1 | /* |
2 | * Copyright 2011 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkMatrix44_DEFINED |
9 | #define SkMatrix44_DEFINED |
10 | |
11 | #include "include/core/SkMatrix.h" |
12 | #include "include/core/SkScalar.h" |
13 | |
14 | #include <atomic> |
15 | #include <cstring> |
16 | |
17 | // This entire file is DEPRECATED, and will be removed at some point. |
18 | // SkCanvas has full support for 4x4 matrices using SkM44 |
19 | |
20 | // DEPRECATED |
21 | struct SkVector4 { |
22 | SkScalar fData[4]; |
23 | |
24 | SkVector4() { |
25 | this->set(0, 0, 0, 1); |
26 | } |
27 | SkVector4(const SkVector4& src) { |
28 | memcpy(fData, src.fData, sizeof(fData)); |
29 | } |
30 | SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { |
31 | fData[0] = x; |
32 | fData[1] = y; |
33 | fData[2] = z; |
34 | fData[3] = w; |
35 | } |
36 | |
37 | SkVector4& operator=(const SkVector4& src) { |
38 | memcpy(fData, src.fData, sizeof(fData)); |
39 | return *this; |
40 | } |
41 | |
42 | bool operator==(const SkVector4& v) const { |
43 | return fData[0] == v.fData[0] && fData[1] == v.fData[1] && |
44 | fData[2] == v.fData[2] && fData[3] == v.fData[3]; |
45 | } |
46 | bool operator!=(const SkVector4& v) const { return !(*this == v); } |
47 | bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { |
48 | return fData[0] == x && fData[1] == y && |
49 | fData[2] == z && fData[3] == w; |
50 | } |
51 | |
52 | void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { |
53 | fData[0] = x; |
54 | fData[1] = y; |
55 | fData[2] = z; |
56 | fData[3] = w; |
57 | } |
58 | }; |
59 | |
60 | // DEPRECATED |
61 | class SK_API SkMatrix44 { |
62 | public: |
63 | |
64 | enum Uninitialized_Constructor { |
65 | kUninitialized_Constructor |
66 | }; |
67 | enum Identity_Constructor { |
68 | kIdentity_Constructor |
69 | }; |
70 | enum NaN_Constructor { |
71 | kNaN_Constructor |
72 | }; |
73 | |
74 | SkMatrix44(Uninitialized_Constructor) {} // ironically, cannot be constexpr |
75 | |
76 | constexpr SkMatrix44(Identity_Constructor) |
77 | : fMat{{ 1, 0, 0, 0, }, |
78 | { 0, 1, 0, 0, }, |
79 | { 0, 0, 1, 0, }, |
80 | { 0, 0, 0, 1, }} |
81 | , fTypeMask(kIdentity_Mask) {} |
82 | |
83 | SkMatrix44(NaN_Constructor) |
84 | : fMat{{ SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN }, |
85 | { SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN }, |
86 | { SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN }, |
87 | { SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN }} |
88 | , fTypeMask(kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask) {} |
89 | |
90 | constexpr SkMatrix44() : SkMatrix44{kIdentity_Constructor} {} |
91 | |
92 | SkMatrix44(const SkMatrix44& src) = default; |
93 | |
94 | SkMatrix44& operator=(const SkMatrix44& src) = default; |
95 | |
96 | SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) { |
97 | this->setConcat(a, b); |
98 | } |
99 | |
100 | bool operator==(const SkMatrix44& other) const; |
101 | bool operator!=(const SkMatrix44& other) const { |
102 | return !(other == *this); |
103 | } |
104 | |
105 | /* When converting from SkMatrix44 to SkMatrix, the third row and |
106 | * column is dropped. When converting from SkMatrix to SkMatrix44 |
107 | * the third row and column remain as identity: |
108 | * [ a b c ] [ a b 0 c ] |
109 | * [ d e f ] -> [ d e 0 f ] |
110 | * [ g h i ] [ 0 0 1 0 ] |
111 | * [ g h 0 i ] |
112 | */ |
113 | SkMatrix44(const SkMatrix&); |
114 | SkMatrix44& operator=(const SkMatrix& src); |
115 | |
116 | // TODO: make this explicit (will need to guard that change to update chrome, etc. |
117 | #ifndef SK_SUPPORT_LEGACY_IMPLICIT_CONVERSION_MATRIX44 |
118 | explicit |
119 | #endif |
120 | operator SkMatrix() const; |
121 | |
122 | /** |
123 | * Return a reference to a const identity matrix |
124 | */ |
125 | static const SkMatrix44& I(); |
126 | |
127 | using TypeMask = uint8_t; |
128 | enum : TypeMask { |
129 | kIdentity_Mask = 0, |
130 | kTranslate_Mask = 1 << 0, //!< set if the matrix has translation |
131 | kScale_Mask = 1 << 1, //!< set if the matrix has any scale != 1 |
132 | kAffine_Mask = 1 << 2, //!< set if the matrix skews or rotates |
133 | kPerspective_Mask = 1 << 3, //!< set if the matrix is in perspective |
134 | }; |
135 | |
136 | /** |
137 | * Returns a bitfield describing the transformations the matrix may |
138 | * perform. The bitfield is computed conservatively, so it may include |
139 | * false positives. For example, when kPerspective_Mask is true, all |
140 | * other bits may be set to true even in the case of a pure perspective |
141 | * transform. |
142 | */ |
143 | inline TypeMask getType() const { return fTypeMask; } |
144 | |
145 | /** |
146 | * Return true if the matrix is identity. |
147 | */ |
148 | inline bool isIdentity() const { |
149 | return kIdentity_Mask == this->getType(); |
150 | } |
151 | |
152 | /** |
153 | * Return true if the matrix contains translate or is identity. |
154 | */ |
155 | inline bool isTranslate() const { |
156 | return !(this->getType() & ~kTranslate_Mask); |
157 | } |
158 | |
159 | /** |
160 | * Return true if the matrix only contains scale or translate or is identity. |
161 | */ |
162 | inline bool isScaleTranslate() const { |
163 | return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); |
164 | } |
165 | |
166 | /** |
167 | * Returns true if the matrix only contains scale or is identity. |
168 | */ |
169 | inline bool isScale() const { |
170 | return !(this->getType() & ~kScale_Mask); |
171 | } |
172 | |
173 | inline bool hasPerspective() const { |
174 | return SkToBool(this->getType() & kPerspective_Mask); |
175 | } |
176 | |
177 | void setIdentity(); |
178 | inline void reset() { this->setIdentity();} |
179 | |
180 | /** |
181 | * get a value from the matrix. The row,col parameters work as follows: |
182 | * (0, 0) scale-x |
183 | * (0, 3) translate-x |
184 | * (3, 0) perspective-x |
185 | */ |
186 | inline SkScalar get(int row, int col) const { |
187 | SkASSERT((unsigned)row <= 3); |
188 | SkASSERT((unsigned)col <= 3); |
189 | return fMat[col][row]; |
190 | } |
191 | |
192 | /** |
193 | * set a value in the matrix. The row,col parameters work as follows: |
194 | * (0, 0) scale-x |
195 | * (0, 3) translate-x |
196 | * (3, 0) perspective-x |
197 | */ |
198 | inline void set(int row, int col, SkScalar value) { |
199 | SkASSERT((unsigned)row <= 3); |
200 | SkASSERT((unsigned)col <= 3); |
201 | fMat[col][row] = value; |
202 | this->recomputeTypeMask(); |
203 | } |
204 | |
205 | inline double getDouble(int row, int col) const { |
206 | return double(this->get(row, col)); |
207 | } |
208 | inline void setDouble(int row, int col, double value) { |
209 | this->set(row, col, SkScalar(value)); |
210 | } |
211 | inline float getFloat(int row, int col) const { |
212 | return float(this->get(row, col)); |
213 | } |
214 | inline void setFloat(int row, int col, float value) { |
215 | this->set(row, col, value); |
216 | } |
217 | |
218 | /** These methods allow one to efficiently read matrix entries into an |
219 | * array. The given array must have room for exactly 16 entries. Whenever |
220 | * possible, they will try to use memcpy rather than an entry-by-entry |
221 | * copy. |
222 | * |
223 | * Col major indicates that consecutive elements of columns will be stored |
224 | * contiguously in memory. Row major indicates that consecutive elements |
225 | * of rows will be stored contiguously in memory. |
226 | */ |
227 | void asColMajorf(float[]) const; |
228 | void asColMajord(double[]) const; |
229 | void asRowMajorf(float[]) const; |
230 | void asRowMajord(double[]) const; |
231 | |
232 | /** These methods allow one to efficiently set all matrix entries from an |
233 | * array. The given array must have room for exactly 16 entries. Whenever |
234 | * possible, they will try to use memcpy rather than an entry-by-entry |
235 | * copy. |
236 | * |
237 | * Col major indicates that input memory will be treated as if consecutive |
238 | * elements of columns are stored contiguously in memory. Row major |
239 | * indicates that input memory will be treated as if consecutive elements |
240 | * of rows are stored contiguously in memory. |
241 | */ |
242 | void setColMajorf(const float[]); |
243 | void setColMajord(const double[]); |
244 | void setRowMajorf(const float[]); |
245 | void setRowMajord(const double[]); |
246 | |
247 | void setColMajor(const SkScalar data[]) { this->setColMajorf(data); } |
248 | void setRowMajor(const SkScalar data[]) { this->setRowMajorf(data); } |
249 | |
250 | /* This sets the top-left of the matrix and clears the translation and |
251 | * perspective components (with [3][3] set to 1). m_ij is interpreted |
252 | * as the matrix entry at row = i, col = j. */ |
253 | void set3x3(SkScalar m_00, SkScalar m_10, SkScalar m_20, |
254 | SkScalar m_01, SkScalar m_11, SkScalar m_21, |
255 | SkScalar m_02, SkScalar m_12, SkScalar m_22); |
256 | void set3x3RowMajorf(const float[]); |
257 | |
258 | void set4x4(SkScalar m_00, SkScalar m_10, SkScalar m_20, SkScalar m_30, |
259 | SkScalar m_01, SkScalar m_11, SkScalar m_21, SkScalar m_31, |
260 | SkScalar m_02, SkScalar m_12, SkScalar m_22, SkScalar m_32, |
261 | SkScalar m_03, SkScalar m_13, SkScalar m_23, SkScalar m_33); |
262 | |
263 | SkMatrix44& setTranslate(SkScalar dx, SkScalar dy, SkScalar dz); |
264 | SkMatrix44& preTranslate(SkScalar dx, SkScalar dy, SkScalar dz); |
265 | SkMatrix44& postTranslate(SkScalar dx, SkScalar dy, SkScalar dz); |
266 | |
267 | SkMatrix44& setScale(SkScalar sx, SkScalar sy, SkScalar sz); |
268 | SkMatrix44& preScale(SkScalar sx, SkScalar sy, SkScalar sz); |
269 | SkMatrix44& postScale(SkScalar sx, SkScalar sy, SkScalar sz); |
270 | |
271 | inline SkMatrix44& setScale(SkScalar scale) { |
272 | return this->setScale(scale, scale, scale); |
273 | } |
274 | inline SkMatrix44& preScale(SkScalar scale) { |
275 | return this->preScale(scale, scale, scale); |
276 | } |
277 | inline SkMatrix44& postScale(SkScalar scale) { |
278 | return this->postScale(scale, scale, scale); |
279 | } |
280 | |
281 | void setRotateDegreesAbout(SkScalar x, SkScalar y, SkScalar z, SkScalar degrees) { |
282 | this->setRotateAbout(x, y, z, degrees * SK_ScalarPI / 180); |
283 | } |
284 | |
285 | /** Rotate about the vector [x,y,z]. If that vector is not unit-length, |
286 | it will be automatically resized. |
287 | */ |
288 | void setRotateAbout(SkScalar x, SkScalar y, SkScalar z, SkScalar radians); |
289 | /** Rotate about the vector [x,y,z]. Does not check the length of the |
290 | vector, assuming it is unit-length. |
291 | */ |
292 | void setRotateAboutUnit(SkScalar x, SkScalar y, SkScalar z, SkScalar radians); |
293 | |
294 | void setConcat(const SkMatrix44& a, const SkMatrix44& b); |
295 | inline void preConcat(const SkMatrix44& m) { |
296 | this->setConcat(*this, m); |
297 | } |
298 | inline void postConcat(const SkMatrix44& m) { |
299 | this->setConcat(m, *this); |
300 | } |
301 | |
302 | friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) { |
303 | return SkMatrix44(a, b); |
304 | } |
305 | |
306 | /** If this is invertible, return that in inverse and return true. If it is |
307 | not invertible, return false and leave the inverse parameter in an |
308 | unspecified state. |
309 | */ |
310 | bool invert(SkMatrix44* inverse) const; |
311 | |
312 | /** Transpose this matrix in place. */ |
313 | void transpose(); |
314 | |
315 | /** Apply the matrix to the src vector, returning the new vector in dst. |
316 | It is legal for src and dst to point to the same memory. |
317 | */ |
318 | void mapScalars(const SkScalar src[4], SkScalar dst[4]) const; |
319 | inline void mapScalars(SkScalar vec[4]) const { |
320 | this->mapScalars(vec, vec); |
321 | } |
322 | |
323 | friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) { |
324 | SkVector4 dst; |
325 | m.mapScalars(src.fData, dst.fData); |
326 | return dst; |
327 | } |
328 | |
329 | /** |
330 | * map an array of [x, y, 0, 1] through the matrix, returning an array |
331 | * of [x', y', z', w']. |
332 | * |
333 | * @param src2 array of [x, y] pairs, with implied z=0 and w=1 |
334 | * @param count number of [x, y] pairs in src2 |
335 | * @param dst4 array of [x', y', z', w'] quads as the output. |
336 | */ |
337 | void map2(const float src2[], int count, float dst4[]) const; |
338 | void map2(const double src2[], int count, double dst4[]) const; |
339 | |
340 | /** Returns true if transformating an axis-aligned square in 2d by this matrix |
341 | will produce another 2d axis-aligned square; typically means the matrix |
342 | is a scale with perhaps a 90-degree rotation. A 3d rotation through 90 |
343 | degrees into a perpendicular plane collapses a square to a line, but |
344 | is still considered to be axis-aligned. |
345 | |
346 | By default, tolerates very slight error due to float imprecisions; |
347 | a 90-degree rotation can still end up with 10^-17 of |
348 | "non-axis-aligned" result. |
349 | */ |
350 | bool preserves2dAxisAlignment(SkScalar epsilon = SK_ScalarNearlyZero) const; |
351 | |
352 | void dump() const; |
353 | |
354 | double determinant() const; |
355 | |
356 | private: |
357 | /* This is indexed by [col][row]. */ |
358 | SkScalar fMat[4][4]; |
359 | TypeMask fTypeMask; |
360 | |
361 | static constexpr int kAllPublic_Masks = 0xF; |
362 | |
363 | void as3x4RowMajorf(float[]) const; |
364 | void set3x4RowMajorf(const float[]); |
365 | |
366 | SkScalar transX() const { return fMat[3][0]; } |
367 | SkScalar transY() const { return fMat[3][1]; } |
368 | SkScalar transZ() const { return fMat[3][2]; } |
369 | |
370 | SkScalar scaleX() const { return fMat[0][0]; } |
371 | SkScalar scaleY() const { return fMat[1][1]; } |
372 | SkScalar scaleZ() const { return fMat[2][2]; } |
373 | |
374 | SkScalar perspX() const { return fMat[0][3]; } |
375 | SkScalar perspY() const { return fMat[1][3]; } |
376 | SkScalar perspZ() const { return fMat[2][3]; } |
377 | |
378 | void recomputeTypeMask(); |
379 | |
380 | inline void setTypeMask(TypeMask mask) { |
381 | SkASSERT(0 == (~kAllPublic_Masks & mask)); |
382 | fTypeMask = mask; |
383 | } |
384 | |
385 | inline const SkScalar* values() const { return &fMat[0][0]; } |
386 | |
387 | friend class SkColorSpace; |
388 | friend class SkCanvas; |
389 | friend class SkM44; |
390 | }; |
391 | |
392 | #endif |
393 | |