| 1 | // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #ifndef RUNTIME_VM_REGEXP_H_ |
| 6 | #define RUNTIME_VM_REGEXP_H_ |
| 7 | |
| 8 | #include "platform/unicode.h" |
| 9 | |
| 10 | #include "vm/object.h" |
| 11 | #include "vm/regexp_assembler.h" |
| 12 | #include "vm/splay-tree.h" |
| 13 | |
| 14 | namespace dart { |
| 15 | |
| 16 | class NodeVisitor; |
| 17 | class RegExpCompiler; |
| 18 | class RegExpMacroAssembler; |
| 19 | class RegExpNode; |
| 20 | class RegExpTree; |
| 21 | class BoyerMooreLookahead; |
| 22 | |
| 23 | // Represents code units in the range from from_ to to_, both ends are |
| 24 | // inclusive. |
| 25 | class CharacterRange { |
| 26 | public: |
| 27 | CharacterRange() : from_(0), to_(0) {} |
| 28 | CharacterRange(int32_t from, int32_t to) : from_(from), to_(to) {} |
| 29 | |
| 30 | static void AddClassEscape(uint16_t type, |
| 31 | ZoneGrowableArray<CharacterRange>* ranges); |
| 32 | // Add class escapes with case equivalent closure for \w and \W if necessary. |
| 33 | static void AddClassEscape(uint16_t type, |
| 34 | ZoneGrowableArray<CharacterRange>* ranges, |
| 35 | bool add_unicode_case_equivalents); |
| 36 | static GrowableArray<const intptr_t> GetWordBounds(); |
| 37 | static inline CharacterRange Singleton(int32_t value) { |
| 38 | return CharacterRange(value, value); |
| 39 | } |
| 40 | static inline CharacterRange Range(int32_t from, int32_t to) { |
| 41 | ASSERT(from <= to); |
| 42 | return CharacterRange(from, to); |
| 43 | } |
| 44 | static inline CharacterRange Everything() { |
| 45 | return CharacterRange(0, Utf::kMaxCodePoint); |
| 46 | } |
| 47 | static inline ZoneGrowableArray<CharacterRange>* List(Zone* zone, |
| 48 | CharacterRange range) { |
| 49 | auto list = new (zone) ZoneGrowableArray<CharacterRange>(1); |
| 50 | list->Add(range); |
| 51 | return list; |
| 52 | } |
| 53 | bool Contains(int32_t i) const { return from_ <= i && i <= to_; } |
| 54 | int32_t from() const { return from_; } |
| 55 | void set_from(int32_t value) { from_ = value; } |
| 56 | int32_t to() const { return to_; } |
| 57 | void set_to(int32_t value) { to_ = value; } |
| 58 | bool is_valid() const { return from_ <= to_; } |
| 59 | bool IsEverything(int32_t max) const { return from_ == 0 && to_ >= max; } |
| 60 | bool IsSingleton() const { return (from_ == to_); } |
| 61 | static void AddCaseEquivalents(ZoneGrowableArray<CharacterRange>* ranges, |
| 62 | bool is_one_byte, |
| 63 | Zone* zone); |
| 64 | static void Split(ZoneGrowableArray<CharacterRange>* base, |
| 65 | GrowableArray<const intptr_t> overlay, |
| 66 | ZoneGrowableArray<CharacterRange>** included, |
| 67 | ZoneGrowableArray<CharacterRange>** excluded, |
| 68 | Zone* zone); |
| 69 | // Whether a range list is in canonical form: Ranges ordered by from value, |
| 70 | // and ranges non-overlapping and non-adjacent. |
| 71 | static bool IsCanonical(ZoneGrowableArray<CharacterRange>* ranges); |
| 72 | // Convert range list to canonical form. The characters covered by the ranges |
| 73 | // will still be the same, but no character is in more than one range, and |
| 74 | // adjacent ranges are merged. The resulting list may be shorter than the |
| 75 | // original, but cannot be longer. |
| 76 | static void Canonicalize(ZoneGrowableArray<CharacterRange>* ranges); |
| 77 | // Negate the contents of a character range in canonical form. |
| 78 | static void Negate(ZoneGrowableArray<CharacterRange>* src, |
| 79 | ZoneGrowableArray<CharacterRange>* dst); |
| 80 | static const intptr_t kStartMarker = (1 << 24); |
| 81 | static const intptr_t kPayloadMask = (1 << 24) - 1; |
| 82 | |
| 83 | private: |
| 84 | int32_t from_; |
| 85 | int32_t to_; |
| 86 | |
| 87 | DISALLOW_ALLOCATION(); |
| 88 | }; |
| 89 | |
| 90 | // A set of unsigned integers that behaves especially well on small |
| 91 | // integers (< 32). May do zone-allocation. |
| 92 | class OutSet : public ZoneAllocated { |
| 93 | public: |
| 94 | OutSet() : first_(0), remaining_(NULL), successors_(NULL) {} |
| 95 | OutSet* Extend(unsigned value, Zone* zone); |
| 96 | bool Get(unsigned value) const; |
| 97 | static const unsigned kFirstLimit = 32; |
| 98 | |
| 99 | private: |
| 100 | // Destructively set a value in this set. In most cases you want |
| 101 | // to use Extend instead to ensure that only one instance exists |
| 102 | // that contains the same values. |
| 103 | void Set(unsigned value, Zone* zone); |
| 104 | |
| 105 | // The successors are a list of sets that contain the same values |
| 106 | // as this set and the one more value that is not present in this |
| 107 | // set. |
| 108 | ZoneGrowableArray<OutSet*>* successors() { return successors_; } |
| 109 | |
| 110 | OutSet(uint32_t first, ZoneGrowableArray<unsigned>* remaining) |
| 111 | : first_(first), remaining_(remaining), successors_(NULL) {} |
| 112 | uint32_t first_; |
| 113 | ZoneGrowableArray<unsigned>* remaining_; |
| 114 | ZoneGrowableArray<OutSet*>* successors_; |
| 115 | friend class Trace; |
| 116 | }; |
| 117 | |
| 118 | // A mapping from integers, specified as ranges, to a set of integers. |
| 119 | // Used for mapping character ranges to choices. |
| 120 | class ChoiceTable : public ValueObject { |
| 121 | public: |
| 122 | explicit ChoiceTable(Zone* zone) : tree_(zone) {} |
| 123 | |
| 124 | class Entry { |
| 125 | public: |
| 126 | Entry() : from_(0), to_(0), out_set_(nullptr) {} |
| 127 | Entry(int32_t from, int32_t to, OutSet* out_set) |
| 128 | : from_(from), to_(to), out_set_(out_set) { |
| 129 | ASSERT(from <= to); |
| 130 | } |
| 131 | int32_t from() { return from_; } |
| 132 | int32_t to() { return to_; } |
| 133 | void set_to(int32_t value) { to_ = value; } |
| 134 | void AddValue(int value, Zone* zone) { |
| 135 | out_set_ = out_set_->Extend(value, zone); |
| 136 | } |
| 137 | OutSet* out_set() { return out_set_; } |
| 138 | |
| 139 | private: |
| 140 | int32_t from_; |
| 141 | int32_t to_; |
| 142 | OutSet* out_set_; |
| 143 | }; |
| 144 | |
| 145 | class Config { |
| 146 | public: |
| 147 | typedef int32_t Key; |
| 148 | typedef Entry Value; |
| 149 | static const int32_t kNoKey; |
| 150 | static const Entry NoValue() { return Value(); } |
| 151 | static inline int Compare(int32_t a, int32_t b) { |
| 152 | if (a == b) |
| 153 | return 0; |
| 154 | else if (a < b) |
| 155 | return -1; |
| 156 | else |
| 157 | return 1; |
| 158 | } |
| 159 | }; |
| 160 | |
| 161 | void AddRange(CharacterRange range, int32_t value, Zone* zone); |
| 162 | OutSet* Get(int32_t value); |
| 163 | void Dump(); |
| 164 | |
| 165 | template <typename Callback> |
| 166 | void ForEach(Callback* callback) { |
| 167 | return tree()->ForEach(callback); |
| 168 | } |
| 169 | |
| 170 | private: |
| 171 | // There can't be a static empty set since it allocates its |
| 172 | // successors in a zone and caches them. |
| 173 | OutSet* empty() { return &empty_; } |
| 174 | OutSet empty_; |
| 175 | ZoneSplayTree<Config>* tree() { return &tree_; } |
| 176 | ZoneSplayTree<Config> tree_; |
| 177 | }; |
| 178 | |
| 179 | // Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates. |
| 180 | class UnicodeRangeSplitter : public ValueObject { |
| 181 | public: |
| 182 | UnicodeRangeSplitter(Zone* zone, ZoneGrowableArray<CharacterRange>* base); |
| 183 | void Call(uint32_t from, ChoiceTable::Entry entry); |
| 184 | |
| 185 | ZoneGrowableArray<CharacterRange>* bmp() { return bmp_; } |
| 186 | ZoneGrowableArray<CharacterRange>* lead_surrogates() { |
| 187 | return lead_surrogates_; |
| 188 | } |
| 189 | ZoneGrowableArray<CharacterRange>* trail_surrogates() { |
| 190 | return trail_surrogates_; |
| 191 | } |
| 192 | ZoneGrowableArray<CharacterRange>* non_bmp() const { return non_bmp_; } |
| 193 | |
| 194 | private: |
| 195 | static const int kBase = 0; |
| 196 | // Separate ranges into |
| 197 | static const int kBmpCodePoints = 1; |
| 198 | static const int kLeadSurrogates = 2; |
| 199 | static const int kTrailSurrogates = 3; |
| 200 | static const int kNonBmpCodePoints = 4; |
| 201 | |
| 202 | Zone* zone_; |
| 203 | ChoiceTable table_; |
| 204 | ZoneGrowableArray<CharacterRange>* bmp_; |
| 205 | ZoneGrowableArray<CharacterRange>* lead_surrogates_; |
| 206 | ZoneGrowableArray<CharacterRange>* trail_surrogates_; |
| 207 | ZoneGrowableArray<CharacterRange>* non_bmp_; |
| 208 | }; |
| 209 | |
| 210 | #define FOR_EACH_NODE_TYPE(VISIT) \ |
| 211 | VISIT(End) \ |
| 212 | VISIT(Action) \ |
| 213 | VISIT(Choice) \ |
| 214 | VISIT(BackReference) \ |
| 215 | VISIT(Assertion) \ |
| 216 | VISIT(Text) |
| 217 | |
| 218 | #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \ |
| 219 | VISIT(Disjunction) \ |
| 220 | VISIT(Alternative) \ |
| 221 | VISIT(Assertion) \ |
| 222 | VISIT(CharacterClass) \ |
| 223 | VISIT(Atom) \ |
| 224 | VISIT(Quantifier) \ |
| 225 | VISIT(Capture) \ |
| 226 | VISIT(Lookaround) \ |
| 227 | VISIT(BackReference) \ |
| 228 | VISIT(Empty) \ |
| 229 | VISIT(Text) |
| 230 | |
| 231 | #define FORWARD_DECLARE(Name) class RegExp##Name; |
| 232 | FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE) |
| 233 | #undef FORWARD_DECLARE |
| 234 | |
| 235 | class TextElement { |
| 236 | public: |
| 237 | enum TextType { ATOM, CHAR_CLASS }; |
| 238 | |
| 239 | static TextElement Atom(RegExpAtom* atom); |
| 240 | static TextElement CharClass(RegExpCharacterClass* char_class); |
| 241 | |
| 242 | intptr_t cp_offset() const { return cp_offset_; } |
| 243 | void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; } |
| 244 | intptr_t length() const; |
| 245 | |
| 246 | TextType text_type() const { return text_type_; } |
| 247 | |
| 248 | RegExpTree* tree() const { return tree_; } |
| 249 | |
| 250 | RegExpAtom* atom() const { |
| 251 | ASSERT(text_type() == ATOM); |
| 252 | return reinterpret_cast<RegExpAtom*>(tree()); |
| 253 | } |
| 254 | |
| 255 | RegExpCharacterClass* char_class() const { |
| 256 | ASSERT(text_type() == CHAR_CLASS); |
| 257 | return reinterpret_cast<RegExpCharacterClass*>(tree()); |
| 258 | } |
| 259 | |
| 260 | private: |
| 261 | TextElement(TextType text_type, RegExpTree* tree) |
| 262 | : cp_offset_(-1), text_type_(text_type), tree_(tree) {} |
| 263 | |
| 264 | intptr_t cp_offset_; |
| 265 | TextType text_type_; |
| 266 | RegExpTree* tree_; |
| 267 | |
| 268 | DISALLOW_ALLOCATION(); |
| 269 | }; |
| 270 | |
| 271 | class Trace; |
| 272 | struct PreloadState; |
| 273 | class GreedyLoopState; |
| 274 | class AlternativeGenerationList; |
| 275 | |
| 276 | struct NodeInfo { |
| 277 | NodeInfo() |
| 278 | : being_analyzed(false), |
| 279 | been_analyzed(false), |
| 280 | follows_word_interest(false), |
| 281 | follows_newline_interest(false), |
| 282 | follows_start_interest(false), |
| 283 | at_end(false), |
| 284 | visited(false), |
| 285 | replacement_calculated(false) {} |
| 286 | |
| 287 | // Returns true if the interests and assumptions of this node |
| 288 | // matches the given one. |
| 289 | bool Matches(NodeInfo* that) { |
| 290 | return (at_end == that->at_end) && |
| 291 | (follows_word_interest == that->follows_word_interest) && |
| 292 | (follows_newline_interest == that->follows_newline_interest) && |
| 293 | (follows_start_interest == that->follows_start_interest); |
| 294 | } |
| 295 | |
| 296 | // Updates the interests of this node given the interests of the |
| 297 | // node preceding it. |
| 298 | void AddFromPreceding(NodeInfo* that) { |
| 299 | at_end |= that->at_end; |
| 300 | follows_word_interest |= that->follows_word_interest; |
| 301 | follows_newline_interest |= that->follows_newline_interest; |
| 302 | follows_start_interest |= that->follows_start_interest; |
| 303 | } |
| 304 | |
| 305 | bool HasLookbehind() { |
| 306 | return follows_word_interest || follows_newline_interest || |
| 307 | follows_start_interest; |
| 308 | } |
| 309 | |
| 310 | // Sets the interests of this node to include the interests of the |
| 311 | // following node. |
| 312 | void AddFromFollowing(NodeInfo* that) { |
| 313 | follows_word_interest |= that->follows_word_interest; |
| 314 | follows_newline_interest |= that->follows_newline_interest; |
| 315 | follows_start_interest |= that->follows_start_interest; |
| 316 | } |
| 317 | |
| 318 | void ResetCompilationState() { |
| 319 | being_analyzed = false; |
| 320 | been_analyzed = false; |
| 321 | } |
| 322 | |
| 323 | bool being_analyzed : 1; |
| 324 | bool been_analyzed : 1; |
| 325 | |
| 326 | // These bits are set of this node has to know what the preceding |
| 327 | // character was. |
| 328 | bool follows_word_interest : 1; |
| 329 | bool follows_newline_interest : 1; |
| 330 | bool follows_start_interest : 1; |
| 331 | |
| 332 | bool at_end : 1; |
| 333 | bool visited : 1; |
| 334 | bool replacement_calculated : 1; |
| 335 | }; |
| 336 | |
| 337 | // Details of a quick mask-compare check that can look ahead in the |
| 338 | // input stream. |
| 339 | class QuickCheckDetails { |
| 340 | public: |
| 341 | QuickCheckDetails() |
| 342 | : characters_(0), mask_(0), value_(0), cannot_match_(false) {} |
| 343 | explicit QuickCheckDetails(intptr_t characters) |
| 344 | : characters_(characters), mask_(0), value_(0), cannot_match_(false) {} |
| 345 | bool Rationalize(bool one_byte); |
| 346 | // Merge in the information from another branch of an alternation. |
| 347 | void Merge(QuickCheckDetails* other, intptr_t from_index); |
| 348 | // Advance the current position by some amount. |
| 349 | void Advance(intptr_t by, bool one_byte); |
| 350 | void Clear(); |
| 351 | bool cannot_match() { return cannot_match_; } |
| 352 | void set_cannot_match() { cannot_match_ = true; } |
| 353 | struct Position { |
| 354 | Position() : mask(0), value(0), determines_perfectly(false) {} |
| 355 | uint16_t mask; |
| 356 | uint16_t value; |
| 357 | bool determines_perfectly; |
| 358 | }; |
| 359 | intptr_t characters() { return characters_; } |
| 360 | void set_characters(intptr_t characters) { characters_ = characters; } |
| 361 | Position* positions(intptr_t index) { |
| 362 | ASSERT(index >= 0); |
| 363 | ASSERT(index < characters_); |
| 364 | return positions_ + index; |
| 365 | } |
| 366 | uint32_t mask() { return mask_; } |
| 367 | uint32_t value() { return value_; } |
| 368 | |
| 369 | private: |
| 370 | // How many characters do we have quick check information from. This is |
| 371 | // the same for all branches of a choice node. |
| 372 | intptr_t characters_; |
| 373 | Position positions_[4]; |
| 374 | // These values are the condensate of the above array after Rationalize(). |
| 375 | uint32_t mask_; |
| 376 | uint32_t value_; |
| 377 | // If set to true, there is no way this quick check can match at all. |
| 378 | // E.g., if it requires to be at the start of the input, and isn't. |
| 379 | bool cannot_match_; |
| 380 | |
| 381 | DISALLOW_ALLOCATION(); |
| 382 | }; |
| 383 | |
| 384 | class RegExpNode : public ZoneAllocated { |
| 385 | public: |
| 386 | explicit RegExpNode(Zone* zone) |
| 387 | : replacement_(NULL), trace_count_(0), zone_(zone) { |
| 388 | bm_info_[0] = bm_info_[1] = NULL; |
| 389 | } |
| 390 | virtual ~RegExpNode(); |
| 391 | virtual void Accept(NodeVisitor* visitor) = 0; |
| 392 | // Generates a goto to this node or actually generates the code at this point. |
| 393 | virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; |
| 394 | // How many characters must this node consume at a minimum in order to |
| 395 | // succeed. If we have found at least 'still_to_find' characters that |
| 396 | // must be consumed there is no need to ask any following nodes whether |
| 397 | // they are sure to eat any more characters. The not_at_start argument is |
| 398 | // used to indicate that we know we are not at the start of the input. In |
| 399 | // this case anchored branches will always fail and can be ignored when |
| 400 | // determining how many characters are consumed on success. |
| 401 | virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| 402 | intptr_t budget, |
| 403 | bool not_at_start) = 0; |
| 404 | // Emits some quick code that checks whether the preloaded characters match. |
| 405 | // Falls through on certain failure, jumps to the label on possible success. |
| 406 | // If the node cannot make a quick check it does nothing and returns false. |
| 407 | bool EmitQuickCheck(RegExpCompiler* compiler, |
| 408 | Trace* bounds_check_trace, |
| 409 | Trace* trace, |
| 410 | bool preload_has_checked_bounds, |
| 411 | BlockLabel* on_possible_success, |
| 412 | QuickCheckDetails* details_return, |
| 413 | bool fall_through_on_failure); |
| 414 | // For a given number of characters this returns a mask and a value. The |
| 415 | // next n characters are anded with the mask and compared with the value. |
| 416 | // A comparison failure indicates the node cannot match the next n characters. |
| 417 | // A comparison success indicates the node may match. |
| 418 | virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| 419 | RegExpCompiler* compiler, |
| 420 | intptr_t characters_filled_in, |
| 421 | bool not_at_start) = 0; |
| 422 | static const intptr_t kNodeIsTooComplexForGreedyLoops = -1; |
| 423 | virtual intptr_t GreedyLoopTextLength() { |
| 424 | return kNodeIsTooComplexForGreedyLoops; |
| 425 | } |
| 426 | // Only returns the successor for a text node of length 1 that matches any |
| 427 | // character and that has no guards on it. |
| 428 | virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
| 429 | RegExpCompiler* compiler) { |
| 430 | return NULL; |
| 431 | } |
| 432 | |
| 433 | // Collects information on the possible code units (mod 128) that can match if |
| 434 | // we look forward. This is used for a Boyer-Moore-like string searching |
| 435 | // implementation. TODO(erikcorry): This should share more code with |
| 436 | // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit |
| 437 | // the number of nodes we are willing to look at in order to create this data. |
| 438 | static const intptr_t kRecursionBudget = 200; |
| 439 | virtual void FillInBMInfo(intptr_t offset, |
| 440 | intptr_t budget, |
| 441 | BoyerMooreLookahead* bm, |
| 442 | bool not_at_start) { |
| 443 | UNREACHABLE(); |
| 444 | } |
| 445 | |
| 446 | // If we know that the input is one-byte then there are some nodes that can |
| 447 | // never match. This method returns a node that can be substituted for |
| 448 | // itself, or NULL if the node can never match. |
| 449 | virtual RegExpNode* FilterOneByte(intptr_t depth) { return this; } |
| 450 | // Helper for FilterOneByte. |
| 451 | RegExpNode* replacement() { |
| 452 | ASSERT(info()->replacement_calculated); |
| 453 | return replacement_; |
| 454 | } |
| 455 | RegExpNode* set_replacement(RegExpNode* replacement) { |
| 456 | info()->replacement_calculated = true; |
| 457 | replacement_ = replacement; |
| 458 | return replacement; // For convenience. |
| 459 | } |
| 460 | |
| 461 | // We want to avoid recalculating the lookahead info, so we store it on the |
| 462 | // node. Only info that is for this node is stored. We can tell that the |
| 463 | // info is for this node when offset == 0, so the information is calculated |
| 464 | // relative to this node. |
| 465 | void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, intptr_t offset) { |
| 466 | if (offset == 0) set_bm_info(not_at_start, bm); |
| 467 | } |
| 468 | |
| 469 | BlockLabel* label() { return &label_; } |
| 470 | // If non-generic code is generated for a node (i.e. the node is not at the |
| 471 | // start of the trace) then it cannot be reused. This variable sets a limit |
| 472 | // on how often we allow that to happen before we insist on starting a new |
| 473 | // trace and generating generic code for a node that can be reused by flushing |
| 474 | // the deferred actions in the current trace and generating a goto. |
| 475 | static const intptr_t kMaxCopiesCodeGenerated = 10; |
| 476 | |
| 477 | NodeInfo* info() { return &info_; } |
| 478 | |
| 479 | BoyerMooreLookahead* bm_info(bool not_at_start) { |
| 480 | return bm_info_[not_at_start ? 1 : 0]; |
| 481 | } |
| 482 | |
| 483 | Zone* zone() const { return zone_; } |
| 484 | |
| 485 | protected: |
| 486 | enum LimitResult { DONE, CONTINUE }; |
| 487 | RegExpNode* replacement_; |
| 488 | |
| 489 | LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); |
| 490 | |
| 491 | void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { |
| 492 | bm_info_[not_at_start ? 1 : 0] = bm; |
| 493 | } |
| 494 | |
| 495 | private: |
| 496 | static const intptr_t kFirstCharBudget = 10; |
| 497 | BlockLabel label_; |
| 498 | NodeInfo info_; |
| 499 | // This variable keeps track of how many times code has been generated for |
| 500 | // this node (in different traces). We don't keep track of where the |
| 501 | // generated code is located unless the code is generated at the start of |
| 502 | // a trace, in which case it is generic and can be reused by flushing the |
| 503 | // deferred operations in the current trace and generating a goto. |
| 504 | intptr_t trace_count_; |
| 505 | BoyerMooreLookahead* bm_info_[2]; |
| 506 | Zone* zone_; |
| 507 | }; |
| 508 | |
| 509 | // A simple closed interval. |
| 510 | class Interval { |
| 511 | public: |
| 512 | Interval() : from_(kNone), to_(kNone) {} |
| 513 | Interval(intptr_t from, intptr_t to) : from_(from), to_(to) {} |
| 514 | |
| 515 | Interval Union(Interval that) { |
| 516 | if (that.from_ == kNone) |
| 517 | return *this; |
| 518 | else if (from_ == kNone) |
| 519 | return that; |
| 520 | else |
| 521 | return Interval(Utils::Minimum(from_, that.from_), |
| 522 | Utils::Maximum(to_, that.to_)); |
| 523 | } |
| 524 | bool Contains(intptr_t value) const { |
| 525 | return (from_ <= value) && (value <= to_); |
| 526 | } |
| 527 | bool is_empty() const { return from_ == kNone; } |
| 528 | intptr_t from() const { return from_; } |
| 529 | intptr_t to() const { return to_; } |
| 530 | static Interval Empty() { return Interval(); } |
| 531 | static const intptr_t kNone = -1; |
| 532 | |
| 533 | private: |
| 534 | intptr_t from_; |
| 535 | intptr_t to_; |
| 536 | |
| 537 | DISALLOW_ALLOCATION(); |
| 538 | }; |
| 539 | |
| 540 | class SeqRegExpNode : public RegExpNode { |
| 541 | public: |
| 542 | explicit SeqRegExpNode(RegExpNode* on_success) |
| 543 | : RegExpNode(on_success->zone()), on_success_(on_success) {} |
| 544 | RegExpNode* on_success() { return on_success_; } |
| 545 | void set_on_success(RegExpNode* node) { on_success_ = node; } |
| 546 | virtual RegExpNode* FilterOneByte(intptr_t depth); |
| 547 | virtual void FillInBMInfo(intptr_t offset, |
| 548 | intptr_t budget, |
| 549 | BoyerMooreLookahead* bm, |
| 550 | bool not_at_start) { |
| 551 | on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start); |
| 552 | if (offset == 0) set_bm_info(not_at_start, bm); |
| 553 | } |
| 554 | |
| 555 | protected: |
| 556 | RegExpNode* FilterSuccessor(intptr_t depth); |
| 557 | |
| 558 | private: |
| 559 | RegExpNode* on_success_; |
| 560 | }; |
| 561 | |
| 562 | class ActionNode : public SeqRegExpNode { |
| 563 | public: |
| 564 | enum ActionType { |
| 565 | SET_REGISTER, |
| 566 | INCREMENT_REGISTER, |
| 567 | STORE_POSITION, |
| 568 | BEGIN_SUBMATCH, |
| 569 | POSITIVE_SUBMATCH_SUCCESS, |
| 570 | EMPTY_MATCH_CHECK, |
| 571 | CLEAR_CAPTURES |
| 572 | }; |
| 573 | static ActionNode* SetRegister(intptr_t reg, |
| 574 | intptr_t val, |
| 575 | RegExpNode* on_success); |
| 576 | static ActionNode* IncrementRegister(intptr_t reg, RegExpNode* on_success); |
| 577 | static ActionNode* StorePosition(intptr_t reg, |
| 578 | bool is_capture, |
| 579 | RegExpNode* on_success); |
| 580 | static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); |
| 581 | static ActionNode* BeginSubmatch(intptr_t stack_pointer_reg, |
| 582 | intptr_t position_reg, |
| 583 | RegExpNode* on_success); |
| 584 | static ActionNode* PositiveSubmatchSuccess(intptr_t stack_pointer_reg, |
| 585 | intptr_t restore_reg, |
| 586 | intptr_t clear_capture_count, |
| 587 | intptr_t clear_capture_from, |
| 588 | RegExpNode* on_success); |
| 589 | static ActionNode* EmptyMatchCheck(intptr_t start_register, |
| 590 | intptr_t repetition_register, |
| 591 | intptr_t repetition_limit, |
| 592 | RegExpNode* on_success); |
| 593 | virtual void Accept(NodeVisitor* visitor); |
| 594 | virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| 595 | virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| 596 | intptr_t budget, |
| 597 | bool not_at_start); |
| 598 | virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| 599 | RegExpCompiler* compiler, |
| 600 | intptr_t filled_in, |
| 601 | bool not_at_start) { |
| 602 | return on_success()->GetQuickCheckDetails(details, compiler, filled_in, |
| 603 | not_at_start); |
| 604 | } |
| 605 | virtual void FillInBMInfo(intptr_t offset, |
| 606 | intptr_t budget, |
| 607 | BoyerMooreLookahead* bm, |
| 608 | bool not_at_start); |
| 609 | ActionType action_type() { return action_type_; } |
| 610 | // TODO(erikcorry): We should allow some action nodes in greedy loops. |
| 611 | virtual intptr_t GreedyLoopTextLength() { |
| 612 | return kNodeIsTooComplexForGreedyLoops; |
| 613 | } |
| 614 | |
| 615 | private: |
| 616 | union { |
| 617 | struct { |
| 618 | intptr_t reg; |
| 619 | intptr_t value; |
| 620 | } u_store_register; |
| 621 | struct { |
| 622 | intptr_t reg; |
| 623 | } u_increment_register; |
| 624 | struct { |
| 625 | intptr_t reg; |
| 626 | bool is_capture; |
| 627 | } u_position_register; |
| 628 | struct { |
| 629 | intptr_t stack_pointer_register; |
| 630 | intptr_t current_position_register; |
| 631 | intptr_t clear_register_count; |
| 632 | intptr_t clear_register_from; |
| 633 | } u_submatch; |
| 634 | struct { |
| 635 | intptr_t start_register; |
| 636 | intptr_t repetition_register; |
| 637 | intptr_t repetition_limit; |
| 638 | } u_empty_match_check; |
| 639 | struct { |
| 640 | intptr_t range_from; |
| 641 | intptr_t range_to; |
| 642 | } u_clear_captures; |
| 643 | } data_; |
| 644 | ActionNode(ActionType action_type, RegExpNode* on_success) |
| 645 | : SeqRegExpNode(on_success), action_type_(action_type) {} |
| 646 | ActionType action_type_; |
| 647 | friend class DotPrinter; |
| 648 | }; |
| 649 | |
| 650 | class TextNode : public SeqRegExpNode { |
| 651 | public: |
| 652 | TextNode(ZoneGrowableArray<TextElement>* elms, |
| 653 | bool read_backward, |
| 654 | RegExpNode* on_success) |
| 655 | : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {} |
| 656 | TextNode(RegExpCharacterClass* that, |
| 657 | bool read_backward, |
| 658 | RegExpNode* on_success) |
| 659 | : SeqRegExpNode(on_success), |
| 660 | elms_(new (zone()) ZoneGrowableArray<TextElement>(1)), |
| 661 | read_backward_(read_backward) { |
| 662 | elms_->Add(TextElement::CharClass(that)); |
| 663 | } |
| 664 | // Create TextNode for a single character class for the given ranges. |
| 665 | static TextNode* CreateForCharacterRanges( |
| 666 | ZoneGrowableArray<CharacterRange>* ranges, |
| 667 | bool read_backward, |
| 668 | RegExpNode* on_success, |
| 669 | RegExpFlags flags); |
| 670 | // Create TextNode for a surrogate pair with a range given for the |
| 671 | // lead and the trail surrogate each. |
| 672 | static TextNode* CreateForSurrogatePair(CharacterRange lead, |
| 673 | CharacterRange trail, |
| 674 | bool read_backward, |
| 675 | RegExpNode* on_success, |
| 676 | RegExpFlags flags); |
| 677 | virtual void Accept(NodeVisitor* visitor); |
| 678 | virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| 679 | virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| 680 | intptr_t budget, |
| 681 | bool not_at_start); |
| 682 | virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| 683 | RegExpCompiler* compiler, |
| 684 | intptr_t characters_filled_in, |
| 685 | bool not_at_start); |
| 686 | ZoneGrowableArray<TextElement>* elements() { return elms_; } |
| 687 | bool read_backward() { return read_backward_; } |
| 688 | void MakeCaseIndependent(bool is_one_byte); |
| 689 | virtual intptr_t GreedyLoopTextLength(); |
| 690 | virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
| 691 | RegExpCompiler* compiler); |
| 692 | virtual void FillInBMInfo(intptr_t offset, |
| 693 | intptr_t budget, |
| 694 | BoyerMooreLookahead* bm, |
| 695 | bool not_at_start); |
| 696 | void CalculateOffsets(); |
| 697 | virtual RegExpNode* FilterOneByte(intptr_t depth); |
| 698 | |
| 699 | private: |
| 700 | enum TextEmitPassType { |
| 701 | NON_LATIN1_MATCH, // Check for characters that can't match. |
| 702 | SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. |
| 703 | NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. |
| 704 | CASE_CHARACTER_MATCH, // Case-independent single character check. |
| 705 | CHARACTER_CLASS_MATCH // Character class. |
| 706 | }; |
| 707 | static bool SkipPass(intptr_t pass, bool ignore_case); |
| 708 | static const intptr_t kFirstRealPass = SIMPLE_CHARACTER_MATCH; |
| 709 | static const intptr_t kLastPass = CHARACTER_CLASS_MATCH; |
| 710 | void TextEmitPass(RegExpCompiler* compiler, |
| 711 | TextEmitPassType pass, |
| 712 | bool preloaded, |
| 713 | Trace* trace, |
| 714 | bool first_element_checked, |
| 715 | intptr_t* checked_up_to); |
| 716 | intptr_t Length(); |
| 717 | ZoneGrowableArray<TextElement>* elms_; |
| 718 | bool read_backward_; |
| 719 | }; |
| 720 | |
| 721 | class AssertionNode : public SeqRegExpNode { |
| 722 | public: |
| 723 | enum AssertionType { |
| 724 | AT_END, |
| 725 | AT_START, |
| 726 | AT_BOUNDARY, |
| 727 | AT_NON_BOUNDARY, |
| 728 | AFTER_NEWLINE |
| 729 | }; |
| 730 | static AssertionNode* AtEnd(RegExpNode* on_success) { |
| 731 | return new (on_success->zone()) AssertionNode(AT_END, on_success); |
| 732 | } |
| 733 | static AssertionNode* AtStart(RegExpNode* on_success) { |
| 734 | return new (on_success->zone()) AssertionNode(AT_START, on_success); |
| 735 | } |
| 736 | static AssertionNode* AtBoundary(RegExpNode* on_success) { |
| 737 | return new (on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); |
| 738 | } |
| 739 | static AssertionNode* AtNonBoundary(RegExpNode* on_success) { |
| 740 | return new (on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); |
| 741 | } |
| 742 | static AssertionNode* AfterNewline(RegExpNode* on_success) { |
| 743 | return new (on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); |
| 744 | } |
| 745 | virtual void Accept(NodeVisitor* visitor); |
| 746 | virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| 747 | virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| 748 | intptr_t budget, |
| 749 | bool not_at_start); |
| 750 | virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| 751 | RegExpCompiler* compiler, |
| 752 | intptr_t filled_in, |
| 753 | bool not_at_start); |
| 754 | virtual void FillInBMInfo(intptr_t offset, |
| 755 | intptr_t budget, |
| 756 | BoyerMooreLookahead* bm, |
| 757 | bool not_at_start); |
| 758 | AssertionType assertion_type() { return assertion_type_; } |
| 759 | |
| 760 | private: |
| 761 | void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); |
| 762 | enum IfPrevious { kIsNonWord, kIsWord }; |
| 763 | void BacktrackIfPrevious(RegExpCompiler* compiler, |
| 764 | Trace* trace, |
| 765 | IfPrevious backtrack_if_previous); |
| 766 | AssertionNode(AssertionType t, RegExpNode* on_success) |
| 767 | : SeqRegExpNode(on_success), assertion_type_(t) {} |
| 768 | AssertionType assertion_type_; |
| 769 | }; |
| 770 | |
| 771 | class BackReferenceNode : public SeqRegExpNode { |
| 772 | public: |
| 773 | BackReferenceNode(intptr_t start_reg, |
| 774 | intptr_t end_reg, |
| 775 | RegExpFlags flags, |
| 776 | bool read_backward, |
| 777 | RegExpNode* on_success) |
| 778 | : SeqRegExpNode(on_success), |
| 779 | start_reg_(start_reg), |
| 780 | end_reg_(end_reg), |
| 781 | flags_(flags), |
| 782 | read_backward_(read_backward) {} |
| 783 | virtual void Accept(NodeVisitor* visitor); |
| 784 | intptr_t start_register() { return start_reg_; } |
| 785 | intptr_t end_register() { return end_reg_; } |
| 786 | bool read_backward() { return read_backward_; } |
| 787 | virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| 788 | virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| 789 | intptr_t recursion_depth, |
| 790 | bool not_at_start); |
| 791 | virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| 792 | RegExpCompiler* compiler, |
| 793 | intptr_t characters_filled_in, |
| 794 | bool not_at_start) { |
| 795 | return; |
| 796 | } |
| 797 | virtual void FillInBMInfo(intptr_t offset, |
| 798 | intptr_t budget, |
| 799 | BoyerMooreLookahead* bm, |
| 800 | bool not_at_start); |
| 801 | |
| 802 | private: |
| 803 | intptr_t start_reg_; |
| 804 | intptr_t end_reg_; |
| 805 | RegExpFlags flags_; |
| 806 | bool read_backward_; |
| 807 | }; |
| 808 | |
| 809 | class EndNode : public RegExpNode { |
| 810 | public: |
| 811 | enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; |
| 812 | explicit EndNode(Action action, Zone* zone) |
| 813 | : RegExpNode(zone), action_(action) {} |
| 814 | virtual void Accept(NodeVisitor* visitor); |
| 815 | virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| 816 | virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| 817 | intptr_t recursion_depth, |
| 818 | bool not_at_start) { |
| 819 | return 0; |
| 820 | } |
| 821 | virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| 822 | RegExpCompiler* compiler, |
| 823 | intptr_t characters_filled_in, |
| 824 | bool not_at_start) { |
| 825 | // Returning 0 from EatsAtLeast should ensure we never get here. |
| 826 | UNREACHABLE(); |
| 827 | } |
| 828 | virtual void FillInBMInfo(intptr_t offset, |
| 829 | intptr_t budget, |
| 830 | BoyerMooreLookahead* bm, |
| 831 | bool not_at_start) { |
| 832 | // Returning 0 from EatsAtLeast should ensure we never get here. |
| 833 | UNREACHABLE(); |
| 834 | } |
| 835 | |
| 836 | private: |
| 837 | Action action_; |
| 838 | }; |
| 839 | |
| 840 | class NegativeSubmatchSuccess : public EndNode { |
| 841 | public: |
| 842 | NegativeSubmatchSuccess(intptr_t stack_pointer_reg, |
| 843 | intptr_t position_reg, |
| 844 | intptr_t clear_capture_count, |
| 845 | intptr_t clear_capture_start, |
| 846 | Zone* zone) |
| 847 | : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), |
| 848 | stack_pointer_register_(stack_pointer_reg), |
| 849 | current_position_register_(position_reg), |
| 850 | clear_capture_count_(clear_capture_count), |
| 851 | clear_capture_start_(clear_capture_start) {} |
| 852 | virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| 853 | |
| 854 | private: |
| 855 | intptr_t stack_pointer_register_; |
| 856 | intptr_t current_position_register_; |
| 857 | intptr_t clear_capture_count_; |
| 858 | intptr_t clear_capture_start_; |
| 859 | }; |
| 860 | |
| 861 | class Guard : public ZoneAllocated { |
| 862 | public: |
| 863 | enum Relation { LT, GEQ }; |
| 864 | Guard(intptr_t reg, Relation op, intptr_t value) |
| 865 | : reg_(reg), op_(op), value_(value) {} |
| 866 | intptr_t reg() { return reg_; } |
| 867 | Relation op() { return op_; } |
| 868 | intptr_t value() { return value_; } |
| 869 | |
| 870 | private: |
| 871 | intptr_t reg_; |
| 872 | Relation op_; |
| 873 | intptr_t value_; |
| 874 | }; |
| 875 | |
| 876 | class GuardedAlternative { |
| 877 | public: |
| 878 | explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) {} |
| 879 | void AddGuard(Guard* guard, Zone* zone); |
| 880 | RegExpNode* node() const { return node_; } |
| 881 | void set_node(RegExpNode* node) { node_ = node; } |
| 882 | ZoneGrowableArray<Guard*>* guards() const { return guards_; } |
| 883 | |
| 884 | private: |
| 885 | RegExpNode* node_; |
| 886 | ZoneGrowableArray<Guard*>* guards_; |
| 887 | |
| 888 | DISALLOW_ALLOCATION(); |
| 889 | }; |
| 890 | |
| 891 | struct AlternativeGeneration; |
| 892 | |
| 893 | class ChoiceNode : public RegExpNode { |
| 894 | public: |
| 895 | explicit ChoiceNode(intptr_t expected_size, Zone* zone) |
| 896 | : RegExpNode(zone), |
| 897 | alternatives_(new (zone) |
| 898 | ZoneGrowableArray<GuardedAlternative>(expected_size)), |
| 899 | not_at_start_(false), |
| 900 | being_calculated_(false) {} |
| 901 | virtual void Accept(NodeVisitor* visitor); |
| 902 | void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); } |
| 903 | ZoneGrowableArray<GuardedAlternative>* alternatives() { |
| 904 | return alternatives_; |
| 905 | } |
| 906 | virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| 907 | virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| 908 | intptr_t budget, |
| 909 | bool not_at_start); |
| 910 | intptr_t EatsAtLeastHelper(intptr_t still_to_find, |
| 911 | intptr_t budget, |
| 912 | RegExpNode* ignore_this_node, |
| 913 | bool not_at_start); |
| 914 | virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| 915 | RegExpCompiler* compiler, |
| 916 | intptr_t characters_filled_in, |
| 917 | bool not_at_start); |
| 918 | virtual void FillInBMInfo(intptr_t offset, |
| 919 | intptr_t budget, |
| 920 | BoyerMooreLookahead* bm, |
| 921 | bool not_at_start); |
| 922 | |
| 923 | bool being_calculated() { return being_calculated_; } |
| 924 | bool not_at_start() { return not_at_start_; } |
| 925 | void set_not_at_start() { not_at_start_ = true; } |
| 926 | void set_being_calculated(bool b) { being_calculated_ = b; } |
| 927 | virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
| 928 | return true; |
| 929 | } |
| 930 | virtual RegExpNode* FilterOneByte(intptr_t depth); |
| 931 | virtual bool read_backward() { return false; } |
| 932 | |
| 933 | protected: |
| 934 | intptr_t GreedyLoopTextLengthForAlternative( |
| 935 | const GuardedAlternative* alternative); |
| 936 | ZoneGrowableArray<GuardedAlternative>* alternatives_; |
| 937 | |
| 938 | private: |
| 939 | friend class Analysis; |
| 940 | void GenerateGuard(RegExpMacroAssembler* macro_assembler, |
| 941 | Guard* guard, |
| 942 | Trace* trace); |
| 943 | intptr_t CalculatePreloadCharacters(RegExpCompiler* compiler, |
| 944 | intptr_t eats_at_least); |
| 945 | void EmitOutOfLineContinuation(RegExpCompiler* compiler, |
| 946 | Trace* trace, |
| 947 | GuardedAlternative alternative, |
| 948 | AlternativeGeneration* alt_gen, |
| 949 | intptr_t preload_characters, |
| 950 | bool next_expects_preload); |
| 951 | void SetUpPreLoad(RegExpCompiler* compiler, |
| 952 | Trace* current_trace, |
| 953 | PreloadState* preloads); |
| 954 | void AssertGuardsMentionRegisters(Trace* trace); |
| 955 | intptr_t EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
| 956 | Trace* trace); |
| 957 | Trace* EmitGreedyLoop(RegExpCompiler* compiler, |
| 958 | Trace* trace, |
| 959 | AlternativeGenerationList* alt_gens, |
| 960 | PreloadState* preloads, |
| 961 | GreedyLoopState* greedy_loop_state, |
| 962 | intptr_t text_length); |
| 963 | void EmitChoices(RegExpCompiler* compiler, |
| 964 | AlternativeGenerationList* alt_gens, |
| 965 | intptr_t first_choice, |
| 966 | Trace* trace, |
| 967 | PreloadState* preloads); |
| 968 | // If true, this node is never checked at the start of the input. |
| 969 | // Allows a new trace to start with at_start() set to false. |
| 970 | bool not_at_start_; |
| 971 | bool being_calculated_; |
| 972 | }; |
| 973 | |
| 974 | class NegativeLookaroundChoiceNode : public ChoiceNode { |
| 975 | public: |
| 976 | explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail, |
| 977 | GuardedAlternative then_do_this, |
| 978 | Zone* zone) |
| 979 | : ChoiceNode(2, zone) { |
| 980 | AddAlternative(this_must_fail); |
| 981 | AddAlternative(then_do_this); |
| 982 | } |
| 983 | virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| 984 | intptr_t budget, |
| 985 | bool not_at_start); |
| 986 | virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| 987 | RegExpCompiler* compiler, |
| 988 | intptr_t characters_filled_in, |
| 989 | bool not_at_start); |
| 990 | virtual void FillInBMInfo(intptr_t offset, |
| 991 | intptr_t budget, |
| 992 | BoyerMooreLookahead* bm, |
| 993 | bool not_at_start) { |
| 994 | (*alternatives_)[1].node()->FillInBMInfo(offset, budget - 1, bm, |
| 995 | not_at_start); |
| 996 | if (offset == 0) set_bm_info(not_at_start, bm); |
| 997 | } |
| 998 | // For a negative lookahead we don't emit the quick check for the |
| 999 | // alternative that is expected to fail. This is because quick check code |
| 1000 | // starts by loading enough characters for the alternative that takes fewest |
| 1001 | // characters, but on a negative lookahead the negative branch did not take |
| 1002 | // part in that calculation (EatsAtLeast) so the assumptions don't hold. |
| 1003 | virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
| 1004 | return !is_first; |
| 1005 | } |
| 1006 | virtual RegExpNode* FilterOneByte(intptr_t depth); |
| 1007 | }; |
| 1008 | |
| 1009 | class LoopChoiceNode : public ChoiceNode { |
| 1010 | public: |
| 1011 | explicit LoopChoiceNode(bool body_can_be_zero_length, |
| 1012 | bool read_backward, |
| 1013 | Zone* zone) |
| 1014 | : ChoiceNode(2, zone), |
| 1015 | loop_node_(NULL), |
| 1016 | continue_node_(NULL), |
| 1017 | body_can_be_zero_length_(body_can_be_zero_length), |
| 1018 | read_backward_(read_backward) {} |
| 1019 | void AddLoopAlternative(GuardedAlternative alt); |
| 1020 | void AddContinueAlternative(GuardedAlternative alt); |
| 1021 | virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| 1022 | virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| 1023 | intptr_t budget, |
| 1024 | bool not_at_start); |
| 1025 | virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| 1026 | RegExpCompiler* compiler, |
| 1027 | intptr_t characters_filled_in, |
| 1028 | bool not_at_start); |
| 1029 | virtual void FillInBMInfo(intptr_t offset, |
| 1030 | intptr_t budget, |
| 1031 | BoyerMooreLookahead* bm, |
| 1032 | bool not_at_start); |
| 1033 | RegExpNode* loop_node() { return loop_node_; } |
| 1034 | RegExpNode* continue_node() { return continue_node_; } |
| 1035 | bool body_can_be_zero_length() { return body_can_be_zero_length_; } |
| 1036 | virtual bool read_backward() { return read_backward_; } |
| 1037 | virtual void Accept(NodeVisitor* visitor); |
| 1038 | virtual RegExpNode* FilterOneByte(intptr_t depth); |
| 1039 | |
| 1040 | private: |
| 1041 | // AddAlternative is made private for loop nodes because alternatives |
| 1042 | // should not be added freely, we need to keep track of which node |
| 1043 | // goes back to the node itself. |
| 1044 | void AddAlternative(GuardedAlternative node) { |
| 1045 | ChoiceNode::AddAlternative(node); |
| 1046 | } |
| 1047 | |
| 1048 | RegExpNode* loop_node_; |
| 1049 | RegExpNode* continue_node_; |
| 1050 | bool body_can_be_zero_length_; |
| 1051 | bool read_backward_; |
| 1052 | }; |
| 1053 | |
| 1054 | // Improve the speed that we scan for an initial point where a non-anchored |
| 1055 | // regexp can match by using a Boyer-Moore-like table. This is done by |
| 1056 | // identifying non-greedy non-capturing loops in the nodes that eat any |
| 1057 | // character one at a time. For example in the middle of the regexp |
| 1058 | // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly |
| 1059 | // inserted at the start of any non-anchored regexp. |
| 1060 | // |
| 1061 | // When we have found such a loop we look ahead in the nodes to find the set of |
| 1062 | // characters that can come at given distances. For example for the regexp |
| 1063 | // /.?foo/ we know that there are at least 3 characters ahead of us, and the |
| 1064 | // sets of characters that can occur are [any, [f, o], [o]]. We find a range in |
| 1065 | // the lookahead info where the set of characters is reasonably constrained. In |
| 1066 | // our example this is from index 1 to 2 (0 is not constrained). We can now |
| 1067 | // look 3 characters ahead and if we don't find one of [f, o] (the union of |
| 1068 | // [f, o] and [o]) then we can skip forwards by the range size (in this case 2). |
| 1069 | // |
| 1070 | // For Unicode input strings we do the same, but modulo 128. |
| 1071 | // |
| 1072 | // We also look at the first string fed to the regexp and use that to get a hint |
| 1073 | // of the character frequencies in the inputs. This affects the assessment of |
| 1074 | // whether the set of characters is 'reasonably constrained'. |
| 1075 | // |
| 1076 | // We also have another lookahead mechanism (called quick check in the code), |
| 1077 | // which uses a wide load of multiple characters followed by a mask and compare |
| 1078 | // to determine whether a match is possible at this point. |
| 1079 | enum ContainedInLattice { |
| 1080 | kNotYet = 0, |
| 1081 | kLatticeIn = 1, |
| 1082 | kLatticeOut = 2, |
| 1083 | kLatticeUnknown = 3 // Can also mean both in and out. |
| 1084 | }; |
| 1085 | |
| 1086 | inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { |
| 1087 | return static_cast<ContainedInLattice>(a | b); |
| 1088 | } |
| 1089 | |
| 1090 | ContainedInLattice AddRange(ContainedInLattice a, |
| 1091 | const intptr_t* ranges, |
| 1092 | intptr_t ranges_size, |
| 1093 | Interval new_range); |
| 1094 | |
| 1095 | class BoyerMoorePositionInfo : public ZoneAllocated { |
| 1096 | public: |
| 1097 | explicit BoyerMoorePositionInfo(Zone* zone) |
| 1098 | : map_(new (zone) ZoneGrowableArray<bool>(kMapSize)), |
| 1099 | map_count_(0), |
| 1100 | w_(kNotYet), |
| 1101 | s_(kNotYet), |
| 1102 | d_(kNotYet), |
| 1103 | surrogate_(kNotYet) { |
| 1104 | for (intptr_t i = 0; i < kMapSize; i++) { |
| 1105 | map_->Add(false); |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | bool& at(intptr_t i) { return (*map_)[i]; } |
| 1110 | |
| 1111 | static const intptr_t kMapSize = 128; |
| 1112 | static const intptr_t kMask = kMapSize - 1; |
| 1113 | |
| 1114 | intptr_t map_count() const { return map_count_; } |
| 1115 | |
| 1116 | void Set(intptr_t character); |
| 1117 | void SetInterval(const Interval& interval); |
| 1118 | void SetAll(); |
| 1119 | bool is_non_word() { return w_ == kLatticeOut; } |
| 1120 | bool is_word() { return w_ == kLatticeIn; } |
| 1121 | |
| 1122 | private: |
| 1123 | ZoneGrowableArray<bool>* map_; |
| 1124 | intptr_t map_count_; // Number of set bits in the map. |
| 1125 | ContainedInLattice w_; // The \w character class. |
| 1126 | ContainedInLattice s_; // The \s character class. |
| 1127 | ContainedInLattice d_; // The \d character class. |
| 1128 | ContainedInLattice surrogate_; // Surrogate UTF-16 code units. |
| 1129 | }; |
| 1130 | |
| 1131 | class BoyerMooreLookahead : public ZoneAllocated { |
| 1132 | public: |
| 1133 | BoyerMooreLookahead(intptr_t length, RegExpCompiler* compiler, Zone* Zone); |
| 1134 | |
| 1135 | intptr_t length() { return length_; } |
| 1136 | intptr_t max_char() { return max_char_; } |
| 1137 | RegExpCompiler* compiler() { return compiler_; } |
| 1138 | |
| 1139 | intptr_t Count(intptr_t map_number) { |
| 1140 | return bitmaps_->At(map_number)->map_count(); |
| 1141 | } |
| 1142 | |
| 1143 | BoyerMoorePositionInfo* at(intptr_t i) { return bitmaps_->At(i); } |
| 1144 | |
| 1145 | void Set(intptr_t map_number, intptr_t character) { |
| 1146 | if (character > max_char_) return; |
| 1147 | BoyerMoorePositionInfo* info = bitmaps_->At(map_number); |
| 1148 | info->Set(character); |
| 1149 | } |
| 1150 | |
| 1151 | void SetInterval(intptr_t map_number, const Interval& interval) { |
| 1152 | if (interval.from() > max_char_) return; |
| 1153 | BoyerMoorePositionInfo* info = bitmaps_->At(map_number); |
| 1154 | if (interval.to() > max_char_) { |
| 1155 | info->SetInterval(Interval(interval.from(), max_char_)); |
| 1156 | } else { |
| 1157 | info->SetInterval(interval); |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | void SetAll(intptr_t map_number) { bitmaps_->At(map_number)->SetAll(); } |
| 1162 | |
| 1163 | void SetRest(intptr_t from_map) { |
| 1164 | for (intptr_t i = from_map; i < length_; i++) |
| 1165 | SetAll(i); |
| 1166 | } |
| 1167 | void EmitSkipInstructions(RegExpMacroAssembler* masm); |
| 1168 | |
| 1169 | private: |
| 1170 | // This is the value obtained by EatsAtLeast. If we do not have at least this |
| 1171 | // many characters left in the sample string then the match is bound to fail. |
| 1172 | // Therefore it is OK to read a character this far ahead of the current match |
| 1173 | // point. |
| 1174 | intptr_t length_; |
| 1175 | RegExpCompiler* compiler_; |
| 1176 | // 0xff for Latin1, 0xffff for UTF-16. |
| 1177 | intptr_t max_char_; |
| 1178 | ZoneGrowableArray<BoyerMoorePositionInfo*>* bitmaps_; |
| 1179 | |
| 1180 | intptr_t GetSkipTable(intptr_t min_lookahead, |
| 1181 | intptr_t max_lookahead, |
| 1182 | const TypedData& boolean_skip_table); |
| 1183 | bool FindWorthwhileInterval(intptr_t* from, intptr_t* to); |
| 1184 | intptr_t FindBestInterval(intptr_t max_number_of_chars, |
| 1185 | intptr_t old_biggest_points, |
| 1186 | intptr_t* from, |
| 1187 | intptr_t* to); |
| 1188 | }; |
| 1189 | |
| 1190 | // There are many ways to generate code for a node. This class encapsulates |
| 1191 | // the current way we should be generating. In other words it encapsulates |
| 1192 | // the current state of the code generator. The effect of this is that we |
| 1193 | // generate code for paths that the matcher can take through the regular |
| 1194 | // expression. A given node in the regexp can be code-generated several times |
| 1195 | // as it can be part of several traces. For example for the regexp: |
| 1196 | // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part |
| 1197 | // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code |
| 1198 | // to match foo is generated only once (the traces have a common prefix). The |
| 1199 | // code to store the capture is deferred and generated (twice) after the places |
| 1200 | // where baz has been matched. |
| 1201 | class Trace { |
| 1202 | public: |
| 1203 | // A value for a property that is either known to be true, know to be false, |
| 1204 | // or not known. |
| 1205 | enum TriBool { UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 }; |
| 1206 | |
| 1207 | class DeferredAction { |
| 1208 | public: |
| 1209 | DeferredAction(ActionNode::ActionType action_type, intptr_t reg) |
| 1210 | : action_type_(action_type), reg_(reg), next_(NULL) {} |
| 1211 | DeferredAction* next() { return next_; } |
| 1212 | bool Mentions(intptr_t reg); |
| 1213 | intptr_t reg() { return reg_; } |
| 1214 | ActionNode::ActionType action_type() { return action_type_; } |
| 1215 | |
| 1216 | private: |
| 1217 | ActionNode::ActionType action_type_; |
| 1218 | intptr_t reg_; |
| 1219 | DeferredAction* next_; |
| 1220 | friend class Trace; |
| 1221 | |
| 1222 | DISALLOW_ALLOCATION(); |
| 1223 | }; |
| 1224 | |
| 1225 | class DeferredCapture : public DeferredAction { |
| 1226 | public: |
| 1227 | DeferredCapture(intptr_t reg, bool is_capture, Trace* trace) |
| 1228 | : DeferredAction(ActionNode::STORE_POSITION, reg), |
| 1229 | cp_offset_(trace->cp_offset()), |
| 1230 | is_capture_(is_capture) {} |
| 1231 | intptr_t cp_offset() { return cp_offset_; } |
| 1232 | bool is_capture() { return is_capture_; } |
| 1233 | |
| 1234 | private: |
| 1235 | intptr_t cp_offset_; |
| 1236 | bool is_capture_; |
| 1237 | void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; } |
| 1238 | }; |
| 1239 | |
| 1240 | class DeferredSetRegister : public DeferredAction { |
| 1241 | public: |
| 1242 | DeferredSetRegister(intptr_t reg, intptr_t value) |
| 1243 | : DeferredAction(ActionNode::SET_REGISTER, reg), value_(value) {} |
| 1244 | intptr_t value() { return value_; } |
| 1245 | |
| 1246 | private: |
| 1247 | intptr_t value_; |
| 1248 | }; |
| 1249 | |
| 1250 | class DeferredClearCaptures : public DeferredAction { |
| 1251 | public: |
| 1252 | explicit DeferredClearCaptures(Interval range) |
| 1253 | : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), range_(range) {} |
| 1254 | Interval range() { return range_; } |
| 1255 | |
| 1256 | private: |
| 1257 | Interval range_; |
| 1258 | }; |
| 1259 | |
| 1260 | class DeferredIncrementRegister : public DeferredAction { |
| 1261 | public: |
| 1262 | explicit DeferredIncrementRegister(intptr_t reg) |
| 1263 | : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) {} |
| 1264 | }; |
| 1265 | |
| 1266 | Trace() |
| 1267 | : cp_offset_(0), |
| 1268 | actions_(NULL), |
| 1269 | backtrack_(NULL), |
| 1270 | stop_node_(NULL), |
| 1271 | loop_label_(NULL), |
| 1272 | characters_preloaded_(0), |
| 1273 | bound_checked_up_to_(0), |
| 1274 | flush_budget_(100), |
| 1275 | at_start_(UNKNOWN) {} |
| 1276 | |
| 1277 | // End the trace. This involves flushing the deferred actions in the trace |
| 1278 | // and pushing a backtrack location onto the backtrack stack. Once this is |
| 1279 | // done we can start a new trace or go to one that has already been |
| 1280 | // generated. |
| 1281 | void Flush(RegExpCompiler* compiler, RegExpNode* successor); |
| 1282 | intptr_t cp_offset() { return cp_offset_; } |
| 1283 | DeferredAction* actions() { return actions_; } |
| 1284 | // A trivial trace is one that has no deferred actions or other state that |
| 1285 | // affects the assumptions used when generating code. There is no recorded |
| 1286 | // backtrack location in a trivial trace, so with a trivial trace we will |
| 1287 | // generate code that, on a failure to match, gets the backtrack location |
| 1288 | // from the backtrack stack rather than using a direct jump instruction. We |
| 1289 | // always start code generation with a trivial trace and non-trivial traces |
| 1290 | // are created as we emit code for nodes or add to the list of deferred |
| 1291 | // actions in the trace. The location of the code generated for a node using |
| 1292 | // a trivial trace is recorded in a label in the node so that gotos can be |
| 1293 | // generated to that code. |
| 1294 | bool is_trivial() { |
| 1295 | return backtrack_ == NULL && actions_ == NULL && cp_offset_ == 0 && |
| 1296 | characters_preloaded_ == 0 && bound_checked_up_to_ == 0 && |
| 1297 | quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN; |
| 1298 | } |
| 1299 | TriBool at_start() { return at_start_; } |
| 1300 | void set_at_start(TriBool at_start) { at_start_ = at_start; } |
| 1301 | BlockLabel* backtrack() { return backtrack_; } |
| 1302 | BlockLabel* loop_label() { return loop_label_; } |
| 1303 | RegExpNode* stop_node() { return stop_node_; } |
| 1304 | intptr_t characters_preloaded() { return characters_preloaded_; } |
| 1305 | intptr_t bound_checked_up_to() { return bound_checked_up_to_; } |
| 1306 | intptr_t flush_budget() { return flush_budget_; } |
| 1307 | QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } |
| 1308 | bool mentions_reg(intptr_t reg); |
| 1309 | // Returns true if a deferred position store exists to the specified |
| 1310 | // register and stores the offset in the out-parameter. Otherwise |
| 1311 | // returns false. |
| 1312 | bool GetStoredPosition(intptr_t reg, intptr_t* cp_offset); |
| 1313 | // These set methods and AdvanceCurrentPositionInTrace should be used only on |
| 1314 | // new traces - the intention is that traces are immutable after creation. |
| 1315 | void add_action(DeferredAction* new_action) { |
| 1316 | ASSERT(new_action->next_ == NULL); |
| 1317 | new_action->next_ = actions_; |
| 1318 | actions_ = new_action; |
| 1319 | } |
| 1320 | void set_backtrack(BlockLabel* backtrack) { backtrack_ = backtrack; } |
| 1321 | void set_stop_node(RegExpNode* node) { stop_node_ = node; } |
| 1322 | void set_loop_label(BlockLabel* label) { loop_label_ = label; } |
| 1323 | void set_characters_preloaded(intptr_t count) { |
| 1324 | characters_preloaded_ = count; |
| 1325 | } |
| 1326 | void set_bound_checked_up_to(intptr_t to) { bound_checked_up_to_ = to; } |
| 1327 | void set_flush_budget(intptr_t to) { flush_budget_ = to; } |
| 1328 | void set_quick_check_performed(QuickCheckDetails* d) { |
| 1329 | quick_check_performed_ = *d; |
| 1330 | } |
| 1331 | void InvalidateCurrentCharacter(); |
| 1332 | void AdvanceCurrentPositionInTrace(intptr_t by, RegExpCompiler* compiler); |
| 1333 | |
| 1334 | private: |
| 1335 | intptr_t FindAffectedRegisters(OutSet* affected_registers, Zone* zone); |
| 1336 | void PerformDeferredActions(RegExpMacroAssembler* macro, |
| 1337 | intptr_t max_register, |
| 1338 | const OutSet& affected_registers, |
| 1339 | OutSet* registers_to_pop, |
| 1340 | OutSet* registers_to_clear, |
| 1341 | Zone* zone); |
| 1342 | void RestoreAffectedRegisters(RegExpMacroAssembler* macro, |
| 1343 | intptr_t max_register, |
| 1344 | const OutSet& registers_to_pop, |
| 1345 | const OutSet& registers_to_clear); |
| 1346 | intptr_t cp_offset_; |
| 1347 | DeferredAction* actions_; |
| 1348 | BlockLabel* backtrack_; |
| 1349 | RegExpNode* stop_node_; |
| 1350 | BlockLabel* loop_label_; |
| 1351 | intptr_t characters_preloaded_; |
| 1352 | intptr_t bound_checked_up_to_; |
| 1353 | QuickCheckDetails quick_check_performed_; |
| 1354 | intptr_t flush_budget_; |
| 1355 | TriBool at_start_; |
| 1356 | |
| 1357 | DISALLOW_ALLOCATION(); |
| 1358 | }; |
| 1359 | |
| 1360 | class GreedyLoopState { |
| 1361 | public: |
| 1362 | explicit GreedyLoopState(bool not_at_start); |
| 1363 | |
| 1364 | BlockLabel* label() { return &label_; } |
| 1365 | Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } |
| 1366 | |
| 1367 | private: |
| 1368 | BlockLabel label_; |
| 1369 | Trace counter_backtrack_trace_; |
| 1370 | }; |
| 1371 | |
| 1372 | struct PreloadState { |
| 1373 | static const intptr_t kEatsAtLeastNotYetInitialized = -1; |
| 1374 | bool preload_is_current_; |
| 1375 | bool preload_has_checked_bounds_; |
| 1376 | intptr_t preload_characters_; |
| 1377 | intptr_t eats_at_least_; |
| 1378 | void init() { eats_at_least_ = kEatsAtLeastNotYetInitialized; } |
| 1379 | |
| 1380 | DISALLOW_ALLOCATION(); |
| 1381 | }; |
| 1382 | |
| 1383 | class NodeVisitor : public ValueObject { |
| 1384 | public: |
| 1385 | virtual ~NodeVisitor() {} |
| 1386 | #define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that) = 0; |
| 1387 | FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| 1388 | #undef DECLARE_VISIT |
| 1389 | virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } |
| 1390 | }; |
| 1391 | |
| 1392 | // Assertion propagation moves information about assertions such as |
| 1393 | // \b to the affected nodes. For instance, in /.\b./ information must |
| 1394 | // be propagated to the first '.' that whatever follows needs to know |
| 1395 | // if it matched a word or a non-word, and to the second '.' that it |
| 1396 | // has to check if it succeeds a word or non-word. In this case the |
| 1397 | // result will be something like: |
| 1398 | // |
| 1399 | // +-------+ +------------+ |
| 1400 | // | . | | . | |
| 1401 | // +-------+ ---> +------------+ |
| 1402 | // | word? | | check word | |
| 1403 | // +-------+ +------------+ |
| 1404 | class Analysis : public NodeVisitor { |
| 1405 | public: |
| 1406 | explicit Analysis(bool is_one_byte) |
| 1407 | : is_one_byte_(is_one_byte), error_message_(NULL) {} |
| 1408 | void EnsureAnalyzed(RegExpNode* node); |
| 1409 | |
| 1410 | #define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that); |
| 1411 | FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| 1412 | #undef DECLARE_VISIT |
| 1413 | virtual void VisitLoopChoice(LoopChoiceNode* that); |
| 1414 | |
| 1415 | bool has_failed() { return error_message_ != NULL; } |
| 1416 | const char* error_message() { |
| 1417 | ASSERT(error_message_ != NULL); |
| 1418 | return error_message_; |
| 1419 | } |
| 1420 | void fail(const char* error_message) { error_message_ = error_message; } |
| 1421 | |
| 1422 | private: |
| 1423 | bool is_one_byte_; |
| 1424 | const char* error_message_; |
| 1425 | |
| 1426 | DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); |
| 1427 | }; |
| 1428 | |
| 1429 | struct RegExpCompileData : public ZoneAllocated { |
| 1430 | RegExpCompileData() |
| 1431 | : tree(NULL), |
| 1432 | node(NULL), |
| 1433 | simple(true), |
| 1434 | contains_anchor(false), |
| 1435 | capture_name_map(Array::Handle(Array::null())), |
| 1436 | error(String::Handle(String::null())), |
| 1437 | capture_count(0) {} |
| 1438 | RegExpTree* tree; |
| 1439 | RegExpNode* node; |
| 1440 | bool simple; |
| 1441 | bool contains_anchor; |
| 1442 | Array& capture_name_map; |
| 1443 | String& error; |
| 1444 | intptr_t capture_count; |
| 1445 | }; |
| 1446 | |
| 1447 | class RegExpEngine : public AllStatic { |
| 1448 | public: |
| 1449 | struct CompilationResult { |
| 1450 | explicit CompilationResult(const char* error_message) |
| 1451 | : error_message(error_message), |
| 1452 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 1453 | backtrack_goto(NULL), |
| 1454 | graph_entry(NULL), |
| 1455 | num_blocks(-1), |
| 1456 | num_stack_locals(-1), |
| 1457 | #endif |
| 1458 | bytecode(NULL), |
| 1459 | num_registers(-1) { |
| 1460 | } |
| 1461 | |
| 1462 | CompilationResult(TypedData* bytecode, intptr_t num_registers) |
| 1463 | : error_message(NULL), |
| 1464 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 1465 | backtrack_goto(NULL), |
| 1466 | graph_entry(NULL), |
| 1467 | num_blocks(-1), |
| 1468 | num_stack_locals(-1), |
| 1469 | #endif |
| 1470 | bytecode(bytecode), |
| 1471 | num_registers(num_registers) { |
| 1472 | } |
| 1473 | |
| 1474 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 1475 | CompilationResult(IndirectGotoInstr* backtrack_goto, |
| 1476 | GraphEntryInstr* graph_entry, |
| 1477 | intptr_t num_blocks, |
| 1478 | intptr_t num_stack_locals, |
| 1479 | intptr_t num_registers) |
| 1480 | : error_message(NULL), |
| 1481 | backtrack_goto(backtrack_goto), |
| 1482 | graph_entry(graph_entry), |
| 1483 | num_blocks(num_blocks), |
| 1484 | num_stack_locals(num_stack_locals), |
| 1485 | bytecode(NULL) {} |
| 1486 | #endif |
| 1487 | |
| 1488 | const char* error_message; |
| 1489 | |
| 1490 | NOT_IN_PRECOMPILED(IndirectGotoInstr* backtrack_goto); |
| 1491 | NOT_IN_PRECOMPILED(GraphEntryInstr* graph_entry); |
| 1492 | NOT_IN_PRECOMPILED(const intptr_t num_blocks); |
| 1493 | NOT_IN_PRECOMPILED(const intptr_t num_stack_locals); |
| 1494 | |
| 1495 | TypedData* bytecode; |
| 1496 | intptr_t num_registers; |
| 1497 | }; |
| 1498 | |
| 1499 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 1500 | static CompilationResult CompileIR( |
| 1501 | RegExpCompileData* input, |
| 1502 | const ParsedFunction* parsed_function, |
| 1503 | const ZoneGrowableArray<const ICData*>& ic_data_array, |
| 1504 | intptr_t osr_id); |
| 1505 | #endif |
| 1506 | |
| 1507 | static CompilationResult CompileBytecode(RegExpCompileData* data, |
| 1508 | const RegExp& regexp, |
| 1509 | bool is_one_byte, |
| 1510 | bool sticky, |
| 1511 | Zone* zone); |
| 1512 | |
| 1513 | static RegExpPtr CreateRegExp(Thread* thread, |
| 1514 | const String& pattern, |
| 1515 | RegExpFlags flags); |
| 1516 | |
| 1517 | static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); |
| 1518 | }; |
| 1519 | |
| 1520 | } // namespace dart |
| 1521 | |
| 1522 | #endif // RUNTIME_VM_REGEXP_H_ |
| 1523 | |