| 1 | // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/compiler/backend/range_analysis.h" |
| 6 | |
| 7 | #include "vm/bit_vector.h" |
| 8 | #include "vm/compiler/backend/il_printer.h" |
| 9 | #include "vm/compiler/backend/loops.h" |
| 10 | |
| 11 | namespace dart { |
| 12 | |
| 13 | DEFINE_FLAG(bool, |
| 14 | array_bounds_check_elimination, |
| 15 | true, |
| 16 | "Eliminate redundant bounds checks." ); |
| 17 | DEFINE_FLAG(bool, trace_range_analysis, false, "Trace range analysis progress" ); |
| 18 | DEFINE_FLAG(bool, |
| 19 | trace_integer_ir_selection, |
| 20 | false, |
| 21 | "Print integer IR selection optimization pass." ); |
| 22 | DECLARE_FLAG(bool, trace_constant_propagation); |
| 23 | |
| 24 | // Quick access to the locally defined isolate() and zone() methods. |
| 25 | #define I (isolate()) |
| 26 | #define Z (zone()) |
| 27 | |
| 28 | void RangeAnalysis::Analyze() { |
| 29 | CollectValues(); |
| 30 | InsertConstraints(); |
| 31 | flow_graph_->GetLoopHierarchy().ComputeInduction(); |
| 32 | InferRanges(); |
| 33 | EliminateRedundantBoundsChecks(); |
| 34 | MarkUnreachableBlocks(); |
| 35 | |
| 36 | NarrowMintToInt32(); |
| 37 | |
| 38 | IntegerInstructionSelector iis(flow_graph_); |
| 39 | iis.Select(); |
| 40 | |
| 41 | RemoveConstraints(); |
| 42 | } |
| 43 | |
| 44 | // Helper method to chase to a constrained definition. |
| 45 | static Definition* UnwrapConstraint(Definition* defn) { |
| 46 | while (defn->IsConstraint()) { |
| 47 | defn = defn->AsConstraint()->value()->definition(); |
| 48 | } |
| 49 | return defn; |
| 50 | } |
| 51 | |
| 52 | void RangeAnalysis::CollectValues() { |
| 53 | auto graph_entry = flow_graph_->graph_entry(); |
| 54 | |
| 55 | auto& initial = *graph_entry->initial_definitions(); |
| 56 | for (intptr_t i = 0; i < initial.length(); ++i) { |
| 57 | Definition* current = initial[i]; |
| 58 | if (IsIntegerDefinition(current)) { |
| 59 | values_.Add(current); |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | for (intptr_t i = 0; i < graph_entry->SuccessorCount(); ++i) { |
| 64 | auto successor = graph_entry->SuccessorAt(i); |
| 65 | if (auto entry = successor->AsBlockEntryWithInitialDefs()) { |
| 66 | const auto& initial = *entry->initial_definitions(); |
| 67 | for (intptr_t j = 0; j < initial.length(); ++j) { |
| 68 | Definition* current = initial[j]; |
| 69 | if (IsIntegerDefinition(current)) { |
| 70 | values_.Add(current); |
| 71 | } |
| 72 | } |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator(); |
| 77 | !block_it.Done(); block_it.Advance()) { |
| 78 | BlockEntryInstr* block = block_it.Current(); |
| 79 | JoinEntryInstr* join = block->AsJoinEntry(); |
| 80 | if (join != NULL) { |
| 81 | for (PhiIterator phi_it(join); !phi_it.Done(); phi_it.Advance()) { |
| 82 | PhiInstr* current = phi_it.Current(); |
| 83 | if (current->Type()->IsInt()) { |
| 84 | values_.Add(current); |
| 85 | } |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 90 | instr_it.Advance()) { |
| 91 | Instruction* current = instr_it.Current(); |
| 92 | Definition* defn = current->AsDefinition(); |
| 93 | if (defn != NULL) { |
| 94 | if (defn->HasSSATemp() && IsIntegerDefinition(defn)) { |
| 95 | values_.Add(defn); |
| 96 | if (defn->IsBinaryInt64Op()) { |
| 97 | binary_int64_ops_.Add(defn->AsBinaryInt64Op()); |
| 98 | } else if (defn->IsShiftInt64Op() || |
| 99 | defn->IsSpeculativeShiftInt64Op()) { |
| 100 | shift_int64_ops_.Add(defn->AsShiftIntegerOp()); |
| 101 | } |
| 102 | } |
| 103 | } |
| 104 | if (auto check = current->AsCheckBoundBase()) { |
| 105 | bounds_checks_.Add(check); |
| 106 | } |
| 107 | } |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | // Given a boundary (right operand) and a comparison operation return |
| 112 | // a symbolic range constraint for the left operand of the comparison assuming |
| 113 | // that it evaluated to true. |
| 114 | // For example for the comparison a < b symbol a is constrained with range |
| 115 | // [Smi::kMinValue, b - 1]. |
| 116 | Range* RangeAnalysis::ConstraintSmiRange(Token::Kind op, Definition* boundary) { |
| 117 | switch (op) { |
| 118 | case Token::kEQ: |
| 119 | return new (Z) Range(RangeBoundary::FromDefinition(boundary), |
| 120 | RangeBoundary::FromDefinition(boundary)); |
| 121 | case Token::kNE: |
| 122 | return new (Z) Range(Range::Full(RangeBoundary::kRangeBoundarySmi)); |
| 123 | case Token::kLT: |
| 124 | return new (Z) Range(RangeBoundary::MinSmi(), |
| 125 | RangeBoundary::FromDefinition(boundary, -1)); |
| 126 | case Token::kGT: |
| 127 | return new (Z) Range(RangeBoundary::FromDefinition(boundary, 1), |
| 128 | RangeBoundary::MaxSmi()); |
| 129 | case Token::kLTE: |
| 130 | return new (Z) Range(RangeBoundary::MinSmi(), |
| 131 | RangeBoundary::FromDefinition(boundary)); |
| 132 | case Token::kGTE: |
| 133 | return new (Z) Range(RangeBoundary::FromDefinition(boundary), |
| 134 | RangeBoundary::MaxSmi()); |
| 135 | default: |
| 136 | UNREACHABLE(); |
| 137 | return NULL; |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | ConstraintInstr* RangeAnalysis::InsertConstraintFor(Value* use, |
| 142 | Definition* defn, |
| 143 | Range* constraint_range, |
| 144 | Instruction* after) { |
| 145 | // No need to constrain constants. |
| 146 | if (defn->IsConstant()) return NULL; |
| 147 | |
| 148 | // Check if the value is already constrained to avoid inserting duplicated |
| 149 | // constraints. |
| 150 | ConstraintInstr* constraint = after->next()->AsConstraint(); |
| 151 | while (constraint != NULL) { |
| 152 | if ((constraint->value()->definition() == defn) && |
| 153 | constraint->constraint()->Equals(constraint_range)) { |
| 154 | return NULL; |
| 155 | } |
| 156 | constraint = constraint->next()->AsConstraint(); |
| 157 | } |
| 158 | |
| 159 | constraint = new (Z) ConstraintInstr(use->CopyWithType(), constraint_range); |
| 160 | |
| 161 | flow_graph_->InsertAfter(after, constraint, NULL, FlowGraph::kValue); |
| 162 | FlowGraph::RenameDominatedUses(defn, constraint, constraint); |
| 163 | constraints_.Add(constraint); |
| 164 | return constraint; |
| 165 | } |
| 166 | |
| 167 | bool RangeAnalysis::ConstrainValueAfterBranch(Value* use, Definition* defn) { |
| 168 | BranchInstr* branch = use->instruction()->AsBranch(); |
| 169 | RelationalOpInstr* rel_op = branch->comparison()->AsRelationalOp(); |
| 170 | if ((rel_op != NULL) && (rel_op->operation_cid() == kSmiCid)) { |
| 171 | // Found comparison of two smis. Constrain defn at true and false |
| 172 | // successors using the other operand as a boundary. |
| 173 | Definition* boundary; |
| 174 | Token::Kind op_kind; |
| 175 | if (use->use_index() == 0) { // Left operand. |
| 176 | boundary = rel_op->InputAt(1)->definition(); |
| 177 | op_kind = rel_op->kind(); |
| 178 | } else { |
| 179 | ASSERT(use->use_index() == 1); // Right operand. |
| 180 | boundary = rel_op->InputAt(0)->definition(); |
| 181 | // InsertConstraintFor assumes that defn is left operand of a |
| 182 | // comparison if it is right operand flip the comparison. |
| 183 | op_kind = Token::FlipComparison(rel_op->kind()); |
| 184 | } |
| 185 | |
| 186 | // Constrain definition at the true successor. |
| 187 | ConstraintInstr* true_constraint = |
| 188 | InsertConstraintFor(use, defn, ConstraintSmiRange(op_kind, boundary), |
| 189 | branch->true_successor()); |
| 190 | if (true_constraint != NULL) { |
| 191 | true_constraint->set_target(branch->true_successor()); |
| 192 | } |
| 193 | |
| 194 | // Constrain definition with a negated condition at the false successor. |
| 195 | ConstraintInstr* false_constraint = InsertConstraintFor( |
| 196 | use, defn, |
| 197 | ConstraintSmiRange(Token::NegateComparison(op_kind), boundary), |
| 198 | branch->false_successor()); |
| 199 | if (false_constraint != NULL) { |
| 200 | false_constraint->set_target(branch->false_successor()); |
| 201 | } |
| 202 | |
| 203 | return true; |
| 204 | } |
| 205 | |
| 206 | return false; |
| 207 | } |
| 208 | |
| 209 | void RangeAnalysis::InsertConstraintsFor(Definition* defn) { |
| 210 | for (Value* use = defn->input_use_list(); use != NULL; |
| 211 | use = use->next_use()) { |
| 212 | if (auto branch = use->instruction()->AsBranch()) { |
| 213 | if (ConstrainValueAfterBranch(use, defn)) { |
| 214 | Value* other_value = branch->InputAt(1 - use->use_index()); |
| 215 | if (!IsIntegerDefinition(other_value->definition())) { |
| 216 | ConstrainValueAfterBranch(other_value, other_value->definition()); |
| 217 | } |
| 218 | } |
| 219 | } else if (auto check = use->instruction()->AsCheckBoundBase()) { |
| 220 | ConstrainValueAfterCheckBound(use, check, defn); |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | void RangeAnalysis::ConstrainValueAfterCheckBound(Value* use, |
| 226 | CheckBoundBase* check, |
| 227 | Definition* defn) { |
| 228 | const intptr_t use_index = use->use_index(); |
| 229 | |
| 230 | Range* constraint_range = NULL; |
| 231 | if (use_index == CheckBoundBase::kIndexPos) { |
| 232 | Definition* length = check->length()->definition(); |
| 233 | constraint_range = new (Z) Range(RangeBoundary::FromConstant(0), |
| 234 | RangeBoundary::FromDefinition(length, -1)); |
| 235 | } else { |
| 236 | ASSERT(use_index == CheckBoundBase::kLengthPos); |
| 237 | Definition* index = check->index()->definition(); |
| 238 | constraint_range = new (Z) |
| 239 | Range(RangeBoundary::FromDefinition(index, 1), RangeBoundary::MaxSmi()); |
| 240 | } |
| 241 | InsertConstraintFor(use, defn, constraint_range, check); |
| 242 | } |
| 243 | |
| 244 | void RangeAnalysis::InsertConstraints() { |
| 245 | for (intptr_t i = 0; i < values_.length(); i++) { |
| 246 | InsertConstraintsFor(values_[i]); |
| 247 | } |
| 248 | |
| 249 | for (intptr_t i = 0; i < constraints_.length(); i++) { |
| 250 | InsertConstraintsFor(constraints_[i]); |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | const Range* RangeAnalysis::GetSmiRange(Value* value) const { |
| 255 | Definition* defn = value->definition(); |
| 256 | const Range* range = defn->range(); |
| 257 | |
| 258 | if ((range == NULL) && (defn->Type()->ToCid() != kSmiCid)) { |
| 259 | // Type propagator determined that reaching type for this use is Smi. |
| 260 | // However the definition itself is not a smi-definition and |
| 261 | // thus it will never have range assigned to it. Just return the widest |
| 262 | // range possible for this value. |
| 263 | // We don't need to handle kMintCid here because all external mints |
| 264 | // (e.g. results of loads or function call) can be used only after they |
| 265 | // pass through UnboxInt64Instr which is considered as mint-definition |
| 266 | // and will have a range assigned to it. |
| 267 | // Note: that we can't return NULL here because it is used as lattice's |
| 268 | // bottom element to indicate that the range was not computed *yet*. |
| 269 | return &smi_range_; |
| 270 | } |
| 271 | |
| 272 | return range; |
| 273 | } |
| 274 | |
| 275 | const Range* RangeAnalysis::GetIntRange(Value* value) const { |
| 276 | Definition* defn = value->definition(); |
| 277 | const Range* range = defn->range(); |
| 278 | |
| 279 | if ((range == NULL) && !defn->Type()->IsInt()) { |
| 280 | // Type propagator determined that reaching type for this use is int. |
| 281 | // However the definition itself is not a int-definition and |
| 282 | // thus it will never have range assigned to it. Just return the widest |
| 283 | // range possible for this value. |
| 284 | // Note: that we can't return NULL here because it is used as lattice's |
| 285 | // bottom element to indicate that the range was not computed *yet*. |
| 286 | return &int64_range_; |
| 287 | } |
| 288 | |
| 289 | return range; |
| 290 | } |
| 291 | |
| 292 | const char* RangeBoundary::KindToCString(Kind kind) { |
| 293 | switch (kind) { |
| 294 | #define KIND_CASE(name) \ |
| 295 | case Kind::k##name: \ |
| 296 | return #name; |
| 297 | FOR_EACH_RANGE_BOUNDARY_KIND(KIND_CASE) |
| 298 | #undef KIND_CASE |
| 299 | default: |
| 300 | UNREACHABLE(); |
| 301 | return nullptr; |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | bool RangeBoundary::ParseKind(const char* str, Kind* out) { |
| 306 | #define KIND_CASE(name) \ |
| 307 | if (strcmp(str, #name) == 0) { \ |
| 308 | *out = Kind::k##name; \ |
| 309 | return true; \ |
| 310 | } |
| 311 | FOR_EACH_RANGE_BOUNDARY_KIND(KIND_CASE) |
| 312 | #undef KIND_CASE |
| 313 | return false; |
| 314 | } |
| 315 | |
| 316 | static bool AreEqualDefinitions(Definition* a, Definition* b) { |
| 317 | a = UnwrapConstraint(a); |
| 318 | b = UnwrapConstraint(b); |
| 319 | return (a == b) || (a->AllowsCSE() && b->AllowsCSE() && a->Equals(b)); |
| 320 | } |
| 321 | |
| 322 | static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) { |
| 323 | return a.IsSymbol() && b.IsSymbol() && |
| 324 | AreEqualDefinitions(a.symbol(), b.symbol()); |
| 325 | } |
| 326 | |
| 327 | // Given the current range of a phi and a newly computed range check |
| 328 | // if it is growing towards negative infinity, if it does widen it to |
| 329 | // MinSmi. |
| 330 | static RangeBoundary WidenMin(const Range* range, |
| 331 | const Range* new_range, |
| 332 | RangeBoundary::RangeSize size) { |
| 333 | RangeBoundary min = range->min(); |
| 334 | RangeBoundary new_min = new_range->min(); |
| 335 | |
| 336 | if (min.IsSymbol()) { |
| 337 | if (min.LowerBound().Overflowed(size)) { |
| 338 | return RangeBoundary::MinConstant(size); |
| 339 | } else if (DependOnSameSymbol(min, new_min)) { |
| 340 | return min.offset() <= new_min.offset() |
| 341 | ? min |
| 342 | : RangeBoundary::MinConstant(size); |
| 343 | } else if (min.UpperBound(size) <= new_min.LowerBound(size)) { |
| 344 | return min; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | min = Range::ConstantMin(range, size); |
| 349 | new_min = Range::ConstantMin(new_range, size); |
| 350 | |
| 351 | return (min.ConstantValue() <= new_min.ConstantValue()) |
| 352 | ? min |
| 353 | : RangeBoundary::MinConstant(size); |
| 354 | } |
| 355 | |
| 356 | // Given the current range of a phi and a newly computed range check |
| 357 | // if it is growing towards positive infinity, if it does widen it to |
| 358 | // MaxSmi. |
| 359 | static RangeBoundary WidenMax(const Range* range, |
| 360 | const Range* new_range, |
| 361 | RangeBoundary::RangeSize size) { |
| 362 | RangeBoundary max = range->max(); |
| 363 | RangeBoundary new_max = new_range->max(); |
| 364 | |
| 365 | if (max.IsSymbol()) { |
| 366 | if (max.UpperBound().Overflowed(size)) { |
| 367 | return RangeBoundary::MaxConstant(size); |
| 368 | } else if (DependOnSameSymbol(max, new_max)) { |
| 369 | return max.offset() >= new_max.offset() |
| 370 | ? max |
| 371 | : RangeBoundary::MaxConstant(size); |
| 372 | } else if (max.LowerBound(size) >= new_max.UpperBound(size)) { |
| 373 | return max; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | max = Range::ConstantMax(range, size); |
| 378 | new_max = Range::ConstantMax(new_range, size); |
| 379 | |
| 380 | return (max.ConstantValue() >= new_max.ConstantValue()) |
| 381 | ? max |
| 382 | : RangeBoundary::MaxConstant(size); |
| 383 | } |
| 384 | |
| 385 | // Given the current range of a phi and a newly computed range check |
| 386 | // if we can perform narrowing: use newly computed minimum to improve precision |
| 387 | // of the computed range. We do it only if current minimum was widened and is |
| 388 | // equal to MinSmi. |
| 389 | // Newly computed minimum is expected to be greater or equal than old one as |
| 390 | // we are running after widening phase. |
| 391 | static RangeBoundary NarrowMin(const Range* range, |
| 392 | const Range* new_range, |
| 393 | RangeBoundary::RangeSize size) { |
| 394 | const RangeBoundary min = Range::ConstantMin(range, size); |
| 395 | const RangeBoundary new_min = Range::ConstantMin(new_range, size); |
| 396 | if (min.ConstantValue() > new_min.ConstantValue()) return range->min(); |
| 397 | |
| 398 | // TODO(vegorov): consider using negative infinity to indicate widened bound. |
| 399 | return range->min().IsMinimumOrBelow(size) ? new_range->min() : range->min(); |
| 400 | } |
| 401 | |
| 402 | // Given the current range of a phi and a newly computed range check |
| 403 | // if we can perform narrowing: use newly computed maximum to improve precision |
| 404 | // of the computed range. We do it only if current maximum was widened and is |
| 405 | // equal to MaxSmi. |
| 406 | // Newly computed maximum is expected to be less or equal than old one as |
| 407 | // we are running after widening phase. |
| 408 | static RangeBoundary NarrowMax(const Range* range, |
| 409 | const Range* new_range, |
| 410 | RangeBoundary::RangeSize size) { |
| 411 | const RangeBoundary max = Range::ConstantMax(range, size); |
| 412 | const RangeBoundary new_max = Range::ConstantMax(new_range, size); |
| 413 | if (max.ConstantValue() < new_max.ConstantValue()) return range->max(); |
| 414 | |
| 415 | // TODO(vegorov): consider using positive infinity to indicate widened bound. |
| 416 | return range->max().IsMaximumOrAbove(size) ? new_range->max() : range->max(); |
| 417 | } |
| 418 | |
| 419 | char RangeAnalysis::OpPrefix(JoinOperator op) { |
| 420 | switch (op) { |
| 421 | case WIDEN: |
| 422 | return 'W'; |
| 423 | case NARROW: |
| 424 | return 'N'; |
| 425 | case NONE: |
| 426 | return 'I'; |
| 427 | } |
| 428 | UNREACHABLE(); |
| 429 | return ' '; |
| 430 | } |
| 431 | |
| 432 | static RangeBoundary::RangeSize RangeSizeForPhi(Definition* phi) { |
| 433 | ASSERT(phi->IsPhi()); |
| 434 | if (phi->Type()->ToCid() == kSmiCid) { |
| 435 | return RangeBoundary::kRangeBoundarySmi; |
| 436 | } else if (phi->representation() == kUnboxedInt32) { |
| 437 | return RangeBoundary::kRangeBoundaryInt32; |
| 438 | } else if (phi->Type()->IsInt()) { |
| 439 | return RangeBoundary::kRangeBoundaryInt64; |
| 440 | } else { |
| 441 | UNREACHABLE(); |
| 442 | return RangeBoundary::kRangeBoundaryInt64; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | bool RangeAnalysis::InferRange(JoinOperator op, |
| 447 | Definition* defn, |
| 448 | intptr_t iteration) { |
| 449 | Range range; |
| 450 | defn->InferRange(this, &range); |
| 451 | |
| 452 | if (!Range::IsUnknown(&range)) { |
| 453 | if (!Range::IsUnknown(defn->range()) && defn->IsPhi()) { |
| 454 | const RangeBoundary::RangeSize size = RangeSizeForPhi(defn); |
| 455 | if (op == WIDEN) { |
| 456 | range = Range(WidenMin(defn->range(), &range, size), |
| 457 | WidenMax(defn->range(), &range, size)); |
| 458 | } else if (op == NARROW) { |
| 459 | range = Range(NarrowMin(defn->range(), &range, size), |
| 460 | NarrowMax(defn->range(), &range, size)); |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | if (!range.Equals(defn->range())) { |
| 465 | #ifndef PRODUCT |
| 466 | if (FLAG_support_il_printer && FLAG_trace_range_analysis) { |
| 467 | THR_Print("%c [%" Pd "] %s: %s => %s\n" , OpPrefix(op), iteration, |
| 468 | defn->ToCString(), Range::ToCString(defn->range()), |
| 469 | Range::ToCString(&range)); |
| 470 | } |
| 471 | #endif // !PRODUCT |
| 472 | defn->set_range(range); |
| 473 | return true; |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | return false; |
| 478 | } |
| 479 | |
| 480 | void RangeAnalysis::CollectDefinitions(BitVector* set) { |
| 481 | for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator(); |
| 482 | !block_it.Done(); block_it.Advance()) { |
| 483 | BlockEntryInstr* block = block_it.Current(); |
| 484 | |
| 485 | JoinEntryInstr* join = block->AsJoinEntry(); |
| 486 | if (join != NULL) { |
| 487 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 488 | PhiInstr* phi = it.Current(); |
| 489 | if (set->Contains(phi->ssa_temp_index())) { |
| 490 | definitions_.Add(phi); |
| 491 | } |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 496 | Definition* defn = it.Current()->AsDefinition(); |
| 497 | if ((defn != NULL) && defn->HasSSATemp() && |
| 498 | set->Contains(defn->ssa_temp_index())) { |
| 499 | definitions_.Add(defn); |
| 500 | } |
| 501 | } |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | void RangeAnalysis::Iterate(JoinOperator op, intptr_t max_iterations) { |
| 506 | // TODO(vegorov): switch to worklist if this becomes performance bottleneck. |
| 507 | intptr_t iteration = 0; |
| 508 | bool changed; |
| 509 | do { |
| 510 | changed = false; |
| 511 | for (intptr_t i = 0; i < definitions_.length(); i++) { |
| 512 | Definition* defn = definitions_[i]; |
| 513 | if (InferRange(op, defn, iteration)) { |
| 514 | changed = true; |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | iteration++; |
| 519 | } while (changed && (iteration < max_iterations)); |
| 520 | } |
| 521 | |
| 522 | void RangeAnalysis::InferRanges() { |
| 523 | Zone* zone = flow_graph_->zone(); |
| 524 | // Initialize bitvector for quick filtering of int values. |
| 525 | BitVector* set = |
| 526 | new (zone) BitVector(zone, flow_graph_->current_ssa_temp_index()); |
| 527 | for (intptr_t i = 0; i < values_.length(); i++) { |
| 528 | set->Add(values_[i]->ssa_temp_index()); |
| 529 | } |
| 530 | for (intptr_t i = 0; i < constraints_.length(); i++) { |
| 531 | set->Add(constraints_[i]->ssa_temp_index()); |
| 532 | } |
| 533 | |
| 534 | // Collect integer definitions (including constraints) in the reverse |
| 535 | // postorder. This improves convergence speed compared to iterating |
| 536 | // values_ and constraints_ array separately. |
| 537 | auto graph_entry = flow_graph_->graph_entry(); |
| 538 | const auto& initial = *graph_entry->initial_definitions(); |
| 539 | for (intptr_t i = 0; i < initial.length(); ++i) { |
| 540 | Definition* definition = initial[i]; |
| 541 | if (set->Contains(definition->ssa_temp_index())) { |
| 542 | definitions_.Add(definition); |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | for (intptr_t i = 0; i < graph_entry->SuccessorCount(); ++i) { |
| 547 | auto successor = graph_entry->SuccessorAt(i); |
| 548 | if (auto function_entry = successor->AsFunctionEntry()) { |
| 549 | const auto& initial = *function_entry->initial_definitions(); |
| 550 | for (intptr_t j = 0; j < initial.length(); ++j) { |
| 551 | Definition* definition = initial[j]; |
| 552 | if (set->Contains(definition->ssa_temp_index())) { |
| 553 | definitions_.Add(definition); |
| 554 | } |
| 555 | } |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | CollectDefinitions(set); |
| 560 | |
| 561 | // Perform an iteration of range inference just propagating ranges |
| 562 | // through the graph as-is without applying widening or narrowing. |
| 563 | // This helps to improve precision of initial bounds. |
| 564 | // We are doing 2 iterations to hit common cases where phi range |
| 565 | // stabilizes quickly and yields a better precision than after |
| 566 | // widening and narrowing. |
| 567 | Iterate(NONE, 2); |
| 568 | |
| 569 | // Perform fix-point iteration of range inference applying widening |
| 570 | // operator to phis to ensure fast convergence. |
| 571 | // Widening simply maps growing bounds to the respective range bound. |
| 572 | Iterate(WIDEN, kMaxInt32); |
| 573 | |
| 574 | // Perform fix-point iteration of range inference applying narrowing |
| 575 | // to phis to compute more accurate range. |
| 576 | // Narrowing only improves those boundaries that were widened up to |
| 577 | // range boundary and leaves other boundaries intact. |
| 578 | Iterate(NARROW, kMaxInt32); |
| 579 | } |
| 580 | |
| 581 | void RangeAnalysis::AssignRangesRecursively(Definition* defn) { |
| 582 | if (!Range::IsUnknown(defn->range())) { |
| 583 | return; |
| 584 | } |
| 585 | |
| 586 | if (!IsIntegerDefinition(defn)) { |
| 587 | return; |
| 588 | } |
| 589 | |
| 590 | for (intptr_t i = 0; i < defn->InputCount(); i++) { |
| 591 | Definition* input_defn = defn->InputAt(i)->definition(); |
| 592 | if (!input_defn->HasSSATemp() || input_defn->IsConstant()) { |
| 593 | AssignRangesRecursively(input_defn); |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | Range new_range; |
| 598 | defn->InferRange(this, &new_range); |
| 599 | if (!Range::IsUnknown(&new_range)) { |
| 600 | defn->set_range(new_range); |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | // Scheduler is a helper class that inserts floating control-flow less |
| 605 | // subgraphs into the flow graph. |
| 606 | // It always attempts to schedule instructions into the loop preheader in the |
| 607 | // way similar to LICM optimization pass. |
| 608 | // Scheduler supports rollback - that is it keeps track of instructions it |
| 609 | // schedules and can remove all instructions it inserted from the graph. |
| 610 | class Scheduler { |
| 611 | public: |
| 612 | explicit Scheduler(FlowGraph* flow_graph) |
| 613 | : flow_graph_(flow_graph), |
| 614 | loop_headers_(flow_graph->GetLoopHierarchy().headers()), |
| 615 | pre_headers_(loop_headers_.length()) { |
| 616 | for (intptr_t i = 0; i < loop_headers_.length(); i++) { |
| 617 | pre_headers_.Add(loop_headers_[i]->ImmediateDominator()); |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | // Clear the list of emitted instructions. |
| 622 | void Start() { emitted_.Clear(); } |
| 623 | |
| 624 | // Given the floating instruction attempt to schedule it into one of the |
| 625 | // loop preheaders that dominates given post_dominator instruction. |
| 626 | // Some of the instruction inputs can potentially be unscheduled as well. |
| 627 | // Returns NULL is the scheduling fails (e.g. inputs are not invariant for |
| 628 | // any loop containing post_dominator). |
| 629 | // Resulting schedule should be equivalent to one obtained by inserting |
| 630 | // instructions right before post_dominator and running CSE and LICM passes. |
| 631 | template <typename T> |
| 632 | T* Emit(T* instruction, Instruction* post_dominator) { |
| 633 | return static_cast<T*>(EmitRecursively(instruction, post_dominator)); |
| 634 | } |
| 635 | |
| 636 | // Undo all insertions recorded in the list of emitted instructions. |
| 637 | void Rollback() { |
| 638 | for (intptr_t i = emitted_.length() - 1; i >= 0; i--) { |
| 639 | emitted_[i]->RemoveFromGraph(); |
| 640 | } |
| 641 | emitted_.Clear(); |
| 642 | } |
| 643 | |
| 644 | private: |
| 645 | typedef DirectChainedHashMap<PointerKeyValueTrait<Instruction> > Map; |
| 646 | |
| 647 | Instruction* EmitRecursively(Instruction* instruction, Instruction* sink) { |
| 648 | // Schedule all unscheduled inputs and unwrap all constrained inputs. |
| 649 | for (intptr_t i = 0; i < instruction->InputCount(); i++) { |
| 650 | Definition* defn = instruction->InputAt(i)->definition(); |
| 651 | |
| 652 | // Instruction is not in the graph yet which means that none of |
| 653 | // its input uses should be recorded at defn's use chains. |
| 654 | // Verify this assumption to ensure that we are not going to |
| 655 | // leave use-lists in an inconsistent state when we start |
| 656 | // rewriting inputs via set_definition. |
| 657 | ASSERT(instruction->InputAt(i)->IsSingleUse() && |
| 658 | !defn->HasOnlyInputUse(instruction->InputAt(i))); |
| 659 | |
| 660 | if (!defn->HasSSATemp()) { |
| 661 | Definition* scheduled = Emit(defn, sink); |
| 662 | if (scheduled == NULL) { |
| 663 | return NULL; |
| 664 | } |
| 665 | instruction->InputAt(i)->set_definition(scheduled); |
| 666 | } else if (defn->IsConstraint()) { |
| 667 | instruction->InputAt(i)->set_definition(UnwrapConstraint(defn)); |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | // Attempt to find equivalent instruction that was already scheduled. |
| 672 | // If the instruction is still in the graph (it could have been |
| 673 | // un-scheduled by a rollback action) and it dominates the sink - use it. |
| 674 | Instruction* emitted = map_.LookupValue(instruction); |
| 675 | if (emitted != NULL && !emitted->WasEliminated() && |
| 676 | sink->IsDominatedBy(emitted)) { |
| 677 | return emitted; |
| 678 | } |
| 679 | |
| 680 | // Attempt to find suitable pre-header. Iterate loop headers backwards to |
| 681 | // attempt scheduling into the outermost loop first. |
| 682 | for (intptr_t i = loop_headers_.length() - 1; i >= 0; i--) { |
| 683 | BlockEntryInstr* = loop_headers_[i]; |
| 684 | BlockEntryInstr* = pre_headers_[i]; |
| 685 | |
| 686 | if (pre_header == NULL) { |
| 687 | continue; |
| 688 | } |
| 689 | |
| 690 | if (!sink->IsDominatedBy(header)) { |
| 691 | continue; |
| 692 | } |
| 693 | |
| 694 | Instruction* last = pre_header->last_instruction(); |
| 695 | |
| 696 | bool inputs_are_invariant = true; |
| 697 | for (intptr_t j = 0; j < instruction->InputCount(); j++) { |
| 698 | Definition* defn = instruction->InputAt(j)->definition(); |
| 699 | if (!last->IsDominatedBy(defn)) { |
| 700 | inputs_are_invariant = false; |
| 701 | break; |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | if (inputs_are_invariant) { |
| 706 | EmitTo(pre_header, instruction); |
| 707 | return instruction; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | return NULL; |
| 712 | } |
| 713 | |
| 714 | void EmitTo(BlockEntryInstr* block, Instruction* instr) { |
| 715 | GotoInstr* last = block->last_instruction()->AsGoto(); |
| 716 | flow_graph_->InsertBefore( |
| 717 | last, instr, last->env(), |
| 718 | instr->IsDefinition() ? FlowGraph::kValue : FlowGraph::kEffect); |
| 719 | instr->CopyDeoptIdFrom(*last); |
| 720 | |
| 721 | map_.Insert(instr); |
| 722 | emitted_.Add(instr); |
| 723 | } |
| 724 | |
| 725 | FlowGraph* flow_graph_; |
| 726 | Map map_; |
| 727 | const ZoneGrowableArray<BlockEntryInstr*>& ; |
| 728 | GrowableArray<BlockEntryInstr*> ; |
| 729 | GrowableArray<Instruction*> emitted_; |
| 730 | }; |
| 731 | |
| 732 | // If bounds check 0 <= index < length is not redundant we attempt to |
| 733 | // replace it with a sequence of checks that guarantee |
| 734 | // |
| 735 | // 0 <= LowerBound(index) < UpperBound(index) < length |
| 736 | // |
| 737 | // and hoist all of those checks out of the enclosing loop. |
| 738 | // |
| 739 | // Upper/Lower bounds are symbolic arithmetic expressions with +, -, * |
| 740 | // operations. |
| 741 | class BoundsCheckGeneralizer { |
| 742 | public: |
| 743 | BoundsCheckGeneralizer(RangeAnalysis* range_analysis, FlowGraph* flow_graph) |
| 744 | : range_analysis_(range_analysis), |
| 745 | flow_graph_(flow_graph), |
| 746 | scheduler_(flow_graph) {} |
| 747 | |
| 748 | void TryGeneralize(CheckArrayBoundInstr* check) { |
| 749 | Definition* upper_bound = |
| 750 | ConstructUpperBound(check->index()->definition(), check); |
| 751 | if (upper_bound == UnwrapConstraint(check->index()->definition())) { |
| 752 | // Unable to construct upper bound for the index. |
| 753 | if (FLAG_support_il_printer && FLAG_trace_range_analysis) { |
| 754 | THR_Print("Failed to construct upper bound for %s index\n" , |
| 755 | check->ToCString()); |
| 756 | } |
| 757 | return; |
| 758 | } |
| 759 | |
| 760 | // Re-associate subexpressions inside upper_bound to collect all constants |
| 761 | // together. This will expose more redundancies when we are going to emit |
| 762 | // upper bound through scheduler. |
| 763 | if (!Simplify(&upper_bound, NULL)) { |
| 764 | if (FLAG_support_il_printer && FLAG_trace_range_analysis) { |
| 765 | THR_Print("Failed to simplify upper bound for %s index\n" , |
| 766 | check->ToCString()); |
| 767 | } |
| 768 | return; |
| 769 | } |
| 770 | upper_bound = ApplyConstraints(upper_bound, check); |
| 771 | range_analysis_->AssignRangesRecursively(upper_bound); |
| 772 | |
| 773 | // We are going to constrain any symbols participating in + and * operations |
| 774 | // to guarantee that they are positive. Find all symbols that need |
| 775 | // constraining. If there is a subtraction subexpression with non-positive |
| 776 | // range give up on generalization for simplicity. |
| 777 | GrowableArray<Definition*> non_positive_symbols; |
| 778 | if (!FindNonPositiveSymbols(&non_positive_symbols, upper_bound)) { |
| 779 | #ifndef PRODUCT |
| 780 | if (FLAG_support_il_printer && FLAG_trace_range_analysis) { |
| 781 | THR_Print( |
| 782 | "Failed to generalize %s index to %s" |
| 783 | " (can't ensure positivity)\n" , |
| 784 | check->ToCString(), IndexBoundToCString(upper_bound)); |
| 785 | } |
| 786 | #endif // !PRODUCT |
| 787 | return; |
| 788 | } |
| 789 | |
| 790 | // Check that we can statically prove that lower bound of the index is |
| 791 | // non-negative under the assumption that all potentially non-positive |
| 792 | // symbols are positive. |
| 793 | GrowableArray<ConstraintInstr*> positive_constraints( |
| 794 | non_positive_symbols.length()); |
| 795 | Range* positive_range = |
| 796 | new Range(RangeBoundary::FromConstant(0), |
| 797 | RangeBoundary::MaxConstant(RangeBoundary::kRangeBoundarySmi)); |
| 798 | for (intptr_t i = 0; i < non_positive_symbols.length(); i++) { |
| 799 | Definition* symbol = non_positive_symbols[i]; |
| 800 | positive_constraints.Add( |
| 801 | new ConstraintInstr(new Value(symbol), positive_range)); |
| 802 | } |
| 803 | |
| 804 | Definition* lower_bound = |
| 805 | ConstructLowerBound(check->index()->definition(), check); |
| 806 | // No need to simplify lower bound before applying constraints as |
| 807 | // we are not going to emit it. |
| 808 | lower_bound = ApplyConstraints(lower_bound, check, &positive_constraints); |
| 809 | range_analysis_->AssignRangesRecursively(lower_bound); |
| 810 | |
| 811 | if (!RangeUtils::IsPositive(lower_bound->range())) { |
| 812 | // Can't prove that lower bound is positive even with additional checks |
| 813 | // against potentially non-positive symbols. Give up. |
| 814 | #ifndef PRODUCT |
| 815 | if (FLAG_support_il_printer && FLAG_trace_range_analysis) { |
| 816 | THR_Print( |
| 817 | "Failed to generalize %s index to %s" |
| 818 | " (lower bound is not positive)\n" , |
| 819 | check->ToCString(), IndexBoundToCString(upper_bound)); |
| 820 | } |
| 821 | #endif // !PRODUCT |
| 822 | return; |
| 823 | } |
| 824 | |
| 825 | #ifndef PRODUCT |
| 826 | if (FLAG_support_il_printer && FLAG_trace_range_analysis) { |
| 827 | THR_Print("For %s computed index bounds [%s, %s]\n" , check->ToCString(), |
| 828 | IndexBoundToCString(lower_bound), |
| 829 | IndexBoundToCString(upper_bound)); |
| 830 | } |
| 831 | #endif // !PRODUCT |
| 832 | |
| 833 | // At this point we know that 0 <= index < UpperBound(index) under |
| 834 | // certain preconditions. Start by emitting this preconditions. |
| 835 | scheduler_.Start(); |
| 836 | |
| 837 | // AOT should only see non-deopting GenericCheckBound. |
| 838 | ASSERT(!CompilerState::Current().is_aot()); |
| 839 | |
| 840 | ConstantInstr* max_smi = flow_graph_->GetConstant( |
| 841 | Smi::Handle(Smi::New(compiler::target::kSmiMax))); |
| 842 | for (intptr_t i = 0; i < non_positive_symbols.length(); i++) { |
| 843 | CheckArrayBoundInstr* precondition = new CheckArrayBoundInstr( |
| 844 | new Value(max_smi), new Value(non_positive_symbols[i]), |
| 845 | DeoptId::kNone); |
| 846 | precondition->mark_generalized(); |
| 847 | precondition = scheduler_.Emit(precondition, check); |
| 848 | if (precondition == NULL) { |
| 849 | if (FLAG_trace_range_analysis) { |
| 850 | THR_Print(" => failed to insert positivity constraint\n" ); |
| 851 | } |
| 852 | scheduler_.Rollback(); |
| 853 | return; |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | CheckArrayBoundInstr* new_check = new CheckArrayBoundInstr( |
| 858 | new Value(UnwrapConstraint(check->length()->definition())), |
| 859 | new Value(upper_bound), DeoptId::kNone); |
| 860 | new_check->mark_generalized(); |
| 861 | if (new_check->IsRedundant()) { |
| 862 | if (FLAG_trace_range_analysis) { |
| 863 | THR_Print(" => generalized check is redundant\n" ); |
| 864 | } |
| 865 | RemoveGeneralizedCheck(check); |
| 866 | return; |
| 867 | } |
| 868 | |
| 869 | new_check = scheduler_.Emit(new_check, check); |
| 870 | if (new_check != NULL) { |
| 871 | if (FLAG_trace_range_analysis) { |
| 872 | THR_Print(" => generalized check was hoisted into B%" Pd "\n" , |
| 873 | new_check->GetBlock()->block_id()); |
| 874 | } |
| 875 | RemoveGeneralizedCheck(check); |
| 876 | } else { |
| 877 | if (FLAG_trace_range_analysis) { |
| 878 | THR_Print(" => generalized check can't be hoisted\n" ); |
| 879 | } |
| 880 | scheduler_.Rollback(); |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | static void RemoveGeneralizedCheck(CheckArrayBoundInstr* check) { |
| 885 | BinarySmiOpInstr* binary_op = check->index()->definition()->AsBinarySmiOp(); |
| 886 | if (binary_op != NULL) { |
| 887 | binary_op->set_can_overflow(false); |
| 888 | } |
| 889 | check->ReplaceUsesWith(check->index()->definition()); |
| 890 | check->RemoveFromGraph(); |
| 891 | } |
| 892 | |
| 893 | private: |
| 894 | BinarySmiOpInstr* MakeBinaryOp(Token::Kind op_kind, |
| 895 | Definition* left, |
| 896 | Definition* right) { |
| 897 | return new BinarySmiOpInstr(op_kind, new Value(left), new Value(right), |
| 898 | DeoptId::kNone); |
| 899 | } |
| 900 | |
| 901 | BinarySmiOpInstr* MakeBinaryOp(Token::Kind op_kind, |
| 902 | Definition* left, |
| 903 | intptr_t right) { |
| 904 | ConstantInstr* constant_right = |
| 905 | flow_graph_->GetConstant(Smi::Handle(Smi::New(right))); |
| 906 | return MakeBinaryOp(op_kind, left, constant_right); |
| 907 | } |
| 908 | |
| 909 | Definition* RangeBoundaryToDefinition(const RangeBoundary& bound) { |
| 910 | Definition* symbol = UnwrapConstraint(bound.symbol()); |
| 911 | if (bound.offset() == 0) { |
| 912 | return symbol; |
| 913 | } else { |
| 914 | return MakeBinaryOp(Token::kADD, symbol, bound.offset()); |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | typedef Definition* (BoundsCheckGeneralizer::*PhiBoundFunc)(PhiInstr*, |
| 919 | LoopInfo*, |
| 920 | InductionVar*, |
| 921 | Instruction*); |
| 922 | |
| 923 | // Construct symbolic lower bound for a value at the given point. |
| 924 | Definition* ConstructLowerBound(Definition* value, Instruction* point) { |
| 925 | return ConstructBound(&BoundsCheckGeneralizer::InductionVariableLowerBound, |
| 926 | value, point); |
| 927 | } |
| 928 | |
| 929 | // Construct symbolic upper bound for a value at the given point. |
| 930 | Definition* ConstructUpperBound(Definition* value, Instruction* point) { |
| 931 | return ConstructBound(&BoundsCheckGeneralizer::InductionVariableUpperBound, |
| 932 | value, point); |
| 933 | } |
| 934 | |
| 935 | // Helper methods to implement "older" business logic. |
| 936 | // TODO(ajcbik): generalize with new induction variable information |
| 937 | |
| 938 | // Only accept loops with a smi constraint on smi induction. |
| 939 | LoopInfo* GetSmiBoundedLoop(PhiInstr* phi) { |
| 940 | LoopInfo* loop = phi->GetBlock()->loop_info(); |
| 941 | if (loop == nullptr) { |
| 942 | return nullptr; |
| 943 | } |
| 944 | ConstraintInstr* limit = loop->limit(); |
| 945 | if (limit == nullptr) { |
| 946 | return nullptr; |
| 947 | } |
| 948 | Definition* def = UnwrapConstraint(limit->value()->definition()); |
| 949 | Range* constraining_range = limit->constraint(); |
| 950 | if (GetSmiInduction(loop, def) != nullptr && |
| 951 | constraining_range->min().Equals(RangeBoundary::MinSmi()) && |
| 952 | constraining_range->max().IsSymbol() && |
| 953 | def->IsDominatedBy(constraining_range->max().symbol())) { |
| 954 | return loop; |
| 955 | } |
| 956 | return nullptr; |
| 957 | } |
| 958 | |
| 959 | // Returns true if x is invariant and is either based on a Smi definition |
| 960 | // or is a Smi constant. |
| 961 | static bool IsSmiInvariant(const InductionVar* x) { |
| 962 | return InductionVar::IsInvariant(x) && Smi::IsValid(x->offset()) && |
| 963 | Smi::IsValid(x->mult()) && |
| 964 | (x->mult() == 0 || x->def()->Type()->ToCid() == kSmiCid); |
| 965 | } |
| 966 | |
| 967 | // Only accept smi linear induction with unit stride. |
| 968 | InductionVar* GetSmiInduction(LoopInfo* loop, Definition* def) { |
| 969 | if (loop != nullptr && def->Type()->ToCid() == kSmiCid) { |
| 970 | InductionVar* induc = loop->LookupInduction(def); |
| 971 | int64_t stride; |
| 972 | if (induc != nullptr && InductionVar::IsLinear(induc, &stride) && |
| 973 | stride == 1 && IsSmiInvariant(induc->initial())) { |
| 974 | return induc; |
| 975 | } |
| 976 | } |
| 977 | return nullptr; |
| 978 | } |
| 979 | |
| 980 | // Reconstruct invariant. |
| 981 | Definition* GenerateInvariant(InductionVar* induc) { |
| 982 | Definition* res = nullptr; |
| 983 | if (induc->mult() == 0) { |
| 984 | res = |
| 985 | flow_graph_->GetConstant(Smi::ZoneHandle(Smi::New(induc->offset()))); |
| 986 | } else { |
| 987 | res = induc->def(); |
| 988 | if (induc->mult() != 1) { |
| 989 | res = MakeBinaryOp(Token::kMUL, res, induc->mult()); |
| 990 | } |
| 991 | if (induc->offset() != 0) { |
| 992 | res = MakeBinaryOp(Token::kADD, res, induc->offset()); |
| 993 | } |
| 994 | } |
| 995 | return res; |
| 996 | } |
| 997 | |
| 998 | // Construct symbolic bound for a value at the given point: |
| 999 | // |
| 1000 | // 1. if value is an induction variable use its bounds; |
| 1001 | // 2. if value is addition or multiplication construct bounds for left |
| 1002 | // and right hand sides separately and use addition/multiplication |
| 1003 | // of bounds as a bound (addition and multiplication are monotone |
| 1004 | // operations for both operands); |
| 1005 | // 3. if value is a substraction then construct bound for the left hand |
| 1006 | // side and use substraction of the right hand side from the left hand |
| 1007 | // side bound as a bound for an expression (substraction is monotone for |
| 1008 | // the left hand side operand). |
| 1009 | // |
| 1010 | Definition* ConstructBound(PhiBoundFunc phi_bound_func, |
| 1011 | Definition* value, |
| 1012 | Instruction* point) { |
| 1013 | value = UnwrapConstraint(value); |
| 1014 | if (value->IsPhi()) { |
| 1015 | PhiInstr* phi = value->AsPhi(); |
| 1016 | LoopInfo* loop = GetSmiBoundedLoop(phi); |
| 1017 | InductionVar* induc = GetSmiInduction(loop, phi); |
| 1018 | if (induc != nullptr) { |
| 1019 | return (this->*phi_bound_func)(phi, loop, induc, point); |
| 1020 | } |
| 1021 | } else if (value->IsBinarySmiOp()) { |
| 1022 | BinarySmiOpInstr* bin_op = value->AsBinarySmiOp(); |
| 1023 | if ((bin_op->op_kind() == Token::kADD) || |
| 1024 | (bin_op->op_kind() == Token::kMUL) || |
| 1025 | (bin_op->op_kind() == Token::kSUB)) { |
| 1026 | Definition* new_left = |
| 1027 | ConstructBound(phi_bound_func, bin_op->left()->definition(), point); |
| 1028 | Definition* new_right = |
| 1029 | (bin_op->op_kind() != Token::kSUB) |
| 1030 | ? ConstructBound(phi_bound_func, bin_op->right()->definition(), |
| 1031 | point) |
| 1032 | : UnwrapConstraint(bin_op->right()->definition()); |
| 1033 | |
| 1034 | if ((new_left != UnwrapConstraint(bin_op->left()->definition())) || |
| 1035 | (new_right != UnwrapConstraint(bin_op->right()->definition()))) { |
| 1036 | return MakeBinaryOp(bin_op->op_kind(), new_left, new_right); |
| 1037 | } |
| 1038 | } |
| 1039 | } |
| 1040 | return value; |
| 1041 | } |
| 1042 | |
| 1043 | Definition* InductionVariableUpperBound(PhiInstr* phi, |
| 1044 | LoopInfo* loop, |
| 1045 | InductionVar* induc, |
| 1046 | Instruction* point) { |
| 1047 | // Test if limit dominates given point. |
| 1048 | ConstraintInstr* limit = loop->limit(); |
| 1049 | if (!point->IsDominatedBy(limit)) { |
| 1050 | return phi; |
| 1051 | } |
| 1052 | // Decide between direct or indirect bound. |
| 1053 | Definition* bounded_def = UnwrapConstraint(limit->value()->definition()); |
| 1054 | if (bounded_def == phi) { |
| 1055 | // Given a smi bounded loop with smi induction variable |
| 1056 | // |
| 1057 | // x <- phi(x0, x + 1) |
| 1058 | // |
| 1059 | // and a constraint x <= M that dominates the given |
| 1060 | // point we conclude that M is an upper bound for x. |
| 1061 | return RangeBoundaryToDefinition(limit->constraint()->max()); |
| 1062 | } else { |
| 1063 | // Given a smi bounded loop with two smi induction variables |
| 1064 | // |
| 1065 | // x <- phi(x0, x + 1) |
| 1066 | // y <- phi(y0, y + 1) |
| 1067 | // |
| 1068 | // and a constraint x <= M that dominates the given |
| 1069 | // point we can conclude that |
| 1070 | // |
| 1071 | // y <= y0 + (M - x0) |
| 1072 | // |
| 1073 | InductionVar* bounded_induc = GetSmiInduction(loop, bounded_def); |
| 1074 | Definition* x0 = GenerateInvariant(bounded_induc->initial()); |
| 1075 | Definition* y0 = GenerateInvariant(induc->initial()); |
| 1076 | Definition* m = RangeBoundaryToDefinition(limit->constraint()->max()); |
| 1077 | BinarySmiOpInstr* loop_length = |
| 1078 | MakeBinaryOp(Token::kSUB, ConstructUpperBound(m, point), |
| 1079 | ConstructLowerBound(x0, point)); |
| 1080 | return MakeBinaryOp(Token::kADD, ConstructUpperBound(y0, point), |
| 1081 | loop_length); |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | Definition* InductionVariableLowerBound(PhiInstr* phi, |
| 1086 | LoopInfo* loop, |
| 1087 | InductionVar* induc, |
| 1088 | Instruction* point) { |
| 1089 | // Given a smi bounded loop with smi induction variable |
| 1090 | // |
| 1091 | // x <- phi(x0, x + 1) |
| 1092 | // |
| 1093 | // we can conclude that LowerBound(x) == x0. |
| 1094 | return ConstructLowerBound(GenerateInvariant(induc->initial()), point); |
| 1095 | } |
| 1096 | |
| 1097 | // Try to re-associate binary operations in the floating DAG of operations |
| 1098 | // to collect all constants together, e.g. x + C0 + y + C1 is simplified into |
| 1099 | // x + y + (C0 + C1). |
| 1100 | bool Simplify(Definition** defn, intptr_t* constant) { |
| 1101 | if ((*defn)->IsBinarySmiOp()) { |
| 1102 | BinarySmiOpInstr* binary_op = (*defn)->AsBinarySmiOp(); |
| 1103 | Definition* left = binary_op->left()->definition(); |
| 1104 | Definition* right = binary_op->right()->definition(); |
| 1105 | |
| 1106 | intptr_t c = 0; |
| 1107 | if (binary_op->op_kind() == Token::kADD) { |
| 1108 | intptr_t left_const = 0; |
| 1109 | intptr_t right_const = 0; |
| 1110 | if (!Simplify(&left, &left_const) || !Simplify(&right, &right_const)) { |
| 1111 | return false; |
| 1112 | } |
| 1113 | |
| 1114 | c = left_const + right_const; |
| 1115 | if (Utils::WillAddOverflow(left_const, right_const) || |
| 1116 | !compiler::target::IsSmi(c)) { |
| 1117 | return false; // Abort. |
| 1118 | } |
| 1119 | |
| 1120 | if (constant != NULL) { |
| 1121 | *constant = c; |
| 1122 | } |
| 1123 | |
| 1124 | if ((left == NULL) && (right == NULL)) { |
| 1125 | if (constant != NULL) { |
| 1126 | *defn = NULL; |
| 1127 | } else { |
| 1128 | *defn = flow_graph_->GetConstant(Smi::Handle(Smi::New(c))); |
| 1129 | } |
| 1130 | return true; |
| 1131 | } |
| 1132 | |
| 1133 | if (left == NULL) { |
| 1134 | if ((constant != NULL) || (c == 0)) { |
| 1135 | *defn = right; |
| 1136 | return true; |
| 1137 | } else { |
| 1138 | left = right; |
| 1139 | right = NULL; |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | if (right == NULL) { |
| 1144 | if ((constant != NULL) || (c == 0)) { |
| 1145 | *defn = left; |
| 1146 | return true; |
| 1147 | } else { |
| 1148 | right = flow_graph_->GetConstant(Smi::Handle(Smi::New(c))); |
| 1149 | c = 0; |
| 1150 | } |
| 1151 | } |
| 1152 | } else if (binary_op->op_kind() == Token::kSUB) { |
| 1153 | intptr_t left_const = 0; |
| 1154 | intptr_t right_const = 0; |
| 1155 | if (!Simplify(&left, &left_const) || !Simplify(&right, &right_const)) { |
| 1156 | return false; |
| 1157 | } |
| 1158 | |
| 1159 | c = (left_const - right_const); |
| 1160 | if (Utils::WillSubOverflow(left_const, right_const) || |
| 1161 | !compiler::target::IsSmi(c)) { |
| 1162 | return false; // Abort. |
| 1163 | } |
| 1164 | |
| 1165 | if (constant != NULL) { |
| 1166 | *constant = c; |
| 1167 | } |
| 1168 | |
| 1169 | if ((left == NULL) && (right == NULL)) { |
| 1170 | if (constant != NULL) { |
| 1171 | *defn = NULL; |
| 1172 | } else { |
| 1173 | *defn = flow_graph_->GetConstant(Smi::Handle(Smi::New(c))); |
| 1174 | } |
| 1175 | return true; |
| 1176 | } |
| 1177 | |
| 1178 | if (left == NULL) { |
| 1179 | left = flow_graph_->GetConstant(Object::smi_zero()); |
| 1180 | } |
| 1181 | |
| 1182 | if (right == NULL) { |
| 1183 | if ((constant != NULL) || (c == 0)) { |
| 1184 | *defn = left; |
| 1185 | return true; |
| 1186 | } else { |
| 1187 | right = flow_graph_->GetConstant(Smi::Handle(Smi::New(-c))); |
| 1188 | c = 0; |
| 1189 | } |
| 1190 | } |
| 1191 | } else if (binary_op->op_kind() == Token::kMUL) { |
| 1192 | if (!Simplify(&left, NULL) || !Simplify(&right, NULL)) { |
| 1193 | return false; |
| 1194 | } |
| 1195 | } else { |
| 1196 | // Don't attempt to simplify any other binary operation. |
| 1197 | return true; |
| 1198 | } |
| 1199 | |
| 1200 | ASSERT(left != NULL); |
| 1201 | ASSERT(right != NULL); |
| 1202 | |
| 1203 | const bool left_changed = (left != binary_op->left()->definition()); |
| 1204 | const bool right_changed = (right != binary_op->right()->definition()); |
| 1205 | if (left_changed || right_changed) { |
| 1206 | if (!(*defn)->HasSSATemp()) { |
| 1207 | if (left_changed) binary_op->left()->set_definition(left); |
| 1208 | if (right_changed) binary_op->right()->set_definition(right); |
| 1209 | *defn = binary_op; |
| 1210 | } else { |
| 1211 | *defn = MakeBinaryOp(binary_op->op_kind(), UnwrapConstraint(left), |
| 1212 | UnwrapConstraint(right)); |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | if ((c != 0) && (constant == NULL)) { |
| 1217 | *defn = MakeBinaryOp(Token::kADD, *defn, c); |
| 1218 | } |
| 1219 | } else if ((*defn)->IsConstant()) { |
| 1220 | ConstantInstr* constant_defn = (*defn)->AsConstant(); |
| 1221 | if ((constant != NULL) && constant_defn->IsSmi()) { |
| 1222 | *defn = NULL; |
| 1223 | *constant = Smi::Cast(constant_defn->value()).Value(); |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | return true; |
| 1228 | } |
| 1229 | |
| 1230 | // If possible find a set of symbols that need to be non-negative to |
| 1231 | // guarantee that expression as whole is non-negative. |
| 1232 | bool FindNonPositiveSymbols(GrowableArray<Definition*>* symbols, |
| 1233 | Definition* defn) { |
| 1234 | if (defn->IsConstant()) { |
| 1235 | const Object& value = defn->AsConstant()->value(); |
| 1236 | return compiler::target::IsSmi(value) && (Smi::Cast(value).Value() >= 0); |
| 1237 | } else if (defn->HasSSATemp()) { |
| 1238 | if (!RangeUtils::IsPositive(defn->range())) { |
| 1239 | symbols->Add(defn); |
| 1240 | } |
| 1241 | return true; |
| 1242 | } else if (defn->IsBinarySmiOp()) { |
| 1243 | BinarySmiOpInstr* binary_op = defn->AsBinarySmiOp(); |
| 1244 | ASSERT((binary_op->op_kind() == Token::kADD) || |
| 1245 | (binary_op->op_kind() == Token::kSUB) || |
| 1246 | (binary_op->op_kind() == Token::kMUL)); |
| 1247 | |
| 1248 | if (RangeUtils::IsPositive(defn->range())) { |
| 1249 | // We can statically prove that this subexpression is always positive. |
| 1250 | // No need to inspect its subexpressions. |
| 1251 | return true; |
| 1252 | } |
| 1253 | |
| 1254 | if (binary_op->op_kind() == Token::kSUB) { |
| 1255 | // For addition and multiplication it's enough to ensure that |
| 1256 | // lhs and rhs are positive to guarantee that defn as whole is |
| 1257 | // positive. This does not work for substraction so just give up. |
| 1258 | return false; |
| 1259 | } |
| 1260 | |
| 1261 | return FindNonPositiveSymbols(symbols, binary_op->left()->definition()) && |
| 1262 | FindNonPositiveSymbols(symbols, binary_op->right()->definition()); |
| 1263 | } |
| 1264 | UNREACHABLE(); |
| 1265 | return false; |
| 1266 | } |
| 1267 | |
| 1268 | // Find innermost constraint for the given definition dominating given |
| 1269 | // instruction. |
| 1270 | static Definition* FindInnermostConstraint(Definition* defn, |
| 1271 | Instruction* post_dominator) { |
| 1272 | for (Value* use = defn->input_use_list(); use != NULL; |
| 1273 | use = use->next_use()) { |
| 1274 | ConstraintInstr* constraint = use->instruction()->AsConstraint(); |
| 1275 | if ((constraint != NULL) && post_dominator->IsDominatedBy(constraint)) { |
| 1276 | return FindInnermostConstraint(constraint, post_dominator); |
| 1277 | } |
| 1278 | } |
| 1279 | return defn; |
| 1280 | } |
| 1281 | |
| 1282 | // Replace symbolic parts of the boundary with respective constraints |
| 1283 | // that hold at the given point in the flow graph signified by |
| 1284 | // post_dominator. |
| 1285 | // Constraints array allows to provide a set of additional floating |
| 1286 | // constraints that were not inserted into the graph. |
| 1287 | static Definition* ApplyConstraints( |
| 1288 | Definition* defn, |
| 1289 | Instruction* post_dominator, |
| 1290 | GrowableArray<ConstraintInstr*>* constraints = NULL) { |
| 1291 | if (defn->HasSSATemp()) { |
| 1292 | defn = FindInnermostConstraint(defn, post_dominator); |
| 1293 | if (constraints != NULL) { |
| 1294 | for (intptr_t i = 0; i < constraints->length(); i++) { |
| 1295 | ConstraintInstr* constraint = (*constraints)[i]; |
| 1296 | if (constraint->value()->definition() == defn) { |
| 1297 | return constraint; |
| 1298 | } |
| 1299 | } |
| 1300 | } |
| 1301 | return defn; |
| 1302 | } |
| 1303 | |
| 1304 | for (intptr_t i = 0; i < defn->InputCount(); i++) { |
| 1305 | defn->InputAt(i)->set_definition(ApplyConstraints( |
| 1306 | defn->InputAt(i)->definition(), post_dominator, constraints)); |
| 1307 | } |
| 1308 | |
| 1309 | return defn; |
| 1310 | } |
| 1311 | |
| 1312 | #ifndef PRODUCT |
| 1313 | static void PrettyPrintIndexBoundRecursively(BaseTextBuffer* f, |
| 1314 | Definition* index_bound) { |
| 1315 | BinarySmiOpInstr* binary_op = index_bound->AsBinarySmiOp(); |
| 1316 | if (binary_op != NULL) { |
| 1317 | f->AddString("(" ); |
| 1318 | PrettyPrintIndexBoundRecursively(f, binary_op->left()->definition()); |
| 1319 | f->Printf(" %s " , Token::Str(binary_op->op_kind())); |
| 1320 | PrettyPrintIndexBoundRecursively(f, binary_op->right()->definition()); |
| 1321 | f->AddString(")" ); |
| 1322 | } else if (index_bound->IsConstant()) { |
| 1323 | f->Printf("%" Pd "" , |
| 1324 | Smi::Cast(index_bound->AsConstant()->value()).Value()); |
| 1325 | } else { |
| 1326 | f->Printf("v%" Pd "" , index_bound->ssa_temp_index()); |
| 1327 | } |
| 1328 | f->Printf(" {%s}" , Range::ToCString(index_bound->range())); |
| 1329 | } |
| 1330 | |
| 1331 | static const char* IndexBoundToCString(Definition* index_bound) { |
| 1332 | char buffer[1024]; |
| 1333 | BufferFormatter f(buffer, sizeof(buffer)); |
| 1334 | PrettyPrintIndexBoundRecursively(&f, index_bound); |
| 1335 | return Thread::Current()->zone()->MakeCopyOfString(buffer); |
| 1336 | } |
| 1337 | #endif // !PRODUCT |
| 1338 | |
| 1339 | RangeAnalysis* range_analysis_; |
| 1340 | FlowGraph* flow_graph_; |
| 1341 | Scheduler scheduler_; |
| 1342 | }; |
| 1343 | |
| 1344 | void RangeAnalysis::EliminateRedundantBoundsChecks() { |
| 1345 | if (FLAG_array_bounds_check_elimination) { |
| 1346 | const Function& function = flow_graph_->function(); |
| 1347 | // Generalization only if we have not deoptimized on a generalized |
| 1348 | // check earlier and we are not compiling precompiled code |
| 1349 | // (no optimistic hoisting of checks possible) |
| 1350 | const bool try_generalization = |
| 1351 | !CompilerState::Current().is_aot() && |
| 1352 | !function.ProhibitsBoundsCheckGeneralization(); |
| 1353 | BoundsCheckGeneralizer generalizer(this, flow_graph_); |
| 1354 | for (CheckBoundBase* check : bounds_checks_) { |
| 1355 | if (check->IsRedundant(/*use_loops=*/true)) { |
| 1356 | check->ReplaceUsesWith(check->index()->definition()); |
| 1357 | check->RemoveFromGraph(); |
| 1358 | } else if (try_generalization) { |
| 1359 | if (auto jit_check = check->AsCheckArrayBound()) { |
| 1360 | generalizer.TryGeneralize(jit_check); |
| 1361 | } |
| 1362 | } |
| 1363 | } |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | void RangeAnalysis::MarkUnreachableBlocks() { |
| 1368 | for (intptr_t i = 0; i < constraints_.length(); i++) { |
| 1369 | if (Range::IsUnknown(constraints_[i]->range())) { |
| 1370 | TargetEntryInstr* target = constraints_[i]->target(); |
| 1371 | if (target == NULL) { |
| 1372 | // TODO(vegorov): replace Constraint with an uncoditional |
| 1373 | // deoptimization and kill all dominated dead code. |
| 1374 | continue; |
| 1375 | } |
| 1376 | |
| 1377 | BranchInstr* branch = |
| 1378 | target->PredecessorAt(0)->last_instruction()->AsBranch(); |
| 1379 | if (target == branch->true_successor()) { |
| 1380 | // True unreachable. |
| 1381 | if (FLAG_trace_constant_propagation && flow_graph_->should_print()) { |
| 1382 | THR_Print("Range analysis: True unreachable (B%" Pd ")\n" , |
| 1383 | branch->true_successor()->block_id()); |
| 1384 | } |
| 1385 | branch->set_constant_target(branch->false_successor()); |
| 1386 | } else { |
| 1387 | ASSERT(target == branch->false_successor()); |
| 1388 | // False unreachable. |
| 1389 | if (FLAG_trace_constant_propagation && flow_graph_->should_print()) { |
| 1390 | THR_Print("Range analysis: False unreachable (B%" Pd ")\n" , |
| 1391 | branch->false_successor()->block_id()); |
| 1392 | } |
| 1393 | branch->set_constant_target(branch->true_successor()); |
| 1394 | } |
| 1395 | } |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | void RangeAnalysis::RemoveConstraints() { |
| 1400 | for (intptr_t i = 0; i < constraints_.length(); i++) { |
| 1401 | Definition* def = constraints_[i]->value()->definition(); |
| 1402 | // Some constraints might be constraining constraints. Unwind the chain of |
| 1403 | // constraints until we reach the actual definition. |
| 1404 | while (def->IsConstraint()) { |
| 1405 | def = def->AsConstraint()->value()->definition(); |
| 1406 | } |
| 1407 | constraints_[i]->ReplaceUsesWith(def); |
| 1408 | constraints_[i]->RemoveFromGraph(); |
| 1409 | } |
| 1410 | } |
| 1411 | |
| 1412 | static void NarrowBinaryInt64Op(BinaryInt64OpInstr* int64_op) { |
| 1413 | if (RangeUtils::Fits(int64_op->range(), RangeBoundary::kRangeBoundaryInt32) && |
| 1414 | RangeUtils::Fits(int64_op->left()->definition()->range(), |
| 1415 | RangeBoundary::kRangeBoundaryInt32) && |
| 1416 | RangeUtils::Fits(int64_op->right()->definition()->range(), |
| 1417 | RangeBoundary::kRangeBoundaryInt32) && |
| 1418 | BinaryInt32OpInstr::IsSupported(int64_op->op_kind(), int64_op->left(), |
| 1419 | int64_op->right())) { |
| 1420 | BinaryInt32OpInstr* int32_op = new BinaryInt32OpInstr( |
| 1421 | int64_op->op_kind(), int64_op->left()->CopyWithType(), |
| 1422 | int64_op->right()->CopyWithType(), int64_op->DeoptimizationTarget()); |
| 1423 | int32_op->set_range(*int64_op->range()); |
| 1424 | int32_op->set_can_overflow(false); |
| 1425 | int64_op->ReplaceWith(int32_op, NULL); |
| 1426 | } |
| 1427 | } |
| 1428 | |
| 1429 | static void NarrowShiftInt64Op(ShiftIntegerOpInstr* int64_op) { |
| 1430 | if (RangeUtils::Fits(int64_op->range(), RangeBoundary::kRangeBoundaryInt32) && |
| 1431 | RangeUtils::Fits(int64_op->left()->definition()->range(), |
| 1432 | RangeBoundary::kRangeBoundaryInt32) && |
| 1433 | RangeUtils::Fits(int64_op->right()->definition()->range(), |
| 1434 | RangeBoundary::kRangeBoundaryInt32) && |
| 1435 | BinaryInt32OpInstr::IsSupported(int64_op->op_kind(), int64_op->left(), |
| 1436 | int64_op->right())) { |
| 1437 | BinaryInt32OpInstr* int32_op = new BinaryInt32OpInstr( |
| 1438 | int64_op->op_kind(), int64_op->left()->CopyWithType(), |
| 1439 | int64_op->right()->CopyWithType(), int64_op->DeoptimizationTarget()); |
| 1440 | int32_op->set_range(*int64_op->range()); |
| 1441 | int32_op->set_can_overflow(false); |
| 1442 | int64_op->ReplaceWith(int32_op, NULL); |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | void RangeAnalysis::NarrowMintToInt32() { |
| 1447 | for (intptr_t i = 0; i < binary_int64_ops_.length(); i++) { |
| 1448 | NarrowBinaryInt64Op(binary_int64_ops_[i]); |
| 1449 | } |
| 1450 | |
| 1451 | for (intptr_t i = 0; i < shift_int64_ops_.length(); i++) { |
| 1452 | NarrowShiftInt64Op(shift_int64_ops_[i]); |
| 1453 | } |
| 1454 | } |
| 1455 | |
| 1456 | IntegerInstructionSelector::IntegerInstructionSelector(FlowGraph* flow_graph) |
| 1457 | : flow_graph_(flow_graph) { |
| 1458 | ASSERT(flow_graph_ != NULL); |
| 1459 | zone_ = flow_graph_->zone(); |
| 1460 | selected_uint32_defs_ = |
| 1461 | new (zone_) BitVector(zone_, flow_graph_->current_ssa_temp_index()); |
| 1462 | } |
| 1463 | |
| 1464 | void IntegerInstructionSelector::Select() { |
| 1465 | if (FLAG_trace_integer_ir_selection) { |
| 1466 | THR_Print("---- starting integer ir selection -------\n" ); |
| 1467 | } |
| 1468 | FindPotentialUint32Definitions(); |
| 1469 | FindUint32NarrowingDefinitions(); |
| 1470 | Propagate(); |
| 1471 | ReplaceInstructions(); |
| 1472 | if (FLAG_support_il_printer && FLAG_trace_integer_ir_selection) { |
| 1473 | THR_Print("---- after integer ir selection -------\n" ); |
| 1474 | FlowGraphPrinter printer(*flow_graph_); |
| 1475 | printer.PrintBlocks(); |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | bool IntegerInstructionSelector::IsPotentialUint32Definition(Definition* def) { |
| 1480 | // TODO(johnmccutchan): Consider Smi operations, to avoid unnecessary tagging |
| 1481 | // & untagged of intermediate results. |
| 1482 | // TODO(johnmccutchan): Consider phis. |
| 1483 | return def->IsBoxInt64() || def->IsUnboxInt64() || def->IsShiftInt64Op() || |
| 1484 | def->IsSpeculativeShiftInt64Op() || |
| 1485 | (def->IsBinaryInt64Op() && BinaryUint32OpInstr::IsSupported( |
| 1486 | def->AsBinaryInt64Op()->op_kind())) || |
| 1487 | (def->IsUnaryInt64Op() && |
| 1488 | UnaryUint32OpInstr::IsSupported(def->AsUnaryInt64Op()->op_kind())); |
| 1489 | } |
| 1490 | |
| 1491 | void IntegerInstructionSelector::FindPotentialUint32Definitions() { |
| 1492 | if (FLAG_trace_integer_ir_selection) { |
| 1493 | THR_Print("++++ Finding potential Uint32 definitions:\n" ); |
| 1494 | } |
| 1495 | |
| 1496 | for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator(); |
| 1497 | !block_it.Done(); block_it.Advance()) { |
| 1498 | BlockEntryInstr* block = block_it.Current(); |
| 1499 | |
| 1500 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 1501 | instr_it.Advance()) { |
| 1502 | Instruction* current = instr_it.Current(); |
| 1503 | Definition* defn = current->AsDefinition(); |
| 1504 | if ((defn != NULL) && defn->HasSSATemp()) { |
| 1505 | if (IsPotentialUint32Definition(defn)) { |
| 1506 | if (FLAG_support_il_printer && FLAG_trace_integer_ir_selection) { |
| 1507 | THR_Print("Adding %s\n" , current->ToCString()); |
| 1508 | } |
| 1509 | potential_uint32_defs_.Add(defn); |
| 1510 | } |
| 1511 | } |
| 1512 | } |
| 1513 | } |
| 1514 | } |
| 1515 | |
| 1516 | // BinaryInt64Op masks and stores into unsigned typed arrays that truncate the |
| 1517 | // value into a Uint32 range. |
| 1518 | bool IntegerInstructionSelector::IsUint32NarrowingDefinition(Definition* def) { |
| 1519 | if (def->IsBinaryInt64Op()) { |
| 1520 | BinaryInt64OpInstr* op = def->AsBinaryInt64Op(); |
| 1521 | // Must be a mask operation. |
| 1522 | if (op->op_kind() != Token::kBIT_AND) { |
| 1523 | return false; |
| 1524 | } |
| 1525 | Range* range = op->range(); |
| 1526 | if ((range == NULL) || |
| 1527 | !range->IsWithin(0, static_cast<int64_t>(kMaxUint32))) { |
| 1528 | return false; |
| 1529 | } |
| 1530 | return true; |
| 1531 | } |
| 1532 | // TODO(johnmccutchan): Add typed array stores. |
| 1533 | return false; |
| 1534 | } |
| 1535 | |
| 1536 | void IntegerInstructionSelector::FindUint32NarrowingDefinitions() { |
| 1537 | ASSERT(selected_uint32_defs_ != NULL); |
| 1538 | if (FLAG_trace_integer_ir_selection) { |
| 1539 | THR_Print("++++ Selecting Uint32 definitions:\n" ); |
| 1540 | THR_Print("++++ Initial set:\n" ); |
| 1541 | } |
| 1542 | for (intptr_t i = 0; i < potential_uint32_defs_.length(); i++) { |
| 1543 | Definition* defn = potential_uint32_defs_[i]; |
| 1544 | if (IsUint32NarrowingDefinition(defn)) { |
| 1545 | if (FLAG_support_il_printer && FLAG_trace_integer_ir_selection) { |
| 1546 | THR_Print("Adding %s\n" , defn->ToCString()); |
| 1547 | } |
| 1548 | selected_uint32_defs_->Add(defn->ssa_temp_index()); |
| 1549 | } |
| 1550 | } |
| 1551 | } |
| 1552 | |
| 1553 | bool IntegerInstructionSelector::AllUsesAreUint32Narrowing(Value* list_head) { |
| 1554 | for (Value::Iterator it(list_head); !it.Done(); it.Advance()) { |
| 1555 | Value* use = it.Current(); |
| 1556 | Definition* defn = use->instruction()->AsDefinition(); |
| 1557 | if ((defn == NULL) || !defn->HasSSATemp() || |
| 1558 | !selected_uint32_defs_->Contains(defn->ssa_temp_index())) { |
| 1559 | return false; |
| 1560 | } |
| 1561 | // Right-hand side operand of ShiftInt64Op is not narrowing (all its bits |
| 1562 | // should be taken into account). |
| 1563 | if (ShiftIntegerOpInstr* shift = defn->AsShiftIntegerOp()) { |
| 1564 | if (use == shift->right()) { |
| 1565 | return false; |
| 1566 | } |
| 1567 | } |
| 1568 | } |
| 1569 | return true; |
| 1570 | } |
| 1571 | |
| 1572 | bool IntegerInstructionSelector::CanBecomeUint32(Definition* def) { |
| 1573 | ASSERT(IsPotentialUint32Definition(def)); |
| 1574 | if (def->IsBoxInt64()) { |
| 1575 | // If a BoxInt64's input is a candidate, the box is a candidate. |
| 1576 | Definition* box_input = def->AsBoxInt64()->value()->definition(); |
| 1577 | return selected_uint32_defs_->Contains(box_input->ssa_temp_index()); |
| 1578 | } |
| 1579 | // A right shift with an input outside of Uint32 range cannot be converted |
| 1580 | // because we need the high bits. |
| 1581 | if (def->IsShiftInt64Op() || def->IsSpeculativeShiftInt64Op()) { |
| 1582 | ShiftIntegerOpInstr* op = def->AsShiftIntegerOp(); |
| 1583 | if (op->op_kind() == Token::kSHR) { |
| 1584 | Definition* shift_input = op->left()->definition(); |
| 1585 | ASSERT(shift_input != NULL); |
| 1586 | Range* range = shift_input->range(); |
| 1587 | if ((range == NULL) || |
| 1588 | !range->IsWithin(0, static_cast<int64_t>(kMaxUint32))) { |
| 1589 | return false; |
| 1590 | } |
| 1591 | } |
| 1592 | } |
| 1593 | if (!def->HasUses()) { |
| 1594 | // No uses, skip. |
| 1595 | return false; |
| 1596 | } |
| 1597 | return AllUsesAreUint32Narrowing(def->input_use_list()) && |
| 1598 | AllUsesAreUint32Narrowing(def->env_use_list()); |
| 1599 | } |
| 1600 | |
| 1601 | void IntegerInstructionSelector::Propagate() { |
| 1602 | ASSERT(selected_uint32_defs_ != NULL); |
| 1603 | bool changed = true; |
| 1604 | intptr_t iteration = 0; |
| 1605 | while (changed) { |
| 1606 | if (FLAG_trace_integer_ir_selection) { |
| 1607 | THR_Print("+++ Iteration: %" Pd "\n" , iteration++); |
| 1608 | } |
| 1609 | changed = false; |
| 1610 | for (intptr_t i = 0; i < potential_uint32_defs_.length(); i++) { |
| 1611 | Definition* defn = potential_uint32_defs_[i]; |
| 1612 | if (selected_uint32_defs_->Contains(defn->ssa_temp_index())) { |
| 1613 | // Already marked as a candidate, skip. |
| 1614 | continue; |
| 1615 | } |
| 1616 | if (defn->IsConstant()) { |
| 1617 | // Skip constants. |
| 1618 | continue; |
| 1619 | } |
| 1620 | if (CanBecomeUint32(defn)) { |
| 1621 | if (FLAG_support_il_printer && FLAG_trace_integer_ir_selection) { |
| 1622 | THR_Print("Adding %s\n" , defn->ToCString()); |
| 1623 | } |
| 1624 | // Found a new candidate. |
| 1625 | selected_uint32_defs_->Add(defn->ssa_temp_index()); |
| 1626 | // Haven't reached fixed point yet. |
| 1627 | changed = true; |
| 1628 | } |
| 1629 | } |
| 1630 | } |
| 1631 | if (FLAG_trace_integer_ir_selection) { |
| 1632 | THR_Print("Reached fixed point\n" ); |
| 1633 | } |
| 1634 | } |
| 1635 | |
| 1636 | Definition* IntegerInstructionSelector::ConstructReplacementFor( |
| 1637 | Definition* def) { |
| 1638 | // Should only see mint definitions. |
| 1639 | ASSERT(IsPotentialUint32Definition(def)); |
| 1640 | // Should not see constant instructions. |
| 1641 | ASSERT(!def->IsConstant()); |
| 1642 | if (def->IsBinaryIntegerOp()) { |
| 1643 | BinaryIntegerOpInstr* op = def->AsBinaryIntegerOp(); |
| 1644 | Token::Kind op_kind = op->op_kind(); |
| 1645 | Value* left = op->left()->CopyWithType(); |
| 1646 | Value* right = op->right()->CopyWithType(); |
| 1647 | intptr_t deopt_id = op->DeoptimizationTarget(); |
| 1648 | if (def->IsBinaryInt64Op()) { |
| 1649 | return new (Z) BinaryUint32OpInstr(op_kind, left, right, deopt_id); |
| 1650 | } else if (def->IsShiftInt64Op()) { |
| 1651 | return new (Z) ShiftUint32OpInstr(op_kind, left, right, deopt_id); |
| 1652 | } else if (def->IsSpeculativeShiftInt64Op()) { |
| 1653 | return new (Z) |
| 1654 | SpeculativeShiftUint32OpInstr(op_kind, left, right, deopt_id); |
| 1655 | } else { |
| 1656 | UNREACHABLE(); |
| 1657 | } |
| 1658 | } else if (def->IsBoxInt64()) { |
| 1659 | Value* value = def->AsBoxInt64()->value()->CopyWithType(); |
| 1660 | return new (Z) BoxUint32Instr(value); |
| 1661 | } else if (def->IsUnboxInt64()) { |
| 1662 | UnboxInstr* unbox = def->AsUnboxInt64(); |
| 1663 | Value* value = unbox->value()->CopyWithType(); |
| 1664 | intptr_t deopt_id = unbox->DeoptimizationTarget(); |
| 1665 | return new (Z) |
| 1666 | UnboxUint32Instr(value, deopt_id, def->SpeculativeModeOfInputs()); |
| 1667 | } else if (def->IsUnaryInt64Op()) { |
| 1668 | UnaryInt64OpInstr* op = def->AsUnaryInt64Op(); |
| 1669 | Token::Kind op_kind = op->op_kind(); |
| 1670 | Value* value = op->value()->CopyWithType(); |
| 1671 | intptr_t deopt_id = op->DeoptimizationTarget(); |
| 1672 | return new (Z) UnaryUint32OpInstr(op_kind, value, deopt_id); |
| 1673 | } |
| 1674 | UNREACHABLE(); |
| 1675 | return NULL; |
| 1676 | } |
| 1677 | |
| 1678 | void IntegerInstructionSelector::ReplaceInstructions() { |
| 1679 | if (FLAG_trace_integer_ir_selection) { |
| 1680 | THR_Print("++++ Replacing instructions:\n" ); |
| 1681 | } |
| 1682 | for (intptr_t i = 0; i < potential_uint32_defs_.length(); i++) { |
| 1683 | Definition* defn = potential_uint32_defs_[i]; |
| 1684 | if (!selected_uint32_defs_->Contains(defn->ssa_temp_index())) { |
| 1685 | // Not a candidate. |
| 1686 | continue; |
| 1687 | } |
| 1688 | Definition* replacement = ConstructReplacementFor(defn); |
| 1689 | ASSERT(replacement != NULL); |
| 1690 | if (!Range::IsUnknown(defn->range())) { |
| 1691 | if (defn->range()->IsPositive()) { |
| 1692 | replacement->set_range(*defn->range()); |
| 1693 | } else { |
| 1694 | replacement->set_range(Range(RangeBoundary::FromConstant(0), |
| 1695 | RangeBoundary::FromConstant(kMaxUint32))); |
| 1696 | } |
| 1697 | } |
| 1698 | if (FLAG_support_il_printer && FLAG_trace_integer_ir_selection) { |
| 1699 | THR_Print("Replacing %s with %s\n" , defn->ToCString(), |
| 1700 | replacement->ToCString()); |
| 1701 | } |
| 1702 | defn->ReplaceWith(replacement, NULL); |
| 1703 | } |
| 1704 | } |
| 1705 | |
| 1706 | RangeBoundary RangeBoundary::FromDefinition(Definition* defn, int64_t offs) { |
| 1707 | if (defn->IsConstant() && defn->AsConstant()->IsSmi()) { |
| 1708 | return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs); |
| 1709 | } |
| 1710 | ASSERT(IsValidOffsetForSymbolicRangeBoundary(offs)); |
| 1711 | return RangeBoundary(kSymbol, reinterpret_cast<intptr_t>(defn), offs); |
| 1712 | } |
| 1713 | |
| 1714 | RangeBoundary RangeBoundary::LowerBound() const { |
| 1715 | if (IsInfinity()) { |
| 1716 | return NegativeInfinity(); |
| 1717 | } |
| 1718 | if (IsConstant()) return *this; |
| 1719 | return Add(Range::ConstantMinSmi(symbol()->range()), |
| 1720 | RangeBoundary::FromConstant(offset_), NegativeInfinity()); |
| 1721 | } |
| 1722 | |
| 1723 | RangeBoundary RangeBoundary::UpperBound() const { |
| 1724 | if (IsInfinity()) { |
| 1725 | return PositiveInfinity(); |
| 1726 | } |
| 1727 | if (IsConstant()) return *this; |
| 1728 | |
| 1729 | return Add(Range::ConstantMaxSmi(symbol()->range()), |
| 1730 | RangeBoundary::FromConstant(offset_), PositiveInfinity()); |
| 1731 | } |
| 1732 | |
| 1733 | RangeBoundary RangeBoundary::Add(const RangeBoundary& a, |
| 1734 | const RangeBoundary& b, |
| 1735 | const RangeBoundary& overflow) { |
| 1736 | if (a.IsInfinity() || b.IsInfinity()) return overflow; |
| 1737 | |
| 1738 | ASSERT(a.IsConstant() && b.IsConstant()); |
| 1739 | if (Utils::WillAddOverflow(a.ConstantValue(), b.ConstantValue())) { |
| 1740 | return overflow; |
| 1741 | } |
| 1742 | |
| 1743 | int64_t result = a.ConstantValue() + b.ConstantValue(); |
| 1744 | |
| 1745 | return RangeBoundary::FromConstant(result); |
| 1746 | } |
| 1747 | |
| 1748 | RangeBoundary RangeBoundary::Sub(const RangeBoundary& a, |
| 1749 | const RangeBoundary& b, |
| 1750 | const RangeBoundary& overflow) { |
| 1751 | if (a.IsInfinity() || b.IsInfinity()) return overflow; |
| 1752 | ASSERT(a.IsConstant() && b.IsConstant()); |
| 1753 | if (Utils::WillSubOverflow(a.ConstantValue(), b.ConstantValue())) { |
| 1754 | return overflow; |
| 1755 | } |
| 1756 | |
| 1757 | int64_t result = a.ConstantValue() - b.ConstantValue(); |
| 1758 | |
| 1759 | return RangeBoundary::FromConstant(result); |
| 1760 | } |
| 1761 | |
| 1762 | bool RangeBoundary::SymbolicAdd(const RangeBoundary& a, |
| 1763 | const RangeBoundary& b, |
| 1764 | RangeBoundary* result) { |
| 1765 | if (a.IsSymbol() && b.IsConstant()) { |
| 1766 | if (Utils::WillAddOverflow(a.offset(), b.ConstantValue())) { |
| 1767 | return false; |
| 1768 | } |
| 1769 | |
| 1770 | const int64_t offset = a.offset() + b.ConstantValue(); |
| 1771 | |
| 1772 | if (!IsValidOffsetForSymbolicRangeBoundary(offset)) { |
| 1773 | return false; |
| 1774 | } |
| 1775 | |
| 1776 | *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| 1777 | return true; |
| 1778 | } else if (b.IsSymbol() && a.IsConstant()) { |
| 1779 | return SymbolicAdd(b, a, result); |
| 1780 | } |
| 1781 | return false; |
| 1782 | } |
| 1783 | |
| 1784 | bool RangeBoundary::SymbolicSub(const RangeBoundary& a, |
| 1785 | const RangeBoundary& b, |
| 1786 | RangeBoundary* result) { |
| 1787 | if (a.IsSymbol() && b.IsConstant()) { |
| 1788 | if (Utils::WillSubOverflow(a.offset(), b.ConstantValue())) { |
| 1789 | return false; |
| 1790 | } |
| 1791 | |
| 1792 | const int64_t offset = a.offset() - b.ConstantValue(); |
| 1793 | |
| 1794 | if (!IsValidOffsetForSymbolicRangeBoundary(offset)) { |
| 1795 | return false; |
| 1796 | } |
| 1797 | |
| 1798 | *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| 1799 | return true; |
| 1800 | } |
| 1801 | return false; |
| 1802 | } |
| 1803 | |
| 1804 | bool RangeBoundary::Equals(const RangeBoundary& other) const { |
| 1805 | if (IsConstant() && other.IsConstant()) { |
| 1806 | return ConstantValue() == other.ConstantValue(); |
| 1807 | } else if (IsInfinity() && other.IsInfinity()) { |
| 1808 | return kind() == other.kind(); |
| 1809 | } else if (IsSymbol() && other.IsSymbol()) { |
| 1810 | return (offset() == other.offset()) && DependOnSameSymbol(*this, other); |
| 1811 | } else if (IsUnknown() && other.IsUnknown()) { |
| 1812 | return true; |
| 1813 | } |
| 1814 | return false; |
| 1815 | } |
| 1816 | |
| 1817 | RangeBoundary RangeBoundary::Shl(const RangeBoundary& value_boundary, |
| 1818 | int64_t shift_count, |
| 1819 | const RangeBoundary& overflow) { |
| 1820 | ASSERT(value_boundary.IsConstant()); |
| 1821 | ASSERT(shift_count >= 0); |
| 1822 | int64_t limit = 64 - shift_count; |
| 1823 | int64_t value = value_boundary.ConstantValue(); |
| 1824 | |
| 1825 | if (value == 0) { |
| 1826 | return RangeBoundary(0); |
| 1827 | } else if (shift_count == 0 || |
| 1828 | (limit > 0 && Utils::IsInt(static_cast<int>(limit), value))) { |
| 1829 | // Result stays in 64 bit range. |
| 1830 | const int64_t result = static_cast<uint64_t>(value) << shift_count; |
| 1831 | return RangeBoundary(result); |
| 1832 | } |
| 1833 | |
| 1834 | return overflow; |
| 1835 | } |
| 1836 | |
| 1837 | static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
| 1838 | const RangeBoundary& overflow) { |
| 1839 | if (a.IsConstant() || a.IsInfinity()) { |
| 1840 | return a; |
| 1841 | } |
| 1842 | |
| 1843 | int64_t offset = a.offset(); |
| 1844 | Definition* symbol = a.symbol(); |
| 1845 | |
| 1846 | bool changed; |
| 1847 | do { |
| 1848 | changed = false; |
| 1849 | if (symbol->IsConstraint()) { |
| 1850 | symbol = symbol->AsConstraint()->value()->definition(); |
| 1851 | changed = true; |
| 1852 | } else if (symbol->IsBinarySmiOp()) { |
| 1853 | BinarySmiOpInstr* op = symbol->AsBinarySmiOp(); |
| 1854 | Definition* left = op->left()->definition(); |
| 1855 | Definition* right = op->right()->definition(); |
| 1856 | switch (op->op_kind()) { |
| 1857 | case Token::kADD: |
| 1858 | if (right->IsConstant()) { |
| 1859 | int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
| 1860 | if (Utils::WillAddOverflow(offset, rhs)) { |
| 1861 | return overflow; |
| 1862 | } |
| 1863 | offset += rhs; |
| 1864 | symbol = left; |
| 1865 | changed = true; |
| 1866 | } else if (left->IsConstant()) { |
| 1867 | int64_t rhs = Smi::Cast(left->AsConstant()->value()).Value(); |
| 1868 | if (Utils::WillAddOverflow(offset, rhs)) { |
| 1869 | return overflow; |
| 1870 | } |
| 1871 | offset += rhs; |
| 1872 | symbol = right; |
| 1873 | changed = true; |
| 1874 | } |
| 1875 | break; |
| 1876 | |
| 1877 | case Token::kSUB: |
| 1878 | if (right->IsConstant()) { |
| 1879 | int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
| 1880 | if (Utils::WillSubOverflow(offset, rhs)) { |
| 1881 | return overflow; |
| 1882 | } |
| 1883 | offset -= rhs; |
| 1884 | symbol = left; |
| 1885 | changed = true; |
| 1886 | } |
| 1887 | break; |
| 1888 | |
| 1889 | default: |
| 1890 | break; |
| 1891 | } |
| 1892 | } |
| 1893 | } while (changed); |
| 1894 | |
| 1895 | if (!RangeBoundary::IsValidOffsetForSymbolicRangeBoundary(offset)) { |
| 1896 | return overflow; |
| 1897 | } |
| 1898 | |
| 1899 | return RangeBoundary::FromDefinition(symbol, offset); |
| 1900 | } |
| 1901 | |
| 1902 | static bool CanonicalizeMaxBoundary(RangeBoundary* a) { |
| 1903 | if (!a->IsSymbol()) return false; |
| 1904 | |
| 1905 | Range* range = a->symbol()->range(); |
| 1906 | if ((range == NULL) || !range->max().IsSymbol()) return false; |
| 1907 | |
| 1908 | if (Utils::WillAddOverflow(range->max().offset(), a->offset())) { |
| 1909 | *a = RangeBoundary::PositiveInfinity(); |
| 1910 | return true; |
| 1911 | } |
| 1912 | |
| 1913 | const int64_t offset = range->max().offset() + a->offset(); |
| 1914 | |
| 1915 | if (!RangeBoundary::IsValidOffsetForSymbolicRangeBoundary(offset)) { |
| 1916 | *a = RangeBoundary::PositiveInfinity(); |
| 1917 | return true; |
| 1918 | } |
| 1919 | |
| 1920 | *a = CanonicalizeBoundary( |
| 1921 | RangeBoundary::FromDefinition(range->max().symbol(), offset), |
| 1922 | RangeBoundary::PositiveInfinity()); |
| 1923 | |
| 1924 | return true; |
| 1925 | } |
| 1926 | |
| 1927 | static bool CanonicalizeMinBoundary(RangeBoundary* a) { |
| 1928 | if (!a->IsSymbol()) return false; |
| 1929 | |
| 1930 | Range* range = a->symbol()->range(); |
| 1931 | if ((range == NULL) || !range->min().IsSymbol()) return false; |
| 1932 | |
| 1933 | if (Utils::WillAddOverflow(range->min().offset(), a->offset())) { |
| 1934 | *a = RangeBoundary::NegativeInfinity(); |
| 1935 | return true; |
| 1936 | } |
| 1937 | |
| 1938 | const int64_t offset = range->min().offset() + a->offset(); |
| 1939 | |
| 1940 | if (!RangeBoundary::IsValidOffsetForSymbolicRangeBoundary(offset)) { |
| 1941 | *a = RangeBoundary::NegativeInfinity(); |
| 1942 | return true; |
| 1943 | } |
| 1944 | |
| 1945 | *a = CanonicalizeBoundary( |
| 1946 | RangeBoundary::FromDefinition(range->min().symbol(), offset), |
| 1947 | RangeBoundary::NegativeInfinity()); |
| 1948 | |
| 1949 | return true; |
| 1950 | } |
| 1951 | |
| 1952 | typedef bool (*BoundaryOp)(RangeBoundary*); |
| 1953 | |
| 1954 | static bool CanonicalizeForComparison(RangeBoundary* a, |
| 1955 | RangeBoundary* b, |
| 1956 | BoundaryOp op, |
| 1957 | const RangeBoundary& overflow) { |
| 1958 | if (!a->IsSymbol() || !b->IsSymbol()) { |
| 1959 | return false; |
| 1960 | } |
| 1961 | |
| 1962 | RangeBoundary canonical_a = *a; |
| 1963 | RangeBoundary canonical_b = *b; |
| 1964 | |
| 1965 | do { |
| 1966 | if (DependOnSameSymbol(canonical_a, canonical_b)) { |
| 1967 | *a = canonical_a; |
| 1968 | *b = canonical_b; |
| 1969 | return true; |
| 1970 | } |
| 1971 | } while (op(&canonical_a) || op(&canonical_b)); |
| 1972 | |
| 1973 | return false; |
| 1974 | } |
| 1975 | |
| 1976 | RangeBoundary RangeBoundary::JoinMin(RangeBoundary a, |
| 1977 | RangeBoundary b, |
| 1978 | RangeBoundary::RangeSize size) { |
| 1979 | if (a.Equals(b)) { |
| 1980 | return b; |
| 1981 | } |
| 1982 | |
| 1983 | if (CanonicalizeForComparison(&a, &b, &CanonicalizeMinBoundary, |
| 1984 | RangeBoundary::NegativeInfinity())) { |
| 1985 | return (a.offset() <= b.offset()) ? a : b; |
| 1986 | } |
| 1987 | |
| 1988 | const int64_t inf_a = a.LowerBound(size); |
| 1989 | const int64_t inf_b = b.LowerBound(size); |
| 1990 | const int64_t sup_a = a.UpperBound(size); |
| 1991 | const int64_t sup_b = b.UpperBound(size); |
| 1992 | |
| 1993 | if ((sup_a <= inf_b) && !a.LowerBound().Overflowed(size)) { |
| 1994 | return a; |
| 1995 | } else if ((sup_b <= inf_a) && !b.LowerBound().Overflowed(size)) { |
| 1996 | return b; |
| 1997 | } else { |
| 1998 | return RangeBoundary::FromConstant(Utils::Minimum(inf_a, inf_b)); |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | RangeBoundary RangeBoundary::JoinMax(RangeBoundary a, |
| 2003 | RangeBoundary b, |
| 2004 | RangeBoundary::RangeSize size) { |
| 2005 | if (a.Equals(b)) { |
| 2006 | return b; |
| 2007 | } |
| 2008 | |
| 2009 | if (CanonicalizeForComparison(&a, &b, &CanonicalizeMaxBoundary, |
| 2010 | RangeBoundary::PositiveInfinity())) { |
| 2011 | return (a.offset() >= b.offset()) ? a : b; |
| 2012 | } |
| 2013 | |
| 2014 | const int64_t inf_a = a.LowerBound(size); |
| 2015 | const int64_t inf_b = b.LowerBound(size); |
| 2016 | const int64_t sup_a = a.UpperBound(size); |
| 2017 | const int64_t sup_b = b.UpperBound(size); |
| 2018 | |
| 2019 | if ((sup_a <= inf_b) && !b.UpperBound().Overflowed(size)) { |
| 2020 | return b; |
| 2021 | } else if ((sup_b <= inf_a) && !a.UpperBound().Overflowed(size)) { |
| 2022 | return a; |
| 2023 | } else { |
| 2024 | return RangeBoundary::FromConstant(Utils::Maximum(sup_a, sup_b)); |
| 2025 | } |
| 2026 | } |
| 2027 | |
| 2028 | RangeBoundary RangeBoundary::IntersectionMin(RangeBoundary a, RangeBoundary b) { |
| 2029 | ASSERT(!a.IsPositiveInfinity() && !b.IsPositiveInfinity()); |
| 2030 | ASSERT(!a.IsUnknown() && !b.IsUnknown()); |
| 2031 | |
| 2032 | if (a.Equals(b)) { |
| 2033 | return a; |
| 2034 | } |
| 2035 | |
| 2036 | if (a.IsMinimumOrBelow(RangeBoundary::kRangeBoundarySmi)) { |
| 2037 | return b; |
| 2038 | } else if (b.IsMinimumOrBelow(RangeBoundary::kRangeBoundarySmi)) { |
| 2039 | return a; |
| 2040 | } |
| 2041 | |
| 2042 | if (CanonicalizeForComparison(&a, &b, &CanonicalizeMinBoundary, |
| 2043 | RangeBoundary::NegativeInfinity())) { |
| 2044 | return (a.offset() >= b.offset()) ? a : b; |
| 2045 | } |
| 2046 | |
| 2047 | const int64_t inf_a = a.SmiLowerBound(); |
| 2048 | const int64_t inf_b = b.SmiLowerBound(); |
| 2049 | |
| 2050 | return (inf_a >= inf_b) ? a : b; |
| 2051 | } |
| 2052 | |
| 2053 | RangeBoundary RangeBoundary::IntersectionMax(RangeBoundary a, RangeBoundary b) { |
| 2054 | ASSERT(!a.IsNegativeInfinity() && !b.IsNegativeInfinity()); |
| 2055 | ASSERT(!a.IsUnknown() && !b.IsUnknown()); |
| 2056 | |
| 2057 | if (a.Equals(b)) { |
| 2058 | return a; |
| 2059 | } |
| 2060 | |
| 2061 | if (a.IsMaximumOrAbove(RangeBoundary::kRangeBoundarySmi)) { |
| 2062 | return b; |
| 2063 | } else if (b.IsMaximumOrAbove(RangeBoundary::kRangeBoundarySmi)) { |
| 2064 | return a; |
| 2065 | } |
| 2066 | |
| 2067 | if (CanonicalizeForComparison(&a, &b, &CanonicalizeMaxBoundary, |
| 2068 | RangeBoundary::PositiveInfinity())) { |
| 2069 | return (a.offset() <= b.offset()) ? a : b; |
| 2070 | } |
| 2071 | |
| 2072 | const int64_t sup_a = a.SmiUpperBound(); |
| 2073 | const int64_t sup_b = b.SmiUpperBound(); |
| 2074 | |
| 2075 | return (sup_a <= sup_b) ? a : b; |
| 2076 | } |
| 2077 | |
| 2078 | int64_t RangeBoundary::ConstantValue() const { |
| 2079 | ASSERT(IsConstant()); |
| 2080 | return value_; |
| 2081 | } |
| 2082 | |
| 2083 | bool Range::IsPositive() const { |
| 2084 | return OnlyGreaterThanOrEqualTo(0); |
| 2085 | } |
| 2086 | |
| 2087 | bool Range::OnlyLessThanOrEqualTo(int64_t val) const { |
| 2088 | const RangeBoundary upper_bound = max().UpperBound(); |
| 2089 | return !upper_bound.IsPositiveInfinity() && |
| 2090 | (upper_bound.ConstantValue() <= val); |
| 2091 | } |
| 2092 | |
| 2093 | bool Range::OnlyGreaterThanOrEqualTo(int64_t val) const { |
| 2094 | const RangeBoundary lower_bound = min().LowerBound(); |
| 2095 | return !lower_bound.IsNegativeInfinity() && |
| 2096 | (lower_bound.ConstantValue() >= val); |
| 2097 | } |
| 2098 | |
| 2099 | // Inclusive. |
| 2100 | bool Range::IsWithin(int64_t min_int, int64_t max_int) const { |
| 2101 | return OnlyGreaterThanOrEqualTo(min_int) && OnlyLessThanOrEqualTo(max_int); |
| 2102 | } |
| 2103 | |
| 2104 | bool Range::Overlaps(int64_t min_int, int64_t max_int) const { |
| 2105 | RangeBoundary lower = min().LowerBound(); |
| 2106 | RangeBoundary upper = max().UpperBound(); |
| 2107 | const int64_t this_min = |
| 2108 | lower.IsNegativeInfinity() ? RangeBoundary::kMin : lower.ConstantValue(); |
| 2109 | const int64_t this_max = |
| 2110 | upper.IsPositiveInfinity() ? RangeBoundary::kMax : upper.ConstantValue(); |
| 2111 | if ((this_min <= min_int) && (min_int <= this_max)) return true; |
| 2112 | if ((this_min <= max_int) && (max_int <= this_max)) return true; |
| 2113 | if ((min_int < this_min) && (max_int > this_max)) return true; |
| 2114 | return false; |
| 2115 | } |
| 2116 | |
| 2117 | bool Range::IsUnsatisfiable() const { |
| 2118 | // Infinity case: [+inf, ...] || [..., -inf] |
| 2119 | if (min().IsPositiveInfinity() || max().IsNegativeInfinity()) { |
| 2120 | return true; |
| 2121 | } |
| 2122 | // Constant case: For example [0, -1]. |
| 2123 | if (Range::ConstantMin(this).ConstantValue() > |
| 2124 | Range::ConstantMax(this).ConstantValue()) { |
| 2125 | return true; |
| 2126 | } |
| 2127 | // Symbol case: For example [v+1, v]. |
| 2128 | return DependOnSameSymbol(min(), max()) && min().offset() > max().offset(); |
| 2129 | } |
| 2130 | |
| 2131 | void Range::Clamp(RangeBoundary::RangeSize size) { |
| 2132 | min_ = min_.Clamp(size); |
| 2133 | max_ = max_.Clamp(size); |
| 2134 | } |
| 2135 | |
| 2136 | void Range::ClampToConstant(RangeBoundary::RangeSize size) { |
| 2137 | min_ = min_.LowerBound().Clamp(size); |
| 2138 | max_ = max_.UpperBound().Clamp(size); |
| 2139 | } |
| 2140 | |
| 2141 | void Range::Shl(const Range* left, |
| 2142 | const Range* right, |
| 2143 | RangeBoundary* result_min, |
| 2144 | RangeBoundary* result_max) { |
| 2145 | ASSERT(left != NULL); |
| 2146 | ASSERT(right != NULL); |
| 2147 | ASSERT(result_min != NULL); |
| 2148 | ASSERT(result_max != NULL); |
| 2149 | RangeBoundary left_max = Range::ConstantMax(left); |
| 2150 | RangeBoundary left_min = Range::ConstantMin(left); |
| 2151 | // A negative shift count always deoptimizes (and throws), so the minimum |
| 2152 | // shift count is zero. |
| 2153 | int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(), |
| 2154 | static_cast<int64_t>(0)); |
| 2155 | int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(), |
| 2156 | static_cast<int64_t>(0)); |
| 2157 | |
| 2158 | *result_min = RangeBoundary::Shl( |
| 2159 | left_min, left_min.ConstantValue() > 0 ? right_min : right_max, |
| 2160 | left_min.ConstantValue() > 0 ? RangeBoundary::PositiveInfinity() |
| 2161 | : RangeBoundary::NegativeInfinity()); |
| 2162 | |
| 2163 | *result_max = RangeBoundary::Shl( |
| 2164 | left_max, left_max.ConstantValue() > 0 ? right_max : right_min, |
| 2165 | left_max.ConstantValue() > 0 ? RangeBoundary::PositiveInfinity() |
| 2166 | : RangeBoundary::NegativeInfinity()); |
| 2167 | } |
| 2168 | |
| 2169 | void Range::Shr(const Range* left, |
| 2170 | const Range* right, |
| 2171 | RangeBoundary* result_min, |
| 2172 | RangeBoundary* result_max) { |
| 2173 | RangeBoundary left_max = Range::ConstantMax(left); |
| 2174 | RangeBoundary left_min = Range::ConstantMin(left); |
| 2175 | // A negative shift count always deoptimizes (and throws), so the minimum |
| 2176 | // shift count is zero. |
| 2177 | int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(), |
| 2178 | static_cast<int64_t>(0)); |
| 2179 | int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(), |
| 2180 | static_cast<int64_t>(0)); |
| 2181 | |
| 2182 | *result_min = RangeBoundary::Shr( |
| 2183 | left_min, left_min.ConstantValue() > 0 ? right_max : right_min); |
| 2184 | |
| 2185 | *result_max = RangeBoundary::Shr( |
| 2186 | left_max, left_max.ConstantValue() > 0 ? right_min : right_max); |
| 2187 | } |
| 2188 | |
| 2189 | void Range::And(const Range* left_range, |
| 2190 | const Range* right_range, |
| 2191 | RangeBoundary* result_min, |
| 2192 | RangeBoundary* result_max) { |
| 2193 | ASSERT(left_range != NULL); |
| 2194 | ASSERT(right_range != NULL); |
| 2195 | ASSERT(result_min != NULL); |
| 2196 | ASSERT(result_max != NULL); |
| 2197 | |
| 2198 | if (Range::ConstantMin(right_range).ConstantValue() >= 0) { |
| 2199 | *result_min = RangeBoundary::FromConstant(0); |
| 2200 | *result_max = Range::ConstantMax(right_range); |
| 2201 | return; |
| 2202 | } |
| 2203 | |
| 2204 | if (Range::ConstantMin(left_range).ConstantValue() >= 0) { |
| 2205 | *result_min = RangeBoundary::FromConstant(0); |
| 2206 | *result_max = Range::ConstantMax(left_range); |
| 2207 | return; |
| 2208 | } |
| 2209 | |
| 2210 | BitwiseOp(left_range, right_range, result_min, result_max); |
| 2211 | } |
| 2212 | |
| 2213 | static int BitSize(const Range* range) { |
| 2214 | const int64_t min = Range::ConstantMin(range).ConstantValue(); |
| 2215 | const int64_t max = Range::ConstantMax(range).ConstantValue(); |
| 2216 | return Utils::Maximum(Utils::BitLength(min), Utils::BitLength(max)); |
| 2217 | } |
| 2218 | |
| 2219 | void Range::BitwiseOp(const Range* left_range, |
| 2220 | const Range* right_range, |
| 2221 | RangeBoundary* result_min, |
| 2222 | RangeBoundary* result_max) { |
| 2223 | const int bitsize = Utils::Maximum(BitSize(left_range), BitSize(right_range)); |
| 2224 | |
| 2225 | if (left_range->IsPositive() && right_range->IsPositive()) { |
| 2226 | *result_min = RangeBoundary::FromConstant(0); |
| 2227 | } else { |
| 2228 | *result_min = |
| 2229 | RangeBoundary::FromConstant(-(static_cast<uint64_t>(1) << bitsize)); |
| 2230 | } |
| 2231 | |
| 2232 | *result_max = |
| 2233 | RangeBoundary::FromConstant((static_cast<uint64_t>(1) << bitsize) - 1); |
| 2234 | } |
| 2235 | |
| 2236 | void Range::Add(const Range* left_range, |
| 2237 | const Range* right_range, |
| 2238 | RangeBoundary* result_min, |
| 2239 | RangeBoundary* result_max, |
| 2240 | Definition* left_defn) { |
| 2241 | ASSERT(left_range != NULL); |
| 2242 | ASSERT(right_range != NULL); |
| 2243 | ASSERT(result_min != NULL); |
| 2244 | ASSERT(result_max != NULL); |
| 2245 | |
| 2246 | RangeBoundary left_min = Definition::IsArrayLength(left_defn) |
| 2247 | ? RangeBoundary::FromDefinition(left_defn) |
| 2248 | : left_range->min(); |
| 2249 | |
| 2250 | RangeBoundary left_max = Definition::IsArrayLength(left_defn) |
| 2251 | ? RangeBoundary::FromDefinition(left_defn) |
| 2252 | : left_range->max(); |
| 2253 | |
| 2254 | if (!RangeBoundary::SymbolicAdd(left_min, right_range->min(), result_min)) { |
| 2255 | *result_min = RangeBoundary::Add(left_range->min().LowerBound(), |
| 2256 | right_range->min().LowerBound(), |
| 2257 | RangeBoundary::NegativeInfinity()); |
| 2258 | } |
| 2259 | if (!RangeBoundary::SymbolicAdd(left_max, right_range->max(), result_max)) { |
| 2260 | *result_max = RangeBoundary::Add(right_range->max().UpperBound(), |
| 2261 | left_range->max().UpperBound(), |
| 2262 | RangeBoundary::PositiveInfinity()); |
| 2263 | } |
| 2264 | } |
| 2265 | |
| 2266 | void Range::Sub(const Range* left_range, |
| 2267 | const Range* right_range, |
| 2268 | RangeBoundary* result_min, |
| 2269 | RangeBoundary* result_max, |
| 2270 | Definition* left_defn) { |
| 2271 | ASSERT(left_range != NULL); |
| 2272 | ASSERT(right_range != NULL); |
| 2273 | ASSERT(result_min != NULL); |
| 2274 | ASSERT(result_max != NULL); |
| 2275 | |
| 2276 | RangeBoundary left_min = Definition::IsArrayLength(left_defn) |
| 2277 | ? RangeBoundary::FromDefinition(left_defn) |
| 2278 | : left_range->min(); |
| 2279 | |
| 2280 | RangeBoundary left_max = Definition::IsArrayLength(left_defn) |
| 2281 | ? RangeBoundary::FromDefinition(left_defn) |
| 2282 | : left_range->max(); |
| 2283 | |
| 2284 | if (!RangeBoundary::SymbolicSub(left_min, right_range->max(), result_min)) { |
| 2285 | *result_min = RangeBoundary::Sub(left_range->min().LowerBound(), |
| 2286 | right_range->max().UpperBound(), |
| 2287 | RangeBoundary::NegativeInfinity()); |
| 2288 | } |
| 2289 | if (!RangeBoundary::SymbolicSub(left_max, right_range->min(), result_max)) { |
| 2290 | *result_max = RangeBoundary::Sub(left_range->max().UpperBound(), |
| 2291 | right_range->min().LowerBound(), |
| 2292 | RangeBoundary::PositiveInfinity()); |
| 2293 | } |
| 2294 | } |
| 2295 | |
| 2296 | void Range::Mul(const Range* left_range, |
| 2297 | const Range* right_range, |
| 2298 | RangeBoundary* result_min, |
| 2299 | RangeBoundary* result_max) { |
| 2300 | ASSERT(left_range != NULL); |
| 2301 | ASSERT(right_range != NULL); |
| 2302 | ASSERT(result_min != NULL); |
| 2303 | ASSERT(result_max != NULL); |
| 2304 | |
| 2305 | const int64_t left_max = ConstantAbsMax(left_range); |
| 2306 | const int64_t right_max = ConstantAbsMax(right_range); |
| 2307 | if ((left_max <= -compiler::target::kSmiMin) && |
| 2308 | (right_max <= -compiler::target::kSmiMin) && |
| 2309 | ((left_max == 0) || (right_max <= kMaxInt64 / left_max))) { |
| 2310 | // Product of left and right max values stays in 64 bit range. |
| 2311 | const int64_t mul_max = left_max * right_max; |
| 2312 | if (OnlyPositiveOrZero(*left_range, *right_range) || |
| 2313 | OnlyNegativeOrZero(*left_range, *right_range)) { |
| 2314 | // If both ranges are of the same sign then the range of the result |
| 2315 | // is positive and is between multiplications of absolute minimums |
| 2316 | // and absolute maximums. |
| 2317 | const int64_t mul_min = |
| 2318 | ConstantAbsMin(left_range) * ConstantAbsMin(right_range); |
| 2319 | *result_min = RangeBoundary::FromConstant(mul_min); |
| 2320 | *result_max = RangeBoundary::FromConstant(mul_max); |
| 2321 | } else { |
| 2322 | // If ranges have mixed signs then use conservative approximation: |
| 2323 | // absolute value of the result is less or equal to multiplication |
| 2324 | // of absolute maximums. |
| 2325 | *result_min = RangeBoundary::FromConstant(-mul_max); |
| 2326 | *result_max = RangeBoundary::FromConstant(mul_max); |
| 2327 | } |
| 2328 | return; |
| 2329 | } |
| 2330 | |
| 2331 | // TODO(vegorov): handle mixed sign case that leads to (-Infinity, 0] range. |
| 2332 | if (OnlyPositiveOrZero(*left_range, *right_range) || |
| 2333 | OnlyNegativeOrZero(*left_range, *right_range)) { |
| 2334 | *result_min = RangeBoundary::FromConstant(0); |
| 2335 | *result_max = RangeBoundary::PositiveInfinity(); |
| 2336 | return; |
| 2337 | } |
| 2338 | |
| 2339 | *result_min = RangeBoundary::NegativeInfinity(); |
| 2340 | *result_max = RangeBoundary::PositiveInfinity(); |
| 2341 | } |
| 2342 | |
| 2343 | void Range::TruncDiv(const Range* left_range, |
| 2344 | const Range* right_range, |
| 2345 | RangeBoundary* result_min, |
| 2346 | RangeBoundary* result_max) { |
| 2347 | ASSERT(left_range != nullptr); |
| 2348 | ASSERT(right_range != nullptr); |
| 2349 | ASSERT(result_min != nullptr); |
| 2350 | ASSERT(result_max != nullptr); |
| 2351 | |
| 2352 | if (left_range->OnlyGreaterThanOrEqualTo(0) && |
| 2353 | right_range->OnlyGreaterThanOrEqualTo(1)) { |
| 2354 | const int64_t left_max = ConstantAbsMax(left_range); |
| 2355 | const int64_t left_min = ConstantAbsMin(left_range); |
| 2356 | const int64_t right_max = ConstantAbsMax(right_range); |
| 2357 | const int64_t right_min = ConstantAbsMin(right_range); |
| 2358 | |
| 2359 | *result_max = RangeBoundary::FromConstant(left_max / right_min); |
| 2360 | *result_min = RangeBoundary::FromConstant(left_min / right_max); |
| 2361 | return; |
| 2362 | } |
| 2363 | |
| 2364 | *result_min = RangeBoundary::NegativeInfinity(); |
| 2365 | *result_max = RangeBoundary::PositiveInfinity(); |
| 2366 | } |
| 2367 | |
| 2368 | void Range::Mod(const Range* right_range, |
| 2369 | RangeBoundary* result_min, |
| 2370 | RangeBoundary* result_max) { |
| 2371 | ASSERT(right_range != nullptr); |
| 2372 | ASSERT(result_min != nullptr); |
| 2373 | ASSERT(result_max != nullptr); |
| 2374 | // Each modulo result is positive and bounded by one less than |
| 2375 | // the maximum of the right-hand-side (it is unlikely that the |
| 2376 | // left-hand-side further refines this in typical programs). |
| 2377 | // Note that x % MinInt can be MaxInt and x % 0 always throws. |
| 2378 | const int64_t kModMin = 0; |
| 2379 | int64_t mod_max = kMaxInt64; |
| 2380 | if (Range::ConstantMin(right_range).ConstantValue() != kMinInt64) { |
| 2381 | const int64_t right_max = ConstantAbsMax(right_range); |
| 2382 | mod_max = Utils::Maximum(right_max - 1, kModMin); |
| 2383 | } |
| 2384 | *result_min = RangeBoundary::FromConstant(kModMin); |
| 2385 | *result_max = RangeBoundary::FromConstant(mod_max); |
| 2386 | } |
| 2387 | |
| 2388 | // Both the a and b ranges are >= 0. |
| 2389 | bool Range::OnlyPositiveOrZero(const Range& a, const Range& b) { |
| 2390 | return a.OnlyGreaterThanOrEqualTo(0) && b.OnlyGreaterThanOrEqualTo(0); |
| 2391 | } |
| 2392 | |
| 2393 | // Both the a and b ranges are <= 0. |
| 2394 | bool Range::OnlyNegativeOrZero(const Range& a, const Range& b) { |
| 2395 | return a.OnlyLessThanOrEqualTo(0) && b.OnlyLessThanOrEqualTo(0); |
| 2396 | } |
| 2397 | |
| 2398 | // Return the maximum absolute value included in range. |
| 2399 | int64_t Range::ConstantAbsMax(const Range* range) { |
| 2400 | if (range == NULL) { |
| 2401 | return RangeBoundary::kMax; |
| 2402 | } |
| 2403 | const int64_t abs_min = |
| 2404 | Utils::AbsWithSaturation(Range::ConstantMin(range).ConstantValue()); |
| 2405 | const int64_t abs_max = |
| 2406 | Utils::AbsWithSaturation(Range::ConstantMax(range).ConstantValue()); |
| 2407 | return Utils::Maximum(abs_min, abs_max); |
| 2408 | } |
| 2409 | |
| 2410 | // Return the minimum absolute value included in range. |
| 2411 | int64_t Range::ConstantAbsMin(const Range* range) { |
| 2412 | if (range == NULL) { |
| 2413 | return 0; |
| 2414 | } |
| 2415 | const int64_t abs_min = |
| 2416 | Utils::AbsWithSaturation(Range::ConstantMin(range).ConstantValue()); |
| 2417 | const int64_t abs_max = |
| 2418 | Utils::AbsWithSaturation(Range::ConstantMax(range).ConstantValue()); |
| 2419 | return Utils::Minimum(abs_min, abs_max); |
| 2420 | } |
| 2421 | |
| 2422 | void Range::BinaryOp(const Token::Kind op, |
| 2423 | const Range* left_range, |
| 2424 | const Range* right_range, |
| 2425 | Definition* left_defn, |
| 2426 | Range* result) { |
| 2427 | ASSERT(left_range != NULL); |
| 2428 | ASSERT(right_range != NULL); |
| 2429 | |
| 2430 | // Both left and right ranges are finite. |
| 2431 | ASSERT(left_range->IsFinite()); |
| 2432 | ASSERT(right_range->IsFinite()); |
| 2433 | |
| 2434 | RangeBoundary min; |
| 2435 | RangeBoundary max; |
| 2436 | ASSERT(min.IsUnknown() && max.IsUnknown()); |
| 2437 | |
| 2438 | switch (op) { |
| 2439 | case Token::kADD: |
| 2440 | Range::Add(left_range, right_range, &min, &max, left_defn); |
| 2441 | break; |
| 2442 | |
| 2443 | case Token::kSUB: |
| 2444 | Range::Sub(left_range, right_range, &min, &max, left_defn); |
| 2445 | break; |
| 2446 | |
| 2447 | case Token::kMUL: |
| 2448 | Range::Mul(left_range, right_range, &min, &max); |
| 2449 | break; |
| 2450 | |
| 2451 | case Token::kTRUNCDIV: |
| 2452 | Range::TruncDiv(left_range, right_range, &min, &max); |
| 2453 | break; |
| 2454 | |
| 2455 | case Token::kMOD: |
| 2456 | Range::Mod(right_range, &min, &max); |
| 2457 | break; |
| 2458 | |
| 2459 | case Token::kSHL: |
| 2460 | Range::Shl(left_range, right_range, &min, &max); |
| 2461 | break; |
| 2462 | |
| 2463 | case Token::kSHR: |
| 2464 | Range::Shr(left_range, right_range, &min, &max); |
| 2465 | break; |
| 2466 | |
| 2467 | case Token::kBIT_AND: |
| 2468 | Range::And(left_range, right_range, &min, &max); |
| 2469 | break; |
| 2470 | |
| 2471 | case Token::kBIT_XOR: |
| 2472 | case Token::kBIT_OR: |
| 2473 | Range::BitwiseOp(left_range, right_range, &min, &max); |
| 2474 | break; |
| 2475 | |
| 2476 | default: |
| 2477 | *result = Range(RangeBoundary::NegativeInfinity(), |
| 2478 | RangeBoundary::PositiveInfinity()); |
| 2479 | return; |
| 2480 | } |
| 2481 | |
| 2482 | ASSERT(!min.IsUnknown() && !max.IsUnknown()); |
| 2483 | |
| 2484 | // Sanity: avoid [l, u] with constants l > u. |
| 2485 | ASSERT(!min.IsConstant() || !max.IsConstant() || |
| 2486 | min.ConstantValue() <= max.ConstantValue()); |
| 2487 | |
| 2488 | *result = Range(min, max); |
| 2489 | } |
| 2490 | |
| 2491 | void Definition::set_range(const Range& range) { |
| 2492 | if (range_ == NULL) { |
| 2493 | range_ = new Range(); |
| 2494 | } |
| 2495 | *range_ = range; |
| 2496 | } |
| 2497 | |
| 2498 | void Definition::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2499 | if (Type()->ToCid() == kSmiCid) { |
| 2500 | *range = Range::Full(RangeBoundary::kRangeBoundarySmi); |
| 2501 | } else if (IsInt64Definition()) { |
| 2502 | *range = Range::Full(RangeBoundary::kRangeBoundaryInt64); |
| 2503 | } else if (IsInt32Definition()) { |
| 2504 | *range = Range::Full(RangeBoundary::kRangeBoundaryInt32); |
| 2505 | } else if (Type()->IsInt()) { |
| 2506 | *range = Range::Full(RangeBoundary::kRangeBoundaryInt64); |
| 2507 | } else { |
| 2508 | // Only Smi and Mint supported. |
| 2509 | UNREACHABLE(); |
| 2510 | } |
| 2511 | } |
| 2512 | |
| 2513 | static bool DependsOnSymbol(const RangeBoundary& a, Definition* symbol) { |
| 2514 | return a.IsSymbol() && (UnwrapConstraint(a.symbol()) == symbol); |
| 2515 | } |
| 2516 | |
| 2517 | // Given the range and definition update the range so that |
| 2518 | // it covers both original range and definitions range. |
| 2519 | // |
| 2520 | // The following should also hold: |
| 2521 | // |
| 2522 | // [_|_, _|_] U a = a U [_|_, _|_] = a |
| 2523 | // |
| 2524 | static void Join(Range* range, |
| 2525 | Definition* defn, |
| 2526 | const Range* defn_range, |
| 2527 | RangeBoundary::RangeSize size) { |
| 2528 | if (Range::IsUnknown(defn_range)) { |
| 2529 | return; |
| 2530 | } |
| 2531 | |
| 2532 | if (Range::IsUnknown(range)) { |
| 2533 | *range = *defn_range; |
| 2534 | return; |
| 2535 | } |
| 2536 | |
| 2537 | Range other = *defn_range; |
| 2538 | |
| 2539 | // Handle patterns where range already depends on defn as a symbol: |
| 2540 | // |
| 2541 | // (..., S+o] U range(S) and [S+o, ...) U range(S) |
| 2542 | // |
| 2543 | // To improve precision of the computed join use [S, S] instead of |
| 2544 | // using range(S). It will be canonicalized away by JoinMin/JoinMax |
| 2545 | // functions. |
| 2546 | Definition* unwrapped = UnwrapConstraint(defn); |
| 2547 | if (DependsOnSymbol(range->min(), unwrapped) || |
| 2548 | DependsOnSymbol(range->max(), unwrapped)) { |
| 2549 | other = Range(RangeBoundary::FromDefinition(defn, 0), |
| 2550 | RangeBoundary::FromDefinition(defn, 0)); |
| 2551 | } |
| 2552 | |
| 2553 | // First try to compare ranges based on their upper and lower bounds. |
| 2554 | const int64_t inf_range = range->min().LowerBound(size); |
| 2555 | const int64_t inf_other = other.min().LowerBound(size); |
| 2556 | const int64_t sup_range = range->max().UpperBound(size); |
| 2557 | const int64_t sup_other = other.max().UpperBound(size); |
| 2558 | |
| 2559 | if (sup_range <= inf_other) { |
| 2560 | // The range is fully below defn's range. Keep the minimum and |
| 2561 | // expand the maximum. |
| 2562 | range->set_max(other.max()); |
| 2563 | } else if (sup_other <= inf_range) { |
| 2564 | // The range is fully above defn's range. Keep the maximum and |
| 2565 | // expand the minimum. |
| 2566 | range->set_min(other.min()); |
| 2567 | } else { |
| 2568 | // Can't compare ranges as whole. Join minimum and maximum separately. |
| 2569 | *range = Range(RangeBoundary::JoinMin(range->min(), other.min(), size), |
| 2570 | RangeBoundary::JoinMax(range->max(), other.max(), size)); |
| 2571 | } |
| 2572 | } |
| 2573 | |
| 2574 | // A definition dominates a phi if its block dominates the phi's block |
| 2575 | // and the two blocks are different. |
| 2576 | static bool DominatesPhi(BlockEntryInstr* a, BlockEntryInstr* phi_block) { |
| 2577 | return a->Dominates(phi_block) && (a != phi_block); |
| 2578 | } |
| 2579 | |
| 2580 | // When assigning range to a phi we must take care to avoid self-reference |
| 2581 | // cycles when phi's range depends on the phi itself. |
| 2582 | // To prevent such cases we impose additional restriction on symbols that |
| 2583 | // can be used as boundaries for phi's range: they must dominate |
| 2584 | // phi's definition. |
| 2585 | static RangeBoundary EnsureAcyclicSymbol(BlockEntryInstr* phi_block, |
| 2586 | const RangeBoundary& a, |
| 2587 | const RangeBoundary& limit) { |
| 2588 | if (!a.IsSymbol() || DominatesPhi(a.symbol()->GetBlock(), phi_block)) { |
| 2589 | return a; |
| 2590 | } |
| 2591 | |
| 2592 | // Symbol does not dominate phi. Try unwrapping constraint and check again. |
| 2593 | Definition* unwrapped = UnwrapConstraint(a.symbol()); |
| 2594 | if ((unwrapped != a.symbol()) && |
| 2595 | DominatesPhi(unwrapped->GetBlock(), phi_block)) { |
| 2596 | return RangeBoundary::FromDefinition(unwrapped, a.offset()); |
| 2597 | } |
| 2598 | |
| 2599 | return limit; |
| 2600 | } |
| 2601 | |
| 2602 | static const Range* GetInputRange(RangeAnalysis* analysis, |
| 2603 | RangeBoundary::RangeSize size, |
| 2604 | Value* input) { |
| 2605 | switch (size) { |
| 2606 | case RangeBoundary::kRangeBoundarySmi: |
| 2607 | return analysis->GetSmiRange(input); |
| 2608 | case RangeBoundary::kRangeBoundaryInt32: |
| 2609 | return input->definition()->range(); |
| 2610 | case RangeBoundary::kRangeBoundaryInt64: |
| 2611 | return analysis->GetIntRange(input); |
| 2612 | default: |
| 2613 | UNREACHABLE(); |
| 2614 | return NULL; |
| 2615 | } |
| 2616 | } |
| 2617 | |
| 2618 | void PhiInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2619 | const RangeBoundary::RangeSize size = RangeSizeForPhi(this); |
| 2620 | for (intptr_t i = 0; i < InputCount(); i++) { |
| 2621 | Value* input = InputAt(i); |
| 2622 | Join(range, input->definition(), GetInputRange(analysis, size, input), |
| 2623 | size); |
| 2624 | } |
| 2625 | |
| 2626 | BlockEntryInstr* phi_block = GetBlock(); |
| 2627 | range->set_min( |
| 2628 | EnsureAcyclicSymbol(phi_block, range->min(), RangeBoundary::MinSmi())); |
| 2629 | range->set_max( |
| 2630 | EnsureAcyclicSymbol(phi_block, range->max(), RangeBoundary::MaxSmi())); |
| 2631 | } |
| 2632 | |
| 2633 | void ConstantInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2634 | if (value_.IsSmi()) { |
| 2635 | int64_t value = Smi::Cast(value_).Value(); |
| 2636 | *range = Range(RangeBoundary::FromConstant(value), |
| 2637 | RangeBoundary::FromConstant(value)); |
| 2638 | } else if (value_.IsMint()) { |
| 2639 | int64_t value = Mint::Cast(value_).value(); |
| 2640 | *range = Range(RangeBoundary::FromConstant(value), |
| 2641 | RangeBoundary::FromConstant(value)); |
| 2642 | } else { |
| 2643 | // Only Smi and Mint supported. |
| 2644 | UNREACHABLE(); |
| 2645 | } |
| 2646 | } |
| 2647 | |
| 2648 | void ConstraintInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2649 | const Range* value_range = analysis->GetSmiRange(value()); |
| 2650 | if (Range::IsUnknown(value_range)) { |
| 2651 | return; |
| 2652 | } |
| 2653 | |
| 2654 | // TODO(vegorov) check if precision of the analysis can be improved by |
| 2655 | // recognizing intersections of the form: |
| 2656 | // |
| 2657 | // (..., S+x] ^ [S+x, ...) = [S+x, S+x] |
| 2658 | // |
| 2659 | Range result = value_range->Intersect(constraint()); |
| 2660 | |
| 2661 | if (result.IsUnsatisfiable()) { |
| 2662 | return; |
| 2663 | } |
| 2664 | |
| 2665 | *range = result; |
| 2666 | } |
| 2667 | |
| 2668 | void LoadFieldInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2669 | switch (slot().kind()) { |
| 2670 | case Slot::Kind::kArray_length: |
| 2671 | case Slot::Kind::kGrowableObjectArray_length: |
| 2672 | *range = Range( |
| 2673 | RangeBoundary::FromConstant(0), |
| 2674 | RangeBoundary::FromConstant(compiler::target::Array::kMaxElements)); |
| 2675 | break; |
| 2676 | |
| 2677 | case Slot::Kind::kTypedDataBase_length: |
| 2678 | case Slot::Kind::kTypedDataView_offset_in_bytes: |
| 2679 | *range = Range(RangeBoundary::FromConstant(0), RangeBoundary::MaxSmi()); |
| 2680 | break; |
| 2681 | |
| 2682 | case Slot::Kind::kString_length: |
| 2683 | *range = Range( |
| 2684 | RangeBoundary::FromConstant(0), |
| 2685 | RangeBoundary::FromConstant(compiler::target::String::kMaxElements)); |
| 2686 | break; |
| 2687 | |
| 2688 | case Slot::Kind::kDartField: |
| 2689 | case Slot::Kind::kCapturedVariable: |
| 2690 | // Use default value. |
| 2691 | Definition::InferRange(analysis, range); |
| 2692 | break; |
| 2693 | |
| 2694 | case Slot::Kind::kLinkedHashMap_index: |
| 2695 | case Slot::Kind::kLinkedHashMap_data: |
| 2696 | case Slot::Kind::kGrowableObjectArray_data: |
| 2697 | case Slot::Kind::kContext_parent: |
| 2698 | case Slot::Kind::kTypeArguments: |
| 2699 | case Slot::Kind::kClosure_context: |
| 2700 | case Slot::Kind::kClosure_delayed_type_arguments: |
| 2701 | case Slot::Kind::kClosure_function: |
| 2702 | case Slot::Kind::kClosure_function_type_arguments: |
| 2703 | case Slot::Kind::kClosure_instantiator_type_arguments: |
| 2704 | case Slot::Kind::kPointerBase_data_field: |
| 2705 | case Slot::Kind::kTypedDataView_data: |
| 2706 | case Slot::Kind::kType_arguments: |
| 2707 | case Slot::Kind::kTypeArgumentsIndex: |
| 2708 | case Slot::Kind::kUnhandledException_exception: |
| 2709 | case Slot::Kind::kUnhandledException_stacktrace: |
| 2710 | // Not an integer valued field. |
| 2711 | UNREACHABLE(); |
| 2712 | break; |
| 2713 | |
| 2714 | case Slot::Kind::kClosure_hash: |
| 2715 | case Slot::Kind::kLinkedHashMap_hash_mask: |
| 2716 | case Slot::Kind::kLinkedHashMap_used_data: |
| 2717 | case Slot::Kind::kLinkedHashMap_deleted_keys: |
| 2718 | *range = Range(RangeBoundary::FromConstant(0), RangeBoundary::MaxSmi()); |
| 2719 | break; |
| 2720 | |
| 2721 | case Slot::Kind::kArgumentsDescriptor_type_args_len: |
| 2722 | case Slot::Kind::kArgumentsDescriptor_positional_count: |
| 2723 | case Slot::Kind::kArgumentsDescriptor_count: |
| 2724 | case Slot::Kind::kArgumentsDescriptor_size: |
| 2725 | *range = Range(RangeBoundary::FromConstant(0), RangeBoundary::MaxSmi()); |
| 2726 | break; |
| 2727 | } |
| 2728 | } |
| 2729 | |
| 2730 | void LoadIndexedInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2731 | switch (class_id()) { |
| 2732 | case kTypedDataInt8ArrayCid: |
| 2733 | *range = Range(RangeBoundary::FromConstant(-128), |
| 2734 | RangeBoundary::FromConstant(127)); |
| 2735 | break; |
| 2736 | case kTypedDataUint8ArrayCid: |
| 2737 | case kTypedDataUint8ClampedArrayCid: |
| 2738 | case kExternalTypedDataUint8ArrayCid: |
| 2739 | case kExternalTypedDataUint8ClampedArrayCid: |
| 2740 | *range = Range(RangeBoundary::FromConstant(0), |
| 2741 | RangeBoundary::FromConstant(255)); |
| 2742 | break; |
| 2743 | case kTypedDataInt16ArrayCid: |
| 2744 | *range = Range(RangeBoundary::FromConstant(-32768), |
| 2745 | RangeBoundary::FromConstant(32767)); |
| 2746 | break; |
| 2747 | case kTypedDataUint16ArrayCid: |
| 2748 | *range = Range(RangeBoundary::FromConstant(0), |
| 2749 | RangeBoundary::FromConstant(65535)); |
| 2750 | break; |
| 2751 | case kTypedDataInt32ArrayCid: |
| 2752 | *range = Range(RangeBoundary::FromConstant(kMinInt32), |
| 2753 | RangeBoundary::FromConstant(kMaxInt32)); |
| 2754 | break; |
| 2755 | case kTypedDataUint32ArrayCid: |
| 2756 | *range = Range(RangeBoundary::FromConstant(0), |
| 2757 | RangeBoundary::FromConstant(kMaxUint32)); |
| 2758 | break; |
| 2759 | case kOneByteStringCid: |
| 2760 | *range = Range(RangeBoundary::FromConstant(0), |
| 2761 | RangeBoundary::FromConstant(0xFF)); |
| 2762 | break; |
| 2763 | case kTwoByteStringCid: |
| 2764 | *range = Range(RangeBoundary::FromConstant(0), |
| 2765 | RangeBoundary::FromConstant(0xFFFF)); |
| 2766 | break; |
| 2767 | default: |
| 2768 | Definition::InferRange(analysis, range); |
| 2769 | break; |
| 2770 | } |
| 2771 | } |
| 2772 | |
| 2773 | void LoadCodeUnitsInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2774 | ASSERT(IsStringClassId(class_id())); |
| 2775 | RangeBoundary zero = RangeBoundary::FromConstant(0); |
| 2776 | // Take the number of loaded characters into account when determining the |
| 2777 | // range of the result. |
| 2778 | ASSERT(element_count_ > 0); |
| 2779 | switch (class_id()) { |
| 2780 | case kOneByteStringCid: |
| 2781 | case kExternalOneByteStringCid: |
| 2782 | ASSERT(element_count_ <= 4); |
| 2783 | *range = Range(zero, RangeBoundary::FromConstant( |
| 2784 | Utils::NBitMask(kBitsPerByte * element_count_))); |
| 2785 | break; |
| 2786 | case kTwoByteStringCid: |
| 2787 | case kExternalTwoByteStringCid: |
| 2788 | ASSERT(element_count_ <= 2); |
| 2789 | *range = Range(zero, RangeBoundary::FromConstant(Utils::NBitMask( |
| 2790 | 2 * kBitsPerByte * element_count_))); |
| 2791 | break; |
| 2792 | default: |
| 2793 | UNREACHABLE(); |
| 2794 | break; |
| 2795 | } |
| 2796 | } |
| 2797 | |
| 2798 | void IfThenElseInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2799 | const intptr_t min = Utils::Minimum(if_true_, if_false_); |
| 2800 | const intptr_t max = Utils::Maximum(if_true_, if_false_); |
| 2801 | *range = |
| 2802 | Range(RangeBoundary::FromConstant(min), RangeBoundary::FromConstant(max)); |
| 2803 | } |
| 2804 | |
| 2805 | static RangeBoundary::RangeSize RepresentationToRangeSize(Representation r) { |
| 2806 | switch (r) { |
| 2807 | case kTagged: |
| 2808 | return RangeBoundary::kRangeBoundarySmi; |
| 2809 | case kUnboxedInt32: |
| 2810 | return RangeBoundary::kRangeBoundaryInt32; |
| 2811 | case kUnboxedInt64: |
| 2812 | case kUnboxedUint32: // Overapproximate Uint32 as Int64. |
| 2813 | return RangeBoundary::kRangeBoundaryInt64; |
| 2814 | default: |
| 2815 | UNREACHABLE(); |
| 2816 | return RangeBoundary::kRangeBoundarySmi; |
| 2817 | } |
| 2818 | } |
| 2819 | |
| 2820 | void BinaryIntegerOpInstr::InferRangeHelper(const Range* left_range, |
| 2821 | const Range* right_range, |
| 2822 | Range* range) { |
| 2823 | // TODO(vegorov): canonicalize BinaryIntegerOp to always have constant on the |
| 2824 | // right and a non-constant on the left. |
| 2825 | if (Range::IsUnknown(left_range) || Range::IsUnknown(right_range)) { |
| 2826 | return; |
| 2827 | } |
| 2828 | |
| 2829 | Range::BinaryOp(op_kind(), left_range, right_range, left()->definition(), |
| 2830 | range); |
| 2831 | ASSERT(!Range::IsUnknown(range)); |
| 2832 | |
| 2833 | const RangeBoundary::RangeSize range_size = |
| 2834 | RepresentationToRangeSize(representation()); |
| 2835 | |
| 2836 | // Calculate overflowed status before clamping if operation is |
| 2837 | // not truncating. |
| 2838 | if (!is_truncating()) { |
| 2839 | set_can_overflow(!range->Fits(range_size)); |
| 2840 | } |
| 2841 | |
| 2842 | range->Clamp(range_size); |
| 2843 | } |
| 2844 | |
| 2845 | static void CacheRange(Range** slot, |
| 2846 | const Range* range, |
| 2847 | RangeBoundary::RangeSize size) { |
| 2848 | if (range != NULL) { |
| 2849 | if (*slot == NULL) { |
| 2850 | *slot = new Range(); |
| 2851 | } |
| 2852 | **slot = *range; |
| 2853 | |
| 2854 | // Eliminate any symbolic dependencies from the range information. |
| 2855 | (*slot)->ClampToConstant(size); |
| 2856 | } else if (*slot != NULL) { |
| 2857 | **slot = Range(); // Clear cached range information. |
| 2858 | } |
| 2859 | } |
| 2860 | |
| 2861 | void BinaryIntegerOpInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2862 | auto const left_size = |
| 2863 | RepresentationToRangeSize(RequiredInputRepresentation(0)); |
| 2864 | auto const right_size = |
| 2865 | RepresentationToRangeSize(RequiredInputRepresentation(1)); |
| 2866 | InferRangeHelper(GetInputRange(analysis, left_size, left()), |
| 2867 | GetInputRange(analysis, right_size, right()), range); |
| 2868 | } |
| 2869 | |
| 2870 | void BinarySmiOpInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2871 | const Range* right_smi_range = analysis->GetSmiRange(right()); |
| 2872 | // TODO(vegorov) completely remove this once GetSmiRange is eliminated. |
| 2873 | if (op_kind() == Token::kSHR || op_kind() == Token::kSHL || |
| 2874 | op_kind() == Token::kMOD || op_kind() == Token::kTRUNCDIV) { |
| 2875 | CacheRange(&right_range_, right_smi_range, |
| 2876 | RangeBoundary::kRangeBoundarySmi); |
| 2877 | } |
| 2878 | InferRangeHelper(analysis->GetSmiRange(left()), right_smi_range, range); |
| 2879 | } |
| 2880 | |
| 2881 | void ShiftIntegerOpInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2882 | const Range* right_range = RequiredInputRepresentation(1) == kTagged |
| 2883 | ? analysis->GetSmiRange(right()) |
| 2884 | : right()->definition()->range(); |
| 2885 | CacheRange(&shift_range_, right()->definition()->range(), |
| 2886 | RangeBoundary::kRangeBoundaryInt64); |
| 2887 | InferRangeHelper(left()->definition()->range(), right_range, range); |
| 2888 | } |
| 2889 | |
| 2890 | void BoxIntegerInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2891 | const Range* value_range = value()->definition()->range(); |
| 2892 | if (!Range::IsUnknown(value_range)) { |
| 2893 | *range = *value_range; |
| 2894 | } |
| 2895 | } |
| 2896 | |
| 2897 | void UnboxInt32Instr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2898 | if (value()->Type()->ToCid() == kSmiCid) { |
| 2899 | const Range* value_range = analysis->GetSmiRange(value()); |
| 2900 | if (!Range::IsUnknown(value_range)) { |
| 2901 | *range = *value_range; |
| 2902 | } |
| 2903 | } else if (RangeAnalysis::IsIntegerDefinition(value()->definition())) { |
| 2904 | const Range* value_range = analysis->GetIntRange(value()); |
| 2905 | if (!Range::IsUnknown(value_range)) { |
| 2906 | *range = *value_range; |
| 2907 | } |
| 2908 | } else if (value()->Type()->ToCid() == kSmiCid) { |
| 2909 | *range = Range::Full(RangeBoundary::kRangeBoundarySmi); |
| 2910 | } else { |
| 2911 | *range = Range::Full(RangeBoundary::kRangeBoundaryInt32); |
| 2912 | } |
| 2913 | } |
| 2914 | |
| 2915 | void UnboxUint32Instr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2916 | const Range* value_range = NULL; |
| 2917 | |
| 2918 | if (value()->Type()->ToCid() == kSmiCid) { |
| 2919 | value_range = analysis->GetSmiRange(value()); |
| 2920 | } else if (RangeAnalysis::IsIntegerDefinition(value()->definition())) { |
| 2921 | value_range = analysis->GetIntRange(value()); |
| 2922 | } else { |
| 2923 | *range = Range(RangeBoundary::FromConstant(0), |
| 2924 | RangeBoundary::FromConstant(kMaxUint32)); |
| 2925 | return; |
| 2926 | } |
| 2927 | |
| 2928 | if (!Range::IsUnknown(value_range)) { |
| 2929 | if (value_range->IsPositive()) { |
| 2930 | *range = *value_range; |
| 2931 | } else { |
| 2932 | *range = Range(RangeBoundary::FromConstant(0), |
| 2933 | RangeBoundary::FromConstant(kMaxUint32)); |
| 2934 | } |
| 2935 | } |
| 2936 | } |
| 2937 | |
| 2938 | void UnboxInt64Instr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2939 | const Range* value_range = value()->definition()->range(); |
| 2940 | if (value_range != NULL) { |
| 2941 | *range = *value_range; |
| 2942 | } else if (!value()->definition()->IsInt64Definition() && |
| 2943 | (value()->definition()->Type()->ToCid() != kSmiCid)) { |
| 2944 | *range = Range::Full(RangeBoundary::kRangeBoundaryInt64); |
| 2945 | } |
| 2946 | } |
| 2947 | |
| 2948 | void IntConverterInstr::InferRange(RangeAnalysis* analysis, Range* range) { |
| 2949 | if (from() == kUntagged || to() == kUntagged) { |
| 2950 | ASSERT((from() == kUntagged && |
| 2951 | (to() == kUnboxedIntPtr || to() == kUnboxedFfiIntPtr)) || |
| 2952 | ((from() == kUnboxedIntPtr || from() == kUnboxedFfiIntPtr) && |
| 2953 | to() == kUntagged)); |
| 2954 | } else { |
| 2955 | ASSERT(from() == kUnboxedInt32 || from() == kUnboxedInt64 || |
| 2956 | from() == kUnboxedUint32); |
| 2957 | ASSERT(to() == kUnboxedInt32 || to() == kUnboxedInt64 || |
| 2958 | to() == kUnboxedUint32); |
| 2959 | } |
| 2960 | |
| 2961 | const Range* value_range = value()->definition()->range(); |
| 2962 | if (Range::IsUnknown(value_range)) { |
| 2963 | return; |
| 2964 | } |
| 2965 | |
| 2966 | if (to() == kUnboxedUint32) { |
| 2967 | // TODO(vegorov): improve range information for unboxing to Uint32. |
| 2968 | *range = |
| 2969 | Range(RangeBoundary::FromConstant(0), |
| 2970 | RangeBoundary::FromConstant(static_cast<int64_t>(kMaxUint32))); |
| 2971 | } else { |
| 2972 | *range = *value_range; |
| 2973 | if (to() == kUnboxedInt32) { |
| 2974 | range->Clamp(RangeBoundary::kRangeBoundaryInt32); |
| 2975 | } |
| 2976 | } |
| 2977 | } |
| 2978 | |
| 2979 | static bool IsRedundantBasedOnRangeInformation(Value* index, Value* length) { |
| 2980 | // Range of the index is unknown can't decide if the check is redundant. |
| 2981 | Range* index_range = index->definition()->range(); |
| 2982 | if (index_range == nullptr) { |
| 2983 | if (!(index->BindsToConstant() && |
| 2984 | compiler::target::IsSmi(index->BoundConstant()))) { |
| 2985 | return false; |
| 2986 | } |
| 2987 | Range range; |
| 2988 | index->definition()->InferRange(nullptr, &range); |
| 2989 | ASSERT(!Range::IsUnknown(&range)); |
| 2990 | index->definition()->set_range(range); |
| 2991 | index_range = index->definition()->range(); |
| 2992 | } |
| 2993 | |
| 2994 | // Range of the index is not positive. Check can't be redundant. |
| 2995 | if (Range::ConstantMinSmi(index_range).ConstantValue() < 0) { |
| 2996 | return false; |
| 2997 | } |
| 2998 | |
| 2999 | RangeBoundary max = RangeBoundary::FromDefinition(index->definition()); |
| 3000 | RangeBoundary max_upper = max.UpperBound(); |
| 3001 | RangeBoundary array_length = |
| 3002 | RangeBoundary::FromDefinition(length->definition()); |
| 3003 | RangeBoundary length_lower = array_length.LowerBound(); |
| 3004 | if (max_upper.OverflowedSmi() || length_lower.OverflowedSmi()) { |
| 3005 | return false; |
| 3006 | } |
| 3007 | |
| 3008 | // Try to compare constant boundaries. |
| 3009 | if (max_upper.ConstantValue() < length_lower.ConstantValue()) { |
| 3010 | return true; |
| 3011 | } |
| 3012 | |
| 3013 | RangeBoundary canonical_length = |
| 3014 | CanonicalizeBoundary(array_length, RangeBoundary::PositiveInfinity()); |
| 3015 | if (canonical_length.OverflowedSmi()) { |
| 3016 | return false; |
| 3017 | } |
| 3018 | |
| 3019 | // Try symbolic comparison. |
| 3020 | do { |
| 3021 | if (DependOnSameSymbol(max, canonical_length)) { |
| 3022 | return max.offset() < canonical_length.offset(); |
| 3023 | } |
| 3024 | } while (CanonicalizeMaxBoundary(&max) || |
| 3025 | CanonicalizeMinBoundary(&canonical_length)); |
| 3026 | |
| 3027 | // Failed to prove that maximum is bounded with array length. |
| 3028 | return false; |
| 3029 | } |
| 3030 | |
| 3031 | bool CheckBoundBase::IsRedundant(bool use_loops) { |
| 3032 | // First, try to prove redundancy with the results of range analysis. |
| 3033 | if (IsRedundantBasedOnRangeInformation(index(), length())) { |
| 3034 | return true; |
| 3035 | } else if (!use_loops) { |
| 3036 | return false; |
| 3037 | } |
| 3038 | // Next, try to prove redundancy with the results of induction analysis. |
| 3039 | LoopInfo* loop = GetBlock()->loop_info(); |
| 3040 | if (loop != nullptr) { |
| 3041 | return loop->IsInRange(this, index(), length()); |
| 3042 | } |
| 3043 | return false; |
| 3044 | } |
| 3045 | |
| 3046 | } // namespace dart |
| 3047 | |