| 1 | /* |
| 2 | * Copyright 2011 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkCanvas.h" |
| 9 | #include "include/core/SkPath.h" |
| 10 | #include "src/core/SkClipOpPriv.h" |
| 11 | #include "src/core/SkClipStack.h" |
| 12 | #include "src/core/SkRectPriv.h" |
| 13 | #include "src/shaders/SkShaderBase.h" |
| 14 | |
| 15 | #include <atomic> |
| 16 | #include <new> |
| 17 | |
| 18 | #if SK_SUPPORT_GPU |
| 19 | #include "src/gpu/GrProxyProvider.h" |
| 20 | #endif |
| 21 | |
| 22 | SkClipStack::Element::Element(const Element& that) { |
| 23 | switch (that.getDeviceSpaceType()) { |
| 24 | case DeviceSpaceType::kEmpty: |
| 25 | fDeviceSpaceRRect.setEmpty(); |
| 26 | fDeviceSpacePath.reset(); |
| 27 | fShader.reset(); |
| 28 | break; |
| 29 | case DeviceSpaceType::kRect: // Rect uses rrect |
| 30 | case DeviceSpaceType::kRRect: |
| 31 | fDeviceSpacePath.reset(); |
| 32 | fShader.reset(); |
| 33 | fDeviceSpaceRRect = that.fDeviceSpaceRRect; |
| 34 | break; |
| 35 | case DeviceSpaceType::kPath: |
| 36 | fShader.reset(); |
| 37 | fDeviceSpacePath.set(that.getDeviceSpacePath()); |
| 38 | break; |
| 39 | case DeviceSpaceType::kShader: |
| 40 | fDeviceSpacePath.reset(); |
| 41 | fShader = that.fShader; |
| 42 | break; |
| 43 | } |
| 44 | |
| 45 | fSaveCount = that.fSaveCount; |
| 46 | fOp = that.fOp; |
| 47 | fDeviceSpaceType = that.fDeviceSpaceType; |
| 48 | fDoAA = that.fDoAA; |
| 49 | fFiniteBoundType = that.fFiniteBoundType; |
| 50 | fFiniteBound = that.fFiniteBound; |
| 51 | fIsIntersectionOfRects = that.fIsIntersectionOfRects; |
| 52 | fGenID = that.fGenID; |
| 53 | } |
| 54 | |
| 55 | SkClipStack::Element::~Element() { |
| 56 | #if SK_SUPPORT_GPU |
| 57 | for (int i = 0; i < fKeysToInvalidate.count(); ++i) { |
| 58 | fProxyProvider->processInvalidUniqueKey(fKeysToInvalidate[i], nullptr, |
| 59 | GrProxyProvider::InvalidateGPUResource::kYes); |
| 60 | } |
| 61 | #endif |
| 62 | } |
| 63 | |
| 64 | bool SkClipStack::Element::operator== (const Element& element) const { |
| 65 | if (this == &element) { |
| 66 | return true; |
| 67 | } |
| 68 | if (fOp != element.fOp || fDeviceSpaceType != element.fDeviceSpaceType || |
| 69 | fDoAA != element.fDoAA || fSaveCount != element.fSaveCount) { |
| 70 | return false; |
| 71 | } |
| 72 | switch (fDeviceSpaceType) { |
| 73 | case DeviceSpaceType::kShader: |
| 74 | return this->getShader() == element.getShader(); |
| 75 | case DeviceSpaceType::kPath: |
| 76 | return this->getDeviceSpacePath() == element.getDeviceSpacePath(); |
| 77 | case DeviceSpaceType::kRRect: |
| 78 | return fDeviceSpaceRRect == element.fDeviceSpaceRRect; |
| 79 | case DeviceSpaceType::kRect: |
| 80 | return this->getDeviceSpaceRect() == element.getDeviceSpaceRect(); |
| 81 | case DeviceSpaceType::kEmpty: |
| 82 | return true; |
| 83 | default: |
| 84 | SkDEBUGFAIL("Unexpected type." ); |
| 85 | return false; |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | const SkRect& SkClipStack::Element::getBounds() const { |
| 90 | static const SkRect kEmpty = {0, 0, 0, 0}; |
| 91 | static const SkRect kInfinite = SkRectPriv::MakeLargeS32(); |
| 92 | switch (fDeviceSpaceType) { |
| 93 | case DeviceSpaceType::kRect: // fallthrough |
| 94 | case DeviceSpaceType::kRRect: |
| 95 | return fDeviceSpaceRRect.getBounds(); |
| 96 | case DeviceSpaceType::kPath: |
| 97 | return fDeviceSpacePath.get()->getBounds(); |
| 98 | case DeviceSpaceType::kShader: |
| 99 | // Shaders have infinite bounds since any pixel could have clipped or full coverage |
| 100 | // (which is different from wide-open, where every pixel has 1.0 coverage, or empty |
| 101 | // where every pixel has 0.0 coverage). |
| 102 | return kInfinite; |
| 103 | case DeviceSpaceType::kEmpty: |
| 104 | return kEmpty; |
| 105 | default: |
| 106 | SkDEBUGFAIL("Unexpected type." ); |
| 107 | return kEmpty; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | bool SkClipStack::Element::contains(const SkRect& rect) const { |
| 112 | switch (fDeviceSpaceType) { |
| 113 | case DeviceSpaceType::kRect: |
| 114 | return this->getDeviceSpaceRect().contains(rect); |
| 115 | case DeviceSpaceType::kRRect: |
| 116 | return fDeviceSpaceRRect.contains(rect); |
| 117 | case DeviceSpaceType::kPath: |
| 118 | return fDeviceSpacePath.get()->conservativelyContainsRect(rect); |
| 119 | case DeviceSpaceType::kEmpty: |
| 120 | case DeviceSpaceType::kShader: |
| 121 | return false; |
| 122 | default: |
| 123 | SkDEBUGFAIL("Unexpected type." ); |
| 124 | return false; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | bool SkClipStack::Element::contains(const SkRRect& rrect) const { |
| 129 | switch (fDeviceSpaceType) { |
| 130 | case DeviceSpaceType::kRect: |
| 131 | return this->getDeviceSpaceRect().contains(rrect.getBounds()); |
| 132 | case DeviceSpaceType::kRRect: |
| 133 | // We don't currently have a generalized rrect-rrect containment. |
| 134 | return fDeviceSpaceRRect.contains(rrect.getBounds()) || rrect == fDeviceSpaceRRect; |
| 135 | case DeviceSpaceType::kPath: |
| 136 | return fDeviceSpacePath.get()->conservativelyContainsRect(rrect.getBounds()); |
| 137 | case DeviceSpaceType::kEmpty: |
| 138 | case DeviceSpaceType::kShader: |
| 139 | return false; |
| 140 | default: |
| 141 | SkDEBUGFAIL("Unexpected type." ); |
| 142 | return false; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | void SkClipStack::Element::invertShapeFillType() { |
| 147 | switch (fDeviceSpaceType) { |
| 148 | case DeviceSpaceType::kRect: |
| 149 | fDeviceSpacePath.init(); |
| 150 | fDeviceSpacePath.get()->addRect(this->getDeviceSpaceRect()); |
| 151 | fDeviceSpacePath.get()->setFillType(SkPathFillType::kInverseEvenOdd); |
| 152 | fDeviceSpaceType = DeviceSpaceType::kPath; |
| 153 | break; |
| 154 | case DeviceSpaceType::kRRect: |
| 155 | fDeviceSpacePath.init(); |
| 156 | fDeviceSpacePath.get()->addRRect(fDeviceSpaceRRect); |
| 157 | fDeviceSpacePath.get()->setFillType(SkPathFillType::kInverseEvenOdd); |
| 158 | fDeviceSpaceType = DeviceSpaceType::kPath; |
| 159 | break; |
| 160 | case DeviceSpaceType::kPath: |
| 161 | fDeviceSpacePath.get()->toggleInverseFillType(); |
| 162 | break; |
| 163 | case DeviceSpaceType::kShader: |
| 164 | fShader = as_SB(fShader)->makeInvertAlpha(); |
| 165 | break; |
| 166 | case DeviceSpaceType::kEmpty: |
| 167 | // Should this set to an empty, inverse filled path? |
| 168 | break; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | void SkClipStack::Element::initCommon(int saveCount, SkClipOp op, bool doAA) { |
| 173 | fSaveCount = saveCount; |
| 174 | fOp = op; |
| 175 | fDoAA = doAA; |
| 176 | // A default of inside-out and empty bounds means the bounds are effectively void as it |
| 177 | // indicates that nothing is known to be outside the clip. |
| 178 | fFiniteBoundType = kInsideOut_BoundsType; |
| 179 | fFiniteBound.setEmpty(); |
| 180 | fIsIntersectionOfRects = false; |
| 181 | fGenID = kInvalidGenID; |
| 182 | } |
| 183 | |
| 184 | void SkClipStack::Element::initRect(int saveCount, const SkRect& rect, const SkMatrix& m, |
| 185 | SkClipOp op, bool doAA) { |
| 186 | if (m.rectStaysRect()) { |
| 187 | SkRect devRect; |
| 188 | m.mapRect(&devRect, rect); |
| 189 | fDeviceSpaceRRect.setRect(devRect); |
| 190 | fDeviceSpaceType = DeviceSpaceType::kRect; |
| 191 | this->initCommon(saveCount, op, doAA); |
| 192 | return; |
| 193 | } |
| 194 | SkPath path; |
| 195 | path.addRect(rect); |
| 196 | path.setIsVolatile(true); |
| 197 | this->initAsPath(saveCount, path, m, op, doAA); |
| 198 | } |
| 199 | |
| 200 | void SkClipStack::Element::initRRect(int saveCount, const SkRRect& rrect, const SkMatrix& m, |
| 201 | SkClipOp op, bool doAA) { |
| 202 | if (rrect.transform(m, &fDeviceSpaceRRect)) { |
| 203 | SkRRect::Type type = fDeviceSpaceRRect.getType(); |
| 204 | if (SkRRect::kRect_Type == type || SkRRect::kEmpty_Type == type) { |
| 205 | fDeviceSpaceType = DeviceSpaceType::kRect; |
| 206 | } else { |
| 207 | fDeviceSpaceType = DeviceSpaceType::kRRect; |
| 208 | } |
| 209 | this->initCommon(saveCount, op, doAA); |
| 210 | return; |
| 211 | } |
| 212 | SkPath path; |
| 213 | path.addRRect(rrect); |
| 214 | path.setIsVolatile(true); |
| 215 | this->initAsPath(saveCount, path, m, op, doAA); |
| 216 | } |
| 217 | |
| 218 | void SkClipStack::Element::initPath(int saveCount, const SkPath& path, const SkMatrix& m, |
| 219 | SkClipOp op, bool doAA) { |
| 220 | if (!path.isInverseFillType()) { |
| 221 | SkRect r; |
| 222 | if (path.isRect(&r)) { |
| 223 | this->initRect(saveCount, r, m, op, doAA); |
| 224 | return; |
| 225 | } |
| 226 | SkRect ovalRect; |
| 227 | if (path.isOval(&ovalRect)) { |
| 228 | SkRRect rrect; |
| 229 | rrect.setOval(ovalRect); |
| 230 | this->initRRect(saveCount, rrect, m, op, doAA); |
| 231 | return; |
| 232 | } |
| 233 | } |
| 234 | this->initAsPath(saveCount, path, m, op, doAA); |
| 235 | } |
| 236 | |
| 237 | void SkClipStack::Element::initAsPath(int saveCount, const SkPath& path, const SkMatrix& m, |
| 238 | SkClipOp op, bool doAA) { |
| 239 | path.transform(m, fDeviceSpacePath.init()); |
| 240 | fDeviceSpacePath.get()->setIsVolatile(true); |
| 241 | fDeviceSpaceType = DeviceSpaceType::kPath; |
| 242 | this->initCommon(saveCount, op, doAA); |
| 243 | } |
| 244 | |
| 245 | void SkClipStack::Element::initShader(int saveCount, sk_sp<SkShader> shader) { |
| 246 | SkASSERT(shader); |
| 247 | fDeviceSpaceType = DeviceSpaceType::kShader; |
| 248 | fShader = std::move(shader); |
| 249 | this->initCommon(saveCount, SkClipOp::kIntersect, false); |
| 250 | } |
| 251 | |
| 252 | void SkClipStack::Element::asDeviceSpacePath(SkPath* path) const { |
| 253 | switch (fDeviceSpaceType) { |
| 254 | case DeviceSpaceType::kEmpty: |
| 255 | path->reset(); |
| 256 | break; |
| 257 | case DeviceSpaceType::kRect: |
| 258 | path->reset(); |
| 259 | path->addRect(this->getDeviceSpaceRect()); |
| 260 | break; |
| 261 | case DeviceSpaceType::kRRect: |
| 262 | path->reset(); |
| 263 | path->addRRect(fDeviceSpaceRRect); |
| 264 | break; |
| 265 | case DeviceSpaceType::kPath: |
| 266 | *path = *fDeviceSpacePath.get(); |
| 267 | break; |
| 268 | case DeviceSpaceType::kShader: |
| 269 | path->reset(); |
| 270 | path->addRect(SkRectPriv::MakeLargeS32()); |
| 271 | break; |
| 272 | } |
| 273 | path->setIsVolatile(true); |
| 274 | } |
| 275 | |
| 276 | void SkClipStack::Element::setEmpty() { |
| 277 | fDeviceSpaceType = DeviceSpaceType::kEmpty; |
| 278 | fFiniteBound.setEmpty(); |
| 279 | fFiniteBoundType = kNormal_BoundsType; |
| 280 | fIsIntersectionOfRects = false; |
| 281 | fDeviceSpaceRRect.setEmpty(); |
| 282 | fDeviceSpacePath.reset(); |
| 283 | fShader.reset(); |
| 284 | fGenID = kEmptyGenID; |
| 285 | SkDEBUGCODE(this->checkEmpty();) |
| 286 | } |
| 287 | |
| 288 | void SkClipStack::Element::checkEmpty() const { |
| 289 | SkASSERT(fFiniteBound.isEmpty()); |
| 290 | SkASSERT(kNormal_BoundsType == fFiniteBoundType); |
| 291 | SkASSERT(!fIsIntersectionOfRects); |
| 292 | SkASSERT(kEmptyGenID == fGenID); |
| 293 | SkASSERT(fDeviceSpaceRRect.isEmpty()); |
| 294 | SkASSERT(!fDeviceSpacePath.isValid()); |
| 295 | SkASSERT(!fShader); |
| 296 | } |
| 297 | |
| 298 | bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkClipOp op) const { |
| 299 | if (DeviceSpaceType::kEmpty == fDeviceSpaceType && |
| 300 | (kDifference_SkClipOp == op || kIntersect_SkClipOp == op)) { |
| 301 | return true; |
| 302 | } |
| 303 | // Only clips within the same save/restore frame (as captured by |
| 304 | // the save count) can be merged |
| 305 | return fSaveCount == saveCount && |
| 306 | kIntersect_SkClipOp == op && |
| 307 | (kIntersect_SkClipOp == fOp || kReplace_SkClipOp == fOp); |
| 308 | } |
| 309 | |
| 310 | bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const { |
| 311 | SkASSERT(DeviceSpaceType::kRect == fDeviceSpaceType); |
| 312 | |
| 313 | if (fDoAA == newAA) { |
| 314 | // if the AA setting is the same there is no issue |
| 315 | return true; |
| 316 | } |
| 317 | |
| 318 | if (!SkRect::Intersects(this->getDeviceSpaceRect(), newR)) { |
| 319 | // The calling code will correctly set the result to the empty clip |
| 320 | return true; |
| 321 | } |
| 322 | |
| 323 | if (this->getDeviceSpaceRect().contains(newR)) { |
| 324 | // if the new rect carves out a portion of the old one there is no |
| 325 | // issue |
| 326 | return true; |
| 327 | } |
| 328 | |
| 329 | // So either the two overlap in some complex manner or newR contains oldR. |
| 330 | // In the first, case the edges will require different AA. In the second, |
| 331 | // the AA setting that would be carried forward is incorrect (e.g., oldR |
| 332 | // is AA while newR is BW but since newR contains oldR, oldR will be |
| 333 | // drawn BW) since the new AA setting will predominate. |
| 334 | return false; |
| 335 | } |
| 336 | |
| 337 | // a mirror of combineBoundsRevDiff |
| 338 | void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) { |
| 339 | switch (combination) { |
| 340 | case kInvPrev_InvCur_FillCombo: |
| 341 | // In this case the only pixels that can remain set |
| 342 | // are inside the current clip rect since the extensions |
| 343 | // to infinity of both clips cancel out and whatever |
| 344 | // is outside of the current clip is removed |
| 345 | fFiniteBoundType = kNormal_BoundsType; |
| 346 | break; |
| 347 | case kInvPrev_Cur_FillCombo: |
| 348 | // In this case the current op is finite so the only pixels |
| 349 | // that aren't set are whatever isn't set in the previous |
| 350 | // clip and whatever this clip carves out |
| 351 | fFiniteBound.join(prevFinite); |
| 352 | fFiniteBoundType = kInsideOut_BoundsType; |
| 353 | break; |
| 354 | case kPrev_InvCur_FillCombo: |
| 355 | // In this case everything outside of this clip's bound |
| 356 | // is erased, so the only pixels that can remain set |
| 357 | // occur w/in the intersection of the two finite bounds |
| 358 | if (!fFiniteBound.intersect(prevFinite)) { |
| 359 | fFiniteBound.setEmpty(); |
| 360 | fGenID = kEmptyGenID; |
| 361 | } |
| 362 | fFiniteBoundType = kNormal_BoundsType; |
| 363 | break; |
| 364 | case kPrev_Cur_FillCombo: |
| 365 | // The most conservative result bound is that of the |
| 366 | // prior clip. This could be wildly incorrect if the |
| 367 | // second clip either exactly matches the first clip |
| 368 | // (which should yield the empty set) or reduces the |
| 369 | // size of the prior bound (e.g., if the second clip |
| 370 | // exactly matched the bottom half of the prior clip). |
| 371 | // We ignore these two possibilities. |
| 372 | fFiniteBound = prevFinite; |
| 373 | break; |
| 374 | default: |
| 375 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination" ); |
| 376 | break; |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) { |
| 381 | |
| 382 | switch (combination) { |
| 383 | case kInvPrev_Cur_FillCombo: // fall through |
| 384 | case kPrev_InvCur_FillCombo: |
| 385 | // With only one of the clips inverted the result will always |
| 386 | // extend to infinity. The only pixels that may be un-writeable |
| 387 | // lie within the union of the two finite bounds |
| 388 | fFiniteBound.join(prevFinite); |
| 389 | fFiniteBoundType = kInsideOut_BoundsType; |
| 390 | break; |
| 391 | case kInvPrev_InvCur_FillCombo: |
| 392 | // The only pixels that can survive are within the |
| 393 | // union of the two bounding boxes since the extensions |
| 394 | // to infinity of both clips cancel out |
| 395 | [[fallthrough]]; |
| 396 | case kPrev_Cur_FillCombo: |
| 397 | // The most conservative bound for xor is the |
| 398 | // union of the two bounds. If the two clips exactly overlapped |
| 399 | // the xor could yield the empty set. Similarly the xor |
| 400 | // could reduce the size of the original clip's bound (e.g., |
| 401 | // if the second clip exactly matched the bottom half of the |
| 402 | // first clip). We ignore these two cases. |
| 403 | fFiniteBound.join(prevFinite); |
| 404 | fFiniteBoundType = kNormal_BoundsType; |
| 405 | break; |
| 406 | default: |
| 407 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination" ); |
| 408 | break; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | // a mirror of combineBoundsIntersection |
| 413 | void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) { |
| 414 | |
| 415 | switch (combination) { |
| 416 | case kInvPrev_InvCur_FillCombo: |
| 417 | if (!fFiniteBound.intersect(prevFinite)) { |
| 418 | fFiniteBound.setEmpty(); |
| 419 | fGenID = kWideOpenGenID; |
| 420 | } |
| 421 | fFiniteBoundType = kInsideOut_BoundsType; |
| 422 | break; |
| 423 | case kInvPrev_Cur_FillCombo: |
| 424 | // The only pixels that won't be drawable are inside |
| 425 | // the prior clip's finite bound |
| 426 | fFiniteBound = prevFinite; |
| 427 | fFiniteBoundType = kInsideOut_BoundsType; |
| 428 | break; |
| 429 | case kPrev_InvCur_FillCombo: |
| 430 | // The only pixels that won't be drawable are inside |
| 431 | // this clip's finite bound |
| 432 | break; |
| 433 | case kPrev_Cur_FillCombo: |
| 434 | fFiniteBound.join(prevFinite); |
| 435 | break; |
| 436 | default: |
| 437 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination" ); |
| 438 | break; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | // a mirror of combineBoundsUnion |
| 443 | void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) { |
| 444 | |
| 445 | switch (combination) { |
| 446 | case kInvPrev_InvCur_FillCombo: |
| 447 | // The only pixels that aren't writable in this case |
| 448 | // occur in the union of the two finite bounds |
| 449 | fFiniteBound.join(prevFinite); |
| 450 | fFiniteBoundType = kInsideOut_BoundsType; |
| 451 | break; |
| 452 | case kInvPrev_Cur_FillCombo: |
| 453 | // In this case the only pixels that will remain writeable |
| 454 | // are within the current clip |
| 455 | break; |
| 456 | case kPrev_InvCur_FillCombo: |
| 457 | // In this case the only pixels that will remain writeable |
| 458 | // are with the previous clip |
| 459 | fFiniteBound = prevFinite; |
| 460 | fFiniteBoundType = kNormal_BoundsType; |
| 461 | break; |
| 462 | case kPrev_Cur_FillCombo: |
| 463 | if (!fFiniteBound.intersect(prevFinite)) { |
| 464 | this->setEmpty(); |
| 465 | } |
| 466 | break; |
| 467 | default: |
| 468 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination" ); |
| 469 | break; |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | // a mirror of combineBoundsDiff |
| 474 | void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) { |
| 475 | |
| 476 | switch (combination) { |
| 477 | case kInvPrev_InvCur_FillCombo: |
| 478 | // The only pixels that can survive are in the |
| 479 | // previous bound since the extensions to infinity in |
| 480 | // both clips cancel out |
| 481 | fFiniteBound = prevFinite; |
| 482 | fFiniteBoundType = kNormal_BoundsType; |
| 483 | break; |
| 484 | case kInvPrev_Cur_FillCombo: |
| 485 | if (!fFiniteBound.intersect(prevFinite)) { |
| 486 | this->setEmpty(); |
| 487 | } else { |
| 488 | fFiniteBoundType = kNormal_BoundsType; |
| 489 | } |
| 490 | break; |
| 491 | case kPrev_InvCur_FillCombo: |
| 492 | fFiniteBound.join(prevFinite); |
| 493 | fFiniteBoundType = kInsideOut_BoundsType; |
| 494 | break; |
| 495 | case kPrev_Cur_FillCombo: |
| 496 | // Fall through - as with the kDifference_Op case, the |
| 497 | // most conservative result bound is the bound of the |
| 498 | // current clip. The prior clip could reduce the size of this |
| 499 | // bound (as in the kDifference_Op case) but we are ignoring |
| 500 | // those cases. |
| 501 | break; |
| 502 | default: |
| 503 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination" ); |
| 504 | break; |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | void SkClipStack::Element::updateBoundAndGenID(const Element* prior) { |
| 509 | // We set this first here but we may overwrite it later if we determine that the clip is |
| 510 | // either wide-open or empty. |
| 511 | fGenID = GetNextGenID(); |
| 512 | |
| 513 | // First, optimistically update the current Element's bound information |
| 514 | // with the current clip's bound |
| 515 | fIsIntersectionOfRects = false; |
| 516 | switch (fDeviceSpaceType) { |
| 517 | case DeviceSpaceType::kRect: |
| 518 | fFiniteBound = this->getDeviceSpaceRect(); |
| 519 | fFiniteBoundType = kNormal_BoundsType; |
| 520 | |
| 521 | if (kReplace_SkClipOp == fOp || (kIntersect_SkClipOp == fOp && nullptr == prior) || |
| 522 | (kIntersect_SkClipOp == fOp && prior->fIsIntersectionOfRects && |
| 523 | prior->rectRectIntersectAllowed(this->getDeviceSpaceRect(), fDoAA))) { |
| 524 | fIsIntersectionOfRects = true; |
| 525 | } |
| 526 | break; |
| 527 | case DeviceSpaceType::kRRect: |
| 528 | fFiniteBound = fDeviceSpaceRRect.getBounds(); |
| 529 | fFiniteBoundType = kNormal_BoundsType; |
| 530 | break; |
| 531 | case DeviceSpaceType::kPath: |
| 532 | fFiniteBound = fDeviceSpacePath.get()->getBounds(); |
| 533 | |
| 534 | if (fDeviceSpacePath.get()->isInverseFillType()) { |
| 535 | fFiniteBoundType = kInsideOut_BoundsType; |
| 536 | } else { |
| 537 | fFiniteBoundType = kNormal_BoundsType; |
| 538 | } |
| 539 | break; |
| 540 | case DeviceSpaceType::kShader: |
| 541 | // A shader is infinite. We don't act as wide-open here (which is an empty bounds with |
| 542 | // the inside out type). This is because when the bounds is empty and inside-out, we |
| 543 | // know there's full coverage everywhere. With a shader, there's *unknown* coverage |
| 544 | // everywhere. |
| 545 | fFiniteBound = SkRectPriv::MakeLargeS32(); |
| 546 | fFiniteBoundType = kNormal_BoundsType; |
| 547 | break; |
| 548 | case DeviceSpaceType::kEmpty: |
| 549 | SkDEBUGFAIL("We shouldn't get here with an empty element." ); |
| 550 | break; |
| 551 | } |
| 552 | |
| 553 | // Now determine the previous Element's bound information taking into |
| 554 | // account that there may be no previous clip |
| 555 | SkRect prevFinite; |
| 556 | SkClipStack::BoundsType prevType; |
| 557 | |
| 558 | if (nullptr == prior) { |
| 559 | // no prior clip means the entire plane is writable |
| 560 | prevFinite.setEmpty(); // there are no pixels that cannot be drawn to |
| 561 | prevType = kInsideOut_BoundsType; |
| 562 | } else { |
| 563 | prevFinite = prior->fFiniteBound; |
| 564 | prevType = prior->fFiniteBoundType; |
| 565 | } |
| 566 | |
| 567 | FillCombo combination = kPrev_Cur_FillCombo; |
| 568 | if (kInsideOut_BoundsType == fFiniteBoundType) { |
| 569 | combination = (FillCombo) (combination | 0x01); |
| 570 | } |
| 571 | if (kInsideOut_BoundsType == prevType) { |
| 572 | combination = (FillCombo) (combination | 0x02); |
| 573 | } |
| 574 | |
| 575 | SkASSERT(kInvPrev_InvCur_FillCombo == combination || |
| 576 | kInvPrev_Cur_FillCombo == combination || |
| 577 | kPrev_InvCur_FillCombo == combination || |
| 578 | kPrev_Cur_FillCombo == combination); |
| 579 | |
| 580 | // Now integrate with clip with the prior clips |
| 581 | switch (fOp) { |
| 582 | case kDifference_SkClipOp: |
| 583 | this->combineBoundsDiff(combination, prevFinite); |
| 584 | break; |
| 585 | case kXOR_SkClipOp: |
| 586 | this->combineBoundsXOR(combination, prevFinite); |
| 587 | break; |
| 588 | case kUnion_SkClipOp: |
| 589 | this->combineBoundsUnion(combination, prevFinite); |
| 590 | break; |
| 591 | case kIntersect_SkClipOp: |
| 592 | this->combineBoundsIntersection(combination, prevFinite); |
| 593 | break; |
| 594 | case kReverseDifference_SkClipOp: |
| 595 | this->combineBoundsRevDiff(combination, prevFinite); |
| 596 | break; |
| 597 | case kReplace_SkClipOp: |
| 598 | // Replace just ignores everything prior |
| 599 | // The current clip's bound information is already filled in |
| 600 | // so nothing to do |
| 601 | break; |
| 602 | default: |
| 603 | SkDebugf("SkClipOp error\n" ); |
| 604 | SkASSERT(0); |
| 605 | break; |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | // This constant determines how many Element's are allocated together as a block in |
| 610 | // the deque. As such it needs to balance allocating too much memory vs. |
| 611 | // incurring allocation/deallocation thrashing. It should roughly correspond to |
| 612 | // the deepest save/restore stack we expect to see. |
| 613 | static const int kDefaultElementAllocCnt = 8; |
| 614 | |
| 615 | SkClipStack::SkClipStack() |
| 616 | : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
| 617 | , fSaveCount(0) { |
| 618 | } |
| 619 | |
| 620 | SkClipStack::SkClipStack(void* storage, size_t size) |
| 621 | : fDeque(sizeof(Element), storage, size, kDefaultElementAllocCnt) |
| 622 | , fSaveCount(0) { |
| 623 | } |
| 624 | |
| 625 | SkClipStack::SkClipStack(const SkClipStack& b) |
| 626 | : fDeque(sizeof(Element), kDefaultElementAllocCnt) { |
| 627 | *this = b; |
| 628 | } |
| 629 | |
| 630 | SkClipStack::~SkClipStack() { |
| 631 | reset(); |
| 632 | } |
| 633 | |
| 634 | SkClipStack& SkClipStack::operator=(const SkClipStack& b) { |
| 635 | if (this == &b) { |
| 636 | return *this; |
| 637 | } |
| 638 | reset(); |
| 639 | |
| 640 | fSaveCount = b.fSaveCount; |
| 641 | SkDeque::F2BIter recIter(b.fDeque); |
| 642 | for (const Element* element = (const Element*)recIter.next(); |
| 643 | element != nullptr; |
| 644 | element = (const Element*)recIter.next()) { |
| 645 | new (fDeque.push_back()) Element(*element); |
| 646 | } |
| 647 | |
| 648 | return *this; |
| 649 | } |
| 650 | |
| 651 | bool SkClipStack::operator==(const SkClipStack& b) const { |
| 652 | if (this->getTopmostGenID() == b.getTopmostGenID()) { |
| 653 | return true; |
| 654 | } |
| 655 | if (fSaveCount != b.fSaveCount || |
| 656 | fDeque.count() != b.fDeque.count()) { |
| 657 | return false; |
| 658 | } |
| 659 | SkDeque::F2BIter myIter(fDeque); |
| 660 | SkDeque::F2BIter bIter(b.fDeque); |
| 661 | const Element* myElement = (const Element*)myIter.next(); |
| 662 | const Element* bElement = (const Element*)bIter.next(); |
| 663 | |
| 664 | while (myElement != nullptr && bElement != nullptr) { |
| 665 | if (*myElement != *bElement) { |
| 666 | return false; |
| 667 | } |
| 668 | myElement = (const Element*)myIter.next(); |
| 669 | bElement = (const Element*)bIter.next(); |
| 670 | } |
| 671 | return myElement == nullptr && bElement == nullptr; |
| 672 | } |
| 673 | |
| 674 | void SkClipStack::reset() { |
| 675 | // We used a placement new for each object in fDeque, so we're responsible |
| 676 | // for calling the destructor on each of them as well. |
| 677 | while (!fDeque.empty()) { |
| 678 | Element* element = (Element*)fDeque.back(); |
| 679 | element->~Element(); |
| 680 | fDeque.pop_back(); |
| 681 | } |
| 682 | |
| 683 | fSaveCount = 0; |
| 684 | } |
| 685 | |
| 686 | void SkClipStack::save() { |
| 687 | fSaveCount += 1; |
| 688 | } |
| 689 | |
| 690 | void SkClipStack::restore() { |
| 691 | fSaveCount -= 1; |
| 692 | restoreTo(fSaveCount); |
| 693 | } |
| 694 | |
| 695 | void SkClipStack::restoreTo(int saveCount) { |
| 696 | while (!fDeque.empty()) { |
| 697 | Element* element = (Element*)fDeque.back(); |
| 698 | if (element->fSaveCount <= saveCount) { |
| 699 | break; |
| 700 | } |
| 701 | element->~Element(); |
| 702 | fDeque.pop_back(); |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | SkRect SkClipStack::bounds(const SkIRect& deviceBounds) const { |
| 707 | // TODO: optimize this. |
| 708 | SkRect r; |
| 709 | SkClipStack::BoundsType bounds; |
| 710 | this->getBounds(&r, &bounds); |
| 711 | if (bounds == SkClipStack::kInsideOut_BoundsType) { |
| 712 | return SkRect::Make(deviceBounds); |
| 713 | } |
| 714 | return r.intersect(SkRect::Make(deviceBounds)) ? r : SkRect::MakeEmpty(); |
| 715 | } |
| 716 | |
| 717 | // TODO: optimize this. |
| 718 | bool SkClipStack::isEmpty(const SkIRect& r) const { return this->bounds(r).isEmpty(); } |
| 719 | |
| 720 | void SkClipStack::getBounds(SkRect* canvFiniteBound, |
| 721 | BoundsType* boundType, |
| 722 | bool* isIntersectionOfRects) const { |
| 723 | SkASSERT(canvFiniteBound && boundType); |
| 724 | |
| 725 | Element* element = (Element*)fDeque.back(); |
| 726 | |
| 727 | if (nullptr == element) { |
| 728 | // the clip is wide open - the infinite plane w/ no pixels un-writeable |
| 729 | canvFiniteBound->setEmpty(); |
| 730 | *boundType = kInsideOut_BoundsType; |
| 731 | if (isIntersectionOfRects) { |
| 732 | *isIntersectionOfRects = false; |
| 733 | } |
| 734 | return; |
| 735 | } |
| 736 | |
| 737 | *canvFiniteBound = element->fFiniteBound; |
| 738 | *boundType = element->fFiniteBoundType; |
| 739 | if (isIntersectionOfRects) { |
| 740 | *isIntersectionOfRects = element->fIsIntersectionOfRects; |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | bool SkClipStack::internalQuickContains(const SkRect& rect) const { |
| 745 | |
| 746 | Iter iter(*this, Iter::kTop_IterStart); |
| 747 | const Element* element = iter.prev(); |
| 748 | while (element != nullptr) { |
| 749 | if (kIntersect_SkClipOp != element->getOp() && kReplace_SkClipOp != element->getOp()) |
| 750 | return false; |
| 751 | if (element->isInverseFilled()) { |
| 752 | // Part of 'rect' could be trimmed off by the inverse-filled clip element |
| 753 | if (SkRect::Intersects(element->getBounds(), rect)) { |
| 754 | return false; |
| 755 | } |
| 756 | } else { |
| 757 | if (!element->contains(rect)) { |
| 758 | return false; |
| 759 | } |
| 760 | } |
| 761 | if (kReplace_SkClipOp == element->getOp()) { |
| 762 | break; |
| 763 | } |
| 764 | element = iter.prev(); |
| 765 | } |
| 766 | return true; |
| 767 | } |
| 768 | |
| 769 | bool SkClipStack::internalQuickContains(const SkRRect& rrect) const { |
| 770 | |
| 771 | Iter iter(*this, Iter::kTop_IterStart); |
| 772 | const Element* element = iter.prev(); |
| 773 | while (element != nullptr) { |
| 774 | if (kIntersect_SkClipOp != element->getOp() && kReplace_SkClipOp != element->getOp()) |
| 775 | return false; |
| 776 | if (element->isInverseFilled()) { |
| 777 | // Part of 'rrect' could be trimmed off by the inverse-filled clip element |
| 778 | if (SkRect::Intersects(element->getBounds(), rrect.getBounds())) { |
| 779 | return false; |
| 780 | } |
| 781 | } else { |
| 782 | if (!element->contains(rrect)) { |
| 783 | return false; |
| 784 | } |
| 785 | } |
| 786 | if (kReplace_SkClipOp == element->getOp()) { |
| 787 | break; |
| 788 | } |
| 789 | element = iter.prev(); |
| 790 | } |
| 791 | return true; |
| 792 | } |
| 793 | |
| 794 | void SkClipStack::pushElement(const Element& element) { |
| 795 | // Use reverse iterator instead of back because Rect path may need previous |
| 796 | SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
| 797 | Element* prior = (Element*) iter.prev(); |
| 798 | |
| 799 | if (prior) { |
| 800 | if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) { |
| 801 | switch (prior->fDeviceSpaceType) { |
| 802 | case Element::DeviceSpaceType::kEmpty: |
| 803 | SkDEBUGCODE(prior->checkEmpty();) |
| 804 | return; |
| 805 | case Element::DeviceSpaceType::kShader: |
| 806 | if (Element::DeviceSpaceType::kShader == element.getDeviceSpaceType()) { |
| 807 | prior->fShader = SkShaders::Blend(SkBlendMode::kSrcIn, |
| 808 | element.fShader, prior->fShader); |
| 809 | Element* priorPrior = (Element*) iter.prev(); |
| 810 | prior->updateBoundAndGenID(priorPrior); |
| 811 | return; |
| 812 | } |
| 813 | break; |
| 814 | case Element::DeviceSpaceType::kRect: |
| 815 | if (Element::DeviceSpaceType::kRect == element.getDeviceSpaceType()) { |
| 816 | if (prior->rectRectIntersectAllowed(element.getDeviceSpaceRect(), |
| 817 | element.isAA())) { |
| 818 | SkRect isectRect; |
| 819 | if (!isectRect.intersect(prior->getDeviceSpaceRect(), |
| 820 | element.getDeviceSpaceRect())) { |
| 821 | prior->setEmpty(); |
| 822 | return; |
| 823 | } |
| 824 | |
| 825 | prior->fDeviceSpaceRRect.setRect(isectRect); |
| 826 | prior->fDoAA = element.isAA(); |
| 827 | Element* priorPrior = (Element*) iter.prev(); |
| 828 | prior->updateBoundAndGenID(priorPrior); |
| 829 | return; |
| 830 | } |
| 831 | break; |
| 832 | } |
| 833 | [[fallthrough]]; |
| 834 | default: |
| 835 | if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) { |
| 836 | prior->setEmpty(); |
| 837 | return; |
| 838 | } |
| 839 | break; |
| 840 | } |
| 841 | } else if (kReplace_SkClipOp == element.getOp()) { |
| 842 | this->restoreTo(fSaveCount - 1); |
| 843 | prior = (Element*) fDeque.back(); |
| 844 | } |
| 845 | } |
| 846 | Element* newElement = new (fDeque.push_back()) Element(element); |
| 847 | newElement->updateBoundAndGenID(prior); |
| 848 | } |
| 849 | |
| 850 | void SkClipStack::clipRRect(const SkRRect& rrect, const SkMatrix& matrix, SkClipOp op, |
| 851 | bool doAA) { |
| 852 | Element element(fSaveCount, rrect, matrix, op, doAA); |
| 853 | this->pushElement(element); |
| 854 | if (this->hasClipRestriction(op)) { |
| 855 | Element restriction(fSaveCount, fClipRestrictionRect, SkMatrix::I(), kIntersect_SkClipOp, |
| 856 | false); |
| 857 | this->pushElement(restriction); |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | void SkClipStack::clipRect(const SkRect& rect, const SkMatrix& matrix, SkClipOp op, |
| 862 | bool doAA) { |
| 863 | Element element(fSaveCount, rect, matrix, op, doAA); |
| 864 | this->pushElement(element); |
| 865 | if (this->hasClipRestriction(op)) { |
| 866 | Element restriction(fSaveCount, fClipRestrictionRect, SkMatrix::I(), kIntersect_SkClipOp, |
| 867 | false); |
| 868 | this->pushElement(restriction); |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | void SkClipStack::clipPath(const SkPath& path, const SkMatrix& matrix, SkClipOp op, |
| 873 | bool doAA) { |
| 874 | Element element(fSaveCount, path, matrix, op, doAA); |
| 875 | this->pushElement(element); |
| 876 | if (this->hasClipRestriction(op)) { |
| 877 | Element restriction(fSaveCount, fClipRestrictionRect, SkMatrix::I(), kIntersect_SkClipOp, |
| 878 | false); |
| 879 | this->pushElement(restriction); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | void SkClipStack::clipShader(sk_sp<SkShader> shader) { |
| 884 | Element element(fSaveCount, std::move(shader)); |
| 885 | this->pushElement(element); |
| 886 | // clipShader should not be used with expanding clip ops, so we shouldn't need to worry about |
| 887 | // the clip restriction rect either. |
| 888 | SkASSERT(fClipRestrictionRect.isEmpty()); |
| 889 | } |
| 890 | |
| 891 | void SkClipStack::clipEmpty() { |
| 892 | Element* element = (Element*) fDeque.back(); |
| 893 | |
| 894 | if (element && element->canBeIntersectedInPlace(fSaveCount, kIntersect_SkClipOp)) { |
| 895 | element->setEmpty(); |
| 896 | } |
| 897 | new (fDeque.push_back()) Element(fSaveCount); |
| 898 | |
| 899 | ((Element*)fDeque.back())->fGenID = kEmptyGenID; |
| 900 | } |
| 901 | |
| 902 | /////////////////////////////////////////////////////////////////////////////// |
| 903 | |
| 904 | SkClipStack::Iter::Iter() : fStack(nullptr) { |
| 905 | } |
| 906 | |
| 907 | SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc) |
| 908 | : fStack(&stack) { |
| 909 | this->reset(stack, startLoc); |
| 910 | } |
| 911 | |
| 912 | const SkClipStack::Element* SkClipStack::Iter::next() { |
| 913 | return (const SkClipStack::Element*)fIter.next(); |
| 914 | } |
| 915 | |
| 916 | const SkClipStack::Element* SkClipStack::Iter::prev() { |
| 917 | return (const SkClipStack::Element*)fIter.prev(); |
| 918 | } |
| 919 | |
| 920 | const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkClipOp op) { |
| 921 | |
| 922 | if (nullptr == fStack) { |
| 923 | return nullptr; |
| 924 | } |
| 925 | |
| 926 | fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart); |
| 927 | |
| 928 | const SkClipStack::Element* element = nullptr; |
| 929 | |
| 930 | for (element = (const SkClipStack::Element*) fIter.prev(); |
| 931 | element; |
| 932 | element = (const SkClipStack::Element*) fIter.prev()) { |
| 933 | |
| 934 | if (op == element->fOp) { |
| 935 | // The Deque's iterator is actually one pace ahead of the |
| 936 | // returned value. So while "element" is the element we want to |
| 937 | // return, the iterator is actually pointing at (and will |
| 938 | // return on the next "next" or "prev" call) the element |
| 939 | // in front of it in the deque. Bump the iterator forward a |
| 940 | // step so we get the expected result. |
| 941 | if (nullptr == fIter.next()) { |
| 942 | // The reverse iterator has run off the front of the deque |
| 943 | // (i.e., the "op" clip is the first clip) and can't |
| 944 | // recover. Reset the iterator to start at the front. |
| 945 | fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
| 946 | } |
| 947 | break; |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | if (nullptr == element) { |
| 952 | // There were no "op" clips |
| 953 | fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
| 954 | } |
| 955 | |
| 956 | return this->next(); |
| 957 | } |
| 958 | |
| 959 | void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) { |
| 960 | fStack = &stack; |
| 961 | fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc)); |
| 962 | } |
| 963 | |
| 964 | // helper method |
| 965 | void SkClipStack::getConservativeBounds(int offsetX, |
| 966 | int offsetY, |
| 967 | int maxWidth, |
| 968 | int maxHeight, |
| 969 | SkRect* devBounds, |
| 970 | bool* isIntersectionOfRects) const { |
| 971 | SkASSERT(devBounds); |
| 972 | |
| 973 | devBounds->setLTRB(0, 0, |
| 974 | SkIntToScalar(maxWidth), SkIntToScalar(maxHeight)); |
| 975 | |
| 976 | SkRect temp; |
| 977 | SkClipStack::BoundsType boundType; |
| 978 | |
| 979 | // temp starts off in canvas space here |
| 980 | this->getBounds(&temp, &boundType, isIntersectionOfRects); |
| 981 | if (SkClipStack::kInsideOut_BoundsType == boundType) { |
| 982 | return; |
| 983 | } |
| 984 | |
| 985 | // but is converted to device space here |
| 986 | temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY)); |
| 987 | |
| 988 | if (!devBounds->intersect(temp)) { |
| 989 | devBounds->setEmpty(); |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | bool SkClipStack::isRRect(const SkRect& bounds, SkRRect* rrect, bool* aa) const { |
| 994 | const Element* back = static_cast<const Element*>(fDeque.back()); |
| 995 | if (!back) { |
| 996 | // TODO: return bounds? |
| 997 | return false; |
| 998 | } |
| 999 | // First check if the entire stack is known to be a rect by the top element. |
| 1000 | if (back->fIsIntersectionOfRects && back->fFiniteBoundType == BoundsType::kNormal_BoundsType) { |
| 1001 | rrect->setRect(back->fFiniteBound); |
| 1002 | *aa = back->isAA(); |
| 1003 | return true; |
| 1004 | } |
| 1005 | |
| 1006 | if (back->getDeviceSpaceType() != SkClipStack::Element::DeviceSpaceType::kRect && |
| 1007 | back->getDeviceSpaceType() != SkClipStack::Element::DeviceSpaceType::kRRect) { |
| 1008 | return false; |
| 1009 | } |
| 1010 | if (back->getOp() == kReplace_SkClipOp) { |
| 1011 | *rrect = back->asDeviceSpaceRRect(); |
| 1012 | *aa = back->isAA(); |
| 1013 | return true; |
| 1014 | } |
| 1015 | |
| 1016 | if (back->getOp() == kIntersect_SkClipOp) { |
| 1017 | SkRect backBounds; |
| 1018 | if (!backBounds.intersect(bounds, back->asDeviceSpaceRRect().rect())) { |
| 1019 | return false; |
| 1020 | } |
| 1021 | // We limit to 17 elements. This means the back element will be bounds checked at most 16 |
| 1022 | // times if it is an rrect. |
| 1023 | int cnt = fDeque.count(); |
| 1024 | if (cnt > 17) { |
| 1025 | return false; |
| 1026 | } |
| 1027 | if (cnt > 1) { |
| 1028 | SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
| 1029 | SkAssertResult(static_cast<const Element*>(iter.prev()) == back); |
| 1030 | while (const Element* prior = (const Element*)iter.prev()) { |
| 1031 | if ((prior->getOp() != kIntersect_SkClipOp && |
| 1032 | prior->getOp() != kReplace_SkClipOp) || |
| 1033 | !prior->contains(backBounds)) { |
| 1034 | return false; |
| 1035 | } |
| 1036 | if (prior->getOp() == kReplace_SkClipOp) { |
| 1037 | break; |
| 1038 | } |
| 1039 | } |
| 1040 | } |
| 1041 | *rrect = back->asDeviceSpaceRRect(); |
| 1042 | *aa = back->isAA(); |
| 1043 | return true; |
| 1044 | } |
| 1045 | return false; |
| 1046 | } |
| 1047 | |
| 1048 | uint32_t SkClipStack::GetNextGenID() { |
| 1049 | // 0-2 are reserved for invalid, empty & wide-open |
| 1050 | static const uint32_t kFirstUnreservedGenID = 3; |
| 1051 | static std::atomic<uint32_t> nextID{kFirstUnreservedGenID}; |
| 1052 | |
| 1053 | uint32_t id; |
| 1054 | do { |
| 1055 | id = nextID++; |
| 1056 | } while (id < kFirstUnreservedGenID); |
| 1057 | return id; |
| 1058 | } |
| 1059 | |
| 1060 | uint32_t SkClipStack::getTopmostGenID() const { |
| 1061 | if (fDeque.empty()) { |
| 1062 | return kWideOpenGenID; |
| 1063 | } |
| 1064 | |
| 1065 | const Element* back = static_cast<const Element*>(fDeque.back()); |
| 1066 | if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty() && |
| 1067 | Element::DeviceSpaceType::kShader != back->fDeviceSpaceType) { |
| 1068 | return kWideOpenGenID; |
| 1069 | } |
| 1070 | |
| 1071 | return back->getGenID(); |
| 1072 | } |
| 1073 | |
| 1074 | #ifdef SK_DEBUG |
| 1075 | void SkClipStack::Element::dump() const { |
| 1076 | static const char* kTypeStrings[] = { |
| 1077 | "empty" , |
| 1078 | "rect" , |
| 1079 | "rrect" , |
| 1080 | "path" , |
| 1081 | "shader" |
| 1082 | }; |
| 1083 | static_assert(0 == static_cast<int>(DeviceSpaceType::kEmpty), "enum mismatch" ); |
| 1084 | static_assert(1 == static_cast<int>(DeviceSpaceType::kRect), "enum mismatch" ); |
| 1085 | static_assert(2 == static_cast<int>(DeviceSpaceType::kRRect), "enum mismatch" ); |
| 1086 | static_assert(3 == static_cast<int>(DeviceSpaceType::kPath), "enum mismatch" ); |
| 1087 | static_assert(4 == static_cast<int>(DeviceSpaceType::kShader), "enum mismatch" ); |
| 1088 | static_assert(SK_ARRAY_COUNT(kTypeStrings) == kTypeCnt, "enum mismatch" ); |
| 1089 | |
| 1090 | static const char* kOpStrings[] = { |
| 1091 | "difference" , |
| 1092 | "intersect" , |
| 1093 | "union" , |
| 1094 | "xor" , |
| 1095 | "reverse-difference" , |
| 1096 | "replace" , |
| 1097 | }; |
| 1098 | static_assert(0 == static_cast<int>(kDifference_SkClipOp), "enum mismatch" ); |
| 1099 | static_assert(1 == static_cast<int>(kIntersect_SkClipOp), "enum mismatch" ); |
| 1100 | static_assert(2 == static_cast<int>(kUnion_SkClipOp), "enum mismatch" ); |
| 1101 | static_assert(3 == static_cast<int>(kXOR_SkClipOp), "enum mismatch" ); |
| 1102 | static_assert(4 == static_cast<int>(kReverseDifference_SkClipOp), "enum mismatch" ); |
| 1103 | static_assert(5 == static_cast<int>(kReplace_SkClipOp), "enum mismatch" ); |
| 1104 | static_assert(SK_ARRAY_COUNT(kOpStrings) == SkRegion::kOpCnt, "enum mismatch" ); |
| 1105 | |
| 1106 | SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n" , kTypeStrings[(int)fDeviceSpaceType], |
| 1107 | kOpStrings[static_cast<int>(fOp)], (fDoAA ? "yes" : "no" ), fSaveCount); |
| 1108 | switch (fDeviceSpaceType) { |
| 1109 | case DeviceSpaceType::kEmpty: |
| 1110 | SkDebugf("\n" ); |
| 1111 | break; |
| 1112 | case DeviceSpaceType::kRect: |
| 1113 | this->getDeviceSpaceRect().dump(); |
| 1114 | SkDebugf("\n" ); |
| 1115 | break; |
| 1116 | case DeviceSpaceType::kRRect: |
| 1117 | this->getDeviceSpaceRRect().dump(); |
| 1118 | SkDebugf("\n" ); |
| 1119 | break; |
| 1120 | case DeviceSpaceType::kPath: |
| 1121 | this->getDeviceSpacePath().dump(nullptr, true, false); |
| 1122 | break; |
| 1123 | case DeviceSpaceType::kShader: |
| 1124 | // SkShaders don't provide much introspection that's worth while. |
| 1125 | break; |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | void SkClipStack::dump() const { |
| 1130 | B2TIter iter(*this); |
| 1131 | const Element* e; |
| 1132 | while ((e = iter.next())) { |
| 1133 | e->dump(); |
| 1134 | SkDebugf("\n" ); |
| 1135 | } |
| 1136 | } |
| 1137 | #endif |
| 1138 | |