1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "src/core/SkTSort.h" |
8 | #include "src/pathops/SkOpAngle.h" |
9 | #include "src/pathops/SkOpSegment.h" |
10 | #include "src/pathops/SkPathOpsCurve.h" |
11 | |
12 | /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest |
13 | positive y. The largest angle has a positive x and a zero y. */ |
14 | |
15 | #if DEBUG_ANGLE |
16 | static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append, |
17 | bool compare) { |
18 | SkDebugf("%s %c %d\n" , bugOut->c_str(), compare ? 'T' : 'F', append); |
19 | SkDebugf("%sPart %s\n" , func, bugPart[0].c_str()); |
20 | SkDebugf("%sPart %s\n" , func, bugPart[1].c_str()); |
21 | SkDebugf("%sPart %s\n" , func, bugPart[2].c_str()); |
22 | return compare; |
23 | } |
24 | |
25 | #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \ |
26 | compare) |
27 | #else |
28 | #define COMPARE_RESULT(append, compare) compare |
29 | #endif |
30 | |
31 | /* quarter angle values for sector |
32 | |
33 | 31 x > 0, y == 0 horizontal line (to the right) |
34 | 0 x > 0, y == epsilon quad/cubic horizontal tangent eventually going +y |
35 | 1 x > 0, y > 0, x > y nearer horizontal angle |
36 | 2 x + e == y quad/cubic 45 going horiz |
37 | 3 x > 0, y > 0, x == y 45 angle |
38 | 4 x == y + e quad/cubic 45 going vert |
39 | 5 x > 0, y > 0, x < y nearer vertical angle |
40 | 6 x == epsilon, y > 0 quad/cubic vertical tangent eventually going +x |
41 | 7 x == 0, y > 0 vertical line (to the top) |
42 | |
43 | 8 7 6 |
44 | 9 | 5 |
45 | 10 | 4 |
46 | 11 | 3 |
47 | 12 \ | / 2 |
48 | 13 | 1 |
49 | 14 | 0 |
50 | 15 --------------+------------- 31 |
51 | 16 | 30 |
52 | 17 | 29 |
53 | 18 / | \ 28 |
54 | 19 | 27 |
55 | 20 | 26 |
56 | 21 | 25 |
57 | 22 23 24 |
58 | */ |
59 | |
60 | // return true if lh < this < rh |
61 | bool SkOpAngle::after(SkOpAngle* test) { |
62 | SkOpAngle* lh = test; |
63 | SkOpAngle* rh = lh->fNext; |
64 | SkASSERT(lh != rh); |
65 | fPart.fCurve = fOriginalCurvePart; |
66 | lh->fPart.fCurve = lh->fOriginalCurvePart; |
67 | lh->fPart.fCurve.offset(lh->segment()->verb(), fPart.fCurve[0] - lh->fPart.fCurve[0]); |
68 | rh->fPart.fCurve = rh->fOriginalCurvePart; |
69 | rh->fPart.fCurve.offset(rh->segment()->verb(), fPart.fCurve[0] - rh->fPart.fCurve[0]); |
70 | |
71 | #if DEBUG_ANGLE |
72 | SkString bugOut; |
73 | bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" |
74 | " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" |
75 | " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g " , __FUNCTION__, |
76 | lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd, |
77 | lh->fStart->t(), lh->fEnd->t(), |
78 | segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(), |
79 | rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd, |
80 | rh->fStart->t(), rh->fEnd->t()); |
81 | SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() }; |
82 | #endif |
83 | if (lh->fComputeSector && !lh->computeSector()) { |
84 | return COMPARE_RESULT(1, true); |
85 | } |
86 | if (fComputeSector && !this->computeSector()) { |
87 | return COMPARE_RESULT(2, true); |
88 | } |
89 | if (rh->fComputeSector && !rh->computeSector()) { |
90 | return COMPARE_RESULT(3, true); |
91 | } |
92 | #if DEBUG_ANGLE // reset bugOut with computed sectors |
93 | bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" |
94 | " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" |
95 | " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g " , __FUNCTION__, |
96 | lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd, |
97 | lh->fStart->t(), lh->fEnd->t(), |
98 | segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(), |
99 | rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd, |
100 | rh->fStart->t(), rh->fEnd->t()); |
101 | #endif |
102 | bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask; |
103 | bool lrOverlap = lh->fSectorMask & rh->fSectorMask; |
104 | int lrOrder; // set to -1 if either order works |
105 | if (!lrOverlap) { // no lh/rh sector overlap |
106 | if (!ltrOverlap) { // no lh/this/rh sector overlap |
107 | return COMPARE_RESULT(4, (lh->fSectorEnd > rh->fSectorStart) |
108 | ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart)); |
109 | } |
110 | int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f; |
111 | /* A tiny change can move the start +/- 4. The order can only be determined if |
112 | lr gap is not 12 to 20 or -12 to -20. |
113 | -31 ..-21 1 |
114 | -20 ..-12 -1 |
115 | -11 .. -1 0 |
116 | 0 shouldn't get here |
117 | 11 .. 1 1 |
118 | 12 .. 20 -1 |
119 | 21 .. 31 0 |
120 | */ |
121 | lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1; |
122 | } else { |
123 | lrOrder = lh->orderable(rh); |
124 | if (!ltrOverlap && lrOrder >= 0) { |
125 | return COMPARE_RESULT(5, !lrOrder); |
126 | } |
127 | } |
128 | int ltOrder; |
129 | SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask) || -1 == lrOrder); |
130 | if (lh->fSectorMask & fSectorMask) { |
131 | ltOrder = lh->orderable(this); |
132 | } else { |
133 | int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f; |
134 | ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1; |
135 | } |
136 | int trOrder; |
137 | if (rh->fSectorMask & fSectorMask) { |
138 | trOrder = this->orderable(rh); |
139 | } else { |
140 | int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f; |
141 | trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1; |
142 | } |
143 | this->alignmentSameSide(lh, <Order); |
144 | this->alignmentSameSide(rh, &trOrder); |
145 | if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) { |
146 | return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder)); |
147 | } |
148 | // SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0); |
149 | // There's not enough information to sort. Get the pairs of angles in opposite planes. |
150 | // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs. |
151 | // FIXME : once all variants are understood, rewrite this more simply |
152 | if (ltOrder == 0 && lrOrder == 0) { |
153 | SkASSERT(trOrder < 0); |
154 | // FIXME : once this is verified to work, remove one opposite angle call |
155 | SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh)); |
156 | bool ltOpposite = lh->oppositePlanes(this); |
157 | SkOPASSERT(lrOpposite != ltOpposite); |
158 | return COMPARE_RESULT(8, ltOpposite); |
159 | } else if (ltOrder == 1 && trOrder == 0) { |
160 | SkASSERT(lrOrder < 0); |
161 | bool trOpposite = oppositePlanes(rh); |
162 | return COMPARE_RESULT(9, trOpposite); |
163 | } else if (lrOrder == 1 && trOrder == 1) { |
164 | SkASSERT(ltOrder < 0); |
165 | // SkDEBUGCODE(bool trOpposite = oppositePlanes(rh)); |
166 | bool lrOpposite = lh->oppositePlanes(rh); |
167 | // SkASSERT(lrOpposite != trOpposite); |
168 | return COMPARE_RESULT(10, lrOpposite); |
169 | } |
170 | // If a pair couldn't be ordered, there's not enough information to determine the sort. |
171 | // Refer to: https://docs.google.com/drawings/d/1KV-8SJTedku9fj4K6fd1SB-8divuV_uivHVsSgwXICQ |
172 | if (fUnorderable || lh->fUnorderable || rh->fUnorderable) { |
173 | // limit to lines; should work with curves, but wait for a failing test to verify |
174 | if (!fPart.isCurve() && !lh->fPart.isCurve() && !rh->fPart.isCurve()) { |
175 | // see if original raw data is orderable |
176 | // if two share a point, check if third has both points in same half plane |
177 | int ltShare = lh->fOriginalCurvePart[0] == fOriginalCurvePart[0]; |
178 | int lrShare = lh->fOriginalCurvePart[0] == rh->fOriginalCurvePart[0]; |
179 | int trShare = fOriginalCurvePart[0] == rh->fOriginalCurvePart[0]; |
180 | // if only one pair are the same, the third point touches neither of the pair |
181 | if (ltShare + lrShare + trShare == 1) { |
182 | if (lrShare) { |
183 | int ltOOrder = lh->linesOnOriginalSide(this); |
184 | int rtOOrder = rh->linesOnOriginalSide(this); |
185 | if ((rtOOrder ^ ltOOrder) == 1) { |
186 | return ltOOrder; |
187 | } |
188 | } else if (trShare) { |
189 | int tlOOrder = this->linesOnOriginalSide(lh); |
190 | int rlOOrder = rh->linesOnOriginalSide(lh); |
191 | if ((tlOOrder ^ rlOOrder) == 1) { |
192 | return rlOOrder; |
193 | } |
194 | } else { |
195 | SkASSERT(ltShare); |
196 | int trOOrder = rh->linesOnOriginalSide(this); |
197 | int lrOOrder = lh->linesOnOriginalSide(rh); |
198 | // result must be 0 and 1 or 1 and 0 to be valid |
199 | if ((lrOOrder ^ trOOrder) == 1) { |
200 | return trOOrder; |
201 | } |
202 | } |
203 | } |
204 | } |
205 | } |
206 | if (lrOrder < 0) { |
207 | if (ltOrder < 0) { |
208 | return COMPARE_RESULT(11, trOrder); |
209 | } |
210 | return COMPARE_RESULT(12, ltOrder); |
211 | } |
212 | return COMPARE_RESULT(13, !lrOrder); |
213 | } |
214 | |
215 | int SkOpAngle::lineOnOneSide(const SkDPoint& origin, const SkDVector& line, const SkOpAngle* test, |
216 | bool useOriginal) const { |
217 | double crosses[3]; |
218 | SkPath::Verb testVerb = test->segment()->verb(); |
219 | int iMax = SkPathOpsVerbToPoints(testVerb); |
220 | // SkASSERT(origin == test.fCurveHalf[0]); |
221 | const SkDCurve& testCurve = useOriginal ? test->fOriginalCurvePart : test->fPart.fCurve; |
222 | for (int index = 1; index <= iMax; ++index) { |
223 | double xy1 = line.fX * (testCurve[index].fY - origin.fY); |
224 | double xy2 = line.fY * (testCurve[index].fX - origin.fX); |
225 | crosses[index - 1] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2; |
226 | } |
227 | if (crosses[0] * crosses[1] < 0) { |
228 | return -1; |
229 | } |
230 | if (SkPath::kCubic_Verb == testVerb) { |
231 | if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) { |
232 | return -1; |
233 | } |
234 | } |
235 | if (crosses[0]) { |
236 | return crosses[0] < 0; |
237 | } |
238 | if (crosses[1]) { |
239 | return crosses[1] < 0; |
240 | } |
241 | if (SkPath::kCubic_Verb == testVerb && crosses[2]) { |
242 | return crosses[2] < 0; |
243 | } |
244 | return -2; |
245 | } |
246 | |
247 | // given a line, see if the opposite curve's convex hull is all on one side |
248 | // returns -1=not on one side 0=this CW of test 1=this CCW of test |
249 | int SkOpAngle::lineOnOneSide(const SkOpAngle* test, bool useOriginal) { |
250 | SkASSERT(!fPart.isCurve()); |
251 | SkASSERT(test->fPart.isCurve()); |
252 | SkDPoint origin = fPart.fCurve[0]; |
253 | SkDVector line = fPart.fCurve[1] - origin; |
254 | int result = this->lineOnOneSide(origin, line, test, useOriginal); |
255 | if (-2 == result) { |
256 | fUnorderable = true; |
257 | result = -1; |
258 | } |
259 | return result; |
260 | } |
261 | |
262 | // experiment works only with lines for now |
263 | int SkOpAngle::linesOnOriginalSide(const SkOpAngle* test) { |
264 | SkASSERT(!fPart.isCurve()); |
265 | SkASSERT(!test->fPart.isCurve()); |
266 | SkDPoint origin = fOriginalCurvePart[0]; |
267 | SkDVector line = fOriginalCurvePart[1] - origin; |
268 | double dots[2]; |
269 | double crosses[2]; |
270 | const SkDCurve& testCurve = test->fOriginalCurvePart; |
271 | for (int index = 0; index < 2; ++index) { |
272 | SkDVector testLine = testCurve[index] - origin; |
273 | double xy1 = line.fX * testLine.fY; |
274 | double xy2 = line.fY * testLine.fX; |
275 | dots[index] = line.fX * testLine.fX + line.fY * testLine.fY; |
276 | crosses[index] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2; |
277 | } |
278 | if (crosses[0] * crosses[1] < 0) { |
279 | return -1; |
280 | } |
281 | if (crosses[0]) { |
282 | return crosses[0] < 0; |
283 | } |
284 | if (crosses[1]) { |
285 | return crosses[1] < 0; |
286 | } |
287 | if ((!dots[0] && dots[1] < 0) || (dots[0] < 0 && !dots[1])) { |
288 | return 2; // 180 degrees apart |
289 | } |
290 | fUnorderable = true; |
291 | return -1; |
292 | } |
293 | |
294 | // To sort the angles, all curves are translated to have the same starting point. |
295 | // If the curve's control point in its original position is on one side of a compared line, |
296 | // and translated is on the opposite side, reverse the previously computed order. |
297 | void SkOpAngle::alignmentSameSide(const SkOpAngle* test, int* order) const { |
298 | if (*order < 0) { |
299 | return; |
300 | } |
301 | if (fPart.isCurve()) { |
302 | // This should support all curve types, but only bug that requires this has lines |
303 | // Turning on for curves causes existing tests to fail |
304 | return; |
305 | } |
306 | if (test->fPart.isCurve()) { |
307 | return; |
308 | } |
309 | const SkDPoint& xOrigin = test->fPart.fCurve.fLine[0]; |
310 | const SkDPoint& oOrigin = test->fOriginalCurvePart.fLine[0]; |
311 | if (xOrigin == oOrigin) { |
312 | return; |
313 | } |
314 | int iMax = SkPathOpsVerbToPoints(this->segment()->verb()); |
315 | SkDVector xLine = test->fPart.fCurve.fLine[1] - xOrigin; |
316 | SkDVector oLine = test->fOriginalCurvePart.fLine[1] - oOrigin; |
317 | for (int index = 1; index <= iMax; ++index) { |
318 | const SkDPoint& testPt = fPart.fCurve[index]; |
319 | double xCross = oLine.crossCheck(testPt - xOrigin); |
320 | double oCross = xLine.crossCheck(testPt - oOrigin); |
321 | if (oCross * xCross < 0) { |
322 | *order ^= 1; |
323 | break; |
324 | } |
325 | } |
326 | } |
327 | |
328 | bool SkOpAngle::checkCrossesZero() const { |
329 | int start = std::min(fSectorStart, fSectorEnd); |
330 | int end = std::max(fSectorStart, fSectorEnd); |
331 | bool crossesZero = end - start > 16; |
332 | return crossesZero; |
333 | } |
334 | |
335 | bool SkOpAngle::checkParallel(SkOpAngle* rh) { |
336 | SkDVector scratch[2]; |
337 | const SkDVector* sweep, * tweep; |
338 | if (this->fPart.isOrdered()) { |
339 | sweep = this->fPart.fSweep; |
340 | } else { |
341 | scratch[0] = this->fPart.fCurve[1] - this->fPart.fCurve[0]; |
342 | sweep = &scratch[0]; |
343 | } |
344 | if (rh->fPart.isOrdered()) { |
345 | tweep = rh->fPart.fSweep; |
346 | } else { |
347 | scratch[1] = rh->fPart.fCurve[1] - rh->fPart.fCurve[0]; |
348 | tweep = &scratch[1]; |
349 | } |
350 | double s0xt0 = sweep->crossCheck(*tweep); |
351 | if (tangentsDiverge(rh, s0xt0)) { |
352 | return s0xt0 < 0; |
353 | } |
354 | // compute the perpendicular to the endpoints and see where it intersects the opposite curve |
355 | // if the intersections within the t range, do a cross check on those |
356 | bool inside; |
357 | if (!fEnd->contains(rh->fEnd)) { |
358 | if (this->endToSide(rh, &inside)) { |
359 | return inside; |
360 | } |
361 | if (rh->endToSide(this, &inside)) { |
362 | return !inside; |
363 | } |
364 | } |
365 | if (this->midToSide(rh, &inside)) { |
366 | return inside; |
367 | } |
368 | if (rh->midToSide(this, &inside)) { |
369 | return !inside; |
370 | } |
371 | // compute the cross check from the mid T values (last resort) |
372 | SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0]; |
373 | SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0]; |
374 | double m0xm1 = m0.crossCheck(m1); |
375 | if (m0xm1 == 0) { |
376 | this->fUnorderable = true; |
377 | rh->fUnorderable = true; |
378 | return true; |
379 | } |
380 | return m0xm1 < 0; |
381 | } |
382 | |
383 | // the original angle is too short to get meaningful sector information |
384 | // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it |
385 | // would cause it to intersect one of the adjacent angles |
386 | bool SkOpAngle::computeSector() { |
387 | if (fComputedSector) { |
388 | return !fUnorderable; |
389 | } |
390 | fComputedSector = true; |
391 | bool stepUp = fStart->t() < fEnd->t(); |
392 | SkOpSpanBase* checkEnd = fEnd; |
393 | if (checkEnd->final() && stepUp) { |
394 | fUnorderable = true; |
395 | return false; |
396 | } |
397 | do { |
398 | // advance end |
399 | const SkOpSegment* other = checkEnd->segment(); |
400 | const SkOpSpanBase* oSpan = other->head(); |
401 | do { |
402 | if (oSpan->segment() != segment()) { |
403 | continue; |
404 | } |
405 | if (oSpan == checkEnd) { |
406 | continue; |
407 | } |
408 | if (!approximately_equal(oSpan->t(), checkEnd->t())) { |
409 | continue; |
410 | } |
411 | goto recomputeSector; |
412 | } while (!oSpan->final() && (oSpan = oSpan->upCast()->next())); |
413 | checkEnd = stepUp ? !checkEnd->final() |
414 | ? checkEnd->upCast()->next() : nullptr |
415 | : checkEnd->prev(); |
416 | } while (checkEnd); |
417 | recomputeSector: |
418 | SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head() |
419 | : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail(); |
420 | if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) { |
421 | fUnorderable = true; |
422 | return false; |
423 | } |
424 | if (stepUp != (fStart->t() < computedEnd->t())) { |
425 | fUnorderable = true; |
426 | return false; |
427 | } |
428 | SkOpSpanBase* saveEnd = fEnd; |
429 | fComputedEnd = fEnd = computedEnd; |
430 | setSpans(); |
431 | setSector(); |
432 | fEnd = saveEnd; |
433 | return !fUnorderable; |
434 | } |
435 | |
436 | int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) { |
437 | const SkDVector* sweep = this->fPart.fSweep; |
438 | const SkDVector* tweep = rh->fPart.fSweep; |
439 | double s0xs1 = sweep[0].crossCheck(sweep[1]); |
440 | double s0xt0 = sweep[0].crossCheck(tweep[0]); |
441 | double s1xt0 = sweep[1].crossCheck(tweep[0]); |
442 | bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0; |
443 | double s0xt1 = sweep[0].crossCheck(tweep[1]); |
444 | double s1xt1 = sweep[1].crossCheck(tweep[1]); |
445 | tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0; |
446 | double t0xt1 = tweep[0].crossCheck(tweep[1]); |
447 | if (tBetweenS) { |
448 | return -1; |
449 | } |
450 | if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) { // s0 to s1 equals t0 to t1 |
451 | return -1; |
452 | } |
453 | bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0; |
454 | sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0; |
455 | if (sBetweenT) { |
456 | return -1; |
457 | } |
458 | // if all of the sweeps are in the same half plane, then the order of any pair is enough |
459 | if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) { |
460 | return 0; |
461 | } |
462 | if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) { |
463 | return 1; |
464 | } |
465 | // if the outside sweeps are greater than 180 degress: |
466 | // first assume the inital tangents are the ordering |
467 | // if the midpoint direction matches the inital order, that is enough |
468 | SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0]; |
469 | SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0]; |
470 | double m0xm1 = m0.crossCheck(m1); |
471 | if (s0xt0 > 0 && m0xm1 > 0) { |
472 | return 0; |
473 | } |
474 | if (s0xt0 < 0 && m0xm1 < 0) { |
475 | return 1; |
476 | } |
477 | if (tangentsDiverge(rh, s0xt0)) { |
478 | return s0xt0 < 0; |
479 | } |
480 | return m0xm1 < 0; |
481 | } |
482 | |
483 | // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup |
484 | double SkOpAngle::distEndRatio(double dist) const { |
485 | double longest = 0; |
486 | const SkOpSegment& segment = *this->segment(); |
487 | int ptCount = SkPathOpsVerbToPoints(segment.verb()); |
488 | const SkPoint* pts = segment.pts(); |
489 | for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) { |
490 | for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) { |
491 | if (idx1 == idx2) { |
492 | continue; |
493 | } |
494 | SkDVector v; |
495 | v.set(pts[idx2] - pts[idx1]); |
496 | double lenSq = v.lengthSquared(); |
497 | longest = std::max(longest, lenSq); |
498 | } |
499 | } |
500 | return sqrt(longest) / dist; |
501 | } |
502 | |
503 | bool SkOpAngle::endsIntersect(SkOpAngle* rh) { |
504 | SkPath::Verb lVerb = this->segment()->verb(); |
505 | SkPath::Verb rVerb = rh->segment()->verb(); |
506 | int lPts = SkPathOpsVerbToPoints(lVerb); |
507 | int rPts = SkPathOpsVerbToPoints(rVerb); |
508 | SkDLine rays[] = {{{this->fPart.fCurve[0], rh->fPart.fCurve[rPts]}}, |
509 | {{this->fPart.fCurve[0], this->fPart.fCurve[lPts]}}}; |
510 | if (this->fEnd->contains(rh->fEnd)) { |
511 | return checkParallel(rh); |
512 | } |
513 | double smallTs[2] = {-1, -1}; |
514 | bool limited[2] = {false, false}; |
515 | for (int index = 0; index < 2; ++index) { |
516 | SkPath::Verb cVerb = index ? rVerb : lVerb; |
517 | // if the curve is a line, then the line and the ray intersect only at their crossing |
518 | if (cVerb == SkPath::kLine_Verb) { |
519 | continue; |
520 | } |
521 | const SkOpSegment& segment = index ? *rh->segment() : *this->segment(); |
522 | SkIntersections i; |
523 | (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i); |
524 | double tStart = index ? rh->fStart->t() : this->fStart->t(); |
525 | double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t(); |
526 | bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t()); |
527 | double t = testAscends ? 0 : 1; |
528 | for (int idx2 = 0; idx2 < i.used(); ++idx2) { |
529 | double testT = i[0][idx2]; |
530 | if (!approximately_between_orderable(tStart, testT, tEnd)) { |
531 | continue; |
532 | } |
533 | if (approximately_equal_orderable(tStart, testT)) { |
534 | continue; |
535 | } |
536 | smallTs[index] = t = testAscends ? std::max(t, testT) : std::min(t, testT); |
537 | limited[index] = approximately_equal_orderable(t, tEnd); |
538 | } |
539 | } |
540 | bool sRayLonger = false; |
541 | SkDVector sCept = {0, 0}; |
542 | double sCeptT = -1; |
543 | int sIndex = -1; |
544 | bool useIntersect = false; |
545 | for (int index = 0; index < 2; ++index) { |
546 | if (smallTs[index] < 0) { |
547 | continue; |
548 | } |
549 | const SkOpSegment& segment = index ? *rh->segment() : *this->segment(); |
550 | const SkDPoint& dPt = segment.dPtAtT(smallTs[index]); |
551 | SkDVector cept = dPt - rays[index][0]; |
552 | // If this point is on the curve, it should have been detected earlier by ordinary |
553 | // curve intersection. This may be hard to determine in general, but for lines, |
554 | // the point could be close to or equal to its end, but shouldn't be near the start. |
555 | if ((index ? lPts : rPts) == 1) { |
556 | SkDVector total = rays[index][1] - rays[index][0]; |
557 | if (cept.lengthSquared() * 2 < total.lengthSquared()) { |
558 | continue; |
559 | } |
560 | } |
561 | SkDVector end = rays[index][1] - rays[index][0]; |
562 | if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) { |
563 | continue; |
564 | } |
565 | double rayDist = cept.length(); |
566 | double endDist = end.length(); |
567 | bool rayLonger = rayDist > endDist; |
568 | if (limited[0] && limited[1] && rayLonger) { |
569 | useIntersect = true; |
570 | sRayLonger = rayLonger; |
571 | sCept = cept; |
572 | sCeptT = smallTs[index]; |
573 | sIndex = index; |
574 | break; |
575 | } |
576 | double delta = fabs(rayDist - endDist); |
577 | double minX, minY, maxX, maxY; |
578 | minX = minY = SK_ScalarInfinity; |
579 | maxX = maxY = -SK_ScalarInfinity; |
580 | const SkDCurve& curve = index ? rh->fPart.fCurve : this->fPart.fCurve; |
581 | int ptCount = index ? rPts : lPts; |
582 | for (int idx2 = 0; idx2 <= ptCount; ++idx2) { |
583 | minX = std::min(minX, curve[idx2].fX); |
584 | minY = std::min(minY, curve[idx2].fY); |
585 | maxX = std::max(maxX, curve[idx2].fX); |
586 | maxY = std::max(maxY, curve[idx2].fY); |
587 | } |
588 | double maxWidth = std::max(maxX - minX, maxY - minY); |
589 | delta = sk_ieee_double_divide(delta, maxWidth); |
590 | // FIXME: move these magic numbers |
591 | // This fixes skbug.com/8380 |
592 | // Larger changes (like changing the constant in the next block) cause other |
593 | // tests to fail as documented in the bug. |
594 | // This could probably become a more general test: e.g., if translating the |
595 | // curve causes the cross product of any control point or end point to change |
596 | // sign with regard to the opposite curve's hull, treat the curves as parallel. |
597 | |
598 | // Moreso, this points to the general fragility of this approach of assigning |
599 | // winding by sorting the angles of curves sharing a common point, as mentioned |
600 | // in the bug. |
601 | if (delta < 4e-3 && delta > 1e-3 && !useIntersect && fPart.isCurve() |
602 | && rh->fPart.isCurve() && fOriginalCurvePart[0] != fPart.fCurve.fLine[0]) { |
603 | // see if original curve is on one side of hull; translated is on the other |
604 | const SkDPoint& origin = rh->fOriginalCurvePart[0]; |
605 | int count = SkPathOpsVerbToPoints(rh->segment()->verb()); |
606 | const SkDVector line = rh->fOriginalCurvePart[count] - origin; |
607 | int originalSide = rh->lineOnOneSide(origin, line, this, true); |
608 | if (originalSide >= 0) { |
609 | int translatedSide = rh->lineOnOneSide(origin, line, this, false); |
610 | if (originalSide != translatedSide) { |
611 | continue; |
612 | } |
613 | } |
614 | } |
615 | if (delta > 1e-3 && (useIntersect ^= true)) { |
616 | sRayLonger = rayLonger; |
617 | sCept = cept; |
618 | sCeptT = smallTs[index]; |
619 | sIndex = index; |
620 | } |
621 | } |
622 | if (useIntersect) { |
623 | const SkDCurve& curve = sIndex ? rh->fPart.fCurve : this->fPart.fCurve; |
624 | const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment(); |
625 | double tStart = sIndex ? rh->fStart->t() : fStart->t(); |
626 | SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0]; |
627 | double septDir = mid.crossCheck(sCept); |
628 | if (!septDir) { |
629 | return checkParallel(rh); |
630 | } |
631 | return sRayLonger ^ (sIndex == 0) ^ (septDir < 0); |
632 | } else { |
633 | return checkParallel(rh); |
634 | } |
635 | } |
636 | |
637 | bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const { |
638 | const SkOpSegment* segment = this->segment(); |
639 | SkPath::Verb verb = segment->verb(); |
640 | SkDLine rayEnd; |
641 | rayEnd[0].set(this->fEnd->pt()); |
642 | rayEnd[1] = rayEnd[0]; |
643 | SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(), |
644 | this->fEnd->t()); |
645 | rayEnd[1].fX += slopeAtEnd.fY; |
646 | rayEnd[1].fY -= slopeAtEnd.fX; |
647 | SkIntersections iEnd; |
648 | const SkOpSegment* oppSegment = rh->segment(); |
649 | SkPath::Verb oppVerb = oppSegment->verb(); |
650 | (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd); |
651 | double endDist; |
652 | int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist); |
653 | if (closestEnd < 0) { |
654 | return false; |
655 | } |
656 | if (!endDist) { |
657 | return false; |
658 | } |
659 | SkDPoint start; |
660 | start.set(this->fStart->pt()); |
661 | // OPTIMIZATION: multiple times in the code we find the max scalar |
662 | double minX, minY, maxX, maxY; |
663 | minX = minY = SK_ScalarInfinity; |
664 | maxX = maxY = -SK_ScalarInfinity; |
665 | const SkDCurve& curve = rh->fPart.fCurve; |
666 | int oppPts = SkPathOpsVerbToPoints(oppVerb); |
667 | for (int idx2 = 0; idx2 <= oppPts; ++idx2) { |
668 | minX = std::min(minX, curve[idx2].fX); |
669 | minY = std::min(minY, curve[idx2].fY); |
670 | maxX = std::max(maxX, curve[idx2].fX); |
671 | maxY = std::max(maxY, curve[idx2].fY); |
672 | } |
673 | double maxWidth = std::max(maxX - minX, maxY - minY); |
674 | endDist = sk_ieee_double_divide(endDist, maxWidth); |
675 | if (!(endDist >= 5e-12)) { // empirically found |
676 | return false; // ! above catches NaN |
677 | } |
678 | const SkDPoint* endPt = &rayEnd[0]; |
679 | SkDPoint oppPt = iEnd.pt(closestEnd); |
680 | SkDVector vLeft = *endPt - start; |
681 | SkDVector vRight = oppPt - start; |
682 | double dir = vLeft.crossNoNormalCheck(vRight); |
683 | if (!dir) { |
684 | return false; |
685 | } |
686 | *inside = dir < 0; |
687 | return true; |
688 | } |
689 | |
690 | /* y<0 y==0 y>0 x<0 x==0 x>0 xy<0 xy==0 xy>0 |
691 | 0 x x x |
692 | 1 x x x |
693 | 2 x x x |
694 | 3 x x x |
695 | 4 x x x |
696 | 5 x x x |
697 | 6 x x x |
698 | 7 x x x |
699 | 8 x x x |
700 | 9 x x x |
701 | 10 x x x |
702 | 11 x x x |
703 | 12 x x x |
704 | 13 x x x |
705 | 14 x x x |
706 | 15 x x x |
707 | */ |
708 | int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const { |
709 | double absX = fabs(x); |
710 | double absY = fabs(y); |
711 | double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0; |
712 | // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim, |
713 | // one could coin the term sedecimant for a space divided into 16 sections. |
714 | // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts |
715 | static const int sedecimant[3][3][3] = { |
716 | // y<0 y==0 y>0 |
717 | // x<0 x==0 x>0 x<0 x==0 x>0 x<0 x==0 x>0 |
718 | {{ 4, 3, 2}, { 7, -1, 15}, {10, 11, 12}}, // abs(x) < abs(y) |
719 | {{ 5, -1, 1}, {-1, -1, -1}, { 9, -1, 13}}, // abs(x) == abs(y) |
720 | {{ 6, 3, 0}, { 7, -1, 15}, { 8, 11, 14}}, // abs(x) > abs(y) |
721 | }; |
722 | int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1; |
723 | // SkASSERT(SkPath::kLine_Verb == verb || sector >= 0); |
724 | return sector; |
725 | } |
726 | |
727 | SkOpGlobalState* SkOpAngle::globalState() const { |
728 | return this->segment()->globalState(); |
729 | } |
730 | |
731 | |
732 | // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side |
733 | // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side |
734 | bool SkOpAngle::insert(SkOpAngle* angle) { |
735 | if (angle->fNext) { |
736 | if (loopCount() >= angle->loopCount()) { |
737 | if (!merge(angle)) { |
738 | return true; |
739 | } |
740 | } else if (fNext) { |
741 | if (!angle->merge(this)) { |
742 | return true; |
743 | } |
744 | } else { |
745 | angle->insert(this); |
746 | } |
747 | return true; |
748 | } |
749 | bool singleton = nullptr == fNext; |
750 | if (singleton) { |
751 | fNext = this; |
752 | } |
753 | SkOpAngle* next = fNext; |
754 | if (next->fNext == this) { |
755 | if (singleton || angle->after(this)) { |
756 | this->fNext = angle; |
757 | angle->fNext = next; |
758 | } else { |
759 | next->fNext = angle; |
760 | angle->fNext = this; |
761 | } |
762 | debugValidateNext(); |
763 | return true; |
764 | } |
765 | SkOpAngle* last = this; |
766 | bool flipAmbiguity = false; |
767 | do { |
768 | SkASSERT(last->fNext == next); |
769 | if (angle->after(last) ^ (angle->tangentsAmbiguous() & flipAmbiguity)) { |
770 | last->fNext = angle; |
771 | angle->fNext = next; |
772 | debugValidateNext(); |
773 | return true; |
774 | } |
775 | last = next; |
776 | if (last == this) { |
777 | FAIL_IF(flipAmbiguity); |
778 | // We're in a loop. If a sort was ambiguous, flip it to end the loop. |
779 | flipAmbiguity = true; |
780 | } |
781 | next = next->fNext; |
782 | } while (true); |
783 | return true; |
784 | } |
785 | |
786 | SkOpSpanBase* SkOpAngle::lastMarked() const { |
787 | if (fLastMarked) { |
788 | if (fLastMarked->chased()) { |
789 | return nullptr; |
790 | } |
791 | fLastMarked->setChased(true); |
792 | } |
793 | return fLastMarked; |
794 | } |
795 | |
796 | bool SkOpAngle::loopContains(const SkOpAngle* angle) const { |
797 | if (!fNext) { |
798 | return false; |
799 | } |
800 | const SkOpAngle* first = this; |
801 | const SkOpAngle* loop = this; |
802 | const SkOpSegment* tSegment = angle->fStart->segment(); |
803 | double tStart = angle->fStart->t(); |
804 | double tEnd = angle->fEnd->t(); |
805 | do { |
806 | const SkOpSegment* lSegment = loop->fStart->segment(); |
807 | if (lSegment != tSegment) { |
808 | continue; |
809 | } |
810 | double lStart = loop->fStart->t(); |
811 | if (lStart != tEnd) { |
812 | continue; |
813 | } |
814 | double lEnd = loop->fEnd->t(); |
815 | if (lEnd == tStart) { |
816 | return true; |
817 | } |
818 | } while ((loop = loop->fNext) != first); |
819 | return false; |
820 | } |
821 | |
822 | int SkOpAngle::loopCount() const { |
823 | int count = 0; |
824 | const SkOpAngle* first = this; |
825 | const SkOpAngle* next = this; |
826 | do { |
827 | next = next->fNext; |
828 | ++count; |
829 | } while (next && next != first); |
830 | return count; |
831 | } |
832 | |
833 | bool SkOpAngle::merge(SkOpAngle* angle) { |
834 | SkASSERT(fNext); |
835 | SkASSERT(angle->fNext); |
836 | SkOpAngle* working = angle; |
837 | do { |
838 | if (this == working) { |
839 | return false; |
840 | } |
841 | working = working->fNext; |
842 | } while (working != angle); |
843 | do { |
844 | SkOpAngle* next = working->fNext; |
845 | working->fNext = nullptr; |
846 | insert(working); |
847 | working = next; |
848 | } while (working != angle); |
849 | // it's likely that a pair of the angles are unorderable |
850 | debugValidateNext(); |
851 | return true; |
852 | } |
853 | |
854 | double SkOpAngle::midT() const { |
855 | return (fStart->t() + fEnd->t()) / 2; |
856 | } |
857 | |
858 | bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const { |
859 | const SkOpSegment* segment = this->segment(); |
860 | SkPath::Verb verb = segment->verb(); |
861 | const SkPoint& startPt = this->fStart->pt(); |
862 | const SkPoint& endPt = this->fEnd->pt(); |
863 | SkDPoint dStartPt; |
864 | dStartPt.set(startPt); |
865 | SkDLine rayMid; |
866 | rayMid[0].fX = (startPt.fX + endPt.fX) / 2; |
867 | rayMid[0].fY = (startPt.fY + endPt.fY) / 2; |
868 | rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY); |
869 | rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX); |
870 | SkIntersections iMid; |
871 | (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid); |
872 | int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt); |
873 | if (iOutside < 0) { |
874 | return false; |
875 | } |
876 | const SkOpSegment* oppSegment = rh->segment(); |
877 | SkPath::Verb oppVerb = oppSegment->verb(); |
878 | SkIntersections oppMid; |
879 | (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid); |
880 | int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt); |
881 | if (oppOutside < 0) { |
882 | return false; |
883 | } |
884 | SkDVector iSide = iMid.pt(iOutside) - dStartPt; |
885 | SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt; |
886 | double dir = iSide.crossCheck(oppSide); |
887 | if (!dir) { |
888 | return false; |
889 | } |
890 | *inside = dir < 0; |
891 | return true; |
892 | } |
893 | |
894 | bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const { |
895 | int startSpan = SkTAbs(rh->fSectorStart - fSectorStart); |
896 | return startSpan >= 8; |
897 | } |
898 | |
899 | int SkOpAngle::orderable(SkOpAngle* rh) { |
900 | int result; |
901 | if (!fPart.isCurve()) { |
902 | if (!rh->fPart.isCurve()) { |
903 | double leftX = fTangentHalf.dx(); |
904 | double leftY = fTangentHalf.dy(); |
905 | double rightX = rh->fTangentHalf.dx(); |
906 | double rightY = rh->fTangentHalf.dy(); |
907 | double x_ry = leftX * rightY; |
908 | double rx_y = rightX * leftY; |
909 | if (x_ry == rx_y) { |
910 | if (leftX * rightX < 0 || leftY * rightY < 0) { |
911 | return 1; // exactly 180 degrees apart |
912 | } |
913 | goto unorderable; |
914 | } |
915 | SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier |
916 | return x_ry < rx_y ? 1 : 0; |
917 | } |
918 | if ((result = this->lineOnOneSide(rh, false)) >= 0) { |
919 | return result; |
920 | } |
921 | if (fUnorderable || approximately_zero(rh->fSide)) { |
922 | goto unorderable; |
923 | } |
924 | } else if (!rh->fPart.isCurve()) { |
925 | if ((result = rh->lineOnOneSide(this, false)) >= 0) { |
926 | return result ? 0 : 1; |
927 | } |
928 | if (rh->fUnorderable || approximately_zero(fSide)) { |
929 | goto unorderable; |
930 | } |
931 | } else if ((result = this->convexHullOverlaps(rh)) >= 0) { |
932 | return result; |
933 | } |
934 | return this->endsIntersect(rh) ? 1 : 0; |
935 | unorderable: |
936 | fUnorderable = true; |
937 | rh->fUnorderable = true; |
938 | return -1; |
939 | } |
940 | |
941 | // OPTIMIZE: if this shows up in a profile, add a previous pointer |
942 | // as is, this should be rarely called |
943 | SkOpAngle* SkOpAngle::previous() const { |
944 | SkOpAngle* last = fNext; |
945 | do { |
946 | SkOpAngle* next = last->fNext; |
947 | if (next == this) { |
948 | return last; |
949 | } |
950 | last = next; |
951 | } while (true); |
952 | } |
953 | |
954 | SkOpSegment* SkOpAngle::segment() const { |
955 | return fStart->segment(); |
956 | } |
957 | |
958 | void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) { |
959 | fStart = start; |
960 | fComputedEnd = fEnd = end; |
961 | SkASSERT(start != end); |
962 | fNext = nullptr; |
963 | fComputeSector = fComputedSector = fCheckCoincidence = fTangentsAmbiguous = false; |
964 | setSpans(); |
965 | setSector(); |
966 | SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1); |
967 | } |
968 | |
969 | void SkOpAngle::setSpans() { |
970 | fUnorderable = false; |
971 | fLastMarked = nullptr; |
972 | if (!fStart) { |
973 | fUnorderable = true; |
974 | return; |
975 | } |
976 | const SkOpSegment* segment = fStart->segment(); |
977 | const SkPoint* pts = segment->pts(); |
978 | SkDEBUGCODE(fPart.fCurve.fVerb = SkPath::kCubic_Verb); // required for SkDCurve debug check |
979 | SkDEBUGCODE(fPart.fCurve[2].fX = fPart.fCurve[2].fY = fPart.fCurve[3].fX = fPart.fCurve[3].fY |
980 | = SK_ScalarNaN); // make the non-line part uninitialized |
981 | SkDEBUGCODE(fPart.fCurve.fVerb = segment->verb()); // set the curve type for real |
982 | segment->subDivide(fStart, fEnd, &fPart.fCurve); // set at least the line part if not more |
983 | fOriginalCurvePart = fPart.fCurve; |
984 | const SkPath::Verb verb = segment->verb(); |
985 | fPart.setCurveHullSweep(verb); |
986 | if (SkPath::kLine_Verb != verb && !fPart.isCurve()) { |
987 | SkDLine lineHalf; |
988 | fPart.fCurve[1] = fPart.fCurve[SkPathOpsVerbToPoints(verb)]; |
989 | fOriginalCurvePart[1] = fPart.fCurve[1]; |
990 | lineHalf[0].set(fPart.fCurve[0].asSkPoint()); |
991 | lineHalf[1].set(fPart.fCurve[1].asSkPoint()); |
992 | fTangentHalf.lineEndPoints(lineHalf); |
993 | fSide = 0; |
994 | } |
995 | switch (verb) { |
996 | case SkPath::kLine_Verb: { |
997 | SkASSERT(fStart != fEnd); |
998 | const SkPoint& cP1 = pts[fStart->t() < fEnd->t()]; |
999 | SkDLine lineHalf; |
1000 | lineHalf[0].set(fStart->pt()); |
1001 | lineHalf[1].set(cP1); |
1002 | fTangentHalf.lineEndPoints(lineHalf); |
1003 | fSide = 0; |
1004 | } return; |
1005 | case SkPath::kQuad_Verb: |
1006 | case SkPath::kConic_Verb: { |
1007 | SkLineParameters tangentPart; |
1008 | (void) tangentPart.quadEndPoints(fPart.fCurve.fQuad); |
1009 | fSide = -tangentPart.pointDistance(fPart.fCurve[2]); // not normalized -- compare sign only |
1010 | } break; |
1011 | case SkPath::kCubic_Verb: { |
1012 | SkLineParameters tangentPart; |
1013 | (void) tangentPart.cubicPart(fPart.fCurve.fCubic); |
1014 | fSide = -tangentPart.pointDistance(fPart.fCurve[3]); |
1015 | double testTs[4]; |
1016 | // OPTIMIZATION: keep inflections precomputed with cubic segment? |
1017 | int testCount = SkDCubic::FindInflections(pts, testTs); |
1018 | double startT = fStart->t(); |
1019 | double endT = fEnd->t(); |
1020 | double limitT = endT; |
1021 | int index; |
1022 | for (index = 0; index < testCount; ++index) { |
1023 | if (!::between(startT, testTs[index], limitT)) { |
1024 | testTs[index] = -1; |
1025 | } |
1026 | } |
1027 | testTs[testCount++] = startT; |
1028 | testTs[testCount++] = endT; |
1029 | SkTQSort<double>(testTs, testTs + testCount); |
1030 | double bestSide = 0; |
1031 | int testCases = (testCount << 1) - 1; |
1032 | index = 0; |
1033 | while (testTs[index] < 0) { |
1034 | ++index; |
1035 | } |
1036 | index <<= 1; |
1037 | for (; index < testCases; ++index) { |
1038 | int testIndex = index >> 1; |
1039 | double testT = testTs[testIndex]; |
1040 | if (index & 1) { |
1041 | testT = (testT + testTs[testIndex + 1]) / 2; |
1042 | } |
1043 | // OPTIMIZE: could avoid call for t == startT, endT |
1044 | SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT); |
1045 | SkLineParameters tangentPart; |
1046 | tangentPart.cubicEndPoints(fPart.fCurve.fCubic); |
1047 | double testSide = tangentPart.pointDistance(pt); |
1048 | if (fabs(bestSide) < fabs(testSide)) { |
1049 | bestSide = testSide; |
1050 | } |
1051 | } |
1052 | fSide = -bestSide; // compare sign only |
1053 | } break; |
1054 | default: |
1055 | SkASSERT(0); |
1056 | } |
1057 | } |
1058 | |
1059 | void SkOpAngle::setSector() { |
1060 | if (!fStart) { |
1061 | fUnorderable = true; |
1062 | return; |
1063 | } |
1064 | const SkOpSegment* segment = fStart->segment(); |
1065 | SkPath::Verb verb = segment->verb(); |
1066 | fSectorStart = this->findSector(verb, fPart.fSweep[0].fX, fPart.fSweep[0].fY); |
1067 | if (fSectorStart < 0) { |
1068 | goto deferTilLater; |
1069 | } |
1070 | if (!fPart.isCurve()) { // if it's a line or line-like, note that both sectors are the same |
1071 | SkASSERT(fSectorStart >= 0); |
1072 | fSectorEnd = fSectorStart; |
1073 | fSectorMask = 1 << fSectorStart; |
1074 | return; |
1075 | } |
1076 | SkASSERT(SkPath::kLine_Verb != verb); |
1077 | fSectorEnd = this->findSector(verb, fPart.fSweep[1].fX, fPart.fSweep[1].fY); |
1078 | if (fSectorEnd < 0) { |
1079 | deferTilLater: |
1080 | fSectorStart = fSectorEnd = -1; |
1081 | fSectorMask = 0; |
1082 | fComputeSector = true; // can't determine sector until segment length can be found |
1083 | return; |
1084 | } |
1085 | if (fSectorEnd == fSectorStart |
1086 | && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle |
1087 | fSectorMask = 1 << fSectorStart; |
1088 | return; |
1089 | } |
1090 | bool crossesZero = this->checkCrossesZero(); |
1091 | int start = std::min(fSectorStart, fSectorEnd); |
1092 | bool curveBendsCCW = (fSectorStart == start) ^ crossesZero; |
1093 | // bump the start and end of the sector span if they are on exact compass points |
1094 | if ((fSectorStart & 3) == 3) { |
1095 | fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f; |
1096 | } |
1097 | if ((fSectorEnd & 3) == 3) { |
1098 | fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f; |
1099 | } |
1100 | crossesZero = this->checkCrossesZero(); |
1101 | start = std::min(fSectorStart, fSectorEnd); |
1102 | int end = std::max(fSectorStart, fSectorEnd); |
1103 | if (!crossesZero) { |
1104 | fSectorMask = (unsigned) -1 >> (31 - end + start) << start; |
1105 | } else { |
1106 | fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end); |
1107 | } |
1108 | } |
1109 | |
1110 | SkOpSpan* SkOpAngle::starter() { |
1111 | return fStart->starter(fEnd); |
1112 | } |
1113 | |
1114 | bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) { |
1115 | if (s0xt0 == 0) { |
1116 | return false; |
1117 | } |
1118 | // if the ctrl tangents are not nearly parallel, use them |
1119 | // solve for opposite direction displacement scale factor == m |
1120 | // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x |
1121 | // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1] |
1122 | // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x) |
1123 | // v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x) |
1124 | // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x |
1125 | // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y) |
1126 | // m = v1.cross(v2) / v1.dot(v2) |
1127 | const SkDVector* sweep = fPart.fSweep; |
1128 | const SkDVector* tweep = rh->fPart.fSweep; |
1129 | double s0dt0 = sweep[0].dot(tweep[0]); |
1130 | if (!s0dt0) { |
1131 | return true; |
1132 | } |
1133 | SkASSERT(s0dt0 != 0); |
1134 | double m = s0xt0 / s0dt0; |
1135 | double sDist = sweep[0].length() * m; |
1136 | double tDist = tweep[0].length() * m; |
1137 | bool useS = fabs(sDist) < fabs(tDist); |
1138 | double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist)); |
1139 | fTangentsAmbiguous = mFactor >= 50 && mFactor < 200; |
1140 | return mFactor < 50; // empirically found limit |
1141 | } |
1142 | |