| 1 | /* |
| 2 | * Copyright 2011 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkMatrix44.h" |
| 9 | #include <type_traits> |
| 10 | #include <utility> |
| 11 | |
| 12 | // Copying SkMatrix44 byte-wise is performance-critical to Blink. This class is |
| 13 | // contained in several Transform classes, which are copied multiple times |
| 14 | // during the rendering life cycle. See crbug.com/938563 for reference. |
| 15 | #if defined(SK_BUILD_FOR_WIN) || defined(SK_BUILD_FOR_MAC) |
| 16 | // std::is_trivially_copyable is not supported for some older clang versions, |
| 17 | // which (at least as of this patch) are in use for Chromecast. |
| 18 | static_assert(std::is_trivially_copyable<SkMatrix44>::value, |
| 19 | "SkMatrix44 must be trivially copyable" ); |
| 20 | #endif |
| 21 | |
| 22 | static inline bool eq4(const SkScalar* SK_RESTRICT a, |
| 23 | const SkScalar* SK_RESTRICT b) { |
| 24 | return (a[0] == b[0]) & (a[1] == b[1]) & (a[2] == b[2]) & (a[3] == b[3]); |
| 25 | } |
| 26 | |
| 27 | bool SkMatrix44::operator==(const SkMatrix44& other) const { |
| 28 | if (this == &other) { |
| 29 | return true; |
| 30 | } |
| 31 | |
| 32 | if (this->isIdentity() && other.isIdentity()) { |
| 33 | return true; |
| 34 | } |
| 35 | |
| 36 | const SkScalar* SK_RESTRICT a = &fMat[0][0]; |
| 37 | const SkScalar* SK_RESTRICT b = &other.fMat[0][0]; |
| 38 | |
| 39 | #if 0 |
| 40 | for (int i = 0; i < 16; ++i) { |
| 41 | if (a[i] != b[i]) { |
| 42 | return false; |
| 43 | } |
| 44 | } |
| 45 | return true; |
| 46 | #else |
| 47 | // to reduce branch instructions, we compare 4 at a time. |
| 48 | // see bench/Matrix44Bench.cpp for test. |
| 49 | if (!eq4(&a[0], &b[0])) { |
| 50 | return false; |
| 51 | } |
| 52 | if (!eq4(&a[4], &b[4])) { |
| 53 | return false; |
| 54 | } |
| 55 | if (!eq4(&a[8], &b[8])) { |
| 56 | return false; |
| 57 | } |
| 58 | return eq4(&a[12], &b[12]); |
| 59 | #endif |
| 60 | } |
| 61 | |
| 62 | /////////////////////////////////////////////////////////////////////////////// |
| 63 | void SkMatrix44::recomputeTypeMask() { |
| 64 | if (0 != perspX() || 0 != perspY() || 0 != perspZ() || 1 != fMat[3][3]) { |
| 65 | fTypeMask = kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask; |
| 66 | return; |
| 67 | } |
| 68 | |
| 69 | TypeMask mask = kIdentity_Mask; |
| 70 | if (0 != transX() || 0 != transY() || 0 != transZ()) { |
| 71 | mask |= kTranslate_Mask; |
| 72 | } |
| 73 | |
| 74 | if (1 != scaleX() || 1 != scaleY() || 1 != scaleZ()) { |
| 75 | mask |= kScale_Mask; |
| 76 | } |
| 77 | |
| 78 | if (0 != fMat[1][0] || 0 != fMat[0][1] || 0 != fMat[0][2] || |
| 79 | 0 != fMat[2][0] || 0 != fMat[1][2] || 0 != fMat[2][1]) { |
| 80 | mask |= kAffine_Mask; |
| 81 | } |
| 82 | fTypeMask = mask; |
| 83 | } |
| 84 | |
| 85 | /////////////////////////////////////////////////////////////////////////////// |
| 86 | |
| 87 | void SkMatrix44::asColMajorf(float dst[]) const { |
| 88 | const SkScalar* src = &fMat[0][0]; |
| 89 | for (int i = 0; i < 16; ++i) { |
| 90 | dst[i] = src[i]; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | void SkMatrix44::as3x4RowMajorf(float dst[]) const { |
| 95 | dst[0] = fMat[0][0]; dst[1] = fMat[1][0]; dst[2] = fMat[2][0]; dst[3] = fMat[3][0]; |
| 96 | dst[4] = fMat[0][1]; dst[5] = fMat[1][1]; dst[6] = fMat[2][1]; dst[7] = fMat[3][1]; |
| 97 | dst[8] = fMat[0][2]; dst[9] = fMat[1][2]; dst[10] = fMat[2][2]; dst[11] = fMat[3][2]; |
| 98 | } |
| 99 | |
| 100 | void SkMatrix44::asColMajord(double dst[]) const { |
| 101 | const SkScalar* src = &fMat[0][0]; |
| 102 | for (int i = 0; i < 16; ++i) { |
| 103 | dst[i] = src[i]; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | void SkMatrix44::asRowMajorf(float dst[]) const { |
| 108 | const SkScalar* src = &fMat[0][0]; |
| 109 | for (int i = 0; i < 4; ++i) { |
| 110 | dst[0] = float(src[0]); |
| 111 | dst[4] = float(src[1]); |
| 112 | dst[8] = float(src[2]); |
| 113 | dst[12] = float(src[3]); |
| 114 | src += 4; |
| 115 | dst += 1; |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | void SkMatrix44::asRowMajord(double dst[]) const { |
| 120 | const SkScalar* src = &fMat[0][0]; |
| 121 | for (int i = 0; i < 4; ++i) { |
| 122 | dst[0] = src[0]; |
| 123 | dst[4] = src[1]; |
| 124 | dst[8] = src[2]; |
| 125 | dst[12] = src[3]; |
| 126 | src += 4; |
| 127 | dst += 1; |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | void SkMatrix44::setColMajorf(const float src[]) { |
| 132 | SkScalar* dst = &fMat[0][0]; |
| 133 | for (int i = 0; i < 16; ++i) { |
| 134 | dst[i] = src[i]; |
| 135 | } |
| 136 | |
| 137 | this->recomputeTypeMask(); |
| 138 | } |
| 139 | |
| 140 | void SkMatrix44::setColMajord(const double src[]) { |
| 141 | SkScalar* dst = &fMat[0][0]; |
| 142 | for (int i = 0; i < 16; ++i) { |
| 143 | dst[i] = SkScalar(src[i]); |
| 144 | } |
| 145 | |
| 146 | this->recomputeTypeMask(); |
| 147 | } |
| 148 | |
| 149 | void SkMatrix44::setRowMajorf(const float src[]) { |
| 150 | SkScalar* dst = &fMat[0][0]; |
| 151 | for (int i = 0; i < 4; ++i) { |
| 152 | dst[0] = src[0]; |
| 153 | dst[4] = src[1]; |
| 154 | dst[8] = src[2]; |
| 155 | dst[12] = src[3]; |
| 156 | src += 4; |
| 157 | dst += 1; |
| 158 | } |
| 159 | this->recomputeTypeMask(); |
| 160 | } |
| 161 | |
| 162 | void SkMatrix44::setRowMajord(const double src[]) { |
| 163 | SkScalar* dst = &fMat[0][0]; |
| 164 | for (int i = 0; i < 4; ++i) { |
| 165 | dst[0] = SkScalar(src[0]); |
| 166 | dst[4] = SkScalar(src[1]); |
| 167 | dst[8] = SkScalar(src[2]); |
| 168 | dst[12] = SkScalar(src[3]); |
| 169 | src += 4; |
| 170 | dst += 1; |
| 171 | } |
| 172 | this->recomputeTypeMask(); |
| 173 | } |
| 174 | |
| 175 | /////////////////////////////////////////////////////////////////////////////// |
| 176 | |
| 177 | const SkMatrix44& SkMatrix44::I() { |
| 178 | static constexpr SkMatrix44 gIdentity44(kIdentity_Constructor); |
| 179 | return gIdentity44; |
| 180 | } |
| 181 | |
| 182 | void SkMatrix44::setIdentity() { |
| 183 | fMat[0][0] = 1; |
| 184 | fMat[0][1] = 0; |
| 185 | fMat[0][2] = 0; |
| 186 | fMat[0][3] = 0; |
| 187 | fMat[1][0] = 0; |
| 188 | fMat[1][1] = 1; |
| 189 | fMat[1][2] = 0; |
| 190 | fMat[1][3] = 0; |
| 191 | fMat[2][0] = 0; |
| 192 | fMat[2][1] = 0; |
| 193 | fMat[2][2] = 1; |
| 194 | fMat[2][3] = 0; |
| 195 | fMat[3][0] = 0; |
| 196 | fMat[3][1] = 0; |
| 197 | fMat[3][2] = 0; |
| 198 | fMat[3][3] = 1; |
| 199 | this->setTypeMask(kIdentity_Mask); |
| 200 | } |
| 201 | |
| 202 | void SkMatrix44::set3x3(SkScalar m_00, SkScalar m_10, SkScalar m_20, |
| 203 | SkScalar m_01, SkScalar m_11, SkScalar m_21, |
| 204 | SkScalar m_02, SkScalar m_12, SkScalar m_22) { |
| 205 | fMat[0][0] = m_00; fMat[0][1] = m_10; fMat[0][2] = m_20; fMat[0][3] = 0; |
| 206 | fMat[1][0] = m_01; fMat[1][1] = m_11; fMat[1][2] = m_21; fMat[1][3] = 0; |
| 207 | fMat[2][0] = m_02; fMat[2][1] = m_12; fMat[2][2] = m_22; fMat[2][3] = 0; |
| 208 | fMat[3][0] = 0; fMat[3][1] = 0; fMat[3][2] = 0; fMat[3][3] = 1; |
| 209 | this->recomputeTypeMask(); |
| 210 | } |
| 211 | |
| 212 | void SkMatrix44::set3x3RowMajorf(const float src[]) { |
| 213 | fMat[0][0] = src[0]; fMat[0][1] = src[3]; fMat[0][2] = src[6]; fMat[0][3] = 0; |
| 214 | fMat[1][0] = src[1]; fMat[1][1] = src[4]; fMat[1][2] = src[7]; fMat[1][3] = 0; |
| 215 | fMat[2][0] = src[2]; fMat[2][1] = src[5]; fMat[2][2] = src[8]; fMat[2][3] = 0; |
| 216 | fMat[3][0] = 0; fMat[3][1] = 0; fMat[3][2] = 0; fMat[3][3] = 1; |
| 217 | this->recomputeTypeMask(); |
| 218 | } |
| 219 | |
| 220 | void SkMatrix44::set3x4RowMajorf(const float src[]) { |
| 221 | fMat[0][0] = src[0]; fMat[1][0] = src[1]; fMat[2][0] = src[2]; fMat[3][0] = src[3]; |
| 222 | fMat[0][1] = src[4]; fMat[1][1] = src[5]; fMat[2][1] = src[6]; fMat[3][1] = src[7]; |
| 223 | fMat[0][2] = src[8]; fMat[1][2] = src[9]; fMat[2][2] = src[10]; fMat[3][2] = src[11]; |
| 224 | fMat[0][3] = 0; fMat[1][3] = 0; fMat[2][3] = 0; fMat[3][3] = 1; |
| 225 | this->recomputeTypeMask(); |
| 226 | } |
| 227 | |
| 228 | void SkMatrix44::set4x4(SkScalar m_00, SkScalar m_10, SkScalar m_20, SkScalar m_30, |
| 229 | SkScalar m_01, SkScalar m_11, SkScalar m_21, SkScalar m_31, |
| 230 | SkScalar m_02, SkScalar m_12, SkScalar m_22, SkScalar m_32, |
| 231 | SkScalar m_03, SkScalar m_13, SkScalar m_23, SkScalar m_33) { |
| 232 | fMat[0][0] = m_00; fMat[0][1] = m_10; fMat[0][2] = m_20; fMat[0][3] = m_30; |
| 233 | fMat[1][0] = m_01; fMat[1][1] = m_11; fMat[1][2] = m_21; fMat[1][3] = m_31; |
| 234 | fMat[2][0] = m_02; fMat[2][1] = m_12; fMat[2][2] = m_22; fMat[2][3] = m_32; |
| 235 | fMat[3][0] = m_03; fMat[3][1] = m_13; fMat[3][2] = m_23; fMat[3][3] = m_33; |
| 236 | this->recomputeTypeMask(); |
| 237 | } |
| 238 | |
| 239 | |
| 240 | /////////////////////////////////////////////////////////////////////////////// |
| 241 | |
| 242 | SkMatrix44& SkMatrix44::setTranslate(SkScalar dx, SkScalar dy, SkScalar dz) { |
| 243 | this->setIdentity(); |
| 244 | |
| 245 | if (!dx && !dy && !dz) { |
| 246 | return *this; |
| 247 | } |
| 248 | |
| 249 | fMat[3][0] = dx; |
| 250 | fMat[3][1] = dy; |
| 251 | fMat[3][2] = dz; |
| 252 | this->setTypeMask(kTranslate_Mask); |
| 253 | return *this; |
| 254 | } |
| 255 | |
| 256 | SkMatrix44& SkMatrix44::preTranslate(SkScalar dx, SkScalar dy, SkScalar dz) { |
| 257 | if (!dx && !dy && !dz) { |
| 258 | return *this; |
| 259 | } |
| 260 | |
| 261 | for (int i = 0; i < 4; ++i) { |
| 262 | fMat[3][i] = fMat[0][i] * dx + fMat[1][i] * dy + fMat[2][i] * dz + fMat[3][i]; |
| 263 | } |
| 264 | this->recomputeTypeMask(); |
| 265 | return *this; |
| 266 | } |
| 267 | |
| 268 | SkMatrix44& SkMatrix44::postTranslate(SkScalar dx, SkScalar dy, SkScalar dz) { |
| 269 | if (!dx && !dy && !dz) { |
| 270 | return *this; |
| 271 | } |
| 272 | |
| 273 | if (this->getType() & kPerspective_Mask) { |
| 274 | for (int i = 0; i < 4; ++i) { |
| 275 | fMat[i][0] += fMat[i][3] * dx; |
| 276 | fMat[i][1] += fMat[i][3] * dy; |
| 277 | fMat[i][2] += fMat[i][3] * dz; |
| 278 | } |
| 279 | } else { |
| 280 | fMat[3][0] += dx; |
| 281 | fMat[3][1] += dy; |
| 282 | fMat[3][2] += dz; |
| 283 | this->recomputeTypeMask(); |
| 284 | } |
| 285 | return *this; |
| 286 | } |
| 287 | |
| 288 | /////////////////////////////////////////////////////////////////////////////// |
| 289 | |
| 290 | SkMatrix44& SkMatrix44::setScale(SkScalar sx, SkScalar sy, SkScalar sz) { |
| 291 | this->setIdentity(); |
| 292 | |
| 293 | if (1 == sx && 1 == sy && 1 == sz) { |
| 294 | return *this; |
| 295 | } |
| 296 | |
| 297 | fMat[0][0] = sx; |
| 298 | fMat[1][1] = sy; |
| 299 | fMat[2][2] = sz; |
| 300 | this->setTypeMask(kScale_Mask); |
| 301 | return *this; |
| 302 | } |
| 303 | |
| 304 | SkMatrix44& SkMatrix44::preScale(SkScalar sx, SkScalar sy, SkScalar sz) { |
| 305 | if (1 == sx && 1 == sy && 1 == sz) { |
| 306 | return *this; |
| 307 | } |
| 308 | |
| 309 | // The implementation matrix * pureScale can be shortcut |
| 310 | // by knowing that pureScale components effectively scale |
| 311 | // the columns of the original matrix. |
| 312 | for (int i = 0; i < 4; i++) { |
| 313 | fMat[0][i] *= sx; |
| 314 | fMat[1][i] *= sy; |
| 315 | fMat[2][i] *= sz; |
| 316 | } |
| 317 | this->recomputeTypeMask(); |
| 318 | return *this; |
| 319 | } |
| 320 | |
| 321 | SkMatrix44& SkMatrix44::postScale(SkScalar sx, SkScalar sy, SkScalar sz) { |
| 322 | if (1 == sx && 1 == sy && 1 == sz) { |
| 323 | return *this; |
| 324 | } |
| 325 | |
| 326 | for (int i = 0; i < 4; i++) { |
| 327 | fMat[i][0] *= sx; |
| 328 | fMat[i][1] *= sy; |
| 329 | fMat[i][2] *= sz; |
| 330 | } |
| 331 | this->recomputeTypeMask(); |
| 332 | return *this; |
| 333 | } |
| 334 | |
| 335 | /////////////////////////////////////////////////////////////////////////////// |
| 336 | |
| 337 | void SkMatrix44::setRotateAbout(SkScalar x, SkScalar y, SkScalar z, SkScalar radians) { |
| 338 | double len2 = (double)x * x + (double)y * y + (double)z * z; |
| 339 | if (1 != len2) { |
| 340 | if (0 == len2) { |
| 341 | this->setIdentity(); |
| 342 | return; |
| 343 | } |
| 344 | double scale = 1 / sqrt(len2); |
| 345 | x = SkScalar(x * scale); |
| 346 | y = SkScalar(y * scale); |
| 347 | z = SkScalar(z * scale); |
| 348 | } |
| 349 | this->setRotateAboutUnit(x, y, z, radians); |
| 350 | } |
| 351 | |
| 352 | void SkMatrix44::setRotateAboutUnit(SkScalar x, SkScalar y, SkScalar z, SkScalar radians) { |
| 353 | double c = cos(radians); |
| 354 | double s = sin(radians); |
| 355 | double C = 1 - c; |
| 356 | double xs = x * s; |
| 357 | double ys = y * s; |
| 358 | double zs = z * s; |
| 359 | double xC = x * C; |
| 360 | double yC = y * C; |
| 361 | double zC = z * C; |
| 362 | double xyC = x * yC; |
| 363 | double yzC = y * zC; |
| 364 | double zxC = z * xC; |
| 365 | |
| 366 | // if you're looking at wikipedia, remember that we're column major. |
| 367 | this->set3x3(SkScalar(x * xC + c), // scale x |
| 368 | SkScalar(xyC + zs), // skew x |
| 369 | SkScalar(zxC - ys), // trans x |
| 370 | |
| 371 | SkScalar(xyC - zs), // skew y |
| 372 | SkScalar(y * yC + c), // scale y |
| 373 | SkScalar(yzC + xs), // trans y |
| 374 | |
| 375 | SkScalar(zxC + ys), // persp x |
| 376 | SkScalar(yzC - xs), // persp y |
| 377 | SkScalar(z * zC + c)); // persp 2 |
| 378 | } |
| 379 | |
| 380 | /////////////////////////////////////////////////////////////////////////////// |
| 381 | |
| 382 | static bool bits_isonly(int value, int mask) { |
| 383 | return 0 == (value & ~mask); |
| 384 | } |
| 385 | |
| 386 | void SkMatrix44::setConcat(const SkMatrix44& a, const SkMatrix44& b) { |
| 387 | const SkMatrix44::TypeMask a_mask = a.getType(); |
| 388 | const SkMatrix44::TypeMask b_mask = b.getType(); |
| 389 | |
| 390 | if (kIdentity_Mask == a_mask) { |
| 391 | *this = b; |
| 392 | return; |
| 393 | } |
| 394 | if (kIdentity_Mask == b_mask) { |
| 395 | *this = a; |
| 396 | return; |
| 397 | } |
| 398 | |
| 399 | bool useStorage = (this == &a || this == &b); |
| 400 | SkScalar storage[16]; |
| 401 | SkScalar* result = useStorage ? storage : &fMat[0][0]; |
| 402 | |
| 403 | // Both matrices are at most scale+translate |
| 404 | if (bits_isonly(a_mask | b_mask, kScale_Mask | kTranslate_Mask)) { |
| 405 | result[0] = a.fMat[0][0] * b.fMat[0][0]; |
| 406 | result[1] = result[2] = result[3] = result[4] = 0; |
| 407 | result[5] = a.fMat[1][1] * b.fMat[1][1]; |
| 408 | result[6] = result[7] = result[8] = result[9] = 0; |
| 409 | result[10] = a.fMat[2][2] * b.fMat[2][2]; |
| 410 | result[11] = 0; |
| 411 | result[12] = a.fMat[0][0] * b.fMat[3][0] + a.fMat[3][0]; |
| 412 | result[13] = a.fMat[1][1] * b.fMat[3][1] + a.fMat[3][1]; |
| 413 | result[14] = a.fMat[2][2] * b.fMat[3][2] + a.fMat[3][2]; |
| 414 | result[15] = 1; |
| 415 | } else { |
| 416 | for (int j = 0; j < 4; j++) { |
| 417 | for (int i = 0; i < 4; i++) { |
| 418 | double value = 0; |
| 419 | for (int k = 0; k < 4; k++) { |
| 420 | value += double(a.fMat[k][i]) * b.fMat[j][k]; |
| 421 | } |
| 422 | *result++ = SkScalar(value); |
| 423 | } |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | if (useStorage) { |
| 428 | memcpy(fMat, storage, sizeof(storage)); |
| 429 | } |
| 430 | this->recomputeTypeMask(); |
| 431 | } |
| 432 | |
| 433 | /////////////////////////////////////////////////////////////////////////////// |
| 434 | |
| 435 | /** We always perform the calculation in doubles, to avoid prematurely losing |
| 436 | precision along the way. This relies on the compiler automatically |
| 437 | promoting our SkScalar values to double (if needed). |
| 438 | */ |
| 439 | double SkMatrix44::determinant() const { |
| 440 | if (this->isIdentity()) { |
| 441 | return 1; |
| 442 | } |
| 443 | if (this->isScaleTranslate()) { |
| 444 | return fMat[0][0] * fMat[1][1] * fMat[2][2] * fMat[3][3]; |
| 445 | } |
| 446 | |
| 447 | double a00 = fMat[0][0]; |
| 448 | double a01 = fMat[0][1]; |
| 449 | double a02 = fMat[0][2]; |
| 450 | double a03 = fMat[0][3]; |
| 451 | double a10 = fMat[1][0]; |
| 452 | double a11 = fMat[1][1]; |
| 453 | double a12 = fMat[1][2]; |
| 454 | double a13 = fMat[1][3]; |
| 455 | double a20 = fMat[2][0]; |
| 456 | double a21 = fMat[2][1]; |
| 457 | double a22 = fMat[2][2]; |
| 458 | double a23 = fMat[2][3]; |
| 459 | double a30 = fMat[3][0]; |
| 460 | double a31 = fMat[3][1]; |
| 461 | double a32 = fMat[3][2]; |
| 462 | double a33 = fMat[3][3]; |
| 463 | |
| 464 | double b00 = a00 * a11 - a01 * a10; |
| 465 | double b01 = a00 * a12 - a02 * a10; |
| 466 | double b02 = a00 * a13 - a03 * a10; |
| 467 | double b03 = a01 * a12 - a02 * a11; |
| 468 | double b04 = a01 * a13 - a03 * a11; |
| 469 | double b05 = a02 * a13 - a03 * a12; |
| 470 | double b06 = a20 * a31 - a21 * a30; |
| 471 | double b07 = a20 * a32 - a22 * a30; |
| 472 | double b08 = a20 * a33 - a23 * a30; |
| 473 | double b09 = a21 * a32 - a22 * a31; |
| 474 | double b10 = a21 * a33 - a23 * a31; |
| 475 | double b11 = a22 * a33 - a23 * a32; |
| 476 | |
| 477 | // Calculate the determinant |
| 478 | return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; |
| 479 | } |
| 480 | |
| 481 | /////////////////////////////////////////////////////////////////////////////// |
| 482 | |
| 483 | static bool is_matrix_finite(const SkMatrix44& matrix) { |
| 484 | SkScalar accumulator = 0; |
| 485 | for (int row = 0; row < 4; ++row) { |
| 486 | for (int col = 0; col < 4; ++col) { |
| 487 | accumulator *= matrix.get(row, col); |
| 488 | } |
| 489 | } |
| 490 | return accumulator == 0; |
| 491 | } |
| 492 | |
| 493 | bool SkMatrix44::invert(SkMatrix44* storage) const { |
| 494 | if (this->isIdentity()) { |
| 495 | if (storage) { |
| 496 | storage->setIdentity(); |
| 497 | } |
| 498 | return true; |
| 499 | } |
| 500 | |
| 501 | if (this->isTranslate()) { |
| 502 | if (storage) { |
| 503 | storage->setTranslate(-fMat[3][0], -fMat[3][1], -fMat[3][2]); |
| 504 | } |
| 505 | return true; |
| 506 | } |
| 507 | |
| 508 | SkMatrix44 tmp; |
| 509 | // Use storage if it's available and distinct from this matrix. |
| 510 | SkMatrix44* inverse = (storage && storage != this) ? storage : &tmp; |
| 511 | if (this->isScaleTranslate()) { |
| 512 | if (0 == fMat[0][0] * fMat[1][1] * fMat[2][2]) { |
| 513 | return false; |
| 514 | } |
| 515 | |
| 516 | double invXScale = 1 / fMat[0][0]; |
| 517 | double invYScale = 1 / fMat[1][1]; |
| 518 | double invZScale = 1 / fMat[2][2]; |
| 519 | |
| 520 | inverse->fMat[0][0] = SkDoubleToScalar(invXScale); |
| 521 | inverse->fMat[0][1] = 0; |
| 522 | inverse->fMat[0][2] = 0; |
| 523 | inverse->fMat[0][3] = 0; |
| 524 | |
| 525 | inverse->fMat[1][0] = 0; |
| 526 | inverse->fMat[1][1] = SkDoubleToScalar(invYScale); |
| 527 | inverse->fMat[1][2] = 0; |
| 528 | inverse->fMat[1][3] = 0; |
| 529 | |
| 530 | inverse->fMat[2][0] = 0; |
| 531 | inverse->fMat[2][1] = 0; |
| 532 | inverse->fMat[2][2] = SkDoubleToScalar(invZScale); |
| 533 | inverse->fMat[2][3] = 0; |
| 534 | |
| 535 | inverse->fMat[3][0] = SkDoubleToScalar(-fMat[3][0] * invXScale); |
| 536 | inverse->fMat[3][1] = SkDoubleToScalar(-fMat[3][1] * invYScale); |
| 537 | inverse->fMat[3][2] = SkDoubleToScalar(-fMat[3][2] * invZScale); |
| 538 | inverse->fMat[3][3] = 1; |
| 539 | |
| 540 | inverse->setTypeMask(this->getType()); |
| 541 | |
| 542 | if (!is_matrix_finite(*inverse)) { |
| 543 | return false; |
| 544 | } |
| 545 | if (storage && inverse != storage) { |
| 546 | *storage = *inverse; |
| 547 | } |
| 548 | return true; |
| 549 | } |
| 550 | |
| 551 | double a00 = fMat[0][0]; |
| 552 | double a01 = fMat[0][1]; |
| 553 | double a02 = fMat[0][2]; |
| 554 | double a03 = fMat[0][3]; |
| 555 | double a10 = fMat[1][0]; |
| 556 | double a11 = fMat[1][1]; |
| 557 | double a12 = fMat[1][2]; |
| 558 | double a13 = fMat[1][3]; |
| 559 | double a20 = fMat[2][0]; |
| 560 | double a21 = fMat[2][1]; |
| 561 | double a22 = fMat[2][2]; |
| 562 | double a23 = fMat[2][3]; |
| 563 | double a30 = fMat[3][0]; |
| 564 | double a31 = fMat[3][1]; |
| 565 | double a32 = fMat[3][2]; |
| 566 | double a33 = fMat[3][3]; |
| 567 | |
| 568 | if (!(this->getType() & kPerspective_Mask)) { |
| 569 | // If we know the matrix has no perspective, then the perspective |
| 570 | // component is (0, 0, 0, 1). We can use this information to save a lot |
| 571 | // of arithmetic that would otherwise be spent to compute the inverse |
| 572 | // of a general matrix. |
| 573 | |
| 574 | SkASSERT(a03 == 0); |
| 575 | SkASSERT(a13 == 0); |
| 576 | SkASSERT(a23 == 0); |
| 577 | SkASSERT(a33 == 1); |
| 578 | |
| 579 | double b00 = a00 * a11 - a01 * a10; |
| 580 | double b01 = a00 * a12 - a02 * a10; |
| 581 | double b03 = a01 * a12 - a02 * a11; |
| 582 | double b06 = a20 * a31 - a21 * a30; |
| 583 | double b07 = a20 * a32 - a22 * a30; |
| 584 | double b08 = a20; |
| 585 | double b09 = a21 * a32 - a22 * a31; |
| 586 | double b10 = a21; |
| 587 | double b11 = a22; |
| 588 | |
| 589 | // Calculate the determinant |
| 590 | double det = b00 * b11 - b01 * b10 + b03 * b08; |
| 591 | |
| 592 | double invdet = sk_ieee_double_divide(1.0, det); |
| 593 | // If det is zero, we want to return false. However, we also want to return false |
| 594 | // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are |
| 595 | // handled by checking that 1/det is finite. |
| 596 | if (!sk_float_isfinite(sk_double_to_float(invdet))) { |
| 597 | return false; |
| 598 | } |
| 599 | |
| 600 | b00 *= invdet; |
| 601 | b01 *= invdet; |
| 602 | b03 *= invdet; |
| 603 | b06 *= invdet; |
| 604 | b07 *= invdet; |
| 605 | b08 *= invdet; |
| 606 | b09 *= invdet; |
| 607 | b10 *= invdet; |
| 608 | b11 *= invdet; |
| 609 | |
| 610 | inverse->fMat[0][0] = SkDoubleToScalar(a11 * b11 - a12 * b10); |
| 611 | inverse->fMat[0][1] = SkDoubleToScalar(a02 * b10 - a01 * b11); |
| 612 | inverse->fMat[0][2] = SkDoubleToScalar(b03); |
| 613 | inverse->fMat[0][3] = 0; |
| 614 | inverse->fMat[1][0] = SkDoubleToScalar(a12 * b08 - a10 * b11); |
| 615 | inverse->fMat[1][1] = SkDoubleToScalar(a00 * b11 - a02 * b08); |
| 616 | inverse->fMat[1][2] = SkDoubleToScalar(-b01); |
| 617 | inverse->fMat[1][3] = 0; |
| 618 | inverse->fMat[2][0] = SkDoubleToScalar(a10 * b10 - a11 * b08); |
| 619 | inverse->fMat[2][1] = SkDoubleToScalar(a01 * b08 - a00 * b10); |
| 620 | inverse->fMat[2][2] = SkDoubleToScalar(b00); |
| 621 | inverse->fMat[2][3] = 0; |
| 622 | inverse->fMat[3][0] = SkDoubleToScalar(a11 * b07 - a10 * b09 - a12 * b06); |
| 623 | inverse->fMat[3][1] = SkDoubleToScalar(a00 * b09 - a01 * b07 + a02 * b06); |
| 624 | inverse->fMat[3][2] = SkDoubleToScalar(a31 * b01 - a30 * b03 - a32 * b00); |
| 625 | inverse->fMat[3][3] = 1; |
| 626 | |
| 627 | inverse->setTypeMask(this->getType()); |
| 628 | if (!is_matrix_finite(*inverse)) { |
| 629 | return false; |
| 630 | } |
| 631 | if (storage && inverse != storage) { |
| 632 | *storage = *inverse; |
| 633 | } |
| 634 | return true; |
| 635 | } |
| 636 | |
| 637 | double b00 = a00 * a11 - a01 * a10; |
| 638 | double b01 = a00 * a12 - a02 * a10; |
| 639 | double b02 = a00 * a13 - a03 * a10; |
| 640 | double b03 = a01 * a12 - a02 * a11; |
| 641 | double b04 = a01 * a13 - a03 * a11; |
| 642 | double b05 = a02 * a13 - a03 * a12; |
| 643 | double b06 = a20 * a31 - a21 * a30; |
| 644 | double b07 = a20 * a32 - a22 * a30; |
| 645 | double b08 = a20 * a33 - a23 * a30; |
| 646 | double b09 = a21 * a32 - a22 * a31; |
| 647 | double b10 = a21 * a33 - a23 * a31; |
| 648 | double b11 = a22 * a33 - a23 * a32; |
| 649 | |
| 650 | // Calculate the determinant |
| 651 | double det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; |
| 652 | |
| 653 | double invdet = sk_ieee_double_divide(1.0, det); |
| 654 | // If det is zero, we want to return false. However, we also want to return false |
| 655 | // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are |
| 656 | // handled by checking that 1/det is finite. |
| 657 | if (!sk_float_isfinite(sk_double_to_float(invdet))) { |
| 658 | return false; |
| 659 | } |
| 660 | |
| 661 | b00 *= invdet; |
| 662 | b01 *= invdet; |
| 663 | b02 *= invdet; |
| 664 | b03 *= invdet; |
| 665 | b04 *= invdet; |
| 666 | b05 *= invdet; |
| 667 | b06 *= invdet; |
| 668 | b07 *= invdet; |
| 669 | b08 *= invdet; |
| 670 | b09 *= invdet; |
| 671 | b10 *= invdet; |
| 672 | b11 *= invdet; |
| 673 | |
| 674 | inverse->fMat[0][0] = SkDoubleToScalar(a11 * b11 - a12 * b10 + a13 * b09); |
| 675 | inverse->fMat[0][1] = SkDoubleToScalar(a02 * b10 - a01 * b11 - a03 * b09); |
| 676 | inverse->fMat[0][2] = SkDoubleToScalar(a31 * b05 - a32 * b04 + a33 * b03); |
| 677 | inverse->fMat[0][3] = SkDoubleToScalar(a22 * b04 - a21 * b05 - a23 * b03); |
| 678 | inverse->fMat[1][0] = SkDoubleToScalar(a12 * b08 - a10 * b11 - a13 * b07); |
| 679 | inverse->fMat[1][1] = SkDoubleToScalar(a00 * b11 - a02 * b08 + a03 * b07); |
| 680 | inverse->fMat[1][2] = SkDoubleToScalar(a32 * b02 - a30 * b05 - a33 * b01); |
| 681 | inverse->fMat[1][3] = SkDoubleToScalar(a20 * b05 - a22 * b02 + a23 * b01); |
| 682 | inverse->fMat[2][0] = SkDoubleToScalar(a10 * b10 - a11 * b08 + a13 * b06); |
| 683 | inverse->fMat[2][1] = SkDoubleToScalar(a01 * b08 - a00 * b10 - a03 * b06); |
| 684 | inverse->fMat[2][2] = SkDoubleToScalar(a30 * b04 - a31 * b02 + a33 * b00); |
| 685 | inverse->fMat[2][3] = SkDoubleToScalar(a21 * b02 - a20 * b04 - a23 * b00); |
| 686 | inverse->fMat[3][0] = SkDoubleToScalar(a11 * b07 - a10 * b09 - a12 * b06); |
| 687 | inverse->fMat[3][1] = SkDoubleToScalar(a00 * b09 - a01 * b07 + a02 * b06); |
| 688 | inverse->fMat[3][2] = SkDoubleToScalar(a31 * b01 - a30 * b03 - a32 * b00); |
| 689 | inverse->fMat[3][3] = SkDoubleToScalar(a20 * b03 - a21 * b01 + a22 * b00); |
| 690 | inverse->setTypeMask(this->getType()); |
| 691 | if (!is_matrix_finite(*inverse)) { |
| 692 | return false; |
| 693 | } |
| 694 | if (storage && inverse != storage) { |
| 695 | *storage = *inverse; |
| 696 | } |
| 697 | return true; |
| 698 | } |
| 699 | |
| 700 | /////////////////////////////////////////////////////////////////////////////// |
| 701 | |
| 702 | void SkMatrix44::transpose() { |
| 703 | if (!this->isIdentity()) { |
| 704 | using std::swap; |
| 705 | swap(fMat[0][1], fMat[1][0]); |
| 706 | swap(fMat[0][2], fMat[2][0]); |
| 707 | swap(fMat[0][3], fMat[3][0]); |
| 708 | swap(fMat[1][2], fMat[2][1]); |
| 709 | swap(fMat[1][3], fMat[3][1]); |
| 710 | swap(fMat[2][3], fMat[3][2]); |
| 711 | this->recomputeTypeMask(); |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | /////////////////////////////////////////////////////////////////////////////// |
| 716 | |
| 717 | void SkMatrix44::mapScalars(const SkScalar src[4], SkScalar dst[4]) const { |
| 718 | SkScalar storage[4]; |
| 719 | SkScalar* result = (src == dst) ? storage : dst; |
| 720 | |
| 721 | for (int i = 0; i < 4; i++) { |
| 722 | SkScalar value = 0; |
| 723 | for (int j = 0; j < 4; j++) { |
| 724 | value += fMat[j][i] * src[j]; |
| 725 | } |
| 726 | result[i] = value; |
| 727 | } |
| 728 | |
| 729 | if (storage == result) { |
| 730 | memcpy(dst, storage, sizeof(storage)); |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | typedef void (*Map2Procf)(const SkScalar mat[][4], const float src2[], int count, float dst4[]); |
| 735 | typedef void (*Map2Procd)(const SkScalar mat[][4], const double src2[], int count, double dst4[]); |
| 736 | |
| 737 | static void map2_if(const SkScalar mat[][4], const float* SK_RESTRICT src2, |
| 738 | int count, float* SK_RESTRICT dst4) { |
| 739 | for (int i = 0; i < count; ++i) { |
| 740 | dst4[0] = src2[0]; |
| 741 | dst4[1] = src2[1]; |
| 742 | dst4[2] = 0; |
| 743 | dst4[3] = 1; |
| 744 | src2 += 2; |
| 745 | dst4 += 4; |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | static void map2_id(const SkScalar mat[][4], const double* SK_RESTRICT src2, |
| 750 | int count, double* SK_RESTRICT dst4) { |
| 751 | for (int i = 0; i < count; ++i) { |
| 752 | dst4[0] = src2[0]; |
| 753 | dst4[1] = src2[1]; |
| 754 | dst4[2] = 0; |
| 755 | dst4[3] = 1; |
| 756 | src2 += 2; |
| 757 | dst4 += 4; |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | static void map2_tf(const SkScalar mat[][4], const float* SK_RESTRICT src2, |
| 762 | int count, float* SK_RESTRICT dst4) { |
| 763 | const float mat30 = float(mat[3][0]); |
| 764 | const float mat31 = float(mat[3][1]); |
| 765 | const float mat32 = float(mat[3][2]); |
| 766 | for (int n = 0; n < count; ++n) { |
| 767 | dst4[0] = src2[0] + mat30; |
| 768 | dst4[1] = src2[1] + mat31; |
| 769 | dst4[2] = mat32; |
| 770 | dst4[3] = 1; |
| 771 | src2 += 2; |
| 772 | dst4 += 4; |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | static void map2_td(const SkScalar mat[][4], const double* SK_RESTRICT src2, |
| 777 | int count, double* SK_RESTRICT dst4) { |
| 778 | for (int n = 0; n < count; ++n) { |
| 779 | dst4[0] = src2[0] + mat[3][0]; |
| 780 | dst4[1] = src2[1] + mat[3][1]; |
| 781 | dst4[2] = mat[3][2]; |
| 782 | dst4[3] = 1; |
| 783 | src2 += 2; |
| 784 | dst4 += 4; |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | static void map2_sf(const SkScalar mat[][4], const float* SK_RESTRICT src2, |
| 789 | int count, float* SK_RESTRICT dst4) { |
| 790 | const float mat32 = float(mat[3][2]); |
| 791 | for (int n = 0; n < count; ++n) { |
| 792 | dst4[0] = float(mat[0][0] * src2[0] + mat[3][0]); |
| 793 | dst4[1] = float(mat[1][1] * src2[1] + mat[3][1]); |
| 794 | dst4[2] = mat32; |
| 795 | dst4[3] = 1; |
| 796 | src2 += 2; |
| 797 | dst4 += 4; |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | static void map2_sd(const SkScalar mat[][4], const double* SK_RESTRICT src2, |
| 802 | int count, double* SK_RESTRICT dst4) { |
| 803 | for (int n = 0; n < count; ++n) { |
| 804 | dst4[0] = mat[0][0] * src2[0] + mat[3][0]; |
| 805 | dst4[1] = mat[1][1] * src2[1] + mat[3][1]; |
| 806 | dst4[2] = mat[3][2]; |
| 807 | dst4[3] = 1; |
| 808 | src2 += 2; |
| 809 | dst4 += 4; |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | static void map2_af(const SkScalar mat[][4], const float* SK_RESTRICT src2, |
| 814 | int count, float* SK_RESTRICT dst4) { |
| 815 | SkScalar r; |
| 816 | for (int n = 0; n < count; ++n) { |
| 817 | SkScalar sx = src2[0]; |
| 818 | SkScalar sy = src2[1]; |
| 819 | r = mat[0][0] * sx + mat[1][0] * sy + mat[3][0]; |
| 820 | dst4[0] = float(r); |
| 821 | r = mat[0][1] * sx + mat[1][1] * sy + mat[3][1]; |
| 822 | dst4[1] = float(r); |
| 823 | r = mat[0][2] * sx + mat[1][2] * sy + mat[3][2]; |
| 824 | dst4[2] = float(r); |
| 825 | dst4[3] = 1; |
| 826 | src2 += 2; |
| 827 | dst4 += 4; |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | static void map2_ad(const SkScalar mat[][4], const double* SK_RESTRICT src2, |
| 832 | int count, double* SK_RESTRICT dst4) { |
| 833 | for (int n = 0; n < count; ++n) { |
| 834 | double sx = src2[0]; |
| 835 | double sy = src2[1]; |
| 836 | dst4[0] = mat[0][0] * sx + mat[1][0] * sy + mat[3][0]; |
| 837 | dst4[1] = mat[0][1] * sx + mat[1][1] * sy + mat[3][1]; |
| 838 | dst4[2] = mat[0][2] * sx + mat[1][2] * sy + mat[3][2]; |
| 839 | dst4[3] = 1; |
| 840 | src2 += 2; |
| 841 | dst4 += 4; |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | static void map2_pf(const SkScalar mat[][4], const float* SK_RESTRICT src2, |
| 846 | int count, float* SK_RESTRICT dst4) { |
| 847 | SkScalar r; |
| 848 | for (int n = 0; n < count; ++n) { |
| 849 | SkScalar sx = src2[0]; |
| 850 | SkScalar sy = src2[1]; |
| 851 | for (int i = 0; i < 4; i++) { |
| 852 | r = mat[0][i] * sx + mat[1][i] * sy + mat[3][i]; |
| 853 | dst4[i] = float(r); |
| 854 | } |
| 855 | src2 += 2; |
| 856 | dst4 += 4; |
| 857 | } |
| 858 | } |
| 859 | |
| 860 | static void map2_pd(const SkScalar mat[][4], const double* SK_RESTRICT src2, |
| 861 | int count, double* SK_RESTRICT dst4) { |
| 862 | for (int n = 0; n < count; ++n) { |
| 863 | double sx = src2[0]; |
| 864 | double sy = src2[1]; |
| 865 | for (int i = 0; i < 4; i++) { |
| 866 | dst4[i] = mat[0][i] * sx + mat[1][i] * sy + mat[3][i]; |
| 867 | } |
| 868 | src2 += 2; |
| 869 | dst4 += 4; |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | void SkMatrix44::map2(const float src2[], int count, float dst4[]) const { |
| 874 | static const Map2Procf gProc[] = { |
| 875 | map2_if, map2_tf, map2_sf, map2_sf, map2_af, map2_af, map2_af, map2_af |
| 876 | }; |
| 877 | |
| 878 | TypeMask mask = this->getType(); |
| 879 | Map2Procf proc = (mask & kPerspective_Mask) ? map2_pf : gProc[mask]; |
| 880 | proc(fMat, src2, count, dst4); |
| 881 | } |
| 882 | |
| 883 | void SkMatrix44::map2(const double src2[], int count, double dst4[]) const { |
| 884 | static const Map2Procd gProc[] = { |
| 885 | map2_id, map2_td, map2_sd, map2_sd, map2_ad, map2_ad, map2_ad, map2_ad |
| 886 | }; |
| 887 | |
| 888 | TypeMask mask = this->getType(); |
| 889 | Map2Procd proc = (mask & kPerspective_Mask) ? map2_pd : gProc[mask]; |
| 890 | proc(fMat, src2, count, dst4); |
| 891 | } |
| 892 | |
| 893 | bool SkMatrix44::preserves2dAxisAlignment (SkScalar epsilon) const { |
| 894 | |
| 895 | // Can't check (mask & kPerspective_Mask) because Z isn't relevant here. |
| 896 | if (0 != perspX() || 0 != perspY()) return false; |
| 897 | |
| 898 | // A matrix with two non-zeroish values in any of the upper right |
| 899 | // rows or columns will skew. If only one value in each row or |
| 900 | // column is non-zeroish, we get a scale plus perhaps a 90-degree |
| 901 | // rotation. |
| 902 | int col0 = 0; |
| 903 | int col1 = 0; |
| 904 | int row0 = 0; |
| 905 | int row1 = 0; |
| 906 | |
| 907 | // Must test against epsilon, not 0, because we can get values |
| 908 | // around 6e-17 in the matrix that "should" be 0. |
| 909 | |
| 910 | if (SkScalarAbs(fMat[0][0]) > epsilon) { |
| 911 | col0++; |
| 912 | row0++; |
| 913 | } |
| 914 | if (SkScalarAbs(fMat[0][1]) > epsilon) { |
| 915 | col1++; |
| 916 | row0++; |
| 917 | } |
| 918 | if (SkScalarAbs(fMat[1][0]) > epsilon) { |
| 919 | col0++; |
| 920 | row1++; |
| 921 | } |
| 922 | if (SkScalarAbs(fMat[1][1]) > epsilon) { |
| 923 | col1++; |
| 924 | row1++; |
| 925 | } |
| 926 | if (col0 > 1 || col1 > 1 || row0 > 1 || row1 > 1) { |
| 927 | return false; |
| 928 | } |
| 929 | |
| 930 | return true; |
| 931 | } |
| 932 | |
| 933 | /////////////////////////////////////////////////////////////////////////////// |
| 934 | |
| 935 | void SkMatrix44::dump() const { |
| 936 | static const char* format = "|%g %g %g %g|\n" |
| 937 | "|%g %g %g %g|\n" |
| 938 | "|%g %g %g %g|\n" |
| 939 | "|%g %g %g %g|\n" ; |
| 940 | SkDebugf(format, |
| 941 | fMat[0][0], fMat[1][0], fMat[2][0], fMat[3][0], |
| 942 | fMat[0][1], fMat[1][1], fMat[2][1], fMat[3][1], |
| 943 | fMat[0][2], fMat[1][2], fMat[2][2], fMat[3][2], |
| 944 | fMat[0][3], fMat[1][3], fMat[2][3], fMat[3][3]); |
| 945 | } |
| 946 | |
| 947 | /////////////////////////////////////////////////////////////////////////////// |
| 948 | |
| 949 | static void initFromMatrix(SkScalar dst[4][4], const SkMatrix& src) { |
| 950 | dst[0][0] = src[SkMatrix::kMScaleX]; |
| 951 | dst[1][0] = src[SkMatrix::kMSkewX]; |
| 952 | dst[2][0] = 0; |
| 953 | dst[3][0] = src[SkMatrix::kMTransX]; |
| 954 | dst[0][1] = src[SkMatrix::kMSkewY]; |
| 955 | dst[1][1] = src[SkMatrix::kMScaleY]; |
| 956 | dst[2][1] = 0; |
| 957 | dst[3][1] = src[SkMatrix::kMTransY]; |
| 958 | dst[0][2] = 0; |
| 959 | dst[1][2] = 0; |
| 960 | dst[2][2] = 1; |
| 961 | dst[3][2] = 0; |
| 962 | dst[0][3] = src[SkMatrix::kMPersp0]; |
| 963 | dst[1][3] = src[SkMatrix::kMPersp1]; |
| 964 | dst[2][3] = 0; |
| 965 | dst[3][3] = src[SkMatrix::kMPersp2]; |
| 966 | } |
| 967 | |
| 968 | SkMatrix44::SkMatrix44(const SkMatrix& src) { |
| 969 | this->operator=(src); |
| 970 | } |
| 971 | |
| 972 | SkMatrix44& SkMatrix44::operator=(const SkMatrix& src) { |
| 973 | initFromMatrix(fMat, src); |
| 974 | |
| 975 | if (src.isIdentity()) { |
| 976 | this->setTypeMask(kIdentity_Mask); |
| 977 | } else { |
| 978 | this->recomputeTypeMask(); |
| 979 | } |
| 980 | return *this; |
| 981 | } |
| 982 | |
| 983 | SkMatrix44::operator SkMatrix() const { |
| 984 | SkMatrix dst; |
| 985 | |
| 986 | dst[SkMatrix::kMScaleX] = fMat[0][0]; |
| 987 | dst[SkMatrix::kMSkewX] = fMat[1][0]; |
| 988 | dst[SkMatrix::kMTransX] = fMat[3][0]; |
| 989 | |
| 990 | dst[SkMatrix::kMSkewY] = fMat[0][1]; |
| 991 | dst[SkMatrix::kMScaleY] = fMat[1][1]; |
| 992 | dst[SkMatrix::kMTransY] = fMat[3][1]; |
| 993 | |
| 994 | dst[SkMatrix::kMPersp0] = fMat[0][3]; |
| 995 | dst[SkMatrix::kMPersp1] = fMat[1][3]; |
| 996 | dst[SkMatrix::kMPersp2] = fMat[3][3]; |
| 997 | |
| 998 | return dst; |
| 999 | } |
| 1000 | |