| 1 | /* |
| 2 | * Copyright 2011 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkMatrix44_DEFINED |
| 9 | #define SkMatrix44_DEFINED |
| 10 | |
| 11 | #include "include/core/SkMatrix.h" |
| 12 | #include "include/core/SkScalar.h" |
| 13 | |
| 14 | #include <atomic> |
| 15 | #include <cstring> |
| 16 | |
| 17 | // This entire file is DEPRECATED, and will be removed at some point. |
| 18 | // SkCanvas has full support for 4x4 matrices using SkM44 |
| 19 | |
| 20 | // DEPRECATED |
| 21 | struct SkVector4 { |
| 22 | SkScalar fData[4]; |
| 23 | |
| 24 | SkVector4() { |
| 25 | this->set(0, 0, 0, 1); |
| 26 | } |
| 27 | SkVector4(const SkVector4& src) { |
| 28 | memcpy(fData, src.fData, sizeof(fData)); |
| 29 | } |
| 30 | SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { |
| 31 | fData[0] = x; |
| 32 | fData[1] = y; |
| 33 | fData[2] = z; |
| 34 | fData[3] = w; |
| 35 | } |
| 36 | |
| 37 | SkVector4& operator=(const SkVector4& src) { |
| 38 | memcpy(fData, src.fData, sizeof(fData)); |
| 39 | return *this; |
| 40 | } |
| 41 | |
| 42 | bool operator==(const SkVector4& v) const { |
| 43 | return fData[0] == v.fData[0] && fData[1] == v.fData[1] && |
| 44 | fData[2] == v.fData[2] && fData[3] == v.fData[3]; |
| 45 | } |
| 46 | bool operator!=(const SkVector4& v) const { return !(*this == v); } |
| 47 | bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { |
| 48 | return fData[0] == x && fData[1] == y && |
| 49 | fData[2] == z && fData[3] == w; |
| 50 | } |
| 51 | |
| 52 | void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { |
| 53 | fData[0] = x; |
| 54 | fData[1] = y; |
| 55 | fData[2] = z; |
| 56 | fData[3] = w; |
| 57 | } |
| 58 | }; |
| 59 | |
| 60 | // DEPRECATED |
| 61 | class SK_API SkMatrix44 { |
| 62 | public: |
| 63 | |
| 64 | enum Uninitialized_Constructor { |
| 65 | kUninitialized_Constructor |
| 66 | }; |
| 67 | enum Identity_Constructor { |
| 68 | kIdentity_Constructor |
| 69 | }; |
| 70 | enum NaN_Constructor { |
| 71 | kNaN_Constructor |
| 72 | }; |
| 73 | |
| 74 | SkMatrix44(Uninitialized_Constructor) {} // ironically, cannot be constexpr |
| 75 | |
| 76 | constexpr SkMatrix44(Identity_Constructor) |
| 77 | : fMat{{ 1, 0, 0, 0, }, |
| 78 | { 0, 1, 0, 0, }, |
| 79 | { 0, 0, 1, 0, }, |
| 80 | { 0, 0, 0, 1, }} |
| 81 | , fTypeMask(kIdentity_Mask) {} |
| 82 | |
| 83 | SkMatrix44(NaN_Constructor) |
| 84 | : fMat{{ SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN }, |
| 85 | { SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN }, |
| 86 | { SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN }, |
| 87 | { SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN }} |
| 88 | , fTypeMask(kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask) {} |
| 89 | |
| 90 | constexpr SkMatrix44() : SkMatrix44{kIdentity_Constructor} {} |
| 91 | |
| 92 | SkMatrix44(const SkMatrix44& src) = default; |
| 93 | |
| 94 | SkMatrix44& operator=(const SkMatrix44& src) = default; |
| 95 | |
| 96 | SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) { |
| 97 | this->setConcat(a, b); |
| 98 | } |
| 99 | |
| 100 | bool operator==(const SkMatrix44& other) const; |
| 101 | bool operator!=(const SkMatrix44& other) const { |
| 102 | return !(other == *this); |
| 103 | } |
| 104 | |
| 105 | /* When converting from SkMatrix44 to SkMatrix, the third row and |
| 106 | * column is dropped. When converting from SkMatrix to SkMatrix44 |
| 107 | * the third row and column remain as identity: |
| 108 | * [ a b c ] [ a b 0 c ] |
| 109 | * [ d e f ] -> [ d e 0 f ] |
| 110 | * [ g h i ] [ 0 0 1 0 ] |
| 111 | * [ g h 0 i ] |
| 112 | */ |
| 113 | SkMatrix44(const SkMatrix&); |
| 114 | SkMatrix44& operator=(const SkMatrix& src); |
| 115 | |
| 116 | // TODO: make this explicit (will need to guard that change to update chrome, etc. |
| 117 | #ifndef SK_SUPPORT_LEGACY_IMPLICIT_CONVERSION_MATRIX44 |
| 118 | explicit |
| 119 | #endif |
| 120 | operator SkMatrix() const; |
| 121 | |
| 122 | /** |
| 123 | * Return a reference to a const identity matrix |
| 124 | */ |
| 125 | static const SkMatrix44& I(); |
| 126 | |
| 127 | using TypeMask = uint8_t; |
| 128 | enum : TypeMask { |
| 129 | kIdentity_Mask = 0, |
| 130 | kTranslate_Mask = 1 << 0, //!< set if the matrix has translation |
| 131 | kScale_Mask = 1 << 1, //!< set if the matrix has any scale != 1 |
| 132 | kAffine_Mask = 1 << 2, //!< set if the matrix skews or rotates |
| 133 | kPerspective_Mask = 1 << 3, //!< set if the matrix is in perspective |
| 134 | }; |
| 135 | |
| 136 | /** |
| 137 | * Returns a bitfield describing the transformations the matrix may |
| 138 | * perform. The bitfield is computed conservatively, so it may include |
| 139 | * false positives. For example, when kPerspective_Mask is true, all |
| 140 | * other bits may be set to true even in the case of a pure perspective |
| 141 | * transform. |
| 142 | */ |
| 143 | inline TypeMask getType() const { return fTypeMask; } |
| 144 | |
| 145 | /** |
| 146 | * Return true if the matrix is identity. |
| 147 | */ |
| 148 | inline bool isIdentity() const { |
| 149 | return kIdentity_Mask == this->getType(); |
| 150 | } |
| 151 | |
| 152 | /** |
| 153 | * Return true if the matrix contains translate or is identity. |
| 154 | */ |
| 155 | inline bool isTranslate() const { |
| 156 | return !(this->getType() & ~kTranslate_Mask); |
| 157 | } |
| 158 | |
| 159 | /** |
| 160 | * Return true if the matrix only contains scale or translate or is identity. |
| 161 | */ |
| 162 | inline bool isScaleTranslate() const { |
| 163 | return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); |
| 164 | } |
| 165 | |
| 166 | /** |
| 167 | * Returns true if the matrix only contains scale or is identity. |
| 168 | */ |
| 169 | inline bool isScale() const { |
| 170 | return !(this->getType() & ~kScale_Mask); |
| 171 | } |
| 172 | |
| 173 | inline bool hasPerspective() const { |
| 174 | return SkToBool(this->getType() & kPerspective_Mask); |
| 175 | } |
| 176 | |
| 177 | void setIdentity(); |
| 178 | inline void reset() { this->setIdentity();} |
| 179 | |
| 180 | /** |
| 181 | * get a value from the matrix. The row,col parameters work as follows: |
| 182 | * (0, 0) scale-x |
| 183 | * (0, 3) translate-x |
| 184 | * (3, 0) perspective-x |
| 185 | */ |
| 186 | inline SkScalar get(int row, int col) const { |
| 187 | SkASSERT((unsigned)row <= 3); |
| 188 | SkASSERT((unsigned)col <= 3); |
| 189 | return fMat[col][row]; |
| 190 | } |
| 191 | |
| 192 | /** |
| 193 | * set a value in the matrix. The row,col parameters work as follows: |
| 194 | * (0, 0) scale-x |
| 195 | * (0, 3) translate-x |
| 196 | * (3, 0) perspective-x |
| 197 | */ |
| 198 | inline void set(int row, int col, SkScalar value) { |
| 199 | SkASSERT((unsigned)row <= 3); |
| 200 | SkASSERT((unsigned)col <= 3); |
| 201 | fMat[col][row] = value; |
| 202 | this->recomputeTypeMask(); |
| 203 | } |
| 204 | |
| 205 | inline double getDouble(int row, int col) const { |
| 206 | return double(this->get(row, col)); |
| 207 | } |
| 208 | inline void setDouble(int row, int col, double value) { |
| 209 | this->set(row, col, SkScalar(value)); |
| 210 | } |
| 211 | inline float getFloat(int row, int col) const { |
| 212 | return float(this->get(row, col)); |
| 213 | } |
| 214 | inline void setFloat(int row, int col, float value) { |
| 215 | this->set(row, col, value); |
| 216 | } |
| 217 | |
| 218 | /** These methods allow one to efficiently read matrix entries into an |
| 219 | * array. The given array must have room for exactly 16 entries. Whenever |
| 220 | * possible, they will try to use memcpy rather than an entry-by-entry |
| 221 | * copy. |
| 222 | * |
| 223 | * Col major indicates that consecutive elements of columns will be stored |
| 224 | * contiguously in memory. Row major indicates that consecutive elements |
| 225 | * of rows will be stored contiguously in memory. |
| 226 | */ |
| 227 | void asColMajorf(float[]) const; |
| 228 | void asColMajord(double[]) const; |
| 229 | void asRowMajorf(float[]) const; |
| 230 | void asRowMajord(double[]) const; |
| 231 | |
| 232 | /** These methods allow one to efficiently set all matrix entries from an |
| 233 | * array. The given array must have room for exactly 16 entries. Whenever |
| 234 | * possible, they will try to use memcpy rather than an entry-by-entry |
| 235 | * copy. |
| 236 | * |
| 237 | * Col major indicates that input memory will be treated as if consecutive |
| 238 | * elements of columns are stored contiguously in memory. Row major |
| 239 | * indicates that input memory will be treated as if consecutive elements |
| 240 | * of rows are stored contiguously in memory. |
| 241 | */ |
| 242 | void setColMajorf(const float[]); |
| 243 | void setColMajord(const double[]); |
| 244 | void setRowMajorf(const float[]); |
| 245 | void setRowMajord(const double[]); |
| 246 | |
| 247 | void setColMajor(const SkScalar data[]) { this->setColMajorf(data); } |
| 248 | void setRowMajor(const SkScalar data[]) { this->setRowMajorf(data); } |
| 249 | |
| 250 | /* This sets the top-left of the matrix and clears the translation and |
| 251 | * perspective components (with [3][3] set to 1). m_ij is interpreted |
| 252 | * as the matrix entry at row = i, col = j. */ |
| 253 | void set3x3(SkScalar m_00, SkScalar m_10, SkScalar m_20, |
| 254 | SkScalar m_01, SkScalar m_11, SkScalar m_21, |
| 255 | SkScalar m_02, SkScalar m_12, SkScalar m_22); |
| 256 | void set3x3RowMajorf(const float[]); |
| 257 | |
| 258 | void set4x4(SkScalar m_00, SkScalar m_10, SkScalar m_20, SkScalar m_30, |
| 259 | SkScalar m_01, SkScalar m_11, SkScalar m_21, SkScalar m_31, |
| 260 | SkScalar m_02, SkScalar m_12, SkScalar m_22, SkScalar m_32, |
| 261 | SkScalar m_03, SkScalar m_13, SkScalar m_23, SkScalar m_33); |
| 262 | |
| 263 | SkMatrix44& setTranslate(SkScalar dx, SkScalar dy, SkScalar dz); |
| 264 | SkMatrix44& preTranslate(SkScalar dx, SkScalar dy, SkScalar dz); |
| 265 | SkMatrix44& postTranslate(SkScalar dx, SkScalar dy, SkScalar dz); |
| 266 | |
| 267 | SkMatrix44& setScale(SkScalar sx, SkScalar sy, SkScalar sz); |
| 268 | SkMatrix44& preScale(SkScalar sx, SkScalar sy, SkScalar sz); |
| 269 | SkMatrix44& postScale(SkScalar sx, SkScalar sy, SkScalar sz); |
| 270 | |
| 271 | inline SkMatrix44& setScale(SkScalar scale) { |
| 272 | return this->setScale(scale, scale, scale); |
| 273 | } |
| 274 | inline SkMatrix44& preScale(SkScalar scale) { |
| 275 | return this->preScale(scale, scale, scale); |
| 276 | } |
| 277 | inline SkMatrix44& postScale(SkScalar scale) { |
| 278 | return this->postScale(scale, scale, scale); |
| 279 | } |
| 280 | |
| 281 | void setRotateDegreesAbout(SkScalar x, SkScalar y, SkScalar z, SkScalar degrees) { |
| 282 | this->setRotateAbout(x, y, z, degrees * SK_ScalarPI / 180); |
| 283 | } |
| 284 | |
| 285 | /** Rotate about the vector [x,y,z]. If that vector is not unit-length, |
| 286 | it will be automatically resized. |
| 287 | */ |
| 288 | void setRotateAbout(SkScalar x, SkScalar y, SkScalar z, SkScalar radians); |
| 289 | /** Rotate about the vector [x,y,z]. Does not check the length of the |
| 290 | vector, assuming it is unit-length. |
| 291 | */ |
| 292 | void setRotateAboutUnit(SkScalar x, SkScalar y, SkScalar z, SkScalar radians); |
| 293 | |
| 294 | void setConcat(const SkMatrix44& a, const SkMatrix44& b); |
| 295 | inline void preConcat(const SkMatrix44& m) { |
| 296 | this->setConcat(*this, m); |
| 297 | } |
| 298 | inline void postConcat(const SkMatrix44& m) { |
| 299 | this->setConcat(m, *this); |
| 300 | } |
| 301 | |
| 302 | friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) { |
| 303 | return SkMatrix44(a, b); |
| 304 | } |
| 305 | |
| 306 | /** If this is invertible, return that in inverse and return true. If it is |
| 307 | not invertible, return false and leave the inverse parameter in an |
| 308 | unspecified state. |
| 309 | */ |
| 310 | bool invert(SkMatrix44* inverse) const; |
| 311 | |
| 312 | /** Transpose this matrix in place. */ |
| 313 | void transpose(); |
| 314 | |
| 315 | /** Apply the matrix to the src vector, returning the new vector in dst. |
| 316 | It is legal for src and dst to point to the same memory. |
| 317 | */ |
| 318 | void mapScalars(const SkScalar src[4], SkScalar dst[4]) const; |
| 319 | inline void mapScalars(SkScalar vec[4]) const { |
| 320 | this->mapScalars(vec, vec); |
| 321 | } |
| 322 | |
| 323 | friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) { |
| 324 | SkVector4 dst; |
| 325 | m.mapScalars(src.fData, dst.fData); |
| 326 | return dst; |
| 327 | } |
| 328 | |
| 329 | /** |
| 330 | * map an array of [x, y, 0, 1] through the matrix, returning an array |
| 331 | * of [x', y', z', w']. |
| 332 | * |
| 333 | * @param src2 array of [x, y] pairs, with implied z=0 and w=1 |
| 334 | * @param count number of [x, y] pairs in src2 |
| 335 | * @param dst4 array of [x', y', z', w'] quads as the output. |
| 336 | */ |
| 337 | void map2(const float src2[], int count, float dst4[]) const; |
| 338 | void map2(const double src2[], int count, double dst4[]) const; |
| 339 | |
| 340 | /** Returns true if transformating an axis-aligned square in 2d by this matrix |
| 341 | will produce another 2d axis-aligned square; typically means the matrix |
| 342 | is a scale with perhaps a 90-degree rotation. A 3d rotation through 90 |
| 343 | degrees into a perpendicular plane collapses a square to a line, but |
| 344 | is still considered to be axis-aligned. |
| 345 | |
| 346 | By default, tolerates very slight error due to float imprecisions; |
| 347 | a 90-degree rotation can still end up with 10^-17 of |
| 348 | "non-axis-aligned" result. |
| 349 | */ |
| 350 | bool preserves2dAxisAlignment(SkScalar epsilon = SK_ScalarNearlyZero) const; |
| 351 | |
| 352 | void dump() const; |
| 353 | |
| 354 | double determinant() const; |
| 355 | |
| 356 | private: |
| 357 | /* This is indexed by [col][row]. */ |
| 358 | SkScalar fMat[4][4]; |
| 359 | TypeMask fTypeMask; |
| 360 | |
| 361 | static constexpr int kAllPublic_Masks = 0xF; |
| 362 | |
| 363 | void as3x4RowMajorf(float[]) const; |
| 364 | void set3x4RowMajorf(const float[]); |
| 365 | |
| 366 | SkScalar transX() const { return fMat[3][0]; } |
| 367 | SkScalar transY() const { return fMat[3][1]; } |
| 368 | SkScalar transZ() const { return fMat[3][2]; } |
| 369 | |
| 370 | SkScalar scaleX() const { return fMat[0][0]; } |
| 371 | SkScalar scaleY() const { return fMat[1][1]; } |
| 372 | SkScalar scaleZ() const { return fMat[2][2]; } |
| 373 | |
| 374 | SkScalar perspX() const { return fMat[0][3]; } |
| 375 | SkScalar perspY() const { return fMat[1][3]; } |
| 376 | SkScalar perspZ() const { return fMat[2][3]; } |
| 377 | |
| 378 | void recomputeTypeMask(); |
| 379 | |
| 380 | inline void setTypeMask(TypeMask mask) { |
| 381 | SkASSERT(0 == (~kAllPublic_Masks & mask)); |
| 382 | fTypeMask = mask; |
| 383 | } |
| 384 | |
| 385 | inline const SkScalar* values() const { return &fMat[0][0]; } |
| 386 | |
| 387 | friend class SkColorSpace; |
| 388 | friend class SkCanvas; |
| 389 | friend class SkM44; |
| 390 | }; |
| 391 | |
| 392 | #endif |
| 393 | |