1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | |
31 | // Google Mock - a framework for writing C++ mock classes. |
32 | // |
33 | // This file implements some commonly used argument matchers. More |
34 | // matchers can be defined by the user implementing the |
35 | // MatcherInterface<T> interface if necessary. |
36 | // |
37 | // See googletest/include/gtest/gtest-matchers.h for the definition of class |
38 | // Matcher, class MatcherInterface, and others. |
39 | |
40 | // GOOGLETEST_CM0002 DO NOT DELETE |
41 | |
42 | #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
43 | #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
44 | |
45 | #include <math.h> |
46 | #include <algorithm> |
47 | #include <initializer_list> |
48 | #include <iterator> |
49 | #include <limits> |
50 | #include <memory> |
51 | #include <ostream> // NOLINT |
52 | #include <sstream> |
53 | #include <string> |
54 | #include <type_traits> |
55 | #include <utility> |
56 | #include <vector> |
57 | #include "gmock/internal/gmock-internal-utils.h" |
58 | #include "gmock/internal/gmock-port.h" |
59 | #include "gtest/gtest.h" |
60 | |
61 | // MSVC warning C5046 is new as of VS2017 version 15.8. |
62 | #if defined(_MSC_VER) && _MSC_VER >= 1915 |
63 | #define GMOCK_MAYBE_5046_ 5046 |
64 | #else |
65 | #define GMOCK_MAYBE_5046_ |
66 | #endif |
67 | |
68 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
69 | 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
70 | clients of class B */ |
71 | /* Symbol involving type with internal linkage not defined */) |
72 | |
73 | namespace testing { |
74 | |
75 | // To implement a matcher Foo for type T, define: |
76 | // 1. a class FooMatcherImpl that implements the |
77 | // MatcherInterface<T> interface, and |
78 | // 2. a factory function that creates a Matcher<T> object from a |
79 | // FooMatcherImpl*. |
80 | // |
81 | // The two-level delegation design makes it possible to allow a user |
82 | // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
83 | // is impossible if we pass matchers by pointers. It also eases |
84 | // ownership management as Matcher objects can now be copied like |
85 | // plain values. |
86 | |
87 | // A match result listener that stores the explanation in a string. |
88 | class StringMatchResultListener : public MatchResultListener { |
89 | public: |
90 | StringMatchResultListener() : MatchResultListener(&ss_) {} |
91 | |
92 | // Returns the explanation accumulated so far. |
93 | std::string str() const { return ss_.str(); } |
94 | |
95 | // Clears the explanation accumulated so far. |
96 | void Clear() { ss_.str("" ); } |
97 | |
98 | private: |
99 | ::std::stringstream ss_; |
100 | |
101 | GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); |
102 | }; |
103 | |
104 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
105 | // and MUST NOT BE USED IN USER CODE!!! |
106 | namespace internal { |
107 | |
108 | // The MatcherCastImpl class template is a helper for implementing |
109 | // MatcherCast(). We need this helper in order to partially |
110 | // specialize the implementation of MatcherCast() (C++ allows |
111 | // class/struct templates to be partially specialized, but not |
112 | // function templates.). |
113 | |
114 | // This general version is used when MatcherCast()'s argument is a |
115 | // polymorphic matcher (i.e. something that can be converted to a |
116 | // Matcher but is not one yet; for example, Eq(value)) or a value (for |
117 | // example, "hello"). |
118 | template <typename T, typename M> |
119 | class MatcherCastImpl { |
120 | public: |
121 | static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
122 | // M can be a polymorphic matcher, in which case we want to use |
123 | // its conversion operator to create Matcher<T>. Or it can be a value |
124 | // that should be passed to the Matcher<T>'s constructor. |
125 | // |
126 | // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
127 | // polymorphic matcher because it'll be ambiguous if T has an implicit |
128 | // constructor from M (this usually happens when T has an implicit |
129 | // constructor from any type). |
130 | // |
131 | // It won't work to unconditionally implict_cast |
132 | // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
133 | // a user-defined conversion from M to T if one exists (assuming M is |
134 | // a value). |
135 | return CastImpl(polymorphic_matcher_or_value, |
136 | std::is_convertible<M, Matcher<T>>{}, |
137 | std::is_convertible<M, T>{}); |
138 | } |
139 | |
140 | private: |
141 | template <bool Ignore> |
142 | static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
143 | std::true_type /* convertible_to_matcher */, |
144 | bool_constant<Ignore>) { |
145 | // M is implicitly convertible to Matcher<T>, which means that either |
146 | // M is a polymorphic matcher or Matcher<T> has an implicit constructor |
147 | // from M. In both cases using the implicit conversion will produce a |
148 | // matcher. |
149 | // |
150 | // Even if T has an implicit constructor from M, it won't be called because |
151 | // creating Matcher<T> would require a chain of two user-defined conversions |
152 | // (first to create T from M and then to create Matcher<T> from T). |
153 | return polymorphic_matcher_or_value; |
154 | } |
155 | |
156 | // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
157 | // matcher. It's a value of a type implicitly convertible to T. Use direct |
158 | // initialization to create a matcher. |
159 | static Matcher<T> CastImpl(const M& value, |
160 | std::false_type /* convertible_to_matcher */, |
161 | std::true_type /* convertible_to_T */) { |
162 | return Matcher<T>(ImplicitCast_<T>(value)); |
163 | } |
164 | |
165 | // M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
166 | // polymorphic matcher Eq(value) in this case. |
167 | // |
168 | // Note that we first attempt to perform an implicit cast on the value and |
169 | // only fall back to the polymorphic Eq() matcher afterwards because the |
170 | // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
171 | // which might be undefined even when Rhs is implicitly convertible to Lhs |
172 | // (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
173 | // |
174 | // We don't define this method inline as we need the declaration of Eq(). |
175 | static Matcher<T> CastImpl(const M& value, |
176 | std::false_type /* convertible_to_matcher */, |
177 | std::false_type /* convertible_to_T */); |
178 | }; |
179 | |
180 | // This more specialized version is used when MatcherCast()'s argument |
181 | // is already a Matcher. This only compiles when type T can be |
182 | // statically converted to type U. |
183 | template <typename T, typename U> |
184 | class MatcherCastImpl<T, Matcher<U> > { |
185 | public: |
186 | static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
187 | return Matcher<T>(new Impl(source_matcher)); |
188 | } |
189 | |
190 | private: |
191 | class Impl : public MatcherInterface<T> { |
192 | public: |
193 | explicit Impl(const Matcher<U>& source_matcher) |
194 | : source_matcher_(source_matcher) {} |
195 | |
196 | // We delegate the matching logic to the source matcher. |
197 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
198 | using FromType = typename std::remove_cv<typename std::remove_pointer< |
199 | typename std::remove_reference<T>::type>::type>::type; |
200 | using ToType = typename std::remove_cv<typename std::remove_pointer< |
201 | typename std::remove_reference<U>::type>::type>::type; |
202 | // Do not allow implicitly converting base*/& to derived*/&. |
203 | static_assert( |
204 | // Do not trigger if only one of them is a pointer. That implies a |
205 | // regular conversion and not a down_cast. |
206 | (std::is_pointer<typename std::remove_reference<T>::type>::value != |
207 | std::is_pointer<typename std::remove_reference<U>::type>::value) || |
208 | std::is_same<FromType, ToType>::value || |
209 | !std::is_base_of<FromType, ToType>::value, |
210 | "Can't implicitly convert from <base> to <derived>" ); |
211 | |
212 | return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); |
213 | } |
214 | |
215 | void DescribeTo(::std::ostream* os) const override { |
216 | source_matcher_.DescribeTo(os); |
217 | } |
218 | |
219 | void DescribeNegationTo(::std::ostream* os) const override { |
220 | source_matcher_.DescribeNegationTo(os); |
221 | } |
222 | |
223 | private: |
224 | const Matcher<U> source_matcher_; |
225 | |
226 | GTEST_DISALLOW_ASSIGN_(Impl); |
227 | }; |
228 | }; |
229 | |
230 | // This even more specialized version is used for efficiently casting |
231 | // a matcher to its own type. |
232 | template <typename T> |
233 | class MatcherCastImpl<T, Matcher<T> > { |
234 | public: |
235 | static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
236 | }; |
237 | |
238 | } // namespace internal |
239 | |
240 | // In order to be safe and clear, casting between different matcher |
241 | // types is done explicitly via MatcherCast<T>(m), which takes a |
242 | // matcher m and returns a Matcher<T>. It compiles only when T can be |
243 | // statically converted to the argument type of m. |
244 | template <typename T, typename M> |
245 | inline Matcher<T> MatcherCast(const M& matcher) { |
246 | return internal::MatcherCastImpl<T, M>::Cast(matcher); |
247 | } |
248 | |
249 | // Implements SafeMatcherCast(). |
250 | // |
251 | // FIXME: The intermediate SafeMatcherCastImpl class was introduced as a |
252 | // workaround for a compiler bug, and can now be removed. |
253 | template <typename T> |
254 | class SafeMatcherCastImpl { |
255 | public: |
256 | // This overload handles polymorphic matchers and values only since |
257 | // monomorphic matchers are handled by the next one. |
258 | template <typename M> |
259 | static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
260 | return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value); |
261 | } |
262 | |
263 | // This overload handles monomorphic matchers. |
264 | // |
265 | // In general, if type T can be implicitly converted to type U, we can |
266 | // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
267 | // contravariant): just keep a copy of the original Matcher<U>, convert the |
268 | // argument from type T to U, and then pass it to the underlying Matcher<U>. |
269 | // The only exception is when U is a reference and T is not, as the |
270 | // underlying Matcher<U> may be interested in the argument's address, which |
271 | // is not preserved in the conversion from T to U. |
272 | template <typename U> |
273 | static inline Matcher<T> Cast(const Matcher<U>& matcher) { |
274 | // Enforce that T can be implicitly converted to U. |
275 | GTEST_COMPILE_ASSERT_((std::is_convertible<T, U>::value), |
276 | "T must be implicitly convertible to U" ); |
277 | // Enforce that we are not converting a non-reference type T to a reference |
278 | // type U. |
279 | GTEST_COMPILE_ASSERT_( |
280 | std::is_reference<T>::value || !std::is_reference<U>::value, |
281 | cannot_convert_non_reference_arg_to_reference); |
282 | // In case both T and U are arithmetic types, enforce that the |
283 | // conversion is not lossy. |
284 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
285 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
286 | const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
287 | const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
288 | GTEST_COMPILE_ASSERT_( |
289 | kTIsOther || kUIsOther || |
290 | (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
291 | conversion_of_arithmetic_types_must_be_lossless); |
292 | return MatcherCast<T>(matcher); |
293 | } |
294 | }; |
295 | |
296 | template <typename T, typename M> |
297 | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { |
298 | return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); |
299 | } |
300 | |
301 | // A<T>() returns a matcher that matches any value of type T. |
302 | template <typename T> |
303 | Matcher<T> A(); |
304 | |
305 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
306 | // and MUST NOT BE USED IN USER CODE!!! |
307 | namespace internal { |
308 | |
309 | // If the explanation is not empty, prints it to the ostream. |
310 | inline void PrintIfNotEmpty(const std::string& explanation, |
311 | ::std::ostream* os) { |
312 | if (explanation != "" && os != nullptr) { |
313 | *os << ", " << explanation; |
314 | } |
315 | } |
316 | |
317 | // Returns true if the given type name is easy to read by a human. |
318 | // This is used to decide whether printing the type of a value might |
319 | // be helpful. |
320 | inline bool IsReadableTypeName(const std::string& type_name) { |
321 | // We consider a type name readable if it's short or doesn't contain |
322 | // a template or function type. |
323 | return (type_name.length() <= 20 || |
324 | type_name.find_first_of("<(" ) == std::string::npos); |
325 | } |
326 | |
327 | // Matches the value against the given matcher, prints the value and explains |
328 | // the match result to the listener. Returns the match result. |
329 | // 'listener' must not be NULL. |
330 | // Value cannot be passed by const reference, because some matchers take a |
331 | // non-const argument. |
332 | template <typename Value, typename T> |
333 | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
334 | MatchResultListener* listener) { |
335 | if (!listener->IsInterested()) { |
336 | // If the listener is not interested, we do not need to construct the |
337 | // inner explanation. |
338 | return matcher.Matches(value); |
339 | } |
340 | |
341 | StringMatchResultListener inner_listener; |
342 | const bool match = matcher.MatchAndExplain(value, &inner_listener); |
343 | |
344 | UniversalPrint(value, listener->stream()); |
345 | #if GTEST_HAS_RTTI |
346 | const std::string& type_name = GetTypeName<Value>(); |
347 | if (IsReadableTypeName(type_name)) |
348 | *listener->stream() << " (of type " << type_name << ")" ; |
349 | #endif |
350 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
351 | |
352 | return match; |
353 | } |
354 | |
355 | // An internal helper class for doing compile-time loop on a tuple's |
356 | // fields. |
357 | template <size_t N> |
358 | class TuplePrefix { |
359 | public: |
360 | // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
361 | // if and only if the first N fields of matcher_tuple matches |
362 | // the first N fields of value_tuple, respectively. |
363 | template <typename MatcherTuple, typename ValueTuple> |
364 | static bool Matches(const MatcherTuple& matcher_tuple, |
365 | const ValueTuple& value_tuple) { |
366 | return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
367 | std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
368 | } |
369 | |
370 | // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
371 | // describes failures in matching the first N fields of matchers |
372 | // against the first N fields of values. If there is no failure, |
373 | // nothing will be streamed to os. |
374 | template <typename MatcherTuple, typename ValueTuple> |
375 | static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
376 | const ValueTuple& values, |
377 | ::std::ostream* os) { |
378 | // First, describes failures in the first N - 1 fields. |
379 | TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
380 | |
381 | // Then describes the failure (if any) in the (N - 1)-th (0-based) |
382 | // field. |
383 | typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
384 | std::get<N - 1>(matchers); |
385 | typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
386 | const Value& value = std::get<N - 1>(values); |
387 | StringMatchResultListener listener; |
388 | if (!matcher.MatchAndExplain(value, &listener)) { |
389 | *os << " Expected arg #" << N - 1 << ": " ; |
390 | std::get<N - 1>(matchers).DescribeTo(os); |
391 | *os << "\n Actual: " ; |
392 | // We remove the reference in type Value to prevent the |
393 | // universal printer from printing the address of value, which |
394 | // isn't interesting to the user most of the time. The |
395 | // matcher's MatchAndExplain() method handles the case when |
396 | // the address is interesting. |
397 | internal::UniversalPrint(value, os); |
398 | PrintIfNotEmpty(listener.str(), os); |
399 | *os << "\n" ; |
400 | } |
401 | } |
402 | }; |
403 | |
404 | // The base case. |
405 | template <> |
406 | class TuplePrefix<0> { |
407 | public: |
408 | template <typename MatcherTuple, typename ValueTuple> |
409 | static bool Matches(const MatcherTuple& /* matcher_tuple */, |
410 | const ValueTuple& /* value_tuple */) { |
411 | return true; |
412 | } |
413 | |
414 | template <typename MatcherTuple, typename ValueTuple> |
415 | static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
416 | const ValueTuple& /* values */, |
417 | ::std::ostream* /* os */) {} |
418 | }; |
419 | |
420 | // TupleMatches(matcher_tuple, value_tuple) returns true if and only if |
421 | // all matchers in matcher_tuple match the corresponding fields in |
422 | // value_tuple. It is a compiler error if matcher_tuple and |
423 | // value_tuple have different number of fields or incompatible field |
424 | // types. |
425 | template <typename MatcherTuple, typename ValueTuple> |
426 | bool TupleMatches(const MatcherTuple& matcher_tuple, |
427 | const ValueTuple& value_tuple) { |
428 | // Makes sure that matcher_tuple and value_tuple have the same |
429 | // number of fields. |
430 | GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == |
431 | std::tuple_size<ValueTuple>::value, |
432 | matcher_and_value_have_different_numbers_of_fields); |
433 | return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
434 | value_tuple); |
435 | } |
436 | |
437 | // Describes failures in matching matchers against values. If there |
438 | // is no failure, nothing will be streamed to os. |
439 | template <typename MatcherTuple, typename ValueTuple> |
440 | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
441 | const ValueTuple& values, |
442 | ::std::ostream* os) { |
443 | TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
444 | matchers, values, os); |
445 | } |
446 | |
447 | // TransformTupleValues and its helper. |
448 | // |
449 | // TransformTupleValuesHelper hides the internal machinery that |
450 | // TransformTupleValues uses to implement a tuple traversal. |
451 | template <typename Tuple, typename Func, typename OutIter> |
452 | class TransformTupleValuesHelper { |
453 | private: |
454 | typedef ::std::tuple_size<Tuple> TupleSize; |
455 | |
456 | public: |
457 | // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
458 | // Returns the final value of 'out' in case the caller needs it. |
459 | static OutIter Run(Func f, const Tuple& t, OutIter out) { |
460 | return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
461 | } |
462 | |
463 | private: |
464 | template <typename Tup, size_t kRemainingSize> |
465 | struct IterateOverTuple { |
466 | OutIter operator() (Func f, const Tup& t, OutIter out) const { |
467 | *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
468 | return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
469 | } |
470 | }; |
471 | template <typename Tup> |
472 | struct IterateOverTuple<Tup, 0> { |
473 | OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { |
474 | return out; |
475 | } |
476 | }; |
477 | }; |
478 | |
479 | // Successively invokes 'f(element)' on each element of the tuple 't', |
480 | // appending each result to the 'out' iterator. Returns the final value |
481 | // of 'out'. |
482 | template <typename Tuple, typename Func, typename OutIter> |
483 | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
484 | return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
485 | } |
486 | |
487 | // Implements A<T>(). |
488 | template <typename T> |
489 | class AnyMatcherImpl : public MatcherInterface<const T&> { |
490 | public: |
491 | bool MatchAndExplain(const T& /* x */, |
492 | MatchResultListener* /* listener */) const override { |
493 | return true; |
494 | } |
495 | void DescribeTo(::std::ostream* os) const override { *os << "is anything" ; } |
496 | void DescribeNegationTo(::std::ostream* os) const override { |
497 | // This is mostly for completeness' safe, as it's not very useful |
498 | // to write Not(A<bool>()). However we cannot completely rule out |
499 | // such a possibility, and it doesn't hurt to be prepared. |
500 | *os << "never matches" ; |
501 | } |
502 | }; |
503 | |
504 | // Implements _, a matcher that matches any value of any |
505 | // type. This is a polymorphic matcher, so we need a template type |
506 | // conversion operator to make it appearing as a Matcher<T> for any |
507 | // type T. |
508 | class AnythingMatcher { |
509 | public: |
510 | template <typename T> |
511 | operator Matcher<T>() const { return A<T>(); } |
512 | }; |
513 | |
514 | // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
515 | // pointer that is NULL. |
516 | class IsNullMatcher { |
517 | public: |
518 | template <typename Pointer> |
519 | bool MatchAndExplain(const Pointer& p, |
520 | MatchResultListener* /* listener */) const { |
521 | return p == nullptr; |
522 | } |
523 | |
524 | void DescribeTo(::std::ostream* os) const { *os << "is NULL" ; } |
525 | void DescribeNegationTo(::std::ostream* os) const { |
526 | *os << "isn't NULL" ; |
527 | } |
528 | }; |
529 | |
530 | // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
531 | // pointer that is not NULL. |
532 | class NotNullMatcher { |
533 | public: |
534 | template <typename Pointer> |
535 | bool MatchAndExplain(const Pointer& p, |
536 | MatchResultListener* /* listener */) const { |
537 | return p != nullptr; |
538 | } |
539 | |
540 | void DescribeTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
541 | void DescribeNegationTo(::std::ostream* os) const { |
542 | *os << "is NULL" ; |
543 | } |
544 | }; |
545 | |
546 | // Ref(variable) matches any argument that is a reference to |
547 | // 'variable'. This matcher is polymorphic as it can match any |
548 | // super type of the type of 'variable'. |
549 | // |
550 | // The RefMatcher template class implements Ref(variable). It can |
551 | // only be instantiated with a reference type. This prevents a user |
552 | // from mistakenly using Ref(x) to match a non-reference function |
553 | // argument. For example, the following will righteously cause a |
554 | // compiler error: |
555 | // |
556 | // int n; |
557 | // Matcher<int> m1 = Ref(n); // This won't compile. |
558 | // Matcher<int&> m2 = Ref(n); // This will compile. |
559 | template <typename T> |
560 | class RefMatcher; |
561 | |
562 | template <typename T> |
563 | class RefMatcher<T&> { |
564 | // Google Mock is a generic framework and thus needs to support |
565 | // mocking any function types, including those that take non-const |
566 | // reference arguments. Therefore the template parameter T (and |
567 | // Super below) can be instantiated to either a const type or a |
568 | // non-const type. |
569 | public: |
570 | // RefMatcher() takes a T& instead of const T&, as we want the |
571 | // compiler to catch using Ref(const_value) as a matcher for a |
572 | // non-const reference. |
573 | explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
574 | |
575 | template <typename Super> |
576 | operator Matcher<Super&>() const { |
577 | // By passing object_ (type T&) to Impl(), which expects a Super&, |
578 | // we make sure that Super is a super type of T. In particular, |
579 | // this catches using Ref(const_value) as a matcher for a |
580 | // non-const reference, as you cannot implicitly convert a const |
581 | // reference to a non-const reference. |
582 | return MakeMatcher(new Impl<Super>(object_)); |
583 | } |
584 | |
585 | private: |
586 | template <typename Super> |
587 | class Impl : public MatcherInterface<Super&> { |
588 | public: |
589 | explicit Impl(Super& x) : object_(x) {} // NOLINT |
590 | |
591 | // MatchAndExplain() takes a Super& (as opposed to const Super&) |
592 | // in order to match the interface MatcherInterface<Super&>. |
593 | bool MatchAndExplain(Super& x, |
594 | MatchResultListener* listener) const override { |
595 | *listener << "which is located @" << static_cast<const void*>(&x); |
596 | return &x == &object_; |
597 | } |
598 | |
599 | void DescribeTo(::std::ostream* os) const override { |
600 | *os << "references the variable " ; |
601 | UniversalPrinter<Super&>::Print(object_, os); |
602 | } |
603 | |
604 | void DescribeNegationTo(::std::ostream* os) const override { |
605 | *os << "does not reference the variable " ; |
606 | UniversalPrinter<Super&>::Print(object_, os); |
607 | } |
608 | |
609 | private: |
610 | const Super& object_; |
611 | |
612 | GTEST_DISALLOW_ASSIGN_(Impl); |
613 | }; |
614 | |
615 | T& object_; |
616 | |
617 | GTEST_DISALLOW_ASSIGN_(RefMatcher); |
618 | }; |
619 | |
620 | // Polymorphic helper functions for narrow and wide string matchers. |
621 | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
622 | return String::CaseInsensitiveCStringEquals(lhs, rhs); |
623 | } |
624 | |
625 | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
626 | const wchar_t* rhs) { |
627 | return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
628 | } |
629 | |
630 | // String comparison for narrow or wide strings that can have embedded NUL |
631 | // characters. |
632 | template <typename StringType> |
633 | bool CaseInsensitiveStringEquals(const StringType& s1, |
634 | const StringType& s2) { |
635 | // Are the heads equal? |
636 | if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
637 | return false; |
638 | } |
639 | |
640 | // Skip the equal heads. |
641 | const typename StringType::value_type nul = 0; |
642 | const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
643 | |
644 | // Are we at the end of either s1 or s2? |
645 | if (i1 == StringType::npos || i2 == StringType::npos) { |
646 | return i1 == i2; |
647 | } |
648 | |
649 | // Are the tails equal? |
650 | return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
651 | } |
652 | |
653 | // String matchers. |
654 | |
655 | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
656 | template <typename StringType> |
657 | class StrEqualityMatcher { |
658 | public: |
659 | StrEqualityMatcher(const StringType& str, bool expect_eq, |
660 | bool case_sensitive) |
661 | : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} |
662 | |
663 | #if GTEST_HAS_ABSL |
664 | bool MatchAndExplain(const absl::string_view& s, |
665 | MatchResultListener* listener) const { |
666 | // This should fail to compile if absl::string_view is used with wide |
667 | // strings. |
668 | const StringType& str = std::string(s); |
669 | return MatchAndExplain(str, listener); |
670 | } |
671 | #endif // GTEST_HAS_ABSL |
672 | |
673 | // Accepts pointer types, particularly: |
674 | // const char* |
675 | // char* |
676 | // const wchar_t* |
677 | // wchar_t* |
678 | template <typename CharType> |
679 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
680 | if (s == nullptr) { |
681 | return !expect_eq_; |
682 | } |
683 | return MatchAndExplain(StringType(s), listener); |
684 | } |
685 | |
686 | // Matches anything that can convert to StringType. |
687 | // |
688 | // This is a template, not just a plain function with const StringType&, |
689 | // because absl::string_view has some interfering non-explicit constructors. |
690 | template <typename MatcheeStringType> |
691 | bool MatchAndExplain(const MatcheeStringType& s, |
692 | MatchResultListener* /* listener */) const { |
693 | const StringType& s2(s); |
694 | const bool eq = case_sensitive_ ? s2 == string_ : |
695 | CaseInsensitiveStringEquals(s2, string_); |
696 | return expect_eq_ == eq; |
697 | } |
698 | |
699 | void DescribeTo(::std::ostream* os) const { |
700 | DescribeToHelper(expect_eq_, os); |
701 | } |
702 | |
703 | void DescribeNegationTo(::std::ostream* os) const { |
704 | DescribeToHelper(!expect_eq_, os); |
705 | } |
706 | |
707 | private: |
708 | void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
709 | *os << (expect_eq ? "is " : "isn't " ); |
710 | *os << "equal to " ; |
711 | if (!case_sensitive_) { |
712 | *os << "(ignoring case) " ; |
713 | } |
714 | UniversalPrint(string_, os); |
715 | } |
716 | |
717 | const StringType string_; |
718 | const bool expect_eq_; |
719 | const bool case_sensitive_; |
720 | |
721 | GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); |
722 | }; |
723 | |
724 | // Implements the polymorphic HasSubstr(substring) matcher, which |
725 | // can be used as a Matcher<T> as long as T can be converted to a |
726 | // string. |
727 | template <typename StringType> |
728 | class HasSubstrMatcher { |
729 | public: |
730 | explicit HasSubstrMatcher(const StringType& substring) |
731 | : substring_(substring) {} |
732 | |
733 | #if GTEST_HAS_ABSL |
734 | bool MatchAndExplain(const absl::string_view& s, |
735 | MatchResultListener* listener) const { |
736 | // This should fail to compile if absl::string_view is used with wide |
737 | // strings. |
738 | const StringType& str = std::string(s); |
739 | return MatchAndExplain(str, listener); |
740 | } |
741 | #endif // GTEST_HAS_ABSL |
742 | |
743 | // Accepts pointer types, particularly: |
744 | // const char* |
745 | // char* |
746 | // const wchar_t* |
747 | // wchar_t* |
748 | template <typename CharType> |
749 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
750 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
751 | } |
752 | |
753 | // Matches anything that can convert to StringType. |
754 | // |
755 | // This is a template, not just a plain function with const StringType&, |
756 | // because absl::string_view has some interfering non-explicit constructors. |
757 | template <typename MatcheeStringType> |
758 | bool MatchAndExplain(const MatcheeStringType& s, |
759 | MatchResultListener* /* listener */) const { |
760 | const StringType& s2(s); |
761 | return s2.find(substring_) != StringType::npos; |
762 | } |
763 | |
764 | // Describes what this matcher matches. |
765 | void DescribeTo(::std::ostream* os) const { |
766 | *os << "has substring " ; |
767 | UniversalPrint(substring_, os); |
768 | } |
769 | |
770 | void DescribeNegationTo(::std::ostream* os) const { |
771 | *os << "has no substring " ; |
772 | UniversalPrint(substring_, os); |
773 | } |
774 | |
775 | private: |
776 | const StringType substring_; |
777 | |
778 | GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); |
779 | }; |
780 | |
781 | // Implements the polymorphic StartsWith(substring) matcher, which |
782 | // can be used as a Matcher<T> as long as T can be converted to a |
783 | // string. |
784 | template <typename StringType> |
785 | class StartsWithMatcher { |
786 | public: |
787 | explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { |
788 | } |
789 | |
790 | #if GTEST_HAS_ABSL |
791 | bool MatchAndExplain(const absl::string_view& s, |
792 | MatchResultListener* listener) const { |
793 | // This should fail to compile if absl::string_view is used with wide |
794 | // strings. |
795 | const StringType& str = std::string(s); |
796 | return MatchAndExplain(str, listener); |
797 | } |
798 | #endif // GTEST_HAS_ABSL |
799 | |
800 | // Accepts pointer types, particularly: |
801 | // const char* |
802 | // char* |
803 | // const wchar_t* |
804 | // wchar_t* |
805 | template <typename CharType> |
806 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
807 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
808 | } |
809 | |
810 | // Matches anything that can convert to StringType. |
811 | // |
812 | // This is a template, not just a plain function with const StringType&, |
813 | // because absl::string_view has some interfering non-explicit constructors. |
814 | template <typename MatcheeStringType> |
815 | bool MatchAndExplain(const MatcheeStringType& s, |
816 | MatchResultListener* /* listener */) const { |
817 | const StringType& s2(s); |
818 | return s2.length() >= prefix_.length() && |
819 | s2.substr(0, prefix_.length()) == prefix_; |
820 | } |
821 | |
822 | void DescribeTo(::std::ostream* os) const { |
823 | *os << "starts with " ; |
824 | UniversalPrint(prefix_, os); |
825 | } |
826 | |
827 | void DescribeNegationTo(::std::ostream* os) const { |
828 | *os << "doesn't start with " ; |
829 | UniversalPrint(prefix_, os); |
830 | } |
831 | |
832 | private: |
833 | const StringType prefix_; |
834 | |
835 | GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); |
836 | }; |
837 | |
838 | // Implements the polymorphic EndsWith(substring) matcher, which |
839 | // can be used as a Matcher<T> as long as T can be converted to a |
840 | // string. |
841 | template <typename StringType> |
842 | class EndsWithMatcher { |
843 | public: |
844 | explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
845 | |
846 | #if GTEST_HAS_ABSL |
847 | bool MatchAndExplain(const absl::string_view& s, |
848 | MatchResultListener* listener) const { |
849 | // This should fail to compile if absl::string_view is used with wide |
850 | // strings. |
851 | const StringType& str = std::string(s); |
852 | return MatchAndExplain(str, listener); |
853 | } |
854 | #endif // GTEST_HAS_ABSL |
855 | |
856 | // Accepts pointer types, particularly: |
857 | // const char* |
858 | // char* |
859 | // const wchar_t* |
860 | // wchar_t* |
861 | template <typename CharType> |
862 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
863 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
864 | } |
865 | |
866 | // Matches anything that can convert to StringType. |
867 | // |
868 | // This is a template, not just a plain function with const StringType&, |
869 | // because absl::string_view has some interfering non-explicit constructors. |
870 | template <typename MatcheeStringType> |
871 | bool MatchAndExplain(const MatcheeStringType& s, |
872 | MatchResultListener* /* listener */) const { |
873 | const StringType& s2(s); |
874 | return s2.length() >= suffix_.length() && |
875 | s2.substr(s2.length() - suffix_.length()) == suffix_; |
876 | } |
877 | |
878 | void DescribeTo(::std::ostream* os) const { |
879 | *os << "ends with " ; |
880 | UniversalPrint(suffix_, os); |
881 | } |
882 | |
883 | void DescribeNegationTo(::std::ostream* os) const { |
884 | *os << "doesn't end with " ; |
885 | UniversalPrint(suffix_, os); |
886 | } |
887 | |
888 | private: |
889 | const StringType suffix_; |
890 | |
891 | GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); |
892 | }; |
893 | |
894 | // Implements a matcher that compares the two fields of a 2-tuple |
895 | // using one of the ==, <=, <, etc, operators. The two fields being |
896 | // compared don't have to have the same type. |
897 | // |
898 | // The matcher defined here is polymorphic (for example, Eq() can be |
899 | // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
900 | // etc). Therefore we use a template type conversion operator in the |
901 | // implementation. |
902 | template <typename D, typename Op> |
903 | class PairMatchBase { |
904 | public: |
905 | template <typename T1, typename T2> |
906 | operator Matcher<::std::tuple<T1, T2>>() const { |
907 | return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
908 | } |
909 | template <typename T1, typename T2> |
910 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
911 | return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
912 | } |
913 | |
914 | private: |
915 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
916 | return os << D::Desc(); |
917 | } |
918 | |
919 | template <typename Tuple> |
920 | class Impl : public MatcherInterface<Tuple> { |
921 | public: |
922 | bool MatchAndExplain(Tuple args, |
923 | MatchResultListener* /* listener */) const override { |
924 | return Op()(::std::get<0>(args), ::std::get<1>(args)); |
925 | } |
926 | void DescribeTo(::std::ostream* os) const override { |
927 | *os << "are " << GetDesc; |
928 | } |
929 | void DescribeNegationTo(::std::ostream* os) const override { |
930 | *os << "aren't " << GetDesc; |
931 | } |
932 | }; |
933 | }; |
934 | |
935 | class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { |
936 | public: |
937 | static const char* Desc() { return "an equal pair" ; } |
938 | }; |
939 | class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { |
940 | public: |
941 | static const char* Desc() { return "an unequal pair" ; } |
942 | }; |
943 | class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { |
944 | public: |
945 | static const char* Desc() { return "a pair where the first < the second" ; } |
946 | }; |
947 | class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { |
948 | public: |
949 | static const char* Desc() { return "a pair where the first > the second" ; } |
950 | }; |
951 | class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { |
952 | public: |
953 | static const char* Desc() { return "a pair where the first <= the second" ; } |
954 | }; |
955 | class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { |
956 | public: |
957 | static const char* Desc() { return "a pair where the first >= the second" ; } |
958 | }; |
959 | |
960 | // Implements the Not(...) matcher for a particular argument type T. |
961 | // We do not nest it inside the NotMatcher class template, as that |
962 | // will prevent different instantiations of NotMatcher from sharing |
963 | // the same NotMatcherImpl<T> class. |
964 | template <typename T> |
965 | class NotMatcherImpl : public MatcherInterface<const T&> { |
966 | public: |
967 | explicit NotMatcherImpl(const Matcher<T>& matcher) |
968 | : matcher_(matcher) {} |
969 | |
970 | bool MatchAndExplain(const T& x, |
971 | MatchResultListener* listener) const override { |
972 | return !matcher_.MatchAndExplain(x, listener); |
973 | } |
974 | |
975 | void DescribeTo(::std::ostream* os) const override { |
976 | matcher_.DescribeNegationTo(os); |
977 | } |
978 | |
979 | void DescribeNegationTo(::std::ostream* os) const override { |
980 | matcher_.DescribeTo(os); |
981 | } |
982 | |
983 | private: |
984 | const Matcher<T> matcher_; |
985 | |
986 | GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); |
987 | }; |
988 | |
989 | // Implements the Not(m) matcher, which matches a value that doesn't |
990 | // match matcher m. |
991 | template <typename InnerMatcher> |
992 | class NotMatcher { |
993 | public: |
994 | explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
995 | |
996 | // This template type conversion operator allows Not(m) to be used |
997 | // to match any type m can match. |
998 | template <typename T> |
999 | operator Matcher<T>() const { |
1000 | return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
1001 | } |
1002 | |
1003 | private: |
1004 | InnerMatcher matcher_; |
1005 | |
1006 | GTEST_DISALLOW_ASSIGN_(NotMatcher); |
1007 | }; |
1008 | |
1009 | // Implements the AllOf(m1, m2) matcher for a particular argument type |
1010 | // T. We do not nest it inside the BothOfMatcher class template, as |
1011 | // that will prevent different instantiations of BothOfMatcher from |
1012 | // sharing the same BothOfMatcherImpl<T> class. |
1013 | template <typename T> |
1014 | class AllOfMatcherImpl : public MatcherInterface<const T&> { |
1015 | public: |
1016 | explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) |
1017 | : matchers_(std::move(matchers)) {} |
1018 | |
1019 | void DescribeTo(::std::ostream* os) const override { |
1020 | *os << "(" ; |
1021 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1022 | if (i != 0) *os << ") and (" ; |
1023 | matchers_[i].DescribeTo(os); |
1024 | } |
1025 | *os << ")" ; |
1026 | } |
1027 | |
1028 | void DescribeNegationTo(::std::ostream* os) const override { |
1029 | *os << "(" ; |
1030 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1031 | if (i != 0) *os << ") or (" ; |
1032 | matchers_[i].DescribeNegationTo(os); |
1033 | } |
1034 | *os << ")" ; |
1035 | } |
1036 | |
1037 | bool MatchAndExplain(const T& x, |
1038 | MatchResultListener* listener) const override { |
1039 | // If either matcher1_ or matcher2_ doesn't match x, we only need |
1040 | // to explain why one of them fails. |
1041 | std::string all_match_result; |
1042 | |
1043 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1044 | StringMatchResultListener slistener; |
1045 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1046 | if (all_match_result.empty()) { |
1047 | all_match_result = slistener.str(); |
1048 | } else { |
1049 | std::string result = slistener.str(); |
1050 | if (!result.empty()) { |
1051 | all_match_result += ", and " ; |
1052 | all_match_result += result; |
1053 | } |
1054 | } |
1055 | } else { |
1056 | *listener << slistener.str(); |
1057 | return false; |
1058 | } |
1059 | } |
1060 | |
1061 | // Otherwise we need to explain why *both* of them match. |
1062 | *listener << all_match_result; |
1063 | return true; |
1064 | } |
1065 | |
1066 | private: |
1067 | const std::vector<Matcher<T> > matchers_; |
1068 | |
1069 | GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl); |
1070 | }; |
1071 | |
1072 | // VariadicMatcher is used for the variadic implementation of |
1073 | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
1074 | // CombiningMatcher<T> is used to recursively combine the provided matchers |
1075 | // (of type Args...). |
1076 | template <template <typename T> class CombiningMatcher, typename... Args> |
1077 | class VariadicMatcher { |
1078 | public: |
1079 | VariadicMatcher(const Args&... matchers) // NOLINT |
1080 | : matchers_(matchers...) { |
1081 | static_assert(sizeof...(Args) > 0, "Must have at least one matcher." ); |
1082 | } |
1083 | |
1084 | // This template type conversion operator allows an |
1085 | // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
1086 | // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
1087 | template <typename T> |
1088 | operator Matcher<T>() const { |
1089 | std::vector<Matcher<T> > values; |
1090 | CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
1091 | return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
1092 | } |
1093 | |
1094 | private: |
1095 | template <typename T, size_t I> |
1096 | void CreateVariadicMatcher(std::vector<Matcher<T> >* values, |
1097 | std::integral_constant<size_t, I>) const { |
1098 | values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
1099 | CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
1100 | } |
1101 | |
1102 | template <typename T> |
1103 | void CreateVariadicMatcher( |
1104 | std::vector<Matcher<T> >*, |
1105 | std::integral_constant<size_t, sizeof...(Args)>) const {} |
1106 | |
1107 | std::tuple<Args...> matchers_; |
1108 | |
1109 | GTEST_DISALLOW_ASSIGN_(VariadicMatcher); |
1110 | }; |
1111 | |
1112 | template <typename... Args> |
1113 | using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
1114 | |
1115 | // Implements the AnyOf(m1, m2) matcher for a particular argument type |
1116 | // T. We do not nest it inside the AnyOfMatcher class template, as |
1117 | // that will prevent different instantiations of AnyOfMatcher from |
1118 | // sharing the same EitherOfMatcherImpl<T> class. |
1119 | template <typename T> |
1120 | class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
1121 | public: |
1122 | explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) |
1123 | : matchers_(std::move(matchers)) {} |
1124 | |
1125 | void DescribeTo(::std::ostream* os) const override { |
1126 | *os << "(" ; |
1127 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1128 | if (i != 0) *os << ") or (" ; |
1129 | matchers_[i].DescribeTo(os); |
1130 | } |
1131 | *os << ")" ; |
1132 | } |
1133 | |
1134 | void DescribeNegationTo(::std::ostream* os) const override { |
1135 | *os << "(" ; |
1136 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1137 | if (i != 0) *os << ") and (" ; |
1138 | matchers_[i].DescribeNegationTo(os); |
1139 | } |
1140 | *os << ")" ; |
1141 | } |
1142 | |
1143 | bool MatchAndExplain(const T& x, |
1144 | MatchResultListener* listener) const override { |
1145 | std::string no_match_result; |
1146 | |
1147 | // If either matcher1_ or matcher2_ matches x, we just need to |
1148 | // explain why *one* of them matches. |
1149 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1150 | StringMatchResultListener slistener; |
1151 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1152 | *listener << slistener.str(); |
1153 | return true; |
1154 | } else { |
1155 | if (no_match_result.empty()) { |
1156 | no_match_result = slistener.str(); |
1157 | } else { |
1158 | std::string result = slistener.str(); |
1159 | if (!result.empty()) { |
1160 | no_match_result += ", and " ; |
1161 | no_match_result += result; |
1162 | } |
1163 | } |
1164 | } |
1165 | } |
1166 | |
1167 | // Otherwise we need to explain why *both* of them fail. |
1168 | *listener << no_match_result; |
1169 | return false; |
1170 | } |
1171 | |
1172 | private: |
1173 | const std::vector<Matcher<T> > matchers_; |
1174 | |
1175 | GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl); |
1176 | }; |
1177 | |
1178 | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
1179 | template <typename... Args> |
1180 | using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
1181 | |
1182 | // Wrapper for implementation of Any/AllOfArray(). |
1183 | template <template <class> class MatcherImpl, typename T> |
1184 | class SomeOfArrayMatcher { |
1185 | public: |
1186 | // Constructs the matcher from a sequence of element values or |
1187 | // element matchers. |
1188 | template <typename Iter> |
1189 | SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
1190 | |
1191 | template <typename U> |
1192 | operator Matcher<U>() const { // NOLINT |
1193 | using RawU = typename std::decay<U>::type; |
1194 | std::vector<Matcher<RawU>> matchers; |
1195 | for (const auto& matcher : matchers_) { |
1196 | matchers.push_back(MatcherCast<RawU>(matcher)); |
1197 | } |
1198 | return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
1199 | } |
1200 | |
1201 | private: |
1202 | const ::std::vector<T> matchers_; |
1203 | |
1204 | GTEST_DISALLOW_ASSIGN_(SomeOfArrayMatcher); |
1205 | }; |
1206 | |
1207 | template <typename T> |
1208 | using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
1209 | |
1210 | template <typename T> |
1211 | using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
1212 | |
1213 | // Used for implementing Truly(pred), which turns a predicate into a |
1214 | // matcher. |
1215 | template <typename Predicate> |
1216 | class TrulyMatcher { |
1217 | public: |
1218 | explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
1219 | |
1220 | // This method template allows Truly(pred) to be used as a matcher |
1221 | // for type T where T is the argument type of predicate 'pred'. The |
1222 | // argument is passed by reference as the predicate may be |
1223 | // interested in the address of the argument. |
1224 | template <typename T> |
1225 | bool MatchAndExplain(T& x, // NOLINT |
1226 | MatchResultListener* /* listener */) const { |
1227 | // Without the if-statement, MSVC sometimes warns about converting |
1228 | // a value to bool (warning 4800). |
1229 | // |
1230 | // We cannot write 'return !!predicate_(x);' as that doesn't work |
1231 | // when predicate_(x) returns a class convertible to bool but |
1232 | // having no operator!(). |
1233 | if (predicate_(x)) |
1234 | return true; |
1235 | return false; |
1236 | } |
1237 | |
1238 | void DescribeTo(::std::ostream* os) const { |
1239 | *os << "satisfies the given predicate" ; |
1240 | } |
1241 | |
1242 | void DescribeNegationTo(::std::ostream* os) const { |
1243 | *os << "doesn't satisfy the given predicate" ; |
1244 | } |
1245 | |
1246 | private: |
1247 | Predicate predicate_; |
1248 | |
1249 | GTEST_DISALLOW_ASSIGN_(TrulyMatcher); |
1250 | }; |
1251 | |
1252 | // Used for implementing Matches(matcher), which turns a matcher into |
1253 | // a predicate. |
1254 | template <typename M> |
1255 | class MatcherAsPredicate { |
1256 | public: |
1257 | explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
1258 | |
1259 | // This template operator() allows Matches(m) to be used as a |
1260 | // predicate on type T where m is a matcher on type T. |
1261 | // |
1262 | // The argument x is passed by reference instead of by value, as |
1263 | // some matcher may be interested in its address (e.g. as in |
1264 | // Matches(Ref(n))(x)). |
1265 | template <typename T> |
1266 | bool operator()(const T& x) const { |
1267 | // We let matcher_ commit to a particular type here instead of |
1268 | // when the MatcherAsPredicate object was constructed. This |
1269 | // allows us to write Matches(m) where m is a polymorphic matcher |
1270 | // (e.g. Eq(5)). |
1271 | // |
1272 | // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
1273 | // compile when matcher_ has type Matcher<const T&>; if we write |
1274 | // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
1275 | // when matcher_ has type Matcher<T>; if we just write |
1276 | // matcher_.Matches(x), it won't compile when matcher_ is |
1277 | // polymorphic, e.g. Eq(5). |
1278 | // |
1279 | // MatcherCast<const T&>() is necessary for making the code work |
1280 | // in all of the above situations. |
1281 | return MatcherCast<const T&>(matcher_).Matches(x); |
1282 | } |
1283 | |
1284 | private: |
1285 | M matcher_; |
1286 | |
1287 | GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); |
1288 | }; |
1289 | |
1290 | // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
1291 | // argument M must be a type that can be converted to a matcher. |
1292 | template <typename M> |
1293 | class PredicateFormatterFromMatcher { |
1294 | public: |
1295 | explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
1296 | |
1297 | // This template () operator allows a PredicateFormatterFromMatcher |
1298 | // object to act as a predicate-formatter suitable for using with |
1299 | // Google Test's EXPECT_PRED_FORMAT1() macro. |
1300 | template <typename T> |
1301 | AssertionResult operator()(const char* value_text, const T& x) const { |
1302 | // We convert matcher_ to a Matcher<const T&> *now* instead of |
1303 | // when the PredicateFormatterFromMatcher object was constructed, |
1304 | // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
1305 | // know which type to instantiate it to until we actually see the |
1306 | // type of x here. |
1307 | // |
1308 | // We write SafeMatcherCast<const T&>(matcher_) instead of |
1309 | // Matcher<const T&>(matcher_), as the latter won't compile when |
1310 | // matcher_ has type Matcher<T> (e.g. An<int>()). |
1311 | // We don't write MatcherCast<const T&> either, as that allows |
1312 | // potentially unsafe downcasting of the matcher argument. |
1313 | const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
1314 | |
1315 | // The expected path here is that the matcher should match (i.e. that most |
1316 | // tests pass) so optimize for this case. |
1317 | if (matcher.Matches(x)) { |
1318 | return AssertionSuccess(); |
1319 | } |
1320 | |
1321 | ::std::stringstream ss; |
1322 | ss << "Value of: " << value_text << "\n" |
1323 | << "Expected: " ; |
1324 | matcher.DescribeTo(&ss); |
1325 | |
1326 | // Rerun the matcher to "PrintAndExain" the failure. |
1327 | StringMatchResultListener listener; |
1328 | if (MatchPrintAndExplain(x, matcher, &listener)) { |
1329 | ss << "\n The matcher failed on the initial attempt; but passed when " |
1330 | "rerun to generate the explanation." ; |
1331 | } |
1332 | ss << "\n Actual: " << listener.str(); |
1333 | return AssertionFailure() << ss.str(); |
1334 | } |
1335 | |
1336 | private: |
1337 | const M matcher_; |
1338 | |
1339 | GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); |
1340 | }; |
1341 | |
1342 | // A helper function for converting a matcher to a predicate-formatter |
1343 | // without the user needing to explicitly write the type. This is |
1344 | // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
1345 | // Implementation detail: 'matcher' is received by-value to force decaying. |
1346 | template <typename M> |
1347 | inline PredicateFormatterFromMatcher<M> |
1348 | MakePredicateFormatterFromMatcher(M matcher) { |
1349 | return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
1350 | } |
1351 | |
1352 | // Implements the polymorphic floating point equality matcher, which matches |
1353 | // two float values using ULP-based approximation or, optionally, a |
1354 | // user-specified epsilon. The template is meant to be instantiated with |
1355 | // FloatType being either float or double. |
1356 | template <typename FloatType> |
1357 | class FloatingEqMatcher { |
1358 | public: |
1359 | // Constructor for FloatingEqMatcher. |
1360 | // The matcher's input will be compared with expected. The matcher treats two |
1361 | // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
1362 | // equality comparisons between NANs will always return false. We specify a |
1363 | // negative max_abs_error_ term to indicate that ULP-based approximation will |
1364 | // be used for comparison. |
1365 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : |
1366 | expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { |
1367 | } |
1368 | |
1369 | // Constructor that supports a user-specified max_abs_error that will be used |
1370 | // for comparison instead of ULP-based approximation. The max absolute |
1371 | // should be non-negative. |
1372 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
1373 | FloatType max_abs_error) |
1374 | : expected_(expected), |
1375 | nan_eq_nan_(nan_eq_nan), |
1376 | max_abs_error_(max_abs_error) { |
1377 | GTEST_CHECK_(max_abs_error >= 0) |
1378 | << ", where max_abs_error is" << max_abs_error; |
1379 | } |
1380 | |
1381 | // Implements floating point equality matcher as a Matcher<T>. |
1382 | template <typename T> |
1383 | class Impl : public MatcherInterface<T> { |
1384 | public: |
1385 | Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
1386 | : expected_(expected), |
1387 | nan_eq_nan_(nan_eq_nan), |
1388 | max_abs_error_(max_abs_error) {} |
1389 | |
1390 | bool MatchAndExplain(T value, |
1391 | MatchResultListener* listener) const override { |
1392 | const FloatingPoint<FloatType> actual(value), expected(expected_); |
1393 | |
1394 | // Compares NaNs first, if nan_eq_nan_ is true. |
1395 | if (actual.is_nan() || expected.is_nan()) { |
1396 | if (actual.is_nan() && expected.is_nan()) { |
1397 | return nan_eq_nan_; |
1398 | } |
1399 | // One is nan; the other is not nan. |
1400 | return false; |
1401 | } |
1402 | if (HasMaxAbsError()) { |
1403 | // We perform an equality check so that inf will match inf, regardless |
1404 | // of error bounds. If the result of value - expected_ would result in |
1405 | // overflow or if either value is inf, the default result is infinity, |
1406 | // which should only match if max_abs_error_ is also infinity. |
1407 | if (value == expected_) { |
1408 | return true; |
1409 | } |
1410 | |
1411 | const FloatType diff = value - expected_; |
1412 | if (fabs(diff) <= max_abs_error_) { |
1413 | return true; |
1414 | } |
1415 | |
1416 | if (listener->IsInterested()) { |
1417 | *listener << "which is " << diff << " from " << expected_; |
1418 | } |
1419 | return false; |
1420 | } else { |
1421 | return actual.AlmostEquals(expected); |
1422 | } |
1423 | } |
1424 | |
1425 | void DescribeTo(::std::ostream* os) const override { |
1426 | // os->precision() returns the previously set precision, which we |
1427 | // store to restore the ostream to its original configuration |
1428 | // after outputting. |
1429 | const ::std::streamsize old_precision = os->precision( |
1430 | ::std::numeric_limits<FloatType>::digits10 + 2); |
1431 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
1432 | if (nan_eq_nan_) { |
1433 | *os << "is NaN" ; |
1434 | } else { |
1435 | *os << "never matches" ; |
1436 | } |
1437 | } else { |
1438 | *os << "is approximately " << expected_; |
1439 | if (HasMaxAbsError()) { |
1440 | *os << " (absolute error <= " << max_abs_error_ << ")" ; |
1441 | } |
1442 | } |
1443 | os->precision(old_precision); |
1444 | } |
1445 | |
1446 | void DescribeNegationTo(::std::ostream* os) const override { |
1447 | // As before, get original precision. |
1448 | const ::std::streamsize old_precision = os->precision( |
1449 | ::std::numeric_limits<FloatType>::digits10 + 2); |
1450 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
1451 | if (nan_eq_nan_) { |
1452 | *os << "isn't NaN" ; |
1453 | } else { |
1454 | *os << "is anything" ; |
1455 | } |
1456 | } else { |
1457 | *os << "isn't approximately " << expected_; |
1458 | if (HasMaxAbsError()) { |
1459 | *os << " (absolute error > " << max_abs_error_ << ")" ; |
1460 | } |
1461 | } |
1462 | // Restore original precision. |
1463 | os->precision(old_precision); |
1464 | } |
1465 | |
1466 | private: |
1467 | bool HasMaxAbsError() const { |
1468 | return max_abs_error_ >= 0; |
1469 | } |
1470 | |
1471 | const FloatType expected_; |
1472 | const bool nan_eq_nan_; |
1473 | // max_abs_error will be used for value comparison when >= 0. |
1474 | const FloatType max_abs_error_; |
1475 | |
1476 | GTEST_DISALLOW_ASSIGN_(Impl); |
1477 | }; |
1478 | |
1479 | // The following 3 type conversion operators allow FloatEq(expected) and |
1480 | // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
1481 | // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
1482 | // (While Google's C++ coding style doesn't allow arguments passed |
1483 | // by non-const reference, we may see them in code not conforming to |
1484 | // the style. Therefore Google Mock needs to support them.) |
1485 | operator Matcher<FloatType>() const { |
1486 | return MakeMatcher( |
1487 | new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
1488 | } |
1489 | |
1490 | operator Matcher<const FloatType&>() const { |
1491 | return MakeMatcher( |
1492 | new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
1493 | } |
1494 | |
1495 | operator Matcher<FloatType&>() const { |
1496 | return MakeMatcher( |
1497 | new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
1498 | } |
1499 | |
1500 | private: |
1501 | const FloatType expected_; |
1502 | const bool nan_eq_nan_; |
1503 | // max_abs_error will be used for value comparison when >= 0. |
1504 | const FloatType max_abs_error_; |
1505 | |
1506 | GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); |
1507 | }; |
1508 | |
1509 | // A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
1510 | // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
1511 | // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
1512 | // against y. The former implements "Eq", the latter "Near". At present, there |
1513 | // is no version that compares NaNs as equal. |
1514 | template <typename FloatType> |
1515 | class FloatingEq2Matcher { |
1516 | public: |
1517 | FloatingEq2Matcher() { Init(-1, false); } |
1518 | |
1519 | explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } |
1520 | |
1521 | explicit FloatingEq2Matcher(FloatType max_abs_error) { |
1522 | Init(max_abs_error, false); |
1523 | } |
1524 | |
1525 | FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
1526 | Init(max_abs_error, nan_eq_nan); |
1527 | } |
1528 | |
1529 | template <typename T1, typename T2> |
1530 | operator Matcher<::std::tuple<T1, T2>>() const { |
1531 | return MakeMatcher( |
1532 | new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
1533 | } |
1534 | template <typename T1, typename T2> |
1535 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
1536 | return MakeMatcher( |
1537 | new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
1538 | } |
1539 | |
1540 | private: |
1541 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
1542 | return os << "an almost-equal pair" ; |
1543 | } |
1544 | |
1545 | template <typename Tuple> |
1546 | class Impl : public MatcherInterface<Tuple> { |
1547 | public: |
1548 | Impl(FloatType max_abs_error, bool nan_eq_nan) : |
1549 | max_abs_error_(max_abs_error), |
1550 | nan_eq_nan_(nan_eq_nan) {} |
1551 | |
1552 | bool MatchAndExplain(Tuple args, |
1553 | MatchResultListener* listener) const override { |
1554 | if (max_abs_error_ == -1) { |
1555 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
1556 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
1557 | ::std::get<1>(args), listener); |
1558 | } else { |
1559 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
1560 | max_abs_error_); |
1561 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
1562 | ::std::get<1>(args), listener); |
1563 | } |
1564 | } |
1565 | void DescribeTo(::std::ostream* os) const override { |
1566 | *os << "are " << GetDesc; |
1567 | } |
1568 | void DescribeNegationTo(::std::ostream* os) const override { |
1569 | *os << "aren't " << GetDesc; |
1570 | } |
1571 | |
1572 | private: |
1573 | FloatType max_abs_error_; |
1574 | const bool nan_eq_nan_; |
1575 | }; |
1576 | |
1577 | void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
1578 | max_abs_error_ = max_abs_error_val; |
1579 | nan_eq_nan_ = nan_eq_nan_val; |
1580 | } |
1581 | FloatType max_abs_error_; |
1582 | bool nan_eq_nan_; |
1583 | }; |
1584 | |
1585 | // Implements the Pointee(m) matcher for matching a pointer whose |
1586 | // pointee matches matcher m. The pointer can be either raw or smart. |
1587 | template <typename InnerMatcher> |
1588 | class PointeeMatcher { |
1589 | public: |
1590 | explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
1591 | |
1592 | // This type conversion operator template allows Pointee(m) to be |
1593 | // used as a matcher for any pointer type whose pointee type is |
1594 | // compatible with the inner matcher, where type Pointer can be |
1595 | // either a raw pointer or a smart pointer. |
1596 | // |
1597 | // The reason we do this instead of relying on |
1598 | // MakePolymorphicMatcher() is that the latter is not flexible |
1599 | // enough for implementing the DescribeTo() method of Pointee(). |
1600 | template <typename Pointer> |
1601 | operator Matcher<Pointer>() const { |
1602 | return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
1603 | } |
1604 | |
1605 | private: |
1606 | // The monomorphic implementation that works for a particular pointer type. |
1607 | template <typename Pointer> |
1608 | class Impl : public MatcherInterface<Pointer> { |
1609 | public: |
1610 | typedef typename PointeeOf<typename std::remove_const< |
1611 | typename std::remove_reference<Pointer>::type>::type>::type Pointee; |
1612 | |
1613 | explicit Impl(const InnerMatcher& matcher) |
1614 | : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
1615 | |
1616 | void DescribeTo(::std::ostream* os) const override { |
1617 | *os << "points to a value that " ; |
1618 | matcher_.DescribeTo(os); |
1619 | } |
1620 | |
1621 | void DescribeNegationTo(::std::ostream* os) const override { |
1622 | *os << "does not point to a value that " ; |
1623 | matcher_.DescribeTo(os); |
1624 | } |
1625 | |
1626 | bool MatchAndExplain(Pointer pointer, |
1627 | MatchResultListener* listener) const override { |
1628 | if (GetRawPointer(pointer) == nullptr) return false; |
1629 | |
1630 | *listener << "which points to " ; |
1631 | return MatchPrintAndExplain(*pointer, matcher_, listener); |
1632 | } |
1633 | |
1634 | private: |
1635 | const Matcher<const Pointee&> matcher_; |
1636 | |
1637 | GTEST_DISALLOW_ASSIGN_(Impl); |
1638 | }; |
1639 | |
1640 | const InnerMatcher matcher_; |
1641 | |
1642 | GTEST_DISALLOW_ASSIGN_(PointeeMatcher); |
1643 | }; |
1644 | |
1645 | #if GTEST_HAS_RTTI |
1646 | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
1647 | // reference that matches inner_matcher when dynamic_cast<T> is applied. |
1648 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
1649 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
1650 | // If To is a reference and the cast fails, this matcher returns false |
1651 | // immediately. |
1652 | template <typename To> |
1653 | class WhenDynamicCastToMatcherBase { |
1654 | public: |
1655 | explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
1656 | : matcher_(matcher) {} |
1657 | |
1658 | void DescribeTo(::std::ostream* os) const { |
1659 | GetCastTypeDescription(os); |
1660 | matcher_.DescribeTo(os); |
1661 | } |
1662 | |
1663 | void DescribeNegationTo(::std::ostream* os) const { |
1664 | GetCastTypeDescription(os); |
1665 | matcher_.DescribeNegationTo(os); |
1666 | } |
1667 | |
1668 | protected: |
1669 | const Matcher<To> matcher_; |
1670 | |
1671 | static std::string GetToName() { |
1672 | return GetTypeName<To>(); |
1673 | } |
1674 | |
1675 | private: |
1676 | static void GetCastTypeDescription(::std::ostream* os) { |
1677 | *os << "when dynamic_cast to " << GetToName() << ", " ; |
1678 | } |
1679 | |
1680 | GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase); |
1681 | }; |
1682 | |
1683 | // Primary template. |
1684 | // To is a pointer. Cast and forward the result. |
1685 | template <typename To> |
1686 | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
1687 | public: |
1688 | explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
1689 | : WhenDynamicCastToMatcherBase<To>(matcher) {} |
1690 | |
1691 | template <typename From> |
1692 | bool MatchAndExplain(From from, MatchResultListener* listener) const { |
1693 | To to = dynamic_cast<To>(from); |
1694 | return MatchPrintAndExplain(to, this->matcher_, listener); |
1695 | } |
1696 | }; |
1697 | |
1698 | // Specialize for references. |
1699 | // In this case we return false if the dynamic_cast fails. |
1700 | template <typename To> |
1701 | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
1702 | public: |
1703 | explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
1704 | : WhenDynamicCastToMatcherBase<To&>(matcher) {} |
1705 | |
1706 | template <typename From> |
1707 | bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
1708 | // We don't want an std::bad_cast here, so do the cast with pointers. |
1709 | To* to = dynamic_cast<To*>(&from); |
1710 | if (to == nullptr) { |
1711 | *listener << "which cannot be dynamic_cast to " << this->GetToName(); |
1712 | return false; |
1713 | } |
1714 | return MatchPrintAndExplain(*to, this->matcher_, listener); |
1715 | } |
1716 | }; |
1717 | #endif // GTEST_HAS_RTTI |
1718 | |
1719 | // Implements the Field() matcher for matching a field (i.e. member |
1720 | // variable) of an object. |
1721 | template <typename Class, typename FieldType> |
1722 | class FieldMatcher { |
1723 | public: |
1724 | FieldMatcher(FieldType Class::*field, |
1725 | const Matcher<const FieldType&>& matcher) |
1726 | : field_(field), matcher_(matcher), whose_field_("whose given field " ) {} |
1727 | |
1728 | FieldMatcher(const std::string& field_name, FieldType Class::*field, |
1729 | const Matcher<const FieldType&>& matcher) |
1730 | : field_(field), |
1731 | matcher_(matcher), |
1732 | whose_field_("whose field `" + field_name + "` " ) {} |
1733 | |
1734 | void DescribeTo(::std::ostream* os) const { |
1735 | *os << "is an object " << whose_field_; |
1736 | matcher_.DescribeTo(os); |
1737 | } |
1738 | |
1739 | void DescribeNegationTo(::std::ostream* os) const { |
1740 | *os << "is an object " << whose_field_; |
1741 | matcher_.DescribeNegationTo(os); |
1742 | } |
1743 | |
1744 | template <typename T> |
1745 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
1746 | // FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
1747 | // a compiler bug, and can now be removed. |
1748 | return MatchAndExplainImpl( |
1749 | typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
1750 | value, listener); |
1751 | } |
1752 | |
1753 | private: |
1754 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
1755 | const Class& obj, |
1756 | MatchResultListener* listener) const { |
1757 | *listener << whose_field_ << "is " ; |
1758 | return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
1759 | } |
1760 | |
1761 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
1762 | MatchResultListener* listener) const { |
1763 | if (p == nullptr) return false; |
1764 | |
1765 | *listener << "which points to an object " ; |
1766 | // Since *p has a field, it must be a class/struct/union type and |
1767 | // thus cannot be a pointer. Therefore we pass false_type() as |
1768 | // the first argument. |
1769 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
1770 | } |
1771 | |
1772 | const FieldType Class::*field_; |
1773 | const Matcher<const FieldType&> matcher_; |
1774 | |
1775 | // Contains either "whose given field " if the name of the field is unknown |
1776 | // or "whose field `name_of_field` " if the name is known. |
1777 | const std::string whose_field_; |
1778 | |
1779 | GTEST_DISALLOW_ASSIGN_(FieldMatcher); |
1780 | }; |
1781 | |
1782 | // Implements the Property() matcher for matching a property |
1783 | // (i.e. return value of a getter method) of an object. |
1784 | // |
1785 | // Property is a const-qualified member function of Class returning |
1786 | // PropertyType. |
1787 | template <typename Class, typename PropertyType, typename Property> |
1788 | class PropertyMatcher { |
1789 | public: |
1790 | typedef const PropertyType& RefToConstProperty; |
1791 | |
1792 | PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
1793 | : property_(property), |
1794 | matcher_(matcher), |
1795 | whose_property_("whose given property " ) {} |
1796 | |
1797 | PropertyMatcher(const std::string& property_name, Property property, |
1798 | const Matcher<RefToConstProperty>& matcher) |
1799 | : property_(property), |
1800 | matcher_(matcher), |
1801 | whose_property_("whose property `" + property_name + "` " ) {} |
1802 | |
1803 | void DescribeTo(::std::ostream* os) const { |
1804 | *os << "is an object " << whose_property_; |
1805 | matcher_.DescribeTo(os); |
1806 | } |
1807 | |
1808 | void DescribeNegationTo(::std::ostream* os) const { |
1809 | *os << "is an object " << whose_property_; |
1810 | matcher_.DescribeNegationTo(os); |
1811 | } |
1812 | |
1813 | template <typename T> |
1814 | bool MatchAndExplain(const T&value, MatchResultListener* listener) const { |
1815 | return MatchAndExplainImpl( |
1816 | typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
1817 | value, listener); |
1818 | } |
1819 | |
1820 | private: |
1821 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
1822 | const Class& obj, |
1823 | MatchResultListener* listener) const { |
1824 | *listener << whose_property_ << "is " ; |
1825 | // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
1826 | // which takes a non-const reference as argument. |
1827 | RefToConstProperty result = (obj.*property_)(); |
1828 | return MatchPrintAndExplain(result, matcher_, listener); |
1829 | } |
1830 | |
1831 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
1832 | MatchResultListener* listener) const { |
1833 | if (p == nullptr) return false; |
1834 | |
1835 | *listener << "which points to an object " ; |
1836 | // Since *p has a property method, it must be a class/struct/union |
1837 | // type and thus cannot be a pointer. Therefore we pass |
1838 | // false_type() as the first argument. |
1839 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
1840 | } |
1841 | |
1842 | Property property_; |
1843 | const Matcher<RefToConstProperty> matcher_; |
1844 | |
1845 | // Contains either "whose given property " if the name of the property is |
1846 | // unknown or "whose property `name_of_property` " if the name is known. |
1847 | const std::string whose_property_; |
1848 | |
1849 | GTEST_DISALLOW_ASSIGN_(PropertyMatcher); |
1850 | }; |
1851 | |
1852 | // Type traits specifying various features of different functors for ResultOf. |
1853 | // The default template specifies features for functor objects. |
1854 | template <typename Functor> |
1855 | struct CallableTraits { |
1856 | typedef Functor StorageType; |
1857 | |
1858 | static void CheckIsValid(Functor /* functor */) {} |
1859 | |
1860 | template <typename T> |
1861 | static auto Invoke(Functor f, T arg) -> decltype(f(arg)) { return f(arg); } |
1862 | }; |
1863 | |
1864 | // Specialization for function pointers. |
1865 | template <typename ArgType, typename ResType> |
1866 | struct CallableTraits<ResType(*)(ArgType)> { |
1867 | typedef ResType ResultType; |
1868 | typedef ResType(*StorageType)(ArgType); |
1869 | |
1870 | static void CheckIsValid(ResType(*f)(ArgType)) { |
1871 | GTEST_CHECK_(f != nullptr) |
1872 | << "NULL function pointer is passed into ResultOf()." ; |
1873 | } |
1874 | template <typename T> |
1875 | static ResType Invoke(ResType(*f)(ArgType), T arg) { |
1876 | return (*f)(arg); |
1877 | } |
1878 | }; |
1879 | |
1880 | // Implements the ResultOf() matcher for matching a return value of a |
1881 | // unary function of an object. |
1882 | template <typename Callable, typename InnerMatcher> |
1883 | class ResultOfMatcher { |
1884 | public: |
1885 | ResultOfMatcher(Callable callable, InnerMatcher matcher) |
1886 | : callable_(std::move(callable)), matcher_(std::move(matcher)) { |
1887 | CallableTraits<Callable>::CheckIsValid(callable_); |
1888 | } |
1889 | |
1890 | template <typename T> |
1891 | operator Matcher<T>() const { |
1892 | return Matcher<T>(new Impl<T>(callable_, matcher_)); |
1893 | } |
1894 | |
1895 | private: |
1896 | typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
1897 | |
1898 | template <typename T> |
1899 | class Impl : public MatcherInterface<T> { |
1900 | using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
1901 | std::declval<CallableStorageType>(), std::declval<T>())); |
1902 | |
1903 | public: |
1904 | template <typename M> |
1905 | Impl(const CallableStorageType& callable, const M& matcher) |
1906 | : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} |
1907 | |
1908 | void DescribeTo(::std::ostream* os) const override { |
1909 | *os << "is mapped by the given callable to a value that " ; |
1910 | matcher_.DescribeTo(os); |
1911 | } |
1912 | |
1913 | void DescribeNegationTo(::std::ostream* os) const override { |
1914 | *os << "is mapped by the given callable to a value that " ; |
1915 | matcher_.DescribeNegationTo(os); |
1916 | } |
1917 | |
1918 | bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
1919 | *listener << "which is mapped by the given callable to " ; |
1920 | // Cannot pass the return value directly to MatchPrintAndExplain, which |
1921 | // takes a non-const reference as argument. |
1922 | // Also, specifying template argument explicitly is needed because T could |
1923 | // be a non-const reference (e.g. Matcher<Uncopyable&>). |
1924 | ResultType result = |
1925 | CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
1926 | return MatchPrintAndExplain(result, matcher_, listener); |
1927 | } |
1928 | |
1929 | private: |
1930 | // Functors often define operator() as non-const method even though |
1931 | // they are actually stateless. But we need to use them even when |
1932 | // 'this' is a const pointer. It's the user's responsibility not to |
1933 | // use stateful callables with ResultOf(), which doesn't guarantee |
1934 | // how many times the callable will be invoked. |
1935 | mutable CallableStorageType callable_; |
1936 | const Matcher<ResultType> matcher_; |
1937 | |
1938 | GTEST_DISALLOW_ASSIGN_(Impl); |
1939 | }; // class Impl |
1940 | |
1941 | const CallableStorageType callable_; |
1942 | const InnerMatcher matcher_; |
1943 | |
1944 | GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); |
1945 | }; |
1946 | |
1947 | // Implements a matcher that checks the size of an STL-style container. |
1948 | template <typename SizeMatcher> |
1949 | class SizeIsMatcher { |
1950 | public: |
1951 | explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
1952 | : size_matcher_(size_matcher) { |
1953 | } |
1954 | |
1955 | template <typename Container> |
1956 | operator Matcher<Container>() const { |
1957 | return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
1958 | } |
1959 | |
1960 | template <typename Container> |
1961 | class Impl : public MatcherInterface<Container> { |
1962 | public: |
1963 | using SizeType = decltype(std::declval<Container>().size()); |
1964 | explicit Impl(const SizeMatcher& size_matcher) |
1965 | : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
1966 | |
1967 | void DescribeTo(::std::ostream* os) const override { |
1968 | *os << "size " ; |
1969 | size_matcher_.DescribeTo(os); |
1970 | } |
1971 | void DescribeNegationTo(::std::ostream* os) const override { |
1972 | *os << "size " ; |
1973 | size_matcher_.DescribeNegationTo(os); |
1974 | } |
1975 | |
1976 | bool MatchAndExplain(Container container, |
1977 | MatchResultListener* listener) const override { |
1978 | SizeType size = container.size(); |
1979 | StringMatchResultListener size_listener; |
1980 | const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
1981 | *listener |
1982 | << "whose size " << size << (result ? " matches" : " doesn't match" ); |
1983 | PrintIfNotEmpty(size_listener.str(), listener->stream()); |
1984 | return result; |
1985 | } |
1986 | |
1987 | private: |
1988 | const Matcher<SizeType> size_matcher_; |
1989 | GTEST_DISALLOW_ASSIGN_(Impl); |
1990 | }; |
1991 | |
1992 | private: |
1993 | const SizeMatcher size_matcher_; |
1994 | GTEST_DISALLOW_ASSIGN_(SizeIsMatcher); |
1995 | }; |
1996 | |
1997 | // Implements a matcher that checks the begin()..end() distance of an STL-style |
1998 | // container. |
1999 | template <typename DistanceMatcher> |
2000 | class BeginEndDistanceIsMatcher { |
2001 | public: |
2002 | explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
2003 | : distance_matcher_(distance_matcher) {} |
2004 | |
2005 | template <typename Container> |
2006 | operator Matcher<Container>() const { |
2007 | return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
2008 | } |
2009 | |
2010 | template <typename Container> |
2011 | class Impl : public MatcherInterface<Container> { |
2012 | public: |
2013 | typedef internal::StlContainerView< |
2014 | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; |
2015 | typedef typename std::iterator_traits< |
2016 | typename ContainerView::type::const_iterator>::difference_type |
2017 | DistanceType; |
2018 | explicit Impl(const DistanceMatcher& distance_matcher) |
2019 | : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
2020 | |
2021 | void DescribeTo(::std::ostream* os) const override { |
2022 | *os << "distance between begin() and end() " ; |
2023 | distance_matcher_.DescribeTo(os); |
2024 | } |
2025 | void DescribeNegationTo(::std::ostream* os) const override { |
2026 | *os << "distance between begin() and end() " ; |
2027 | distance_matcher_.DescribeNegationTo(os); |
2028 | } |
2029 | |
2030 | bool MatchAndExplain(Container container, |
2031 | MatchResultListener* listener) const override { |
2032 | using std::begin; |
2033 | using std::end; |
2034 | DistanceType distance = std::distance(begin(container), end(container)); |
2035 | StringMatchResultListener distance_listener; |
2036 | const bool result = |
2037 | distance_matcher_.MatchAndExplain(distance, &distance_listener); |
2038 | *listener << "whose distance between begin() and end() " << distance |
2039 | << (result ? " matches" : " doesn't match" ); |
2040 | PrintIfNotEmpty(distance_listener.str(), listener->stream()); |
2041 | return result; |
2042 | } |
2043 | |
2044 | private: |
2045 | const Matcher<DistanceType> distance_matcher_; |
2046 | GTEST_DISALLOW_ASSIGN_(Impl); |
2047 | }; |
2048 | |
2049 | private: |
2050 | const DistanceMatcher distance_matcher_; |
2051 | GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher); |
2052 | }; |
2053 | |
2054 | // Implements an equality matcher for any STL-style container whose elements |
2055 | // support ==. This matcher is like Eq(), but its failure explanations provide |
2056 | // more detailed information that is useful when the container is used as a set. |
2057 | // The failure message reports elements that are in one of the operands but not |
2058 | // the other. The failure messages do not report duplicate or out-of-order |
2059 | // elements in the containers (which don't properly matter to sets, but can |
2060 | // occur if the containers are vectors or lists, for example). |
2061 | // |
2062 | // Uses the container's const_iterator, value_type, operator ==, |
2063 | // begin(), and end(). |
2064 | template <typename Container> |
2065 | class ContainerEqMatcher { |
2066 | public: |
2067 | typedef internal::StlContainerView<Container> View; |
2068 | typedef typename View::type StlContainer; |
2069 | typedef typename View::const_reference StlContainerReference; |
2070 | |
2071 | static_assert(!std::is_const<Container>::value, |
2072 | "Container type must not be const" ); |
2073 | static_assert(!std::is_reference<Container>::value, |
2074 | "Container type must not be a reference" ); |
2075 | |
2076 | // We make a copy of expected in case the elements in it are modified |
2077 | // after this matcher is created. |
2078 | explicit ContainerEqMatcher(const Container& expected) |
2079 | : expected_(View::Copy(expected)) {} |
2080 | |
2081 | void DescribeTo(::std::ostream* os) const { |
2082 | *os << "equals " ; |
2083 | UniversalPrint(expected_, os); |
2084 | } |
2085 | void DescribeNegationTo(::std::ostream* os) const { |
2086 | *os << "does not equal " ; |
2087 | UniversalPrint(expected_, os); |
2088 | } |
2089 | |
2090 | template <typename LhsContainer> |
2091 | bool MatchAndExplain(const LhsContainer& lhs, |
2092 | MatchResultListener* listener) const { |
2093 | typedef internal::StlContainerView< |
2094 | typename std::remove_const<LhsContainer>::type> |
2095 | LhsView; |
2096 | typedef typename LhsView::type LhsStlContainer; |
2097 | StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2098 | if (lhs_stl_container == expected_) |
2099 | return true; |
2100 | |
2101 | ::std::ostream* const os = listener->stream(); |
2102 | if (os != nullptr) { |
2103 | // Something is different. Check for extra values first. |
2104 | bool = false; |
2105 | for (typename LhsStlContainer::const_iterator it = |
2106 | lhs_stl_container.begin(); |
2107 | it != lhs_stl_container.end(); ++it) { |
2108 | if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
2109 | expected_.end()) { |
2110 | if (printed_header) { |
2111 | *os << ", " ; |
2112 | } else { |
2113 | *os << "which has these unexpected elements: " ; |
2114 | printed_header = true; |
2115 | } |
2116 | UniversalPrint(*it, os); |
2117 | } |
2118 | } |
2119 | |
2120 | // Now check for missing values. |
2121 | bool = false; |
2122 | for (typename StlContainer::const_iterator it = expected_.begin(); |
2123 | it != expected_.end(); ++it) { |
2124 | if (internal::ArrayAwareFind( |
2125 | lhs_stl_container.begin(), lhs_stl_container.end(), *it) == |
2126 | lhs_stl_container.end()) { |
2127 | if (printed_header2) { |
2128 | *os << ", " ; |
2129 | } else { |
2130 | *os << (printed_header ? ",\nand" : "which" ) |
2131 | << " doesn't have these expected elements: " ; |
2132 | printed_header2 = true; |
2133 | } |
2134 | UniversalPrint(*it, os); |
2135 | } |
2136 | } |
2137 | } |
2138 | |
2139 | return false; |
2140 | } |
2141 | |
2142 | private: |
2143 | const StlContainer expected_; |
2144 | |
2145 | GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); |
2146 | }; |
2147 | |
2148 | // A comparator functor that uses the < operator to compare two values. |
2149 | struct LessComparator { |
2150 | template <typename T, typename U> |
2151 | bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } |
2152 | }; |
2153 | |
2154 | // Implements WhenSortedBy(comparator, container_matcher). |
2155 | template <typename Comparator, typename ContainerMatcher> |
2156 | class WhenSortedByMatcher { |
2157 | public: |
2158 | WhenSortedByMatcher(const Comparator& comparator, |
2159 | const ContainerMatcher& matcher) |
2160 | : comparator_(comparator), matcher_(matcher) {} |
2161 | |
2162 | template <typename LhsContainer> |
2163 | operator Matcher<LhsContainer>() const { |
2164 | return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
2165 | } |
2166 | |
2167 | template <typename LhsContainer> |
2168 | class Impl : public MatcherInterface<LhsContainer> { |
2169 | public: |
2170 | typedef internal::StlContainerView< |
2171 | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
2172 | typedef typename LhsView::type LhsStlContainer; |
2173 | typedef typename LhsView::const_reference LhsStlContainerReference; |
2174 | // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
2175 | // so that we can match associative containers. |
2176 | typedef typename RemoveConstFromKey< |
2177 | typename LhsStlContainer::value_type>::type LhsValue; |
2178 | |
2179 | Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
2180 | : comparator_(comparator), matcher_(matcher) {} |
2181 | |
2182 | void DescribeTo(::std::ostream* os) const override { |
2183 | *os << "(when sorted) " ; |
2184 | matcher_.DescribeTo(os); |
2185 | } |
2186 | |
2187 | void DescribeNegationTo(::std::ostream* os) const override { |
2188 | *os << "(when sorted) " ; |
2189 | matcher_.DescribeNegationTo(os); |
2190 | } |
2191 | |
2192 | bool MatchAndExplain(LhsContainer lhs, |
2193 | MatchResultListener* listener) const override { |
2194 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2195 | ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
2196 | lhs_stl_container.end()); |
2197 | ::std::sort( |
2198 | sorted_container.begin(), sorted_container.end(), comparator_); |
2199 | |
2200 | if (!listener->IsInterested()) { |
2201 | // If the listener is not interested, we do not need to |
2202 | // construct the inner explanation. |
2203 | return matcher_.Matches(sorted_container); |
2204 | } |
2205 | |
2206 | *listener << "which is " ; |
2207 | UniversalPrint(sorted_container, listener->stream()); |
2208 | *listener << " when sorted" ; |
2209 | |
2210 | StringMatchResultListener inner_listener; |
2211 | const bool match = matcher_.MatchAndExplain(sorted_container, |
2212 | &inner_listener); |
2213 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
2214 | return match; |
2215 | } |
2216 | |
2217 | private: |
2218 | const Comparator comparator_; |
2219 | const Matcher<const ::std::vector<LhsValue>&> matcher_; |
2220 | |
2221 | GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
2222 | }; |
2223 | |
2224 | private: |
2225 | const Comparator comparator_; |
2226 | const ContainerMatcher matcher_; |
2227 | |
2228 | GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher); |
2229 | }; |
2230 | |
2231 | // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
2232 | // must be able to be safely cast to Matcher<std::tuple<const T1&, const |
2233 | // T2&> >, where T1 and T2 are the types of elements in the LHS |
2234 | // container and the RHS container respectively. |
2235 | template <typename TupleMatcher, typename RhsContainer> |
2236 | class PointwiseMatcher { |
2237 | GTEST_COMPILE_ASSERT_( |
2238 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
2239 | use_UnorderedPointwise_with_hash_tables); |
2240 | |
2241 | public: |
2242 | typedef internal::StlContainerView<RhsContainer> RhsView; |
2243 | typedef typename RhsView::type RhsStlContainer; |
2244 | typedef typename RhsStlContainer::value_type RhsValue; |
2245 | |
2246 | static_assert(!std::is_const<RhsContainer>::value, |
2247 | "RhsContainer type must not be const" ); |
2248 | static_assert(!std::is_reference<RhsContainer>::value, |
2249 | "RhsContainer type must not be a reference" ); |
2250 | |
2251 | // Like ContainerEq, we make a copy of rhs in case the elements in |
2252 | // it are modified after this matcher is created. |
2253 | PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
2254 | : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} |
2255 | |
2256 | template <typename LhsContainer> |
2257 | operator Matcher<LhsContainer>() const { |
2258 | GTEST_COMPILE_ASSERT_( |
2259 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
2260 | use_UnorderedPointwise_with_hash_tables); |
2261 | |
2262 | return Matcher<LhsContainer>( |
2263 | new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
2264 | } |
2265 | |
2266 | template <typename LhsContainer> |
2267 | class Impl : public MatcherInterface<LhsContainer> { |
2268 | public: |
2269 | typedef internal::StlContainerView< |
2270 | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
2271 | typedef typename LhsView::type LhsStlContainer; |
2272 | typedef typename LhsView::const_reference LhsStlContainerReference; |
2273 | typedef typename LhsStlContainer::value_type LhsValue; |
2274 | // We pass the LHS value and the RHS value to the inner matcher by |
2275 | // reference, as they may be expensive to copy. We must use tuple |
2276 | // instead of pair here, as a pair cannot hold references (C++ 98, |
2277 | // 20.2.2 [lib.pairs]). |
2278 | typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
2279 | |
2280 | Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
2281 | // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
2282 | : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
2283 | rhs_(rhs) {} |
2284 | |
2285 | void DescribeTo(::std::ostream* os) const override { |
2286 | *os << "contains " << rhs_.size() |
2287 | << " values, where each value and its corresponding value in " ; |
2288 | UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
2289 | *os << " " ; |
2290 | mono_tuple_matcher_.DescribeTo(os); |
2291 | } |
2292 | void DescribeNegationTo(::std::ostream* os) const override { |
2293 | *os << "doesn't contain exactly " << rhs_.size() |
2294 | << " values, or contains a value x at some index i" |
2295 | << " where x and the i-th value of " ; |
2296 | UniversalPrint(rhs_, os); |
2297 | *os << " " ; |
2298 | mono_tuple_matcher_.DescribeNegationTo(os); |
2299 | } |
2300 | |
2301 | bool MatchAndExplain(LhsContainer lhs, |
2302 | MatchResultListener* listener) const override { |
2303 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2304 | const size_t actual_size = lhs_stl_container.size(); |
2305 | if (actual_size != rhs_.size()) { |
2306 | *listener << "which contains " << actual_size << " values" ; |
2307 | return false; |
2308 | } |
2309 | |
2310 | typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); |
2311 | typename RhsStlContainer::const_iterator right = rhs_.begin(); |
2312 | for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
2313 | if (listener->IsInterested()) { |
2314 | StringMatchResultListener inner_listener; |
2315 | // Create InnerMatcherArg as a temporarily object to avoid it outlives |
2316 | // *left and *right. Dereference or the conversion to `const T&` may |
2317 | // return temp objects, e.g for vector<bool>. |
2318 | if (!mono_tuple_matcher_.MatchAndExplain( |
2319 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
2320 | ImplicitCast_<const RhsValue&>(*right)), |
2321 | &inner_listener)) { |
2322 | *listener << "where the value pair (" ; |
2323 | UniversalPrint(*left, listener->stream()); |
2324 | *listener << ", " ; |
2325 | UniversalPrint(*right, listener->stream()); |
2326 | *listener << ") at index #" << i << " don't match" ; |
2327 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
2328 | return false; |
2329 | } |
2330 | } else { |
2331 | if (!mono_tuple_matcher_.Matches( |
2332 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
2333 | ImplicitCast_<const RhsValue&>(*right)))) |
2334 | return false; |
2335 | } |
2336 | } |
2337 | |
2338 | return true; |
2339 | } |
2340 | |
2341 | private: |
2342 | const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
2343 | const RhsStlContainer rhs_; |
2344 | |
2345 | GTEST_DISALLOW_ASSIGN_(Impl); |
2346 | }; |
2347 | |
2348 | private: |
2349 | const TupleMatcher tuple_matcher_; |
2350 | const RhsStlContainer rhs_; |
2351 | |
2352 | GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); |
2353 | }; |
2354 | |
2355 | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
2356 | template <typename Container> |
2357 | class QuantifierMatcherImpl : public MatcherInterface<Container> { |
2358 | public: |
2359 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
2360 | typedef StlContainerView<RawContainer> View; |
2361 | typedef typename View::type StlContainer; |
2362 | typedef typename View::const_reference StlContainerReference; |
2363 | typedef typename StlContainer::value_type Element; |
2364 | |
2365 | template <typename InnerMatcher> |
2366 | explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
2367 | : inner_matcher_( |
2368 | testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
2369 | |
2370 | // Checks whether: |
2371 | // * All elements in the container match, if all_elements_should_match. |
2372 | // * Any element in the container matches, if !all_elements_should_match. |
2373 | bool MatchAndExplainImpl(bool all_elements_should_match, |
2374 | Container container, |
2375 | MatchResultListener* listener) const { |
2376 | StlContainerReference stl_container = View::ConstReference(container); |
2377 | size_t i = 0; |
2378 | for (typename StlContainer::const_iterator it = stl_container.begin(); |
2379 | it != stl_container.end(); ++it, ++i) { |
2380 | StringMatchResultListener inner_listener; |
2381 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
2382 | |
2383 | if (matches != all_elements_should_match) { |
2384 | *listener << "whose element #" << i |
2385 | << (matches ? " matches" : " doesn't match" ); |
2386 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
2387 | return !all_elements_should_match; |
2388 | } |
2389 | } |
2390 | return all_elements_should_match; |
2391 | } |
2392 | |
2393 | protected: |
2394 | const Matcher<const Element&> inner_matcher_; |
2395 | |
2396 | GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); |
2397 | }; |
2398 | |
2399 | // Implements Contains(element_matcher) for the given argument type Container. |
2400 | // Symmetric to EachMatcherImpl. |
2401 | template <typename Container> |
2402 | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
2403 | public: |
2404 | template <typename InnerMatcher> |
2405 | explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
2406 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
2407 | |
2408 | // Describes what this matcher does. |
2409 | void DescribeTo(::std::ostream* os) const override { |
2410 | *os << "contains at least one element that " ; |
2411 | this->inner_matcher_.DescribeTo(os); |
2412 | } |
2413 | |
2414 | void DescribeNegationTo(::std::ostream* os) const override { |
2415 | *os << "doesn't contain any element that " ; |
2416 | this->inner_matcher_.DescribeTo(os); |
2417 | } |
2418 | |
2419 | bool MatchAndExplain(Container container, |
2420 | MatchResultListener* listener) const override { |
2421 | return this->MatchAndExplainImpl(false, container, listener); |
2422 | } |
2423 | |
2424 | private: |
2425 | GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); |
2426 | }; |
2427 | |
2428 | // Implements Each(element_matcher) for the given argument type Container. |
2429 | // Symmetric to ContainsMatcherImpl. |
2430 | template <typename Container> |
2431 | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
2432 | public: |
2433 | template <typename InnerMatcher> |
2434 | explicit EachMatcherImpl(InnerMatcher inner_matcher) |
2435 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
2436 | |
2437 | // Describes what this matcher does. |
2438 | void DescribeTo(::std::ostream* os) const override { |
2439 | *os << "only contains elements that " ; |
2440 | this->inner_matcher_.DescribeTo(os); |
2441 | } |
2442 | |
2443 | void DescribeNegationTo(::std::ostream* os) const override { |
2444 | *os << "contains some element that " ; |
2445 | this->inner_matcher_.DescribeNegationTo(os); |
2446 | } |
2447 | |
2448 | bool MatchAndExplain(Container container, |
2449 | MatchResultListener* listener) const override { |
2450 | return this->MatchAndExplainImpl(true, container, listener); |
2451 | } |
2452 | |
2453 | private: |
2454 | GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); |
2455 | }; |
2456 | |
2457 | // Implements polymorphic Contains(element_matcher). |
2458 | template <typename M> |
2459 | class ContainsMatcher { |
2460 | public: |
2461 | explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
2462 | |
2463 | template <typename Container> |
2464 | operator Matcher<Container>() const { |
2465 | return Matcher<Container>( |
2466 | new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
2467 | } |
2468 | |
2469 | private: |
2470 | const M inner_matcher_; |
2471 | |
2472 | GTEST_DISALLOW_ASSIGN_(ContainsMatcher); |
2473 | }; |
2474 | |
2475 | // Implements polymorphic Each(element_matcher). |
2476 | template <typename M> |
2477 | class EachMatcher { |
2478 | public: |
2479 | explicit EachMatcher(M m) : inner_matcher_(m) {} |
2480 | |
2481 | template <typename Container> |
2482 | operator Matcher<Container>() const { |
2483 | return Matcher<Container>( |
2484 | new EachMatcherImpl<const Container&>(inner_matcher_)); |
2485 | } |
2486 | |
2487 | private: |
2488 | const M inner_matcher_; |
2489 | |
2490 | GTEST_DISALLOW_ASSIGN_(EachMatcher); |
2491 | }; |
2492 | |
2493 | struct Rank1 {}; |
2494 | struct Rank0 : Rank1 {}; |
2495 | |
2496 | namespace pair_getters { |
2497 | using std::get; |
2498 | template <typename T> |
2499 | auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
2500 | return get<0>(x); |
2501 | } |
2502 | template <typename T> |
2503 | auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
2504 | return x.first; |
2505 | } |
2506 | |
2507 | template <typename T> |
2508 | auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
2509 | return get<1>(x); |
2510 | } |
2511 | template <typename T> |
2512 | auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
2513 | return x.second; |
2514 | } |
2515 | } // namespace pair_getters |
2516 | |
2517 | // Implements Key(inner_matcher) for the given argument pair type. |
2518 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
2519 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
2520 | // std::map that contains at least one element whose key is >= 5. |
2521 | template <typename PairType> |
2522 | class KeyMatcherImpl : public MatcherInterface<PairType> { |
2523 | public: |
2524 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
2525 | typedef typename RawPairType::first_type KeyType; |
2526 | |
2527 | template <typename InnerMatcher> |
2528 | explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
2529 | : inner_matcher_( |
2530 | testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { |
2531 | } |
2532 | |
2533 | // Returns true if and only if 'key_value.first' (the key) matches the inner |
2534 | // matcher. |
2535 | bool MatchAndExplain(PairType key_value, |
2536 | MatchResultListener* listener) const override { |
2537 | StringMatchResultListener inner_listener; |
2538 | const bool match = inner_matcher_.MatchAndExplain( |
2539 | pair_getters::First(key_value, Rank0()), &inner_listener); |
2540 | const std::string explanation = inner_listener.str(); |
2541 | if (explanation != "" ) { |
2542 | *listener << "whose first field is a value " << explanation; |
2543 | } |
2544 | return match; |
2545 | } |
2546 | |
2547 | // Describes what this matcher does. |
2548 | void DescribeTo(::std::ostream* os) const override { |
2549 | *os << "has a key that " ; |
2550 | inner_matcher_.DescribeTo(os); |
2551 | } |
2552 | |
2553 | // Describes what the negation of this matcher does. |
2554 | void DescribeNegationTo(::std::ostream* os) const override { |
2555 | *os << "doesn't have a key that " ; |
2556 | inner_matcher_.DescribeTo(os); |
2557 | } |
2558 | |
2559 | private: |
2560 | const Matcher<const KeyType&> inner_matcher_; |
2561 | |
2562 | GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); |
2563 | }; |
2564 | |
2565 | // Implements polymorphic Key(matcher_for_key). |
2566 | template <typename M> |
2567 | class KeyMatcher { |
2568 | public: |
2569 | explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
2570 | |
2571 | template <typename PairType> |
2572 | operator Matcher<PairType>() const { |
2573 | return Matcher<PairType>( |
2574 | new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
2575 | } |
2576 | |
2577 | private: |
2578 | const M matcher_for_key_; |
2579 | |
2580 | GTEST_DISALLOW_ASSIGN_(KeyMatcher); |
2581 | }; |
2582 | |
2583 | // Implements Pair(first_matcher, second_matcher) for the given argument pair |
2584 | // type with its two matchers. See Pair() function below. |
2585 | template <typename PairType> |
2586 | class PairMatcherImpl : public MatcherInterface<PairType> { |
2587 | public: |
2588 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
2589 | typedef typename RawPairType::first_type FirstType; |
2590 | typedef typename RawPairType::second_type SecondType; |
2591 | |
2592 | template <typename FirstMatcher, typename SecondMatcher> |
2593 | PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
2594 | : first_matcher_( |
2595 | testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
2596 | second_matcher_( |
2597 | testing::SafeMatcherCast<const SecondType&>(second_matcher)) { |
2598 | } |
2599 | |
2600 | // Describes what this matcher does. |
2601 | void DescribeTo(::std::ostream* os) const override { |
2602 | *os << "has a first field that " ; |
2603 | first_matcher_.DescribeTo(os); |
2604 | *os << ", and has a second field that " ; |
2605 | second_matcher_.DescribeTo(os); |
2606 | } |
2607 | |
2608 | // Describes what the negation of this matcher does. |
2609 | void DescribeNegationTo(::std::ostream* os) const override { |
2610 | *os << "has a first field that " ; |
2611 | first_matcher_.DescribeNegationTo(os); |
2612 | *os << ", or has a second field that " ; |
2613 | second_matcher_.DescribeNegationTo(os); |
2614 | } |
2615 | |
2616 | // Returns true if and only if 'a_pair.first' matches first_matcher and |
2617 | // 'a_pair.second' matches second_matcher. |
2618 | bool MatchAndExplain(PairType a_pair, |
2619 | MatchResultListener* listener) const override { |
2620 | if (!listener->IsInterested()) { |
2621 | // If the listener is not interested, we don't need to construct the |
2622 | // explanation. |
2623 | return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
2624 | second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
2625 | } |
2626 | StringMatchResultListener first_inner_listener; |
2627 | if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
2628 | &first_inner_listener)) { |
2629 | *listener << "whose first field does not match" ; |
2630 | PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); |
2631 | return false; |
2632 | } |
2633 | StringMatchResultListener second_inner_listener; |
2634 | if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
2635 | &second_inner_listener)) { |
2636 | *listener << "whose second field does not match" ; |
2637 | PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); |
2638 | return false; |
2639 | } |
2640 | ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), |
2641 | listener); |
2642 | return true; |
2643 | } |
2644 | |
2645 | private: |
2646 | void ExplainSuccess(const std::string& first_explanation, |
2647 | const std::string& second_explanation, |
2648 | MatchResultListener* listener) const { |
2649 | *listener << "whose both fields match" ; |
2650 | if (first_explanation != "" ) { |
2651 | *listener << ", where the first field is a value " << first_explanation; |
2652 | } |
2653 | if (second_explanation != "" ) { |
2654 | *listener << ", " ; |
2655 | if (first_explanation != "" ) { |
2656 | *listener << "and " ; |
2657 | } else { |
2658 | *listener << "where " ; |
2659 | } |
2660 | *listener << "the second field is a value " << second_explanation; |
2661 | } |
2662 | } |
2663 | |
2664 | const Matcher<const FirstType&> first_matcher_; |
2665 | const Matcher<const SecondType&> second_matcher_; |
2666 | |
2667 | GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); |
2668 | }; |
2669 | |
2670 | // Implements polymorphic Pair(first_matcher, second_matcher). |
2671 | template <typename FirstMatcher, typename SecondMatcher> |
2672 | class PairMatcher { |
2673 | public: |
2674 | PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
2675 | : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
2676 | |
2677 | template <typename PairType> |
2678 | operator Matcher<PairType> () const { |
2679 | return Matcher<PairType>( |
2680 | new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
2681 | } |
2682 | |
2683 | private: |
2684 | const FirstMatcher first_matcher_; |
2685 | const SecondMatcher second_matcher_; |
2686 | |
2687 | GTEST_DISALLOW_ASSIGN_(PairMatcher); |
2688 | }; |
2689 | |
2690 | // Implements ElementsAre() and ElementsAreArray(). |
2691 | template <typename Container> |
2692 | class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
2693 | public: |
2694 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
2695 | typedef internal::StlContainerView<RawContainer> View; |
2696 | typedef typename View::type StlContainer; |
2697 | typedef typename View::const_reference StlContainerReference; |
2698 | typedef typename StlContainer::value_type Element; |
2699 | |
2700 | // Constructs the matcher from a sequence of element values or |
2701 | // element matchers. |
2702 | template <typename InputIter> |
2703 | ElementsAreMatcherImpl(InputIter first, InputIter last) { |
2704 | while (first != last) { |
2705 | matchers_.push_back(MatcherCast<const Element&>(*first++)); |
2706 | } |
2707 | } |
2708 | |
2709 | // Describes what this matcher does. |
2710 | void DescribeTo(::std::ostream* os) const override { |
2711 | if (count() == 0) { |
2712 | *os << "is empty" ; |
2713 | } else if (count() == 1) { |
2714 | *os << "has 1 element that " ; |
2715 | matchers_[0].DescribeTo(os); |
2716 | } else { |
2717 | *os << "has " << Elements(count()) << " where\n" ; |
2718 | for (size_t i = 0; i != count(); ++i) { |
2719 | *os << "element #" << i << " " ; |
2720 | matchers_[i].DescribeTo(os); |
2721 | if (i + 1 < count()) { |
2722 | *os << ",\n" ; |
2723 | } |
2724 | } |
2725 | } |
2726 | } |
2727 | |
2728 | // Describes what the negation of this matcher does. |
2729 | void DescribeNegationTo(::std::ostream* os) const override { |
2730 | if (count() == 0) { |
2731 | *os << "isn't empty" ; |
2732 | return; |
2733 | } |
2734 | |
2735 | *os << "doesn't have " << Elements(count()) << ", or\n" ; |
2736 | for (size_t i = 0; i != count(); ++i) { |
2737 | *os << "element #" << i << " " ; |
2738 | matchers_[i].DescribeNegationTo(os); |
2739 | if (i + 1 < count()) { |
2740 | *os << ", or\n" ; |
2741 | } |
2742 | } |
2743 | } |
2744 | |
2745 | bool MatchAndExplain(Container container, |
2746 | MatchResultListener* listener) const override { |
2747 | // To work with stream-like "containers", we must only walk |
2748 | // through the elements in one pass. |
2749 | |
2750 | const bool listener_interested = listener->IsInterested(); |
2751 | |
2752 | // explanations[i] is the explanation of the element at index i. |
2753 | ::std::vector<std::string> explanations(count()); |
2754 | StlContainerReference stl_container = View::ConstReference(container); |
2755 | typename StlContainer::const_iterator it = stl_container.begin(); |
2756 | size_t exam_pos = 0; |
2757 | bool mismatch_found = false; // Have we found a mismatched element yet? |
2758 | |
2759 | // Go through the elements and matchers in pairs, until we reach |
2760 | // the end of either the elements or the matchers, or until we find a |
2761 | // mismatch. |
2762 | for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
2763 | bool match; // Does the current element match the current matcher? |
2764 | if (listener_interested) { |
2765 | StringMatchResultListener s; |
2766 | match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
2767 | explanations[exam_pos] = s.str(); |
2768 | } else { |
2769 | match = matchers_[exam_pos].Matches(*it); |
2770 | } |
2771 | |
2772 | if (!match) { |
2773 | mismatch_found = true; |
2774 | break; |
2775 | } |
2776 | } |
2777 | // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
2778 | |
2779 | // Find how many elements the actual container has. We avoid |
2780 | // calling size() s.t. this code works for stream-like "containers" |
2781 | // that don't define size(). |
2782 | size_t actual_count = exam_pos; |
2783 | for (; it != stl_container.end(); ++it) { |
2784 | ++actual_count; |
2785 | } |
2786 | |
2787 | if (actual_count != count()) { |
2788 | // The element count doesn't match. If the container is empty, |
2789 | // there's no need to explain anything as Google Mock already |
2790 | // prints the empty container. Otherwise we just need to show |
2791 | // how many elements there actually are. |
2792 | if (listener_interested && (actual_count != 0)) { |
2793 | *listener << "which has " << Elements(actual_count); |
2794 | } |
2795 | return false; |
2796 | } |
2797 | |
2798 | if (mismatch_found) { |
2799 | // The element count matches, but the exam_pos-th element doesn't match. |
2800 | if (listener_interested) { |
2801 | *listener << "whose element #" << exam_pos << " doesn't match" ; |
2802 | PrintIfNotEmpty(explanations[exam_pos], listener->stream()); |
2803 | } |
2804 | return false; |
2805 | } |
2806 | |
2807 | // Every element matches its expectation. We need to explain why |
2808 | // (the obvious ones can be skipped). |
2809 | if (listener_interested) { |
2810 | bool reason_printed = false; |
2811 | for (size_t i = 0; i != count(); ++i) { |
2812 | const std::string& s = explanations[i]; |
2813 | if (!s.empty()) { |
2814 | if (reason_printed) { |
2815 | *listener << ",\nand " ; |
2816 | } |
2817 | *listener << "whose element #" << i << " matches, " << s; |
2818 | reason_printed = true; |
2819 | } |
2820 | } |
2821 | } |
2822 | return true; |
2823 | } |
2824 | |
2825 | private: |
2826 | static Message Elements(size_t count) { |
2827 | return Message() << count << (count == 1 ? " element" : " elements" ); |
2828 | } |
2829 | |
2830 | size_t count() const { return matchers_.size(); } |
2831 | |
2832 | ::std::vector<Matcher<const Element&> > matchers_; |
2833 | |
2834 | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); |
2835 | }; |
2836 | |
2837 | // Connectivity matrix of (elements X matchers), in element-major order. |
2838 | // Initially, there are no edges. |
2839 | // Use NextGraph() to iterate over all possible edge configurations. |
2840 | // Use Randomize() to generate a random edge configuration. |
2841 | class GTEST_API_ MatchMatrix { |
2842 | public: |
2843 | MatchMatrix(size_t num_elements, size_t num_matchers) |
2844 | : num_elements_(num_elements), |
2845 | num_matchers_(num_matchers), |
2846 | matched_(num_elements_* num_matchers_, 0) { |
2847 | } |
2848 | |
2849 | size_t LhsSize() const { return num_elements_; } |
2850 | size_t RhsSize() const { return num_matchers_; } |
2851 | bool HasEdge(size_t ilhs, size_t irhs) const { |
2852 | return matched_[SpaceIndex(ilhs, irhs)] == 1; |
2853 | } |
2854 | void SetEdge(size_t ilhs, size_t irhs, bool b) { |
2855 | matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
2856 | } |
2857 | |
2858 | // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
2859 | // adds 1 to that number; returns false if incrementing the graph left it |
2860 | // empty. |
2861 | bool NextGraph(); |
2862 | |
2863 | void Randomize(); |
2864 | |
2865 | std::string DebugString() const; |
2866 | |
2867 | private: |
2868 | size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
2869 | return ilhs * num_matchers_ + irhs; |
2870 | } |
2871 | |
2872 | size_t num_elements_; |
2873 | size_t num_matchers_; |
2874 | |
2875 | // Each element is a char interpreted as bool. They are stored as a |
2876 | // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
2877 | // a (ilhs, irhs) matrix coordinate into an offset. |
2878 | ::std::vector<char> matched_; |
2879 | }; |
2880 | |
2881 | typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
2882 | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
2883 | |
2884 | // Returns a maximum bipartite matching for the specified graph 'g'. |
2885 | // The matching is represented as a vector of {element, matcher} pairs. |
2886 | GTEST_API_ ElementMatcherPairs |
2887 | FindMaxBipartiteMatching(const MatchMatrix& g); |
2888 | |
2889 | struct UnorderedMatcherRequire { |
2890 | enum Flags { |
2891 | Superset = 1 << 0, |
2892 | Subset = 1 << 1, |
2893 | ExactMatch = Superset | Subset, |
2894 | }; |
2895 | }; |
2896 | |
2897 | // Untyped base class for implementing UnorderedElementsAre. By |
2898 | // putting logic that's not specific to the element type here, we |
2899 | // reduce binary bloat and increase compilation speed. |
2900 | class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
2901 | protected: |
2902 | explicit UnorderedElementsAreMatcherImplBase( |
2903 | UnorderedMatcherRequire::Flags matcher_flags) |
2904 | : match_flags_(matcher_flags) {} |
2905 | |
2906 | // A vector of matcher describers, one for each element matcher. |
2907 | // Does not own the describers (and thus can be used only when the |
2908 | // element matchers are alive). |
2909 | typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
2910 | |
2911 | // Describes this UnorderedElementsAre matcher. |
2912 | void DescribeToImpl(::std::ostream* os) const; |
2913 | |
2914 | // Describes the negation of this UnorderedElementsAre matcher. |
2915 | void DescribeNegationToImpl(::std::ostream* os) const; |
2916 | |
2917 | bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
2918 | const MatchMatrix& matrix, |
2919 | MatchResultListener* listener) const; |
2920 | |
2921 | bool FindPairing(const MatchMatrix& matrix, |
2922 | MatchResultListener* listener) const; |
2923 | |
2924 | MatcherDescriberVec& matcher_describers() { |
2925 | return matcher_describers_; |
2926 | } |
2927 | |
2928 | static Message Elements(size_t n) { |
2929 | return Message() << n << " element" << (n == 1 ? "" : "s" ); |
2930 | } |
2931 | |
2932 | UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
2933 | |
2934 | private: |
2935 | UnorderedMatcherRequire::Flags match_flags_; |
2936 | MatcherDescriberVec matcher_describers_; |
2937 | |
2938 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase); |
2939 | }; |
2940 | |
2941 | // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
2942 | // IsSupersetOf. |
2943 | template <typename Container> |
2944 | class UnorderedElementsAreMatcherImpl |
2945 | : public MatcherInterface<Container>, |
2946 | public UnorderedElementsAreMatcherImplBase { |
2947 | public: |
2948 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
2949 | typedef internal::StlContainerView<RawContainer> View; |
2950 | typedef typename View::type StlContainer; |
2951 | typedef typename View::const_reference StlContainerReference; |
2952 | typedef typename StlContainer::const_iterator StlContainerConstIterator; |
2953 | typedef typename StlContainer::value_type Element; |
2954 | |
2955 | template <typename InputIter> |
2956 | UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
2957 | InputIter first, InputIter last) |
2958 | : UnorderedElementsAreMatcherImplBase(matcher_flags) { |
2959 | for (; first != last; ++first) { |
2960 | matchers_.push_back(MatcherCast<const Element&>(*first)); |
2961 | matcher_describers().push_back(matchers_.back().GetDescriber()); |
2962 | } |
2963 | } |
2964 | |
2965 | // Describes what this matcher does. |
2966 | void DescribeTo(::std::ostream* os) const override { |
2967 | return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
2968 | } |
2969 | |
2970 | // Describes what the negation of this matcher does. |
2971 | void DescribeNegationTo(::std::ostream* os) const override { |
2972 | return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
2973 | } |
2974 | |
2975 | bool MatchAndExplain(Container container, |
2976 | MatchResultListener* listener) const override { |
2977 | StlContainerReference stl_container = View::ConstReference(container); |
2978 | ::std::vector<std::string> element_printouts; |
2979 | MatchMatrix matrix = |
2980 | AnalyzeElements(stl_container.begin(), stl_container.end(), |
2981 | &element_printouts, listener); |
2982 | |
2983 | if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { |
2984 | return true; |
2985 | } |
2986 | |
2987 | if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
2988 | if (matrix.LhsSize() != matrix.RhsSize()) { |
2989 | // The element count doesn't match. If the container is empty, |
2990 | // there's no need to explain anything as Google Mock already |
2991 | // prints the empty container. Otherwise we just need to show |
2992 | // how many elements there actually are. |
2993 | if (matrix.LhsSize() != 0 && listener->IsInterested()) { |
2994 | *listener << "which has " << Elements(matrix.LhsSize()); |
2995 | } |
2996 | return false; |
2997 | } |
2998 | } |
2999 | |
3000 | return VerifyMatchMatrix(element_printouts, matrix, listener) && |
3001 | FindPairing(matrix, listener); |
3002 | } |
3003 | |
3004 | private: |
3005 | template <typename ElementIter> |
3006 | MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
3007 | ::std::vector<std::string>* element_printouts, |
3008 | MatchResultListener* listener) const { |
3009 | element_printouts->clear(); |
3010 | ::std::vector<char> did_match; |
3011 | size_t num_elements = 0; |
3012 | for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
3013 | if (listener->IsInterested()) { |
3014 | element_printouts->push_back(PrintToString(*elem_first)); |
3015 | } |
3016 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3017 | did_match.push_back(Matches(matchers_[irhs])(*elem_first)); |
3018 | } |
3019 | } |
3020 | |
3021 | MatchMatrix matrix(num_elements, matchers_.size()); |
3022 | ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
3023 | for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
3024 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3025 | matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); |
3026 | } |
3027 | } |
3028 | return matrix; |
3029 | } |
3030 | |
3031 | ::std::vector<Matcher<const Element&> > matchers_; |
3032 | |
3033 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl); |
3034 | }; |
3035 | |
3036 | // Functor for use in TransformTuple. |
3037 | // Performs MatcherCast<Target> on an input argument of any type. |
3038 | template <typename Target> |
3039 | struct CastAndAppendTransform { |
3040 | template <typename Arg> |
3041 | Matcher<Target> operator()(const Arg& a) const { |
3042 | return MatcherCast<Target>(a); |
3043 | } |
3044 | }; |
3045 | |
3046 | // Implements UnorderedElementsAre. |
3047 | template <typename MatcherTuple> |
3048 | class UnorderedElementsAreMatcher { |
3049 | public: |
3050 | explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
3051 | : matchers_(args) {} |
3052 | |
3053 | template <typename Container> |
3054 | operator Matcher<Container>() const { |
3055 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3056 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3057 | typedef typename View::value_type Element; |
3058 | typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
3059 | MatcherVec matchers; |
3060 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
3061 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3062 | ::std::back_inserter(matchers)); |
3063 | return Matcher<Container>( |
3064 | new UnorderedElementsAreMatcherImpl<const Container&>( |
3065 | UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
3066 | matchers.end())); |
3067 | } |
3068 | |
3069 | private: |
3070 | const MatcherTuple matchers_; |
3071 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher); |
3072 | }; |
3073 | |
3074 | // Implements ElementsAre. |
3075 | template <typename MatcherTuple> |
3076 | class ElementsAreMatcher { |
3077 | public: |
3078 | explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
3079 | |
3080 | template <typename Container> |
3081 | operator Matcher<Container>() const { |
3082 | GTEST_COMPILE_ASSERT_( |
3083 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
3084 | ::std::tuple_size<MatcherTuple>::value < 2, |
3085 | use_UnorderedElementsAre_with_hash_tables); |
3086 | |
3087 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3088 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3089 | typedef typename View::value_type Element; |
3090 | typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
3091 | MatcherVec matchers; |
3092 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
3093 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3094 | ::std::back_inserter(matchers)); |
3095 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
3096 | matchers.begin(), matchers.end())); |
3097 | } |
3098 | |
3099 | private: |
3100 | const MatcherTuple matchers_; |
3101 | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher); |
3102 | }; |
3103 | |
3104 | // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
3105 | template <typename T> |
3106 | class UnorderedElementsAreArrayMatcher { |
3107 | public: |
3108 | template <typename Iter> |
3109 | UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
3110 | Iter first, Iter last) |
3111 | : match_flags_(match_flags), matchers_(first, last) {} |
3112 | |
3113 | template <typename Container> |
3114 | operator Matcher<Container>() const { |
3115 | return Matcher<Container>( |
3116 | new UnorderedElementsAreMatcherImpl<const Container&>( |
3117 | match_flags_, matchers_.begin(), matchers_.end())); |
3118 | } |
3119 | |
3120 | private: |
3121 | UnorderedMatcherRequire::Flags match_flags_; |
3122 | ::std::vector<T> matchers_; |
3123 | |
3124 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher); |
3125 | }; |
3126 | |
3127 | // Implements ElementsAreArray(). |
3128 | template <typename T> |
3129 | class ElementsAreArrayMatcher { |
3130 | public: |
3131 | template <typename Iter> |
3132 | ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
3133 | |
3134 | template <typename Container> |
3135 | operator Matcher<Container>() const { |
3136 | GTEST_COMPILE_ASSERT_( |
3137 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
3138 | use_UnorderedElementsAreArray_with_hash_tables); |
3139 | |
3140 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
3141 | matchers_.begin(), matchers_.end())); |
3142 | } |
3143 | |
3144 | private: |
3145 | const ::std::vector<T> matchers_; |
3146 | |
3147 | GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); |
3148 | }; |
3149 | |
3150 | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
3151 | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
3152 | // second) is a polymorphic matcher that matches a value x if and only if |
3153 | // tm matches tuple (x, second). Useful for implementing |
3154 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
3155 | // |
3156 | // BoundSecondMatcher is copyable and assignable, as we need to put |
3157 | // instances of this class in a vector when implementing |
3158 | // UnorderedPointwise(). |
3159 | template <typename Tuple2Matcher, typename Second> |
3160 | class BoundSecondMatcher { |
3161 | public: |
3162 | BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
3163 | : tuple2_matcher_(tm), second_value_(second) {} |
3164 | |
3165 | template <typename T> |
3166 | operator Matcher<T>() const { |
3167 | return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
3168 | } |
3169 | |
3170 | // We have to define this for UnorderedPointwise() to compile in |
3171 | // C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
3172 | // which requires the elements to be assignable in C++98. The |
3173 | // compiler cannot generate the operator= for us, as Tuple2Matcher |
3174 | // and Second may not be assignable. |
3175 | // |
3176 | // However, this should never be called, so the implementation just |
3177 | // need to assert. |
3178 | void operator=(const BoundSecondMatcher& /*rhs*/) { |
3179 | GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned." ; |
3180 | } |
3181 | |
3182 | private: |
3183 | template <typename T> |
3184 | class Impl : public MatcherInterface<T> { |
3185 | public: |
3186 | typedef ::std::tuple<T, Second> ArgTuple; |
3187 | |
3188 | Impl(const Tuple2Matcher& tm, const Second& second) |
3189 | : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
3190 | second_value_(second) {} |
3191 | |
3192 | void DescribeTo(::std::ostream* os) const override { |
3193 | *os << "and " ; |
3194 | UniversalPrint(second_value_, os); |
3195 | *os << " " ; |
3196 | mono_tuple2_matcher_.DescribeTo(os); |
3197 | } |
3198 | |
3199 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
3200 | return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
3201 | listener); |
3202 | } |
3203 | |
3204 | private: |
3205 | const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
3206 | const Second second_value_; |
3207 | |
3208 | GTEST_DISALLOW_ASSIGN_(Impl); |
3209 | }; |
3210 | |
3211 | const Tuple2Matcher tuple2_matcher_; |
3212 | const Second second_value_; |
3213 | }; |
3214 | |
3215 | // Given a 2-tuple matcher tm and a value second, |
3216 | // MatcherBindSecond(tm, second) returns a matcher that matches a |
3217 | // value x if and only if tm matches tuple (x, second). Useful for |
3218 | // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
3219 | template <typename Tuple2Matcher, typename Second> |
3220 | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
3221 | const Tuple2Matcher& tm, const Second& second) { |
3222 | return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
3223 | } |
3224 | |
3225 | // Returns the description for a matcher defined using the MATCHER*() |
3226 | // macro where the user-supplied description string is "", if |
3227 | // 'negation' is false; otherwise returns the description of the |
3228 | // negation of the matcher. 'param_values' contains a list of strings |
3229 | // that are the print-out of the matcher's parameters. |
3230 | GTEST_API_ std::string FormatMatcherDescription(bool negation, |
3231 | const char* matcher_name, |
3232 | const Strings& param_values); |
3233 | |
3234 | // Implements a matcher that checks the value of a optional<> type variable. |
3235 | template <typename ValueMatcher> |
3236 | class OptionalMatcher { |
3237 | public: |
3238 | explicit OptionalMatcher(const ValueMatcher& value_matcher) |
3239 | : value_matcher_(value_matcher) {} |
3240 | |
3241 | template <typename Optional> |
3242 | operator Matcher<Optional>() const { |
3243 | return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
3244 | } |
3245 | |
3246 | template <typename Optional> |
3247 | class Impl : public MatcherInterface<Optional> { |
3248 | public: |
3249 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
3250 | typedef typename OptionalView::value_type ValueType; |
3251 | explicit Impl(const ValueMatcher& value_matcher) |
3252 | : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
3253 | |
3254 | void DescribeTo(::std::ostream* os) const override { |
3255 | *os << "value " ; |
3256 | value_matcher_.DescribeTo(os); |
3257 | } |
3258 | |
3259 | void DescribeNegationTo(::std::ostream* os) const override { |
3260 | *os << "value " ; |
3261 | value_matcher_.DescribeNegationTo(os); |
3262 | } |
3263 | |
3264 | bool MatchAndExplain(Optional optional, |
3265 | MatchResultListener* listener) const override { |
3266 | if (!optional) { |
3267 | *listener << "which is not engaged" ; |
3268 | return false; |
3269 | } |
3270 | const ValueType& value = *optional; |
3271 | StringMatchResultListener value_listener; |
3272 | const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
3273 | *listener << "whose value " << PrintToString(value) |
3274 | << (match ? " matches" : " doesn't match" ); |
3275 | PrintIfNotEmpty(value_listener.str(), listener->stream()); |
3276 | return match; |
3277 | } |
3278 | |
3279 | private: |
3280 | const Matcher<ValueType> value_matcher_; |
3281 | GTEST_DISALLOW_ASSIGN_(Impl); |
3282 | }; |
3283 | |
3284 | private: |
3285 | const ValueMatcher value_matcher_; |
3286 | GTEST_DISALLOW_ASSIGN_(OptionalMatcher); |
3287 | }; |
3288 | |
3289 | namespace variant_matcher { |
3290 | // Overloads to allow VariantMatcher to do proper ADL lookup. |
3291 | template <typename T> |
3292 | void holds_alternative() {} |
3293 | template <typename T> |
3294 | void get() {} |
3295 | |
3296 | // Implements a matcher that checks the value of a variant<> type variable. |
3297 | template <typename T> |
3298 | class VariantMatcher { |
3299 | public: |
3300 | explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
3301 | : matcher_(std::move(matcher)) {} |
3302 | |
3303 | template <typename Variant> |
3304 | bool MatchAndExplain(const Variant& value, |
3305 | ::testing::MatchResultListener* listener) const { |
3306 | using std::get; |
3307 | if (!listener->IsInterested()) { |
3308 | return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
3309 | } |
3310 | |
3311 | if (!holds_alternative<T>(value)) { |
3312 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
3313 | return false; |
3314 | } |
3315 | |
3316 | const T& elem = get<T>(value); |
3317 | StringMatchResultListener elem_listener; |
3318 | const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
3319 | *listener << "whose value " << PrintToString(elem) |
3320 | << (match ? " matches" : " doesn't match" ); |
3321 | PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
3322 | return match; |
3323 | } |
3324 | |
3325 | void DescribeTo(std::ostream* os) const { |
3326 | *os << "is a variant<> with value of type '" << GetTypeName() |
3327 | << "' and the value " ; |
3328 | matcher_.DescribeTo(os); |
3329 | } |
3330 | |
3331 | void DescribeNegationTo(std::ostream* os) const { |
3332 | *os << "is a variant<> with value of type other than '" << GetTypeName() |
3333 | << "' or the value " ; |
3334 | matcher_.DescribeNegationTo(os); |
3335 | } |
3336 | |
3337 | private: |
3338 | static std::string GetTypeName() { |
3339 | #if GTEST_HAS_RTTI |
3340 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
3341 | return internal::GetTypeName<T>()); |
3342 | #endif |
3343 | return "the element type" ; |
3344 | } |
3345 | |
3346 | const ::testing::Matcher<const T&> matcher_; |
3347 | }; |
3348 | |
3349 | } // namespace variant_matcher |
3350 | |
3351 | namespace any_cast_matcher { |
3352 | |
3353 | // Overloads to allow AnyCastMatcher to do proper ADL lookup. |
3354 | template <typename T> |
3355 | void any_cast() {} |
3356 | |
3357 | // Implements a matcher that any_casts the value. |
3358 | template <typename T> |
3359 | class AnyCastMatcher { |
3360 | public: |
3361 | explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
3362 | : matcher_(matcher) {} |
3363 | |
3364 | template <typename AnyType> |
3365 | bool MatchAndExplain(const AnyType& value, |
3366 | ::testing::MatchResultListener* listener) const { |
3367 | if (!listener->IsInterested()) { |
3368 | const T* ptr = any_cast<T>(&value); |
3369 | return ptr != nullptr && matcher_.Matches(*ptr); |
3370 | } |
3371 | |
3372 | const T* elem = any_cast<T>(&value); |
3373 | if (elem == nullptr) { |
3374 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
3375 | return false; |
3376 | } |
3377 | |
3378 | StringMatchResultListener elem_listener; |
3379 | const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
3380 | *listener << "whose value " << PrintToString(*elem) |
3381 | << (match ? " matches" : " doesn't match" ); |
3382 | PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
3383 | return match; |
3384 | } |
3385 | |
3386 | void DescribeTo(std::ostream* os) const { |
3387 | *os << "is an 'any' type with value of type '" << GetTypeName() |
3388 | << "' and the value " ; |
3389 | matcher_.DescribeTo(os); |
3390 | } |
3391 | |
3392 | void DescribeNegationTo(std::ostream* os) const { |
3393 | *os << "is an 'any' type with value of type other than '" << GetTypeName() |
3394 | << "' or the value " ; |
3395 | matcher_.DescribeNegationTo(os); |
3396 | } |
3397 | |
3398 | private: |
3399 | static std::string GetTypeName() { |
3400 | #if GTEST_HAS_RTTI |
3401 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
3402 | return internal::GetTypeName<T>()); |
3403 | #endif |
3404 | return "the element type" ; |
3405 | } |
3406 | |
3407 | const ::testing::Matcher<const T&> matcher_; |
3408 | }; |
3409 | |
3410 | } // namespace any_cast_matcher |
3411 | |
3412 | // Implements the Args() matcher. |
3413 | template <class ArgsTuple, size_t... k> |
3414 | class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
3415 | public: |
3416 | using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
3417 | using SelectedArgs = |
3418 | std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
3419 | using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
3420 | |
3421 | template <typename InnerMatcher> |
3422 | explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
3423 | : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
3424 | |
3425 | bool MatchAndExplain(ArgsTuple args, |
3426 | MatchResultListener* listener) const override { |
3427 | // Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
3428 | (void)args; |
3429 | const SelectedArgs& selected_args = |
3430 | std::forward_as_tuple(std::get<k>(args)...); |
3431 | if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
3432 | |
3433 | PrintIndices(listener->stream()); |
3434 | *listener << "are " << PrintToString(selected_args); |
3435 | |
3436 | StringMatchResultListener inner_listener; |
3437 | const bool match = |
3438 | inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
3439 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
3440 | return match; |
3441 | } |
3442 | |
3443 | void DescribeTo(::std::ostream* os) const override { |
3444 | *os << "are a tuple " ; |
3445 | PrintIndices(os); |
3446 | inner_matcher_.DescribeTo(os); |
3447 | } |
3448 | |
3449 | void DescribeNegationTo(::std::ostream* os) const override { |
3450 | *os << "are a tuple " ; |
3451 | PrintIndices(os); |
3452 | inner_matcher_.DescribeNegationTo(os); |
3453 | } |
3454 | |
3455 | private: |
3456 | // Prints the indices of the selected fields. |
3457 | static void PrintIndices(::std::ostream* os) { |
3458 | *os << "whose fields (" ; |
3459 | const char* sep = "" ; |
3460 | // Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
3461 | (void)sep; |
3462 | const char* dummy[] = {"" , (*os << sep << "#" << k, sep = ", " )...}; |
3463 | (void)dummy; |
3464 | *os << ") " ; |
3465 | } |
3466 | |
3467 | MonomorphicInnerMatcher inner_matcher_; |
3468 | }; |
3469 | |
3470 | template <class InnerMatcher, size_t... k> |
3471 | class ArgsMatcher { |
3472 | public: |
3473 | explicit ArgsMatcher(InnerMatcher inner_matcher) |
3474 | : inner_matcher_(std::move(inner_matcher)) {} |
3475 | |
3476 | template <typename ArgsTuple> |
3477 | operator Matcher<ArgsTuple>() const { // NOLINT |
3478 | return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
3479 | } |
3480 | |
3481 | private: |
3482 | InnerMatcher inner_matcher_; |
3483 | }; |
3484 | |
3485 | } // namespace internal |
3486 | |
3487 | // ElementsAreArray(iterator_first, iterator_last) |
3488 | // ElementsAreArray(pointer, count) |
3489 | // ElementsAreArray(array) |
3490 | // ElementsAreArray(container) |
3491 | // ElementsAreArray({ e1, e2, ..., en }) |
3492 | // |
3493 | // The ElementsAreArray() functions are like ElementsAre(...), except |
3494 | // that they are given a homogeneous sequence rather than taking each |
3495 | // element as a function argument. The sequence can be specified as an |
3496 | // array, a pointer and count, a vector, an initializer list, or an |
3497 | // STL iterator range. In each of these cases, the underlying sequence |
3498 | // can be either a sequence of values or a sequence of matchers. |
3499 | // |
3500 | // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
3501 | |
3502 | template <typename Iter> |
3503 | inline internal::ElementsAreArrayMatcher< |
3504 | typename ::std::iterator_traits<Iter>::value_type> |
3505 | ElementsAreArray(Iter first, Iter last) { |
3506 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
3507 | return internal::ElementsAreArrayMatcher<T>(first, last); |
3508 | } |
3509 | |
3510 | template <typename T> |
3511 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
3512 | const T* pointer, size_t count) { |
3513 | return ElementsAreArray(pointer, pointer + count); |
3514 | } |
3515 | |
3516 | template <typename T, size_t N> |
3517 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
3518 | const T (&array)[N]) { |
3519 | return ElementsAreArray(array, N); |
3520 | } |
3521 | |
3522 | template <typename Container> |
3523 | inline internal::ElementsAreArrayMatcher<typename Container::value_type> |
3524 | ElementsAreArray(const Container& container) { |
3525 | return ElementsAreArray(container.begin(), container.end()); |
3526 | } |
3527 | |
3528 | template <typename T> |
3529 | inline internal::ElementsAreArrayMatcher<T> |
3530 | ElementsAreArray(::std::initializer_list<T> xs) { |
3531 | return ElementsAreArray(xs.begin(), xs.end()); |
3532 | } |
3533 | |
3534 | // UnorderedElementsAreArray(iterator_first, iterator_last) |
3535 | // UnorderedElementsAreArray(pointer, count) |
3536 | // UnorderedElementsAreArray(array) |
3537 | // UnorderedElementsAreArray(container) |
3538 | // UnorderedElementsAreArray({ e1, e2, ..., en }) |
3539 | // |
3540 | // UnorderedElementsAreArray() verifies that a bijective mapping onto a |
3541 | // collection of matchers exists. |
3542 | // |
3543 | // The matchers can be specified as an array, a pointer and count, a container, |
3544 | // an initializer list, or an STL iterator range. In each of these cases, the |
3545 | // underlying matchers can be either values or matchers. |
3546 | |
3547 | template <typename Iter> |
3548 | inline internal::UnorderedElementsAreArrayMatcher< |
3549 | typename ::std::iterator_traits<Iter>::value_type> |
3550 | UnorderedElementsAreArray(Iter first, Iter last) { |
3551 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
3552 | return internal::UnorderedElementsAreArrayMatcher<T>( |
3553 | internal::UnorderedMatcherRequire::ExactMatch, first, last); |
3554 | } |
3555 | |
3556 | template <typename T> |
3557 | inline internal::UnorderedElementsAreArrayMatcher<T> |
3558 | UnorderedElementsAreArray(const T* pointer, size_t count) { |
3559 | return UnorderedElementsAreArray(pointer, pointer + count); |
3560 | } |
3561 | |
3562 | template <typename T, size_t N> |
3563 | inline internal::UnorderedElementsAreArrayMatcher<T> |
3564 | UnorderedElementsAreArray(const T (&array)[N]) { |
3565 | return UnorderedElementsAreArray(array, N); |
3566 | } |
3567 | |
3568 | template <typename Container> |
3569 | inline internal::UnorderedElementsAreArrayMatcher< |
3570 | typename Container::value_type> |
3571 | UnorderedElementsAreArray(const Container& container) { |
3572 | return UnorderedElementsAreArray(container.begin(), container.end()); |
3573 | } |
3574 | |
3575 | template <typename T> |
3576 | inline internal::UnorderedElementsAreArrayMatcher<T> |
3577 | UnorderedElementsAreArray(::std::initializer_list<T> xs) { |
3578 | return UnorderedElementsAreArray(xs.begin(), xs.end()); |
3579 | } |
3580 | |
3581 | // _ is a matcher that matches anything of any type. |
3582 | // |
3583 | // This definition is fine as: |
3584 | // |
3585 | // 1. The C++ standard permits using the name _ in a namespace that |
3586 | // is not the global namespace or ::std. |
3587 | // 2. The AnythingMatcher class has no data member or constructor, |
3588 | // so it's OK to create global variables of this type. |
3589 | // 3. c-style has approved of using _ in this case. |
3590 | const internal::AnythingMatcher _ = {}; |
3591 | // Creates a matcher that matches any value of the given type T. |
3592 | template <typename T> |
3593 | inline Matcher<T> A() { |
3594 | return Matcher<T>(new internal::AnyMatcherImpl<T>()); |
3595 | } |
3596 | |
3597 | // Creates a matcher that matches any value of the given type T. |
3598 | template <typename T> |
3599 | inline Matcher<T> An() { return A<T>(); } |
3600 | |
3601 | template <typename T, typename M> |
3602 | Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
3603 | const M& value, std::false_type /* convertible_to_matcher */, |
3604 | std::false_type /* convertible_to_T */) { |
3605 | return Eq(value); |
3606 | } |
3607 | |
3608 | // Creates a polymorphic matcher that matches any NULL pointer. |
3609 | inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { |
3610 | return MakePolymorphicMatcher(internal::IsNullMatcher()); |
3611 | } |
3612 | |
3613 | // Creates a polymorphic matcher that matches any non-NULL pointer. |
3614 | // This is convenient as Not(NULL) doesn't compile (the compiler |
3615 | // thinks that that expression is comparing a pointer with an integer). |
3616 | inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { |
3617 | return MakePolymorphicMatcher(internal::NotNullMatcher()); |
3618 | } |
3619 | |
3620 | // Creates a polymorphic matcher that matches any argument that |
3621 | // references variable x. |
3622 | template <typename T> |
3623 | inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
3624 | return internal::RefMatcher<T&>(x); |
3625 | } |
3626 | |
3627 | // Creates a matcher that matches any double argument approximately |
3628 | // equal to rhs, where two NANs are considered unequal. |
3629 | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
3630 | return internal::FloatingEqMatcher<double>(rhs, false); |
3631 | } |
3632 | |
3633 | // Creates a matcher that matches any double argument approximately |
3634 | // equal to rhs, including NaN values when rhs is NaN. |
3635 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
3636 | return internal::FloatingEqMatcher<double>(rhs, true); |
3637 | } |
3638 | |
3639 | // Creates a matcher that matches any double argument approximately equal to |
3640 | // rhs, up to the specified max absolute error bound, where two NANs are |
3641 | // considered unequal. The max absolute error bound must be non-negative. |
3642 | inline internal::FloatingEqMatcher<double> DoubleNear( |
3643 | double rhs, double max_abs_error) { |
3644 | return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
3645 | } |
3646 | |
3647 | // Creates a matcher that matches any double argument approximately equal to |
3648 | // rhs, up to the specified max absolute error bound, including NaN values when |
3649 | // rhs is NaN. The max absolute error bound must be non-negative. |
3650 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
3651 | double rhs, double max_abs_error) { |
3652 | return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
3653 | } |
3654 | |
3655 | // Creates a matcher that matches any float argument approximately |
3656 | // equal to rhs, where two NANs are considered unequal. |
3657 | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
3658 | return internal::FloatingEqMatcher<float>(rhs, false); |
3659 | } |
3660 | |
3661 | // Creates a matcher that matches any float argument approximately |
3662 | // equal to rhs, including NaN values when rhs is NaN. |
3663 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
3664 | return internal::FloatingEqMatcher<float>(rhs, true); |
3665 | } |
3666 | |
3667 | // Creates a matcher that matches any float argument approximately equal to |
3668 | // rhs, up to the specified max absolute error bound, where two NANs are |
3669 | // considered unequal. The max absolute error bound must be non-negative. |
3670 | inline internal::FloatingEqMatcher<float> FloatNear( |
3671 | float rhs, float max_abs_error) { |
3672 | return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
3673 | } |
3674 | |
3675 | // Creates a matcher that matches any float argument approximately equal to |
3676 | // rhs, up to the specified max absolute error bound, including NaN values when |
3677 | // rhs is NaN. The max absolute error bound must be non-negative. |
3678 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
3679 | float rhs, float max_abs_error) { |
3680 | return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
3681 | } |
3682 | |
3683 | // Creates a matcher that matches a pointer (raw or smart) that points |
3684 | // to a value that matches inner_matcher. |
3685 | template <typename InnerMatcher> |
3686 | inline internal::PointeeMatcher<InnerMatcher> Pointee( |
3687 | const InnerMatcher& inner_matcher) { |
3688 | return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
3689 | } |
3690 | |
3691 | #if GTEST_HAS_RTTI |
3692 | // Creates a matcher that matches a pointer or reference that matches |
3693 | // inner_matcher when dynamic_cast<To> is applied. |
3694 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
3695 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
3696 | // If To is a reference and the cast fails, this matcher returns false |
3697 | // immediately. |
3698 | template <typename To> |
3699 | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > |
3700 | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
3701 | return MakePolymorphicMatcher( |
3702 | internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
3703 | } |
3704 | #endif // GTEST_HAS_RTTI |
3705 | |
3706 | // Creates a matcher that matches an object whose given field matches |
3707 | // 'matcher'. For example, |
3708 | // Field(&Foo::number, Ge(5)) |
3709 | // matches a Foo object x if and only if x.number >= 5. |
3710 | template <typename Class, typename FieldType, typename FieldMatcher> |
3711 | inline PolymorphicMatcher< |
3712 | internal::FieldMatcher<Class, FieldType> > Field( |
3713 | FieldType Class::*field, const FieldMatcher& matcher) { |
3714 | return MakePolymorphicMatcher( |
3715 | internal::FieldMatcher<Class, FieldType>( |
3716 | field, MatcherCast<const FieldType&>(matcher))); |
3717 | // The call to MatcherCast() is required for supporting inner |
3718 | // matchers of compatible types. For example, it allows |
3719 | // Field(&Foo::bar, m) |
3720 | // to compile where bar is an int32 and m is a matcher for int64. |
3721 | } |
3722 | |
3723 | // Same as Field() but also takes the name of the field to provide better error |
3724 | // messages. |
3725 | template <typename Class, typename FieldType, typename FieldMatcher> |
3726 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( |
3727 | const std::string& field_name, FieldType Class::*field, |
3728 | const FieldMatcher& matcher) { |
3729 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
3730 | field_name, field, MatcherCast<const FieldType&>(matcher))); |
3731 | } |
3732 | |
3733 | // Creates a matcher that matches an object whose given property |
3734 | // matches 'matcher'. For example, |
3735 | // Property(&Foo::str, StartsWith("hi")) |
3736 | // matches a Foo object x if and only if x.str() starts with "hi". |
3737 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
3738 | inline PolymorphicMatcher<internal::PropertyMatcher< |
3739 | Class, PropertyType, PropertyType (Class::*)() const> > |
3740 | Property(PropertyType (Class::*property)() const, |
3741 | const PropertyMatcher& matcher) { |
3742 | return MakePolymorphicMatcher( |
3743 | internal::PropertyMatcher<Class, PropertyType, |
3744 | PropertyType (Class::*)() const>( |
3745 | property, MatcherCast<const PropertyType&>(matcher))); |
3746 | // The call to MatcherCast() is required for supporting inner |
3747 | // matchers of compatible types. For example, it allows |
3748 | // Property(&Foo::bar, m) |
3749 | // to compile where bar() returns an int32 and m is a matcher for int64. |
3750 | } |
3751 | |
3752 | // Same as Property() above, but also takes the name of the property to provide |
3753 | // better error messages. |
3754 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
3755 | inline PolymorphicMatcher<internal::PropertyMatcher< |
3756 | Class, PropertyType, PropertyType (Class::*)() const> > |
3757 | Property(const std::string& property_name, |
3758 | PropertyType (Class::*property)() const, |
3759 | const PropertyMatcher& matcher) { |
3760 | return MakePolymorphicMatcher( |
3761 | internal::PropertyMatcher<Class, PropertyType, |
3762 | PropertyType (Class::*)() const>( |
3763 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
3764 | } |
3765 | |
3766 | // The same as above but for reference-qualified member functions. |
3767 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
3768 | inline PolymorphicMatcher<internal::PropertyMatcher< |
3769 | Class, PropertyType, PropertyType (Class::*)() const &> > |
3770 | Property(PropertyType (Class::*property)() const &, |
3771 | const PropertyMatcher& matcher) { |
3772 | return MakePolymorphicMatcher( |
3773 | internal::PropertyMatcher<Class, PropertyType, |
3774 | PropertyType (Class::*)() const&>( |
3775 | property, MatcherCast<const PropertyType&>(matcher))); |
3776 | } |
3777 | |
3778 | // Three-argument form for reference-qualified member functions. |
3779 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
3780 | inline PolymorphicMatcher<internal::PropertyMatcher< |
3781 | Class, PropertyType, PropertyType (Class::*)() const &> > |
3782 | Property(const std::string& property_name, |
3783 | PropertyType (Class::*property)() const &, |
3784 | const PropertyMatcher& matcher) { |
3785 | return MakePolymorphicMatcher( |
3786 | internal::PropertyMatcher<Class, PropertyType, |
3787 | PropertyType (Class::*)() const&>( |
3788 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
3789 | } |
3790 | |
3791 | // Creates a matcher that matches an object if and only if the result of |
3792 | // applying a callable to x matches 'matcher'. For example, |
3793 | // ResultOf(f, StartsWith("hi")) |
3794 | // matches a Foo object x if and only if f(x) starts with "hi". |
3795 | // `callable` parameter can be a function, function pointer, or a functor. It is |
3796 | // required to keep no state affecting the results of the calls on it and make |
3797 | // no assumptions about how many calls will be made. Any state it keeps must be |
3798 | // protected from the concurrent access. |
3799 | template <typename Callable, typename InnerMatcher> |
3800 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
3801 | Callable callable, InnerMatcher matcher) { |
3802 | return internal::ResultOfMatcher<Callable, InnerMatcher>( |
3803 | std::move(callable), std::move(matcher)); |
3804 | } |
3805 | |
3806 | // String matchers. |
3807 | |
3808 | // Matches a string equal to str. |
3809 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( |
3810 | const std::string& str) { |
3811 | return MakePolymorphicMatcher( |
3812 | internal::StrEqualityMatcher<std::string>(str, true, true)); |
3813 | } |
3814 | |
3815 | // Matches a string not equal to str. |
3816 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( |
3817 | const std::string& str) { |
3818 | return MakePolymorphicMatcher( |
3819 | internal::StrEqualityMatcher<std::string>(str, false, true)); |
3820 | } |
3821 | |
3822 | // Matches a string equal to str, ignoring case. |
3823 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( |
3824 | const std::string& str) { |
3825 | return MakePolymorphicMatcher( |
3826 | internal::StrEqualityMatcher<std::string>(str, true, false)); |
3827 | } |
3828 | |
3829 | // Matches a string not equal to str, ignoring case. |
3830 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( |
3831 | const std::string& str) { |
3832 | return MakePolymorphicMatcher( |
3833 | internal::StrEqualityMatcher<std::string>(str, false, false)); |
3834 | } |
3835 | |
3836 | // Creates a matcher that matches any string, std::string, or C string |
3837 | // that contains the given substring. |
3838 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( |
3839 | const std::string& substring) { |
3840 | return MakePolymorphicMatcher( |
3841 | internal::HasSubstrMatcher<std::string>(substring)); |
3842 | } |
3843 | |
3844 | // Matches a string that starts with 'prefix' (case-sensitive). |
3845 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( |
3846 | const std::string& prefix) { |
3847 | return MakePolymorphicMatcher( |
3848 | internal::StartsWithMatcher<std::string>(prefix)); |
3849 | } |
3850 | |
3851 | // Matches a string that ends with 'suffix' (case-sensitive). |
3852 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( |
3853 | const std::string& suffix) { |
3854 | return MakePolymorphicMatcher(internal::EndsWithMatcher<std::string>(suffix)); |
3855 | } |
3856 | |
3857 | #if GTEST_HAS_STD_WSTRING |
3858 | // Wide string matchers. |
3859 | |
3860 | // Matches a string equal to str. |
3861 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( |
3862 | const std::wstring& str) { |
3863 | return MakePolymorphicMatcher( |
3864 | internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
3865 | } |
3866 | |
3867 | // Matches a string not equal to str. |
3868 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( |
3869 | const std::wstring& str) { |
3870 | return MakePolymorphicMatcher( |
3871 | internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
3872 | } |
3873 | |
3874 | // Matches a string equal to str, ignoring case. |
3875 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
3876 | StrCaseEq(const std::wstring& str) { |
3877 | return MakePolymorphicMatcher( |
3878 | internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
3879 | } |
3880 | |
3881 | // Matches a string not equal to str, ignoring case. |
3882 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
3883 | StrCaseNe(const std::wstring& str) { |
3884 | return MakePolymorphicMatcher( |
3885 | internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
3886 | } |
3887 | |
3888 | // Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
3889 | // that contains the given substring. |
3890 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( |
3891 | const std::wstring& substring) { |
3892 | return MakePolymorphicMatcher( |
3893 | internal::HasSubstrMatcher<std::wstring>(substring)); |
3894 | } |
3895 | |
3896 | // Matches a string that starts with 'prefix' (case-sensitive). |
3897 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > |
3898 | StartsWith(const std::wstring& prefix) { |
3899 | return MakePolymorphicMatcher( |
3900 | internal::StartsWithMatcher<std::wstring>(prefix)); |
3901 | } |
3902 | |
3903 | // Matches a string that ends with 'suffix' (case-sensitive). |
3904 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( |
3905 | const std::wstring& suffix) { |
3906 | return MakePolymorphicMatcher( |
3907 | internal::EndsWithMatcher<std::wstring>(suffix)); |
3908 | } |
3909 | |
3910 | #endif // GTEST_HAS_STD_WSTRING |
3911 | |
3912 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3913 | // first field == the second field. |
3914 | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
3915 | |
3916 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3917 | // first field >= the second field. |
3918 | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
3919 | |
3920 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3921 | // first field > the second field. |
3922 | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
3923 | |
3924 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3925 | // first field <= the second field. |
3926 | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
3927 | |
3928 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3929 | // first field < the second field. |
3930 | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
3931 | |
3932 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3933 | // first field != the second field. |
3934 | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
3935 | |
3936 | // Creates a polymorphic matcher that matches a 2-tuple where |
3937 | // FloatEq(first field) matches the second field. |
3938 | inline internal::FloatingEq2Matcher<float> FloatEq() { |
3939 | return internal::FloatingEq2Matcher<float>(); |
3940 | } |
3941 | |
3942 | // Creates a polymorphic matcher that matches a 2-tuple where |
3943 | // DoubleEq(first field) matches the second field. |
3944 | inline internal::FloatingEq2Matcher<double> DoubleEq() { |
3945 | return internal::FloatingEq2Matcher<double>(); |
3946 | } |
3947 | |
3948 | // Creates a polymorphic matcher that matches a 2-tuple where |
3949 | // FloatEq(first field) matches the second field with NaN equality. |
3950 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
3951 | return internal::FloatingEq2Matcher<float>(true); |
3952 | } |
3953 | |
3954 | // Creates a polymorphic matcher that matches a 2-tuple where |
3955 | // DoubleEq(first field) matches the second field with NaN equality. |
3956 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
3957 | return internal::FloatingEq2Matcher<double>(true); |
3958 | } |
3959 | |
3960 | // Creates a polymorphic matcher that matches a 2-tuple where |
3961 | // FloatNear(first field, max_abs_error) matches the second field. |
3962 | inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
3963 | return internal::FloatingEq2Matcher<float>(max_abs_error); |
3964 | } |
3965 | |
3966 | // Creates a polymorphic matcher that matches a 2-tuple where |
3967 | // DoubleNear(first field, max_abs_error) matches the second field. |
3968 | inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
3969 | return internal::FloatingEq2Matcher<double>(max_abs_error); |
3970 | } |
3971 | |
3972 | // Creates a polymorphic matcher that matches a 2-tuple where |
3973 | // FloatNear(first field, max_abs_error) matches the second field with NaN |
3974 | // equality. |
3975 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
3976 | float max_abs_error) { |
3977 | return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
3978 | } |
3979 | |
3980 | // Creates a polymorphic matcher that matches a 2-tuple where |
3981 | // DoubleNear(first field, max_abs_error) matches the second field with NaN |
3982 | // equality. |
3983 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
3984 | double max_abs_error) { |
3985 | return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
3986 | } |
3987 | |
3988 | // Creates a matcher that matches any value of type T that m doesn't |
3989 | // match. |
3990 | template <typename InnerMatcher> |
3991 | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
3992 | return internal::NotMatcher<InnerMatcher>(m); |
3993 | } |
3994 | |
3995 | // Returns a matcher that matches anything that satisfies the given |
3996 | // predicate. The predicate can be any unary function or functor |
3997 | // whose return type can be implicitly converted to bool. |
3998 | template <typename Predicate> |
3999 | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > |
4000 | Truly(Predicate pred) { |
4001 | return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
4002 | } |
4003 | |
4004 | // Returns a matcher that matches the container size. The container must |
4005 | // support both size() and size_type which all STL-like containers provide. |
4006 | // Note that the parameter 'size' can be a value of type size_type as well as |
4007 | // matcher. For instance: |
4008 | // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
4009 | // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
4010 | template <typename SizeMatcher> |
4011 | inline internal::SizeIsMatcher<SizeMatcher> |
4012 | SizeIs(const SizeMatcher& size_matcher) { |
4013 | return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
4014 | } |
4015 | |
4016 | // Returns a matcher that matches the distance between the container's begin() |
4017 | // iterator and its end() iterator, i.e. the size of the container. This matcher |
4018 | // can be used instead of SizeIs with containers such as std::forward_list which |
4019 | // do not implement size(). The container must provide const_iterator (with |
4020 | // valid iterator_traits), begin() and end(). |
4021 | template <typename DistanceMatcher> |
4022 | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> |
4023 | BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { |
4024 | return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
4025 | } |
4026 | |
4027 | // Returns a matcher that matches an equal container. |
4028 | // This matcher behaves like Eq(), but in the event of mismatch lists the |
4029 | // values that are included in one container but not the other. (Duplicate |
4030 | // values and order differences are not explained.) |
4031 | template <typename Container> |
4032 | inline PolymorphicMatcher<internal::ContainerEqMatcher< |
4033 | typename std::remove_const<Container>::type>> |
4034 | ContainerEq(const Container& rhs) { |
4035 | // This following line is for working around a bug in MSVC 8.0, |
4036 | // which causes Container to be a const type sometimes. |
4037 | typedef typename std::remove_const<Container>::type RawContainer; |
4038 | return MakePolymorphicMatcher( |
4039 | internal::ContainerEqMatcher<RawContainer>(rhs)); |
4040 | } |
4041 | |
4042 | // Returns a matcher that matches a container that, when sorted using |
4043 | // the given comparator, matches container_matcher. |
4044 | template <typename Comparator, typename ContainerMatcher> |
4045 | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> |
4046 | WhenSortedBy(const Comparator& comparator, |
4047 | const ContainerMatcher& container_matcher) { |
4048 | return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
4049 | comparator, container_matcher); |
4050 | } |
4051 | |
4052 | // Returns a matcher that matches a container that, when sorted using |
4053 | // the < operator, matches container_matcher. |
4054 | template <typename ContainerMatcher> |
4055 | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
4056 | WhenSorted(const ContainerMatcher& container_matcher) { |
4057 | return |
4058 | internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( |
4059 | internal::LessComparator(), container_matcher); |
4060 | } |
4061 | |
4062 | // Matches an STL-style container or a native array that contains the |
4063 | // same number of elements as in rhs, where its i-th element and rhs's |
4064 | // i-th element (as a pair) satisfy the given pair matcher, for all i. |
4065 | // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
4066 | // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
4067 | // LHS container and the RHS container respectively. |
4068 | template <typename TupleMatcher, typename Container> |
4069 | inline internal::PointwiseMatcher<TupleMatcher, |
4070 | typename std::remove_const<Container>::type> |
4071 | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
4072 | // This following line is for working around a bug in MSVC 8.0, |
4073 | // which causes Container to be a const type sometimes (e.g. when |
4074 | // rhs is a const int[]).. |
4075 | typedef typename std::remove_const<Container>::type RawContainer; |
4076 | return internal::PointwiseMatcher<TupleMatcher, RawContainer>( |
4077 | tuple_matcher, rhs); |
4078 | } |
4079 | |
4080 | |
4081 | // Supports the Pointwise(m, {a, b, c}) syntax. |
4082 | template <typename TupleMatcher, typename T> |
4083 | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( |
4084 | const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
4085 | return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
4086 | } |
4087 | |
4088 | |
4089 | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
4090 | // container or a native array that contains the same number of |
4091 | // elements as in rhs, where in some permutation of the container, its |
4092 | // i-th element and rhs's i-th element (as a pair) satisfy the given |
4093 | // pair matcher, for all i. Tuple2Matcher must be able to be safely |
4094 | // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
4095 | // the types of elements in the LHS container and the RHS container |
4096 | // respectively. |
4097 | // |
4098 | // This is like Pointwise(pair_matcher, rhs), except that the element |
4099 | // order doesn't matter. |
4100 | template <typename Tuple2Matcher, typename RhsContainer> |
4101 | inline internal::UnorderedElementsAreArrayMatcher< |
4102 | typename internal::BoundSecondMatcher< |
4103 | Tuple2Matcher, |
4104 | typename internal::StlContainerView< |
4105 | typename std::remove_const<RhsContainer>::type>::type::value_type>> |
4106 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4107 | const RhsContainer& rhs_container) { |
4108 | // This following line is for working around a bug in MSVC 8.0, |
4109 | // which causes RhsContainer to be a const type sometimes (e.g. when |
4110 | // rhs_container is a const int[]). |
4111 | typedef typename std::remove_const<RhsContainer>::type RawRhsContainer; |
4112 | |
4113 | // RhsView allows the same code to handle RhsContainer being a |
4114 | // STL-style container and it being a native C-style array. |
4115 | typedef typename internal::StlContainerView<RawRhsContainer> RhsView; |
4116 | typedef typename RhsView::type RhsStlContainer; |
4117 | typedef typename RhsStlContainer::value_type Second; |
4118 | const RhsStlContainer& rhs_stl_container = |
4119 | RhsView::ConstReference(rhs_container); |
4120 | |
4121 | // Create a matcher for each element in rhs_container. |
4122 | ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; |
4123 | for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); |
4124 | it != rhs_stl_container.end(); ++it) { |
4125 | matchers.push_back( |
4126 | internal::MatcherBindSecond(tuple2_matcher, *it)); |
4127 | } |
4128 | |
4129 | // Delegate the work to UnorderedElementsAreArray(). |
4130 | return UnorderedElementsAreArray(matchers); |
4131 | } |
4132 | |
4133 | |
4134 | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
4135 | template <typename Tuple2Matcher, typename T> |
4136 | inline internal::UnorderedElementsAreArrayMatcher< |
4137 | typename internal::BoundSecondMatcher<Tuple2Matcher, T> > |
4138 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4139 | std::initializer_list<T> rhs) { |
4140 | return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
4141 | } |
4142 | |
4143 | |
4144 | // Matches an STL-style container or a native array that contains at |
4145 | // least one element matching the given value or matcher. |
4146 | // |
4147 | // Examples: |
4148 | // ::std::set<int> page_ids; |
4149 | // page_ids.insert(3); |
4150 | // page_ids.insert(1); |
4151 | // EXPECT_THAT(page_ids, Contains(1)); |
4152 | // EXPECT_THAT(page_ids, Contains(Gt(2))); |
4153 | // EXPECT_THAT(page_ids, Not(Contains(4))); |
4154 | // |
4155 | // ::std::map<int, size_t> page_lengths; |
4156 | // page_lengths[1] = 100; |
4157 | // EXPECT_THAT(page_lengths, |
4158 | // Contains(::std::pair<const int, size_t>(1, 100))); |
4159 | // |
4160 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
4161 | // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
4162 | template <typename M> |
4163 | inline internal::ContainsMatcher<M> Contains(M matcher) { |
4164 | return internal::ContainsMatcher<M>(matcher); |
4165 | } |
4166 | |
4167 | // IsSupersetOf(iterator_first, iterator_last) |
4168 | // IsSupersetOf(pointer, count) |
4169 | // IsSupersetOf(array) |
4170 | // IsSupersetOf(container) |
4171 | // IsSupersetOf({e1, e2, ..., en}) |
4172 | // |
4173 | // IsSupersetOf() verifies that a surjective partial mapping onto a collection |
4174 | // of matchers exists. In other words, a container matches |
4175 | // IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
4176 | // {y1, ..., yn} of some of the container's elements where y1 matches e1, |
4177 | // ..., and yn matches en. Obviously, the size of the container must be >= n |
4178 | // in order to have a match. Examples: |
4179 | // |
4180 | // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
4181 | // 1 matches Ne(0). |
4182 | // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
4183 | // both Eq(1) and Lt(2). The reason is that different matchers must be used |
4184 | // for elements in different slots of the container. |
4185 | // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
4186 | // Eq(1) and (the second) 1 matches Lt(2). |
4187 | // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
4188 | // Gt(1) and 3 matches (the second) Gt(1). |
4189 | // |
4190 | // The matchers can be specified as an array, a pointer and count, a container, |
4191 | // an initializer list, or an STL iterator range. In each of these cases, the |
4192 | // underlying matchers can be either values or matchers. |
4193 | |
4194 | template <typename Iter> |
4195 | inline internal::UnorderedElementsAreArrayMatcher< |
4196 | typename ::std::iterator_traits<Iter>::value_type> |
4197 | IsSupersetOf(Iter first, Iter last) { |
4198 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4199 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4200 | internal::UnorderedMatcherRequire::Superset, first, last); |
4201 | } |
4202 | |
4203 | template <typename T> |
4204 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4205 | const T* pointer, size_t count) { |
4206 | return IsSupersetOf(pointer, pointer + count); |
4207 | } |
4208 | |
4209 | template <typename T, size_t N> |
4210 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4211 | const T (&array)[N]) { |
4212 | return IsSupersetOf(array, N); |
4213 | } |
4214 | |
4215 | template <typename Container> |
4216 | inline internal::UnorderedElementsAreArrayMatcher< |
4217 | typename Container::value_type> |
4218 | IsSupersetOf(const Container& container) { |
4219 | return IsSupersetOf(container.begin(), container.end()); |
4220 | } |
4221 | |
4222 | template <typename T> |
4223 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4224 | ::std::initializer_list<T> xs) { |
4225 | return IsSupersetOf(xs.begin(), xs.end()); |
4226 | } |
4227 | |
4228 | // IsSubsetOf(iterator_first, iterator_last) |
4229 | // IsSubsetOf(pointer, count) |
4230 | // IsSubsetOf(array) |
4231 | // IsSubsetOf(container) |
4232 | // IsSubsetOf({e1, e2, ..., en}) |
4233 | // |
4234 | // IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
4235 | // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
4236 | // only if there is a subset of matchers {m1, ..., mk} which would match the |
4237 | // container using UnorderedElementsAre. Obviously, the size of the container |
4238 | // must be <= n in order to have a match. Examples: |
4239 | // |
4240 | // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
4241 | // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
4242 | // matches Lt(0). |
4243 | // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
4244 | // match Gt(0). The reason is that different matchers must be used for |
4245 | // elements in different slots of the container. |
4246 | // |
4247 | // The matchers can be specified as an array, a pointer and count, a container, |
4248 | // an initializer list, or an STL iterator range. In each of these cases, the |
4249 | // underlying matchers can be either values or matchers. |
4250 | |
4251 | template <typename Iter> |
4252 | inline internal::UnorderedElementsAreArrayMatcher< |
4253 | typename ::std::iterator_traits<Iter>::value_type> |
4254 | IsSubsetOf(Iter first, Iter last) { |
4255 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4256 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4257 | internal::UnorderedMatcherRequire::Subset, first, last); |
4258 | } |
4259 | |
4260 | template <typename T> |
4261 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4262 | const T* pointer, size_t count) { |
4263 | return IsSubsetOf(pointer, pointer + count); |
4264 | } |
4265 | |
4266 | template <typename T, size_t N> |
4267 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4268 | const T (&array)[N]) { |
4269 | return IsSubsetOf(array, N); |
4270 | } |
4271 | |
4272 | template <typename Container> |
4273 | inline internal::UnorderedElementsAreArrayMatcher< |
4274 | typename Container::value_type> |
4275 | IsSubsetOf(const Container& container) { |
4276 | return IsSubsetOf(container.begin(), container.end()); |
4277 | } |
4278 | |
4279 | template <typename T> |
4280 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4281 | ::std::initializer_list<T> xs) { |
4282 | return IsSubsetOf(xs.begin(), xs.end()); |
4283 | } |
4284 | |
4285 | // Matches an STL-style container or a native array that contains only |
4286 | // elements matching the given value or matcher. |
4287 | // |
4288 | // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only |
4289 | // the messages are different. |
4290 | // |
4291 | // Examples: |
4292 | // ::std::set<int> page_ids; |
4293 | // // Each(m) matches an empty container, regardless of what m is. |
4294 | // EXPECT_THAT(page_ids, Each(Eq(1))); |
4295 | // EXPECT_THAT(page_ids, Each(Eq(77))); |
4296 | // |
4297 | // page_ids.insert(3); |
4298 | // EXPECT_THAT(page_ids, Each(Gt(0))); |
4299 | // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
4300 | // page_ids.insert(1); |
4301 | // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
4302 | // |
4303 | // ::std::map<int, size_t> page_lengths; |
4304 | // page_lengths[1] = 100; |
4305 | // page_lengths[2] = 200; |
4306 | // page_lengths[3] = 300; |
4307 | // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
4308 | // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
4309 | // |
4310 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
4311 | // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
4312 | template <typename M> |
4313 | inline internal::EachMatcher<M> Each(M matcher) { |
4314 | return internal::EachMatcher<M>(matcher); |
4315 | } |
4316 | |
4317 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
4318 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
4319 | // std::map that contains at least one element whose key is >= 5. |
4320 | template <typename M> |
4321 | inline internal::KeyMatcher<M> Key(M inner_matcher) { |
4322 | return internal::KeyMatcher<M>(inner_matcher); |
4323 | } |
4324 | |
4325 | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
4326 | // matches first_matcher and whose 'second' field matches second_matcher. For |
4327 | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
4328 | // to match a std::map<int, string> that contains exactly one element whose key |
4329 | // is >= 5 and whose value equals "foo". |
4330 | template <typename FirstMatcher, typename SecondMatcher> |
4331 | inline internal::PairMatcher<FirstMatcher, SecondMatcher> |
4332 | Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { |
4333 | return internal::PairMatcher<FirstMatcher, SecondMatcher>( |
4334 | first_matcher, second_matcher); |
4335 | } |
4336 | |
4337 | // Returns a predicate that is satisfied by anything that matches the |
4338 | // given matcher. |
4339 | template <typename M> |
4340 | inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
4341 | return internal::MatcherAsPredicate<M>(matcher); |
4342 | } |
4343 | |
4344 | // Returns true if and only if the value matches the matcher. |
4345 | template <typename T, typename M> |
4346 | inline bool Value(const T& value, M matcher) { |
4347 | return testing::Matches(matcher)(value); |
4348 | } |
4349 | |
4350 | // Matches the value against the given matcher and explains the match |
4351 | // result to listener. |
4352 | template <typename T, typename M> |
4353 | inline bool ExplainMatchResult( |
4354 | M matcher, const T& value, MatchResultListener* listener) { |
4355 | return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
4356 | } |
4357 | |
4358 | // Returns a string representation of the given matcher. Useful for description |
4359 | // strings of matchers defined using MATCHER_P* macros that accept matchers as |
4360 | // their arguments. For example: |
4361 | // |
4362 | // MATCHER_P(XAndYThat, matcher, |
4363 | // "X that " + DescribeMatcher<int>(matcher, negation) + |
4364 | // " and Y that " + DescribeMatcher<double>(matcher, negation)) { |
4365 | // return ExplainMatchResult(matcher, arg.x(), result_listener) && |
4366 | // ExplainMatchResult(matcher, arg.y(), result_listener); |
4367 | // } |
4368 | template <typename T, typename M> |
4369 | std::string DescribeMatcher(const M& matcher, bool negation = false) { |
4370 | ::std::stringstream ss; |
4371 | Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
4372 | if (negation) { |
4373 | monomorphic_matcher.DescribeNegationTo(&ss); |
4374 | } else { |
4375 | monomorphic_matcher.DescribeTo(&ss); |
4376 | } |
4377 | return ss.str(); |
4378 | } |
4379 | |
4380 | template <typename... Args> |
4381 | internal::ElementsAreMatcher< |
4382 | std::tuple<typename std::decay<const Args&>::type...>> |
4383 | ElementsAre(const Args&... matchers) { |
4384 | return internal::ElementsAreMatcher< |
4385 | std::tuple<typename std::decay<const Args&>::type...>>( |
4386 | std::make_tuple(matchers...)); |
4387 | } |
4388 | |
4389 | template <typename... Args> |
4390 | internal::UnorderedElementsAreMatcher< |
4391 | std::tuple<typename std::decay<const Args&>::type...>> |
4392 | UnorderedElementsAre(const Args&... matchers) { |
4393 | return internal::UnorderedElementsAreMatcher< |
4394 | std::tuple<typename std::decay<const Args&>::type...>>( |
4395 | std::make_tuple(matchers...)); |
4396 | } |
4397 | |
4398 | // Define variadic matcher versions. |
4399 | template <typename... Args> |
4400 | internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
4401 | const Args&... matchers) { |
4402 | return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
4403 | matchers...); |
4404 | } |
4405 | |
4406 | template <typename... Args> |
4407 | internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
4408 | const Args&... matchers) { |
4409 | return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
4410 | matchers...); |
4411 | } |
4412 | |
4413 | // AnyOfArray(array) |
4414 | // AnyOfArray(pointer, count) |
4415 | // AnyOfArray(container) |
4416 | // AnyOfArray({ e1, e2, ..., en }) |
4417 | // AnyOfArray(iterator_first, iterator_last) |
4418 | // |
4419 | // AnyOfArray() verifies whether a given value matches any member of a |
4420 | // collection of matchers. |
4421 | // |
4422 | // AllOfArray(array) |
4423 | // AllOfArray(pointer, count) |
4424 | // AllOfArray(container) |
4425 | // AllOfArray({ e1, e2, ..., en }) |
4426 | // AllOfArray(iterator_first, iterator_last) |
4427 | // |
4428 | // AllOfArray() verifies whether a given value matches all members of a |
4429 | // collection of matchers. |
4430 | // |
4431 | // The matchers can be specified as an array, a pointer and count, a container, |
4432 | // an initializer list, or an STL iterator range. In each of these cases, the |
4433 | // underlying matchers can be either values or matchers. |
4434 | |
4435 | template <typename Iter> |
4436 | inline internal::AnyOfArrayMatcher< |
4437 | typename ::std::iterator_traits<Iter>::value_type> |
4438 | AnyOfArray(Iter first, Iter last) { |
4439 | return internal::AnyOfArrayMatcher< |
4440 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
4441 | } |
4442 | |
4443 | template <typename Iter> |
4444 | inline internal::AllOfArrayMatcher< |
4445 | typename ::std::iterator_traits<Iter>::value_type> |
4446 | AllOfArray(Iter first, Iter last) { |
4447 | return internal::AllOfArrayMatcher< |
4448 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
4449 | } |
4450 | |
4451 | template <typename T> |
4452 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
4453 | return AnyOfArray(ptr, ptr + count); |
4454 | } |
4455 | |
4456 | template <typename T> |
4457 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
4458 | return AllOfArray(ptr, ptr + count); |
4459 | } |
4460 | |
4461 | template <typename T, size_t N> |
4462 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
4463 | return AnyOfArray(array, N); |
4464 | } |
4465 | |
4466 | template <typename T, size_t N> |
4467 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
4468 | return AllOfArray(array, N); |
4469 | } |
4470 | |
4471 | template <typename Container> |
4472 | inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
4473 | const Container& container) { |
4474 | return AnyOfArray(container.begin(), container.end()); |
4475 | } |
4476 | |
4477 | template <typename Container> |
4478 | inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
4479 | const Container& container) { |
4480 | return AllOfArray(container.begin(), container.end()); |
4481 | } |
4482 | |
4483 | template <typename T> |
4484 | inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
4485 | ::std::initializer_list<T> xs) { |
4486 | return AnyOfArray(xs.begin(), xs.end()); |
4487 | } |
4488 | |
4489 | template <typename T> |
4490 | inline internal::AllOfArrayMatcher<T> AllOfArray( |
4491 | ::std::initializer_list<T> xs) { |
4492 | return AllOfArray(xs.begin(), xs.end()); |
4493 | } |
4494 | |
4495 | // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
4496 | // fields of it matches a_matcher. C++ doesn't support default |
4497 | // arguments for function templates, so we have to overload it. |
4498 | template <size_t... k, typename InnerMatcher> |
4499 | internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
4500 | InnerMatcher&& matcher) { |
4501 | return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
4502 | std::forward<InnerMatcher>(matcher)); |
4503 | } |
4504 | |
4505 | // AllArgs(m) is a synonym of m. This is useful in |
4506 | // |
4507 | // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
4508 | // |
4509 | // which is easier to read than |
4510 | // |
4511 | // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
4512 | template <typename InnerMatcher> |
4513 | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } |
4514 | |
4515 | // Returns a matcher that matches the value of an optional<> type variable. |
4516 | // The matcher implementation only uses '!arg' and requires that the optional<> |
4517 | // type has a 'value_type' member type and that '*arg' is of type 'value_type' |
4518 | // and is printable using 'PrintToString'. It is compatible with |
4519 | // std::optional/std::experimental::optional. |
4520 | // Note that to compare an optional type variable against nullopt you should |
4521 | // use Eq(nullopt) and not Optional(Eq(nullopt)). The latter implies that the |
4522 | // optional value contains an optional itself. |
4523 | template <typename ValueMatcher> |
4524 | inline internal::OptionalMatcher<ValueMatcher> Optional( |
4525 | const ValueMatcher& value_matcher) { |
4526 | return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
4527 | } |
4528 | |
4529 | // Returns a matcher that matches the value of a absl::any type variable. |
4530 | template <typename T> |
4531 | PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( |
4532 | const Matcher<const T&>& matcher) { |
4533 | return MakePolymorphicMatcher( |
4534 | internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
4535 | } |
4536 | |
4537 | // Returns a matcher that matches the value of a variant<> type variable. |
4538 | // The matcher implementation uses ADL to find the holds_alternative and get |
4539 | // functions. |
4540 | // It is compatible with std::variant. |
4541 | template <typename T> |
4542 | PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( |
4543 | const Matcher<const T&>& matcher) { |
4544 | return MakePolymorphicMatcher( |
4545 | internal::variant_matcher::VariantMatcher<T>(matcher)); |
4546 | } |
4547 | |
4548 | // These macros allow using matchers to check values in Google Test |
4549 | // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
4550 | // succeed if and only if the value matches the matcher. If the assertion |
4551 | // fails, the value and the description of the matcher will be printed. |
4552 | #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ |
4553 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
4554 | #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ |
4555 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
4556 | |
4557 | } // namespace testing |
4558 | |
4559 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
4560 | |
4561 | // Include any custom callback matchers added by the local installation. |
4562 | // We must include this header at the end to make sure it can use the |
4563 | // declarations from this file. |
4564 | #include "gmock/internal/custom/gmock-matchers.h" |
4565 | |
4566 | #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
4567 | |