| 1 | /* |
| 2 | * Copyright 2013 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkBitmap.h" |
| 9 | #include "include/core/SkTypes.h" |
| 10 | #include "include/private/SkColorData.h" |
| 11 | #include "include/private/SkHalf.h" |
| 12 | #include "include/private/SkImageInfoPriv.h" |
| 13 | #include "include/private/SkNx.h" |
| 14 | #include "include/private/SkTo.h" |
| 15 | #include "include/private/SkVx.h" |
| 16 | #include "src/core/SkMathPriv.h" |
| 17 | #include "src/core/SkMipmap.h" |
| 18 | #include <new> |
| 19 | |
| 20 | // |
| 21 | // ColorTypeFilter is the "Type" we pass to some downsample template functions. |
| 22 | // It controls how we expand a pixel into a large type, with space between each component, |
| 23 | // so we can then perform our simple filter (either box or triangle) and store the intermediates |
| 24 | // in the expanded type. |
| 25 | // |
| 26 | |
| 27 | struct ColorTypeFilter_8888 { |
| 28 | typedef uint32_t Type; |
| 29 | static Sk4h Expand(uint32_t x) { |
| 30 | return SkNx_cast<uint16_t>(Sk4b::Load(&x)); |
| 31 | } |
| 32 | static uint32_t Compact(const Sk4h& x) { |
| 33 | uint32_t r; |
| 34 | SkNx_cast<uint8_t>(x).store(&r); |
| 35 | return r; |
| 36 | } |
| 37 | }; |
| 38 | |
| 39 | struct ColorTypeFilter_565 { |
| 40 | typedef uint16_t Type; |
| 41 | static uint32_t Expand(uint16_t x) { |
| 42 | return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16); |
| 43 | } |
| 44 | static uint16_t Compact(uint32_t x) { |
| 45 | return ((x & ~SK_G16_MASK_IN_PLACE) & 0xFFFF) | ((x >> 16) & SK_G16_MASK_IN_PLACE); |
| 46 | } |
| 47 | }; |
| 48 | |
| 49 | struct ColorTypeFilter_4444 { |
| 50 | typedef uint16_t Type; |
| 51 | static uint32_t Expand(uint16_t x) { |
| 52 | return (x & 0xF0F) | ((x & ~0xF0F) << 12); |
| 53 | } |
| 54 | static uint16_t Compact(uint32_t x) { |
| 55 | return (x & 0xF0F) | ((x >> 12) & ~0xF0F); |
| 56 | } |
| 57 | }; |
| 58 | |
| 59 | struct ColorTypeFilter_8 { |
| 60 | typedef uint8_t Type; |
| 61 | static unsigned Expand(unsigned x) { |
| 62 | return x; |
| 63 | } |
| 64 | static uint8_t Compact(unsigned x) { |
| 65 | return (uint8_t)x; |
| 66 | } |
| 67 | }; |
| 68 | |
| 69 | struct ColorTypeFilter_Alpha_F16 { |
| 70 | typedef uint16_t Type; |
| 71 | static Sk4f Expand(uint16_t x) { |
| 72 | return SkHalfToFloat_finite_ftz((uint64_t) x); // expand out to four lanes |
| 73 | |
| 74 | } |
| 75 | static uint16_t Compact(const Sk4f& x) { |
| 76 | uint64_t r; |
| 77 | SkFloatToHalf_finite_ftz(x).store(&r); |
| 78 | return r & 0xFFFF; // but ignore the extra 3 here |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | struct ColorTypeFilter_RGBA_F16 { |
| 83 | typedef uint64_t Type; // SkHalf x4 |
| 84 | static Sk4f Expand(uint64_t x) { |
| 85 | return SkHalfToFloat_finite_ftz(x); |
| 86 | } |
| 87 | static uint64_t Compact(const Sk4f& x) { |
| 88 | uint64_t r; |
| 89 | SkFloatToHalf_finite_ftz(x).store(&r); |
| 90 | return r; |
| 91 | } |
| 92 | }; |
| 93 | |
| 94 | struct ColorTypeFilter_88 { |
| 95 | typedef uint16_t Type; |
| 96 | static uint32_t Expand(uint16_t x) { |
| 97 | return (x & 0xFF) | ((x & ~0xFF) << 8); |
| 98 | } |
| 99 | static uint16_t Compact(uint32_t x) { |
| 100 | return (x & 0xFF) | ((x >> 8) & ~0xFF); |
| 101 | } |
| 102 | }; |
| 103 | |
| 104 | struct ColorTypeFilter_1616 { |
| 105 | typedef uint32_t Type; |
| 106 | static uint64_t Expand(uint32_t x) { |
| 107 | return (x & 0xFFFF) | ((x & ~0xFFFF) << 16); |
| 108 | } |
| 109 | static uint16_t Compact(uint64_t x) { |
| 110 | return (x & 0xFFFF) | ((x >> 16) & ~0xFFFF); |
| 111 | } |
| 112 | }; |
| 113 | |
| 114 | struct ColorTypeFilter_F16F16 { |
| 115 | typedef uint32_t Type; |
| 116 | static Sk4f Expand(uint32_t x) { |
| 117 | return SkHalfToFloat_finite_ftz((uint64_t) x); // expand out to four lanes |
| 118 | } |
| 119 | static uint32_t Compact(const Sk4f& x) { |
| 120 | uint64_t r; |
| 121 | SkFloatToHalf_finite_ftz(x).store(&r); |
| 122 | return (uint32_t) (r & 0xFFFFFFFF); // but ignore the extra 2 here |
| 123 | } |
| 124 | }; |
| 125 | |
| 126 | struct ColorTypeFilter_16161616 { |
| 127 | typedef uint64_t Type; |
| 128 | static skvx::Vec<4, uint32_t> Expand(uint64_t x) { |
| 129 | return skvx::cast<uint32_t>(skvx::Vec<4, uint16_t>::Load(&x)); |
| 130 | } |
| 131 | static uint64_t Compact(const skvx::Vec<4, uint32_t>& x) { |
| 132 | uint64_t r; |
| 133 | skvx::cast<uint16_t>(x).store(&r); |
| 134 | return r; |
| 135 | } |
| 136 | }; |
| 137 | |
| 138 | struct ColorTypeFilter_16 { |
| 139 | typedef uint16_t Type; |
| 140 | static uint32_t Expand(uint16_t x) { |
| 141 | return x; |
| 142 | } |
| 143 | static uint16_t Compact(uint32_t x) { |
| 144 | return (uint16_t) x; |
| 145 | } |
| 146 | }; |
| 147 | |
| 148 | struct ColorTypeFilter_1010102 { |
| 149 | typedef uint32_t Type; |
| 150 | static uint64_t Expand(uint64_t x) { |
| 151 | return (((x ) & 0x3ff) ) | |
| 152 | (((x >> 10) & 0x3ff) << 20) | |
| 153 | (((x >> 20) & 0x3ff) << 40) | |
| 154 | (((x >> 30) & 0x3 ) << 60); |
| 155 | } |
| 156 | static uint32_t Compact(uint64_t x) { |
| 157 | return (((x ) & 0x3ff) ) | |
| 158 | (((x >> 20) & 0x3ff) << 10) | |
| 159 | (((x >> 40) & 0x3ff) << 20) | |
| 160 | (((x >> 60) & 0x3 ) << 30); |
| 161 | } |
| 162 | }; |
| 163 | |
| 164 | template <typename T> T add_121(const T& a, const T& b, const T& c) { |
| 165 | return a + b + b + c; |
| 166 | } |
| 167 | |
| 168 | template <typename T> T shift_right(const T& x, int bits) { |
| 169 | return x >> bits; |
| 170 | } |
| 171 | |
| 172 | Sk4f shift_right(const Sk4f& x, int bits) { |
| 173 | return x * (1.0f / (1 << bits)); |
| 174 | } |
| 175 | |
| 176 | template <typename T> T shift_left(const T& x, int bits) { |
| 177 | return x << bits; |
| 178 | } |
| 179 | |
| 180 | Sk4f shift_left(const Sk4f& x, int bits) { |
| 181 | return x * (1 << bits); |
| 182 | } |
| 183 | |
| 184 | // |
| 185 | // To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50) |
| 186 | // If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50) |
| 187 | // In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings, |
| 188 | // else for even cases, we just use a 2x box filter. |
| 189 | // |
| 190 | // This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of |
| 191 | // src pixels we need to sample in each dimension to produce 1 dst pixel. |
| 192 | // |
| 193 | // OpenGL expects a full mipmap stack to contain anisotropic space as well. |
| 194 | // This means a 100x1 image would continue down to a 50x1 image, 25x1 image... |
| 195 | // Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1. |
| 196 | |
| 197 | template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) { |
| 198 | SkASSERT(count > 0); |
| 199 | auto p0 = static_cast<const typename F::Type*>(src); |
| 200 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| 201 | auto d = static_cast<typename F::Type*>(dst); |
| 202 | |
| 203 | for (int i = 0; i < count; ++i) { |
| 204 | auto c00 = F::Expand(p0[0]); |
| 205 | auto c10 = F::Expand(p1[0]); |
| 206 | |
| 207 | auto c = c00 + c10; |
| 208 | d[i] = F::Compact(shift_right(c, 1)); |
| 209 | p0 += 2; |
| 210 | p1 += 2; |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) { |
| 215 | SkASSERT(count > 0); |
| 216 | auto p0 = static_cast<const typename F::Type*>(src); |
| 217 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| 218 | auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
| 219 | auto d = static_cast<typename F::Type*>(dst); |
| 220 | |
| 221 | for (int i = 0; i < count; ++i) { |
| 222 | auto c00 = F::Expand(p0[0]); |
| 223 | auto c10 = F::Expand(p1[0]); |
| 224 | auto c20 = F::Expand(p2[0]); |
| 225 | |
| 226 | auto c = add_121(c00, c10, c20); |
| 227 | d[i] = F::Compact(shift_right(c, 2)); |
| 228 | p0 += 2; |
| 229 | p1 += 2; |
| 230 | p2 += 2; |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) { |
| 235 | SkASSERT(count > 0); |
| 236 | auto p0 = static_cast<const typename F::Type*>(src); |
| 237 | auto d = static_cast<typename F::Type*>(dst); |
| 238 | |
| 239 | for (int i = 0; i < count; ++i) { |
| 240 | auto c00 = F::Expand(p0[0]); |
| 241 | auto c01 = F::Expand(p0[1]); |
| 242 | |
| 243 | auto c = c00 + c01; |
| 244 | d[i] = F::Compact(shift_right(c, 1)); |
| 245 | p0 += 2; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) { |
| 250 | SkASSERT(count > 0); |
| 251 | auto p0 = static_cast<const typename F::Type*>(src); |
| 252 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| 253 | auto d = static_cast<typename F::Type*>(dst); |
| 254 | |
| 255 | for (int i = 0; i < count; ++i) { |
| 256 | auto c00 = F::Expand(p0[0]); |
| 257 | auto c01 = F::Expand(p0[1]); |
| 258 | auto c10 = F::Expand(p1[0]); |
| 259 | auto c11 = F::Expand(p1[1]); |
| 260 | |
| 261 | auto c = c00 + c10 + c01 + c11; |
| 262 | d[i] = F::Compact(shift_right(c, 2)); |
| 263 | p0 += 2; |
| 264 | p1 += 2; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) { |
| 269 | SkASSERT(count > 0); |
| 270 | auto p0 = static_cast<const typename F::Type*>(src); |
| 271 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| 272 | auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
| 273 | auto d = static_cast<typename F::Type*>(dst); |
| 274 | |
| 275 | for (int i = 0; i < count; ++i) { |
| 276 | auto c00 = F::Expand(p0[0]); |
| 277 | auto c01 = F::Expand(p0[1]); |
| 278 | auto c10 = F::Expand(p1[0]); |
| 279 | auto c11 = F::Expand(p1[1]); |
| 280 | auto c20 = F::Expand(p2[0]); |
| 281 | auto c21 = F::Expand(p2[1]); |
| 282 | |
| 283 | auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21); |
| 284 | d[i] = F::Compact(shift_right(c, 3)); |
| 285 | p0 += 2; |
| 286 | p1 += 2; |
| 287 | p2 += 2; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) { |
| 292 | SkASSERT(count > 0); |
| 293 | auto p0 = static_cast<const typename F::Type*>(src); |
| 294 | auto d = static_cast<typename F::Type*>(dst); |
| 295 | |
| 296 | auto c02 = F::Expand(p0[0]); |
| 297 | for (int i = 0; i < count; ++i) { |
| 298 | auto c00 = c02; |
| 299 | auto c01 = F::Expand(p0[1]); |
| 300 | c02 = F::Expand(p0[2]); |
| 301 | |
| 302 | auto c = add_121(c00, c01, c02); |
| 303 | d[i] = F::Compact(shift_right(c, 2)); |
| 304 | p0 += 2; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) { |
| 309 | SkASSERT(count > 0); |
| 310 | auto p0 = static_cast<const typename F::Type*>(src); |
| 311 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| 312 | auto d = static_cast<typename F::Type*>(dst); |
| 313 | |
| 314 | // Given pixels: |
| 315 | // a0 b0 c0 d0 e0 ... |
| 316 | // a1 b1 c1 d1 e1 ... |
| 317 | // We want: |
| 318 | // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8 |
| 319 | // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8 |
| 320 | // ... |
| 321 | |
| 322 | auto c0 = F::Expand(p0[0]); |
| 323 | auto c1 = F::Expand(p1[0]); |
| 324 | auto c = c0 + c1; |
| 325 | for (int i = 0; i < count; ++i) { |
| 326 | auto a = c; |
| 327 | |
| 328 | auto b0 = F::Expand(p0[1]); |
| 329 | auto b1 = F::Expand(p1[1]); |
| 330 | auto b = b0 + b0 + b1 + b1; |
| 331 | |
| 332 | c0 = F::Expand(p0[2]); |
| 333 | c1 = F::Expand(p1[2]); |
| 334 | c = c0 + c1; |
| 335 | |
| 336 | auto sum = a + b + c; |
| 337 | d[i] = F::Compact(shift_right(sum, 3)); |
| 338 | p0 += 2; |
| 339 | p1 += 2; |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) { |
| 344 | SkASSERT(count > 0); |
| 345 | auto p0 = static_cast<const typename F::Type*>(src); |
| 346 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| 347 | auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
| 348 | auto d = static_cast<typename F::Type*>(dst); |
| 349 | |
| 350 | // Given pixels: |
| 351 | // a0 b0 c0 d0 e0 ... |
| 352 | // a1 b1 c1 d1 e1 ... |
| 353 | // a2 b2 c2 d2 e2 ... |
| 354 | // We want: |
| 355 | // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16 |
| 356 | // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16 |
| 357 | // ... |
| 358 | |
| 359 | auto c0 = F::Expand(p0[0]); |
| 360 | auto c1 = F::Expand(p1[0]); |
| 361 | auto c2 = F::Expand(p2[0]); |
| 362 | auto c = add_121(c0, c1, c2); |
| 363 | for (int i = 0; i < count; ++i) { |
| 364 | auto a = c; |
| 365 | |
| 366 | auto b0 = F::Expand(p0[1]); |
| 367 | auto b1 = F::Expand(p1[1]); |
| 368 | auto b2 = F::Expand(p2[1]); |
| 369 | auto b = shift_left(add_121(b0, b1, b2), 1); |
| 370 | |
| 371 | c0 = F::Expand(p0[2]); |
| 372 | c1 = F::Expand(p1[2]); |
| 373 | c2 = F::Expand(p2[2]); |
| 374 | c = add_121(c0, c1, c2); |
| 375 | |
| 376 | auto sum = a + b + c; |
| 377 | d[i] = F::Compact(shift_right(sum, 4)); |
| 378 | p0 += 2; |
| 379 | p1 += 2; |
| 380 | p2 += 2; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 385 | |
| 386 | size_t SkMipmap::AllocLevelsSize(int levelCount, size_t pixelSize) { |
| 387 | if (levelCount < 0) { |
| 388 | return 0; |
| 389 | } |
| 390 | int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize; |
| 391 | if (!SkTFitsIn<int32_t>(size)) { |
| 392 | return 0; |
| 393 | } |
| 394 | return SkTo<int32_t>(size); |
| 395 | } |
| 396 | |
| 397 | SkMipmap* SkMipmap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact, |
| 398 | bool computeContents) { |
| 399 | typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count); |
| 400 | |
| 401 | FilterProc* proc_1_2 = nullptr; |
| 402 | FilterProc* proc_1_3 = nullptr; |
| 403 | FilterProc* proc_2_1 = nullptr; |
| 404 | FilterProc* proc_2_2 = nullptr; |
| 405 | FilterProc* proc_2_3 = nullptr; |
| 406 | FilterProc* proc_3_1 = nullptr; |
| 407 | FilterProc* proc_3_2 = nullptr; |
| 408 | FilterProc* proc_3_3 = nullptr; |
| 409 | |
| 410 | const SkColorType ct = src.colorType(); |
| 411 | const SkAlphaType at = src.alphaType(); |
| 412 | |
| 413 | switch (ct) { |
| 414 | case kRGBA_8888_SkColorType: |
| 415 | case kBGRA_8888_SkColorType: |
| 416 | proc_1_2 = downsample_1_2<ColorTypeFilter_8888>; |
| 417 | proc_1_3 = downsample_1_3<ColorTypeFilter_8888>; |
| 418 | proc_2_1 = downsample_2_1<ColorTypeFilter_8888>; |
| 419 | proc_2_2 = downsample_2_2<ColorTypeFilter_8888>; |
| 420 | proc_2_3 = downsample_2_3<ColorTypeFilter_8888>; |
| 421 | proc_3_1 = downsample_3_1<ColorTypeFilter_8888>; |
| 422 | proc_3_2 = downsample_3_2<ColorTypeFilter_8888>; |
| 423 | proc_3_3 = downsample_3_3<ColorTypeFilter_8888>; |
| 424 | break; |
| 425 | case kRGB_565_SkColorType: |
| 426 | proc_1_2 = downsample_1_2<ColorTypeFilter_565>; |
| 427 | proc_1_3 = downsample_1_3<ColorTypeFilter_565>; |
| 428 | proc_2_1 = downsample_2_1<ColorTypeFilter_565>; |
| 429 | proc_2_2 = downsample_2_2<ColorTypeFilter_565>; |
| 430 | proc_2_3 = downsample_2_3<ColorTypeFilter_565>; |
| 431 | proc_3_1 = downsample_3_1<ColorTypeFilter_565>; |
| 432 | proc_3_2 = downsample_3_2<ColorTypeFilter_565>; |
| 433 | proc_3_3 = downsample_3_3<ColorTypeFilter_565>; |
| 434 | break; |
| 435 | case kARGB_4444_SkColorType: |
| 436 | proc_1_2 = downsample_1_2<ColorTypeFilter_4444>; |
| 437 | proc_1_3 = downsample_1_3<ColorTypeFilter_4444>; |
| 438 | proc_2_1 = downsample_2_1<ColorTypeFilter_4444>; |
| 439 | proc_2_2 = downsample_2_2<ColorTypeFilter_4444>; |
| 440 | proc_2_3 = downsample_2_3<ColorTypeFilter_4444>; |
| 441 | proc_3_1 = downsample_3_1<ColorTypeFilter_4444>; |
| 442 | proc_3_2 = downsample_3_2<ColorTypeFilter_4444>; |
| 443 | proc_3_3 = downsample_3_3<ColorTypeFilter_4444>; |
| 444 | break; |
| 445 | case kAlpha_8_SkColorType: |
| 446 | case kGray_8_SkColorType: |
| 447 | proc_1_2 = downsample_1_2<ColorTypeFilter_8>; |
| 448 | proc_1_3 = downsample_1_3<ColorTypeFilter_8>; |
| 449 | proc_2_1 = downsample_2_1<ColorTypeFilter_8>; |
| 450 | proc_2_2 = downsample_2_2<ColorTypeFilter_8>; |
| 451 | proc_2_3 = downsample_2_3<ColorTypeFilter_8>; |
| 452 | proc_3_1 = downsample_3_1<ColorTypeFilter_8>; |
| 453 | proc_3_2 = downsample_3_2<ColorTypeFilter_8>; |
| 454 | proc_3_3 = downsample_3_3<ColorTypeFilter_8>; |
| 455 | break; |
| 456 | case kRGBA_F16Norm_SkColorType: |
| 457 | case kRGBA_F16_SkColorType: |
| 458 | proc_1_2 = downsample_1_2<ColorTypeFilter_RGBA_F16>; |
| 459 | proc_1_3 = downsample_1_3<ColorTypeFilter_RGBA_F16>; |
| 460 | proc_2_1 = downsample_2_1<ColorTypeFilter_RGBA_F16>; |
| 461 | proc_2_2 = downsample_2_2<ColorTypeFilter_RGBA_F16>; |
| 462 | proc_2_3 = downsample_2_3<ColorTypeFilter_RGBA_F16>; |
| 463 | proc_3_1 = downsample_3_1<ColorTypeFilter_RGBA_F16>; |
| 464 | proc_3_2 = downsample_3_2<ColorTypeFilter_RGBA_F16>; |
| 465 | proc_3_3 = downsample_3_3<ColorTypeFilter_RGBA_F16>; |
| 466 | break; |
| 467 | case kR8G8_unorm_SkColorType: |
| 468 | proc_1_2 = downsample_1_2<ColorTypeFilter_88>; |
| 469 | proc_1_3 = downsample_1_3<ColorTypeFilter_88>; |
| 470 | proc_2_1 = downsample_2_1<ColorTypeFilter_88>; |
| 471 | proc_2_2 = downsample_2_2<ColorTypeFilter_88>; |
| 472 | proc_2_3 = downsample_2_3<ColorTypeFilter_88>; |
| 473 | proc_3_1 = downsample_3_1<ColorTypeFilter_88>; |
| 474 | proc_3_2 = downsample_3_2<ColorTypeFilter_88>; |
| 475 | proc_3_3 = downsample_3_3<ColorTypeFilter_88>; |
| 476 | break; |
| 477 | case kR16G16_unorm_SkColorType: |
| 478 | proc_1_2 = downsample_1_2<ColorTypeFilter_1616>; |
| 479 | proc_1_3 = downsample_1_3<ColorTypeFilter_1616>; |
| 480 | proc_2_1 = downsample_2_1<ColorTypeFilter_1616>; |
| 481 | proc_2_2 = downsample_2_2<ColorTypeFilter_1616>; |
| 482 | proc_2_3 = downsample_2_3<ColorTypeFilter_1616>; |
| 483 | proc_3_1 = downsample_3_1<ColorTypeFilter_1616>; |
| 484 | proc_3_2 = downsample_3_2<ColorTypeFilter_1616>; |
| 485 | proc_3_3 = downsample_3_3<ColorTypeFilter_1616>; |
| 486 | break; |
| 487 | case kA16_unorm_SkColorType: |
| 488 | proc_1_2 = downsample_1_2<ColorTypeFilter_16>; |
| 489 | proc_1_3 = downsample_1_3<ColorTypeFilter_16>; |
| 490 | proc_2_1 = downsample_2_1<ColorTypeFilter_16>; |
| 491 | proc_2_2 = downsample_2_2<ColorTypeFilter_16>; |
| 492 | proc_2_3 = downsample_2_3<ColorTypeFilter_16>; |
| 493 | proc_3_1 = downsample_3_1<ColorTypeFilter_16>; |
| 494 | proc_3_2 = downsample_3_2<ColorTypeFilter_16>; |
| 495 | proc_3_3 = downsample_3_3<ColorTypeFilter_16>; |
| 496 | break; |
| 497 | case kRGBA_1010102_SkColorType: |
| 498 | case kBGRA_1010102_SkColorType: |
| 499 | proc_1_2 = downsample_1_2<ColorTypeFilter_1010102>; |
| 500 | proc_1_3 = downsample_1_3<ColorTypeFilter_1010102>; |
| 501 | proc_2_1 = downsample_2_1<ColorTypeFilter_1010102>; |
| 502 | proc_2_2 = downsample_2_2<ColorTypeFilter_1010102>; |
| 503 | proc_2_3 = downsample_2_3<ColorTypeFilter_1010102>; |
| 504 | proc_3_1 = downsample_3_1<ColorTypeFilter_1010102>; |
| 505 | proc_3_2 = downsample_3_2<ColorTypeFilter_1010102>; |
| 506 | proc_3_3 = downsample_3_3<ColorTypeFilter_1010102>; |
| 507 | break; |
| 508 | case kA16_float_SkColorType: |
| 509 | proc_1_2 = downsample_1_2<ColorTypeFilter_Alpha_F16>; |
| 510 | proc_1_3 = downsample_1_3<ColorTypeFilter_Alpha_F16>; |
| 511 | proc_2_1 = downsample_2_1<ColorTypeFilter_Alpha_F16>; |
| 512 | proc_2_2 = downsample_2_2<ColorTypeFilter_Alpha_F16>; |
| 513 | proc_2_3 = downsample_2_3<ColorTypeFilter_Alpha_F16>; |
| 514 | proc_3_1 = downsample_3_1<ColorTypeFilter_Alpha_F16>; |
| 515 | proc_3_2 = downsample_3_2<ColorTypeFilter_Alpha_F16>; |
| 516 | proc_3_3 = downsample_3_3<ColorTypeFilter_Alpha_F16>; |
| 517 | break; |
| 518 | case kR16G16_float_SkColorType: |
| 519 | proc_1_2 = downsample_1_2<ColorTypeFilter_F16F16>; |
| 520 | proc_1_3 = downsample_1_3<ColorTypeFilter_F16F16>; |
| 521 | proc_2_1 = downsample_2_1<ColorTypeFilter_F16F16>; |
| 522 | proc_2_2 = downsample_2_2<ColorTypeFilter_F16F16>; |
| 523 | proc_2_3 = downsample_2_3<ColorTypeFilter_F16F16>; |
| 524 | proc_3_1 = downsample_3_1<ColorTypeFilter_F16F16>; |
| 525 | proc_3_2 = downsample_3_2<ColorTypeFilter_F16F16>; |
| 526 | proc_3_3 = downsample_3_3<ColorTypeFilter_F16F16>; |
| 527 | break; |
| 528 | case kR16G16B16A16_unorm_SkColorType: |
| 529 | proc_1_2 = downsample_1_2<ColorTypeFilter_16161616>; |
| 530 | proc_1_3 = downsample_1_3<ColorTypeFilter_16161616>; |
| 531 | proc_2_1 = downsample_2_1<ColorTypeFilter_16161616>; |
| 532 | proc_2_2 = downsample_2_2<ColorTypeFilter_16161616>; |
| 533 | proc_2_3 = downsample_2_3<ColorTypeFilter_16161616>; |
| 534 | proc_3_1 = downsample_3_1<ColorTypeFilter_16161616>; |
| 535 | proc_3_2 = downsample_3_2<ColorTypeFilter_16161616>; |
| 536 | proc_3_3 = downsample_3_3<ColorTypeFilter_16161616>; |
| 537 | break; |
| 538 | |
| 539 | case kUnknown_SkColorType: |
| 540 | case kRGB_888x_SkColorType: // TODO: use 8888? |
| 541 | case kRGB_101010x_SkColorType: // TODO: use 1010102? |
| 542 | case kBGR_101010x_SkColorType: // TODO: use 1010102? |
| 543 | case kRGBA_F32_SkColorType: |
| 544 | return nullptr; |
| 545 | } |
| 546 | |
| 547 | if (src.width() <= 1 && src.height() <= 1) { |
| 548 | return nullptr; |
| 549 | } |
| 550 | // whip through our loop to compute the exact size needed |
| 551 | size_t size = 0; |
| 552 | int countLevels = ComputeLevelCount(src.width(), src.height()); |
| 553 | for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) { |
| 554 | SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel); |
| 555 | size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight; |
| 556 | } |
| 557 | |
| 558 | size_t storageSize = SkMipmap::AllocLevelsSize(countLevels, size); |
| 559 | if (0 == storageSize) { |
| 560 | return nullptr; |
| 561 | } |
| 562 | |
| 563 | SkMipmap* mipmap; |
| 564 | if (fact) { |
| 565 | SkDiscardableMemory* dm = fact(storageSize); |
| 566 | if (nullptr == dm) { |
| 567 | return nullptr; |
| 568 | } |
| 569 | mipmap = new SkMipmap(storageSize, dm); |
| 570 | } else { |
| 571 | mipmap = new SkMipmap(sk_malloc_throw(storageSize), storageSize); |
| 572 | } |
| 573 | |
| 574 | // init |
| 575 | mipmap->fCS = sk_ref_sp(src.info().colorSpace()); |
| 576 | mipmap->fCount = countLevels; |
| 577 | mipmap->fLevels = (Level*)mipmap->writable_data(); |
| 578 | SkASSERT(mipmap->fLevels); |
| 579 | |
| 580 | Level* levels = mipmap->fLevels; |
| 581 | uint8_t* baseAddr = (uint8_t*)&levels[countLevels]; |
| 582 | uint8_t* addr = baseAddr; |
| 583 | int width = src.width(); |
| 584 | int height = src.height(); |
| 585 | uint32_t rowBytes; |
| 586 | SkPixmap srcPM(src); |
| 587 | |
| 588 | // Depending on architecture and other factors, the pixel data alignment may need to be as |
| 589 | // large as 8 (for F16 pixels). See the comment on SkMipmap::Level. |
| 590 | SkASSERT(SkIsAlign8((uintptr_t)addr)); |
| 591 | |
| 592 | for (int i = 0; i < countLevels; ++i) { |
| 593 | FilterProc* proc; |
| 594 | if (height & 1) { |
| 595 | if (height == 1) { // src-height is 1 |
| 596 | if (width & 1) { // src-width is 3 |
| 597 | proc = proc_3_1; |
| 598 | } else { // src-width is 2 |
| 599 | proc = proc_2_1; |
| 600 | } |
| 601 | } else { // src-height is 3 |
| 602 | if (width & 1) { |
| 603 | if (width == 1) { // src-width is 1 |
| 604 | proc = proc_1_3; |
| 605 | } else { // src-width is 3 |
| 606 | proc = proc_3_3; |
| 607 | } |
| 608 | } else { // src-width is 2 |
| 609 | proc = proc_2_3; |
| 610 | } |
| 611 | } |
| 612 | } else { // src-height is 2 |
| 613 | if (width & 1) { |
| 614 | if (width == 1) { // src-width is 1 |
| 615 | proc = proc_1_2; |
| 616 | } else { // src-width is 3 |
| 617 | proc = proc_3_2; |
| 618 | } |
| 619 | } else { // src-width is 2 |
| 620 | proc = proc_2_2; |
| 621 | } |
| 622 | } |
| 623 | width = std::max(1, width >> 1); |
| 624 | height = std::max(1, height >> 1); |
| 625 | rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width)); |
| 626 | |
| 627 | // We make the Info w/o any colorspace, since that storage is not under our control, and |
| 628 | // will not be deleted in a controlled fashion. When the caller is given the pixmap for |
| 629 | // a given level, we augment this pixmap with fCS (which we do manage). |
| 630 | new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes); |
| 631 | levels[i].fScale = SkSize::Make(SkIntToScalar(width) / src.width(), |
| 632 | SkIntToScalar(height) / src.height()); |
| 633 | |
| 634 | const SkPixmap& dstPM = levels[i].fPixmap; |
| 635 | if (computeContents) { |
| 636 | const void* srcBasePtr = srcPM.addr(); |
| 637 | void* dstBasePtr = dstPM.writable_addr(); |
| 638 | |
| 639 | const size_t srcRB = srcPM.rowBytes(); |
| 640 | for (int y = 0; y < height; y++) { |
| 641 | proc(dstBasePtr, srcBasePtr, srcRB, width); |
| 642 | srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows |
| 643 | dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes(); |
| 644 | } |
| 645 | } |
| 646 | srcPM = dstPM; |
| 647 | addr += height * rowBytes; |
| 648 | } |
| 649 | SkASSERT(addr == baseAddr + size); |
| 650 | |
| 651 | SkASSERT(mipmap->fLevels); |
| 652 | return mipmap; |
| 653 | } |
| 654 | |
| 655 | int SkMipmap::ComputeLevelCount(int baseWidth, int baseHeight) { |
| 656 | if (baseWidth < 1 || baseHeight < 1) { |
| 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | // OpenGL's spec requires that each mipmap level have height/width equal to |
| 661 | // max(1, floor(original_height / 2^i) |
| 662 | // (or original_width) where i is the mipmap level. |
| 663 | // Continue scaling down until both axes are size 1. |
| 664 | |
| 665 | const int largestAxis = std::max(baseWidth, baseHeight); |
| 666 | if (largestAxis < 2) { |
| 667 | // SkMipmap::Build requires a minimum size of 2. |
| 668 | return 0; |
| 669 | } |
| 670 | const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis)); |
| 671 | // If the value 00011010 has 3 leading 0s then it has 5 significant bits |
| 672 | // (the bits which are not leading zeros) |
| 673 | const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros; |
| 674 | // This is making the assumption that the size of a byte is 8 bits |
| 675 | // and that sizeof(uint32_t)'s implementation-defined behavior is 4. |
| 676 | int mipLevelCount = significantBits; |
| 677 | |
| 678 | // SkMipmap does not include the base mip level. |
| 679 | // For example, it contains levels 1-x instead of 0-x. |
| 680 | // This is because the image used to create SkMipmap is the base level. |
| 681 | // So subtract 1 from the mip level count. |
| 682 | if (mipLevelCount > 0) { |
| 683 | --mipLevelCount; |
| 684 | } |
| 685 | |
| 686 | return mipLevelCount; |
| 687 | } |
| 688 | |
| 689 | SkISize SkMipmap::ComputeLevelSize(int baseWidth, int baseHeight, int level) { |
| 690 | if (baseWidth < 1 || baseHeight < 1) { |
| 691 | return SkISize::Make(0, 0); |
| 692 | } |
| 693 | |
| 694 | int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight); |
| 695 | if (level >= maxLevelCount || level < 0) { |
| 696 | return SkISize::Make(0, 0); |
| 697 | } |
| 698 | // OpenGL's spec requires that each mipmap level have height/width equal to |
| 699 | // max(1, floor(original_height / 2^i) |
| 700 | // (or original_width) where i is the mipmap level. |
| 701 | |
| 702 | // SkMipmap does not include the base mip level. |
| 703 | // For example, it contains levels 1-x instead of 0-x. |
| 704 | // This is because the image used to create SkMipmap is the base level. |
| 705 | // So subtract 1 from the mip level to get the index stored by SkMipmap. |
| 706 | int width = std::max(1, baseWidth >> (level + 1)); |
| 707 | int height = std::max(1, baseHeight >> (level + 1)); |
| 708 | |
| 709 | return SkISize::Make(width, height); |
| 710 | } |
| 711 | |
| 712 | /////////////////////////////////////////////////////////////////////////////// |
| 713 | |
| 714 | // Returns fractional level value. floor(level) is the index of the larger level. |
| 715 | // < 0 means failure. |
| 716 | float SkMipmap::ComputeLevel(SkSize scaleSize) { |
| 717 | SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0); |
| 718 | |
| 719 | #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE |
| 720 | // Use the smallest scale to match the GPU impl. |
| 721 | const SkScalar scale = std::min(scaleSize.width(), scaleSize.height()); |
| 722 | #else |
| 723 | // Ideally we'd pick the smaller scale, to match Ganesh. But ignoring one of the |
| 724 | // scales can produce some atrocious results, so for now we use the geometric mean. |
| 725 | // (https://bugs.chromium.org/p/skia/issues/detail?id=4863) |
| 726 | const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height()); |
| 727 | #endif |
| 728 | |
| 729 | if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) { |
| 730 | return -1; |
| 731 | } |
| 732 | |
| 733 | SkScalar L = -SkScalarLog2(scale); |
| 734 | if (!SkScalarIsFinite(L)) { |
| 735 | return -1; |
| 736 | } |
| 737 | SkASSERT(L >= 0); |
| 738 | return L; |
| 739 | } |
| 740 | |
| 741 | bool SkMipmap::(SkSize scaleSize, Level* levelPtr) const { |
| 742 | if (nullptr == fLevels) { |
| 743 | return false; |
| 744 | } |
| 745 | |
| 746 | float L = ComputeLevel(scaleSize); |
| 747 | int level = SkScalarFloorToInt(L); |
| 748 | if (level <= 0) { |
| 749 | return false; |
| 750 | } |
| 751 | |
| 752 | if (level > fCount) { |
| 753 | level = fCount; |
| 754 | } |
| 755 | if (levelPtr) { |
| 756 | *levelPtr = fLevels[level - 1]; |
| 757 | // need to augment with our colorspace |
| 758 | levelPtr->fPixmap.setColorSpace(fCS); |
| 759 | } |
| 760 | return true; |
| 761 | } |
| 762 | |
| 763 | bool SkMipmap::validForRootLevel(const SkImageInfo& root) const { |
| 764 | if (nullptr == fLevels) { |
| 765 | return false; |
| 766 | } |
| 767 | |
| 768 | const SkISize dimension = root.dimensions(); |
| 769 | if (dimension.width() <= 1 && dimension.height() <= 1) { |
| 770 | return false; |
| 771 | } |
| 772 | |
| 773 | const SkPixmap& pm = fLevels[0].fPixmap; |
| 774 | if (pm. width() != std::max(1, dimension. width() >> 1) || |
| 775 | pm.height() != std::max(1, dimension.height() >> 1)) { |
| 776 | return false; |
| 777 | } |
| 778 | |
| 779 | for (int i = 0; i < this->countLevels(); ++i) { |
| 780 | const SkPixmap& pm = fLevels[0].fPixmap; |
| 781 | if (pm.colorType() != root.colorType() || |
| 782 | pm.alphaType() != root.alphaType()) |
| 783 | return false; |
| 784 | } |
| 785 | return true; |
| 786 | } |
| 787 | |
| 788 | // Helper which extracts a pixmap from the src bitmap |
| 789 | // |
| 790 | SkMipmap* SkMipmap::Build(const SkBitmap& src, SkDiscardableFactoryProc fact) { |
| 791 | SkPixmap srcPixmap; |
| 792 | if (!src.peekPixels(&srcPixmap)) { |
| 793 | return nullptr; |
| 794 | } |
| 795 | return Build(srcPixmap, fact); |
| 796 | } |
| 797 | |
| 798 | int SkMipmap::countLevels() const { |
| 799 | return fCount; |
| 800 | } |
| 801 | |
| 802 | bool SkMipmap::getLevel(int index, Level* levelPtr) const { |
| 803 | if (nullptr == fLevels) { |
| 804 | return false; |
| 805 | } |
| 806 | if (index < 0) { |
| 807 | return false; |
| 808 | } |
| 809 | if (index > fCount - 1) { |
| 810 | return false; |
| 811 | } |
| 812 | if (levelPtr) { |
| 813 | *levelPtr = fLevels[index]; |
| 814 | // need to augment with our colorspace |
| 815 | levelPtr->fPixmap.setColorSpace(fCS); |
| 816 | } |
| 817 | return true; |
| 818 | } |
| 819 | |
| 820 | ////////////////////////////////////////////////////////////////////////////////////////////////// |
| 821 | |
| 822 | #include "include/core/SkImageGenerator.h" |
| 823 | #include "include/core/SkStream.h" |
| 824 | #include "include/encode/SkPngEncoder.h" |
| 825 | #include "src/core/SkReadBuffer.h" |
| 826 | #include "src/core/SkWriteBuffer.h" |
| 827 | |
| 828 | static sk_sp<SkData> encode_to_data(const SkPixmap& pm) { |
| 829 | SkDynamicMemoryWStream stream; |
| 830 | if (SkPngEncoder::Encode(&stream, pm, SkPngEncoder::Options())) { |
| 831 | return stream.detachAsData(); |
| 832 | } |
| 833 | return nullptr; |
| 834 | } |
| 835 | |
| 836 | /* Format |
| 837 | count_levels:32 |
| 838 | for each level, starting with the biggest (index 0 in our iterator) |
| 839 | encoded_size:32 |
| 840 | encoded_data (padded) |
| 841 | */ |
| 842 | sk_sp<SkData> SkMipmap::serialize() const { |
| 843 | const int count = this->countLevels(); |
| 844 | |
| 845 | SkBinaryWriteBuffer buffer; |
| 846 | buffer.write32(count); |
| 847 | for (int i = 0; i < count; ++i) { |
| 848 | Level level; |
| 849 | if (this->getLevel(i, &level)) { |
| 850 | buffer.writeDataAsByteArray(encode_to_data(level.fPixmap).get()); |
| 851 | } else { |
| 852 | return nullptr; |
| 853 | } |
| 854 | } |
| 855 | return buffer.snapshotAsData(); |
| 856 | } |
| 857 | |
| 858 | bool SkMipmap::Deserialize(SkMipmapBuilder* builder, const void* data, size_t size) { |
| 859 | SkReadBuffer buffer(data, size); |
| 860 | |
| 861 | int count = buffer.read32(); |
| 862 | if (builder->countLevels() != count) { |
| 863 | return false; |
| 864 | } |
| 865 | for (int i = 0; i < count; ++i) { |
| 866 | size_t size = buffer.read32(); |
| 867 | const void* ptr = buffer.skip(size); |
| 868 | if (!ptr) { |
| 869 | return false; |
| 870 | } |
| 871 | auto gen = SkImageGenerator::MakeFromEncoded( |
| 872 | SkData::MakeWithProc(ptr, size, nullptr, nullptr)); |
| 873 | if (!gen) { |
| 874 | return false; |
| 875 | } |
| 876 | |
| 877 | SkPixmap pm = builder->level(i); |
| 878 | if (gen->getInfo().dimensions() != pm.dimensions()) { |
| 879 | return false; |
| 880 | } |
| 881 | if (!gen->getPixels(pm)) { |
| 882 | return false; |
| 883 | } |
| 884 | } |
| 885 | return buffer.isValid(); |
| 886 | } |
| 887 | |