1 | /* |
2 | * Copyright 2019 Google LLC |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/sksl/SkSLByteCodeGenerator.h" |
9 | |
10 | #include <algorithm> |
11 | |
12 | namespace SkSL { |
13 | |
14 | static TypeCategory type_category(const Type& type) { |
15 | switch (type.kind()) { |
16 | case Type::Kind::kVector_Kind: |
17 | case Type::Kind::kMatrix_Kind: |
18 | return type_category(type.componentType()); |
19 | default: |
20 | if (type.fName == "bool" ) { |
21 | return TypeCategory::kBool; |
22 | } else if (type.fName == "int" || |
23 | type.fName == "short" || |
24 | type.fName == "$intLiteral" ) { |
25 | return TypeCategory::kSigned; |
26 | } else if (type.fName == "uint" || |
27 | type.fName == "ushort" ) { |
28 | return TypeCategory::kUnsigned; |
29 | } else { |
30 | SkASSERT(type.fName == "float" || |
31 | type.fName == "half" || |
32 | type.fName == "$floatLiteral" ); |
33 | return TypeCategory::kFloat; |
34 | } |
35 | ABORT("unsupported type: %s\n" , type.displayName().c_str()); |
36 | } |
37 | } |
38 | |
39 | |
40 | ByteCodeGenerator::ByteCodeGenerator(const Context* context, const Program* program, ErrorReporter* errors, |
41 | ByteCode* output) |
42 | : INHERITED(program, errors, nullptr) |
43 | , fContext(*context) |
44 | , fOutput(output) |
45 | // If you're adding new intrinsics here, ensure that they're declared in sksl_interp.inc, so |
46 | // they're available to "generic" interpreter programs (eg particles). |
47 | // You can probably copy the declarations from sksl_gpu.inc. |
48 | , fIntrinsics { |
49 | { "atan" , ByteCodeInstruction::kATan }, |
50 | { "ceil" , ByteCodeInstruction::kCeil }, |
51 | { "clamp" , SpecialIntrinsic::kClamp }, |
52 | { "cos" , ByteCodeInstruction::kCos }, |
53 | { "dot" , SpecialIntrinsic::kDot }, |
54 | { "floor" , ByteCodeInstruction::kFloor }, |
55 | { "fract" , ByteCodeInstruction::kFract }, |
56 | { "inverse" , ByteCodeInstruction::kInverse2x2 }, |
57 | { "length" , SpecialIntrinsic::kLength }, |
58 | { "max" , SpecialIntrinsic::kMax }, |
59 | { "min" , SpecialIntrinsic::kMin }, |
60 | { "mix" , SpecialIntrinsic::kMix }, |
61 | { "normalize" , SpecialIntrinsic::kNormalize }, |
62 | { "pow" , ByteCodeInstruction::kPow }, |
63 | { "sample" , SpecialIntrinsic::kSample }, |
64 | { "saturate" , SpecialIntrinsic::kSaturate }, |
65 | { "sin" , ByteCodeInstruction::kSin }, |
66 | { "sqrt" , ByteCodeInstruction::kSqrt }, |
67 | { "tan" , ByteCodeInstruction::kTan }, |
68 | |
69 | { "lessThan" , { ByteCodeInstruction::kCompareFLT, |
70 | ByteCodeInstruction::kCompareSLT, |
71 | ByteCodeInstruction::kCompareULT } }, |
72 | { "lessThanEqual" , { ByteCodeInstruction::kCompareFLTEQ, |
73 | ByteCodeInstruction::kCompareSLTEQ, |
74 | ByteCodeInstruction::kCompareULTEQ } }, |
75 | { "greaterThan" , { ByteCodeInstruction::kCompareFGT, |
76 | ByteCodeInstruction::kCompareSGT, |
77 | ByteCodeInstruction::kCompareUGT } }, |
78 | { "greaterThanEqual" , { ByteCodeInstruction::kCompareFGTEQ, |
79 | ByteCodeInstruction::kCompareSGTEQ, |
80 | ByteCodeInstruction::kCompareUGTEQ } }, |
81 | { "equal" , { ByteCodeInstruction::kCompareFEQ, |
82 | ByteCodeInstruction::kCompareIEQ, |
83 | ByteCodeInstruction::kCompareIEQ } }, |
84 | { "notEqual" , { ByteCodeInstruction::kCompareFNEQ, |
85 | ByteCodeInstruction::kCompareINEQ, |
86 | ByteCodeInstruction::kCompareINEQ } }, |
87 | |
88 | { "any" , SpecialIntrinsic::kAny }, |
89 | { "all" , SpecialIntrinsic::kAll }, |
90 | { "not" , ByteCodeInstruction::kNotB }, |
91 | } {} |
92 | |
93 | |
94 | int ByteCodeGenerator::SlotCount(const Type& type) { |
95 | if (type.kind() == Type::kOther_Kind) { |
96 | return 0; |
97 | } else if (type.kind() == Type::kStruct_Kind) { |
98 | int slots = 0; |
99 | for (const auto& f : type.fields()) { |
100 | slots += SlotCount(*f.fType); |
101 | } |
102 | SkASSERT(slots <= 255); |
103 | return slots; |
104 | } else if (type.kind() == Type::kArray_Kind) { |
105 | int columns = type.columns(); |
106 | SkASSERT(columns >= 0); |
107 | int slots = columns * SlotCount(type.componentType()); |
108 | SkASSERT(slots <= 255); |
109 | return slots; |
110 | } else { |
111 | return type.columns() * type.rows(); |
112 | } |
113 | } |
114 | |
115 | static inline bool is_uniform(const SkSL::Variable& var) { |
116 | return var.fModifiers.fFlags & Modifiers::kUniform_Flag; |
117 | } |
118 | |
119 | static inline bool is_in(const SkSL::Variable& var) { |
120 | return var.fModifiers.fFlags & Modifiers::kIn_Flag; |
121 | } |
122 | |
123 | void ByteCodeGenerator::gatherUniforms(const Type& type, const String& name) { |
124 | if (type.kind() == Type::kOther_Kind) { |
125 | return; |
126 | } else if (type.kind() == Type::kStruct_Kind) { |
127 | for (const auto& f : type.fields()) { |
128 | this->gatherUniforms(*f.fType, name + "." + f.fName); |
129 | } |
130 | } else if (type.kind() == Type::kArray_Kind) { |
131 | for (int i = 0; i < type.columns(); ++i) { |
132 | this->gatherUniforms(type.componentType(), String::printf("%s[%d]" , name.c_str(), i)); |
133 | } |
134 | } else { |
135 | fOutput->fUniforms.push_back({ name, type_category(type), type.rows(), type.columns(), |
136 | fOutput->fUniformSlotCount }); |
137 | fOutput->fUniformSlotCount += type.columns() * type.rows(); |
138 | } |
139 | } |
140 | |
141 | bool ByteCodeGenerator::generateCode() { |
142 | for (const auto& e : fProgram) { |
143 | switch (e.fKind) { |
144 | case ProgramElement::kFunction_Kind: { |
145 | std::unique_ptr<ByteCodeFunction> f = this->writeFunction((FunctionDefinition&) e); |
146 | if (!f) { |
147 | return false; |
148 | } |
149 | fOutput->fFunctions.push_back(std::move(f)); |
150 | fFunctions.push_back(&(FunctionDefinition&)e); |
151 | break; |
152 | } |
153 | case ProgramElement::kVar_Kind: { |
154 | VarDeclarations& decl = (VarDeclarations&) e; |
155 | for (const auto& v : decl.fVars) { |
156 | const Variable* declVar = ((VarDeclaration&) *v).fVar; |
157 | if (declVar->fType == *fContext.fFragmentProcessor_Type) { |
158 | fOutput->fChildFPCount++; |
159 | } |
160 | if (declVar->fModifiers.fLayout.fBuiltin >= 0 || is_in(*declVar)) { |
161 | continue; |
162 | } |
163 | if (is_uniform(*declVar)) { |
164 | this->gatherUniforms(declVar->fType, declVar->fName); |
165 | } else { |
166 | fOutput->fGlobalSlotCount += SlotCount(declVar->fType); |
167 | } |
168 | } |
169 | break; |
170 | } |
171 | default: |
172 | ; // ignore |
173 | } |
174 | } |
175 | return 0 == fErrors.errorCount(); |
176 | } |
177 | |
178 | std::unique_ptr<ByteCodeFunction> ByteCodeGenerator::writeFunction(const FunctionDefinition& f) { |
179 | fFunction = &f; |
180 | std::unique_ptr<ByteCodeFunction> result(new ByteCodeFunction(&f.fDeclaration)); |
181 | fParameterCount = result->fParameterCount; |
182 | fLoopCount = fMaxLoopCount = 0; |
183 | fConditionCount = fMaxConditionCount = 0; |
184 | fStackCount = fMaxStackCount = 0; |
185 | fCode = &result->fCode; |
186 | |
187 | this->writeStatement(*f.fBody); |
188 | if (0 == fErrors.errorCount()) { |
189 | SkASSERT(fLoopCount == 0); |
190 | SkASSERT(fConditionCount == 0); |
191 | SkASSERT(fStackCount == 0); |
192 | } |
193 | this->write(ByteCodeInstruction::kReturn, 0); |
194 | |
195 | result->fLocalCount = fLocals.size(); |
196 | result->fConditionCount = fMaxConditionCount; |
197 | result->fLoopCount = fMaxLoopCount; |
198 | result->fStackCount = fMaxStackCount; |
199 | |
200 | const Type& returnType = f.fDeclaration.fReturnType; |
201 | if (returnType != *fContext.fVoid_Type) { |
202 | result->fReturnCount = SlotCount(returnType); |
203 | } |
204 | fLocals.clear(); |
205 | fFunction = nullptr; |
206 | return result; |
207 | } |
208 | |
209 | // If the expression is a reference to a builtin global variable, return the builtin ID. |
210 | // Otherwise, return -1. |
211 | static int expression_as_builtin(const Expression& e) { |
212 | if (e.fKind == Expression::kVariableReference_Kind) { |
213 | const Variable& var(((VariableReference&)e).fVariable); |
214 | if (var.fStorage == Variable::kGlobal_Storage) { |
215 | return var.fModifiers.fLayout.fBuiltin; |
216 | } |
217 | } |
218 | return -1; |
219 | } |
220 | |
221 | // A "simple" Swizzle is based on a variable (or a compound variable like a struct or array), and |
222 | // that references consecutive values, such that it can be implemented using normal load/store ops |
223 | // with an offset. Note that all single-component swizzles (of suitable base types) are simple. |
224 | static bool swizzle_is_simple(const Swizzle& s) { |
225 | // Builtin variables use dedicated instructions that don't allow subset loads |
226 | if (expression_as_builtin(*s.fBase) >= 0) { |
227 | return false; |
228 | } |
229 | |
230 | switch (s.fBase->fKind) { |
231 | case Expression::kFieldAccess_Kind: |
232 | case Expression::kIndex_Kind: |
233 | case Expression::kVariableReference_Kind: |
234 | break; |
235 | default: |
236 | return false; |
237 | } |
238 | |
239 | for (size_t i = 1; i < s.fComponents.size(); ++i) { |
240 | if (s.fComponents[i] != s.fComponents[i - 1] + 1) { |
241 | return false; |
242 | } |
243 | } |
244 | return true; |
245 | } |
246 | |
247 | int ByteCodeGenerator::StackUsage(ByteCodeInstruction inst, int count_) { |
248 | // Ensures that we use count iff we're passed a non-default value. Most instructions have an |
249 | // implicit count, so the caller shouldn't need to worry about it (or count makes no sense). |
250 | // The asserts avoids callers thinking they're supplying useful information in that scenario, |
251 | // or failing to supply necessary information for the ops that need a count. |
252 | struct CountValue { |
253 | operator int() { |
254 | SkASSERT(val != ByteCodeGenerator::kUnusedStackCount); |
255 | SkDEBUGCODE(used = true); |
256 | return val; |
257 | } |
258 | ~CountValue() { |
259 | SkASSERT(used || val == ByteCodeGenerator::kUnusedStackCount); |
260 | } |
261 | int val; |
262 | SkDEBUGCODE(bool used = false;) |
263 | } count = { count_ }; |
264 | |
265 | switch (inst) { |
266 | // Unary functions/operators that don't change stack depth at all: |
267 | |
268 | #define VEC_UNARY(inst) case ByteCodeInstruction::inst: return count - count; |
269 | |
270 | VEC_UNARY(kConvertFtoI) |
271 | VEC_UNARY(kConvertStoF) |
272 | VEC_UNARY(kConvertUtoF) |
273 | |
274 | VEC_UNARY(kATan) |
275 | VEC_UNARY(kCeil) |
276 | VEC_UNARY(kCos) |
277 | VEC_UNARY(kFloor) |
278 | VEC_UNARY(kFract) |
279 | VEC_UNARY(kSin) |
280 | VEC_UNARY(kSqrt) |
281 | VEC_UNARY(kTan) |
282 | |
283 | VEC_UNARY(kNegateF) |
284 | VEC_UNARY(kNegateI) |
285 | VEC_UNARY(kNotB) |
286 | |
287 | #undef VEC_UNARY |
288 | |
289 | case ByteCodeInstruction::kInverse2x2: |
290 | case ByteCodeInstruction::kInverse3x3: |
291 | case ByteCodeInstruction::kInverse4x4: return 0; |
292 | |
293 | case ByteCodeInstruction::kClampIndex: return 0; |
294 | case ByteCodeInstruction::kShiftLeft: return 0; |
295 | case ByteCodeInstruction::kShiftRightS: return 0; |
296 | case ByteCodeInstruction::kShiftRightU: return 0; |
297 | |
298 | // Binary functions/operators that do a 2 -> 1 reduction, N times |
299 | case ByteCodeInstruction::kAndB: return -count; |
300 | case ByteCodeInstruction::kOrB: return -count; |
301 | case ByteCodeInstruction::kXorB: return -count; |
302 | |
303 | case ByteCodeInstruction::kAddI: return -count; |
304 | case ByteCodeInstruction::kAddF: return -count; |
305 | |
306 | case ByteCodeInstruction::kCompareIEQ: return -count; |
307 | case ByteCodeInstruction::kCompareFEQ: return -count; |
308 | case ByteCodeInstruction::kCompareINEQ: return -count; |
309 | case ByteCodeInstruction::kCompareFNEQ: return -count; |
310 | case ByteCodeInstruction::kCompareSGT: return -count; |
311 | case ByteCodeInstruction::kCompareUGT: return -count; |
312 | case ByteCodeInstruction::kCompareFGT: return -count; |
313 | case ByteCodeInstruction::kCompareSGTEQ: return -count; |
314 | case ByteCodeInstruction::kCompareUGTEQ: return -count; |
315 | case ByteCodeInstruction::kCompareFGTEQ: return -count; |
316 | case ByteCodeInstruction::kCompareSLT: return -count; |
317 | case ByteCodeInstruction::kCompareULT: return -count; |
318 | case ByteCodeInstruction::kCompareFLT: return -count; |
319 | case ByteCodeInstruction::kCompareSLTEQ: return -count; |
320 | case ByteCodeInstruction::kCompareULTEQ: return -count; |
321 | case ByteCodeInstruction::kCompareFLTEQ: return -count; |
322 | |
323 | case ByteCodeInstruction::kDivideS: return -count; |
324 | case ByteCodeInstruction::kDivideU: return -count; |
325 | case ByteCodeInstruction::kDivideF: return -count; |
326 | case ByteCodeInstruction::kMaxF: return -count; |
327 | case ByteCodeInstruction::kMaxS: return -count; |
328 | case ByteCodeInstruction::kMinF: return -count; |
329 | case ByteCodeInstruction::kMinS: return -count; |
330 | case ByteCodeInstruction::kMultiplyI: return -count; |
331 | case ByteCodeInstruction::kMultiplyF: return -count; |
332 | case ByteCodeInstruction::kPow: return -count; |
333 | case ByteCodeInstruction::kRemainderF: return -count; |
334 | case ByteCodeInstruction::kRemainderS: return -count; |
335 | case ByteCodeInstruction::kRemainderU: return -count; |
336 | case ByteCodeInstruction::kSubtractI: return -count; |
337 | case ByteCodeInstruction::kSubtractF: return -count; |
338 | |
339 | // Ops that push or load data to grow the stack: |
340 | case ByteCodeInstruction::kPushImmediate: |
341 | return 1; |
342 | case ByteCodeInstruction::kLoadFragCoord: |
343 | return 4; |
344 | |
345 | case ByteCodeInstruction::kDup: |
346 | case ByteCodeInstruction::kLoad: |
347 | case ByteCodeInstruction::kLoadGlobal: |
348 | case ByteCodeInstruction::kLoadUniform: |
349 | case ByteCodeInstruction::kReadExternal: |
350 | case ByteCodeInstruction::kReserve: |
351 | return count; |
352 | |
353 | // Pushes 'count' values, minus one for the 'address' that's consumed first |
354 | case ByteCodeInstruction::kLoadExtended: |
355 | case ByteCodeInstruction::kLoadExtendedGlobal: |
356 | case ByteCodeInstruction::kLoadExtendedUniform: |
357 | return count - 1; |
358 | |
359 | // Ops that pop or store data to shrink the stack: |
360 | case ByteCodeInstruction::kPop: |
361 | case ByteCodeInstruction::kReturn: |
362 | case ByteCodeInstruction::kStore: |
363 | case ByteCodeInstruction::kStoreGlobal: |
364 | case ByteCodeInstruction::kWriteExternal: |
365 | return -count; |
366 | |
367 | // Consumes 'count' values, plus one for the 'address' |
368 | case ByteCodeInstruction::kStoreExtended: |
369 | case ByteCodeInstruction::kStoreExtendedGlobal: |
370 | return -count - 1; |
371 | |
372 | // Strange ops where the caller computes the delta for us: |
373 | case ByteCodeInstruction::kCallExternal: |
374 | case ByteCodeInstruction::kMatrixToMatrix: |
375 | case ByteCodeInstruction::kMatrixMultiply: |
376 | case ByteCodeInstruction::kScalarToMatrix: |
377 | case ByteCodeInstruction::kSwizzle: |
378 | return count; |
379 | |
380 | // Miscellaneous |
381 | |
382 | // () -> (R, G, B, A) |
383 | case ByteCodeInstruction::kSample: return 4; |
384 | // (X, Y) -> (R, G, B, A) |
385 | case ByteCodeInstruction::kSampleExplicit: return 4 - 2; |
386 | // (float3x3) -> (R, G, B, A) |
387 | case ByteCodeInstruction::kSampleMatrix: return 4 - 9; |
388 | |
389 | // kMix does a 3 -> 1 reduction (A, B, M -> A -or- B) for each component |
390 | case ByteCodeInstruction::kMix: return -(2 * count); |
391 | |
392 | // kLerp works the same way (producing lerp(A, B, T) for each component) |
393 | case ByteCodeInstruction::kLerp: return -(2 * count); |
394 | |
395 | // kCall is net-zero. Max stack depth is adjusted in writeFunctionCall. |
396 | case ByteCodeInstruction::kCall: return 0; |
397 | case ByteCodeInstruction::kBranch: return 0; |
398 | case ByteCodeInstruction::kBranchIfAllFalse: return 0; |
399 | |
400 | case ByteCodeInstruction::kMaskPush: return -1; |
401 | case ByteCodeInstruction::kMaskPop: return 0; |
402 | case ByteCodeInstruction::kMaskNegate: return 0; |
403 | case ByteCodeInstruction::kMaskBlend: return -count; |
404 | |
405 | case ByteCodeInstruction::kLoopBegin: return 0; |
406 | case ByteCodeInstruction::kLoopNext: return 0; |
407 | case ByteCodeInstruction::kLoopMask: return -1; |
408 | case ByteCodeInstruction::kLoopEnd: return 0; |
409 | case ByteCodeInstruction::kLoopBreak: return 0; |
410 | case ByteCodeInstruction::kLoopContinue: return 0; |
411 | } |
412 | |
413 | SkUNREACHABLE; |
414 | } |
415 | |
416 | ByteCodeGenerator::Location ByteCodeGenerator::getLocation(const Variable& var) { |
417 | // given that we seldom have more than a couple of variables, linear search is probably the most |
418 | // efficient way to handle lookups |
419 | switch (var.fStorage) { |
420 | case Variable::kLocal_Storage: { |
421 | for (int i = fLocals.size() - 1; i >= 0; --i) { |
422 | if (fLocals[i] == &var) { |
423 | SkASSERT(fParameterCount + i <= 255); |
424 | return { fParameterCount + i, Storage::kLocal }; |
425 | } |
426 | } |
427 | int result = fParameterCount + fLocals.size(); |
428 | fLocals.push_back(&var); |
429 | for (int i = 0; i < SlotCount(var.fType) - 1; ++i) { |
430 | fLocals.push_back(nullptr); |
431 | } |
432 | SkASSERT(result <= 255); |
433 | return { result, Storage::kLocal }; |
434 | } |
435 | case Variable::kParameter_Storage: { |
436 | int offset = 0; |
437 | for (const auto& p : fFunction->fDeclaration.fParameters) { |
438 | if (p == &var) { |
439 | SkASSERT(offset <= 255); |
440 | return { offset, Storage::kLocal }; |
441 | } |
442 | offset += SlotCount(p->fType); |
443 | } |
444 | SkASSERT(false); |
445 | return Location::MakeInvalid(); |
446 | } |
447 | case Variable::kGlobal_Storage: { |
448 | if (var.fType == *fContext.fFragmentProcessor_Type) { |
449 | int offset = 0; |
450 | for (const auto& e : fProgram) { |
451 | if (e.fKind == ProgramElement::kVar_Kind) { |
452 | VarDeclarations& decl = (VarDeclarations&) e; |
453 | for (const auto& v : decl.fVars) { |
454 | const Variable* declVar = ((VarDeclaration&) *v).fVar; |
455 | if (declVar->fType != *fContext.fFragmentProcessor_Type) { |
456 | continue; |
457 | } |
458 | if (declVar == &var) { |
459 | SkASSERT(offset <= 255); |
460 | return { offset, Storage::kChildFP }; |
461 | } |
462 | offset++; |
463 | } |
464 | } |
465 | } |
466 | SkASSERT(false); |
467 | return Location::MakeInvalid(); |
468 | } |
469 | if (is_in(var)) { |
470 | // If you see this error, it means the program is using raw 'in' variables. You |
471 | // should either specialize the program (Compiler::specialize) to bake in the final |
472 | // values of the 'in' variables, or not use 'in' variables (maybe you meant to use |
473 | // 'uniform' instead?). |
474 | fErrors.error(var.fOffset, |
475 | "'in' variable is not specialized or has unsupported type" ); |
476 | return Location::MakeInvalid(); |
477 | } |
478 | int offset = 0; |
479 | bool isUniform = is_uniform(var); |
480 | for (const auto& e : fProgram) { |
481 | if (e.fKind == ProgramElement::kVar_Kind) { |
482 | VarDeclarations& decl = (VarDeclarations&) e; |
483 | for (const auto& v : decl.fVars) { |
484 | const Variable* declVar = ((VarDeclaration&) *v).fVar; |
485 | if (declVar->fModifiers.fLayout.fBuiltin >= 0 || is_in(*declVar)) { |
486 | continue; |
487 | } |
488 | if (isUniform != is_uniform(*declVar)) { |
489 | continue; |
490 | } |
491 | if (declVar == &var) { |
492 | SkASSERT(offset <= 255); |
493 | return { offset, isUniform ? Storage::kUniform : Storage::kGlobal }; |
494 | } |
495 | offset += SlotCount(declVar->fType); |
496 | } |
497 | } |
498 | } |
499 | SkASSERT(false); |
500 | return Location::MakeInvalid(); |
501 | } |
502 | default: |
503 | SkASSERT(false); |
504 | return Location::MakeInvalid(); |
505 | } |
506 | } |
507 | |
508 | ByteCodeGenerator::Location ByteCodeGenerator::getLocation(const Expression& expr) { |
509 | switch (expr.fKind) { |
510 | case Expression::kFieldAccess_Kind: { |
511 | const FieldAccess& f = (const FieldAccess&)expr; |
512 | Location baseLoc = this->getLocation(*f.fBase); |
513 | int offset = 0; |
514 | for (int i = 0; i < f.fFieldIndex; ++i) { |
515 | offset += SlotCount(*f.fBase->fType.fields()[i].fType); |
516 | } |
517 | if (baseLoc.isOnStack()) { |
518 | if (offset != 0) { |
519 | this->write(ByteCodeInstruction::kPushImmediate); |
520 | this->write32(offset); |
521 | this->write(ByteCodeInstruction::kAddI, 1); |
522 | } |
523 | return baseLoc; |
524 | } else { |
525 | return baseLoc + offset; |
526 | } |
527 | } |
528 | case Expression::kIndex_Kind: { |
529 | const IndexExpression& i = (const IndexExpression&)expr; |
530 | int stride = SlotCount(i.fType); |
531 | int length = i.fBase->fType.columns(); |
532 | SkASSERT(length <= 255); |
533 | int offset = -1; |
534 | if (i.fIndex->isCompileTimeConstant()) { |
535 | int64_t index = i.fIndex->getConstantInt(); |
536 | if (index < 0 || index >= length) { |
537 | fErrors.error(i.fIndex->fOffset, "Array index out of bounds." ); |
538 | return Location::MakeInvalid(); |
539 | } |
540 | offset = index * stride; |
541 | } else { |
542 | if (i.fIndex->hasSideEffects()) { |
543 | // Having a side-effect in an indexer is technically safe for an rvalue, |
544 | // but with lvalues we have to evaluate the indexer twice, so make it an error. |
545 | fErrors.error(i.fIndex->fOffset, |
546 | "Index expressions with side-effects not supported in byte code." ); |
547 | return Location::MakeInvalid(); |
548 | } |
549 | this->writeExpression(*i.fIndex); |
550 | this->write(ByteCodeInstruction::kClampIndex); |
551 | this->write8(length); |
552 | if (stride != 1) { |
553 | this->write(ByteCodeInstruction::kPushImmediate); |
554 | this->write32(stride); |
555 | this->write(ByteCodeInstruction::kMultiplyI, 1); |
556 | } |
557 | } |
558 | Location baseLoc = this->getLocation(*i.fBase); |
559 | |
560 | // Are both components known statically? |
561 | if (!baseLoc.isOnStack() && offset >= 0) { |
562 | return baseLoc + offset; |
563 | } |
564 | |
565 | // At least one component is dynamic (and on the stack). |
566 | |
567 | // If the other component is zero, we're done |
568 | if (baseLoc.fSlot == 0 || offset == 0) { |
569 | return baseLoc.makeOnStack(); |
570 | } |
571 | |
572 | // Push the non-dynamic component (if any) to the stack, then add the two |
573 | if (!baseLoc.isOnStack()) { |
574 | this->write(ByteCodeInstruction::kPushImmediate); |
575 | this->write32(baseLoc.fSlot); |
576 | } |
577 | if (offset >= 0) { |
578 | this->write(ByteCodeInstruction::kPushImmediate); |
579 | this->write32(offset); |
580 | } |
581 | this->write(ByteCodeInstruction::kAddI, 1); |
582 | return baseLoc.makeOnStack(); |
583 | } |
584 | case Expression::kSwizzle_Kind: { |
585 | const Swizzle& s = (const Swizzle&)expr; |
586 | SkASSERT(swizzle_is_simple(s)); |
587 | Location baseLoc = this->getLocation(*s.fBase); |
588 | int offset = s.fComponents[0]; |
589 | if (baseLoc.isOnStack()) { |
590 | if (offset != 0) { |
591 | this->write(ByteCodeInstruction::kPushImmediate); |
592 | this->write32(offset); |
593 | this->write(ByteCodeInstruction::kAddI, 1); |
594 | } |
595 | return baseLoc; |
596 | } else { |
597 | return baseLoc + offset; |
598 | } |
599 | } |
600 | case Expression::kVariableReference_Kind: { |
601 | const Variable& var = ((const VariableReference&)expr).fVariable; |
602 | return this->getLocation(var); |
603 | } |
604 | default: |
605 | SkASSERT(false); |
606 | return Location::MakeInvalid(); |
607 | } |
608 | } |
609 | |
610 | void ByteCodeGenerator::write8(uint8_t b) { |
611 | fCode->push_back(b); |
612 | } |
613 | |
614 | void ByteCodeGenerator::write16(uint16_t i) { |
615 | size_t n = fCode->size(); |
616 | fCode->resize(n+2); |
617 | memcpy(fCode->data() + n, &i, 2); |
618 | } |
619 | |
620 | void ByteCodeGenerator::write32(uint32_t i) { |
621 | size_t n = fCode->size(); |
622 | fCode->resize(n+4); |
623 | memcpy(fCode->data() + n, &i, 4); |
624 | } |
625 | |
626 | void ByteCodeGenerator::write(ByteCodeInstruction i, int count) { |
627 | switch (i) { |
628 | case ByteCodeInstruction::kLoopBegin: this->enterLoop(); break; |
629 | case ByteCodeInstruction::kLoopEnd: this->exitLoop(); break; |
630 | |
631 | case ByteCodeInstruction::kMaskPush: this->enterCondition(); break; |
632 | case ByteCodeInstruction::kMaskPop: |
633 | case ByteCodeInstruction::kMaskBlend: this->exitCondition(); break; |
634 | default: /* Do nothing */ break; |
635 | } |
636 | this->write8((uint8_t)i); |
637 | fStackCount += StackUsage(i, count); |
638 | fMaxStackCount = std::max(fMaxStackCount, fStackCount); |
639 | |
640 | // Most ops have an explicit count byte after them (passed here as 'count') |
641 | // Ops that don't have a count byte pass the default (kUnusedStackCount) |
642 | // There are a handful of strange ops that pass in a computed stack delta as count, but where |
643 | // that value should *not* be written as a count byte (it may even be negative!) |
644 | if (count != kUnusedStackCount) { |
645 | switch (i) { |
646 | // Odd instructions that have a non-default count, but we shouldn't write it |
647 | case ByteCodeInstruction::kCallExternal: |
648 | case ByteCodeInstruction::kMatrixToMatrix: |
649 | case ByteCodeInstruction::kMatrixMultiply: |
650 | case ByteCodeInstruction::kScalarToMatrix: |
651 | case ByteCodeInstruction::kSwizzle: |
652 | break; |
653 | default: |
654 | this->write8(count); |
655 | break; |
656 | } |
657 | } |
658 | } |
659 | |
660 | void ByteCodeGenerator::writeTypedInstruction(const Type& type, |
661 | ByteCodeInstruction s, |
662 | ByteCodeInstruction u, |
663 | ByteCodeInstruction f, |
664 | int count) { |
665 | switch (type_category(type)) { |
666 | case TypeCategory::kBool: |
667 | case TypeCategory::kSigned: this->write(s, count); break; |
668 | case TypeCategory::kUnsigned: this->write(u, count); break; |
669 | case TypeCategory::kFloat: this->write(f, count); break; |
670 | default: |
671 | SkASSERT(false); |
672 | } |
673 | } |
674 | |
675 | bool ByteCodeGenerator::writeBinaryExpression(const BinaryExpression& b, bool discard) { |
676 | if (b.fOperator == Token::Kind::TK_EQ) { |
677 | std::unique_ptr<LValue> lvalue = this->getLValue(*b.fLeft); |
678 | this->writeExpression(*b.fRight); |
679 | lvalue->store(discard); |
680 | discard = false; |
681 | return discard; |
682 | } |
683 | const Type& lType = b.fLeft->fType; |
684 | const Type& rType = b.fRight->fType; |
685 | bool lVecOrMtx = (lType.kind() == Type::kVector_Kind || lType.kind() == Type::kMatrix_Kind); |
686 | bool rVecOrMtx = (rType.kind() == Type::kVector_Kind || rType.kind() == Type::kMatrix_Kind); |
687 | Token::Kind op; |
688 | std::unique_ptr<LValue> lvalue; |
689 | if (is_assignment(b.fOperator)) { |
690 | lvalue = this->getLValue(*b.fLeft); |
691 | lvalue->load(); |
692 | op = remove_assignment(b.fOperator); |
693 | } else { |
694 | this->writeExpression(*b.fLeft); |
695 | op = b.fOperator; |
696 | if (!lVecOrMtx && rVecOrMtx) { |
697 | for (int i = SlotCount(rType); i > 1; --i) { |
698 | this->write(ByteCodeInstruction::kDup, 1); |
699 | } |
700 | } |
701 | } |
702 | int count = std::max(SlotCount(lType), SlotCount(rType)); |
703 | SkDEBUGCODE(TypeCategory tc = type_category(lType)); |
704 | switch (op) { |
705 | case Token::Kind::TK_LOGICALAND: { |
706 | SkASSERT(tc == SkSL::TypeCategory::kBool && count == 1); |
707 | this->write(ByteCodeInstruction::kDup, 1); |
708 | this->write(ByteCodeInstruction::kMaskPush); |
709 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
710 | DeferredLocation falseLocation(this); |
711 | this->writeExpression(*b.fRight); |
712 | this->write(ByteCodeInstruction::kAndB, 1); |
713 | falseLocation.set(); |
714 | this->write(ByteCodeInstruction::kMaskPop); |
715 | return false; |
716 | } |
717 | case Token::Kind::TK_LOGICALOR: { |
718 | SkASSERT(tc == SkSL::TypeCategory::kBool && count == 1); |
719 | this->write(ByteCodeInstruction::kDup, 1); |
720 | this->write(ByteCodeInstruction::kNotB, 1); |
721 | this->write(ByteCodeInstruction::kMaskPush); |
722 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
723 | DeferredLocation falseLocation(this); |
724 | this->writeExpression(*b.fRight); |
725 | this->write(ByteCodeInstruction::kOrB, 1); |
726 | falseLocation.set(); |
727 | this->write(ByteCodeInstruction::kMaskPop); |
728 | return false; |
729 | } |
730 | case Token::Kind::TK_SHL: |
731 | case Token::Kind::TK_SHR: { |
732 | SkASSERT(count == 1 && (tc == SkSL::TypeCategory::kSigned || |
733 | tc == SkSL::TypeCategory::kUnsigned)); |
734 | if (!b.fRight->isCompileTimeConstant()) { |
735 | fErrors.error(b.fRight->fOffset, "Shift amounts must be constant" ); |
736 | return false; |
737 | } |
738 | int64_t shift = b.fRight->getConstantInt(); |
739 | if (shift < 0 || shift > 31) { |
740 | fErrors.error(b.fRight->fOffset, "Shift amount out of range" ); |
741 | return false; |
742 | } |
743 | |
744 | if (op == Token::Kind::TK_SHL) { |
745 | this->write(ByteCodeInstruction::kShiftLeft); |
746 | } else { |
747 | this->write(type_category(lType) == TypeCategory::kSigned |
748 | ? ByteCodeInstruction::kShiftRightS |
749 | : ByteCodeInstruction::kShiftRightU); |
750 | } |
751 | this->write8(shift); |
752 | return false; |
753 | } |
754 | |
755 | default: |
756 | break; |
757 | } |
758 | this->writeExpression(*b.fRight); |
759 | if (lVecOrMtx && !rVecOrMtx) { |
760 | for (int i = SlotCount(lType); i > 1; --i) { |
761 | this->write(ByteCodeInstruction::kDup, 1); |
762 | } |
763 | } |
764 | // Special case for M*V, V*M, M*M (but not V*V!) |
765 | if (op == Token::Kind::TK_STAR && lVecOrMtx && rVecOrMtx && |
766 | !(lType.kind() == Type::kVector_Kind && rType.kind() == Type::kVector_Kind)) { |
767 | this->write(ByteCodeInstruction::kMatrixMultiply, |
768 | SlotCount(b.fType) - (SlotCount(lType) + SlotCount(rType))); |
769 | int rCols = rType.columns(), |
770 | rRows = rType.rows(), |
771 | lCols = lType.columns(), |
772 | lRows = lType.rows(); |
773 | // M*V treats the vector as a column |
774 | if (rType.kind() == Type::kVector_Kind) { |
775 | std::swap(rCols, rRows); |
776 | } |
777 | SkASSERT(lCols == rRows); |
778 | SkASSERT(SlotCount(b.fType) == lRows * rCols); |
779 | this->write8(lCols); |
780 | this->write8(lRows); |
781 | this->write8(rCols); |
782 | } else { |
783 | switch (op) { |
784 | case Token::Kind::TK_EQEQ: |
785 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareIEQ, |
786 | ByteCodeInstruction::kCompareIEQ, |
787 | ByteCodeInstruction::kCompareFEQ, |
788 | count); |
789 | // Collapse to a single bool |
790 | for (int i = count; i > 1; --i) { |
791 | this->write(ByteCodeInstruction::kAndB, 1); |
792 | } |
793 | break; |
794 | case Token::Kind::TK_GT: |
795 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGT, |
796 | ByteCodeInstruction::kCompareUGT, |
797 | ByteCodeInstruction::kCompareFGT, |
798 | count); |
799 | break; |
800 | case Token::Kind::TK_GTEQ: |
801 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGTEQ, |
802 | ByteCodeInstruction::kCompareUGTEQ, |
803 | ByteCodeInstruction::kCompareFGTEQ, |
804 | count); |
805 | break; |
806 | case Token::Kind::TK_LT: |
807 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLT, |
808 | ByteCodeInstruction::kCompareULT, |
809 | ByteCodeInstruction::kCompareFLT, |
810 | count); |
811 | break; |
812 | case Token::Kind::TK_LTEQ: |
813 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLTEQ, |
814 | ByteCodeInstruction::kCompareULTEQ, |
815 | ByteCodeInstruction::kCompareFLTEQ, |
816 | count); |
817 | break; |
818 | case Token::Kind::TK_MINUS: |
819 | this->writeTypedInstruction(lType, ByteCodeInstruction::kSubtractI, |
820 | ByteCodeInstruction::kSubtractI, |
821 | ByteCodeInstruction::kSubtractF, |
822 | count); |
823 | break; |
824 | case Token::Kind::TK_NEQ: |
825 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareINEQ, |
826 | ByteCodeInstruction::kCompareINEQ, |
827 | ByteCodeInstruction::kCompareFNEQ, |
828 | count); |
829 | // Collapse to a single bool |
830 | for (int i = count; i > 1; --i) { |
831 | this->write(ByteCodeInstruction::kOrB, 1); |
832 | } |
833 | break; |
834 | case Token::Kind::TK_PERCENT: |
835 | this->writeTypedInstruction(lType, ByteCodeInstruction::kRemainderS, |
836 | ByteCodeInstruction::kRemainderU, |
837 | ByteCodeInstruction::kRemainderF, |
838 | count); |
839 | break; |
840 | case Token::Kind::TK_PLUS: |
841 | this->writeTypedInstruction(lType, ByteCodeInstruction::kAddI, |
842 | ByteCodeInstruction::kAddI, |
843 | ByteCodeInstruction::kAddF, |
844 | count); |
845 | break; |
846 | case Token::Kind::TK_SLASH: |
847 | this->writeTypedInstruction(lType, ByteCodeInstruction::kDivideS, |
848 | ByteCodeInstruction::kDivideU, |
849 | ByteCodeInstruction::kDivideF, |
850 | count); |
851 | break; |
852 | case Token::Kind::TK_STAR: |
853 | this->writeTypedInstruction(lType, ByteCodeInstruction::kMultiplyI, |
854 | ByteCodeInstruction::kMultiplyI, |
855 | ByteCodeInstruction::kMultiplyF, |
856 | count); |
857 | break; |
858 | |
859 | case Token::Kind::TK_LOGICALXOR: |
860 | SkASSERT(tc == SkSL::TypeCategory::kBool); |
861 | this->write(ByteCodeInstruction::kXorB, count); |
862 | break; |
863 | |
864 | case Token::Kind::TK_BITWISEAND: |
865 | SkASSERT(tc == SkSL::TypeCategory::kSigned || tc == SkSL::TypeCategory::kUnsigned); |
866 | this->write(ByteCodeInstruction::kAndB, count); |
867 | break; |
868 | case Token::Kind::TK_BITWISEOR: |
869 | SkASSERT(tc == SkSL::TypeCategory::kSigned || tc == SkSL::TypeCategory::kUnsigned); |
870 | this->write(ByteCodeInstruction::kOrB, count); |
871 | break; |
872 | case Token::Kind::TK_BITWISEXOR: |
873 | SkASSERT(tc == SkSL::TypeCategory::kSigned || tc == SkSL::TypeCategory::kUnsigned); |
874 | this->write(ByteCodeInstruction::kXorB, count); |
875 | break; |
876 | |
877 | default: |
878 | fErrors.error(b.fOffset, SkSL::String::printf("Unsupported binary operator '%s'" , |
879 | Compiler::OperatorName(op))); |
880 | break; |
881 | } |
882 | } |
883 | if (lvalue) { |
884 | lvalue->store(discard); |
885 | discard = false; |
886 | } |
887 | return discard; |
888 | } |
889 | |
890 | void ByteCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { |
891 | this->write(ByteCodeInstruction::kPushImmediate); |
892 | this->write32(b.fValue ? ~0 : 0); |
893 | } |
894 | |
895 | void ByteCodeGenerator::writeConstructor(const Constructor& c) { |
896 | for (const auto& arg : c.fArguments) { |
897 | this->writeExpression(*arg); |
898 | } |
899 | if (c.fArguments.size() == 1) { |
900 | const Type& inType = c.fArguments[0]->fType; |
901 | const Type& outType = c.fType; |
902 | TypeCategory inCategory = type_category(inType); |
903 | TypeCategory outCategory = type_category(outType); |
904 | int inCount = SlotCount(inType); |
905 | int outCount = SlotCount(outType); |
906 | if (inCategory != outCategory) { |
907 | SkASSERT(inCount == outCount); |
908 | if (inCategory == TypeCategory::kFloat) { |
909 | SkASSERT(outCategory == TypeCategory::kSigned || |
910 | outCategory == TypeCategory::kUnsigned); |
911 | this->write(ByteCodeInstruction::kConvertFtoI, outCount); |
912 | } else if (outCategory == TypeCategory::kFloat) { |
913 | if (inCategory == TypeCategory::kSigned) { |
914 | this->write(ByteCodeInstruction::kConvertStoF, outCount); |
915 | } else { |
916 | SkASSERT(inCategory == TypeCategory::kUnsigned); |
917 | this->write(ByteCodeInstruction::kConvertUtoF, outCount); |
918 | } |
919 | } else { |
920 | SkASSERT(false); |
921 | } |
922 | } |
923 | if (inType.kind() == Type::kMatrix_Kind && outType.kind() == Type::kMatrix_Kind) { |
924 | this->write(ByteCodeInstruction::kMatrixToMatrix, |
925 | SlotCount(outType) - SlotCount(inType)); |
926 | this->write8(inType.columns()); |
927 | this->write8(inType.rows()); |
928 | this->write8(outType.columns()); |
929 | this->write8(outType.rows()); |
930 | } else if (inCount != outCount) { |
931 | SkASSERT(inCount == 1); |
932 | if (outType.kind() == Type::kMatrix_Kind) { |
933 | this->write(ByteCodeInstruction::kScalarToMatrix, SlotCount(outType) - 1); |
934 | this->write8(outType.columns()); |
935 | this->write8(outType.rows()); |
936 | } else { |
937 | SkASSERT(outType.kind() == Type::kVector_Kind); |
938 | for (; inCount != outCount; ++inCount) { |
939 | this->write(ByteCodeInstruction::kDup, 1); |
940 | } |
941 | } |
942 | } |
943 | } |
944 | } |
945 | |
946 | void ByteCodeGenerator::writeExternalFunctionCall(const ExternalFunctionCall& f) { |
947 | int argumentCount = 0; |
948 | for (const auto& arg : f.fArguments) { |
949 | this->writeExpression(*arg); |
950 | argumentCount += SlotCount(arg->fType); |
951 | } |
952 | this->write(ByteCodeInstruction::kCallExternal, SlotCount(f.fType) - argumentCount); |
953 | SkASSERT(argumentCount <= 255); |
954 | this->write8(argumentCount); |
955 | this->write8(SlotCount(f.fType)); |
956 | int index = fOutput->fExternalValues.size(); |
957 | fOutput->fExternalValues.push_back(f.fFunction); |
958 | SkASSERT(index <= 255); |
959 | this->write8(index); |
960 | } |
961 | |
962 | void ByteCodeGenerator::writeExternalValue(const ExternalValueReference& e) { |
963 | int count = SlotCount(e.fValue->type()); |
964 | this->write(ByteCodeInstruction::kReadExternal, count); |
965 | int index = fOutput->fExternalValues.size(); |
966 | fOutput->fExternalValues.push_back(e.fValue); |
967 | SkASSERT(index <= 255); |
968 | this->write8(index); |
969 | } |
970 | |
971 | void ByteCodeGenerator::writeVariableExpression(const Expression& expr) { |
972 | if (int builtin = expression_as_builtin(expr); builtin >= 0) { |
973 | switch (builtin) { |
974 | case SK_FRAGCOORD_BUILTIN: |
975 | this->write(ByteCodeInstruction::kLoadFragCoord); |
976 | fOutput->fUsesFragCoord = true; |
977 | break; |
978 | default: |
979 | fErrors.error(expr.fOffset, "Unsupported builtin" ); |
980 | break; |
981 | } |
982 | return; |
983 | } |
984 | |
985 | Location location = this->getLocation(expr); |
986 | int count = SlotCount(expr.fType); |
987 | if (count == 0) { |
988 | return; |
989 | } |
990 | if (location.isOnStack()) { |
991 | this->write(location.selectLoad(ByteCodeInstruction::kLoadExtended, |
992 | ByteCodeInstruction::kLoadExtendedGlobal, |
993 | ByteCodeInstruction::kLoadExtendedUniform), |
994 | count); |
995 | } else { |
996 | this->write(location.selectLoad(ByteCodeInstruction::kLoad, |
997 | ByteCodeInstruction::kLoadGlobal, |
998 | ByteCodeInstruction::kLoadUniform), |
999 | count); |
1000 | this->write8(location.fSlot); |
1001 | } |
1002 | } |
1003 | |
1004 | static inline uint32_t float_to_bits(float x) { |
1005 | uint32_t u; |
1006 | memcpy(&u, &x, sizeof(uint32_t)); |
1007 | return u; |
1008 | } |
1009 | |
1010 | void ByteCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { |
1011 | this->write(ByteCodeInstruction::kPushImmediate); |
1012 | this->write32(float_to_bits(f.fValue)); |
1013 | } |
1014 | |
1015 | static bool is_generic_type(const Type* type, const Type* generic) { |
1016 | const std::vector<const Type*>& concrete(generic->coercibleTypes()); |
1017 | return std::find(concrete.begin(), concrete.end(), type) != concrete.end(); |
1018 | } |
1019 | |
1020 | void ByteCodeGenerator::writeIntrinsicCall(const FunctionCall& c) { |
1021 | auto found = fIntrinsics.find(c.fFunction.fName); |
1022 | if (found == fIntrinsics.end()) { |
1023 | fErrors.error(c.fOffset, String::printf("Unsupported intrinsic: '%s'" , |
1024 | String(c.fFunction.fName).c_str())); |
1025 | return; |
1026 | } |
1027 | Intrinsic intrin = found->second; |
1028 | |
1029 | const auto& args = c.fArguments; |
1030 | const size_t nargs = args.size(); |
1031 | SkASSERT(nargs >= 1); |
1032 | |
1033 | int count = SlotCount(args[0]->fType); |
1034 | |
1035 | // Several intrinsics have variants where one argument is either scalar, or the same size as |
1036 | // the first argument. Call dupSmallerType(SlotCount(argType)) to ensure equal component count. |
1037 | auto dupSmallerType = [count, this](int smallCount) { |
1038 | SkASSERT(smallCount == 1 || smallCount == count); |
1039 | for (int i = smallCount; i < count; ++i) { |
1040 | this->write(ByteCodeInstruction::kDup, 1); |
1041 | } |
1042 | }; |
1043 | |
1044 | if (intrin.is_special && intrin.special == SpecialIntrinsic::kSample) { |
1045 | // Sample is very special, the first argument is an FP, which can't be pushed to the stack. |
1046 | if (nargs > 2 || args[0]->fType != *fContext.fFragmentProcessor_Type || |
1047 | (nargs == 2 && (args[1]->fType != *fContext.fFloat2_Type && |
1048 | args[1]->fType != *fContext.fFloat3x3_Type))) { |
1049 | fErrors.error(c.fOffset, "Unsupported form of sample" ); |
1050 | return; |
1051 | } |
1052 | |
1053 | if (nargs == 2) { |
1054 | // Write our coords or matrix |
1055 | this->writeExpression(*args[1]); |
1056 | this->write(args[1]->fType == *fContext.fFloat3x3_Type |
1057 | ? ByteCodeInstruction::kSampleMatrix |
1058 | : ByteCodeInstruction::kSampleExplicit); |
1059 | } else { |
1060 | this->write(ByteCodeInstruction::kSample); |
1061 | } |
1062 | |
1063 | Location childLoc = this->getLocation(*args[0]); |
1064 | SkASSERT(childLoc.fStorage == Storage::kChildFP); |
1065 | this->write8(childLoc.fSlot); |
1066 | return; |
1067 | } |
1068 | |
1069 | if (intrin.is_special && (intrin.special == SpecialIntrinsic::kClamp || |
1070 | intrin.special == SpecialIntrinsic::kSaturate)) { |
1071 | // These intrinsics are extra-special, we need instructions interleaved with arguments |
1072 | bool saturate = (intrin.special == SpecialIntrinsic::kSaturate); |
1073 | SkASSERT(nargs == (saturate ? 1 : 3)); |
1074 | int limitCount = saturate ? 1 : SlotCount(args[1]->fType); |
1075 | |
1076 | // 'x' |
1077 | this->writeExpression(*args[0]); |
1078 | |
1079 | // 'minVal' |
1080 | if (saturate) { |
1081 | this->write(ByteCodeInstruction::kPushImmediate); |
1082 | this->write32(float_to_bits(0.0f)); |
1083 | } else { |
1084 | this->writeExpression(*args[1]); |
1085 | } |
1086 | dupSmallerType(limitCount); |
1087 | this->writeTypedInstruction(args[0]->fType, |
1088 | ByteCodeInstruction::kMaxS, |
1089 | ByteCodeInstruction::kMaxS, |
1090 | ByteCodeInstruction::kMaxF, |
1091 | count); |
1092 | |
1093 | // 'maxVal' |
1094 | if (saturate) { |
1095 | this->write(ByteCodeInstruction::kPushImmediate); |
1096 | this->write32(float_to_bits(1.0f)); |
1097 | } else { |
1098 | SkASSERT(limitCount == SlotCount(args[2]->fType)); |
1099 | this->writeExpression(*args[2]); |
1100 | } |
1101 | dupSmallerType(limitCount); |
1102 | this->writeTypedInstruction(args[0]->fType, |
1103 | ByteCodeInstruction::kMinS, |
1104 | ByteCodeInstruction::kMinS, |
1105 | ByteCodeInstruction::kMinF, |
1106 | count); |
1107 | return; |
1108 | } |
1109 | |
1110 | // All other intrinsics can handle their arguments being on the stack in order |
1111 | for (const auto& arg : args) { |
1112 | this->writeExpression(*arg); |
1113 | } |
1114 | |
1115 | if (intrin.is_special) { |
1116 | switch (intrin.special) { |
1117 | case SpecialIntrinsic::kAll: { |
1118 | for (int i = count-1; i --> 0;) { |
1119 | this->write(ByteCodeInstruction::kAndB, 1); |
1120 | } |
1121 | } break; |
1122 | |
1123 | case SpecialIntrinsic::kAny: { |
1124 | for (int i = count-1; i --> 0;) { |
1125 | this->write(ByteCodeInstruction::kOrB, 1); |
1126 | } |
1127 | } break; |
1128 | |
1129 | case SpecialIntrinsic::kDot: { |
1130 | SkASSERT(nargs == 2); |
1131 | SkASSERT(count == SlotCount(args[1]->fType)); |
1132 | this->write(ByteCodeInstruction::kMultiplyF, count); |
1133 | for (int i = count-1; i --> 0;) { |
1134 | this->write(ByteCodeInstruction::kAddF, 1); |
1135 | } |
1136 | } break; |
1137 | |
1138 | case SpecialIntrinsic::kLength: { |
1139 | SkASSERT(nargs == 1); |
1140 | this->write(ByteCodeInstruction::kDup, count); |
1141 | this->write(ByteCodeInstruction::kMultiplyF, count); |
1142 | for (int i = count-1; i --> 0;) { |
1143 | this->write(ByteCodeInstruction::kAddF, 1); |
1144 | } |
1145 | this->write(ByteCodeInstruction::kSqrt, 1); |
1146 | } break; |
1147 | |
1148 | case SpecialIntrinsic::kMax: |
1149 | case SpecialIntrinsic::kMin: { |
1150 | SkASSERT(nargs == 2); |
1151 | // There are variants where the second argument is scalar |
1152 | dupSmallerType(SlotCount(args[1]->fType)); |
1153 | if (intrin.special == SpecialIntrinsic::kMax) { |
1154 | this->writeTypedInstruction(args[0]->fType, |
1155 | ByteCodeInstruction::kMaxS, |
1156 | ByteCodeInstruction::kMaxS, |
1157 | ByteCodeInstruction::kMaxF, |
1158 | count); |
1159 | } else { |
1160 | this->writeTypedInstruction(args[0]->fType, |
1161 | ByteCodeInstruction::kMinS, |
1162 | ByteCodeInstruction::kMinS, |
1163 | ByteCodeInstruction::kMinF, |
1164 | count); |
1165 | } |
1166 | } break; |
1167 | |
1168 | case SpecialIntrinsic::kMix: { |
1169 | // Two main variants of mix to handle |
1170 | SkASSERT(nargs == 3); |
1171 | SkASSERT(count == SlotCount(args[1]->fType)); |
1172 | int selectorCount = SlotCount(args[2]->fType); |
1173 | |
1174 | if (is_generic_type(&args[2]->fType, fContext.fGenBType_Type.get())) { |
1175 | // mix(genType, genType, genBoolType) |
1176 | SkASSERT(selectorCount == count); |
1177 | this->write(ByteCodeInstruction::kMix, count); |
1178 | } else { |
1179 | // mix(genType, genType, genType) or mix(genType, genType, float) |
1180 | dupSmallerType(selectorCount); |
1181 | this->write(ByteCodeInstruction::kLerp, count); |
1182 | } |
1183 | } break; |
1184 | |
1185 | case SpecialIntrinsic::kNormalize: { |
1186 | SkASSERT(nargs == 1); |
1187 | this->write(ByteCodeInstruction::kDup, count); |
1188 | this->write(ByteCodeInstruction::kDup, count); |
1189 | this->write(ByteCodeInstruction::kMultiplyF, count); |
1190 | for (int i = count-1; i --> 0;) { |
1191 | this->write(ByteCodeInstruction::kAddF, 1); |
1192 | } |
1193 | this->write(ByteCodeInstruction::kSqrt, 1); |
1194 | dupSmallerType(1); |
1195 | this->write(ByteCodeInstruction::kDivideF, count); |
1196 | } break; |
1197 | |
1198 | default: |
1199 | SkASSERT(false); |
1200 | } |
1201 | } else { |
1202 | switch (intrin.inst_f) { |
1203 | case ByteCodeInstruction::kInverse2x2: { |
1204 | auto op = ByteCodeInstruction::kInverse2x2; |
1205 | switch (count) { |
1206 | case 4: break; // float2x2 |
1207 | case 9: op = ByteCodeInstruction::kInverse3x3; break; |
1208 | case 16: op = ByteCodeInstruction::kInverse4x4; break; |
1209 | default: SkASSERT(false); |
1210 | } |
1211 | this->write(op); |
1212 | break; |
1213 | } |
1214 | |
1215 | default: |
1216 | this->writeTypedInstruction(args[0]->fType, |
1217 | intrin.inst_s, |
1218 | intrin.inst_u, |
1219 | intrin.inst_f, |
1220 | count); |
1221 | break; |
1222 | } |
1223 | } |
1224 | } |
1225 | |
1226 | void ByteCodeGenerator::writeFunctionCall(const FunctionCall& f) { |
1227 | // Find the index of the function we're calling. We explicitly do not allow calls to functions |
1228 | // before they're defined. This is an easy-to-understand rule that prevents recursion. |
1229 | int idx = -1; |
1230 | for (size_t i = 0; i < fFunctions.size(); ++i) { |
1231 | if (f.fFunction.matches(fFunctions[i]->fDeclaration)) { |
1232 | idx = i; |
1233 | break; |
1234 | } |
1235 | } |
1236 | if (idx == -1) { |
1237 | this->writeIntrinsicCall(f); |
1238 | return; |
1239 | } |
1240 | |
1241 | |
1242 | if (idx > 255) { |
1243 | fErrors.error(f.fOffset, "Function count limit exceeded" ); |
1244 | return; |
1245 | } else if (idx >= (int) fFunctions.size()) { |
1246 | fErrors.error(f.fOffset, "Call to undefined function" ); |
1247 | return; |
1248 | } |
1249 | |
1250 | // We may need to deal with out parameters, so the sequence is tricky |
1251 | if (int returnCount = SlotCount(f.fType)) { |
1252 | this->write(ByteCodeInstruction::kReserve, returnCount); |
1253 | } |
1254 | |
1255 | int argCount = f.fArguments.size(); |
1256 | std::vector<std::unique_ptr<LValue>> lvalues; |
1257 | for (int i = 0; i < argCount; ++i) { |
1258 | const auto& param = f.fFunction.fParameters[i]; |
1259 | const auto& arg = f.fArguments[i]; |
1260 | if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { |
1261 | lvalues.emplace_back(this->getLValue(*arg)); |
1262 | lvalues.back()->load(); |
1263 | } else { |
1264 | this->writeExpression(*arg); |
1265 | } |
1266 | } |
1267 | |
1268 | // The space used by the call is based on the callee, but it also unwinds all of that before |
1269 | // we continue execution. We adjust our max stack depths below. |
1270 | this->write(ByteCodeInstruction::kCall); |
1271 | this->write8(idx); |
1272 | |
1273 | const ByteCodeFunction* callee = fOutput->fFunctions[idx].get(); |
1274 | fMaxLoopCount = std::max(fMaxLoopCount, fLoopCount + callee->fLoopCount); |
1275 | fMaxConditionCount = std::max(fMaxConditionCount, fConditionCount + callee->fConditionCount); |
1276 | fMaxStackCount = std::max(fMaxStackCount, fStackCount + callee->fLocalCount |
1277 | + callee->fStackCount); |
1278 | |
1279 | // After the called function returns, the stack will still contain our arguments. We have to |
1280 | // pop them (storing any out parameters back to their lvalues as we go). We glob together slot |
1281 | // counts for all parameters that aren't out-params, so we can pop them in one big chunk. |
1282 | int popCount = 0; |
1283 | auto pop = [&]() { |
1284 | if (popCount > 0) { |
1285 | this->write(ByteCodeInstruction::kPop, popCount); |
1286 | } |
1287 | popCount = 0; |
1288 | }; |
1289 | |
1290 | for (int i = argCount - 1; i >= 0; --i) { |
1291 | const auto& param = f.fFunction.fParameters[i]; |
1292 | const auto& arg = f.fArguments[i]; |
1293 | if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { |
1294 | pop(); |
1295 | lvalues.back()->store(true); |
1296 | lvalues.pop_back(); |
1297 | } else { |
1298 | popCount += SlotCount(arg->fType); |
1299 | } |
1300 | } |
1301 | pop(); |
1302 | } |
1303 | |
1304 | void ByteCodeGenerator::writeIntLiteral(const IntLiteral& i) { |
1305 | this->write(ByteCodeInstruction::kPushImmediate); |
1306 | this->write32(i.fValue); |
1307 | } |
1308 | |
1309 | void ByteCodeGenerator::writeNullLiteral(const NullLiteral& n) { |
1310 | // not yet implemented |
1311 | abort(); |
1312 | } |
1313 | |
1314 | bool ByteCodeGenerator::writePrefixExpression(const PrefixExpression& p, bool discard) { |
1315 | switch (p.fOperator) { |
1316 | case Token::Kind::TK_PLUSPLUS: // fall through |
1317 | case Token::Kind::TK_MINUSMINUS: { |
1318 | SkASSERT(SlotCount(p.fOperand->fType) == 1); |
1319 | std::unique_ptr<LValue> lvalue = this->getLValue(*p.fOperand); |
1320 | lvalue->load(); |
1321 | this->write(ByteCodeInstruction::kPushImmediate); |
1322 | this->write32(type_category(p.fType) == TypeCategory::kFloat ? float_to_bits(1.0f) : 1); |
1323 | if (p.fOperator == Token::Kind::TK_PLUSPLUS) { |
1324 | this->writeTypedInstruction(p.fType, |
1325 | ByteCodeInstruction::kAddI, |
1326 | ByteCodeInstruction::kAddI, |
1327 | ByteCodeInstruction::kAddF, |
1328 | 1); |
1329 | } else { |
1330 | this->writeTypedInstruction(p.fType, |
1331 | ByteCodeInstruction::kSubtractI, |
1332 | ByteCodeInstruction::kSubtractI, |
1333 | ByteCodeInstruction::kSubtractF, |
1334 | 1); |
1335 | } |
1336 | lvalue->store(discard); |
1337 | discard = false; |
1338 | break; |
1339 | } |
1340 | case Token::Kind::TK_MINUS: { |
1341 | this->writeExpression(*p.fOperand); |
1342 | this->writeTypedInstruction(p.fType, |
1343 | ByteCodeInstruction::kNegateI, |
1344 | ByteCodeInstruction::kNegateI, |
1345 | ByteCodeInstruction::kNegateF, |
1346 | SlotCount(p.fOperand->fType)); |
1347 | break; |
1348 | } |
1349 | case Token::Kind::TK_LOGICALNOT: |
1350 | case Token::Kind::TK_BITWISENOT: { |
1351 | SkASSERT(SlotCount(p.fOperand->fType) == 1); |
1352 | SkDEBUGCODE(TypeCategory tc = type_category(p.fOperand->fType)); |
1353 | SkASSERT((p.fOperator == Token::Kind::TK_LOGICALNOT && tc == TypeCategory::kBool) || |
1354 | (p.fOperator == Token::Kind::TK_BITWISENOT && (tc == TypeCategory::kSigned || |
1355 | tc == TypeCategory::kUnsigned))); |
1356 | this->writeExpression(*p.fOperand); |
1357 | this->write(ByteCodeInstruction::kNotB, 1); |
1358 | break; |
1359 | } |
1360 | default: |
1361 | SkASSERT(false); |
1362 | } |
1363 | return discard; |
1364 | } |
1365 | |
1366 | bool ByteCodeGenerator::writePostfixExpression(const PostfixExpression& p, bool discard) { |
1367 | switch (p.fOperator) { |
1368 | case Token::Kind::TK_PLUSPLUS: // fall through |
1369 | case Token::Kind::TK_MINUSMINUS: { |
1370 | SkASSERT(SlotCount(p.fOperand->fType) == 1); |
1371 | std::unique_ptr<LValue> lvalue = this->getLValue(*p.fOperand); |
1372 | lvalue->load(); |
1373 | // If we're not supposed to discard the result, then make a copy *before* the +/- |
1374 | if (!discard) { |
1375 | this->write(ByteCodeInstruction::kDup, 1); |
1376 | } |
1377 | this->write(ByteCodeInstruction::kPushImmediate); |
1378 | this->write32(type_category(p.fType) == TypeCategory::kFloat ? float_to_bits(1.0f) : 1); |
1379 | if (p.fOperator == Token::Kind::TK_PLUSPLUS) { |
1380 | this->writeTypedInstruction(p.fType, |
1381 | ByteCodeInstruction::kAddI, |
1382 | ByteCodeInstruction::kAddI, |
1383 | ByteCodeInstruction::kAddF, |
1384 | 1); |
1385 | } else { |
1386 | this->writeTypedInstruction(p.fType, |
1387 | ByteCodeInstruction::kSubtractI, |
1388 | ByteCodeInstruction::kSubtractI, |
1389 | ByteCodeInstruction::kSubtractF, |
1390 | 1); |
1391 | } |
1392 | // Always consume the result as part of the store |
1393 | lvalue->store(true); |
1394 | discard = false; |
1395 | break; |
1396 | } |
1397 | default: |
1398 | SkASSERT(false); |
1399 | } |
1400 | return discard; |
1401 | } |
1402 | |
1403 | void ByteCodeGenerator::writeSwizzle(const Swizzle& s) { |
1404 | if (swizzle_is_simple(s)) { |
1405 | this->writeVariableExpression(s); |
1406 | return; |
1407 | } |
1408 | |
1409 | this->writeExpression(*s.fBase); |
1410 | this->write(ByteCodeInstruction::kSwizzle, s.fComponents.size() - s.fBase->fType.columns()); |
1411 | this->write8(s.fBase->fType.columns()); |
1412 | this->write8(s.fComponents.size()); |
1413 | for (int c : s.fComponents) { |
1414 | this->write8(c); |
1415 | } |
1416 | } |
1417 | |
1418 | void ByteCodeGenerator::writeTernaryExpression(const TernaryExpression& t) { |
1419 | int count = SlotCount(t.fType); |
1420 | SkASSERT(count == SlotCount(t.fIfTrue->fType)); |
1421 | SkASSERT(count == SlotCount(t.fIfFalse->fType)); |
1422 | |
1423 | this->writeExpression(*t.fTest); |
1424 | this->write(ByteCodeInstruction::kMaskPush); |
1425 | this->writeExpression(*t.fIfTrue); |
1426 | this->write(ByteCodeInstruction::kMaskNegate); |
1427 | this->writeExpression(*t.fIfFalse); |
1428 | this->write(ByteCodeInstruction::kMaskBlend, count); |
1429 | } |
1430 | |
1431 | void ByteCodeGenerator::writeExpression(const Expression& e, bool discard) { |
1432 | switch (e.fKind) { |
1433 | case Expression::kBinary_Kind: |
1434 | discard = this->writeBinaryExpression((BinaryExpression&) e, discard); |
1435 | break; |
1436 | case Expression::kBoolLiteral_Kind: |
1437 | this->writeBoolLiteral((BoolLiteral&) e); |
1438 | break; |
1439 | case Expression::kConstructor_Kind: |
1440 | this->writeConstructor((Constructor&) e); |
1441 | break; |
1442 | case Expression::kExternalFunctionCall_Kind: |
1443 | this->writeExternalFunctionCall((ExternalFunctionCall&) e); |
1444 | break; |
1445 | case Expression::kExternalValue_Kind: |
1446 | this->writeExternalValue((ExternalValueReference&) e); |
1447 | break; |
1448 | case Expression::kFieldAccess_Kind: |
1449 | case Expression::kIndex_Kind: |
1450 | case Expression::kVariableReference_Kind: |
1451 | this->writeVariableExpression(e); |
1452 | break; |
1453 | case Expression::kFloatLiteral_Kind: |
1454 | this->writeFloatLiteral((FloatLiteral&) e); |
1455 | break; |
1456 | case Expression::kFunctionCall_Kind: |
1457 | this->writeFunctionCall((FunctionCall&) e); |
1458 | break; |
1459 | case Expression::kIntLiteral_Kind: |
1460 | this->writeIntLiteral((IntLiteral&) e); |
1461 | break; |
1462 | case Expression::kNullLiteral_Kind: |
1463 | this->writeNullLiteral((NullLiteral&) e); |
1464 | break; |
1465 | case Expression::kPrefix_Kind: |
1466 | discard = this->writePrefixExpression((PrefixExpression&) e, discard); |
1467 | break; |
1468 | case Expression::kPostfix_Kind: |
1469 | discard = this->writePostfixExpression((PostfixExpression&) e, discard); |
1470 | break; |
1471 | case Expression::kSwizzle_Kind: |
1472 | this->writeSwizzle((Swizzle&) e); |
1473 | break; |
1474 | case Expression::kTernary_Kind: |
1475 | this->writeTernaryExpression((TernaryExpression&) e); |
1476 | break; |
1477 | default: |
1478 | #ifdef SK_DEBUG |
1479 | printf("unsupported expression %s\n" , e.description().c_str()); |
1480 | #endif |
1481 | SkASSERT(false); |
1482 | } |
1483 | if (discard) { |
1484 | int count = SlotCount(e.fType); |
1485 | if (count > 0) { |
1486 | this->write(ByteCodeInstruction::kPop, count); |
1487 | } |
1488 | discard = false; |
1489 | } |
1490 | } |
1491 | |
1492 | class ByteCodeExternalValueLValue : public ByteCodeGenerator::LValue { |
1493 | public: |
1494 | ByteCodeExternalValueLValue(ByteCodeGenerator* generator, ExternalValue& value, int index) |
1495 | : INHERITED(*generator) |
1496 | , fCount(ByteCodeGenerator::SlotCount(value.type())) |
1497 | , fIndex(index) {} |
1498 | |
1499 | void load() override { |
1500 | fGenerator.write(ByteCodeInstruction::kReadExternal, fCount); |
1501 | fGenerator.write8(fIndex); |
1502 | } |
1503 | |
1504 | void store(bool discard) override { |
1505 | if (!discard) { |
1506 | fGenerator.write(ByteCodeInstruction::kDup, fCount); |
1507 | } |
1508 | fGenerator.write(ByteCodeInstruction::kWriteExternal, fCount); |
1509 | fGenerator.write8(fIndex); |
1510 | } |
1511 | |
1512 | private: |
1513 | typedef LValue INHERITED; |
1514 | |
1515 | int fCount; |
1516 | int fIndex; |
1517 | }; |
1518 | |
1519 | class ByteCodeSwizzleLValue : public ByteCodeGenerator::LValue { |
1520 | public: |
1521 | ByteCodeSwizzleLValue(ByteCodeGenerator* generator, const Swizzle& swizzle) |
1522 | : INHERITED(*generator) |
1523 | , fSwizzle(swizzle) {} |
1524 | |
1525 | void load() override { |
1526 | fGenerator.writeSwizzle(fSwizzle); |
1527 | } |
1528 | |
1529 | void store(bool discard) override { |
1530 | int count = fSwizzle.fComponents.size(); |
1531 | if (!discard) { |
1532 | fGenerator.write(ByteCodeInstruction::kDup, count); |
1533 | } |
1534 | // We already have the correct number of values on the stack, thanks to type checking. |
1535 | // The algorithm: Walk down the values on the stack, doing 'count' single-element stores. |
1536 | // For each value, use the corresponding swizzle component to offset the store location. |
1537 | // |
1538 | // Static locations: We (wastefully) call getLocation every time, but get good byte code. |
1539 | // Note that we could (but don't) store adjacent/sequential values with fewer instructions. |
1540 | // |
1541 | // Dynamic locations: ... are bad. We have to recompute the base address on each iteration, |
1542 | // because the stack doesn't let us retain that address between stores. Dynamic locations |
1543 | // are rare though, and swizzled writes to those are even rarer, so we just live with this. |
1544 | for (int i = count; i-- > 0;) { |
1545 | ByteCodeGenerator::Location location = fGenerator.getLocation(*fSwizzle.fBase); |
1546 | if (!location.isOnStack()) { |
1547 | fGenerator.write(location.selectStore(ByteCodeInstruction::kStore, |
1548 | ByteCodeInstruction::kStoreGlobal), |
1549 | 1); |
1550 | fGenerator.write8(location.fSlot + fSwizzle.fComponents[i]); |
1551 | } else { |
1552 | fGenerator.write(ByteCodeInstruction::kPushImmediate); |
1553 | fGenerator.write32(fSwizzle.fComponents[i]); |
1554 | fGenerator.write(ByteCodeInstruction::kAddI, 1); |
1555 | fGenerator.write(location.selectStore(ByteCodeInstruction::kStoreExtended, |
1556 | ByteCodeInstruction::kStoreExtendedGlobal), |
1557 | 1); |
1558 | } |
1559 | } |
1560 | } |
1561 | |
1562 | private: |
1563 | const Swizzle& fSwizzle; |
1564 | |
1565 | typedef LValue INHERITED; |
1566 | }; |
1567 | |
1568 | class ByteCodeExpressionLValue : public ByteCodeGenerator::LValue { |
1569 | public: |
1570 | ByteCodeExpressionLValue(ByteCodeGenerator* generator, const Expression& expr) |
1571 | : INHERITED(*generator) |
1572 | , fExpression(expr) {} |
1573 | |
1574 | void load() override { |
1575 | fGenerator.writeVariableExpression(fExpression); |
1576 | } |
1577 | |
1578 | void store(bool discard) override { |
1579 | int count = ByteCodeGenerator::SlotCount(fExpression.fType); |
1580 | if (!discard) { |
1581 | fGenerator.write(ByteCodeInstruction::kDup, count); |
1582 | } |
1583 | ByteCodeGenerator::Location location = fGenerator.getLocation(fExpression); |
1584 | if (location.isOnStack()) { |
1585 | fGenerator.write(location.selectStore(ByteCodeInstruction::kStoreExtended, |
1586 | ByteCodeInstruction::kStoreExtendedGlobal), |
1587 | count); |
1588 | } else { |
1589 | fGenerator.write(location.selectStore(ByteCodeInstruction::kStore, |
1590 | ByteCodeInstruction::kStoreGlobal), |
1591 | count); |
1592 | fGenerator.write8(location.fSlot); |
1593 | } |
1594 | } |
1595 | |
1596 | private: |
1597 | typedef LValue INHERITED; |
1598 | |
1599 | const Expression& fExpression; |
1600 | }; |
1601 | |
1602 | std::unique_ptr<ByteCodeGenerator::LValue> ByteCodeGenerator::getLValue(const Expression& e) { |
1603 | switch (e.fKind) { |
1604 | case Expression::kExternalValue_Kind: { |
1605 | ExternalValue* value = ((ExternalValueReference&) e).fValue; |
1606 | int index = fOutput->fExternalValues.size(); |
1607 | fOutput->fExternalValues.push_back(value); |
1608 | SkASSERT(index <= 255); |
1609 | return std::unique_ptr<LValue>(new ByteCodeExternalValueLValue(this, *value, index)); |
1610 | } |
1611 | case Expression::kFieldAccess_Kind: |
1612 | case Expression::kIndex_Kind: |
1613 | case Expression::kVariableReference_Kind: |
1614 | return std::unique_ptr<LValue>(new ByteCodeExpressionLValue(this, e)); |
1615 | case Expression::kSwizzle_Kind: { |
1616 | const Swizzle& s = (const Swizzle&) e; |
1617 | return swizzle_is_simple(s) |
1618 | ? std::unique_ptr<LValue>(new ByteCodeExpressionLValue(this, e)) |
1619 | : std::unique_ptr<LValue>(new ByteCodeSwizzleLValue(this, s)); |
1620 | } |
1621 | case Expression::kTernary_Kind: |
1622 | default: |
1623 | #ifdef SK_DEBUG |
1624 | ABORT("unsupported lvalue %s\n" , e.description().c_str()); |
1625 | #endif |
1626 | return nullptr; |
1627 | } |
1628 | } |
1629 | |
1630 | void ByteCodeGenerator::writeBlock(const Block& b) { |
1631 | for (const auto& s : b.fStatements) { |
1632 | this->writeStatement(*s); |
1633 | } |
1634 | } |
1635 | |
1636 | void ByteCodeGenerator::setBreakTargets() { |
1637 | std::vector<DeferredLocation>& breaks = fBreakTargets.top(); |
1638 | for (DeferredLocation& b : breaks) { |
1639 | b.set(); |
1640 | } |
1641 | fBreakTargets.pop(); |
1642 | } |
1643 | |
1644 | void ByteCodeGenerator::setContinueTargets() { |
1645 | std::vector<DeferredLocation>& continues = fContinueTargets.top(); |
1646 | for (DeferredLocation& c : continues) { |
1647 | c.set(); |
1648 | } |
1649 | fContinueTargets.pop(); |
1650 | } |
1651 | |
1652 | void ByteCodeGenerator::writeBreakStatement(const BreakStatement& b) { |
1653 | // TODO: Include BranchIfAllFalse to top-most LoopNext |
1654 | this->write(ByteCodeInstruction::kLoopBreak); |
1655 | } |
1656 | |
1657 | void ByteCodeGenerator::writeContinueStatement(const ContinueStatement& c) { |
1658 | // TODO: Include BranchIfAllFalse to top-most LoopNext |
1659 | this->write(ByteCodeInstruction::kLoopContinue); |
1660 | } |
1661 | |
1662 | void ByteCodeGenerator::writeDoStatement(const DoStatement& d) { |
1663 | this->write(ByteCodeInstruction::kLoopBegin); |
1664 | size_t start = fCode->size(); |
1665 | this->writeStatement(*d.fStatement); |
1666 | this->write(ByteCodeInstruction::kLoopNext); |
1667 | this->writeExpression(*d.fTest); |
1668 | this->write(ByteCodeInstruction::kLoopMask); |
1669 | // TODO: Could shorten this with kBranchIfAnyTrue |
1670 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1671 | DeferredLocation endLocation(this); |
1672 | this->write(ByteCodeInstruction::kBranch); |
1673 | this->write16(start); |
1674 | endLocation.set(); |
1675 | this->write(ByteCodeInstruction::kLoopEnd); |
1676 | } |
1677 | |
1678 | void ByteCodeGenerator::writeForStatement(const ForStatement& f) { |
1679 | fContinueTargets.emplace(); |
1680 | fBreakTargets.emplace(); |
1681 | if (f.fInitializer) { |
1682 | this->writeStatement(*f.fInitializer); |
1683 | } |
1684 | this->write(ByteCodeInstruction::kLoopBegin); |
1685 | size_t start = fCode->size(); |
1686 | if (f.fTest) { |
1687 | this->writeExpression(*f.fTest); |
1688 | this->write(ByteCodeInstruction::kLoopMask); |
1689 | } |
1690 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1691 | DeferredLocation endLocation(this); |
1692 | this->writeStatement(*f.fStatement); |
1693 | this->write(ByteCodeInstruction::kLoopNext); |
1694 | if (f.fNext) { |
1695 | this->writeExpression(*f.fNext, true); |
1696 | } |
1697 | this->write(ByteCodeInstruction::kBranch); |
1698 | this->write16(start); |
1699 | endLocation.set(); |
1700 | this->write(ByteCodeInstruction::kLoopEnd); |
1701 | } |
1702 | |
1703 | void ByteCodeGenerator::writeIfStatement(const IfStatement& i) { |
1704 | this->writeExpression(*i.fTest); |
1705 | this->write(ByteCodeInstruction::kMaskPush); |
1706 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1707 | DeferredLocation falseLocation(this); |
1708 | this->writeStatement(*i.fIfTrue); |
1709 | falseLocation.set(); |
1710 | if (i.fIfFalse) { |
1711 | this->write(ByteCodeInstruction::kMaskNegate); |
1712 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1713 | DeferredLocation endLocation(this); |
1714 | this->writeStatement(*i.fIfFalse); |
1715 | endLocation.set(); |
1716 | } |
1717 | this->write(ByteCodeInstruction::kMaskPop); |
1718 | } |
1719 | |
1720 | void ByteCodeGenerator::writeReturnStatement(const ReturnStatement& r) { |
1721 | if (fLoopCount || fConditionCount) { |
1722 | fErrors.error(r.fOffset, "return not allowed inside conditional or loop" ); |
1723 | return; |
1724 | } |
1725 | int count = SlotCount(r.fExpression->fType); |
1726 | this->writeExpression(*r.fExpression); |
1727 | |
1728 | // Technically, the kReturn also pops fOutput->fLocalCount values from the stack, too, but we |
1729 | // haven't counted pushing those (they're outside the scope of our stack tracking). Instead, |
1730 | // we account for those in writeFunction(). |
1731 | |
1732 | // This is all fine because we don't allow conditional returns, so we only return once anyway. |
1733 | this->write(ByteCodeInstruction::kReturn, count); |
1734 | } |
1735 | |
1736 | void ByteCodeGenerator::writeSwitchStatement(const SwitchStatement& r) { |
1737 | // not yet implemented |
1738 | abort(); |
1739 | } |
1740 | |
1741 | void ByteCodeGenerator::writeVarDeclarations(const VarDeclarations& v) { |
1742 | for (const auto& declStatement : v.fVars) { |
1743 | const VarDeclaration& decl = (VarDeclaration&) *declStatement; |
1744 | // we need to grab the location even if we don't use it, to ensure it has been allocated |
1745 | Location location = this->getLocation(*decl.fVar); |
1746 | if (decl.fValue) { |
1747 | this->writeExpression(*decl.fValue); |
1748 | int count = SlotCount(decl.fValue->fType); |
1749 | this->write(ByteCodeInstruction::kStore, count); |
1750 | this->write8(location.fSlot); |
1751 | } |
1752 | } |
1753 | } |
1754 | |
1755 | void ByteCodeGenerator::writeWhileStatement(const WhileStatement& w) { |
1756 | this->write(ByteCodeInstruction::kLoopBegin); |
1757 | size_t cond = fCode->size(); |
1758 | this->writeExpression(*w.fTest); |
1759 | this->write(ByteCodeInstruction::kLoopMask); |
1760 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1761 | DeferredLocation endLocation(this); |
1762 | this->writeStatement(*w.fStatement); |
1763 | this->write(ByteCodeInstruction::kLoopNext); |
1764 | this->write(ByteCodeInstruction::kBranch); |
1765 | this->write16(cond); |
1766 | endLocation.set(); |
1767 | this->write(ByteCodeInstruction::kLoopEnd); |
1768 | } |
1769 | |
1770 | void ByteCodeGenerator::writeStatement(const Statement& s) { |
1771 | switch (s.fKind) { |
1772 | case Statement::kBlock_Kind: |
1773 | this->writeBlock((Block&) s); |
1774 | break; |
1775 | case Statement::kBreak_Kind: |
1776 | this->writeBreakStatement((BreakStatement&) s); |
1777 | break; |
1778 | case Statement::kContinue_Kind: |
1779 | this->writeContinueStatement((ContinueStatement&) s); |
1780 | break; |
1781 | case Statement::kDiscard_Kind: |
1782 | // not yet implemented |
1783 | abort(); |
1784 | case Statement::kDo_Kind: |
1785 | this->writeDoStatement((DoStatement&) s); |
1786 | break; |
1787 | case Statement::kExpression_Kind: |
1788 | this->writeExpression(*((ExpressionStatement&) s).fExpression, true); |
1789 | break; |
1790 | case Statement::kFor_Kind: |
1791 | this->writeForStatement((ForStatement&) s); |
1792 | break; |
1793 | case Statement::kIf_Kind: |
1794 | this->writeIfStatement((IfStatement&) s); |
1795 | break; |
1796 | case Statement::kNop_Kind: |
1797 | break; |
1798 | case Statement::kReturn_Kind: |
1799 | this->writeReturnStatement((ReturnStatement&) s); |
1800 | break; |
1801 | case Statement::kSwitch_Kind: |
1802 | this->writeSwitchStatement((SwitchStatement&) s); |
1803 | break; |
1804 | case Statement::kVarDeclarations_Kind: |
1805 | this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration); |
1806 | break; |
1807 | case Statement::kWhile_Kind: |
1808 | this->writeWhileStatement((WhileStatement&) s); |
1809 | break; |
1810 | default: |
1811 | SkASSERT(false); |
1812 | } |
1813 | } |
1814 | |
1815 | ByteCodeFunction::ByteCodeFunction(const FunctionDeclaration* declaration) |
1816 | : fName(declaration->fName) { |
1817 | fParameterCount = 0; |
1818 | for (const auto& p : declaration->fParameters) { |
1819 | int slots = ByteCodeGenerator::SlotCount(p->fType); |
1820 | fParameters.push_back({ slots, (bool)(p->fModifiers.fFlags & Modifiers::kOut_Flag) }); |
1821 | fParameterCount += slots; |
1822 | } |
1823 | } |
1824 | |
1825 | } // namespace SkSL |
1826 | |