears inside a loop, even |
| 1849 | // though it technically does not belong to the natural loop, we still |
| 1850 | // prefer splitting at the header H. Splitting in the "middle" of the loop |
| 1851 | // would disconnect the prefix of the loop from any block X that follows, |
| 1852 | // increasing the chance of "disconnected" allocations. |
| 1853 | // |
| 1854 | // +--------------------+ |
| 1855 | // v | |
| 1856 | // |loop| |loop| |
| 1857 | // . . . . . . . . . . . . . . . . . . . . . |
| 1858 | // def------------use ----------- |
| 1859 | // ^ ^ ^ |
| 1860 | // H S X |
| 1861 | LoopInfo* loop_info = split_block_entry->loop_info(); |
| 1862 | if (loop_info == nullptr) { |
| 1863 | const LoopHierarchy& loop_hierarchy = flow_graph_.loop_hierarchy(); |
| 1864 | const intptr_t num_loops = loop_hierarchy.num_loops(); |
| 1865 | for (intptr_t i = 0; i < num_loops; i++) { |
| 1866 | if (extra_loop_info_[i]->start < to && to < extra_loop_info_[i]->end) { |
| 1867 | // Split loop found! |
| 1868 | loop_info = loop_hierarchy.headers()[i]->loop_info(); |
| 1869 | break; |
| 1870 | } |
| 1871 | } |
| 1872 | } |
| 1873 | while ((loop_info != nullptr) && |
| 1874 | (from < GetLifetimePosition(loop_info->header()))) { |
| 1875 | split_block_entry = loop_info->header(); |
| 1876 | loop_info = loop_info->outer(); |
| 1877 | TRACE_ALLOC(THR_Print(" move back to loop header B%" Pd " at %" Pd "\n" , |
| 1878 | split_block_entry->block_id(), |
| 1879 | GetLifetimePosition(split_block_entry))); |
| 1880 | } |
| 1881 | |
| 1882 | // Split at block's start. |
| 1883 | split_pos = GetLifetimePosition(split_block_entry); |
| 1884 | } else { |
| 1885 | // Interval [from, to) is contained inside a single block. |
| 1886 | |
| 1887 | // Split at position corresponding to the end of the previous |
| 1888 | // instruction. |
| 1889 | split_pos = ToInstructionStart(to) - 1; |
| 1890 | } |
| 1891 | |
| 1892 | ASSERT(split_pos != kIllegalPosition); |
| 1893 | ASSERT(from < split_pos); |
| 1894 | |
| 1895 | return range->SplitAt(split_pos); |
| 1896 | } |
| 1897 | |
| 1898 | void FlowGraphAllocator::SpillBetween(LiveRange* range, |
| 1899 | intptr_t from, |
| 1900 | intptr_t to) { |
| 1901 | ASSERT(from < to); |
| 1902 | TRACE_ALLOC(THR_Print("spill v%" Pd " [%" Pd ", %" Pd ") " |
| 1903 | "between [%" Pd ", %" Pd ")\n" , |
| 1904 | range->vreg(), range->Start(), range->End(), from, to)); |
| 1905 | LiveRange* tail = range->SplitAt(from); |
| 1906 | |
| 1907 | if (tail->Start() < to) { |
| 1908 | // There is an intersection of tail and [from, to). |
| 1909 | LiveRange* tail_tail = SplitBetween(tail, tail->Start(), to); |
| 1910 | Spill(tail); |
| 1911 | AddToUnallocated(tail_tail); |
| 1912 | } else { |
| 1913 | // No intersection between tail and [from, to). |
| 1914 | AddToUnallocated(tail); |
| 1915 | } |
| 1916 | } |
| 1917 | |
| 1918 | void FlowGraphAllocator::SpillAfter(LiveRange* range, intptr_t from) { |
| 1919 | TRACE_ALLOC(THR_Print("spill v%" Pd " [%" Pd ", %" Pd ") after %" Pd "\n" , |
| 1920 | range->vreg(), range->Start(), range->End(), from)); |
| 1921 | |
| 1922 | // When spilling the value inside the loop check if this spill can |
| 1923 | // be moved outside. |
| 1924 | LoopInfo* loop_info = BlockEntryAt(from)->loop_info(); |
| 1925 | if (loop_info != nullptr) { |
| 1926 | if ((range->Start() <= loop_info->header()->start_pos()) && |
| 1927 | RangeHasOnlyUnconstrainedUsesInLoop(range, loop_info->id())) { |
| 1928 | ASSERT(loop_info->header()->start_pos() <= from); |
| 1929 | from = loop_info->header()->start_pos(); |
| 1930 | TRACE_ALLOC( |
| 1931 | THR_Print(" moved spill position to loop header %" Pd "\n" , from)); |
| 1932 | } |
| 1933 | } |
| 1934 | |
| 1935 | LiveRange* tail = range->SplitAt(from); |
| 1936 | Spill(tail); |
| 1937 | } |
| 1938 | |
| 1939 | void FlowGraphAllocator::AllocateSpillSlotFor(LiveRange* range) { |
| 1940 | ASSERT(range->spill_slot().IsInvalid()); |
| 1941 | |
| 1942 | // Compute range start and end. |
| 1943 | LiveRange* last_sibling = range; |
| 1944 | while (last_sibling->next_sibling() != NULL) { |
| 1945 | last_sibling = last_sibling->next_sibling(); |
| 1946 | } |
| 1947 | |
| 1948 | const intptr_t start = range->Start(); |
| 1949 | const intptr_t end = last_sibling->End(); |
| 1950 | |
| 1951 | // During fpu register allocation spill slot indices are computed in terms of |
| 1952 | // double (64bit) stack slots. We treat quad stack slot (128bit) as a |
| 1953 | // consecutive pair of two double spill slots. |
| 1954 | // Special care is taken to never allocate the same index to both |
| 1955 | // double and quad spill slots as it complicates disambiguation during |
| 1956 | // parallel move resolution. |
| 1957 | const bool need_quad = (register_kind_ == Location::kFpuRegister) && |
| 1958 | ((range->representation() == kUnboxedFloat32x4) || |
| 1959 | (range->representation() == kUnboxedInt32x4) || |
| 1960 | (range->representation() == kUnboxedFloat64x2)); |
| 1961 | const bool need_untagged = (register_kind_ == Location::kRegister) && |
| 1962 | ((range->representation() == kUntagged)); |
| 1963 | |
| 1964 | // Search for a free spill slot among allocated: the value in it should be |
| 1965 | // dead and its type should match (e.g. it should not be a part of the quad if |
| 1966 | // we are allocating normal double slot). |
| 1967 | // For CPU registers we need to take reserved slots for try-catch into |
| 1968 | // account. |
| 1969 | intptr_t idx = register_kind_ == Location::kRegister |
| 1970 | ? flow_graph_.graph_entry()->fixed_slot_count() |
| 1971 | : 0; |
| 1972 | for (; idx < spill_slots_.length(); idx++) { |
| 1973 | if ((need_quad == quad_spill_slots_[idx]) && |
| 1974 | (need_untagged == untagged_spill_slots_[idx]) && |
| 1975 | (spill_slots_[idx] <= start)) { |
| 1976 | break; |
| 1977 | } |
| 1978 | } |
| 1979 | |
| 1980 | while (idx > spill_slots_.length()) { |
| 1981 | spill_slots_.Add(kMaxPosition); |
| 1982 | quad_spill_slots_.Add(false); |
| 1983 | untagged_spill_slots_.Add(false); |
| 1984 | } |
| 1985 | |
| 1986 | if (idx == spill_slots_.length()) { |
| 1987 | idx = spill_slots_.length(); |
| 1988 | |
| 1989 | // No free spill slot found. Allocate a new one. |
| 1990 | spill_slots_.Add(0); |
| 1991 | quad_spill_slots_.Add(need_quad); |
| 1992 | untagged_spill_slots_.Add(need_untagged); |
| 1993 | if (need_quad) { // Allocate two double stack slots if we need quad slot. |
| 1994 | spill_slots_.Add(0); |
| 1995 | quad_spill_slots_.Add(need_quad); |
| 1996 | untagged_spill_slots_.Add(need_untagged); |
| 1997 | } |
| 1998 | } |
| 1999 | |
| 2000 | // Set spill slot expiration boundary to the live range's end. |
| 2001 | spill_slots_[idx] = end; |
| 2002 | if (need_quad) { |
| 2003 | ASSERT(quad_spill_slots_[idx] && quad_spill_slots_[idx + 1]); |
| 2004 | idx++; // Use the higher index it corresponds to the lower stack address. |
| 2005 | spill_slots_[idx] = end; |
| 2006 | } else { |
| 2007 | ASSERT(!quad_spill_slots_[idx]); |
| 2008 | } |
| 2009 | |
| 2010 | // Assign spill slot to the range. |
| 2011 | if (register_kind_ == Location::kRegister) { |
| 2012 | const intptr_t slot_index = |
| 2013 | compiler::target::frame_layout.FrameSlotForVariableIndex(-idx); |
| 2014 | range->set_spill_slot(Location::StackSlot(slot_index, FPREG)); |
| 2015 | } else { |
| 2016 | // We use the index of the slot with the lowest address as an index for the |
| 2017 | // FPU register spill slot. In terms of indexes this relation is inverted: |
| 2018 | // so we have to take the highest index. |
| 2019 | const intptr_t slot_idx = |
| 2020 | compiler::target::frame_layout.FrameSlotForVariableIndex( |
| 2021 | -(cpu_spill_slot_count_ + idx * kDoubleSpillFactor + |
| 2022 | (kDoubleSpillFactor - 1))); |
| 2023 | |
| 2024 | Location location; |
| 2025 | if ((range->representation() == kUnboxedFloat32x4) || |
| 2026 | (range->representation() == kUnboxedInt32x4) || |
| 2027 | (range->representation() == kUnboxedFloat64x2)) { |
| 2028 | ASSERT(need_quad); |
| 2029 | location = Location::QuadStackSlot(slot_idx, FPREG); |
| 2030 | } else { |
| 2031 | ASSERT(range->representation() == kUnboxedFloat || |
| 2032 | range->representation() == kUnboxedDouble); |
| 2033 | location = Location::DoubleStackSlot(slot_idx, FPREG); |
| 2034 | } |
| 2035 | range->set_spill_slot(location); |
| 2036 | } |
| 2037 | |
| 2038 | spilled_.Add(range); |
| 2039 | } |
| 2040 | |
| 2041 | void FlowGraphAllocator::MarkAsObjectAtSafepoints(LiveRange* range) { |
| 2042 | Location spill_slot = range->spill_slot(); |
| 2043 | intptr_t stack_index = spill_slot.stack_index(); |
| 2044 | if (spill_slot.base_reg() == FPREG) { |
| 2045 | stack_index = -compiler::target::frame_layout.VariableIndexForFrameSlot( |
| 2046 | spill_slot.stack_index()); |
| 2047 | } |
| 2048 | ASSERT(stack_index >= 0); |
| 2049 | while (range != NULL) { |
| 2050 | for (SafepointPosition* safepoint = range->first_safepoint(); |
| 2051 | safepoint != NULL; safepoint = safepoint->next()) { |
| 2052 | // Mark the stack slot as having an object. |
| 2053 | safepoint->locs()->SetStackBit(stack_index); |
| 2054 | } |
| 2055 | range = range->next_sibling(); |
| 2056 | } |
| 2057 | } |
| 2058 | |
| 2059 | void FlowGraphAllocator::Spill(LiveRange* range) { |
| 2060 | LiveRange* parent = GetLiveRange(range->vreg()); |
| 2061 | if (parent->spill_slot().IsInvalid()) { |
| 2062 | AllocateSpillSlotFor(parent); |
| 2063 | if (range->representation() == kTagged) { |
| 2064 | MarkAsObjectAtSafepoints(parent); |
| 2065 | } |
| 2066 | } |
| 2067 | range->set_assigned_location(parent->spill_slot()); |
| 2068 | ConvertAllUses(range); |
| 2069 | } |
| 2070 | |
| 2071 | intptr_t FlowGraphAllocator::FirstIntersectionWithAllocated( |
| 2072 | intptr_t reg, |
| 2073 | LiveRange* unallocated) { |
| 2074 | intptr_t intersection = kMaxPosition; |
| 2075 | for (intptr_t i = 0; i < registers_[reg]->length(); i++) { |
| 2076 | LiveRange* allocated = (*registers_[reg])[i]; |
| 2077 | if (allocated == NULL) continue; |
| 2078 | |
| 2079 | UseInterval* allocated_head = |
| 2080 | allocated->finger()->first_pending_use_interval(); |
| 2081 | if (allocated_head->start() >= intersection) continue; |
| 2082 | |
| 2083 | const intptr_t pos = FirstIntersection( |
| 2084 | unallocated->finger()->first_pending_use_interval(), allocated_head); |
| 2085 | if (pos < intersection) intersection = pos; |
| 2086 | } |
| 2087 | return intersection; |
| 2088 | } |
| 2089 | |
| 2090 | void ReachingDefs::AddPhi(PhiInstr* phi) { |
| 2091 | if (phi->reaching_defs() == NULL) { |
| 2092 | Zone* zone = flow_graph_.zone(); |
| 2093 | phi->set_reaching_defs( |
| 2094 | new (zone) BitVector(zone, flow_graph_.max_virtual_register_number())); |
| 2095 | |
| 2096 | // Compute initial set reaching defs set. |
| 2097 | bool depends_on_phi = false; |
| 2098 | for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| 2099 | Definition* input = phi->InputAt(i)->definition(); |
| 2100 | if (input->IsPhi()) { |
| 2101 | depends_on_phi = true; |
| 2102 | } |
| 2103 | phi->reaching_defs()->Add(input->ssa_temp_index()); |
| 2104 | if (phi->HasPairRepresentation()) { |
| 2105 | phi->reaching_defs()->Add(ToSecondPairVreg(input->ssa_temp_index())); |
| 2106 | } |
| 2107 | } |
| 2108 | |
| 2109 | // If this phi depends on another phi then we need fix point iteration. |
| 2110 | if (depends_on_phi) phis_.Add(phi); |
| 2111 | } |
| 2112 | } |
| 2113 | |
| 2114 | void ReachingDefs::Compute() { |
| 2115 | // Transitively collect all phis that are used by the given phi. |
| 2116 | for (intptr_t i = 0; i < phis_.length(); i++) { |
| 2117 | PhiInstr* phi = phis_[i]; |
| 2118 | |
| 2119 | // Add all phis that affect this phi to the list. |
| 2120 | for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| 2121 | PhiInstr* input_phi = phi->InputAt(i)->definition()->AsPhi(); |
| 2122 | if (input_phi != NULL) { |
| 2123 | AddPhi(input_phi); |
| 2124 | } |
| 2125 | } |
| 2126 | } |
| 2127 | |
| 2128 | // Propagate values until fix point is reached. |
| 2129 | bool changed; |
| 2130 | do { |
| 2131 | changed = false; |
| 2132 | for (intptr_t i = 0; i < phis_.length(); i++) { |
| 2133 | PhiInstr* phi = phis_[i]; |
| 2134 | for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| 2135 | PhiInstr* input_phi = phi->InputAt(i)->definition()->AsPhi(); |
| 2136 | if (input_phi != NULL) { |
| 2137 | if (phi->reaching_defs()->AddAll(input_phi->reaching_defs())) { |
| 2138 | changed = true; |
| 2139 | } |
| 2140 | } |
| 2141 | } |
| 2142 | } |
| 2143 | } while (changed); |
| 2144 | |
| 2145 | phis_.Clear(); |
| 2146 | } |
| 2147 | |
| 2148 | BitVector* ReachingDefs::Get(PhiInstr* phi) { |
| 2149 | if (phi->reaching_defs() == NULL) { |
| 2150 | ASSERT(phis_.is_empty()); |
| 2151 | AddPhi(phi); |
| 2152 | Compute(); |
| 2153 | } |
| 2154 | return phi->reaching_defs(); |
| 2155 | } |
| 2156 | |
| 2157 | bool FlowGraphAllocator::AllocateFreeRegister(LiveRange* unallocated) { |
| 2158 | intptr_t candidate = kNoRegister; |
| 2159 | intptr_t free_until = 0; |
| 2160 | |
| 2161 | // If hint is available try hint first. |
| 2162 | // TODO(vegorov): ensure that phis are hinted on the back edge. |
| 2163 | Location hint = unallocated->finger()->FirstHint(); |
| 2164 | if (hint.IsMachineRegister()) { |
| 2165 | if (!blocked_registers_[hint.register_code()]) { |
| 2166 | free_until = |
| 2167 | FirstIntersectionWithAllocated(hint.register_code(), unallocated); |
| 2168 | candidate = hint.register_code(); |
| 2169 | } |
| 2170 | |
| 2171 | TRACE_ALLOC(THR_Print("found hint %s for v%" Pd ": free until %" Pd "\n" , |
| 2172 | hint.Name(), unallocated->vreg(), free_until)); |
| 2173 | } else { |
| 2174 | for (intptr_t reg = 0; reg < NumberOfRegisters(); ++reg) { |
| 2175 | if (!blocked_registers_[reg] && (registers_[reg]->length() == 0)) { |
| 2176 | candidate = reg; |
| 2177 | free_until = kMaxPosition; |
| 2178 | break; |
| 2179 | } |
| 2180 | } |
| 2181 | } |
| 2182 | |
| 2183 | ASSERT(0 <= kMaxPosition); |
| 2184 | if (free_until != kMaxPosition) { |
| 2185 | for (intptr_t reg = 0; reg < NumberOfRegisters(); ++reg) { |
| 2186 | if (blocked_registers_[reg] || (reg == candidate)) continue; |
| 2187 | const intptr_t intersection = |
| 2188 | FirstIntersectionWithAllocated(reg, unallocated); |
| 2189 | if (intersection > free_until) { |
| 2190 | candidate = reg; |
| 2191 | free_until = intersection; |
| 2192 | if (free_until == kMaxPosition) break; |
| 2193 | } |
| 2194 | } |
| 2195 | } |
| 2196 | |
| 2197 | // All registers are blocked by active ranges. |
| 2198 | if (free_until <= unallocated->Start()) return false; |
| 2199 | |
| 2200 | // We have a very good candidate (either hinted to us or completely free). |
| 2201 | // If we are in a loop try to reduce number of moves on the back edge by |
| 2202 | // searching for a candidate that does not interfere with phis on the back |
| 2203 | // edge. |
| 2204 | LoopInfo* loop_info = BlockEntryAt(unallocated->Start())->loop_info(); |
| 2205 | if ((unallocated->vreg() >= 0) && (loop_info != nullptr) && |
| 2206 | (free_until >= extra_loop_info_[loop_info->id()]->end) && |
| 2207 | extra_loop_info_[loop_info->id()]->backedge_interference->Contains( |
| 2208 | unallocated->vreg())) { |
| 2209 | GrowableArray<bool> used_on_backedge(number_of_registers_); |
| 2210 | for (intptr_t i = 0; i < number_of_registers_; i++) { |
| 2211 | used_on_backedge.Add(false); |
| 2212 | } |
| 2213 | |
| 2214 | for (PhiIterator it(loop_info->header()->AsJoinEntry()); !it.Done(); |
| 2215 | it.Advance()) { |
| 2216 | PhiInstr* phi = it.Current(); |
| 2217 | ASSERT(phi->is_alive()); |
| 2218 | const intptr_t phi_vreg = phi->ssa_temp_index(); |
| 2219 | LiveRange* range = GetLiveRange(phi_vreg); |
| 2220 | if (range->assigned_location().kind() == register_kind_) { |
| 2221 | const intptr_t reg = range->assigned_location().register_code(); |
| 2222 | if (!reaching_defs_.Get(phi)->Contains(unallocated->vreg())) { |
| 2223 | used_on_backedge[reg] = true; |
| 2224 | } |
| 2225 | } |
| 2226 | if (phi->HasPairRepresentation()) { |
| 2227 | const intptr_t second_phi_vreg = ToSecondPairVreg(phi_vreg); |
| 2228 | LiveRange* second_range = GetLiveRange(second_phi_vreg); |
| 2229 | if (second_range->assigned_location().kind() == register_kind_) { |
| 2230 | const intptr_t reg = |
| 2231 | second_range->assigned_location().register_code(); |
| 2232 | if (!reaching_defs_.Get(phi)->Contains(unallocated->vreg())) { |
| 2233 | used_on_backedge[reg] = true; |
| 2234 | } |
| 2235 | } |
| 2236 | } |
| 2237 | } |
| 2238 | |
| 2239 | if (used_on_backedge[candidate]) { |
| 2240 | TRACE_ALLOC(THR_Print("considering %s for v%" Pd |
| 2241 | ": has interference on the back edge" |
| 2242 | " {loop [%" Pd ", %" Pd ")}\n" , |
| 2243 | MakeRegisterLocation(candidate).Name(), |
| 2244 | unallocated->vreg(), |
| 2245 | extra_loop_info_[loop_info->id()]->start, |
| 2246 | extra_loop_info_[loop_info->id()]->end)); |
| 2247 | for (intptr_t reg = 0; reg < NumberOfRegisters(); ++reg) { |
| 2248 | if (blocked_registers_[reg] || (reg == candidate) || |
| 2249 | used_on_backedge[reg]) { |
| 2250 | continue; |
| 2251 | } |
| 2252 | |
| 2253 | const intptr_t intersection = |
| 2254 | FirstIntersectionWithAllocated(reg, unallocated); |
| 2255 | if (intersection >= free_until) { |
| 2256 | candidate = reg; |
| 2257 | free_until = intersection; |
| 2258 | TRACE_ALLOC(THR_Print( |
| 2259 | "found %s for v%" Pd " with no interference on the back edge\n" , |
| 2260 | MakeRegisterLocation(candidate).Name(), candidate)); |
| 2261 | break; |
| 2262 | } |
| 2263 | } |
| 2264 | } |
| 2265 | } |
| 2266 | |
| 2267 | TRACE_ALLOC(THR_Print("assigning free register " )); |
| 2268 | TRACE_ALLOC(MakeRegisterLocation(candidate).Print()); |
| 2269 | TRACE_ALLOC(THR_Print(" to v%" Pd "\n" , unallocated->vreg())); |
| 2270 | |
| 2271 | if (free_until != kMaxPosition) { |
| 2272 | // There was an intersection. Split unallocated. |
| 2273 | TRACE_ALLOC(THR_Print(" splitting at %" Pd "\n" , free_until)); |
| 2274 | LiveRange* tail = unallocated->SplitAt(free_until); |
| 2275 | AddToUnallocated(tail); |
| 2276 | } |
| 2277 | |
| 2278 | registers_[candidate]->Add(unallocated); |
| 2279 | unallocated->set_assigned_location(MakeRegisterLocation(candidate)); |
| 2280 | return true; |
| 2281 | } |
| 2282 | |
| 2283 | bool FlowGraphAllocator::RangeHasOnlyUnconstrainedUsesInLoop(LiveRange* range, |
| 2284 | intptr_t loop_id) { |
| 2285 | if (range->vreg() >= 0) { |
| 2286 | LiveRange* parent = GetLiveRange(range->vreg()); |
| 2287 | return parent->HasOnlyUnconstrainedUsesInLoop(loop_id); |
| 2288 | } |
| 2289 | return false; |
| 2290 | } |
| 2291 | |
| 2292 | bool FlowGraphAllocator::IsCheapToEvictRegisterInLoop(LoopInfo* loop_info, |
| 2293 | intptr_t reg) { |
| 2294 | const intptr_t loop_start = extra_loop_info_[loop_info->id()]->start; |
| 2295 | const intptr_t loop_end = extra_loop_info_[loop_info->id()]->end; |
| 2296 | |
| 2297 | for (intptr_t i = 0; i < registers_[reg]->length(); i++) { |
| 2298 | LiveRange* allocated = (*registers_[reg])[i]; |
| 2299 | UseInterval* interval = allocated->finger()->first_pending_use_interval(); |
| 2300 | if (interval->Contains(loop_start)) { |
| 2301 | if (!RangeHasOnlyUnconstrainedUsesInLoop(allocated, loop_info->id())) { |
| 2302 | return false; |
| 2303 | } |
| 2304 | } else if (interval->start() < loop_end) { |
| 2305 | return false; |
| 2306 | } |
| 2307 | } |
| 2308 | |
| 2309 | return true; |
| 2310 | } |
| 2311 | |
| 2312 | bool FlowGraphAllocator::HasCheapEvictionCandidate(LiveRange* phi_range) { |
| 2313 | ASSERT(phi_range->is_loop_phi()); |
| 2314 | |
| 2315 | BlockEntryInstr* = BlockEntryAt(phi_range->Start()); |
| 2316 | |
| 2317 | ASSERT(header->IsLoopHeader()); |
| 2318 | ASSERT(phi_range->Start() == header->start_pos()); |
| 2319 | |
| 2320 | for (intptr_t reg = 0; reg < NumberOfRegisters(); ++reg) { |
| 2321 | if (blocked_registers_[reg]) continue; |
| 2322 | if (IsCheapToEvictRegisterInLoop(header->loop_info(), reg)) { |
| 2323 | return true; |
| 2324 | } |
| 2325 | } |
| 2326 | |
| 2327 | return false; |
| 2328 | } |
| 2329 | |
| 2330 | void FlowGraphAllocator::AllocateAnyRegister(LiveRange* unallocated) { |
| 2331 | // If a loop phi has no register uses we might still want to allocate it |
| 2332 | // to the register to reduce amount of memory moves on the back edge. |
| 2333 | // This is possible if there is a register blocked by a range that can be |
| 2334 | // cheaply evicted i.e. it has no register beneficial uses inside the |
| 2335 | // loop. |
| 2336 | UsePosition* register_use = |
| 2337 | unallocated->finger()->FirstRegisterUse(unallocated->Start()); |
| 2338 | if ((register_use == NULL) && |
| 2339 | !(unallocated->is_loop_phi() && HasCheapEvictionCandidate(unallocated))) { |
| 2340 | Spill(unallocated); |
| 2341 | return; |
| 2342 | } |
| 2343 | |
| 2344 | intptr_t candidate = kNoRegister; |
| 2345 | intptr_t free_until = 0; |
| 2346 | intptr_t blocked_at = kMaxPosition; |
| 2347 | |
| 2348 | for (int reg = 0; reg < NumberOfRegisters(); ++reg) { |
| 2349 | if (blocked_registers_[reg]) continue; |
| 2350 | if (UpdateFreeUntil(reg, unallocated, &free_until, &blocked_at)) { |
| 2351 | candidate = reg; |
| 2352 | } |
| 2353 | } |
| 2354 | |
| 2355 | const intptr_t register_use_pos = |
| 2356 | (register_use != NULL) ? register_use->pos() : unallocated->Start(); |
| 2357 | if (free_until < register_use_pos) { |
| 2358 | // Can't acquire free register. Spill until we really need one. |
| 2359 | ASSERT(unallocated->Start() < ToInstructionStart(register_use_pos)); |
| 2360 | SpillBetween(unallocated, unallocated->Start(), register_use->pos()); |
| 2361 | return; |
| 2362 | } |
| 2363 | |
| 2364 | ASSERT(candidate != kNoRegister); |
| 2365 | |
| 2366 | TRACE_ALLOC(THR_Print("assigning blocked register " )); |
| 2367 | TRACE_ALLOC(MakeRegisterLocation(candidate).Print()); |
| 2368 | TRACE_ALLOC(THR_Print(" to live range v%" Pd " until %" Pd "\n" , |
| 2369 | unallocated->vreg(), blocked_at)); |
| 2370 | |
| 2371 | if (blocked_at < unallocated->End()) { |
| 2372 | // Register is blocked before the end of the live range. Split the range |
| 2373 | // at latest at blocked_at position. |
| 2374 | LiveRange* tail = |
| 2375 | SplitBetween(unallocated, unallocated->Start(), blocked_at + 1); |
| 2376 | AddToUnallocated(tail); |
| 2377 | } |
| 2378 | |
| 2379 | AssignNonFreeRegister(unallocated, candidate); |
| 2380 | } |
| 2381 | |
| 2382 | bool FlowGraphAllocator::UpdateFreeUntil(intptr_t reg, |
| 2383 | LiveRange* unallocated, |
| 2384 | intptr_t* cur_free_until, |
| 2385 | intptr_t* cur_blocked_at) { |
| 2386 | intptr_t free_until = kMaxPosition; |
| 2387 | intptr_t blocked_at = kMaxPosition; |
| 2388 | const intptr_t start = unallocated->Start(); |
| 2389 | |
| 2390 | for (intptr_t i = 0; i < registers_[reg]->length(); i++) { |
| 2391 | LiveRange* allocated = (*registers_[reg])[i]; |
| 2392 | |
| 2393 | UseInterval* first_pending_use_interval = |
| 2394 | allocated->finger()->first_pending_use_interval(); |
| 2395 | if (first_pending_use_interval->Contains(start)) { |
| 2396 | // This is an active interval. |
| 2397 | if (allocated->vreg() < 0) { |
| 2398 | // This register blocked by an interval that |
| 2399 | // can't be spilled. |
| 2400 | return false; |
| 2401 | } |
| 2402 | |
| 2403 | UsePosition* use = allocated->finger()->FirstInterferingUse(start); |
| 2404 | if ((use != NULL) && ((ToInstructionStart(use->pos()) - start) <= 1)) { |
| 2405 | // This register is blocked by interval that is used |
| 2406 | // as register in the current instruction and can't |
| 2407 | // be spilled. |
| 2408 | return false; |
| 2409 | } |
| 2410 | |
| 2411 | const intptr_t use_pos = (use != NULL) ? use->pos() : allocated->End(); |
| 2412 | |
| 2413 | if (use_pos < free_until) free_until = use_pos; |
| 2414 | } else { |
| 2415 | // This is inactive interval. |
| 2416 | const intptr_t intersection = FirstIntersection( |
| 2417 | first_pending_use_interval, unallocated->first_use_interval()); |
| 2418 | if (intersection != kMaxPosition) { |
| 2419 | if (intersection < free_until) free_until = intersection; |
| 2420 | if (allocated->vreg() == kNoVirtualRegister) blocked_at = intersection; |
| 2421 | } |
| 2422 | } |
| 2423 | |
| 2424 | if (free_until <= *cur_free_until) { |
| 2425 | return false; |
| 2426 | } |
| 2427 | } |
| 2428 | |
| 2429 | ASSERT(free_until > *cur_free_until); |
| 2430 | *cur_free_until = free_until; |
| 2431 | *cur_blocked_at = blocked_at; |
| 2432 | return true; |
| 2433 | } |
| 2434 | |
| 2435 | void FlowGraphAllocator::RemoveEvicted(intptr_t reg, intptr_t first_evicted) { |
| 2436 | intptr_t to = first_evicted; |
| 2437 | intptr_t from = first_evicted + 1; |
| 2438 | while (from < registers_[reg]->length()) { |
| 2439 | LiveRange* allocated = (*registers_[reg])[from++]; |
| 2440 | if (allocated != NULL) (*registers_[reg])[to++] = allocated; |
| 2441 | } |
| 2442 | registers_[reg]->TruncateTo(to); |
| 2443 | } |
| 2444 | |
| 2445 | void FlowGraphAllocator::AssignNonFreeRegister(LiveRange* unallocated, |
| 2446 | intptr_t reg) { |
| 2447 | intptr_t first_evicted = -1; |
| 2448 | for (intptr_t i = registers_[reg]->length() - 1; i >= 0; i--) { |
| 2449 | LiveRange* allocated = (*registers_[reg])[i]; |
| 2450 | if (allocated->vreg() < 0) continue; // Can't be evicted. |
| 2451 | if (EvictIntersection(allocated, unallocated)) { |
| 2452 | // If allocated was not spilled convert all pending uses. |
| 2453 | if (allocated->assigned_location().IsMachineRegister()) { |
| 2454 | ASSERT(allocated->End() <= unallocated->Start()); |
| 2455 | ConvertAllUses(allocated); |
| 2456 | } |
| 2457 | (*registers_[reg])[i] = NULL; |
| 2458 | first_evicted = i; |
| 2459 | } |
| 2460 | } |
| 2461 | |
| 2462 | // Remove evicted ranges from the array. |
| 2463 | if (first_evicted != -1) RemoveEvicted(reg, first_evicted); |
| 2464 | |
| 2465 | registers_[reg]->Add(unallocated); |
| 2466 | unallocated->set_assigned_location(MakeRegisterLocation(reg)); |
| 2467 | } |
| 2468 | |
| 2469 | bool FlowGraphAllocator::EvictIntersection(LiveRange* allocated, |
| 2470 | LiveRange* unallocated) { |
| 2471 | UseInterval* first_unallocated = |
| 2472 | unallocated->finger()->first_pending_use_interval(); |
| 2473 | const intptr_t intersection = FirstIntersection( |
| 2474 | allocated->finger()->first_pending_use_interval(), first_unallocated); |
| 2475 | if (intersection == kMaxPosition) return false; |
| 2476 | |
| 2477 | const intptr_t spill_position = first_unallocated->start(); |
| 2478 | UsePosition* use = allocated->finger()->FirstInterferingUse(spill_position); |
| 2479 | if (use == NULL) { |
| 2480 | // No register uses after this point. |
| 2481 | SpillAfter(allocated, spill_position); |
| 2482 | } else { |
| 2483 | const intptr_t restore_position = |
| 2484 | (spill_position < intersection) ? MinPosition(intersection, use->pos()) |
| 2485 | : use->pos(); |
| 2486 | |
| 2487 | SpillBetween(allocated, spill_position, restore_position); |
| 2488 | } |
| 2489 | |
| 2490 | return true; |
| 2491 | } |
| 2492 | |
| 2493 | MoveOperands* FlowGraphAllocator::AddMoveAt(intptr_t pos, |
| 2494 | Location to, |
| 2495 | Location from) { |
| 2496 | ASSERT(!IsBlockEntry(pos)); |
| 2497 | |
| 2498 | // Now that the GraphEntry (B0) does no longer have any parameter instructions |
| 2499 | // in it so we should not attempt to add parallel moves to it. |
| 2500 | ASSERT(pos >= kNormalEntryPos); |
| 2501 | |
| 2502 | ParallelMoveInstr* parallel_move = NULL; |
| 2503 | Instruction* instr = InstructionAt(pos); |
| 2504 | if (auto entry = instr->AsFunctionEntry()) { |
| 2505 | // Parallel moves added to the FunctionEntry will be added after the block |
| 2506 | // entry. |
| 2507 | parallel_move = CreateParallelMoveAfter(entry, pos); |
| 2508 | } else if (IsInstructionStartPosition(pos)) { |
| 2509 | parallel_move = CreateParallelMoveBefore(instr, pos); |
| 2510 | } else { |
| 2511 | parallel_move = CreateParallelMoveAfter(instr, pos); |
| 2512 | } |
| 2513 | |
| 2514 | return parallel_move->AddMove(to, from); |
| 2515 | } |
| 2516 | |
| 2517 | void FlowGraphAllocator::ConvertUseTo(UsePosition* use, Location loc) { |
| 2518 | ASSERT(!loc.IsPairLocation()); |
| 2519 | ASSERT(use->location_slot() != NULL); |
| 2520 | Location* slot = use->location_slot(); |
| 2521 | ASSERT(slot->IsUnallocated()); |
| 2522 | TRACE_ALLOC(THR_Print(" use at %" Pd " converted to " , use->pos())); |
| 2523 | TRACE_ALLOC(loc.Print()); |
| 2524 | TRACE_ALLOC(THR_Print("\n" )); |
| 2525 | *slot = loc; |
| 2526 | } |
| 2527 | |
| 2528 | void FlowGraphAllocator::ConvertAllUses(LiveRange* range) { |
| 2529 | if (range->vreg() == kNoVirtualRegister) return; |
| 2530 | |
| 2531 | const Location loc = range->assigned_location(); |
| 2532 | ASSERT(!loc.IsInvalid()); |
| 2533 | |
| 2534 | TRACE_ALLOC(THR_Print("range [%" Pd ", %" Pd ") " |
| 2535 | "for v%" Pd " has been allocated to " , |
| 2536 | range->Start(), range->End(), range->vreg())); |
| 2537 | TRACE_ALLOC(loc.Print()); |
| 2538 | TRACE_ALLOC(THR_Print(":\n" )); |
| 2539 | |
| 2540 | for (UsePosition* use = range->first_use(); use != NULL; use = use->next()) { |
| 2541 | ConvertUseTo(use, loc); |
| 2542 | } |
| 2543 | |
| 2544 | // Add live registers at all safepoints for instructions with slow-path |
| 2545 | // code. |
| 2546 | if (loc.IsMachineRegister()) { |
| 2547 | for (SafepointPosition* safepoint = range->first_safepoint(); |
| 2548 | safepoint != NULL; safepoint = safepoint->next()) { |
| 2549 | if (!safepoint->locs()->always_calls()) { |
| 2550 | ASSERT(safepoint->locs()->can_call()); |
| 2551 | safepoint->locs()->live_registers()->Add(loc, range->representation()); |
| 2552 | } |
| 2553 | } |
| 2554 | } |
| 2555 | } |
| 2556 | |
| 2557 | void FlowGraphAllocator::AdvanceActiveIntervals(const intptr_t start) { |
| 2558 | for (intptr_t reg = 0; reg < NumberOfRegisters(); reg++) { |
| 2559 | if (registers_[reg]->is_empty()) continue; |
| 2560 | |
| 2561 | intptr_t first_evicted = -1; |
| 2562 | for (intptr_t i = registers_[reg]->length() - 1; i >= 0; i--) { |
| 2563 | LiveRange* range = (*registers_[reg])[i]; |
| 2564 | if (range->finger()->Advance(start)) { |
| 2565 | ConvertAllUses(range); |
| 2566 | (*registers_[reg])[i] = NULL; |
| 2567 | first_evicted = i; |
| 2568 | } |
| 2569 | } |
| 2570 | |
| 2571 | if (first_evicted != -1) RemoveEvicted(reg, first_evicted); |
| 2572 | } |
| 2573 | } |
| 2574 | |
| 2575 | bool LiveRange::Contains(intptr_t pos) const { |
| 2576 | if (!CanCover(pos)) return false; |
| 2577 | |
| 2578 | for (UseInterval* interval = first_use_interval_; interval != NULL; |
| 2579 | interval = interval->next()) { |
| 2580 | if (interval->Contains(pos)) { |
| 2581 | return true; |
| 2582 | } |
| 2583 | } |
| 2584 | |
| 2585 | return false; |
| 2586 | } |
| 2587 | |
| 2588 | void FlowGraphAllocator::AssignSafepoints(Definition* defn, LiveRange* range) { |
| 2589 | for (intptr_t i = safepoints_.length() - 1; i >= 0; i--) { |
| 2590 | Instruction* safepoint_instr = safepoints_[i]; |
| 2591 | if (safepoint_instr == defn) { |
| 2592 | // The value is not live until after the definition is fully executed, |
| 2593 | // don't assign the safepoint inside the definition itself to |
| 2594 | // definition's liverange. |
| 2595 | continue; |
| 2596 | } |
| 2597 | |
| 2598 | const intptr_t pos = GetLifetimePosition(safepoint_instr); |
| 2599 | if (range->End() <= pos) break; |
| 2600 | |
| 2601 | if (range->Contains(pos)) { |
| 2602 | range->AddSafepoint(pos, safepoint_instr->locs()); |
| 2603 | } |
| 2604 | } |
| 2605 | } |
| 2606 | |
| 2607 | static inline bool ShouldBeAllocatedBefore(LiveRange* a, LiveRange* b) { |
| 2608 | // TODO(vegorov): consider first hint position when ordering live ranges. |
| 2609 | return a->Start() <= b->Start(); |
| 2610 | } |
| 2611 | |
| 2612 | static void AddToSortedListOfRanges(GrowableArray<LiveRange*>* list, |
| 2613 | LiveRange* range) { |
| 2614 | range->finger()->Initialize(range); |
| 2615 | |
| 2616 | if (list->is_empty()) { |
| 2617 | list->Add(range); |
| 2618 | return; |
| 2619 | } |
| 2620 | |
| 2621 | for (intptr_t i = list->length() - 1; i >= 0; i--) { |
| 2622 | if (ShouldBeAllocatedBefore(range, (*list)[i])) { |
| 2623 | list->InsertAt(i + 1, range); |
| 2624 | return; |
| 2625 | } |
| 2626 | } |
| 2627 | list->InsertAt(0, range); |
| 2628 | } |
| 2629 | |
| 2630 | void FlowGraphAllocator::AddToUnallocated(LiveRange* range) { |
| 2631 | AddToSortedListOfRanges(&unallocated_, range); |
| 2632 | } |
| 2633 | |
| 2634 | void FlowGraphAllocator::CompleteRange(LiveRange* range, Location::Kind kind) { |
| 2635 | switch (kind) { |
| 2636 | case Location::kRegister: |
| 2637 | AddToSortedListOfRanges(&unallocated_cpu_, range); |
| 2638 | break; |
| 2639 | |
| 2640 | case Location::kFpuRegister: |
| 2641 | AddToSortedListOfRanges(&unallocated_xmm_, range); |
| 2642 | break; |
| 2643 | |
| 2644 | default: |
| 2645 | UNREACHABLE(); |
| 2646 | } |
| 2647 | } |
| 2648 | |
| 2649 | #if defined(DEBUG) |
| 2650 | bool FlowGraphAllocator::UnallocatedIsSorted() { |
| 2651 | for (intptr_t i = unallocated_.length() - 1; i >= 1; i--) { |
| 2652 | LiveRange* a = unallocated_[i]; |
| 2653 | LiveRange* b = unallocated_[i - 1]; |
| 2654 | if (!ShouldBeAllocatedBefore(a, b)) { |
| 2655 | UNREACHABLE(); |
| 2656 | return false; |
| 2657 | } |
| 2658 | } |
| 2659 | return true; |
| 2660 | } |
| 2661 | #endif |
| 2662 | |
| 2663 | void FlowGraphAllocator::PrepareForAllocation( |
| 2664 | Location::Kind register_kind, |
| 2665 | intptr_t number_of_registers, |
| 2666 | const GrowableArray<LiveRange*>& unallocated, |
| 2667 | LiveRange** blocking_ranges, |
| 2668 | bool* blocked_registers) { |
| 2669 | register_kind_ = register_kind; |
| 2670 | number_of_registers_ = number_of_registers; |
| 2671 | |
| 2672 | blocked_registers_.Clear(); |
| 2673 | registers_.Clear(); |
| 2674 | for (intptr_t i = 0; i < number_of_registers_; i++) { |
| 2675 | blocked_registers_.Add(false); |
| 2676 | registers_.Add(new ZoneGrowableArray<LiveRange*>); |
| 2677 | } |
| 2678 | ASSERT(unallocated_.is_empty()); |
| 2679 | unallocated_.AddArray(unallocated); |
| 2680 | |
| 2681 | for (intptr_t reg = 0; reg < number_of_registers; reg++) { |
| 2682 | blocked_registers_[reg] = blocked_registers[reg]; |
| 2683 | ASSERT(registers_[reg]->is_empty()); |
| 2684 | |
| 2685 | LiveRange* range = blocking_ranges[reg]; |
| 2686 | if (range != NULL) { |
| 2687 | range->finger()->Initialize(range); |
| 2688 | registers_[reg]->Add(range); |
| 2689 | } |
| 2690 | } |
| 2691 | } |
| 2692 | |
| 2693 | void FlowGraphAllocator::AllocateUnallocatedRanges() { |
| 2694 | #if defined(DEBUG) |
| 2695 | ASSERT(UnallocatedIsSorted()); |
| 2696 | #endif |
| 2697 | |
| 2698 | while (!unallocated_.is_empty()) { |
| 2699 | LiveRange* range = unallocated_.RemoveLast(); |
| 2700 | const intptr_t start = range->Start(); |
| 2701 | TRACE_ALLOC(THR_Print("Processing live range for v%" Pd " " |
| 2702 | "starting at %" Pd "\n" , |
| 2703 | range->vreg(), start)); |
| 2704 | |
| 2705 | // TODO(vegorov): eagerly spill liveranges without register uses. |
| 2706 | AdvanceActiveIntervals(start); |
| 2707 | |
| 2708 | if (!AllocateFreeRegister(range)) { |
| 2709 | if (intrinsic_mode_) { |
| 2710 | // No spilling when compiling intrinsics. |
| 2711 | // TODO(fschneider): Handle spilling in intrinsics. For now, the |
| 2712 | // IR has to be built so that there are enough free registers. |
| 2713 | UNREACHABLE(); |
| 2714 | } |
| 2715 | AllocateAnyRegister(range); |
| 2716 | } |
| 2717 | } |
| 2718 | |
| 2719 | // All allocation decisions were done. |
| 2720 | ASSERT(unallocated_.is_empty()); |
| 2721 | |
| 2722 | // Finish allocation. |
| 2723 | AdvanceActiveIntervals(kMaxPosition); |
| 2724 | TRACE_ALLOC(THR_Print("Allocation completed\n" )); |
| 2725 | } |
| 2726 | |
| 2727 | bool FlowGraphAllocator::TargetLocationIsSpillSlot(LiveRange* range, |
| 2728 | Location target) { |
| 2729 | return GetLiveRange(range->vreg())->spill_slot().Equals(target); |
| 2730 | } |
| 2731 | |
| 2732 | void FlowGraphAllocator::ConnectSplitSiblings(LiveRange* parent, |
| 2733 | BlockEntryInstr* source_block, |
| 2734 | BlockEntryInstr* target_block) { |
| 2735 | TRACE_ALLOC(THR_Print("Connect v%" Pd " on the edge B%" Pd " -> B%" Pd "\n" , |
| 2736 | parent->vreg(), source_block->block_id(), |
| 2737 | target_block->block_id())); |
| 2738 | if (parent->next_sibling() == NULL) { |
| 2739 | // Nothing to connect. The whole range was allocated to the same location. |
| 2740 | TRACE_ALLOC(THR_Print("range v%" Pd " has no siblings\n" , parent->vreg())); |
| 2741 | return; |
| 2742 | } |
| 2743 | |
| 2744 | const intptr_t source_pos = source_block->end_pos() - 1; |
| 2745 | ASSERT(IsInstructionEndPosition(source_pos)); |
| 2746 | |
| 2747 | const intptr_t target_pos = target_block->start_pos(); |
| 2748 | |
| 2749 | Location target; |
| 2750 | Location source; |
| 2751 | |
| 2752 | #if defined(INCLUDE_LINEAR_SCAN_TRACING_CODE) |
| 2753 | LiveRange* source_cover = NULL; |
| 2754 | LiveRange* target_cover = NULL; |
| 2755 | #endif |
| 2756 | |
| 2757 | LiveRange* range = parent; |
| 2758 | while ((range != NULL) && (source.IsInvalid() || target.IsInvalid())) { |
| 2759 | if (range->CanCover(source_pos)) { |
| 2760 | ASSERT(source.IsInvalid()); |
| 2761 | source = range->assigned_location(); |
| 2762 | #if defined(INCLUDE_LINEAR_SCAN_TRACING_CODE) |
| 2763 | source_cover = range; |
| 2764 | #endif |
| 2765 | } |
| 2766 | if (range->CanCover(target_pos)) { |
| 2767 | ASSERT(target.IsInvalid()); |
| 2768 | target = range->assigned_location(); |
| 2769 | #if defined(INCLUDE_LINEAR_SCAN_TRACING_CODE) |
| 2770 | target_cover = range; |
| 2771 | #endif |
| 2772 | } |
| 2773 | |
| 2774 | range = range->next_sibling(); |
| 2775 | } |
| 2776 | |
| 2777 | TRACE_ALLOC(THR_Print("connecting v%" Pd " between [%" Pd ", %" Pd ") {%s} " |
| 2778 | "to [%" Pd ", %" Pd ") {%s}\n" , |
| 2779 | parent->vreg(), source_cover->Start(), |
| 2780 | source_cover->End(), source.Name(), |
| 2781 | target_cover->Start(), target_cover->End(), |
| 2782 | target.Name())); |
| 2783 | |
| 2784 | // Siblings were allocated to the same register. |
| 2785 | if (source.Equals(target)) return; |
| 2786 | |
| 2787 | // Values are eagerly spilled. Spill slot already contains appropriate value. |
| 2788 | if (TargetLocationIsSpillSlot(parent, target)) { |
| 2789 | return; |
| 2790 | } |
| 2791 | |
| 2792 | Instruction* last = source_block->last_instruction(); |
| 2793 | if ((last->SuccessorCount() == 1) && !source_block->IsGraphEntry()) { |
| 2794 | ASSERT(last->IsGoto()); |
| 2795 | last->AsGoto()->GetParallelMove()->AddMove(target, source); |
| 2796 | } else { |
| 2797 | target_block->GetParallelMove()->AddMove(target, source); |
| 2798 | } |
| 2799 | } |
| 2800 | |
| 2801 | void FlowGraphAllocator::ResolveControlFlow() { |
| 2802 | // Resolve linear control flow between touching split siblings |
| 2803 | // inside basic blocks. |
| 2804 | for (intptr_t vreg = 0; vreg < live_ranges_.length(); vreg++) { |
| 2805 | LiveRange* range = live_ranges_[vreg]; |
| 2806 | if (range == NULL) continue; |
| 2807 | |
| 2808 | while (range->next_sibling() != NULL) { |
| 2809 | LiveRange* sibling = range->next_sibling(); |
| 2810 | TRACE_ALLOC(THR_Print("connecting [%" Pd ", %" Pd ") [" , range->Start(), |
| 2811 | range->End())); |
| 2812 | TRACE_ALLOC(range->assigned_location().Print()); |
| 2813 | TRACE_ALLOC(THR_Print("] to [%" Pd ", %" Pd ") [" , sibling->Start(), |
| 2814 | sibling->End())); |
| 2815 | TRACE_ALLOC(sibling->assigned_location().Print()); |
| 2816 | TRACE_ALLOC(THR_Print("]\n" )); |
| 2817 | if ((range->End() == sibling->Start()) && |
| 2818 | !TargetLocationIsSpillSlot(range, sibling->assigned_location()) && |
| 2819 | !range->assigned_location().Equals(sibling->assigned_location()) && |
| 2820 | !IsBlockEntry(range->End())) { |
| 2821 | AddMoveAt(sibling->Start(), sibling->assigned_location(), |
| 2822 | range->assigned_location()); |
| 2823 | } |
| 2824 | range = sibling; |
| 2825 | } |
| 2826 | } |
| 2827 | |
| 2828 | // Resolve non-linear control flow across branches. |
| 2829 | for (intptr_t i = 1; i < block_order_.length(); i++) { |
| 2830 | BlockEntryInstr* block = block_order_[i]; |
| 2831 | BitVector* live = liveness_.GetLiveInSet(block); |
| 2832 | for (BitVector::Iterator it(live); !it.Done(); it.Advance()) { |
| 2833 | LiveRange* range = GetLiveRange(it.Current()); |
| 2834 | for (intptr_t j = 0; j < block->PredecessorCount(); j++) { |
| 2835 | ConnectSplitSiblings(range, block->PredecessorAt(j), block); |
| 2836 | } |
| 2837 | } |
| 2838 | } |
| 2839 | |
| 2840 | // Eagerly spill values. |
| 2841 | // TODO(vegorov): if value is spilled on the cold path (e.g. by the call) |
| 2842 | // this will cause spilling to occur on the fast path (at the definition). |
| 2843 | for (intptr_t i = 0; i < spilled_.length(); i++) { |
| 2844 | LiveRange* range = spilled_[i]; |
| 2845 | if (!range->assigned_location().Equals(range->spill_slot())) { |
| 2846 | AddMoveAt(range->Start() + 1, range->spill_slot(), |
| 2847 | range->assigned_location()); |
| 2848 | } |
| 2849 | } |
| 2850 | } |
| 2851 | |
| 2852 | static Representation RepresentationForRange(Representation definition_rep) { |
| 2853 | if (definition_rep == kUnboxedInt64) { |
| 2854 | // kUnboxedInt64 is split into two ranges, each of which are kUntagged. |
| 2855 | return kUntagged; |
| 2856 | } else if (definition_rep == kUnboxedUint32) { |
| 2857 | // kUnboxedUint32 is untagged. |
| 2858 | return kUntagged; |
| 2859 | } |
| 2860 | return definition_rep; |
| 2861 | } |
| 2862 | |
| 2863 | void FlowGraphAllocator::CollectRepresentations() { |
| 2864 | // Constants. |
| 2865 | GraphEntryInstr* graph_entry = flow_graph_.graph_entry(); |
| 2866 | auto initial_definitions = graph_entry->initial_definitions(); |
| 2867 | for (intptr_t i = 0; i < initial_definitions->length(); ++i) { |
| 2868 | Definition* def = (*initial_definitions)[i]; |
| 2869 | value_representations_[def->ssa_temp_index()] = |
| 2870 | RepresentationForRange(def->representation()); |
| 2871 | ASSERT(!def->HasPairRepresentation()); |
| 2872 | } |
| 2873 | |
| 2874 | for (BlockIterator it = flow_graph_.reverse_postorder_iterator(); !it.Done(); |
| 2875 | it.Advance()) { |
| 2876 | BlockEntryInstr* block = it.Current(); |
| 2877 | |
| 2878 | if (auto entry = block->AsBlockEntryWithInitialDefs()) { |
| 2879 | initial_definitions = entry->initial_definitions(); |
| 2880 | for (intptr_t i = 0; i < initial_definitions->length(); ++i) { |
| 2881 | Definition* def = (*initial_definitions)[i]; |
| 2882 | value_representations_[def->ssa_temp_index()] = |
| 2883 | RepresentationForRange(def->representation()); |
| 2884 | if (def->HasPairRepresentation()) { |
| 2885 | value_representations_[ToSecondPairVreg(def->ssa_temp_index())] = |
| 2886 | RepresentationForRange(def->representation()); |
| 2887 | } |
| 2888 | } |
| 2889 | } else if (auto join = block->AsJoinEntry()) { |
| 2890 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 2891 | PhiInstr* phi = it.Current(); |
| 2892 | ASSERT(phi != NULL && phi->ssa_temp_index() >= 0); |
| 2893 | value_representations_[phi->ssa_temp_index()] = |
| 2894 | RepresentationForRange(phi->representation()); |
| 2895 | if (phi->HasPairRepresentation()) { |
| 2896 | value_representations_[ToSecondPairVreg(phi->ssa_temp_index())] = |
| 2897 | RepresentationForRange(phi->representation()); |
| 2898 | } |
| 2899 | } |
| 2900 | } |
| 2901 | |
| 2902 | // Normal instructions. |
| 2903 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 2904 | instr_it.Advance()) { |
| 2905 | Definition* def = instr_it.Current()->AsDefinition(); |
| 2906 | if ((def != NULL) && (def->ssa_temp_index() >= 0)) { |
| 2907 | const intptr_t vreg = def->ssa_temp_index(); |
| 2908 | value_representations_[vreg] = |
| 2909 | RepresentationForRange(def->representation()); |
| 2910 | if (def->HasPairRepresentation()) { |
| 2911 | value_representations_[ToSecondPairVreg(vreg)] = |
| 2912 | RepresentationForRange(def->representation()); |
| 2913 | } |
| 2914 | } |
| 2915 | } |
| 2916 | } |
| 2917 | } |
| 2918 | |
| 2919 | void FlowGraphAllocator::AllocateRegisters() { |
| 2920 | CollectRepresentations(); |
| 2921 | |
| 2922 | liveness_.Analyze(); |
| 2923 | |
| 2924 | NumberInstructions(); |
| 2925 | |
| 2926 | BuildLiveRanges(); |
| 2927 | |
| 2928 | if (FLAG_print_ssa_liveranges && CompilerState::ShouldTrace()) { |
| 2929 | const Function& function = flow_graph_.function(); |
| 2930 | THR_Print("-- [before ssa allocator] ranges [%s] ---------\n" , |
| 2931 | function.ToFullyQualifiedCString()); |
| 2932 | PrintLiveRanges(); |
| 2933 | THR_Print("----------------------------------------------\n" ); |
| 2934 | |
| 2935 | THR_Print("-- [before ssa allocator] ir [%s] -------------\n" , |
| 2936 | function.ToFullyQualifiedCString()); |
| 2937 | if (FLAG_support_il_printer) { |
| 2938 | #ifndef PRODUCT |
| 2939 | FlowGraphPrinter printer(flow_graph_, true); |
| 2940 | printer.PrintBlocks(); |
| 2941 | #endif |
| 2942 | } |
| 2943 | THR_Print("----------------------------------------------\n" ); |
| 2944 | } |
| 2945 | |
| 2946 | PrepareForAllocation(Location::kRegister, kNumberOfCpuRegisters, |
| 2947 | unallocated_cpu_, cpu_regs_, blocked_cpu_registers_); |
| 2948 | AllocateUnallocatedRanges(); |
| 2949 | // GraphEntryInstr::fixed_slot_count() stack slots are reserved for catch |
| 2950 | // entries. When allocating a spill slot, AllocateSpillSlotFor() accounts for |
| 2951 | // these reserved slots and allocates spill slots on top of them. |
| 2952 | // However, if there are no spill slots allocated, we still need to reserve |
| 2953 | // slots for catch entries in the spill area. |
| 2954 | cpu_spill_slot_count_ = Utils::Maximum( |
| 2955 | spill_slots_.length(), flow_graph_.graph_entry()->fixed_slot_count()); |
| 2956 | spill_slots_.Clear(); |
| 2957 | quad_spill_slots_.Clear(); |
| 2958 | untagged_spill_slots_.Clear(); |
| 2959 | |
| 2960 | PrepareForAllocation(Location::kFpuRegister, kNumberOfFpuRegisters, |
| 2961 | unallocated_xmm_, fpu_regs_, blocked_fpu_registers_); |
| 2962 | AllocateUnallocatedRanges(); |
| 2963 | ResolveControlFlow(); |
| 2964 | |
| 2965 | GraphEntryInstr* entry = block_order_[0]->AsGraphEntry(); |
| 2966 | ASSERT(entry != NULL); |
| 2967 | intptr_t double_spill_slot_count = spill_slots_.length() * kDoubleSpillFactor; |
| 2968 | entry->set_spill_slot_count(cpu_spill_slot_count_ + double_spill_slot_count); |
| 2969 | |
| 2970 | if (FLAG_print_ssa_liveranges && CompilerState::ShouldTrace()) { |
| 2971 | const Function& function = flow_graph_.function(); |
| 2972 | |
| 2973 | THR_Print("-- [after ssa allocator] ranges [%s] ---------\n" , |
| 2974 | function.ToFullyQualifiedCString()); |
| 2975 | PrintLiveRanges(); |
| 2976 | THR_Print("----------------------------------------------\n" ); |
| 2977 | |
| 2978 | THR_Print("-- [after ssa allocator] ir [%s] -------------\n" , |
| 2979 | function.ToFullyQualifiedCString()); |
| 2980 | if (FLAG_support_il_printer) { |
| 2981 | #ifndef PRODUCT |
| 2982 | FlowGraphPrinter printer(flow_graph_, true); |
| 2983 | printer.PrintBlocks(); |
| 2984 | #endif |
| 2985 | } |
| 2986 | THR_Print("----------------------------------------------\n" ); |
| 2987 | } |
| 2988 | } |
| 2989 | |
| 2990 | } // namespace dart |
| 2991 | |