| 1 | // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/regexp_parser.h" |
| 6 | |
| 7 | #include "unicode/uchar.h" |
| 8 | #include "unicode/uniset.h" |
| 9 | |
| 10 | #include "platform/unicode.h" |
| 11 | |
| 12 | #include "vm/longjump.h" |
| 13 | #include "vm/object_store.h" |
| 14 | |
| 15 | namespace dart { |
| 16 | |
| 17 | #define Z zone() |
| 18 | |
| 19 | // Enables possessive quantifier syntax for testing. |
| 20 | static const bool FLAG_regexp_possessive_quantifier = false; |
| 21 | |
| 22 | RegExpBuilder::RegExpBuilder(RegExpFlags flags) |
| 23 | : zone_(Thread::Current()->zone()), |
| 24 | pending_empty_(false), |
| 25 | flags_(flags), |
| 26 | characters_(NULL), |
| 27 | pending_surrogate_(kNoPendingSurrogate), |
| 28 | terms_(), |
| 29 | text_(), |
| 30 | alternatives_() |
| 31 | #ifdef DEBUG |
| 32 | , |
| 33 | last_added_(ADD_NONE) |
| 34 | #endif |
| 35 | { |
| 36 | } |
| 37 | |
| 38 | void RegExpBuilder::AddLeadSurrogate(uint16_t lead_surrogate) { |
| 39 | ASSERT(Utf16::IsLeadSurrogate(lead_surrogate)); |
| 40 | FlushPendingSurrogate(); |
| 41 | // Hold onto the lead surrogate, waiting for a trail surrogate to follow. |
| 42 | pending_surrogate_ = lead_surrogate; |
| 43 | } |
| 44 | |
| 45 | void RegExpBuilder::AddTrailSurrogate(uint16_t trail_surrogate) { |
| 46 | ASSERT(Utf16::IsTrailSurrogate(trail_surrogate)); |
| 47 | if (pending_surrogate_ != kNoPendingSurrogate) { |
| 48 | uint16_t lead_surrogate = pending_surrogate_; |
| 49 | pending_surrogate_ = kNoPendingSurrogate; |
| 50 | ASSERT(Utf16::IsLeadSurrogate(lead_surrogate)); |
| 51 | uint32_t combined = Utf16::Decode(lead_surrogate, trail_surrogate); |
| 52 | if (NeedsDesugaringForIgnoreCase(combined)) { |
| 53 | AddCharacterClassForDesugaring(combined); |
| 54 | } else { |
| 55 | auto surrogate_pair = new (Z) ZoneGrowableArray<uint16_t>(2); |
| 56 | surrogate_pair->Add(lead_surrogate); |
| 57 | surrogate_pair->Add(trail_surrogate); |
| 58 | RegExpAtom* atom = new (Z) RegExpAtom(surrogate_pair, flags_); |
| 59 | AddAtom(atom); |
| 60 | } |
| 61 | } else { |
| 62 | pending_surrogate_ = trail_surrogate; |
| 63 | FlushPendingSurrogate(); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | void RegExpBuilder::FlushPendingSurrogate() { |
| 68 | if (pending_surrogate_ != kNoPendingSurrogate) { |
| 69 | ASSERT(is_unicode()); |
| 70 | uint32_t c = pending_surrogate_; |
| 71 | pending_surrogate_ = kNoPendingSurrogate; |
| 72 | AddCharacterClassForDesugaring(c); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | void RegExpBuilder::FlushCharacters() { |
| 77 | FlushPendingSurrogate(); |
| 78 | pending_empty_ = false; |
| 79 | if (characters_ != NULL) { |
| 80 | RegExpTree* atom = new (Z) RegExpAtom(characters_, flags_); |
| 81 | characters_ = NULL; |
| 82 | text_.Add(atom); |
| 83 | LAST(ADD_ATOM); |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | void RegExpBuilder::FlushText() { |
| 88 | FlushCharacters(); |
| 89 | intptr_t num_text = text_.length(); |
| 90 | if (num_text == 0) { |
| 91 | return; |
| 92 | } else if (num_text == 1) { |
| 93 | terms_.Add(text_.Last()); |
| 94 | } else { |
| 95 | RegExpText* text = new (Z) RegExpText(); |
| 96 | for (intptr_t i = 0; i < num_text; i++) |
| 97 | text_[i]->AppendToText(text); |
| 98 | terms_.Add(text); |
| 99 | } |
| 100 | text_.Clear(); |
| 101 | } |
| 102 | |
| 103 | void RegExpBuilder::AddCharacter(uint16_t c) { |
| 104 | FlushPendingSurrogate(); |
| 105 | pending_empty_ = false; |
| 106 | if (NeedsDesugaringForIgnoreCase(c)) { |
| 107 | AddCharacterClassForDesugaring(c); |
| 108 | } else { |
| 109 | if (characters_ == NULL) { |
| 110 | characters_ = new (Z) ZoneGrowableArray<uint16_t>(4); |
| 111 | } |
| 112 | characters_->Add(c); |
| 113 | LAST(ADD_CHAR); |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | void RegExpBuilder::AddUnicodeCharacter(uint32_t c) { |
| 118 | if (c > static_cast<uint32_t>(Utf16::kMaxCodeUnit)) { |
| 119 | ASSERT(is_unicode()); |
| 120 | uint16_t surrogates[2]; |
| 121 | Utf16::Encode(c, surrogates); |
| 122 | AddLeadSurrogate(surrogates[0]); |
| 123 | AddTrailSurrogate(surrogates[1]); |
| 124 | } else if (is_unicode() && Utf16::IsLeadSurrogate(c)) { |
| 125 | AddLeadSurrogate(c); |
| 126 | } else if (is_unicode() && Utf16::IsTrailSurrogate(c)) { |
| 127 | AddTrailSurrogate(c); |
| 128 | } else { |
| 129 | AddCharacter(static_cast<uint16_t>(c)); |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | void RegExpBuilder::AddEscapedUnicodeCharacter(uint32_t character) { |
| 134 | // A lead or trail surrogate parsed via escape sequence will not |
| 135 | // pair up with any preceding lead or following trail surrogate. |
| 136 | FlushPendingSurrogate(); |
| 137 | AddUnicodeCharacter(character); |
| 138 | FlushPendingSurrogate(); |
| 139 | } |
| 140 | |
| 141 | void RegExpBuilder::AddEmpty() { |
| 142 | pending_empty_ = true; |
| 143 | } |
| 144 | |
| 145 | void RegExpBuilder::AddCharacterClass(RegExpCharacterClass* cc) { |
| 146 | if (NeedsDesugaringForUnicode(cc)) { |
| 147 | // With /u, character class needs to be desugared, so it |
| 148 | // must be a standalone term instead of being part of a RegExpText. |
| 149 | AddTerm(cc); |
| 150 | } else { |
| 151 | AddAtom(cc); |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | void RegExpBuilder::AddCharacterClassForDesugaring(uint32_t c) { |
| 156 | auto ranges = CharacterRange::List(Z, CharacterRange::Singleton(c)); |
| 157 | AddTerm(new (Z) RegExpCharacterClass(ranges, flags_)); |
| 158 | } |
| 159 | |
| 160 | void RegExpBuilder::AddAtom(RegExpTree* term) { |
| 161 | if (term->IsEmpty()) { |
| 162 | AddEmpty(); |
| 163 | return; |
| 164 | } |
| 165 | if (term->IsTextElement()) { |
| 166 | FlushCharacters(); |
| 167 | text_.Add(term); |
| 168 | } else { |
| 169 | FlushText(); |
| 170 | terms_.Add(term); |
| 171 | } |
| 172 | LAST(ADD_ATOM); |
| 173 | } |
| 174 | |
| 175 | void RegExpBuilder::AddTerm(RegExpTree* term) { |
| 176 | FlushText(); |
| 177 | terms_.Add(term); |
| 178 | LAST(ADD_ATOM); |
| 179 | } |
| 180 | |
| 181 | void RegExpBuilder::AddAssertion(RegExpTree* assert) { |
| 182 | FlushText(); |
| 183 | terms_.Add(assert); |
| 184 | LAST(ADD_ASSERT); |
| 185 | } |
| 186 | |
| 187 | void RegExpBuilder::NewAlternative() { |
| 188 | FlushTerms(); |
| 189 | } |
| 190 | |
| 191 | void RegExpBuilder::FlushTerms() { |
| 192 | FlushText(); |
| 193 | intptr_t num_terms = terms_.length(); |
| 194 | RegExpTree* alternative; |
| 195 | if (num_terms == 0) { |
| 196 | alternative = RegExpEmpty::GetInstance(); |
| 197 | } else if (num_terms == 1) { |
| 198 | alternative = terms_.Last(); |
| 199 | } else { |
| 200 | ZoneGrowableArray<RegExpTree*>* terms = |
| 201 | new (Z) ZoneGrowableArray<RegExpTree*>(); |
| 202 | for (intptr_t i = 0; i < terms_.length(); i++) { |
| 203 | terms->Add(terms_[i]); |
| 204 | } |
| 205 | alternative = new (Z) RegExpAlternative(terms); |
| 206 | } |
| 207 | alternatives_.Add(alternative); |
| 208 | terms_.Clear(); |
| 209 | LAST(ADD_NONE); |
| 210 | } |
| 211 | |
| 212 | bool RegExpBuilder::NeedsDesugaringForUnicode(RegExpCharacterClass* cc) { |
| 213 | if (!is_unicode()) return false; |
| 214 | // TODO(yangguo): we could be smarter than this. Case-insensitivity does not |
| 215 | // necessarily mean that we need to desugar. It's probably nicer to have a |
| 216 | // separate pass to figure out unicode desugarings. |
| 217 | if (ignore_case()) return true; |
| 218 | ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
| 219 | CharacterRange::Canonicalize(ranges); |
| 220 | for (int i = ranges->length() - 1; i >= 0; i--) { |
| 221 | uint32_t from = ranges->At(i).from(); |
| 222 | uint32_t to = ranges->At(i).to(); |
| 223 | // Check for non-BMP characters. |
| 224 | if (to >= Utf16::kMaxCodeUnit) return true; |
| 225 | // Check for lone surrogates. |
| 226 | if (from <= Utf16::kTrailSurrogateEnd && to >= Utf16::kLeadSurrogateStart) { |
| 227 | return true; |
| 228 | } |
| 229 | } |
| 230 | return false; |
| 231 | } |
| 232 | |
| 233 | bool RegExpBuilder::NeedsDesugaringForIgnoreCase(uint32_t c) { |
| 234 | if (is_unicode() && ignore_case()) { |
| 235 | icu::UnicodeSet set(c, c); |
| 236 | set.closeOver(USET_CASE_INSENSITIVE); |
| 237 | set.removeAllStrings(); |
| 238 | return set.size() > 1; |
| 239 | } |
| 240 | return false; |
| 241 | } |
| 242 | |
| 243 | RegExpTree* RegExpBuilder::ToRegExp() { |
| 244 | FlushTerms(); |
| 245 | intptr_t num_alternatives = alternatives_.length(); |
| 246 | if (num_alternatives == 0) { |
| 247 | return RegExpEmpty::GetInstance(); |
| 248 | } |
| 249 | if (num_alternatives == 1) { |
| 250 | return alternatives_.Last(); |
| 251 | } |
| 252 | ZoneGrowableArray<RegExpTree*>* alternatives = |
| 253 | new (Z) ZoneGrowableArray<RegExpTree*>(); |
| 254 | for (intptr_t i = 0; i < alternatives_.length(); i++) { |
| 255 | alternatives->Add(alternatives_[i]); |
| 256 | } |
| 257 | return new (Z) RegExpDisjunction(alternatives); |
| 258 | } |
| 259 | |
| 260 | bool RegExpBuilder::AddQuantifierToAtom( |
| 261 | intptr_t min, |
| 262 | intptr_t max, |
| 263 | RegExpQuantifier::QuantifierType quantifier_type) { |
| 264 | if (pending_empty_) { |
| 265 | pending_empty_ = false; |
| 266 | return true; |
| 267 | } |
| 268 | RegExpTree* atom; |
| 269 | if (characters_ != NULL) { |
| 270 | DEBUG_ASSERT(last_added_ == ADD_CHAR); |
| 271 | // Last atom was character. |
| 272 | |
| 273 | ZoneGrowableArray<uint16_t>* char_vector = |
| 274 | new (Z) ZoneGrowableArray<uint16_t>(); |
| 275 | char_vector->AddArray(*characters_); |
| 276 | intptr_t num_chars = char_vector->length(); |
| 277 | if (num_chars > 1) { |
| 278 | ZoneGrowableArray<uint16_t>* prefix = |
| 279 | new (Z) ZoneGrowableArray<uint16_t>(); |
| 280 | for (intptr_t i = 0; i < num_chars - 1; i++) { |
| 281 | prefix->Add(char_vector->At(i)); |
| 282 | } |
| 283 | text_.Add(new (Z) RegExpAtom(prefix, flags_)); |
| 284 | ZoneGrowableArray<uint16_t>* tail = new (Z) ZoneGrowableArray<uint16_t>(); |
| 285 | tail->Add(char_vector->At(num_chars - 1)); |
| 286 | char_vector = tail; |
| 287 | } |
| 288 | characters_ = NULL; |
| 289 | atom = new (Z) RegExpAtom(char_vector, flags_); |
| 290 | FlushText(); |
| 291 | } else if (text_.length() > 0) { |
| 292 | DEBUG_ASSERT(last_added_ == ADD_ATOM); |
| 293 | atom = text_.RemoveLast(); |
| 294 | FlushText(); |
| 295 | } else if (terms_.length() > 0) { |
| 296 | DEBUG_ASSERT(last_added_ == ADD_ATOM); |
| 297 | atom = terms_.RemoveLast(); |
| 298 | if (auto lookaround = atom->AsLookaround()) { |
| 299 | // With /u, lookarounds are not quantifiable. |
| 300 | if (is_unicode()) return false; |
| 301 | // Lookbehinds are not quantifiable. |
| 302 | if (lookaround->type() == RegExpLookaround::LOOKBEHIND) { |
| 303 | return false; |
| 304 | } |
| 305 | } |
| 306 | if (atom->max_match() == 0) { |
| 307 | // Guaranteed to only match an empty string. |
| 308 | LAST(ADD_TERM); |
| 309 | if (min == 0) { |
| 310 | return true; |
| 311 | } |
| 312 | terms_.Add(atom); |
| 313 | return true; |
| 314 | } |
| 315 | } else { |
| 316 | // Only call immediately after adding an atom or character! |
| 317 | UNREACHABLE(); |
| 318 | } |
| 319 | terms_.Add(new (Z) RegExpQuantifier(min, max, quantifier_type, atom)); |
| 320 | LAST(ADD_TERM); |
| 321 | return true; |
| 322 | } |
| 323 | |
| 324 | // ---------------------------------------------------------------------------- |
| 325 | // Implementation of Parser |
| 326 | |
| 327 | RegExpParser::RegExpParser(const String& in, String* error, RegExpFlags flags) |
| 328 | : zone_(Thread::Current()->zone()), |
| 329 | captures_(nullptr), |
| 330 | named_captures_(nullptr), |
| 331 | named_back_references_(nullptr), |
| 332 | in_(in), |
| 333 | current_(kEndMarker), |
| 334 | next_pos_(0), |
| 335 | captures_started_(0), |
| 336 | capture_count_(0), |
| 337 | has_more_(true), |
| 338 | top_level_flags_(flags), |
| 339 | simple_(false), |
| 340 | contains_anchor_(false), |
| 341 | is_scanned_for_captures_(false), |
| 342 | has_named_captures_(false) { |
| 343 | Advance(); |
| 344 | } |
| 345 | |
| 346 | inline uint32_t RegExpParser::ReadNext(bool update_position) { |
| 347 | intptr_t position = next_pos_; |
| 348 | const uint16_t c0 = in().CharAt(position); |
| 349 | uint32_t c = c0; |
| 350 | position++; |
| 351 | if (is_unicode() && position < in().Length() && Utf16::IsLeadSurrogate(c0)) { |
| 352 | const uint16_t c1 = in().CharAt(position); |
| 353 | if (Utf16::IsTrailSurrogate(c1)) { |
| 354 | c = Utf16::Decode(c0, c1); |
| 355 | position++; |
| 356 | } |
| 357 | } |
| 358 | if (update_position) next_pos_ = position; |
| 359 | return c; |
| 360 | } |
| 361 | |
| 362 | uint32_t RegExpParser::Next() { |
| 363 | if (has_next()) { |
| 364 | return ReadNext(false); |
| 365 | } else { |
| 366 | return kEndMarker; |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | void RegExpParser::Advance() { |
| 371 | if (has_next()) { |
| 372 | current_ = ReadNext(true); |
| 373 | } else { |
| 374 | current_ = kEndMarker; |
| 375 | // Advance so that position() points to 1 after the last character. This is |
| 376 | // important so that Reset() to this position works correctly. |
| 377 | next_pos_ = in().Length() + 1; |
| 378 | has_more_ = false; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | void RegExpParser::Reset(intptr_t pos) { |
| 383 | next_pos_ = pos; |
| 384 | has_more_ = (pos < in().Length()); |
| 385 | Advance(); |
| 386 | } |
| 387 | |
| 388 | void RegExpParser::Advance(intptr_t dist) { |
| 389 | next_pos_ += dist - 1; |
| 390 | Advance(); |
| 391 | } |
| 392 | |
| 393 | bool RegExpParser::simple() { |
| 394 | return simple_; |
| 395 | } |
| 396 | |
| 397 | bool RegExpParser::IsSyntaxCharacterOrSlash(uint32_t c) { |
| 398 | switch (c) { |
| 399 | case '^': |
| 400 | case '$': |
| 401 | case '\\': |
| 402 | case '.': |
| 403 | case '*': |
| 404 | case '+': |
| 405 | case '?': |
| 406 | case '(': |
| 407 | case ')': |
| 408 | case '[': |
| 409 | case ']': |
| 410 | case '{': |
| 411 | case '}': |
| 412 | case '|': |
| 413 | case '/': |
| 414 | return true; |
| 415 | default: |
| 416 | break; |
| 417 | } |
| 418 | return false; |
| 419 | } |
| 420 | |
| 421 | void RegExpParser::ReportError(const char* message) { |
| 422 | // Zip to the end to make sure the no more input is read. |
| 423 | current_ = kEndMarker; |
| 424 | next_pos_ = in().Length(); |
| 425 | |
| 426 | // Throw a FormatException on parsing failures. |
| 427 | const String& msg = String::Handle( |
| 428 | String::Concat(String::Handle(String::New(message)), in())); |
| 429 | const Array& args = Array::Handle(Array::New(1)); |
| 430 | args.SetAt(0, msg); |
| 431 | Exceptions::ThrowByType(Exceptions::kFormat, args); |
| 432 | UNREACHABLE(); |
| 433 | } |
| 434 | |
| 435 | // Pattern :: |
| 436 | // Disjunction |
| 437 | RegExpTree* RegExpParser::ParsePattern() { |
| 438 | RegExpTree* result = ParseDisjunction(); |
| 439 | PatchNamedBackReferences(); |
| 440 | ASSERT(!has_more()); |
| 441 | // If the result of parsing is a literal string atom, and it has the |
| 442 | // same length as the input, then the atom is identical to the input. |
| 443 | if (result->IsAtom() && result->AsAtom()->length() == in().Length()) { |
| 444 | simple_ = true; |
| 445 | } |
| 446 | return result; |
| 447 | } |
| 448 | |
| 449 | // Used for error messages where we would have fallen back on treating an |
| 450 | // escape as the identity escape, but we are in Unicode mode. |
| 451 | static const char* kUnicodeIdentity = |
| 452 | "Invalid identity escape in Unicode pattern" ; |
| 453 | |
| 454 | // Disjunction :: |
| 455 | // Alternative |
| 456 | // Alternative | Disjunction |
| 457 | // Alternative :: |
| 458 | // [empty] |
| 459 | // Term Alternative |
| 460 | // Term :: |
| 461 | // Assertion |
| 462 | // Atom |
| 463 | // Atom Quantifier |
| 464 | RegExpTree* RegExpParser::ParseDisjunction() { |
| 465 | // Used to store current state while parsing subexpressions. |
| 466 | RegExpParserState initial_state(nullptr, INITIAL, RegExpLookaround::LOOKAHEAD, |
| 467 | 0, nullptr, top_level_flags_, Z); |
| 468 | RegExpParserState* stored_state = &initial_state; |
| 469 | // Cache the builder in a local variable for quick access. |
| 470 | RegExpBuilder* builder = initial_state.builder(); |
| 471 | while (true) { |
| 472 | switch (current()) { |
| 473 | case kEndMarker: |
| 474 | if (stored_state->IsSubexpression()) { |
| 475 | // Inside a parenthesized group when hitting end of input. |
| 476 | ReportError("Unterminated group" ); |
| 477 | UNREACHABLE(); |
| 478 | } |
| 479 | ASSERT(INITIAL == stored_state->group_type()); |
| 480 | // Parsing completed successfully. |
| 481 | return builder->ToRegExp(); |
| 482 | case ')': { |
| 483 | if (!stored_state->IsSubexpression()) { |
| 484 | ReportError("Unmatched ')'" ); |
| 485 | UNREACHABLE(); |
| 486 | } |
| 487 | ASSERT(INITIAL != stored_state->group_type()); |
| 488 | |
| 489 | Advance(); |
| 490 | // End disjunction parsing and convert builder content to new single |
| 491 | // regexp atom. |
| 492 | RegExpTree* body = builder->ToRegExp(); |
| 493 | |
| 494 | intptr_t end_capture_index = captures_started(); |
| 495 | |
| 496 | intptr_t capture_index = stored_state->capture_index(); |
| 497 | SubexpressionType group_type = stored_state->group_type(); |
| 498 | |
| 499 | // Build result of subexpression. |
| 500 | if (group_type == CAPTURE) { |
| 501 | if (stored_state->IsNamedCapture()) { |
| 502 | CreateNamedCaptureAtIndex(stored_state->capture_name(), |
| 503 | capture_index); |
| 504 | } |
| 505 | RegExpCapture* capture = GetCapture(capture_index); |
| 506 | capture->set_body(body); |
| 507 | body = capture; |
| 508 | } else if (group_type != GROUPING) { |
| 509 | ASSERT(group_type == POSITIVE_LOOKAROUND || |
| 510 | group_type == NEGATIVE_LOOKAROUND); |
| 511 | bool is_positive = (group_type == POSITIVE_LOOKAROUND); |
| 512 | body = new (Z) RegExpLookaround( |
| 513 | body, is_positive, end_capture_index - capture_index, |
| 514 | capture_index, stored_state->lookaround_type()); |
| 515 | } |
| 516 | |
| 517 | // Restore previous state. |
| 518 | stored_state = stored_state->previous_state(); |
| 519 | builder = stored_state->builder(); |
| 520 | |
| 521 | builder->AddAtom(body); |
| 522 | // For compatibility with JSC and ES3, we allow quantifiers after |
| 523 | // lookaheads, and break in all cases. |
| 524 | break; |
| 525 | } |
| 526 | case '|': { |
| 527 | Advance(); |
| 528 | builder->NewAlternative(); |
| 529 | continue; |
| 530 | } |
| 531 | case '*': |
| 532 | case '+': |
| 533 | case '?': |
| 534 | ReportError("Nothing to repeat" ); |
| 535 | UNREACHABLE(); |
| 536 | case '^': { |
| 537 | Advance(); |
| 538 | if (builder->is_multi_line()) { |
| 539 | builder->AddAssertion(new (Z) RegExpAssertion( |
| 540 | RegExpAssertion::START_OF_LINE, builder->flags())); |
| 541 | } else { |
| 542 | builder->AddAssertion(new (Z) RegExpAssertion( |
| 543 | RegExpAssertion::START_OF_INPUT, builder->flags())); |
| 544 | set_contains_anchor(); |
| 545 | } |
| 546 | continue; |
| 547 | } |
| 548 | case '$': { |
| 549 | Advance(); |
| 550 | RegExpAssertion::AssertionType assertion_type = |
| 551 | builder->is_multi_line() ? RegExpAssertion::END_OF_LINE |
| 552 | : RegExpAssertion::END_OF_INPUT; |
| 553 | builder->AddAssertion( |
| 554 | new (Z) RegExpAssertion(assertion_type, builder->flags())); |
| 555 | continue; |
| 556 | } |
| 557 | case '.': { |
| 558 | Advance(); |
| 559 | auto ranges = new (Z) ZoneGrowableArray<CharacterRange>(2); |
| 560 | if (builder->is_dot_all()) { |
| 561 | // Everything. |
| 562 | CharacterRange::AddClassEscape( |
| 563 | '*', ranges, |
| 564 | /*add_unicode_case_equivalents=*/false); |
| 565 | } else { |
| 566 | // everything except \x0a, \x0d, \u2028 and \u2029 |
| 567 | CharacterRange::AddClassEscape( |
| 568 | '.', ranges, |
| 569 | /*add_unicode_case_equivalents=*/false); |
| 570 | } |
| 571 | RegExpCharacterClass* cc = |
| 572 | new (Z) RegExpCharacterClass(ranges, builder->flags()); |
| 573 | builder->AddCharacterClass(cc); |
| 574 | break; |
| 575 | } |
| 576 | case '(': { |
| 577 | stored_state = ParseOpenParenthesis(stored_state); |
| 578 | builder = stored_state->builder(); |
| 579 | continue; |
| 580 | } |
| 581 | case '[': { |
| 582 | RegExpTree* atom = ParseCharacterClass(builder); |
| 583 | builder->AddCharacterClass(atom->AsCharacterClass()); |
| 584 | break; |
| 585 | } |
| 586 | // Atom :: |
| 587 | // \ AtomEscape |
| 588 | case '\\': |
| 589 | switch (Next()) { |
| 590 | case kEndMarker: |
| 591 | ReportError("\\ at end of pattern" ); |
| 592 | UNREACHABLE(); |
| 593 | case 'b': |
| 594 | Advance(2); |
| 595 | builder->AddAssertion(new (Z) RegExpAssertion( |
| 596 | RegExpAssertion::BOUNDARY, builder->flags())); |
| 597 | continue; |
| 598 | case 'B': |
| 599 | Advance(2); |
| 600 | builder->AddAssertion(new (Z) RegExpAssertion( |
| 601 | RegExpAssertion::NON_BOUNDARY, builder->flags())); |
| 602 | continue; |
| 603 | // AtomEscape :: |
| 604 | // CharacterClassEscape |
| 605 | // |
| 606 | // CharacterClassEscape :: one of |
| 607 | // d D s S w W |
| 608 | case 'd': |
| 609 | case 'D': |
| 610 | case 's': |
| 611 | case 'S': |
| 612 | case 'w': |
| 613 | case 'W': { |
| 614 | uint32_t c = Next(); |
| 615 | Advance(2); |
| 616 | auto ranges = new (Z) ZoneGrowableArray<CharacterRange>(2); |
| 617 | CharacterRange::AddClassEscape( |
| 618 | c, ranges, is_unicode() && builder->ignore_case()); |
| 619 | RegExpCharacterClass* cc = |
| 620 | new (Z) RegExpCharacterClass(ranges, builder->flags()); |
| 621 | builder->AddCharacterClass(cc); |
| 622 | break; |
| 623 | } |
| 624 | case 'p': |
| 625 | case 'P': { |
| 626 | uint32_t p = Next(); |
| 627 | Advance(2); |
| 628 | |
| 629 | if (is_unicode()) { |
| 630 | auto name_1 = new (Z) ZoneGrowableArray<char>(); |
| 631 | auto name_2 = new (Z) ZoneGrowableArray<char>(); |
| 632 | auto ranges = new (Z) ZoneGrowableArray<CharacterRange>(2); |
| 633 | if (ParsePropertyClassName(name_1, name_2)) { |
| 634 | if (AddPropertyClassRange(ranges, p == 'P', name_1, name_2)) { |
| 635 | RegExpCharacterClass* cc = |
| 636 | new (Z) RegExpCharacterClass(ranges, builder->flags()); |
| 637 | builder->AddCharacterClass(cc); |
| 638 | break; |
| 639 | } |
| 640 | } |
| 641 | ReportError("Invalid property name" ); |
| 642 | UNREACHABLE(); |
| 643 | } else { |
| 644 | builder->AddCharacter(p); |
| 645 | } |
| 646 | break; |
| 647 | } |
| 648 | case '1': |
| 649 | case '2': |
| 650 | case '3': |
| 651 | case '4': |
| 652 | case '5': |
| 653 | case '6': |
| 654 | case '7': |
| 655 | case '8': |
| 656 | case '9': { |
| 657 | intptr_t index = 0; |
| 658 | if (ParseBackReferenceIndex(&index)) { |
| 659 | if (stored_state->IsInsideCaptureGroup(index)) { |
| 660 | // The back reference is inside the capture group it refers to. |
| 661 | // Nothing can possibly have been captured yet, so we use empty |
| 662 | // instead. This ensures that, when checking a back reference, |
| 663 | // the capture registers of the referenced capture are either |
| 664 | // both set or both cleared. |
| 665 | builder->AddEmpty(); |
| 666 | } else { |
| 667 | RegExpCapture* capture = GetCapture(index); |
| 668 | RegExpTree* atom = |
| 669 | new (Z) RegExpBackReference(capture, builder->flags()); |
| 670 | builder->AddAtom(atom); |
| 671 | } |
| 672 | break; |
| 673 | } |
| 674 | // With /u, no identity escapes except for syntax characters are |
| 675 | // allowed. Otherwise, all identity escapes are allowed. |
| 676 | if (is_unicode()) { |
| 677 | ReportError(kUnicodeIdentity); |
| 678 | UNREACHABLE(); |
| 679 | } |
| 680 | uint32_t first_digit = Next(); |
| 681 | if (first_digit == '8' || first_digit == '9') { |
| 682 | builder->AddCharacter(first_digit); |
| 683 | Advance(2); |
| 684 | break; |
| 685 | } |
| 686 | } |
| 687 | FALL_THROUGH; |
| 688 | case '0': { |
| 689 | Advance(); |
| 690 | if (is_unicode() && Next() >= '0' && Next() <= '9') { |
| 691 | // With /u, decimal escape with leading 0 are not parsed as octal. |
| 692 | ReportError("Invalid decimal escape" ); |
| 693 | UNREACHABLE(); |
| 694 | } |
| 695 | uint32_t octal = ParseOctalLiteral(); |
| 696 | builder->AddCharacter(octal); |
| 697 | break; |
| 698 | } |
| 699 | // ControlEscape :: one of |
| 700 | // f n r t v |
| 701 | case 'f': |
| 702 | Advance(2); |
| 703 | builder->AddCharacter('\f'); |
| 704 | break; |
| 705 | case 'n': |
| 706 | Advance(2); |
| 707 | builder->AddCharacter('\n'); |
| 708 | break; |
| 709 | case 'r': |
| 710 | Advance(2); |
| 711 | builder->AddCharacter('\r'); |
| 712 | break; |
| 713 | case 't': |
| 714 | Advance(2); |
| 715 | builder->AddCharacter('\t'); |
| 716 | break; |
| 717 | case 'v': |
| 718 | Advance(2); |
| 719 | builder->AddCharacter('\v'); |
| 720 | break; |
| 721 | case 'c': { |
| 722 | Advance(); |
| 723 | uint32_t controlLetter = Next(); |
| 724 | // Special case if it is an ASCII letter. |
| 725 | // Convert lower case letters to uppercase. |
| 726 | uint32_t letter = controlLetter & ~('a' ^ 'A'); |
| 727 | if (letter < 'A' || 'Z' < letter) { |
| 728 | // controlLetter is not in range 'A'-'Z' or 'a'-'z'. |
| 729 | // This is outside the specification. We match JSC in |
| 730 | // reading the backslash as a literal character instead |
| 731 | // of as starting an escape. |
| 732 | if (is_unicode()) { |
| 733 | // With /u, invalid escapes are not treated as identity escapes. |
| 734 | ReportError(kUnicodeIdentity); |
| 735 | UNREACHABLE(); |
| 736 | } |
| 737 | builder->AddCharacter('\\'); |
| 738 | } else { |
| 739 | Advance(2); |
| 740 | builder->AddCharacter(controlLetter & 0x1f); |
| 741 | } |
| 742 | break; |
| 743 | } |
| 744 | case 'x': { |
| 745 | Advance(2); |
| 746 | uint32_t value; |
| 747 | if (ParseHexEscape(2, &value)) { |
| 748 | builder->AddCharacter(value); |
| 749 | } else if (!is_unicode()) { |
| 750 | builder->AddCharacter('x'); |
| 751 | } else { |
| 752 | // With /u, invalid escapes are not treated as identity escapes. |
| 753 | ReportError(kUnicodeIdentity); |
| 754 | UNREACHABLE(); |
| 755 | } |
| 756 | break; |
| 757 | } |
| 758 | case 'u': { |
| 759 | Advance(2); |
| 760 | uint32_t value; |
| 761 | if (ParseUnicodeEscape(&value)) { |
| 762 | builder->AddEscapedUnicodeCharacter(value); |
| 763 | } else if (!is_unicode()) { |
| 764 | builder->AddCharacter('u'); |
| 765 | } else { |
| 766 | // With /u, invalid escapes are not treated as identity escapes. |
| 767 | ReportError(kUnicodeIdentity); |
| 768 | UNREACHABLE(); |
| 769 | } |
| 770 | break; |
| 771 | } |
| 772 | case 'k': |
| 773 | // Either an identity escape or a named back-reference. The two |
| 774 | // interpretations are mutually exclusive: '\k' is interpreted as |
| 775 | // an identity escape for non-Unicode patterns without named |
| 776 | // capture groups, and as the beginning of a named back-reference |
| 777 | // in all other cases. |
| 778 | if (is_unicode() || HasNamedCaptures()) { |
| 779 | Advance(2); |
| 780 | ParseNamedBackReference(builder, stored_state); |
| 781 | break; |
| 782 | } |
| 783 | FALL_THROUGH; |
| 784 | default: |
| 785 | Advance(); |
| 786 | // With the unicode flag, no identity escapes except for syntax |
| 787 | // characters are allowed. Otherwise, all identity escapes are |
| 788 | // allowed. |
| 789 | if (!is_unicode() || IsSyntaxCharacterOrSlash(current())) { |
| 790 | builder->AddCharacter(current()); |
| 791 | Advance(); |
| 792 | } else { |
| 793 | ReportError(kUnicodeIdentity); |
| 794 | UNREACHABLE(); |
| 795 | } |
| 796 | break; |
| 797 | } |
| 798 | break; |
| 799 | case '{': { |
| 800 | intptr_t dummy; |
| 801 | if (ParseIntervalQuantifier(&dummy, &dummy)) { |
| 802 | ReportError("Nothing to repeat" ); |
| 803 | UNREACHABLE(); |
| 804 | } |
| 805 | } |
| 806 | FALL_THROUGH; |
| 807 | case '}': |
| 808 | case ']': |
| 809 | if (is_unicode()) { |
| 810 | ReportError("Lone quantifier brackets" ); |
| 811 | UNREACHABLE(); |
| 812 | } |
| 813 | FALL_THROUGH; |
| 814 | default: |
| 815 | builder->AddUnicodeCharacter(current()); |
| 816 | Advance(); |
| 817 | break; |
| 818 | } // end switch(current()) |
| 819 | |
| 820 | intptr_t min; |
| 821 | intptr_t max; |
| 822 | switch (current()) { |
| 823 | // QuantifierPrefix :: |
| 824 | // * |
| 825 | // + |
| 826 | // ? |
| 827 | // { |
| 828 | case '*': |
| 829 | min = 0; |
| 830 | max = RegExpTree::kInfinity; |
| 831 | Advance(); |
| 832 | break; |
| 833 | case '+': |
| 834 | min = 1; |
| 835 | max = RegExpTree::kInfinity; |
| 836 | Advance(); |
| 837 | break; |
| 838 | case '?': |
| 839 | min = 0; |
| 840 | max = 1; |
| 841 | Advance(); |
| 842 | break; |
| 843 | case '{': |
| 844 | if (ParseIntervalQuantifier(&min, &max)) { |
| 845 | if (max < min) { |
| 846 | ReportError("numbers out of order in {} quantifier." ); |
| 847 | UNREACHABLE(); |
| 848 | } |
| 849 | break; |
| 850 | } else { |
| 851 | continue; |
| 852 | } |
| 853 | default: |
| 854 | continue; |
| 855 | } |
| 856 | RegExpQuantifier::QuantifierType quantifier_type = RegExpQuantifier::GREEDY; |
| 857 | if (current() == '?') { |
| 858 | quantifier_type = RegExpQuantifier::NON_GREEDY; |
| 859 | Advance(); |
| 860 | } else if (FLAG_regexp_possessive_quantifier && current() == '+') { |
| 861 | // FLAG_regexp_possessive_quantifier is a debug-only flag. |
| 862 | quantifier_type = RegExpQuantifier::POSSESSIVE; |
| 863 | Advance(); |
| 864 | } |
| 865 | if (!builder->AddQuantifierToAtom(min, max, quantifier_type)) { |
| 866 | ReportError("invalid quantifier." ); |
| 867 | UNREACHABLE(); |
| 868 | } |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | #ifdef DEBUG |
| 873 | // Currently only used in an ASSERT. |
| 874 | static bool IsSpecialClassEscape(uint32_t c) { |
| 875 | switch (c) { |
| 876 | case 'd': |
| 877 | case 'D': |
| 878 | case 's': |
| 879 | case 'S': |
| 880 | case 'w': |
| 881 | case 'W': |
| 882 | return true; |
| 883 | default: |
| 884 | return false; |
| 885 | } |
| 886 | } |
| 887 | #endif |
| 888 | |
| 889 | RegExpParser::RegExpParserState* RegExpParser::ParseOpenParenthesis( |
| 890 | RegExpParserState* state) { |
| 891 | RegExpLookaround::Type lookaround_type = state->lookaround_type(); |
| 892 | bool is_named_capture = false; |
| 893 | const RegExpCaptureName* capture_name = nullptr; |
| 894 | SubexpressionType subexpr_type = CAPTURE; |
| 895 | Advance(); |
| 896 | if (current() == '?') { |
| 897 | switch (Next()) { |
| 898 | case ':': |
| 899 | Advance(2); |
| 900 | subexpr_type = GROUPING; |
| 901 | break; |
| 902 | case '=': |
| 903 | Advance(2); |
| 904 | lookaround_type = RegExpLookaround::LOOKAHEAD; |
| 905 | subexpr_type = POSITIVE_LOOKAROUND; |
| 906 | break; |
| 907 | case '!': |
| 908 | Advance(2); |
| 909 | lookaround_type = RegExpLookaround::LOOKAHEAD; |
| 910 | subexpr_type = NEGATIVE_LOOKAROUND; |
| 911 | break; |
| 912 | case '<': |
| 913 | Advance(); |
| 914 | if (Next() == '=') { |
| 915 | Advance(2); |
| 916 | lookaround_type = RegExpLookaround::LOOKBEHIND; |
| 917 | subexpr_type = POSITIVE_LOOKAROUND; |
| 918 | break; |
| 919 | } else if (Next() == '!') { |
| 920 | Advance(2); |
| 921 | lookaround_type = RegExpLookaround::LOOKBEHIND; |
| 922 | subexpr_type = NEGATIVE_LOOKAROUND; |
| 923 | break; |
| 924 | } |
| 925 | is_named_capture = true; |
| 926 | has_named_captures_ = true; |
| 927 | Advance(); |
| 928 | break; |
| 929 | default: |
| 930 | ReportError("Invalid group" ); |
| 931 | UNREACHABLE(); |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | if (subexpr_type == CAPTURE) { |
| 936 | if (captures_started_ >= kMaxCaptures) { |
| 937 | ReportError("Too many captures" ); |
| 938 | UNREACHABLE(); |
| 939 | } |
| 940 | captures_started_++; |
| 941 | |
| 942 | if (is_named_capture) { |
| 943 | capture_name = ParseCaptureGroupName(); |
| 944 | } |
| 945 | } |
| 946 | // Store current state and begin new disjunction parsing. |
| 947 | return new (Z) |
| 948 | RegExpParserState(state, subexpr_type, lookaround_type, captures_started_, |
| 949 | capture_name, state->builder()->flags(), Z); |
| 950 | } |
| 951 | |
| 952 | // In order to know whether an escape is a backreference or not we have to scan |
| 953 | // the entire regexp and find the number of capturing parentheses. However we |
| 954 | // don't want to scan the regexp twice unless it is necessary. This mini-parser |
| 955 | // is called when needed. It can see the difference between capturing and |
| 956 | // noncapturing parentheses and can skip character classes and backslash-escaped |
| 957 | // characters. |
| 958 | void RegExpParser::ScanForCaptures() { |
| 959 | ASSERT(!is_scanned_for_captures_); |
| 960 | const intptr_t saved_position = position(); |
| 961 | // Start with captures started previous to current position |
| 962 | intptr_t capture_count = captures_started(); |
| 963 | // Add count of captures after this position. |
| 964 | uintptr_t n; |
| 965 | while ((n = current()) != kEndMarker) { |
| 966 | Advance(); |
| 967 | switch (n) { |
| 968 | case '\\': |
| 969 | Advance(); |
| 970 | break; |
| 971 | case '[': { |
| 972 | uintptr_t c; |
| 973 | while ((c = current()) != kEndMarker) { |
| 974 | Advance(); |
| 975 | if (c == '\\') { |
| 976 | Advance(); |
| 977 | } else { |
| 978 | if (c == ']') break; |
| 979 | } |
| 980 | } |
| 981 | break; |
| 982 | } |
| 983 | case '(': |
| 984 | // At this point we could be in |
| 985 | // * a non-capturing group '(:', |
| 986 | // * a lookbehind assertion '(?<=' '(?<!' |
| 987 | // * or a named capture '(?<'. |
| 988 | // |
| 989 | // Of these, only named captures are capturing groups. |
| 990 | if (current() == '?') { |
| 991 | Advance(); |
| 992 | if (current() != '<') break; |
| 993 | |
| 994 | Advance(); |
| 995 | if (current() == '=' || current() == '!') break; |
| 996 | |
| 997 | // Found a possible named capture. It could turn out to be a syntax |
| 998 | // error (e.g. an unterminated or invalid name), but that distinction |
| 999 | // does not matter for our purposes. |
| 1000 | has_named_captures_ = true; |
| 1001 | } |
| 1002 | capture_count++; |
| 1003 | break; |
| 1004 | } |
| 1005 | } |
| 1006 | capture_count_ = capture_count; |
| 1007 | is_scanned_for_captures_ = true; |
| 1008 | Reset(saved_position); |
| 1009 | } |
| 1010 | |
| 1011 | bool RegExpParser::ParseBackReferenceIndex(intptr_t* index_out) { |
| 1012 | ASSERT('\\' == current()); |
| 1013 | ASSERT('1' <= Next() && Next() <= '9'); |
| 1014 | // Try to parse a decimal literal that is no greater than the total number |
| 1015 | // of left capturing parentheses in the input. |
| 1016 | intptr_t start = position(); |
| 1017 | intptr_t value = Next() - '0'; |
| 1018 | Advance(2); |
| 1019 | while (true) { |
| 1020 | uint32_t c = current(); |
| 1021 | if (Utils::IsDecimalDigit(c)) { |
| 1022 | value = 10 * value + (c - '0'); |
| 1023 | if (value > kMaxCaptures) { |
| 1024 | Reset(start); |
| 1025 | return false; |
| 1026 | } |
| 1027 | Advance(); |
| 1028 | } else { |
| 1029 | break; |
| 1030 | } |
| 1031 | } |
| 1032 | if (value > captures_started()) { |
| 1033 | if (!is_scanned_for_captures_) ScanForCaptures(); |
| 1034 | if (value > capture_count_) { |
| 1035 | Reset(start); |
| 1036 | return false; |
| 1037 | } |
| 1038 | } |
| 1039 | *index_out = value; |
| 1040 | return true; |
| 1041 | } |
| 1042 | |
| 1043 | namespace { |
| 1044 | |
| 1045 | static inline constexpr bool IsAsciiIdentifierPart(uint32_t ch) { |
| 1046 | return Utils::IsAlphaNumeric(ch) || ch == '_' || ch == '$'; |
| 1047 | } |
| 1048 | |
| 1049 | // ES#sec-names-and-keywords Names and Keywords |
| 1050 | // UnicodeIDStart, '$', '_' and '\' |
| 1051 | static bool IsIdentifierStartSlow(uint32_t c) { |
| 1052 | // cannot use u_isIDStart because it does not work for |
| 1053 | // Other_ID_Start characters. |
| 1054 | return u_hasBinaryProperty(c, UCHAR_ID_START) || |
| 1055 | (c < 0x60 && (c == '$' || c == '\\' || c == '_')); |
| 1056 | } |
| 1057 | |
| 1058 | // ES#sec-names-and-keywords Names and Keywords |
| 1059 | // UnicodeIDContinue, '$', '_', '\', ZWJ, and ZWNJ |
| 1060 | static bool IsIdentifierPartSlow(uint32_t c) { |
| 1061 | const uint32_t kZeroWidthNonJoiner = 0x200C; |
| 1062 | const uint32_t kZeroWidthJoiner = 0x200D; |
| 1063 | // Can't use u_isIDPart because it does not work for |
| 1064 | // Other_ID_Continue characters. |
| 1065 | return u_hasBinaryProperty(c, UCHAR_ID_CONTINUE) || |
| 1066 | (c < 0x60 && (c == '$' || c == '\\' || c == '_')) || |
| 1067 | c == kZeroWidthNonJoiner || c == kZeroWidthJoiner; |
| 1068 | } |
| 1069 | |
| 1070 | static inline bool IsIdentifierStart(uint32_t c) { |
| 1071 | if (c > 127) return IsIdentifierStartSlow(c); |
| 1072 | return IsAsciiIdentifierPart(c) && !Utils::IsDecimalDigit(c); |
| 1073 | } |
| 1074 | |
| 1075 | static inline bool IsIdentifierPart(uint32_t c) { |
| 1076 | if (c > 127) return IsIdentifierPartSlow(c); |
| 1077 | return IsAsciiIdentifierPart(c); |
| 1078 | } |
| 1079 | |
| 1080 | static bool IsSameName(const RegExpCaptureName* name1, |
| 1081 | const RegExpCaptureName* name2) { |
| 1082 | if (name1->length() != name2->length()) return false; |
| 1083 | for (intptr_t i = 0; i < name1->length(); i++) { |
| 1084 | if (name1->At(i) != name2->At(i)) return false; |
| 1085 | } |
| 1086 | return true; |
| 1087 | } |
| 1088 | |
| 1089 | } // end namespace |
| 1090 | |
| 1091 | static void PushCodeUnit(RegExpCaptureName* v, uint32_t code_unit) { |
| 1092 | if (code_unit <= Utf16::kMaxCodeUnit) { |
| 1093 | v->Add(code_unit); |
| 1094 | } else { |
| 1095 | uint16_t units[2]; |
| 1096 | Utf16::Encode(code_unit, units); |
| 1097 | v->Add(units[0]); |
| 1098 | v->Add(units[1]); |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | const RegExpCaptureName* RegExpParser::ParseCaptureGroupName() { |
| 1103 | auto name = new (Z) RegExpCaptureName(); |
| 1104 | |
| 1105 | bool at_start = true; |
| 1106 | while (true) { |
| 1107 | uint32_t c = current(); |
| 1108 | Advance(); |
| 1109 | |
| 1110 | // Convert unicode escapes. |
| 1111 | if (c == '\\' && current() == 'u') { |
| 1112 | Advance(); |
| 1113 | if (!ParseUnicodeEscape(&c)) { |
| 1114 | ReportError("Invalid Unicode escape sequence" ); |
| 1115 | UNREACHABLE(); |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | // The backslash char is misclassified as both ID_Start and ID_Continue. |
| 1120 | if (c == '\\') { |
| 1121 | ReportError("Invalid capture group name" ); |
| 1122 | UNREACHABLE(); |
| 1123 | } |
| 1124 | |
| 1125 | if (at_start) { |
| 1126 | if (!IsIdentifierStart(c)) { |
| 1127 | ReportError("Invalid capture group name" ); |
| 1128 | UNREACHABLE(); |
| 1129 | } |
| 1130 | PushCodeUnit(name, c); |
| 1131 | at_start = false; |
| 1132 | } else { |
| 1133 | if (c == '>') { |
| 1134 | break; |
| 1135 | } else if (IsIdentifierPart(c)) { |
| 1136 | PushCodeUnit(name, c); |
| 1137 | } else { |
| 1138 | ReportError("Invalid capture group name" ); |
| 1139 | UNREACHABLE(); |
| 1140 | } |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | return name; |
| 1145 | } |
| 1146 | |
| 1147 | intptr_t RegExpParser::GetNamedCaptureIndex(const RegExpCaptureName* name) { |
| 1148 | for (const auto& capture : *named_captures_) { |
| 1149 | if (IsSameName(name, capture->name())) return capture->index(); |
| 1150 | } |
| 1151 | return -1; |
| 1152 | } |
| 1153 | |
| 1154 | void RegExpParser::CreateNamedCaptureAtIndex(const RegExpCaptureName* name, |
| 1155 | intptr_t index) { |
| 1156 | ASSERT(0 < index && index <= captures_started_); |
| 1157 | ASSERT(name != nullptr); |
| 1158 | |
| 1159 | if (named_captures_ == nullptr) { |
| 1160 | named_captures_ = new (Z) ZoneGrowableArray<RegExpCapture*>(1); |
| 1161 | } else { |
| 1162 | // Check for duplicates and bail if we find any. Currently O(n^2). |
| 1163 | if (GetNamedCaptureIndex(name) >= 0) { |
| 1164 | ReportError("Duplicate capture group name" ); |
| 1165 | UNREACHABLE(); |
| 1166 | } |
| 1167 | } |
| 1168 | |
| 1169 | RegExpCapture* capture = GetCapture(index); |
| 1170 | ASSERT(capture->name() == nullptr); |
| 1171 | |
| 1172 | capture->set_name(name); |
| 1173 | named_captures_->Add(capture); |
| 1174 | } |
| 1175 | |
| 1176 | bool RegExpParser::ParseNamedBackReference(RegExpBuilder* builder, |
| 1177 | RegExpParserState* state) { |
| 1178 | // The parser is assumed to be on the '<' in \k<name>. |
| 1179 | if (current() != '<') { |
| 1180 | ReportError("Invalid named reference" ); |
| 1181 | UNREACHABLE(); |
| 1182 | } |
| 1183 | |
| 1184 | Advance(); |
| 1185 | const RegExpCaptureName* name = ParseCaptureGroupName(); |
| 1186 | if (name == nullptr) { |
| 1187 | return false; |
| 1188 | } |
| 1189 | |
| 1190 | if (state->IsInsideCaptureGroup(name)) { |
| 1191 | builder->AddEmpty(); |
| 1192 | } else { |
| 1193 | RegExpBackReference* atom = new (Z) RegExpBackReference(builder->flags()); |
| 1194 | atom->set_name(name); |
| 1195 | |
| 1196 | builder->AddAtom(atom); |
| 1197 | |
| 1198 | if (named_back_references_ == nullptr) { |
| 1199 | named_back_references_ = |
| 1200 | new (Z) ZoneGrowableArray<RegExpBackReference*>(1); |
| 1201 | } |
| 1202 | named_back_references_->Add(atom); |
| 1203 | } |
| 1204 | |
| 1205 | return true; |
| 1206 | } |
| 1207 | |
| 1208 | void RegExpParser::PatchNamedBackReferences() { |
| 1209 | if (named_back_references_ == nullptr) return; |
| 1210 | |
| 1211 | if (named_captures_ == nullptr) { |
| 1212 | ReportError("Invalid named capture referenced" ); |
| 1213 | return; |
| 1214 | } |
| 1215 | |
| 1216 | // Look up and patch the actual capture for each named back reference. |
| 1217 | // Currently O(n^2), optimize if necessary. |
| 1218 | for (intptr_t i = 0; i < named_back_references_->length(); i++) { |
| 1219 | RegExpBackReference* ref = named_back_references_->At(i); |
| 1220 | intptr_t index = GetNamedCaptureIndex(ref->name()); |
| 1221 | |
| 1222 | if (index < 0) { |
| 1223 | ReportError("Invalid named capture referenced" ); |
| 1224 | UNREACHABLE(); |
| 1225 | } |
| 1226 | ref->set_capture(GetCapture(index)); |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | RegExpCapture* RegExpParser::GetCapture(intptr_t index) { |
| 1231 | // The index for the capture groups are one-based. Its index in the list is |
| 1232 | // zero-based. |
| 1233 | const intptr_t know_captures = |
| 1234 | is_scanned_for_captures_ ? capture_count_ : captures_started_; |
| 1235 | ASSERT(index <= know_captures); |
| 1236 | if (captures_ == nullptr) { |
| 1237 | captures_ = new (Z) ZoneGrowableArray<RegExpCapture*>(know_captures); |
| 1238 | } |
| 1239 | while (captures_->length() < know_captures) { |
| 1240 | captures_->Add(new (Z) RegExpCapture(captures_->length() + 1)); |
| 1241 | } |
| 1242 | return captures_->At(index - 1); |
| 1243 | } |
| 1244 | |
| 1245 | ArrayPtr RegExpParser::CreateCaptureNameMap() { |
| 1246 | if (named_captures_ == nullptr || named_captures_->is_empty()) { |
| 1247 | return Array::null(); |
| 1248 | } |
| 1249 | |
| 1250 | const intptr_t len = named_captures_->length() * 2; |
| 1251 | |
| 1252 | const Array& array = Array::Handle(Array::New(len)); |
| 1253 | |
| 1254 | auto& name = String::Handle(); |
| 1255 | auto& smi = Smi::Handle(); |
| 1256 | for (intptr_t i = 0; i < named_captures_->length(); i++) { |
| 1257 | RegExpCapture* capture = named_captures_->At(i); |
| 1258 | name = |
| 1259 | String::FromUTF16(capture->name()->data(), capture->name()->length()); |
| 1260 | smi = Smi::New(capture->index()); |
| 1261 | array.SetAt(i * 2, name); |
| 1262 | array.SetAt(i * 2 + 1, smi); |
| 1263 | } |
| 1264 | |
| 1265 | return array.raw(); |
| 1266 | } |
| 1267 | |
| 1268 | bool RegExpParser::HasNamedCaptures() { |
| 1269 | if (has_named_captures_ || is_scanned_for_captures_) { |
| 1270 | return has_named_captures_; |
| 1271 | } |
| 1272 | |
| 1273 | ScanForCaptures(); |
| 1274 | ASSERT(is_scanned_for_captures_); |
| 1275 | return has_named_captures_; |
| 1276 | } |
| 1277 | |
| 1278 | bool RegExpParser::RegExpParserState::IsInsideCaptureGroup(intptr_t index) { |
| 1279 | for (RegExpParserState* s = this; s != nullptr; s = s->previous_state()) { |
| 1280 | if (s->group_type() != CAPTURE) continue; |
| 1281 | // Return true if we found the matching capture index. |
| 1282 | if (index == s->capture_index()) return true; |
| 1283 | // Abort if index is larger than what has been parsed up till this state. |
| 1284 | if (index > s->capture_index()) return false; |
| 1285 | } |
| 1286 | return false; |
| 1287 | } |
| 1288 | |
| 1289 | bool RegExpParser::RegExpParserState::IsInsideCaptureGroup( |
| 1290 | const RegExpCaptureName* name) { |
| 1291 | ASSERT(name != nullptr); |
| 1292 | for (RegExpParserState* s = this; s != nullptr; s = s->previous_state()) { |
| 1293 | if (s->capture_name() == nullptr) continue; |
| 1294 | if (IsSameName(s->capture_name(), name)) return true; |
| 1295 | } |
| 1296 | return false; |
| 1297 | } |
| 1298 | |
| 1299 | // QuantifierPrefix :: |
| 1300 | // { DecimalDigits } |
| 1301 | // { DecimalDigits , } |
| 1302 | // { DecimalDigits , DecimalDigits } |
| 1303 | // |
| 1304 | // Returns true if parsing succeeds, and set the min_out and max_out |
| 1305 | // values. Values are truncated to RegExpTree::kInfinity if they overflow. |
| 1306 | bool RegExpParser::ParseIntervalQuantifier(intptr_t* min_out, |
| 1307 | intptr_t* max_out) { |
| 1308 | ASSERT(current() == '{'); |
| 1309 | intptr_t start = position(); |
| 1310 | Advance(); |
| 1311 | intptr_t min = 0; |
| 1312 | if (!Utils::IsDecimalDigit(current())) { |
| 1313 | Reset(start); |
| 1314 | return false; |
| 1315 | } |
| 1316 | while (Utils::IsDecimalDigit(current())) { |
| 1317 | intptr_t next = current() - '0'; |
| 1318 | if (min > (RegExpTree::kInfinity - next) / 10) { |
| 1319 | // Overflow. Skip past remaining decimal digits and return -1. |
| 1320 | do { |
| 1321 | Advance(); |
| 1322 | } while (Utils::IsDecimalDigit(current())); |
| 1323 | min = RegExpTree::kInfinity; |
| 1324 | break; |
| 1325 | } |
| 1326 | min = 10 * min + next; |
| 1327 | Advance(); |
| 1328 | } |
| 1329 | intptr_t max = 0; |
| 1330 | if (current() == '}') { |
| 1331 | max = min; |
| 1332 | Advance(); |
| 1333 | } else if (current() == ',') { |
| 1334 | Advance(); |
| 1335 | if (current() == '}') { |
| 1336 | max = RegExpTree::kInfinity; |
| 1337 | Advance(); |
| 1338 | } else { |
| 1339 | while (Utils::IsDecimalDigit(current())) { |
| 1340 | intptr_t next = current() - '0'; |
| 1341 | if (max > (RegExpTree::kInfinity - next) / 10) { |
| 1342 | do { |
| 1343 | Advance(); |
| 1344 | } while (Utils::IsDecimalDigit(current())); |
| 1345 | max = RegExpTree::kInfinity; |
| 1346 | break; |
| 1347 | } |
| 1348 | max = 10 * max + next; |
| 1349 | Advance(); |
| 1350 | } |
| 1351 | if (current() != '}') { |
| 1352 | Reset(start); |
| 1353 | return false; |
| 1354 | } |
| 1355 | Advance(); |
| 1356 | } |
| 1357 | } else { |
| 1358 | Reset(start); |
| 1359 | return false; |
| 1360 | } |
| 1361 | *min_out = min; |
| 1362 | *max_out = max; |
| 1363 | return true; |
| 1364 | } |
| 1365 | |
| 1366 | uint32_t RegExpParser::ParseOctalLiteral() { |
| 1367 | ASSERT(('0' <= current() && current() <= '7') || current() == kEndMarker); |
| 1368 | // For compatibility with some other browsers (not all), we parse |
| 1369 | // up to three octal digits with a value below 256. |
| 1370 | uint32_t value = current() - '0'; |
| 1371 | Advance(); |
| 1372 | if ('0' <= current() && current() <= '7') { |
| 1373 | value = value * 8 + current() - '0'; |
| 1374 | Advance(); |
| 1375 | if (value < 32 && '0' <= current() && current() <= '7') { |
| 1376 | value = value * 8 + current() - '0'; |
| 1377 | Advance(); |
| 1378 | } |
| 1379 | } |
| 1380 | return value; |
| 1381 | } |
| 1382 | |
| 1383 | // Returns the value (0 .. 15) of a hexadecimal character c. |
| 1384 | // If c is not a legal hexadecimal character, returns a value < 0. |
| 1385 | static inline intptr_t HexValue(uint32_t c) { |
| 1386 | c -= '0'; |
| 1387 | if (static_cast<unsigned>(c) <= 9) return c; |
| 1388 | c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36. |
| 1389 | if (static_cast<unsigned>(c) <= 5) return c + 10; |
| 1390 | return -1; |
| 1391 | } |
| 1392 | |
| 1393 | bool RegExpParser::ParseHexEscape(intptr_t length, uint32_t* value) { |
| 1394 | intptr_t start = position(); |
| 1395 | uint32_t val = 0; |
| 1396 | bool done = false; |
| 1397 | for (intptr_t i = 0; !done; i++) { |
| 1398 | uint32_t c = current(); |
| 1399 | intptr_t d = HexValue(c); |
| 1400 | if (d < 0) { |
| 1401 | Reset(start); |
| 1402 | return false; |
| 1403 | } |
| 1404 | val = val * 16 + d; |
| 1405 | Advance(); |
| 1406 | if (i == length - 1) { |
| 1407 | done = true; |
| 1408 | } |
| 1409 | } |
| 1410 | *value = val; |
| 1411 | return true; |
| 1412 | } |
| 1413 | |
| 1414 | // This parses RegExpUnicodeEscapeSequence as described in ECMA262. |
| 1415 | bool RegExpParser::ParseUnicodeEscape(uint32_t* value) { |
| 1416 | // Accept both \uxxxx and \u{xxxxxx} (if harmony unicode escapes are |
| 1417 | // allowed). In the latter case, the number of hex digits between { } is |
| 1418 | // arbitrary. \ and u have already been read. |
| 1419 | if (current() == '{' && is_unicode()) { |
| 1420 | int start = position(); |
| 1421 | Advance(); |
| 1422 | if (ParseUnlimitedLengthHexNumber(Utf::kMaxCodePoint, value)) { |
| 1423 | if (current() == '}') { |
| 1424 | Advance(); |
| 1425 | return true; |
| 1426 | } |
| 1427 | } |
| 1428 | Reset(start); |
| 1429 | return false; |
| 1430 | } |
| 1431 | // \u but no {, or \u{...} escapes not allowed. |
| 1432 | bool result = ParseHexEscape(4, value); |
| 1433 | if (result && is_unicode() && Utf16::IsLeadSurrogate(*value) && |
| 1434 | current() == '\\') { |
| 1435 | // Attempt to read trail surrogate. |
| 1436 | int start = position(); |
| 1437 | if (Next() == 'u') { |
| 1438 | Advance(2); |
| 1439 | uint32_t trail; |
| 1440 | if (ParseHexEscape(4, &trail) && Utf16::IsTrailSurrogate(trail)) { |
| 1441 | *value = Utf16::Decode(static_cast<uint16_t>(*value), |
| 1442 | static_cast<uint16_t>(trail)); |
| 1443 | return true; |
| 1444 | } |
| 1445 | } |
| 1446 | Reset(start); |
| 1447 | } |
| 1448 | return result; |
| 1449 | } |
| 1450 | |
| 1451 | namespace { |
| 1452 | |
| 1453 | bool IsExactPropertyAlias(const char* property_name, UProperty property) { |
| 1454 | const char* short_name = u_getPropertyName(property, U_SHORT_PROPERTY_NAME); |
| 1455 | if (short_name != nullptr && strcmp(property_name, short_name) == 0) { |
| 1456 | return true; |
| 1457 | } |
| 1458 | for (int i = 0;; i++) { |
| 1459 | const char* long_name = u_getPropertyName( |
| 1460 | property, static_cast<UPropertyNameChoice>(U_LONG_PROPERTY_NAME + i)); |
| 1461 | if (long_name == nullptr) break; |
| 1462 | if (strcmp(property_name, long_name) == 0) return true; |
| 1463 | } |
| 1464 | return false; |
| 1465 | } |
| 1466 | |
| 1467 | bool IsExactPropertyValueAlias(const char* property_value_name, |
| 1468 | UProperty property, |
| 1469 | int32_t property_value) { |
| 1470 | const char* short_name = |
| 1471 | u_getPropertyValueName(property, property_value, U_SHORT_PROPERTY_NAME); |
| 1472 | if (short_name != nullptr && strcmp(property_value_name, short_name) == 0) { |
| 1473 | return true; |
| 1474 | } |
| 1475 | for (int i = 0;; i++) { |
| 1476 | const char* long_name = u_getPropertyValueName( |
| 1477 | property, property_value, |
| 1478 | static_cast<UPropertyNameChoice>(U_LONG_PROPERTY_NAME + i)); |
| 1479 | if (long_name == nullptr) break; |
| 1480 | if (strcmp(property_value_name, long_name) == 0) return true; |
| 1481 | } |
| 1482 | return false; |
| 1483 | } |
| 1484 | |
| 1485 | bool LookupPropertyValueName(UProperty property, |
| 1486 | const char* property_value_name, |
| 1487 | bool negate, |
| 1488 | ZoneGrowableArray<CharacterRange>* result) { |
| 1489 | UProperty property_for_lookup = property; |
| 1490 | if (property_for_lookup == UCHAR_SCRIPT_EXTENSIONS) { |
| 1491 | // For the property Script_Extensions, we have to do the property value |
| 1492 | // name lookup as if the property is Script. |
| 1493 | property_for_lookup = UCHAR_SCRIPT; |
| 1494 | } |
| 1495 | int32_t property_value = |
| 1496 | u_getPropertyValueEnum(property_for_lookup, property_value_name); |
| 1497 | if (property_value == UCHAR_INVALID_CODE) return false; |
| 1498 | |
| 1499 | // We require the property name to match exactly to one of the property value |
| 1500 | // aliases. However, u_getPropertyValueEnum uses loose matching. |
| 1501 | if (!IsExactPropertyValueAlias(property_value_name, property_for_lookup, |
| 1502 | property_value)) { |
| 1503 | return false; |
| 1504 | } |
| 1505 | |
| 1506 | UErrorCode ec = U_ZERO_ERROR; |
| 1507 | icu::UnicodeSet set; |
| 1508 | set.applyIntPropertyValue(property, property_value, ec); |
| 1509 | bool success = ec == U_ZERO_ERROR && (set.isEmpty() == 0); |
| 1510 | |
| 1511 | if (success) { |
| 1512 | set.removeAllStrings(); |
| 1513 | if (negate) set.complement(); |
| 1514 | for (int i = 0; i < set.getRangeCount(); i++) { |
| 1515 | result->Add( |
| 1516 | CharacterRange::Range(set.getRangeStart(i), set.getRangeEnd(i))); |
| 1517 | } |
| 1518 | } |
| 1519 | return success; |
| 1520 | } |
| 1521 | |
| 1522 | template <size_t N> |
| 1523 | inline bool NameEquals(const char* name, const char (&literal)[N]) { |
| 1524 | return strncmp(name, literal, N + 1) == 0; |
| 1525 | } |
| 1526 | |
| 1527 | bool LookupSpecialPropertyValueName(const char* name, |
| 1528 | ZoneGrowableArray<CharacterRange>* result, |
| 1529 | bool negate) { |
| 1530 | if (NameEquals(name, "Any" )) { |
| 1531 | if (negate) { |
| 1532 | // Leave the list of character ranges empty, since the negation of 'Any' |
| 1533 | // is the empty set. |
| 1534 | } else { |
| 1535 | result->Add(CharacterRange::Everything()); |
| 1536 | } |
| 1537 | } else if (NameEquals(name, "ASCII" )) { |
| 1538 | result->Add(negate ? CharacterRange::Range(0x80, Utf::kMaxCodePoint) |
| 1539 | : CharacterRange::Range(0x0, 0x7F)); |
| 1540 | } else if (NameEquals(name, "Assigned" )) { |
| 1541 | return LookupPropertyValueName(UCHAR_GENERAL_CATEGORY, "Unassigned" , |
| 1542 | !negate, result); |
| 1543 | } else { |
| 1544 | return false; |
| 1545 | } |
| 1546 | return true; |
| 1547 | } |
| 1548 | |
| 1549 | // Explicitly list supported binary properties. The spec forbids supporting |
| 1550 | // properties outside of this set to ensure interoperability. |
| 1551 | bool IsSupportedBinaryProperty(UProperty property) { |
| 1552 | switch (property) { |
| 1553 | case UCHAR_ALPHABETIC: |
| 1554 | // 'Any' is not supported by ICU. See LookupSpecialPropertyValueName. |
| 1555 | // 'ASCII' is not supported by ICU. See LookupSpecialPropertyValueName. |
| 1556 | case UCHAR_ASCII_HEX_DIGIT: |
| 1557 | // 'Assigned' is not supported by ICU. See LookupSpecialPropertyValueName. |
| 1558 | case UCHAR_BIDI_CONTROL: |
| 1559 | case UCHAR_BIDI_MIRRORED: |
| 1560 | case UCHAR_CASE_IGNORABLE: |
| 1561 | case UCHAR_CASED: |
| 1562 | case UCHAR_CHANGES_WHEN_CASEFOLDED: |
| 1563 | case UCHAR_CHANGES_WHEN_CASEMAPPED: |
| 1564 | case UCHAR_CHANGES_WHEN_LOWERCASED: |
| 1565 | case UCHAR_CHANGES_WHEN_NFKC_CASEFOLDED: |
| 1566 | case UCHAR_CHANGES_WHEN_TITLECASED: |
| 1567 | case UCHAR_CHANGES_WHEN_UPPERCASED: |
| 1568 | case UCHAR_DASH: |
| 1569 | case UCHAR_DEFAULT_IGNORABLE_CODE_POINT: |
| 1570 | case UCHAR_DEPRECATED: |
| 1571 | case UCHAR_DIACRITIC: |
| 1572 | case UCHAR_EMOJI: |
| 1573 | case UCHAR_EMOJI_COMPONENT: |
| 1574 | case UCHAR_EMOJI_MODIFIER_BASE: |
| 1575 | case UCHAR_EMOJI_MODIFIER: |
| 1576 | case UCHAR_EMOJI_PRESENTATION: |
| 1577 | case UCHAR_EXTENDED_PICTOGRAPHIC: |
| 1578 | case UCHAR_EXTENDER: |
| 1579 | case UCHAR_GRAPHEME_BASE: |
| 1580 | case UCHAR_GRAPHEME_EXTEND: |
| 1581 | case UCHAR_HEX_DIGIT: |
| 1582 | case UCHAR_ID_CONTINUE: |
| 1583 | case UCHAR_ID_START: |
| 1584 | case UCHAR_IDEOGRAPHIC: |
| 1585 | case UCHAR_IDS_BINARY_OPERATOR: |
| 1586 | case UCHAR_IDS_TRINARY_OPERATOR: |
| 1587 | case UCHAR_JOIN_CONTROL: |
| 1588 | case UCHAR_LOGICAL_ORDER_EXCEPTION: |
| 1589 | case UCHAR_LOWERCASE: |
| 1590 | case UCHAR_MATH: |
| 1591 | case UCHAR_NONCHARACTER_CODE_POINT: |
| 1592 | case UCHAR_PATTERN_SYNTAX: |
| 1593 | case UCHAR_PATTERN_WHITE_SPACE: |
| 1594 | case UCHAR_QUOTATION_MARK: |
| 1595 | case UCHAR_RADICAL: |
| 1596 | case UCHAR_REGIONAL_INDICATOR: |
| 1597 | case UCHAR_S_TERM: |
| 1598 | case UCHAR_SOFT_DOTTED: |
| 1599 | case UCHAR_TERMINAL_PUNCTUATION: |
| 1600 | case UCHAR_UNIFIED_IDEOGRAPH: |
| 1601 | case UCHAR_UPPERCASE: |
| 1602 | case UCHAR_VARIATION_SELECTOR: |
| 1603 | case UCHAR_WHITE_SPACE: |
| 1604 | case UCHAR_XID_CONTINUE: |
| 1605 | case UCHAR_XID_START: |
| 1606 | return true; |
| 1607 | default: |
| 1608 | break; |
| 1609 | } |
| 1610 | return false; |
| 1611 | } |
| 1612 | |
| 1613 | bool IsUnicodePropertyValueCharacter(char c) { |
| 1614 | // https://tc39.github.io/proposal-regexp-unicode-property-escapes/ |
| 1615 | // |
| 1616 | // Note that using this to validate each parsed char is quite conservative. |
| 1617 | // A possible alternative solution would be to only ensure the parsed |
| 1618 | // property name/value candidate string does not contain '\0' characters and |
| 1619 | // let ICU lookups trigger the final failure. |
| 1620 | if (Utils::IsAlphaNumeric(c)) return true; |
| 1621 | return (c == '_'); |
| 1622 | } |
| 1623 | |
| 1624 | } // anonymous namespace |
| 1625 | |
| 1626 | bool RegExpParser::ParsePropertyClassName(ZoneGrowableArray<char>* name_1, |
| 1627 | ZoneGrowableArray<char>* name_2) { |
| 1628 | ASSERT(name_1->is_empty()); |
| 1629 | ASSERT(name_2->is_empty()); |
| 1630 | // Parse the property class as follows: |
| 1631 | // - In \p{name}, 'name' is interpreted |
| 1632 | // - either as a general category property value name. |
| 1633 | // - or as a binary property name. |
| 1634 | // - In \p{name=value}, 'name' is interpreted as an enumerated property name, |
| 1635 | // and 'value' is interpreted as one of the available property value names. |
| 1636 | // - Aliases in PropertyAlias.txt and PropertyValueAlias.txt can be used. |
| 1637 | // - Loose matching is not applied. |
| 1638 | if (current() == '{') { |
| 1639 | // Parse \p{[PropertyName=]PropertyNameValue} |
| 1640 | for (Advance(); current() != '}' && current() != '='; Advance()) { |
| 1641 | if (!IsUnicodePropertyValueCharacter(current())) return false; |
| 1642 | if (!has_next()) return false; |
| 1643 | name_1->Add(static_cast<char>(current())); |
| 1644 | } |
| 1645 | if (current() == '=') { |
| 1646 | for (Advance(); current() != '}'; Advance()) { |
| 1647 | if (!IsUnicodePropertyValueCharacter(current())) return false; |
| 1648 | if (!has_next()) return false; |
| 1649 | name_2->Add(static_cast<char>(current())); |
| 1650 | } |
| 1651 | name_2->Add(0); // null-terminate string. |
| 1652 | } |
| 1653 | } else { |
| 1654 | return false; |
| 1655 | } |
| 1656 | Advance(); |
| 1657 | name_1->Add(0); // null-terminate string. |
| 1658 | |
| 1659 | ASSERT(static_cast<size_t>(name_1->length() - 1) == strlen(name_1->data())); |
| 1660 | ASSERT(name_2->is_empty() || |
| 1661 | static_cast<size_t>(name_2->length() - 1) == strlen(name_2->data())); |
| 1662 | return true; |
| 1663 | } |
| 1664 | |
| 1665 | bool RegExpParser::AddPropertyClassRange( |
| 1666 | ZoneGrowableArray<CharacterRange>* add_to, |
| 1667 | bool negate, |
| 1668 | ZoneGrowableArray<char>* name_1, |
| 1669 | ZoneGrowableArray<char>* name_2) { |
| 1670 | ASSERT(name_1->At(name_1->length() - 1) == '\0'); |
| 1671 | ASSERT(name_2->is_empty() || name_2->At(name_2->length() - 1) == '\0'); |
| 1672 | if (name_2->is_empty()) { |
| 1673 | // First attempt to interpret as general category property value name. |
| 1674 | const char* name = name_1->data(); |
| 1675 | if (LookupPropertyValueName(UCHAR_GENERAL_CATEGORY_MASK, name, negate, |
| 1676 | add_to)) { |
| 1677 | return true; |
| 1678 | } |
| 1679 | // Interpret "Any", "ASCII", and "Assigned". |
| 1680 | if (LookupSpecialPropertyValueName(name, add_to, negate)) { |
| 1681 | return true; |
| 1682 | } |
| 1683 | // Then attempt to interpret as binary property name with value name 'Y'. |
| 1684 | UProperty property = u_getPropertyEnum(name); |
| 1685 | if (!IsSupportedBinaryProperty(property)) return false; |
| 1686 | if (!IsExactPropertyAlias(name, property)) return false; |
| 1687 | return LookupPropertyValueName(property, negate ? "N" : "Y" , false, add_to); |
| 1688 | } else { |
| 1689 | // Both property name and value name are specified. Attempt to interpret |
| 1690 | // the property name as enumerated property. |
| 1691 | const char* property_name = name_1->data(); |
| 1692 | const char* value_name = name_2->data(); |
| 1693 | UProperty property = u_getPropertyEnum(property_name); |
| 1694 | if (!IsExactPropertyAlias(property_name, property)) return false; |
| 1695 | if (property == UCHAR_GENERAL_CATEGORY) { |
| 1696 | // We want to allow aggregate value names such as "Letter". |
| 1697 | property = UCHAR_GENERAL_CATEGORY_MASK; |
| 1698 | } else if (property != UCHAR_SCRIPT && |
| 1699 | property != UCHAR_SCRIPT_EXTENSIONS) { |
| 1700 | return false; |
| 1701 | } |
| 1702 | return LookupPropertyValueName(property, value_name, negate, add_to); |
| 1703 | } |
| 1704 | } |
| 1705 | |
| 1706 | bool RegExpParser::ParseUnlimitedLengthHexNumber(uint32_t max_value, |
| 1707 | uint32_t* value) { |
| 1708 | uint32_t x = 0; |
| 1709 | int d = HexValue(current()); |
| 1710 | if (d < 0) { |
| 1711 | return false; |
| 1712 | } |
| 1713 | while (d >= 0) { |
| 1714 | x = x * 16 + d; |
| 1715 | if (x > max_value) { |
| 1716 | return false; |
| 1717 | } |
| 1718 | Advance(); |
| 1719 | d = HexValue(current()); |
| 1720 | } |
| 1721 | *value = x; |
| 1722 | return true; |
| 1723 | } |
| 1724 | |
| 1725 | uint32_t RegExpParser::ParseClassCharacterEscape() { |
| 1726 | ASSERT(current() == '\\'); |
| 1727 | DEBUG_ASSERT(has_next() && !IsSpecialClassEscape(Next())); |
| 1728 | Advance(); |
| 1729 | switch (current()) { |
| 1730 | case 'b': |
| 1731 | Advance(); |
| 1732 | return '\b'; |
| 1733 | // ControlEscape :: one of |
| 1734 | // f n r t v |
| 1735 | case 'f': |
| 1736 | Advance(); |
| 1737 | return '\f'; |
| 1738 | case 'n': |
| 1739 | Advance(); |
| 1740 | return '\n'; |
| 1741 | case 'r': |
| 1742 | Advance(); |
| 1743 | return '\r'; |
| 1744 | case 't': |
| 1745 | Advance(); |
| 1746 | return '\t'; |
| 1747 | case 'v': |
| 1748 | Advance(); |
| 1749 | return '\v'; |
| 1750 | case 'c': { |
| 1751 | uint32_t controlLetter = Next(); |
| 1752 | uint32_t letter = controlLetter & ~('A' ^ 'a'); |
| 1753 | // For compatibility with JSC, inside a character class |
| 1754 | // we also accept digits and underscore as control characters. |
| 1755 | if (letter >= 'A' && letter <= 'Z') { |
| 1756 | Advance(2); |
| 1757 | // Control letters mapped to ASCII control characters in the range |
| 1758 | // 0x00-0x1f. |
| 1759 | return controlLetter & 0x1f; |
| 1760 | } |
| 1761 | if (is_unicode()) { |
| 1762 | // With /u, \c# or \c_ are invalid. |
| 1763 | ReportError("Invalid class escape" ); |
| 1764 | UNREACHABLE(); |
| 1765 | } |
| 1766 | if (Utils::IsDecimalDigit(controlLetter) || controlLetter == '_') { |
| 1767 | Advance(2); |
| 1768 | return controlLetter & 0x1f; |
| 1769 | } |
| 1770 | // We match JSC in reading the backslash as a literal |
| 1771 | // character instead of as starting an escape. |
| 1772 | return '\\'; |
| 1773 | } |
| 1774 | case '0': |
| 1775 | // With /u, \0 is interpreted as NUL if not followed by another digit. |
| 1776 | if (is_unicode() && !(Next() >= '0' && Next() <= '9')) { |
| 1777 | Advance(); |
| 1778 | return 0; |
| 1779 | } |
| 1780 | FALL_THROUGH; |
| 1781 | case '1': |
| 1782 | case '2': |
| 1783 | case '3': |
| 1784 | case '4': |
| 1785 | case '5': |
| 1786 | case '6': |
| 1787 | case '7': |
| 1788 | // For compatibility, we interpret a decimal escape that isn't |
| 1789 | // a back reference (and therefore either \0 or not valid according |
| 1790 | // to the specification) as a 1..3 digit octal character code. |
| 1791 | if (is_unicode()) { |
| 1792 | // With \u, decimal escape is not interpreted as octal character code. |
| 1793 | ReportError("Invalid class escape" ); |
| 1794 | UNREACHABLE(); |
| 1795 | } |
| 1796 | return ParseOctalLiteral(); |
| 1797 | case 'x': { |
| 1798 | Advance(); |
| 1799 | uint32_t value; |
| 1800 | if (ParseHexEscape(2, &value)) { |
| 1801 | return value; |
| 1802 | } |
| 1803 | if (is_unicode()) { |
| 1804 | // With \u, invalid escapes are not treated as identity escapes. |
| 1805 | ReportError("Invalid escape" ); |
| 1806 | UNREACHABLE(); |
| 1807 | } |
| 1808 | // If \x is not followed by a two-digit hexadecimal, treat it |
| 1809 | // as an identity escape. |
| 1810 | return 'x'; |
| 1811 | } |
| 1812 | case 'u': { |
| 1813 | Advance(); |
| 1814 | uint32_t value; |
| 1815 | if (ParseUnicodeEscape(&value)) { |
| 1816 | return value; |
| 1817 | } |
| 1818 | if (is_unicode()) { |
| 1819 | // With \u, invalid escapes are not treated as identity escapes. |
| 1820 | ReportError(kUnicodeIdentity); |
| 1821 | UNREACHABLE(); |
| 1822 | } |
| 1823 | // If \u is not followed by a four-digit hexadecimal, treat it |
| 1824 | // as an identity escape. |
| 1825 | return 'u'; |
| 1826 | } |
| 1827 | default: { |
| 1828 | // Extended identity escape. We accept any character that hasn't |
| 1829 | // been matched by a more specific case, not just the subset required |
| 1830 | // by the ECMAScript specification. |
| 1831 | uint32_t result = current(); |
| 1832 | if (!is_unicode() || IsSyntaxCharacterOrSlash(result) || result == '-') { |
| 1833 | Advance(); |
| 1834 | return result; |
| 1835 | } |
| 1836 | ReportError(kUnicodeIdentity); |
| 1837 | UNREACHABLE(); |
| 1838 | } |
| 1839 | } |
| 1840 | return 0; |
| 1841 | } |
| 1842 | |
| 1843 | bool RegExpParser::ParseClassEscape(ZoneGrowableArray<CharacterRange>* ranges, |
| 1844 | bool add_unicode_case_equivalents, |
| 1845 | uint32_t* char_out) { |
| 1846 | uint32_t first = current(); |
| 1847 | if (first == '\\') { |
| 1848 | switch (Next()) { |
| 1849 | case 'w': |
| 1850 | case 'W': |
| 1851 | case 'd': |
| 1852 | case 'D': |
| 1853 | case 's': |
| 1854 | case 'S': { |
| 1855 | CharacterRange::AddClassEscape(static_cast<uint16_t>(Next()), ranges, |
| 1856 | add_unicode_case_equivalents); |
| 1857 | Advance(2); |
| 1858 | return true; |
| 1859 | } |
| 1860 | case 'p': |
| 1861 | case 'P': { |
| 1862 | if (!is_unicode()) break; |
| 1863 | bool negate = Next() == 'P'; |
| 1864 | Advance(2); |
| 1865 | auto name_1 = new (Z) ZoneGrowableArray<char>(); |
| 1866 | auto name_2 = new (Z) ZoneGrowableArray<char>(); |
| 1867 | if (!ParsePropertyClassName(name_1, name_2) || |
| 1868 | !AddPropertyClassRange(ranges, negate, name_1, name_2)) { |
| 1869 | ReportError("Invalid property name in character class" ); |
| 1870 | UNREACHABLE(); |
| 1871 | } |
| 1872 | return true; |
| 1873 | } |
| 1874 | case kEndMarker: |
| 1875 | ReportError("\\ at end of pattern" ); |
| 1876 | UNREACHABLE(); |
| 1877 | default: |
| 1878 | break; |
| 1879 | } |
| 1880 | *char_out = ParseClassCharacterEscape(); |
| 1881 | return false; |
| 1882 | } |
| 1883 | Advance(); |
| 1884 | *char_out = first; |
| 1885 | return false; |
| 1886 | } |
| 1887 | |
| 1888 | RegExpTree* RegExpParser::ParseCharacterClass(const RegExpBuilder* builder) { |
| 1889 | static const char* kUnterminated = "Unterminated character class" ; |
| 1890 | static const char* kRangeInvalid = "Invalid character class" ; |
| 1891 | static const char* kRangeOutOfOrder = "Range out of order in character class" ; |
| 1892 | |
| 1893 | ASSERT(current() == '['); |
| 1894 | Advance(); |
| 1895 | bool is_negated = false; |
| 1896 | if (current() == '^') { |
| 1897 | is_negated = true; |
| 1898 | Advance(); |
| 1899 | } |
| 1900 | ZoneGrowableArray<CharacterRange>* ranges = |
| 1901 | new (Z) ZoneGrowableArray<CharacterRange>(2); |
| 1902 | bool add_unicode_case_equivalents = is_unicode() && builder->ignore_case(); |
| 1903 | while (has_more() && current() != ']') { |
| 1904 | uint32_t char_1 = 0; |
| 1905 | bool is_class_1 = |
| 1906 | ParseClassEscape(ranges, add_unicode_case_equivalents, &char_1); |
| 1907 | if (current() == '-') { |
| 1908 | Advance(); |
| 1909 | if (current() == kEndMarker) { |
| 1910 | // If we reach the end we break out of the loop and let the |
| 1911 | // following code report an error. |
| 1912 | break; |
| 1913 | } else if (current() == ']') { |
| 1914 | if (!is_class_1) ranges->Add(CharacterRange::Singleton(char_1)); |
| 1915 | ranges->Add(CharacterRange::Singleton('-')); |
| 1916 | break; |
| 1917 | } |
| 1918 | uint32_t char_2 = 0; |
| 1919 | bool is_class_2 = |
| 1920 | ParseClassEscape(ranges, add_unicode_case_equivalents, &char_2); |
| 1921 | if (is_class_1 || is_class_2) { |
| 1922 | // Either end is an escaped character class. Treat the '-' verbatim. |
| 1923 | if (is_unicode()) { |
| 1924 | // ES2015 21.2.2.15.1 step 1. |
| 1925 | ReportError(kRangeInvalid); |
| 1926 | UNREACHABLE(); |
| 1927 | } |
| 1928 | if (!is_class_1) ranges->Add(CharacterRange::Singleton(char_1)); |
| 1929 | ranges->Add(CharacterRange::Singleton('-')); |
| 1930 | if (!is_class_2) ranges->Add(CharacterRange::Singleton(char_2)); |
| 1931 | continue; |
| 1932 | } |
| 1933 | if (char_1 > char_2) { |
| 1934 | ReportError(kRangeOutOfOrder); |
| 1935 | UNREACHABLE(); |
| 1936 | } |
| 1937 | ranges->Add(CharacterRange::Range(char_1, char_2)); |
| 1938 | } else { |
| 1939 | if (!is_class_1) ranges->Add(CharacterRange::Singleton(char_1)); |
| 1940 | } |
| 1941 | } |
| 1942 | if (!has_more()) { |
| 1943 | ReportError(kUnterminated); |
| 1944 | UNREACHABLE(); |
| 1945 | } |
| 1946 | Advance(); |
| 1947 | RegExpCharacterClass::CharacterClassFlags character_class_flags = |
| 1948 | RegExpCharacterClass::DefaultFlags(); |
| 1949 | if (is_negated) character_class_flags |= RegExpCharacterClass::NEGATED; |
| 1950 | return new (Z) |
| 1951 | RegExpCharacterClass(ranges, builder->flags(), character_class_flags); |
| 1952 | } |
| 1953 | |
| 1954 | // ---------------------------------------------------------------------------- |
| 1955 | // The Parser interface. |
| 1956 | |
| 1957 | void RegExpParser::ParseRegExp(const String& input, |
| 1958 | RegExpFlags flags, |
| 1959 | RegExpCompileData* result) { |
| 1960 | ASSERT(result != NULL); |
| 1961 | RegExpParser parser(input, &result->error, flags); |
| 1962 | // Throws an exception if 'input' is not valid. |
| 1963 | RegExpTree* tree = parser.ParsePattern(); |
| 1964 | ASSERT(tree != NULL); |
| 1965 | ASSERT(result->error.IsNull()); |
| 1966 | result->tree = tree; |
| 1967 | intptr_t capture_count = parser.captures_started(); |
| 1968 | result->simple = tree->IsAtom() && parser.simple() && capture_count == 0; |
| 1969 | result->contains_anchor = parser.contains_anchor(); |
| 1970 | result->capture_name_map = parser.CreateCaptureNameMap(); |
| 1971 | result->capture_count = capture_count; |
| 1972 | } |
| 1973 | |
| 1974 | } // namespace dart |
| 1975 | |