1 | /* |
2 | * Copyright 2011 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkCanvas.h" |
9 | #include "include/core/SkPath.h" |
10 | #include "src/core/SkClipOpPriv.h" |
11 | #include "src/core/SkClipStack.h" |
12 | #include "src/core/SkRectPriv.h" |
13 | #include "src/shaders/SkShaderBase.h" |
14 | |
15 | #include <atomic> |
16 | #include <new> |
17 | |
18 | #if SK_SUPPORT_GPU |
19 | #include "src/gpu/GrProxyProvider.h" |
20 | #endif |
21 | |
22 | SkClipStack::Element::Element(const Element& that) { |
23 | switch (that.getDeviceSpaceType()) { |
24 | case DeviceSpaceType::kEmpty: |
25 | fDeviceSpaceRRect.setEmpty(); |
26 | fDeviceSpacePath.reset(); |
27 | fShader.reset(); |
28 | break; |
29 | case DeviceSpaceType::kRect: // Rect uses rrect |
30 | case DeviceSpaceType::kRRect: |
31 | fDeviceSpacePath.reset(); |
32 | fShader.reset(); |
33 | fDeviceSpaceRRect = that.fDeviceSpaceRRect; |
34 | break; |
35 | case DeviceSpaceType::kPath: |
36 | fShader.reset(); |
37 | fDeviceSpacePath.set(that.getDeviceSpacePath()); |
38 | break; |
39 | case DeviceSpaceType::kShader: |
40 | fDeviceSpacePath.reset(); |
41 | fShader = that.fShader; |
42 | break; |
43 | } |
44 | |
45 | fSaveCount = that.fSaveCount; |
46 | fOp = that.fOp; |
47 | fDeviceSpaceType = that.fDeviceSpaceType; |
48 | fDoAA = that.fDoAA; |
49 | fFiniteBoundType = that.fFiniteBoundType; |
50 | fFiniteBound = that.fFiniteBound; |
51 | fIsIntersectionOfRects = that.fIsIntersectionOfRects; |
52 | fGenID = that.fGenID; |
53 | } |
54 | |
55 | SkClipStack::Element::~Element() { |
56 | #if SK_SUPPORT_GPU |
57 | for (int i = 0; i < fKeysToInvalidate.count(); ++i) { |
58 | fProxyProvider->processInvalidUniqueKey(fKeysToInvalidate[i], nullptr, |
59 | GrProxyProvider::InvalidateGPUResource::kYes); |
60 | } |
61 | #endif |
62 | } |
63 | |
64 | bool SkClipStack::Element::operator== (const Element& element) const { |
65 | if (this == &element) { |
66 | return true; |
67 | } |
68 | if (fOp != element.fOp || fDeviceSpaceType != element.fDeviceSpaceType || |
69 | fDoAA != element.fDoAA || fSaveCount != element.fSaveCount) { |
70 | return false; |
71 | } |
72 | switch (fDeviceSpaceType) { |
73 | case DeviceSpaceType::kShader: |
74 | return this->getShader() == element.getShader(); |
75 | case DeviceSpaceType::kPath: |
76 | return this->getDeviceSpacePath() == element.getDeviceSpacePath(); |
77 | case DeviceSpaceType::kRRect: |
78 | return fDeviceSpaceRRect == element.fDeviceSpaceRRect; |
79 | case DeviceSpaceType::kRect: |
80 | return this->getDeviceSpaceRect() == element.getDeviceSpaceRect(); |
81 | case DeviceSpaceType::kEmpty: |
82 | return true; |
83 | default: |
84 | SkDEBUGFAIL("Unexpected type." ); |
85 | return false; |
86 | } |
87 | } |
88 | |
89 | const SkRect& SkClipStack::Element::getBounds() const { |
90 | static const SkRect kEmpty = {0, 0, 0, 0}; |
91 | static const SkRect kInfinite = SkRectPriv::MakeLargeS32(); |
92 | switch (fDeviceSpaceType) { |
93 | case DeviceSpaceType::kRect: // fallthrough |
94 | case DeviceSpaceType::kRRect: |
95 | return fDeviceSpaceRRect.getBounds(); |
96 | case DeviceSpaceType::kPath: |
97 | return fDeviceSpacePath.get()->getBounds(); |
98 | case DeviceSpaceType::kShader: |
99 | // Shaders have infinite bounds since any pixel could have clipped or full coverage |
100 | // (which is different from wide-open, where every pixel has 1.0 coverage, or empty |
101 | // where every pixel has 0.0 coverage). |
102 | return kInfinite; |
103 | case DeviceSpaceType::kEmpty: |
104 | return kEmpty; |
105 | default: |
106 | SkDEBUGFAIL("Unexpected type." ); |
107 | return kEmpty; |
108 | } |
109 | } |
110 | |
111 | bool SkClipStack::Element::contains(const SkRect& rect) const { |
112 | switch (fDeviceSpaceType) { |
113 | case DeviceSpaceType::kRect: |
114 | return this->getDeviceSpaceRect().contains(rect); |
115 | case DeviceSpaceType::kRRect: |
116 | return fDeviceSpaceRRect.contains(rect); |
117 | case DeviceSpaceType::kPath: |
118 | return fDeviceSpacePath.get()->conservativelyContainsRect(rect); |
119 | case DeviceSpaceType::kEmpty: |
120 | case DeviceSpaceType::kShader: |
121 | return false; |
122 | default: |
123 | SkDEBUGFAIL("Unexpected type." ); |
124 | return false; |
125 | } |
126 | } |
127 | |
128 | bool SkClipStack::Element::contains(const SkRRect& rrect) const { |
129 | switch (fDeviceSpaceType) { |
130 | case DeviceSpaceType::kRect: |
131 | return this->getDeviceSpaceRect().contains(rrect.getBounds()); |
132 | case DeviceSpaceType::kRRect: |
133 | // We don't currently have a generalized rrect-rrect containment. |
134 | return fDeviceSpaceRRect.contains(rrect.getBounds()) || rrect == fDeviceSpaceRRect; |
135 | case DeviceSpaceType::kPath: |
136 | return fDeviceSpacePath.get()->conservativelyContainsRect(rrect.getBounds()); |
137 | case DeviceSpaceType::kEmpty: |
138 | case DeviceSpaceType::kShader: |
139 | return false; |
140 | default: |
141 | SkDEBUGFAIL("Unexpected type." ); |
142 | return false; |
143 | } |
144 | } |
145 | |
146 | void SkClipStack::Element::invertShapeFillType() { |
147 | switch (fDeviceSpaceType) { |
148 | case DeviceSpaceType::kRect: |
149 | fDeviceSpacePath.init(); |
150 | fDeviceSpacePath.get()->addRect(this->getDeviceSpaceRect()); |
151 | fDeviceSpacePath.get()->setFillType(SkPathFillType::kInverseEvenOdd); |
152 | fDeviceSpaceType = DeviceSpaceType::kPath; |
153 | break; |
154 | case DeviceSpaceType::kRRect: |
155 | fDeviceSpacePath.init(); |
156 | fDeviceSpacePath.get()->addRRect(fDeviceSpaceRRect); |
157 | fDeviceSpacePath.get()->setFillType(SkPathFillType::kInverseEvenOdd); |
158 | fDeviceSpaceType = DeviceSpaceType::kPath; |
159 | break; |
160 | case DeviceSpaceType::kPath: |
161 | fDeviceSpacePath.get()->toggleInverseFillType(); |
162 | break; |
163 | case DeviceSpaceType::kShader: |
164 | fShader = as_SB(fShader)->makeInvertAlpha(); |
165 | break; |
166 | case DeviceSpaceType::kEmpty: |
167 | // Should this set to an empty, inverse filled path? |
168 | break; |
169 | } |
170 | } |
171 | |
172 | void SkClipStack::Element::initCommon(int saveCount, SkClipOp op, bool doAA) { |
173 | fSaveCount = saveCount; |
174 | fOp = op; |
175 | fDoAA = doAA; |
176 | // A default of inside-out and empty bounds means the bounds are effectively void as it |
177 | // indicates that nothing is known to be outside the clip. |
178 | fFiniteBoundType = kInsideOut_BoundsType; |
179 | fFiniteBound.setEmpty(); |
180 | fIsIntersectionOfRects = false; |
181 | fGenID = kInvalidGenID; |
182 | } |
183 | |
184 | void SkClipStack::Element::initRect(int saveCount, const SkRect& rect, const SkMatrix& m, |
185 | SkClipOp op, bool doAA) { |
186 | if (m.rectStaysRect()) { |
187 | SkRect devRect; |
188 | m.mapRect(&devRect, rect); |
189 | fDeviceSpaceRRect.setRect(devRect); |
190 | fDeviceSpaceType = DeviceSpaceType::kRect; |
191 | this->initCommon(saveCount, op, doAA); |
192 | return; |
193 | } |
194 | SkPath path; |
195 | path.addRect(rect); |
196 | path.setIsVolatile(true); |
197 | this->initAsPath(saveCount, path, m, op, doAA); |
198 | } |
199 | |
200 | void SkClipStack::Element::initRRect(int saveCount, const SkRRect& rrect, const SkMatrix& m, |
201 | SkClipOp op, bool doAA) { |
202 | if (rrect.transform(m, &fDeviceSpaceRRect)) { |
203 | SkRRect::Type type = fDeviceSpaceRRect.getType(); |
204 | if (SkRRect::kRect_Type == type || SkRRect::kEmpty_Type == type) { |
205 | fDeviceSpaceType = DeviceSpaceType::kRect; |
206 | } else { |
207 | fDeviceSpaceType = DeviceSpaceType::kRRect; |
208 | } |
209 | this->initCommon(saveCount, op, doAA); |
210 | return; |
211 | } |
212 | SkPath path; |
213 | path.addRRect(rrect); |
214 | path.setIsVolatile(true); |
215 | this->initAsPath(saveCount, path, m, op, doAA); |
216 | } |
217 | |
218 | void SkClipStack::Element::initPath(int saveCount, const SkPath& path, const SkMatrix& m, |
219 | SkClipOp op, bool doAA) { |
220 | if (!path.isInverseFillType()) { |
221 | SkRect r; |
222 | if (path.isRect(&r)) { |
223 | this->initRect(saveCount, r, m, op, doAA); |
224 | return; |
225 | } |
226 | SkRect ovalRect; |
227 | if (path.isOval(&ovalRect)) { |
228 | SkRRect rrect; |
229 | rrect.setOval(ovalRect); |
230 | this->initRRect(saveCount, rrect, m, op, doAA); |
231 | return; |
232 | } |
233 | } |
234 | this->initAsPath(saveCount, path, m, op, doAA); |
235 | } |
236 | |
237 | void SkClipStack::Element::initAsPath(int saveCount, const SkPath& path, const SkMatrix& m, |
238 | SkClipOp op, bool doAA) { |
239 | path.transform(m, fDeviceSpacePath.init()); |
240 | fDeviceSpacePath.get()->setIsVolatile(true); |
241 | fDeviceSpaceType = DeviceSpaceType::kPath; |
242 | this->initCommon(saveCount, op, doAA); |
243 | } |
244 | |
245 | void SkClipStack::Element::initShader(int saveCount, sk_sp<SkShader> shader) { |
246 | SkASSERT(shader); |
247 | fDeviceSpaceType = DeviceSpaceType::kShader; |
248 | fShader = std::move(shader); |
249 | this->initCommon(saveCount, SkClipOp::kIntersect, false); |
250 | } |
251 | |
252 | void SkClipStack::Element::asDeviceSpacePath(SkPath* path) const { |
253 | switch (fDeviceSpaceType) { |
254 | case DeviceSpaceType::kEmpty: |
255 | path->reset(); |
256 | break; |
257 | case DeviceSpaceType::kRect: |
258 | path->reset(); |
259 | path->addRect(this->getDeviceSpaceRect()); |
260 | break; |
261 | case DeviceSpaceType::kRRect: |
262 | path->reset(); |
263 | path->addRRect(fDeviceSpaceRRect); |
264 | break; |
265 | case DeviceSpaceType::kPath: |
266 | *path = *fDeviceSpacePath.get(); |
267 | break; |
268 | case DeviceSpaceType::kShader: |
269 | path->reset(); |
270 | path->addRect(SkRectPriv::MakeLargeS32()); |
271 | break; |
272 | } |
273 | path->setIsVolatile(true); |
274 | } |
275 | |
276 | void SkClipStack::Element::setEmpty() { |
277 | fDeviceSpaceType = DeviceSpaceType::kEmpty; |
278 | fFiniteBound.setEmpty(); |
279 | fFiniteBoundType = kNormal_BoundsType; |
280 | fIsIntersectionOfRects = false; |
281 | fDeviceSpaceRRect.setEmpty(); |
282 | fDeviceSpacePath.reset(); |
283 | fShader.reset(); |
284 | fGenID = kEmptyGenID; |
285 | SkDEBUGCODE(this->checkEmpty();) |
286 | } |
287 | |
288 | void SkClipStack::Element::checkEmpty() const { |
289 | SkASSERT(fFiniteBound.isEmpty()); |
290 | SkASSERT(kNormal_BoundsType == fFiniteBoundType); |
291 | SkASSERT(!fIsIntersectionOfRects); |
292 | SkASSERT(kEmptyGenID == fGenID); |
293 | SkASSERT(fDeviceSpaceRRect.isEmpty()); |
294 | SkASSERT(!fDeviceSpacePath.isValid()); |
295 | SkASSERT(!fShader); |
296 | } |
297 | |
298 | bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkClipOp op) const { |
299 | if (DeviceSpaceType::kEmpty == fDeviceSpaceType && |
300 | (kDifference_SkClipOp == op || kIntersect_SkClipOp == op)) { |
301 | return true; |
302 | } |
303 | // Only clips within the same save/restore frame (as captured by |
304 | // the save count) can be merged |
305 | return fSaveCount == saveCount && |
306 | kIntersect_SkClipOp == op && |
307 | (kIntersect_SkClipOp == fOp || kReplace_SkClipOp == fOp); |
308 | } |
309 | |
310 | bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const { |
311 | SkASSERT(DeviceSpaceType::kRect == fDeviceSpaceType); |
312 | |
313 | if (fDoAA == newAA) { |
314 | // if the AA setting is the same there is no issue |
315 | return true; |
316 | } |
317 | |
318 | if (!SkRect::Intersects(this->getDeviceSpaceRect(), newR)) { |
319 | // The calling code will correctly set the result to the empty clip |
320 | return true; |
321 | } |
322 | |
323 | if (this->getDeviceSpaceRect().contains(newR)) { |
324 | // if the new rect carves out a portion of the old one there is no |
325 | // issue |
326 | return true; |
327 | } |
328 | |
329 | // So either the two overlap in some complex manner or newR contains oldR. |
330 | // In the first, case the edges will require different AA. In the second, |
331 | // the AA setting that would be carried forward is incorrect (e.g., oldR |
332 | // is AA while newR is BW but since newR contains oldR, oldR will be |
333 | // drawn BW) since the new AA setting will predominate. |
334 | return false; |
335 | } |
336 | |
337 | // a mirror of combineBoundsRevDiff |
338 | void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) { |
339 | switch (combination) { |
340 | case kInvPrev_InvCur_FillCombo: |
341 | // In this case the only pixels that can remain set |
342 | // are inside the current clip rect since the extensions |
343 | // to infinity of both clips cancel out and whatever |
344 | // is outside of the current clip is removed |
345 | fFiniteBoundType = kNormal_BoundsType; |
346 | break; |
347 | case kInvPrev_Cur_FillCombo: |
348 | // In this case the current op is finite so the only pixels |
349 | // that aren't set are whatever isn't set in the previous |
350 | // clip and whatever this clip carves out |
351 | fFiniteBound.join(prevFinite); |
352 | fFiniteBoundType = kInsideOut_BoundsType; |
353 | break; |
354 | case kPrev_InvCur_FillCombo: |
355 | // In this case everything outside of this clip's bound |
356 | // is erased, so the only pixels that can remain set |
357 | // occur w/in the intersection of the two finite bounds |
358 | if (!fFiniteBound.intersect(prevFinite)) { |
359 | fFiniteBound.setEmpty(); |
360 | fGenID = kEmptyGenID; |
361 | } |
362 | fFiniteBoundType = kNormal_BoundsType; |
363 | break; |
364 | case kPrev_Cur_FillCombo: |
365 | // The most conservative result bound is that of the |
366 | // prior clip. This could be wildly incorrect if the |
367 | // second clip either exactly matches the first clip |
368 | // (which should yield the empty set) or reduces the |
369 | // size of the prior bound (e.g., if the second clip |
370 | // exactly matched the bottom half of the prior clip). |
371 | // We ignore these two possibilities. |
372 | fFiniteBound = prevFinite; |
373 | break; |
374 | default: |
375 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination" ); |
376 | break; |
377 | } |
378 | } |
379 | |
380 | void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) { |
381 | |
382 | switch (combination) { |
383 | case kInvPrev_Cur_FillCombo: // fall through |
384 | case kPrev_InvCur_FillCombo: |
385 | // With only one of the clips inverted the result will always |
386 | // extend to infinity. The only pixels that may be un-writeable |
387 | // lie within the union of the two finite bounds |
388 | fFiniteBound.join(prevFinite); |
389 | fFiniteBoundType = kInsideOut_BoundsType; |
390 | break; |
391 | case kInvPrev_InvCur_FillCombo: |
392 | // The only pixels that can survive are within the |
393 | // union of the two bounding boxes since the extensions |
394 | // to infinity of both clips cancel out |
395 | [[fallthrough]]; |
396 | case kPrev_Cur_FillCombo: |
397 | // The most conservative bound for xor is the |
398 | // union of the two bounds. If the two clips exactly overlapped |
399 | // the xor could yield the empty set. Similarly the xor |
400 | // could reduce the size of the original clip's bound (e.g., |
401 | // if the second clip exactly matched the bottom half of the |
402 | // first clip). We ignore these two cases. |
403 | fFiniteBound.join(prevFinite); |
404 | fFiniteBoundType = kNormal_BoundsType; |
405 | break; |
406 | default: |
407 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination" ); |
408 | break; |
409 | } |
410 | } |
411 | |
412 | // a mirror of combineBoundsIntersection |
413 | void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) { |
414 | |
415 | switch (combination) { |
416 | case kInvPrev_InvCur_FillCombo: |
417 | if (!fFiniteBound.intersect(prevFinite)) { |
418 | fFiniteBound.setEmpty(); |
419 | fGenID = kWideOpenGenID; |
420 | } |
421 | fFiniteBoundType = kInsideOut_BoundsType; |
422 | break; |
423 | case kInvPrev_Cur_FillCombo: |
424 | // The only pixels that won't be drawable are inside |
425 | // the prior clip's finite bound |
426 | fFiniteBound = prevFinite; |
427 | fFiniteBoundType = kInsideOut_BoundsType; |
428 | break; |
429 | case kPrev_InvCur_FillCombo: |
430 | // The only pixels that won't be drawable are inside |
431 | // this clip's finite bound |
432 | break; |
433 | case kPrev_Cur_FillCombo: |
434 | fFiniteBound.join(prevFinite); |
435 | break; |
436 | default: |
437 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination" ); |
438 | break; |
439 | } |
440 | } |
441 | |
442 | // a mirror of combineBoundsUnion |
443 | void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) { |
444 | |
445 | switch (combination) { |
446 | case kInvPrev_InvCur_FillCombo: |
447 | // The only pixels that aren't writable in this case |
448 | // occur in the union of the two finite bounds |
449 | fFiniteBound.join(prevFinite); |
450 | fFiniteBoundType = kInsideOut_BoundsType; |
451 | break; |
452 | case kInvPrev_Cur_FillCombo: |
453 | // In this case the only pixels that will remain writeable |
454 | // are within the current clip |
455 | break; |
456 | case kPrev_InvCur_FillCombo: |
457 | // In this case the only pixels that will remain writeable |
458 | // are with the previous clip |
459 | fFiniteBound = prevFinite; |
460 | fFiniteBoundType = kNormal_BoundsType; |
461 | break; |
462 | case kPrev_Cur_FillCombo: |
463 | if (!fFiniteBound.intersect(prevFinite)) { |
464 | this->setEmpty(); |
465 | } |
466 | break; |
467 | default: |
468 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination" ); |
469 | break; |
470 | } |
471 | } |
472 | |
473 | // a mirror of combineBoundsDiff |
474 | void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) { |
475 | |
476 | switch (combination) { |
477 | case kInvPrev_InvCur_FillCombo: |
478 | // The only pixels that can survive are in the |
479 | // previous bound since the extensions to infinity in |
480 | // both clips cancel out |
481 | fFiniteBound = prevFinite; |
482 | fFiniteBoundType = kNormal_BoundsType; |
483 | break; |
484 | case kInvPrev_Cur_FillCombo: |
485 | if (!fFiniteBound.intersect(prevFinite)) { |
486 | this->setEmpty(); |
487 | } else { |
488 | fFiniteBoundType = kNormal_BoundsType; |
489 | } |
490 | break; |
491 | case kPrev_InvCur_FillCombo: |
492 | fFiniteBound.join(prevFinite); |
493 | fFiniteBoundType = kInsideOut_BoundsType; |
494 | break; |
495 | case kPrev_Cur_FillCombo: |
496 | // Fall through - as with the kDifference_Op case, the |
497 | // most conservative result bound is the bound of the |
498 | // current clip. The prior clip could reduce the size of this |
499 | // bound (as in the kDifference_Op case) but we are ignoring |
500 | // those cases. |
501 | break; |
502 | default: |
503 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination" ); |
504 | break; |
505 | } |
506 | } |
507 | |
508 | void SkClipStack::Element::updateBoundAndGenID(const Element* prior) { |
509 | // We set this first here but we may overwrite it later if we determine that the clip is |
510 | // either wide-open or empty. |
511 | fGenID = GetNextGenID(); |
512 | |
513 | // First, optimistically update the current Element's bound information |
514 | // with the current clip's bound |
515 | fIsIntersectionOfRects = false; |
516 | switch (fDeviceSpaceType) { |
517 | case DeviceSpaceType::kRect: |
518 | fFiniteBound = this->getDeviceSpaceRect(); |
519 | fFiniteBoundType = kNormal_BoundsType; |
520 | |
521 | if (kReplace_SkClipOp == fOp || (kIntersect_SkClipOp == fOp && nullptr == prior) || |
522 | (kIntersect_SkClipOp == fOp && prior->fIsIntersectionOfRects && |
523 | prior->rectRectIntersectAllowed(this->getDeviceSpaceRect(), fDoAA))) { |
524 | fIsIntersectionOfRects = true; |
525 | } |
526 | break; |
527 | case DeviceSpaceType::kRRect: |
528 | fFiniteBound = fDeviceSpaceRRect.getBounds(); |
529 | fFiniteBoundType = kNormal_BoundsType; |
530 | break; |
531 | case DeviceSpaceType::kPath: |
532 | fFiniteBound = fDeviceSpacePath.get()->getBounds(); |
533 | |
534 | if (fDeviceSpacePath.get()->isInverseFillType()) { |
535 | fFiniteBoundType = kInsideOut_BoundsType; |
536 | } else { |
537 | fFiniteBoundType = kNormal_BoundsType; |
538 | } |
539 | break; |
540 | case DeviceSpaceType::kShader: |
541 | // A shader is infinite. We don't act as wide-open here (which is an empty bounds with |
542 | // the inside out type). This is because when the bounds is empty and inside-out, we |
543 | // know there's full coverage everywhere. With a shader, there's *unknown* coverage |
544 | // everywhere. |
545 | fFiniteBound = SkRectPriv::MakeLargeS32(); |
546 | fFiniteBoundType = kNormal_BoundsType; |
547 | break; |
548 | case DeviceSpaceType::kEmpty: |
549 | SkDEBUGFAIL("We shouldn't get here with an empty element." ); |
550 | break; |
551 | } |
552 | |
553 | // Now determine the previous Element's bound information taking into |
554 | // account that there may be no previous clip |
555 | SkRect prevFinite; |
556 | SkClipStack::BoundsType prevType; |
557 | |
558 | if (nullptr == prior) { |
559 | // no prior clip means the entire plane is writable |
560 | prevFinite.setEmpty(); // there are no pixels that cannot be drawn to |
561 | prevType = kInsideOut_BoundsType; |
562 | } else { |
563 | prevFinite = prior->fFiniteBound; |
564 | prevType = prior->fFiniteBoundType; |
565 | } |
566 | |
567 | FillCombo combination = kPrev_Cur_FillCombo; |
568 | if (kInsideOut_BoundsType == fFiniteBoundType) { |
569 | combination = (FillCombo) (combination | 0x01); |
570 | } |
571 | if (kInsideOut_BoundsType == prevType) { |
572 | combination = (FillCombo) (combination | 0x02); |
573 | } |
574 | |
575 | SkASSERT(kInvPrev_InvCur_FillCombo == combination || |
576 | kInvPrev_Cur_FillCombo == combination || |
577 | kPrev_InvCur_FillCombo == combination || |
578 | kPrev_Cur_FillCombo == combination); |
579 | |
580 | // Now integrate with clip with the prior clips |
581 | switch (fOp) { |
582 | case kDifference_SkClipOp: |
583 | this->combineBoundsDiff(combination, prevFinite); |
584 | break; |
585 | case kXOR_SkClipOp: |
586 | this->combineBoundsXOR(combination, prevFinite); |
587 | break; |
588 | case kUnion_SkClipOp: |
589 | this->combineBoundsUnion(combination, prevFinite); |
590 | break; |
591 | case kIntersect_SkClipOp: |
592 | this->combineBoundsIntersection(combination, prevFinite); |
593 | break; |
594 | case kReverseDifference_SkClipOp: |
595 | this->combineBoundsRevDiff(combination, prevFinite); |
596 | break; |
597 | case kReplace_SkClipOp: |
598 | // Replace just ignores everything prior |
599 | // The current clip's bound information is already filled in |
600 | // so nothing to do |
601 | break; |
602 | default: |
603 | SkDebugf("SkClipOp error\n" ); |
604 | SkASSERT(0); |
605 | break; |
606 | } |
607 | } |
608 | |
609 | // This constant determines how many Element's are allocated together as a block in |
610 | // the deque. As such it needs to balance allocating too much memory vs. |
611 | // incurring allocation/deallocation thrashing. It should roughly correspond to |
612 | // the deepest save/restore stack we expect to see. |
613 | static const int kDefaultElementAllocCnt = 8; |
614 | |
615 | SkClipStack::SkClipStack() |
616 | : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
617 | , fSaveCount(0) { |
618 | } |
619 | |
620 | SkClipStack::SkClipStack(void* storage, size_t size) |
621 | : fDeque(sizeof(Element), storage, size, kDefaultElementAllocCnt) |
622 | , fSaveCount(0) { |
623 | } |
624 | |
625 | SkClipStack::SkClipStack(const SkClipStack& b) |
626 | : fDeque(sizeof(Element), kDefaultElementAllocCnt) { |
627 | *this = b; |
628 | } |
629 | |
630 | SkClipStack::~SkClipStack() { |
631 | reset(); |
632 | } |
633 | |
634 | SkClipStack& SkClipStack::operator=(const SkClipStack& b) { |
635 | if (this == &b) { |
636 | return *this; |
637 | } |
638 | reset(); |
639 | |
640 | fSaveCount = b.fSaveCount; |
641 | SkDeque::F2BIter recIter(b.fDeque); |
642 | for (const Element* element = (const Element*)recIter.next(); |
643 | element != nullptr; |
644 | element = (const Element*)recIter.next()) { |
645 | new (fDeque.push_back()) Element(*element); |
646 | } |
647 | |
648 | return *this; |
649 | } |
650 | |
651 | bool SkClipStack::operator==(const SkClipStack& b) const { |
652 | if (this->getTopmostGenID() == b.getTopmostGenID()) { |
653 | return true; |
654 | } |
655 | if (fSaveCount != b.fSaveCount || |
656 | fDeque.count() != b.fDeque.count()) { |
657 | return false; |
658 | } |
659 | SkDeque::F2BIter myIter(fDeque); |
660 | SkDeque::F2BIter bIter(b.fDeque); |
661 | const Element* myElement = (const Element*)myIter.next(); |
662 | const Element* bElement = (const Element*)bIter.next(); |
663 | |
664 | while (myElement != nullptr && bElement != nullptr) { |
665 | if (*myElement != *bElement) { |
666 | return false; |
667 | } |
668 | myElement = (const Element*)myIter.next(); |
669 | bElement = (const Element*)bIter.next(); |
670 | } |
671 | return myElement == nullptr && bElement == nullptr; |
672 | } |
673 | |
674 | void SkClipStack::reset() { |
675 | // We used a placement new for each object in fDeque, so we're responsible |
676 | // for calling the destructor on each of them as well. |
677 | while (!fDeque.empty()) { |
678 | Element* element = (Element*)fDeque.back(); |
679 | element->~Element(); |
680 | fDeque.pop_back(); |
681 | } |
682 | |
683 | fSaveCount = 0; |
684 | } |
685 | |
686 | void SkClipStack::save() { |
687 | fSaveCount += 1; |
688 | } |
689 | |
690 | void SkClipStack::restore() { |
691 | fSaveCount -= 1; |
692 | restoreTo(fSaveCount); |
693 | } |
694 | |
695 | void SkClipStack::restoreTo(int saveCount) { |
696 | while (!fDeque.empty()) { |
697 | Element* element = (Element*)fDeque.back(); |
698 | if (element->fSaveCount <= saveCount) { |
699 | break; |
700 | } |
701 | element->~Element(); |
702 | fDeque.pop_back(); |
703 | } |
704 | } |
705 | |
706 | SkRect SkClipStack::bounds(const SkIRect& deviceBounds) const { |
707 | // TODO: optimize this. |
708 | SkRect r; |
709 | SkClipStack::BoundsType bounds; |
710 | this->getBounds(&r, &bounds); |
711 | if (bounds == SkClipStack::kInsideOut_BoundsType) { |
712 | return SkRect::Make(deviceBounds); |
713 | } |
714 | return r.intersect(SkRect::Make(deviceBounds)) ? r : SkRect::MakeEmpty(); |
715 | } |
716 | |
717 | // TODO: optimize this. |
718 | bool SkClipStack::isEmpty(const SkIRect& r) const { return this->bounds(r).isEmpty(); } |
719 | |
720 | void SkClipStack::getBounds(SkRect* canvFiniteBound, |
721 | BoundsType* boundType, |
722 | bool* isIntersectionOfRects) const { |
723 | SkASSERT(canvFiniteBound && boundType); |
724 | |
725 | Element* element = (Element*)fDeque.back(); |
726 | |
727 | if (nullptr == element) { |
728 | // the clip is wide open - the infinite plane w/ no pixels un-writeable |
729 | canvFiniteBound->setEmpty(); |
730 | *boundType = kInsideOut_BoundsType; |
731 | if (isIntersectionOfRects) { |
732 | *isIntersectionOfRects = false; |
733 | } |
734 | return; |
735 | } |
736 | |
737 | *canvFiniteBound = element->fFiniteBound; |
738 | *boundType = element->fFiniteBoundType; |
739 | if (isIntersectionOfRects) { |
740 | *isIntersectionOfRects = element->fIsIntersectionOfRects; |
741 | } |
742 | } |
743 | |
744 | bool SkClipStack::internalQuickContains(const SkRect& rect) const { |
745 | |
746 | Iter iter(*this, Iter::kTop_IterStart); |
747 | const Element* element = iter.prev(); |
748 | while (element != nullptr) { |
749 | if (kIntersect_SkClipOp != element->getOp() && kReplace_SkClipOp != element->getOp()) |
750 | return false; |
751 | if (element->isInverseFilled()) { |
752 | // Part of 'rect' could be trimmed off by the inverse-filled clip element |
753 | if (SkRect::Intersects(element->getBounds(), rect)) { |
754 | return false; |
755 | } |
756 | } else { |
757 | if (!element->contains(rect)) { |
758 | return false; |
759 | } |
760 | } |
761 | if (kReplace_SkClipOp == element->getOp()) { |
762 | break; |
763 | } |
764 | element = iter.prev(); |
765 | } |
766 | return true; |
767 | } |
768 | |
769 | bool SkClipStack::internalQuickContains(const SkRRect& rrect) const { |
770 | |
771 | Iter iter(*this, Iter::kTop_IterStart); |
772 | const Element* element = iter.prev(); |
773 | while (element != nullptr) { |
774 | if (kIntersect_SkClipOp != element->getOp() && kReplace_SkClipOp != element->getOp()) |
775 | return false; |
776 | if (element->isInverseFilled()) { |
777 | // Part of 'rrect' could be trimmed off by the inverse-filled clip element |
778 | if (SkRect::Intersects(element->getBounds(), rrect.getBounds())) { |
779 | return false; |
780 | } |
781 | } else { |
782 | if (!element->contains(rrect)) { |
783 | return false; |
784 | } |
785 | } |
786 | if (kReplace_SkClipOp == element->getOp()) { |
787 | break; |
788 | } |
789 | element = iter.prev(); |
790 | } |
791 | return true; |
792 | } |
793 | |
794 | void SkClipStack::pushElement(const Element& element) { |
795 | // Use reverse iterator instead of back because Rect path may need previous |
796 | SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
797 | Element* prior = (Element*) iter.prev(); |
798 | |
799 | if (prior) { |
800 | if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) { |
801 | switch (prior->fDeviceSpaceType) { |
802 | case Element::DeviceSpaceType::kEmpty: |
803 | SkDEBUGCODE(prior->checkEmpty();) |
804 | return; |
805 | case Element::DeviceSpaceType::kShader: |
806 | if (Element::DeviceSpaceType::kShader == element.getDeviceSpaceType()) { |
807 | prior->fShader = SkShaders::Blend(SkBlendMode::kSrcIn, |
808 | element.fShader, prior->fShader); |
809 | Element* priorPrior = (Element*) iter.prev(); |
810 | prior->updateBoundAndGenID(priorPrior); |
811 | return; |
812 | } |
813 | break; |
814 | case Element::DeviceSpaceType::kRect: |
815 | if (Element::DeviceSpaceType::kRect == element.getDeviceSpaceType()) { |
816 | if (prior->rectRectIntersectAllowed(element.getDeviceSpaceRect(), |
817 | element.isAA())) { |
818 | SkRect isectRect; |
819 | if (!isectRect.intersect(prior->getDeviceSpaceRect(), |
820 | element.getDeviceSpaceRect())) { |
821 | prior->setEmpty(); |
822 | return; |
823 | } |
824 | |
825 | prior->fDeviceSpaceRRect.setRect(isectRect); |
826 | prior->fDoAA = element.isAA(); |
827 | Element* priorPrior = (Element*) iter.prev(); |
828 | prior->updateBoundAndGenID(priorPrior); |
829 | return; |
830 | } |
831 | break; |
832 | } |
833 | [[fallthrough]]; |
834 | default: |
835 | if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) { |
836 | prior->setEmpty(); |
837 | return; |
838 | } |
839 | break; |
840 | } |
841 | } else if (kReplace_SkClipOp == element.getOp()) { |
842 | this->restoreTo(fSaveCount - 1); |
843 | prior = (Element*) fDeque.back(); |
844 | } |
845 | } |
846 | Element* newElement = new (fDeque.push_back()) Element(element); |
847 | newElement->updateBoundAndGenID(prior); |
848 | } |
849 | |
850 | void SkClipStack::clipRRect(const SkRRect& rrect, const SkMatrix& matrix, SkClipOp op, |
851 | bool doAA) { |
852 | Element element(fSaveCount, rrect, matrix, op, doAA); |
853 | this->pushElement(element); |
854 | if (this->hasClipRestriction(op)) { |
855 | Element restriction(fSaveCount, fClipRestrictionRect, SkMatrix::I(), kIntersect_SkClipOp, |
856 | false); |
857 | this->pushElement(restriction); |
858 | } |
859 | } |
860 | |
861 | void SkClipStack::clipRect(const SkRect& rect, const SkMatrix& matrix, SkClipOp op, |
862 | bool doAA) { |
863 | Element element(fSaveCount, rect, matrix, op, doAA); |
864 | this->pushElement(element); |
865 | if (this->hasClipRestriction(op)) { |
866 | Element restriction(fSaveCount, fClipRestrictionRect, SkMatrix::I(), kIntersect_SkClipOp, |
867 | false); |
868 | this->pushElement(restriction); |
869 | } |
870 | } |
871 | |
872 | void SkClipStack::clipPath(const SkPath& path, const SkMatrix& matrix, SkClipOp op, |
873 | bool doAA) { |
874 | Element element(fSaveCount, path, matrix, op, doAA); |
875 | this->pushElement(element); |
876 | if (this->hasClipRestriction(op)) { |
877 | Element restriction(fSaveCount, fClipRestrictionRect, SkMatrix::I(), kIntersect_SkClipOp, |
878 | false); |
879 | this->pushElement(restriction); |
880 | } |
881 | } |
882 | |
883 | void SkClipStack::clipShader(sk_sp<SkShader> shader) { |
884 | Element element(fSaveCount, std::move(shader)); |
885 | this->pushElement(element); |
886 | // clipShader should not be used with expanding clip ops, so we shouldn't need to worry about |
887 | // the clip restriction rect either. |
888 | SkASSERT(fClipRestrictionRect.isEmpty()); |
889 | } |
890 | |
891 | void SkClipStack::clipEmpty() { |
892 | Element* element = (Element*) fDeque.back(); |
893 | |
894 | if (element && element->canBeIntersectedInPlace(fSaveCount, kIntersect_SkClipOp)) { |
895 | element->setEmpty(); |
896 | } |
897 | new (fDeque.push_back()) Element(fSaveCount); |
898 | |
899 | ((Element*)fDeque.back())->fGenID = kEmptyGenID; |
900 | } |
901 | |
902 | /////////////////////////////////////////////////////////////////////////////// |
903 | |
904 | SkClipStack::Iter::Iter() : fStack(nullptr) { |
905 | } |
906 | |
907 | SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc) |
908 | : fStack(&stack) { |
909 | this->reset(stack, startLoc); |
910 | } |
911 | |
912 | const SkClipStack::Element* SkClipStack::Iter::next() { |
913 | return (const SkClipStack::Element*)fIter.next(); |
914 | } |
915 | |
916 | const SkClipStack::Element* SkClipStack::Iter::prev() { |
917 | return (const SkClipStack::Element*)fIter.prev(); |
918 | } |
919 | |
920 | const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkClipOp op) { |
921 | |
922 | if (nullptr == fStack) { |
923 | return nullptr; |
924 | } |
925 | |
926 | fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart); |
927 | |
928 | const SkClipStack::Element* element = nullptr; |
929 | |
930 | for (element = (const SkClipStack::Element*) fIter.prev(); |
931 | element; |
932 | element = (const SkClipStack::Element*) fIter.prev()) { |
933 | |
934 | if (op == element->fOp) { |
935 | // The Deque's iterator is actually one pace ahead of the |
936 | // returned value. So while "element" is the element we want to |
937 | // return, the iterator is actually pointing at (and will |
938 | // return on the next "next" or "prev" call) the element |
939 | // in front of it in the deque. Bump the iterator forward a |
940 | // step so we get the expected result. |
941 | if (nullptr == fIter.next()) { |
942 | // The reverse iterator has run off the front of the deque |
943 | // (i.e., the "op" clip is the first clip) and can't |
944 | // recover. Reset the iterator to start at the front. |
945 | fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
946 | } |
947 | break; |
948 | } |
949 | } |
950 | |
951 | if (nullptr == element) { |
952 | // There were no "op" clips |
953 | fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
954 | } |
955 | |
956 | return this->next(); |
957 | } |
958 | |
959 | void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) { |
960 | fStack = &stack; |
961 | fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc)); |
962 | } |
963 | |
964 | // helper method |
965 | void SkClipStack::getConservativeBounds(int offsetX, |
966 | int offsetY, |
967 | int maxWidth, |
968 | int maxHeight, |
969 | SkRect* devBounds, |
970 | bool* isIntersectionOfRects) const { |
971 | SkASSERT(devBounds); |
972 | |
973 | devBounds->setLTRB(0, 0, |
974 | SkIntToScalar(maxWidth), SkIntToScalar(maxHeight)); |
975 | |
976 | SkRect temp; |
977 | SkClipStack::BoundsType boundType; |
978 | |
979 | // temp starts off in canvas space here |
980 | this->getBounds(&temp, &boundType, isIntersectionOfRects); |
981 | if (SkClipStack::kInsideOut_BoundsType == boundType) { |
982 | return; |
983 | } |
984 | |
985 | // but is converted to device space here |
986 | temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY)); |
987 | |
988 | if (!devBounds->intersect(temp)) { |
989 | devBounds->setEmpty(); |
990 | } |
991 | } |
992 | |
993 | bool SkClipStack::isRRect(const SkRect& bounds, SkRRect* rrect, bool* aa) const { |
994 | const Element* back = static_cast<const Element*>(fDeque.back()); |
995 | if (!back) { |
996 | // TODO: return bounds? |
997 | return false; |
998 | } |
999 | // First check if the entire stack is known to be a rect by the top element. |
1000 | if (back->fIsIntersectionOfRects && back->fFiniteBoundType == BoundsType::kNormal_BoundsType) { |
1001 | rrect->setRect(back->fFiniteBound); |
1002 | *aa = back->isAA(); |
1003 | return true; |
1004 | } |
1005 | |
1006 | if (back->getDeviceSpaceType() != SkClipStack::Element::DeviceSpaceType::kRect && |
1007 | back->getDeviceSpaceType() != SkClipStack::Element::DeviceSpaceType::kRRect) { |
1008 | return false; |
1009 | } |
1010 | if (back->getOp() == kReplace_SkClipOp) { |
1011 | *rrect = back->asDeviceSpaceRRect(); |
1012 | *aa = back->isAA(); |
1013 | return true; |
1014 | } |
1015 | |
1016 | if (back->getOp() == kIntersect_SkClipOp) { |
1017 | SkRect backBounds; |
1018 | if (!backBounds.intersect(bounds, back->asDeviceSpaceRRect().rect())) { |
1019 | return false; |
1020 | } |
1021 | // We limit to 17 elements. This means the back element will be bounds checked at most 16 |
1022 | // times if it is an rrect. |
1023 | int cnt = fDeque.count(); |
1024 | if (cnt > 17) { |
1025 | return false; |
1026 | } |
1027 | if (cnt > 1) { |
1028 | SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
1029 | SkAssertResult(static_cast<const Element*>(iter.prev()) == back); |
1030 | while (const Element* prior = (const Element*)iter.prev()) { |
1031 | if ((prior->getOp() != kIntersect_SkClipOp && |
1032 | prior->getOp() != kReplace_SkClipOp) || |
1033 | !prior->contains(backBounds)) { |
1034 | return false; |
1035 | } |
1036 | if (prior->getOp() == kReplace_SkClipOp) { |
1037 | break; |
1038 | } |
1039 | } |
1040 | } |
1041 | *rrect = back->asDeviceSpaceRRect(); |
1042 | *aa = back->isAA(); |
1043 | return true; |
1044 | } |
1045 | return false; |
1046 | } |
1047 | |
1048 | uint32_t SkClipStack::GetNextGenID() { |
1049 | // 0-2 are reserved for invalid, empty & wide-open |
1050 | static const uint32_t kFirstUnreservedGenID = 3; |
1051 | static std::atomic<uint32_t> nextID{kFirstUnreservedGenID}; |
1052 | |
1053 | uint32_t id; |
1054 | do { |
1055 | id = nextID++; |
1056 | } while (id < kFirstUnreservedGenID); |
1057 | return id; |
1058 | } |
1059 | |
1060 | uint32_t SkClipStack::getTopmostGenID() const { |
1061 | if (fDeque.empty()) { |
1062 | return kWideOpenGenID; |
1063 | } |
1064 | |
1065 | const Element* back = static_cast<const Element*>(fDeque.back()); |
1066 | if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty() && |
1067 | Element::DeviceSpaceType::kShader != back->fDeviceSpaceType) { |
1068 | return kWideOpenGenID; |
1069 | } |
1070 | |
1071 | return back->getGenID(); |
1072 | } |
1073 | |
1074 | #ifdef SK_DEBUG |
1075 | void SkClipStack::Element::dump() const { |
1076 | static const char* kTypeStrings[] = { |
1077 | "empty" , |
1078 | "rect" , |
1079 | "rrect" , |
1080 | "path" , |
1081 | "shader" |
1082 | }; |
1083 | static_assert(0 == static_cast<int>(DeviceSpaceType::kEmpty), "enum mismatch" ); |
1084 | static_assert(1 == static_cast<int>(DeviceSpaceType::kRect), "enum mismatch" ); |
1085 | static_assert(2 == static_cast<int>(DeviceSpaceType::kRRect), "enum mismatch" ); |
1086 | static_assert(3 == static_cast<int>(DeviceSpaceType::kPath), "enum mismatch" ); |
1087 | static_assert(4 == static_cast<int>(DeviceSpaceType::kShader), "enum mismatch" ); |
1088 | static_assert(SK_ARRAY_COUNT(kTypeStrings) == kTypeCnt, "enum mismatch" ); |
1089 | |
1090 | static const char* kOpStrings[] = { |
1091 | "difference" , |
1092 | "intersect" , |
1093 | "union" , |
1094 | "xor" , |
1095 | "reverse-difference" , |
1096 | "replace" , |
1097 | }; |
1098 | static_assert(0 == static_cast<int>(kDifference_SkClipOp), "enum mismatch" ); |
1099 | static_assert(1 == static_cast<int>(kIntersect_SkClipOp), "enum mismatch" ); |
1100 | static_assert(2 == static_cast<int>(kUnion_SkClipOp), "enum mismatch" ); |
1101 | static_assert(3 == static_cast<int>(kXOR_SkClipOp), "enum mismatch" ); |
1102 | static_assert(4 == static_cast<int>(kReverseDifference_SkClipOp), "enum mismatch" ); |
1103 | static_assert(5 == static_cast<int>(kReplace_SkClipOp), "enum mismatch" ); |
1104 | static_assert(SK_ARRAY_COUNT(kOpStrings) == SkRegion::kOpCnt, "enum mismatch" ); |
1105 | |
1106 | SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n" , kTypeStrings[(int)fDeviceSpaceType], |
1107 | kOpStrings[static_cast<int>(fOp)], (fDoAA ? "yes" : "no" ), fSaveCount); |
1108 | switch (fDeviceSpaceType) { |
1109 | case DeviceSpaceType::kEmpty: |
1110 | SkDebugf("\n" ); |
1111 | break; |
1112 | case DeviceSpaceType::kRect: |
1113 | this->getDeviceSpaceRect().dump(); |
1114 | SkDebugf("\n" ); |
1115 | break; |
1116 | case DeviceSpaceType::kRRect: |
1117 | this->getDeviceSpaceRRect().dump(); |
1118 | SkDebugf("\n" ); |
1119 | break; |
1120 | case DeviceSpaceType::kPath: |
1121 | this->getDeviceSpacePath().dump(nullptr, true, false); |
1122 | break; |
1123 | case DeviceSpaceType::kShader: |
1124 | // SkShaders don't provide much introspection that's worth while. |
1125 | break; |
1126 | } |
1127 | } |
1128 | |
1129 | void SkClipStack::dump() const { |
1130 | B2TIter iter(*this); |
1131 | const Element* e; |
1132 | while ((e = iter.next())) { |
1133 | e->dump(); |
1134 | SkDebugf("\n" ); |
1135 | } |
1136 | } |
1137 | #endif |
1138 | |