| 1 | /* |
| 2 | * Copyright 2017 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/utils/SkPolyUtils.h" |
| 9 | |
| 10 | #include <limits> |
| 11 | |
| 12 | #include "include/private/SkNx.h" |
| 13 | #include "include/private/SkTArray.h" |
| 14 | #include "include/private/SkTemplates.h" |
| 15 | #include "src/core/SkPointPriv.h" |
| 16 | #include "src/core/SkTDPQueue.h" |
| 17 | #include "src/core/SkTInternalLList.h" |
| 18 | |
| 19 | ////////////////////////////////////////////////////////////////////////////////// |
| 20 | // Helper data structures and functions |
| 21 | |
| 22 | struct OffsetSegment { |
| 23 | SkPoint fP0; |
| 24 | SkVector fV; |
| 25 | }; |
| 26 | |
| 27 | constexpr SkScalar kCrossTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero; |
| 28 | |
| 29 | // Computes perpDot for point p compared to segment defined by origin p0 and vector v. |
| 30 | // A positive value means the point is to the left of the segment, |
| 31 | // negative is to the right, 0 is collinear. |
| 32 | static int compute_side(const SkPoint& p0, const SkVector& v, const SkPoint& p) { |
| 33 | SkVector w = p - p0; |
| 34 | SkScalar perpDot = v.cross(w); |
| 35 | if (!SkScalarNearlyZero(perpDot, kCrossTolerance)) { |
| 36 | return ((perpDot > 0) ? 1 : -1); |
| 37 | } |
| 38 | |
| 39 | return 0; |
| 40 | } |
| 41 | |
| 42 | // Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting) |
| 43 | int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) { |
| 44 | if (polygonSize < 3) { |
| 45 | return 0; |
| 46 | } |
| 47 | |
| 48 | // compute area and use sign to determine winding |
| 49 | SkScalar quadArea = 0; |
| 50 | SkVector v0 = polygonVerts[1] - polygonVerts[0]; |
| 51 | for (int curr = 2; curr < polygonSize; ++curr) { |
| 52 | SkVector v1 = polygonVerts[curr] - polygonVerts[0]; |
| 53 | quadArea += v0.cross(v1); |
| 54 | v0 = v1; |
| 55 | } |
| 56 | if (SkScalarNearlyZero(quadArea, kCrossTolerance)) { |
| 57 | return 0; |
| 58 | } |
| 59 | // 1 == ccw, -1 == cw |
| 60 | return (quadArea > 0) ? 1 : -1; |
| 61 | } |
| 62 | |
| 63 | // Compute difference vector to offset p0-p1 'offset' units in direction specified by 'side' |
| 64 | bool compute_offset_vector(const SkPoint& p0, const SkPoint& p1, SkScalar offset, int side, |
| 65 | SkPoint* vector) { |
| 66 | SkASSERT(side == -1 || side == 1); |
| 67 | // if distances are equal, can just outset by the perpendicular |
| 68 | SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX); |
| 69 | if (!perp.setLength(offset*side)) { |
| 70 | return false; |
| 71 | } |
| 72 | *vector = perp; |
| 73 | return true; |
| 74 | } |
| 75 | |
| 76 | // check interval to see if intersection is in segment |
| 77 | static inline bool outside_interval(SkScalar numer, SkScalar denom, bool denomPositive) { |
| 78 | return (denomPositive && (numer < 0 || numer > denom)) || |
| 79 | (!denomPositive && (numer > 0 || numer < denom)); |
| 80 | } |
| 81 | |
| 82 | // special zero-length test when we're using vdotv as a denominator |
| 83 | static inline bool zero_length(const SkPoint& v, SkScalar vdotv) { |
| 84 | return !(SkScalarsAreFinite(v.fX, v.fY) && vdotv); |
| 85 | } |
| 86 | |
| 87 | // Compute the intersection 'p' between segments s0 and s1, if any. |
| 88 | // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'. |
| 89 | // Returns false if there is no intersection. |
| 90 | // If the length squared of a segment is 0, then we treat the segment as degenerate |
| 91 | // and use only the first endpoint for tests. |
| 92 | static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1, |
| 93 | SkPoint* p, SkScalar* s, SkScalar* t) { |
| 94 | const SkVector& v0 = s0.fV; |
| 95 | const SkVector& v1 = s1.fV; |
| 96 | SkVector w = s1.fP0 - s0.fP0; |
| 97 | SkScalar denom = v0.cross(v1); |
| 98 | bool denomPositive = (denom > 0); |
| 99 | SkScalar sNumer, tNumer; |
| 100 | if (SkScalarNearlyZero(denom, kCrossTolerance)) { |
| 101 | // segments are parallel, but not collinear |
| 102 | if (!SkScalarNearlyZero(w.cross(v0), kCrossTolerance) || |
| 103 | !SkScalarNearlyZero(w.cross(v1), kCrossTolerance)) { |
| 104 | return false; |
| 105 | } |
| 106 | |
| 107 | // Check for zero-length segments |
| 108 | SkScalar v0dotv0 = v0.dot(v0); |
| 109 | if (zero_length(v0, v0dotv0)) { |
| 110 | // Both are zero-length |
| 111 | SkScalar v1dotv1 = v1.dot(v1); |
| 112 | if (zero_length(v1, v1dotv1)) { |
| 113 | // Check if they're the same point |
| 114 | if (!SkPointPriv::CanNormalize(w.fX, w.fY)) { |
| 115 | *p = s0.fP0; |
| 116 | *s = 0; |
| 117 | *t = 0; |
| 118 | return true; |
| 119 | } else { |
| 120 | // Intersection is indeterminate |
| 121 | return false; |
| 122 | } |
| 123 | } |
| 124 | // Otherwise project segment0's origin onto segment1 |
| 125 | tNumer = v1.dot(-w); |
| 126 | denom = v1dotv1; |
| 127 | if (outside_interval(tNumer, denom, true)) { |
| 128 | return false; |
| 129 | } |
| 130 | sNumer = 0; |
| 131 | } else { |
| 132 | // Project segment1's endpoints onto segment0 |
| 133 | sNumer = v0.dot(w); |
| 134 | denom = v0dotv0; |
| 135 | tNumer = 0; |
| 136 | if (outside_interval(sNumer, denom, true)) { |
| 137 | // The first endpoint doesn't lie on segment0 |
| 138 | // If segment1 is degenerate, then there's no collision |
| 139 | SkScalar v1dotv1 = v1.dot(v1); |
| 140 | if (zero_length(v1, v1dotv1)) { |
| 141 | return false; |
| 142 | } |
| 143 | |
| 144 | // Otherwise try the other one |
| 145 | SkScalar oldSNumer = sNumer; |
| 146 | sNumer = v0.dot(w + v1); |
| 147 | tNumer = denom; |
| 148 | if (outside_interval(sNumer, denom, true)) { |
| 149 | // it's possible that segment1's interval surrounds segment0 |
| 150 | // this is false if params have the same signs, and in that case no collision |
| 151 | if (sNumer*oldSNumer > 0) { |
| 152 | return false; |
| 153 | } |
| 154 | // otherwise project segment0's endpoint onto segment1 instead |
| 155 | sNumer = 0; |
| 156 | tNumer = v1.dot(-w); |
| 157 | denom = v1dotv1; |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | } else { |
| 162 | sNumer = w.cross(v1); |
| 163 | if (outside_interval(sNumer, denom, denomPositive)) { |
| 164 | return false; |
| 165 | } |
| 166 | tNumer = w.cross(v0); |
| 167 | if (outside_interval(tNumer, denom, denomPositive)) { |
| 168 | return false; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | SkScalar localS = sNumer/denom; |
| 173 | SkScalar localT = tNumer/denom; |
| 174 | |
| 175 | *p = s0.fP0 + v0*localS; |
| 176 | *s = localS; |
| 177 | *t = localT; |
| 178 | |
| 179 | return true; |
| 180 | } |
| 181 | |
| 182 | bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) { |
| 183 | if (polygonSize < 3) { |
| 184 | return false; |
| 185 | } |
| 186 | |
| 187 | SkScalar lastArea = 0; |
| 188 | SkScalar lastPerpDot = 0; |
| 189 | |
| 190 | int prevIndex = polygonSize - 1; |
| 191 | int currIndex = 0; |
| 192 | int nextIndex = 1; |
| 193 | SkPoint origin = polygonVerts[0]; |
| 194 | SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex]; |
| 195 | SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; |
| 196 | SkVector w0 = polygonVerts[currIndex] - origin; |
| 197 | SkVector w1 = polygonVerts[nextIndex] - origin; |
| 198 | for (int i = 0; i < polygonSize; ++i) { |
| 199 | if (!polygonVerts[i].isFinite()) { |
| 200 | return false; |
| 201 | } |
| 202 | |
| 203 | // Check that winding direction is always the same (otherwise we have a reflex vertex) |
| 204 | SkScalar perpDot = v0.cross(v1); |
| 205 | if (lastPerpDot*perpDot < 0) { |
| 206 | return false; |
| 207 | } |
| 208 | if (0 != perpDot) { |
| 209 | lastPerpDot = perpDot; |
| 210 | } |
| 211 | |
| 212 | // If the signed area ever flips it's concave |
| 213 | // TODO: see if we can verify convexity only with signed area |
| 214 | SkScalar quadArea = w0.cross(w1); |
| 215 | if (quadArea*lastArea < 0) { |
| 216 | return false; |
| 217 | } |
| 218 | if (0 != quadArea) { |
| 219 | lastArea = quadArea; |
| 220 | } |
| 221 | |
| 222 | prevIndex = currIndex; |
| 223 | currIndex = nextIndex; |
| 224 | nextIndex = (currIndex + 1) % polygonSize; |
| 225 | v0 = v1; |
| 226 | v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; |
| 227 | w0 = w1; |
| 228 | w1 = polygonVerts[nextIndex] - origin; |
| 229 | } |
| 230 | |
| 231 | return true; |
| 232 | } |
| 233 | |
| 234 | struct OffsetEdge { |
| 235 | OffsetEdge* fPrev; |
| 236 | OffsetEdge* fNext; |
| 237 | OffsetSegment fOffset; |
| 238 | SkPoint fIntersection; |
| 239 | SkScalar fTValue; |
| 240 | uint16_t fIndex; |
| 241 | uint16_t fEnd; |
| 242 | |
| 243 | void init(uint16_t start = 0, uint16_t end = 0) { |
| 244 | fIntersection = fOffset.fP0; |
| 245 | fTValue = SK_ScalarMin; |
| 246 | fIndex = start; |
| 247 | fEnd = end; |
| 248 | } |
| 249 | |
| 250 | // special intersection check that looks for endpoint intersection |
| 251 | bool checkIntersection(const OffsetEdge* that, |
| 252 | SkPoint* p, SkScalar* s, SkScalar* t) { |
| 253 | if (this->fEnd == that->fIndex) { |
| 254 | SkPoint p1 = this->fOffset.fP0 + this->fOffset.fV; |
| 255 | if (SkPointPriv::EqualsWithinTolerance(p1, that->fOffset.fP0)) { |
| 256 | *p = p1; |
| 257 | *s = SK_Scalar1; |
| 258 | *t = 0; |
| 259 | return true; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | return compute_intersection(this->fOffset, that->fOffset, p, s, t); |
| 264 | } |
| 265 | |
| 266 | // computes the line intersection and then the "distance" from that to this |
| 267 | // this is really a signed squared distance, where negative means that |
| 268 | // the intersection lies inside this->fOffset |
| 269 | SkScalar computeCrossingDistance(const OffsetEdge* that) { |
| 270 | const OffsetSegment& s0 = this->fOffset; |
| 271 | const OffsetSegment& s1 = that->fOffset; |
| 272 | const SkVector& v0 = s0.fV; |
| 273 | const SkVector& v1 = s1.fV; |
| 274 | |
| 275 | SkScalar denom = v0.cross(v1); |
| 276 | if (SkScalarNearlyZero(denom, kCrossTolerance)) { |
| 277 | // segments are parallel |
| 278 | return SK_ScalarMax; |
| 279 | } |
| 280 | |
| 281 | SkVector w = s1.fP0 - s0.fP0; |
| 282 | SkScalar localS = w.cross(v1) / denom; |
| 283 | if (localS < 0) { |
| 284 | localS = -localS; |
| 285 | } else { |
| 286 | localS -= SK_Scalar1; |
| 287 | } |
| 288 | |
| 289 | localS *= SkScalarAbs(localS); |
| 290 | localS *= v0.dot(v0); |
| 291 | |
| 292 | return localS; |
| 293 | } |
| 294 | |
| 295 | }; |
| 296 | |
| 297 | static void remove_node(const OffsetEdge* node, OffsetEdge** head) { |
| 298 | // remove from linked list |
| 299 | node->fPrev->fNext = node->fNext; |
| 300 | node->fNext->fPrev = node->fPrev; |
| 301 | if (node == *head) { |
| 302 | *head = (node->fNext == node) ? nullptr : node->fNext; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | ////////////////////////////////////////////////////////////////////////////////// |
| 307 | |
| 308 | // The objective here is to inset all of the edges by the given distance, and then |
| 309 | // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon, |
| 310 | // we should only be making left-hand turns (for cw polygons, we use the winding |
| 311 | // parameter to reverse this). We detect this by checking whether the second intersection |
| 312 | // on an edge is closer to its tail than the first one. |
| 313 | // |
| 314 | // We might also have the case that there is no intersection between two neighboring inset edges. |
| 315 | // In this case, one edge will lie to the right of the other and should be discarded along with |
| 316 | // its previous intersection (if any). |
| 317 | // |
| 318 | // Note: the assumption is that inputPolygon is convex and has no coincident points. |
| 319 | // |
| 320 | bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, |
| 321 | SkScalar inset, SkTDArray<SkPoint>* insetPolygon) { |
| 322 | if (inputPolygonSize < 3) { |
| 323 | return false; |
| 324 | } |
| 325 | |
| 326 | // restrict this to match other routines |
| 327 | // practically we don't want anything bigger than this anyway |
| 328 | if (inputPolygonSize > std::numeric_limits<uint16_t>::max()) { |
| 329 | return false; |
| 330 | } |
| 331 | |
| 332 | // can't inset by a negative or non-finite amount |
| 333 | if (inset < -SK_ScalarNearlyZero || !SkScalarIsFinite(inset)) { |
| 334 | return false; |
| 335 | } |
| 336 | |
| 337 | // insetting close to zero just returns the original poly |
| 338 | if (inset <= SK_ScalarNearlyZero) { |
| 339 | for (int i = 0; i < inputPolygonSize; ++i) { |
| 340 | *insetPolygon->push() = inputPolygonVerts[i]; |
| 341 | } |
| 342 | return true; |
| 343 | } |
| 344 | |
| 345 | // get winding direction |
| 346 | int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize); |
| 347 | if (0 == winding) { |
| 348 | return false; |
| 349 | } |
| 350 | |
| 351 | // set up |
| 352 | SkAutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize); |
| 353 | int prev = inputPolygonSize - 1; |
| 354 | for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) { |
| 355 | int next = (curr + 1) % inputPolygonSize; |
| 356 | if (!inputPolygonVerts[curr].isFinite()) { |
| 357 | return false; |
| 358 | } |
| 359 | // check for convexity just to be sure |
| 360 | if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr] - inputPolygonVerts[prev], |
| 361 | inputPolygonVerts[next])*winding < 0) { |
| 362 | return false; |
| 363 | } |
| 364 | SkVector v = inputPolygonVerts[next] - inputPolygonVerts[curr]; |
| 365 | SkVector perp = SkVector::Make(-v.fY, v.fX); |
| 366 | perp.setLength(inset*winding); |
| 367 | edgeData[curr].fPrev = &edgeData[prev]; |
| 368 | edgeData[curr].fNext = &edgeData[next]; |
| 369 | edgeData[curr].fOffset.fP0 = inputPolygonVerts[curr] + perp; |
| 370 | edgeData[curr].fOffset.fV = v; |
| 371 | edgeData[curr].init(); |
| 372 | } |
| 373 | |
| 374 | OffsetEdge* head = &edgeData[0]; |
| 375 | OffsetEdge* currEdge = head; |
| 376 | OffsetEdge* prevEdge = currEdge->fPrev; |
| 377 | int insetVertexCount = inputPolygonSize; |
| 378 | unsigned int iterations = 0; |
| 379 | unsigned int maxIterations = inputPolygonSize * inputPolygonSize; |
| 380 | while (head && prevEdge != currEdge) { |
| 381 | ++iterations; |
| 382 | // we should check each edge against each other edge at most once |
| 383 | if (iterations > maxIterations) { |
| 384 | return false; |
| 385 | } |
| 386 | |
| 387 | SkScalar s, t; |
| 388 | SkPoint intersection; |
| 389 | if (compute_intersection(prevEdge->fOffset, currEdge->fOffset, |
| 390 | &intersection, &s, &t)) { |
| 391 | // if new intersection is further back on previous inset from the prior intersection |
| 392 | if (s < prevEdge->fTValue) { |
| 393 | // no point in considering this one again |
| 394 | remove_node(prevEdge, &head); |
| 395 | --insetVertexCount; |
| 396 | // go back one segment |
| 397 | prevEdge = prevEdge->fPrev; |
| 398 | // we've already considered this intersection, we're done |
| 399 | } else if (currEdge->fTValue > SK_ScalarMin && |
| 400 | SkPointPriv::EqualsWithinTolerance(intersection, |
| 401 | currEdge->fIntersection, |
| 402 | 1.0e-6f)) { |
| 403 | break; |
| 404 | } else { |
| 405 | // add intersection |
| 406 | currEdge->fIntersection = intersection; |
| 407 | currEdge->fTValue = t; |
| 408 | |
| 409 | // go to next segment |
| 410 | prevEdge = currEdge; |
| 411 | currEdge = currEdge->fNext; |
| 412 | } |
| 413 | } else { |
| 414 | // if prev to right side of curr |
| 415 | int side = winding*compute_side(currEdge->fOffset.fP0, |
| 416 | currEdge->fOffset.fV, |
| 417 | prevEdge->fOffset.fP0); |
| 418 | if (side < 0 && |
| 419 | side == winding*compute_side(currEdge->fOffset.fP0, |
| 420 | currEdge->fOffset.fV, |
| 421 | prevEdge->fOffset.fP0 + prevEdge->fOffset.fV)) { |
| 422 | // no point in considering this one again |
| 423 | remove_node(prevEdge, &head); |
| 424 | --insetVertexCount; |
| 425 | // go back one segment |
| 426 | prevEdge = prevEdge->fPrev; |
| 427 | } else { |
| 428 | // move to next segment |
| 429 | remove_node(currEdge, &head); |
| 430 | --insetVertexCount; |
| 431 | currEdge = currEdge->fNext; |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | // store all the valid intersections that aren't nearly coincident |
| 437 | // TODO: look at the main algorithm and see if we can detect these better |
| 438 | insetPolygon->reset(); |
| 439 | if (!head) { |
| 440 | return false; |
| 441 | } |
| 442 | |
| 443 | static constexpr SkScalar kCleanupTolerance = 0.01f; |
| 444 | if (insetVertexCount >= 0) { |
| 445 | insetPolygon->setReserve(insetVertexCount); |
| 446 | } |
| 447 | int currIndex = 0; |
| 448 | *insetPolygon->push() = head->fIntersection; |
| 449 | currEdge = head->fNext; |
| 450 | while (currEdge != head) { |
| 451 | if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection, |
| 452 | (*insetPolygon)[currIndex], |
| 453 | kCleanupTolerance)) { |
| 454 | *insetPolygon->push() = currEdge->fIntersection; |
| 455 | currIndex++; |
| 456 | } |
| 457 | currEdge = currEdge->fNext; |
| 458 | } |
| 459 | // make sure the first and last points aren't coincident |
| 460 | if (currIndex >= 1 && |
| 461 | SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex], |
| 462 | kCleanupTolerance)) { |
| 463 | insetPolygon->pop(); |
| 464 | } |
| 465 | |
| 466 | return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->count()); |
| 467 | } |
| 468 | |
| 469 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 470 | |
| 471 | // compute the number of points needed for a circular join when offsetting a reflex vertex |
| 472 | bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar offset, |
| 473 | SkScalar* rotSin, SkScalar* rotCos, int* n) { |
| 474 | const SkScalar kRecipPixelsPerArcSegment = 0.25f; |
| 475 | |
| 476 | SkScalar rCos = v1.dot(v2); |
| 477 | if (!SkScalarIsFinite(rCos)) { |
| 478 | return false; |
| 479 | } |
| 480 | SkScalar rSin = v1.cross(v2); |
| 481 | if (!SkScalarIsFinite(rSin)) { |
| 482 | return false; |
| 483 | } |
| 484 | SkScalar theta = SkScalarATan2(rSin, rCos); |
| 485 | |
| 486 | SkScalar floatSteps = SkScalarAbs(offset*theta*kRecipPixelsPerArcSegment); |
| 487 | // limit the number of steps to at most max uint16_t (that's all we can index) |
| 488 | // knock one value off the top to account for rounding |
| 489 | if (floatSteps >= std::numeric_limits<uint16_t>::max()) { |
| 490 | return false; |
| 491 | } |
| 492 | int steps = SkScalarRoundToInt(floatSteps); |
| 493 | |
| 494 | SkScalar dTheta = steps > 0 ? theta / steps : 0; |
| 495 | *rotSin = SkScalarSin(dTheta); |
| 496 | *rotCos = SkScalarCos(dTheta); |
| 497 | *n = steps; |
| 498 | return true; |
| 499 | } |
| 500 | |
| 501 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 502 | |
| 503 | // a point is "left" to another if its x-coord is less, or if equal, its y-coord is greater |
| 504 | static bool left(const SkPoint& p0, const SkPoint& p1) { |
| 505 | return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY > p1.fY); |
| 506 | } |
| 507 | |
| 508 | // a point is "right" to another if its x-coord is greater, or if equal, its y-coord is less |
| 509 | static bool right(const SkPoint& p0, const SkPoint& p1) { |
| 510 | return p0.fX > p1.fX || (!(p0.fX < p1.fX) && p0.fY < p1.fY); |
| 511 | } |
| 512 | |
| 513 | struct Vertex { |
| 514 | static bool Left(const Vertex& qv0, const Vertex& qv1) { |
| 515 | return left(qv0.fPosition, qv1.fPosition); |
| 516 | } |
| 517 | |
| 518 | // packed to fit into 16 bytes (one cache line) |
| 519 | SkPoint fPosition; |
| 520 | uint16_t fIndex; // index in unsorted polygon |
| 521 | uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon |
| 522 | uint16_t fNextIndex; |
| 523 | uint16_t fFlags; |
| 524 | }; |
| 525 | |
| 526 | enum VertexFlags { |
| 527 | kPrevLeft_VertexFlag = 0x1, |
| 528 | kNextLeft_VertexFlag = 0x2, |
| 529 | }; |
| 530 | |
| 531 | struct ActiveEdge { |
| 532 | ActiveEdge() : fChild{ nullptr, nullptr }, fAbove(nullptr), fBelow(nullptr), fRed(false) {} |
| 533 | ActiveEdge(const SkPoint& p0, const SkVector& v, uint16_t index0, uint16_t index1) |
| 534 | : fSegment({ p0, v }) |
| 535 | , fIndex0(index0) |
| 536 | , fIndex1(index1) |
| 537 | , fAbove(nullptr) |
| 538 | , fBelow(nullptr) |
| 539 | , fRed(true) { |
| 540 | fChild[0] = nullptr; |
| 541 | fChild[1] = nullptr; |
| 542 | } |
| 543 | |
| 544 | // Returns true if "this" is above "that", assuming this->p0 is to the left of that->p0 |
| 545 | // This is only used to verify the edgelist -- the actual test for insertion/deletion is much |
| 546 | // simpler because we can make certain assumptions then. |
| 547 | bool aboveIfLeft(const ActiveEdge* that) const { |
| 548 | const SkPoint& p0 = this->fSegment.fP0; |
| 549 | const SkPoint& q0 = that->fSegment.fP0; |
| 550 | SkASSERT(p0.fX <= q0.fX); |
| 551 | SkVector d = q0 - p0; |
| 552 | const SkVector& v = this->fSegment.fV; |
| 553 | const SkVector& w = that->fSegment.fV; |
| 554 | // The idea here is that if the vector between the origins of the two segments (d) |
| 555 | // rotates counterclockwise up to the vector representing the "this" segment (v), |
| 556 | // then we know that "this" is above "that". If the result is clockwise we say it's below. |
| 557 | if (this->fIndex0 != that->fIndex0) { |
| 558 | SkScalar cross = d.cross(v); |
| 559 | if (cross > kCrossTolerance) { |
| 560 | return true; |
| 561 | } else if (cross < -kCrossTolerance) { |
| 562 | return false; |
| 563 | } |
| 564 | } else if (this->fIndex1 == that->fIndex1) { |
| 565 | return false; |
| 566 | } |
| 567 | // At this point either the two origins are nearly equal or the origin of "that" |
| 568 | // lies on dv. So then we try the same for the vector from the tail of "this" |
| 569 | // to the head of "that". Again, ccw means "this" is above "that". |
| 570 | // d = that.P1 - this.P0 |
| 571 | // = that.fP0 + that.fV - this.fP0 |
| 572 | // = that.fP0 - this.fP0 + that.fV |
| 573 | // = old_d + that.fV |
| 574 | d += w; |
| 575 | SkScalar cross = d.cross(v); |
| 576 | if (cross > kCrossTolerance) { |
| 577 | return true; |
| 578 | } else if (cross < -kCrossTolerance) { |
| 579 | return false; |
| 580 | } |
| 581 | // If the previous check fails, the two segments are nearly collinear |
| 582 | // First check y-coord of first endpoints |
| 583 | if (p0.fX < q0.fX) { |
| 584 | return (p0.fY >= q0.fY); |
| 585 | } else if (p0.fY > q0.fY) { |
| 586 | return true; |
| 587 | } else if (p0.fY < q0.fY) { |
| 588 | return false; |
| 589 | } |
| 590 | // The first endpoints are the same, so check the other endpoint |
| 591 | SkPoint p1 = p0 + v; |
| 592 | SkPoint q1 = q0 + w; |
| 593 | if (p1.fX < q1.fX) { |
| 594 | return (p1.fY >= q1.fY); |
| 595 | } else { |
| 596 | return (p1.fY > q1.fY); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | // same as leftAndAbove(), but generalized |
| 601 | bool above(const ActiveEdge* that) const { |
| 602 | const SkPoint& p0 = this->fSegment.fP0; |
| 603 | const SkPoint& q0 = that->fSegment.fP0; |
| 604 | if (right(p0, q0)) { |
| 605 | return !that->aboveIfLeft(this); |
| 606 | } else { |
| 607 | return this->aboveIfLeft(that); |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | bool intersect(const SkPoint& q0, const SkVector& w, uint16_t index0, uint16_t index1) const { |
| 612 | // check first to see if these edges are neighbors in the polygon |
| 613 | if (this->fIndex0 == index0 || this->fIndex1 == index0 || |
| 614 | this->fIndex0 == index1 || this->fIndex1 == index1) { |
| 615 | return false; |
| 616 | } |
| 617 | |
| 618 | // We don't need the exact intersection point so we can do a simpler test here. |
| 619 | const SkPoint& p0 = this->fSegment.fP0; |
| 620 | const SkVector& v = this->fSegment.fV; |
| 621 | SkPoint p1 = p0 + v; |
| 622 | SkPoint q1 = q0 + w; |
| 623 | |
| 624 | // We assume some x-overlap due to how the edgelist works |
| 625 | // This allows us to simplify our test |
| 626 | // We need some slop here because storing the vector and recomputing the second endpoint |
| 627 | // doesn't necessary give us the original result in floating point. |
| 628 | // TODO: Store vector as double? Store endpoint as well? |
| 629 | SkASSERT(q0.fX <= p1.fX + SK_ScalarNearlyZero); |
| 630 | |
| 631 | // if each segment straddles the other (i.e., the endpoints have different sides) |
| 632 | // then they intersect |
| 633 | bool result; |
| 634 | if (p0.fX < q0.fX) { |
| 635 | if (q1.fX < p1.fX) { |
| 636 | result = (compute_side(p0, v, q0)*compute_side(p0, v, q1) < 0); |
| 637 | } else { |
| 638 | result = (compute_side(p0, v, q0)*compute_side(q0, w, p1) > 0); |
| 639 | } |
| 640 | } else { |
| 641 | if (p1.fX < q1.fX) { |
| 642 | result = (compute_side(q0, w, p0)*compute_side(q0, w, p1) < 0); |
| 643 | } else { |
| 644 | result = (compute_side(q0, w, p0)*compute_side(p0, v, q1) > 0); |
| 645 | } |
| 646 | } |
| 647 | return result; |
| 648 | } |
| 649 | |
| 650 | bool intersect(const ActiveEdge* edge) { |
| 651 | return this->intersect(edge->fSegment.fP0, edge->fSegment.fV, edge->fIndex0, edge->fIndex1); |
| 652 | } |
| 653 | |
| 654 | bool lessThan(const ActiveEdge* that) const { |
| 655 | SkASSERT(!this->above(this)); |
| 656 | SkASSERT(!that->above(that)); |
| 657 | SkASSERT(!(this->above(that) && that->above(this))); |
| 658 | return this->above(that); |
| 659 | } |
| 660 | |
| 661 | bool equals(uint16_t index0, uint16_t index1) const { |
| 662 | return (this->fIndex0 == index0 && this->fIndex1 == index1); |
| 663 | } |
| 664 | |
| 665 | OffsetSegment fSegment; |
| 666 | uint16_t fIndex0; // indices for previous and next vertex in polygon |
| 667 | uint16_t fIndex1; |
| 668 | ActiveEdge* fChild[2]; |
| 669 | ActiveEdge* fAbove; |
| 670 | ActiveEdge* fBelow; |
| 671 | int32_t fRed; |
| 672 | }; |
| 673 | |
| 674 | class ActiveEdgeList { |
| 675 | public: |
| 676 | ActiveEdgeList(int maxEdges) { |
| 677 | fAllocation = (char*) sk_malloc_throw(sizeof(ActiveEdge)*maxEdges); |
| 678 | fCurrFree = 0; |
| 679 | fMaxFree = maxEdges; |
| 680 | } |
| 681 | ~ActiveEdgeList() { |
| 682 | fTreeHead.fChild[1] = nullptr; |
| 683 | sk_free(fAllocation); |
| 684 | } |
| 685 | |
| 686 | bool insert(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) { |
| 687 | SkVector v = p1 - p0; |
| 688 | if (!v.isFinite()) { |
| 689 | return false; |
| 690 | } |
| 691 | // empty tree case -- easy |
| 692 | if (!fTreeHead.fChild[1]) { |
| 693 | ActiveEdge* root = fTreeHead.fChild[1] = this->allocate(p0, v, index0, index1); |
| 694 | SkASSERT(root); |
| 695 | if (!root) { |
| 696 | return false; |
| 697 | } |
| 698 | root->fRed = false; |
| 699 | return true; |
| 700 | } |
| 701 | |
| 702 | // set up helpers |
| 703 | ActiveEdge* top = &fTreeHead; |
| 704 | ActiveEdge *grandparent = nullptr; |
| 705 | ActiveEdge *parent = nullptr; |
| 706 | ActiveEdge *curr = top->fChild[1]; |
| 707 | int dir = 0; |
| 708 | int last = 0; // ? |
| 709 | // predecessor and successor, for intersection check |
| 710 | ActiveEdge* pred = nullptr; |
| 711 | ActiveEdge* succ = nullptr; |
| 712 | |
| 713 | // search down the tree |
| 714 | while (true) { |
| 715 | if (!curr) { |
| 716 | // check for intersection with predecessor and successor |
| 717 | if ((pred && pred->intersect(p0, v, index0, index1)) || |
| 718 | (succ && succ->intersect(p0, v, index0, index1))) { |
| 719 | return false; |
| 720 | } |
| 721 | // insert new node at bottom |
| 722 | parent->fChild[dir] = curr = this->allocate(p0, v, index0, index1); |
| 723 | SkASSERT(curr); |
| 724 | if (!curr) { |
| 725 | return false; |
| 726 | } |
| 727 | curr->fAbove = pred; |
| 728 | curr->fBelow = succ; |
| 729 | if (pred) { |
| 730 | pred->fBelow = curr; |
| 731 | } |
| 732 | if (succ) { |
| 733 | succ->fAbove = curr; |
| 734 | } |
| 735 | if (IsRed(parent)) { |
| 736 | int dir2 = (top->fChild[1] == grandparent); |
| 737 | if (curr == parent->fChild[last]) { |
| 738 | top->fChild[dir2] = SingleRotation(grandparent, !last); |
| 739 | } else { |
| 740 | top->fChild[dir2] = DoubleRotation(grandparent, !last); |
| 741 | } |
| 742 | } |
| 743 | break; |
| 744 | } else if (IsRed(curr->fChild[0]) && IsRed(curr->fChild[1])) { |
| 745 | // color flip |
| 746 | curr->fRed = true; |
| 747 | curr->fChild[0]->fRed = false; |
| 748 | curr->fChild[1]->fRed = false; |
| 749 | if (IsRed(parent)) { |
| 750 | int dir2 = (top->fChild[1] == grandparent); |
| 751 | if (curr == parent->fChild[last]) { |
| 752 | top->fChild[dir2] = SingleRotation(grandparent, !last); |
| 753 | } else { |
| 754 | top->fChild[dir2] = DoubleRotation(grandparent, !last); |
| 755 | } |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | last = dir; |
| 760 | int side; |
| 761 | // check to see if segment is above or below |
| 762 | if (curr->fIndex0 == index0) { |
| 763 | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1); |
| 764 | } else { |
| 765 | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0); |
| 766 | } |
| 767 | if (0 == side) { |
| 768 | return false; |
| 769 | } |
| 770 | dir = (side < 0); |
| 771 | |
| 772 | if (0 == dir) { |
| 773 | succ = curr; |
| 774 | } else { |
| 775 | pred = curr; |
| 776 | } |
| 777 | |
| 778 | // update helpers |
| 779 | if (grandparent) { |
| 780 | top = grandparent; |
| 781 | } |
| 782 | grandparent = parent; |
| 783 | parent = curr; |
| 784 | curr = curr->fChild[dir]; |
| 785 | } |
| 786 | |
| 787 | // update root and make it black |
| 788 | fTreeHead.fChild[1]->fRed = false; |
| 789 | |
| 790 | SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1])); |
| 791 | |
| 792 | return true; |
| 793 | } |
| 794 | |
| 795 | // replaces edge p0p1 with p1p2 |
| 796 | bool replace(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |
| 797 | uint16_t index0, uint16_t index1, uint16_t index2) { |
| 798 | if (!fTreeHead.fChild[1]) { |
| 799 | return false; |
| 800 | } |
| 801 | |
| 802 | SkVector v = p2 - p1; |
| 803 | ActiveEdge* curr = &fTreeHead; |
| 804 | ActiveEdge* found = nullptr; |
| 805 | int dir = 1; |
| 806 | |
| 807 | // search |
| 808 | while (curr->fChild[dir] != nullptr) { |
| 809 | // update helpers |
| 810 | curr = curr->fChild[dir]; |
| 811 | // save found node |
| 812 | if (curr->equals(index0, index1)) { |
| 813 | found = curr; |
| 814 | break; |
| 815 | } else { |
| 816 | // check to see if segment is above or below |
| 817 | int side; |
| 818 | if (curr->fIndex1 == index1) { |
| 819 | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0); |
| 820 | } else { |
| 821 | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1); |
| 822 | } |
| 823 | if (0 == side) { |
| 824 | return false; |
| 825 | } |
| 826 | dir = (side < 0); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | if (!found) { |
| 831 | return false; |
| 832 | } |
| 833 | |
| 834 | // replace if found |
| 835 | ActiveEdge* pred = found->fAbove; |
| 836 | ActiveEdge* succ = found->fBelow; |
| 837 | // check deletion and insert intersection cases |
| 838 | if (pred && (pred->intersect(found) || pred->intersect(p1, v, index1, index2))) { |
| 839 | return false; |
| 840 | } |
| 841 | if (succ && (succ->intersect(found) || succ->intersect(p1, v, index1, index2))) { |
| 842 | return false; |
| 843 | } |
| 844 | found->fSegment.fP0 = p1; |
| 845 | found->fSegment.fV = v; |
| 846 | found->fIndex0 = index1; |
| 847 | found->fIndex1 = index2; |
| 848 | // above and below should stay the same |
| 849 | |
| 850 | SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1])); |
| 851 | |
| 852 | return true; |
| 853 | } |
| 854 | |
| 855 | bool remove(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) { |
| 856 | if (!fTreeHead.fChild[1]) { |
| 857 | return false; |
| 858 | } |
| 859 | |
| 860 | ActiveEdge* curr = &fTreeHead; |
| 861 | ActiveEdge* parent = nullptr; |
| 862 | ActiveEdge* grandparent = nullptr; |
| 863 | ActiveEdge* found = nullptr; |
| 864 | int dir = 1; |
| 865 | |
| 866 | // search and push a red node down |
| 867 | while (curr->fChild[dir] != nullptr) { |
| 868 | int last = dir; |
| 869 | |
| 870 | // update helpers |
| 871 | grandparent = parent; |
| 872 | parent = curr; |
| 873 | curr = curr->fChild[dir]; |
| 874 | // save found node |
| 875 | if (curr->equals(index0, index1)) { |
| 876 | found = curr; |
| 877 | dir = 0; |
| 878 | } else { |
| 879 | // check to see if segment is above or below |
| 880 | int side; |
| 881 | if (curr->fIndex1 == index1) { |
| 882 | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0); |
| 883 | } else { |
| 884 | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1); |
| 885 | } |
| 886 | if (0 == side) { |
| 887 | return false; |
| 888 | } |
| 889 | dir = (side < 0); |
| 890 | } |
| 891 | |
| 892 | // push the red node down |
| 893 | if (!IsRed(curr) && !IsRed(curr->fChild[dir])) { |
| 894 | if (IsRed(curr->fChild[!dir])) { |
| 895 | parent = parent->fChild[last] = SingleRotation(curr, dir); |
| 896 | } else { |
| 897 | ActiveEdge *s = parent->fChild[!last]; |
| 898 | |
| 899 | if (s != nullptr) { |
| 900 | if (!IsRed(s->fChild[!last]) && !IsRed(s->fChild[last])) { |
| 901 | // color flip |
| 902 | parent->fRed = false; |
| 903 | s->fRed = true; |
| 904 | curr->fRed = true; |
| 905 | } else { |
| 906 | int dir2 = (grandparent->fChild[1] == parent); |
| 907 | |
| 908 | if (IsRed(s->fChild[last])) { |
| 909 | grandparent->fChild[dir2] = DoubleRotation(parent, last); |
| 910 | } else if (IsRed(s->fChild[!last])) { |
| 911 | grandparent->fChild[dir2] = SingleRotation(parent, last); |
| 912 | } |
| 913 | |
| 914 | // ensure correct coloring |
| 915 | curr->fRed = grandparent->fChild[dir2]->fRed = true; |
| 916 | grandparent->fChild[dir2]->fChild[0]->fRed = false; |
| 917 | grandparent->fChild[dir2]->fChild[1]->fRed = false; |
| 918 | } |
| 919 | } |
| 920 | } |
| 921 | } |
| 922 | } |
| 923 | |
| 924 | // replace and remove if found |
| 925 | if (found) { |
| 926 | ActiveEdge* pred = found->fAbove; |
| 927 | ActiveEdge* succ = found->fBelow; |
| 928 | if ((pred && pred->intersect(found)) || (succ && succ->intersect(found))) { |
| 929 | return false; |
| 930 | } |
| 931 | if (found != curr) { |
| 932 | found->fSegment = curr->fSegment; |
| 933 | found->fIndex0 = curr->fIndex0; |
| 934 | found->fIndex1 = curr->fIndex1; |
| 935 | found->fAbove = curr->fAbove; |
| 936 | pred = found->fAbove; |
| 937 | // we don't need to set found->fBelow here |
| 938 | } else { |
| 939 | if (succ) { |
| 940 | succ->fAbove = pred; |
| 941 | } |
| 942 | } |
| 943 | if (pred) { |
| 944 | pred->fBelow = curr->fBelow; |
| 945 | } |
| 946 | parent->fChild[parent->fChild[1] == curr] = curr->fChild[!curr->fChild[0]]; |
| 947 | |
| 948 | // no need to delete |
| 949 | curr->fAbove = reinterpret_cast<ActiveEdge*>(0xdeadbeefll); |
| 950 | curr->fBelow = reinterpret_cast<ActiveEdge*>(0xdeadbeefll); |
| 951 | if (fTreeHead.fChild[1]) { |
| 952 | fTreeHead.fChild[1]->fRed = false; |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | // update root and make it black |
| 957 | if (fTreeHead.fChild[1]) { |
| 958 | fTreeHead.fChild[1]->fRed = false; |
| 959 | } |
| 960 | |
| 961 | SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1])); |
| 962 | |
| 963 | return true; |
| 964 | } |
| 965 | |
| 966 | private: |
| 967 | // allocator |
| 968 | ActiveEdge * allocate(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) { |
| 969 | if (fCurrFree >= fMaxFree) { |
| 970 | return nullptr; |
| 971 | } |
| 972 | char* bytes = fAllocation + sizeof(ActiveEdge)*fCurrFree; |
| 973 | ++fCurrFree; |
| 974 | return new(bytes) ActiveEdge(p0, p1, index0, index1); |
| 975 | } |
| 976 | |
| 977 | /////////////////////////////////////////////////////////////////////////////////// |
| 978 | // Red-black tree methods |
| 979 | /////////////////////////////////////////////////////////////////////////////////// |
| 980 | static bool IsRed(const ActiveEdge* node) { |
| 981 | return node && node->fRed; |
| 982 | } |
| 983 | |
| 984 | static ActiveEdge* SingleRotation(ActiveEdge* node, int dir) { |
| 985 | ActiveEdge* tmp = node->fChild[!dir]; |
| 986 | |
| 987 | node->fChild[!dir] = tmp->fChild[dir]; |
| 988 | tmp->fChild[dir] = node; |
| 989 | |
| 990 | node->fRed = true; |
| 991 | tmp->fRed = false; |
| 992 | |
| 993 | return tmp; |
| 994 | } |
| 995 | |
| 996 | static ActiveEdge* DoubleRotation(ActiveEdge* node, int dir) { |
| 997 | node->fChild[!dir] = SingleRotation(node->fChild[!dir], !dir); |
| 998 | |
| 999 | return SingleRotation(node, dir); |
| 1000 | } |
| 1001 | |
| 1002 | // returns black link count |
| 1003 | static int VerifyTree(const ActiveEdge* tree) { |
| 1004 | if (!tree) { |
| 1005 | return 1; |
| 1006 | } |
| 1007 | |
| 1008 | const ActiveEdge* left = tree->fChild[0]; |
| 1009 | const ActiveEdge* right = tree->fChild[1]; |
| 1010 | |
| 1011 | // no consecutive red links |
| 1012 | if (IsRed(tree) && (IsRed(left) || IsRed(right))) { |
| 1013 | SkASSERT(false); |
| 1014 | return 0; |
| 1015 | } |
| 1016 | |
| 1017 | // check secondary links |
| 1018 | if (tree->fAbove) { |
| 1019 | SkASSERT(tree->fAbove->fBelow == tree); |
| 1020 | SkASSERT(tree->fAbove->lessThan(tree)); |
| 1021 | } |
| 1022 | if (tree->fBelow) { |
| 1023 | SkASSERT(tree->fBelow->fAbove == tree); |
| 1024 | SkASSERT(tree->lessThan(tree->fBelow)); |
| 1025 | } |
| 1026 | |
| 1027 | // violates binary tree order |
| 1028 | if ((left && tree->lessThan(left)) || (right && right->lessThan(tree))) { |
| 1029 | SkASSERT(false); |
| 1030 | return 0; |
| 1031 | } |
| 1032 | |
| 1033 | int leftCount = VerifyTree(left); |
| 1034 | int rightCount = VerifyTree(right); |
| 1035 | |
| 1036 | // return black link count |
| 1037 | if (leftCount != 0 && rightCount != 0) { |
| 1038 | // black height mismatch |
| 1039 | if (leftCount != rightCount) { |
| 1040 | SkASSERT(false); |
| 1041 | return 0; |
| 1042 | } |
| 1043 | return IsRed(tree) ? leftCount : leftCount + 1; |
| 1044 | } else { |
| 1045 | return 0; |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | ActiveEdge fTreeHead; |
| 1050 | char* fAllocation; |
| 1051 | int fCurrFree; |
| 1052 | int fMaxFree; |
| 1053 | }; |
| 1054 | |
| 1055 | // Here we implement a sweep line algorithm to determine whether the provided points |
| 1056 | // represent a simple polygon, i.e., the polygon is non-self-intersecting. |
| 1057 | // We first insert the vertices into a priority queue sorting horizontally from left to right. |
| 1058 | // Then as we pop the vertices from the queue we generate events which indicate that an edge |
| 1059 | // should be added or removed from an edge list. If any intersections are detected in the edge |
| 1060 | // list, then we know the polygon is self-intersecting and hence not simple. |
| 1061 | bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) { |
| 1062 | if (polygonSize < 3) { |
| 1063 | return false; |
| 1064 | } |
| 1065 | |
| 1066 | // If it's convex, it's simple |
| 1067 | if (SkIsConvexPolygon(polygon, polygonSize)) { |
| 1068 | return true; |
| 1069 | } |
| 1070 | |
| 1071 | // practically speaking, it takes too long to process large polygons |
| 1072 | if (polygonSize > 2048) { |
| 1073 | return false; |
| 1074 | } |
| 1075 | |
| 1076 | SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize); |
| 1077 | for (int i = 0; i < polygonSize; ++i) { |
| 1078 | Vertex newVertex; |
| 1079 | if (!polygon[i].isFinite()) { |
| 1080 | return false; |
| 1081 | } |
| 1082 | newVertex.fPosition = polygon[i]; |
| 1083 | newVertex.fIndex = i; |
| 1084 | newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize; |
| 1085 | newVertex.fNextIndex = (i + 1) % polygonSize; |
| 1086 | newVertex.fFlags = 0; |
| 1087 | if (left(polygon[newVertex.fPrevIndex], polygon[i])) { |
| 1088 | newVertex.fFlags |= kPrevLeft_VertexFlag; |
| 1089 | } |
| 1090 | if (left(polygon[newVertex.fNextIndex], polygon[i])) { |
| 1091 | newVertex.fFlags |= kNextLeft_VertexFlag; |
| 1092 | } |
| 1093 | vertexQueue.insert(newVertex); |
| 1094 | } |
| 1095 | |
| 1096 | // pop each vertex from the queue and generate events depending on |
| 1097 | // where it lies relative to its neighboring edges |
| 1098 | ActiveEdgeList sweepLine(polygonSize); |
| 1099 | while (vertexQueue.count() > 0) { |
| 1100 | const Vertex& v = vertexQueue.peek(); |
| 1101 | |
| 1102 | // both to the right -- insert both |
| 1103 | if (v.fFlags == 0) { |
| 1104 | if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) { |
| 1105 | break; |
| 1106 | } |
| 1107 | if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) { |
| 1108 | break; |
| 1109 | } |
| 1110 | // both to the left -- remove both |
| 1111 | } else if (v.fFlags == (kPrevLeft_VertexFlag | kNextLeft_VertexFlag)) { |
| 1112 | if (!sweepLine.remove(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex)) { |
| 1113 | break; |
| 1114 | } |
| 1115 | if (!sweepLine.remove(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex)) { |
| 1116 | break; |
| 1117 | } |
| 1118 | // one to left and right -- replace one with another |
| 1119 | } else { |
| 1120 | if (v.fFlags & kPrevLeft_VertexFlag) { |
| 1121 | if (!sweepLine.replace(polygon[v.fPrevIndex], v.fPosition, polygon[v.fNextIndex], |
| 1122 | v.fPrevIndex, v.fIndex, v.fNextIndex)) { |
| 1123 | break; |
| 1124 | } |
| 1125 | } else { |
| 1126 | SkASSERT(v.fFlags & kNextLeft_VertexFlag); |
| 1127 | if (!sweepLine.replace(polygon[v.fNextIndex], v.fPosition, polygon[v.fPrevIndex], |
| 1128 | v.fNextIndex, v.fIndex, v.fPrevIndex)) { |
| 1129 | break; |
| 1130 | } |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | vertexQueue.pop(); |
| 1135 | } |
| 1136 | |
| 1137 | return (vertexQueue.count() == 0); |
| 1138 | } |
| 1139 | |
| 1140 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 1141 | |
| 1142 | // helper function for SkOffsetSimplePolygon |
| 1143 | static void setup_offset_edge(OffsetEdge* currEdge, |
| 1144 | const SkPoint& endpoint0, const SkPoint& endpoint1, |
| 1145 | uint16_t startIndex, uint16_t endIndex) { |
| 1146 | currEdge->fOffset.fP0 = endpoint0; |
| 1147 | currEdge->fOffset.fV = endpoint1 - endpoint0; |
| 1148 | currEdge->init(startIndex, endIndex); |
| 1149 | } |
| 1150 | |
| 1151 | static bool is_reflex_vertex(const SkPoint* inputPolygonVerts, int winding, SkScalar offset, |
| 1152 | uint16_t prevIndex, uint16_t currIndex, uint16_t nextIndex) { |
| 1153 | int side = compute_side(inputPolygonVerts[prevIndex], |
| 1154 | inputPolygonVerts[currIndex] - inputPolygonVerts[prevIndex], |
| 1155 | inputPolygonVerts[nextIndex]); |
| 1156 | // if reflex point, we need to add extra edges |
| 1157 | return (side*winding*offset < 0); |
| 1158 | } |
| 1159 | |
| 1160 | bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, |
| 1161 | const SkRect& bounds, SkScalar offset, |
| 1162 | SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) { |
| 1163 | if (inputPolygonSize < 3) { |
| 1164 | return false; |
| 1165 | } |
| 1166 | |
| 1167 | // need to be able to represent all the vertices in the 16-bit indices |
| 1168 | if (inputPolygonSize >= std::numeric_limits<uint16_t>::max()) { |
| 1169 | return false; |
| 1170 | } |
| 1171 | |
| 1172 | if (!SkScalarIsFinite(offset)) { |
| 1173 | return false; |
| 1174 | } |
| 1175 | |
| 1176 | // can't inset more than the half bounds of the polygon |
| 1177 | if (offset > std::min(SkTAbs(SK_ScalarHalf*bounds.width()), |
| 1178 | SkTAbs(SK_ScalarHalf*bounds.height()))) { |
| 1179 | return false; |
| 1180 | } |
| 1181 | |
| 1182 | // offsetting close to zero just returns the original poly |
| 1183 | if (SkScalarNearlyZero(offset)) { |
| 1184 | for (int i = 0; i < inputPolygonSize; ++i) { |
| 1185 | *offsetPolygon->push() = inputPolygonVerts[i]; |
| 1186 | if (polygonIndices) { |
| 1187 | *polygonIndices->push() = i; |
| 1188 | } |
| 1189 | } |
| 1190 | return true; |
| 1191 | } |
| 1192 | |
| 1193 | // get winding direction |
| 1194 | int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize); |
| 1195 | if (0 == winding) { |
| 1196 | return false; |
| 1197 | } |
| 1198 | |
| 1199 | // build normals |
| 1200 | SkAutoSTMalloc<64, SkVector> normals(inputPolygonSize); |
| 1201 | unsigned int numEdges = 0; |
| 1202 | for (int currIndex = 0, prevIndex = inputPolygonSize - 1; |
| 1203 | currIndex < inputPolygonSize; |
| 1204 | prevIndex = currIndex, ++currIndex) { |
| 1205 | if (!inputPolygonVerts[currIndex].isFinite()) { |
| 1206 | return false; |
| 1207 | } |
| 1208 | int nextIndex = (currIndex + 1) % inputPolygonSize; |
| 1209 | if (!compute_offset_vector(inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex], |
| 1210 | offset, winding, &normals[currIndex])) { |
| 1211 | return false; |
| 1212 | } |
| 1213 | if (currIndex > 0) { |
| 1214 | // if reflex point, we need to add extra edges |
| 1215 | if (is_reflex_vertex(inputPolygonVerts, winding, offset, |
| 1216 | prevIndex, currIndex, nextIndex)) { |
| 1217 | SkScalar rotSin, rotCos; |
| 1218 | int numSteps; |
| 1219 | if (!SkComputeRadialSteps(normals[prevIndex], normals[currIndex], offset, |
| 1220 | &rotSin, &rotCos, &numSteps)) { |
| 1221 | return false; |
| 1222 | } |
| 1223 | numEdges += std::max(numSteps, 1); |
| 1224 | } |
| 1225 | } |
| 1226 | numEdges++; |
| 1227 | } |
| 1228 | // finish up the edge counting |
| 1229 | if (is_reflex_vertex(inputPolygonVerts, winding, offset, inputPolygonSize-1, 0, 1)) { |
| 1230 | SkScalar rotSin, rotCos; |
| 1231 | int numSteps; |
| 1232 | if (!SkComputeRadialSteps(normals[inputPolygonSize-1], normals[0], offset, |
| 1233 | &rotSin, &rotCos, &numSteps)) { |
| 1234 | return false; |
| 1235 | } |
| 1236 | numEdges += std::max(numSteps, 1); |
| 1237 | } |
| 1238 | |
| 1239 | // Make sure we don't overflow the max array count. |
| 1240 | // We shouldn't overflow numEdges, as SkComputeRadialSteps returns a max of 2^16-1, |
| 1241 | // and we have a max of 2^16-1 original vertices. |
| 1242 | if (numEdges > (unsigned int)std::numeric_limits<int32_t>::max()) { |
| 1243 | return false; |
| 1244 | } |
| 1245 | |
| 1246 | // build initial offset edge list |
| 1247 | SkSTArray<64, OffsetEdge> edgeData(numEdges); |
| 1248 | OffsetEdge* prevEdge = nullptr; |
| 1249 | for (int currIndex = 0, prevIndex = inputPolygonSize - 1; |
| 1250 | currIndex < inputPolygonSize; |
| 1251 | prevIndex = currIndex, ++currIndex) { |
| 1252 | int nextIndex = (currIndex + 1) % inputPolygonSize; |
| 1253 | // if reflex point, fill in curve |
| 1254 | if (is_reflex_vertex(inputPolygonVerts, winding, offset, |
| 1255 | prevIndex, currIndex, nextIndex)) { |
| 1256 | SkScalar rotSin, rotCos; |
| 1257 | int numSteps; |
| 1258 | SkVector prevNormal = normals[prevIndex]; |
| 1259 | if (!SkComputeRadialSteps(prevNormal, normals[currIndex], offset, |
| 1260 | &rotSin, &rotCos, &numSteps)) { |
| 1261 | return false; |
| 1262 | } |
| 1263 | auto currEdge = edgeData.push_back_n(std::max(numSteps, 1)); |
| 1264 | for (int i = 0; i < numSteps - 1; ++i) { |
| 1265 | SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin, |
| 1266 | prevNormal.fY*rotCos + prevNormal.fX*rotSin); |
| 1267 | setup_offset_edge(currEdge, |
| 1268 | inputPolygonVerts[currIndex] + prevNormal, |
| 1269 | inputPolygonVerts[currIndex] + currNormal, |
| 1270 | currIndex, currIndex); |
| 1271 | prevNormal = currNormal; |
| 1272 | currEdge->fPrev = prevEdge; |
| 1273 | if (prevEdge) { |
| 1274 | prevEdge->fNext = currEdge; |
| 1275 | } |
| 1276 | prevEdge = currEdge; |
| 1277 | ++currEdge; |
| 1278 | } |
| 1279 | setup_offset_edge(currEdge, |
| 1280 | inputPolygonVerts[currIndex] + prevNormal, |
| 1281 | inputPolygonVerts[currIndex] + normals[currIndex], |
| 1282 | currIndex, currIndex); |
| 1283 | currEdge->fPrev = prevEdge; |
| 1284 | if (prevEdge) { |
| 1285 | prevEdge->fNext = currEdge; |
| 1286 | } |
| 1287 | prevEdge = currEdge; |
| 1288 | } |
| 1289 | |
| 1290 | // Add the edge |
| 1291 | auto currEdge = edgeData.push_back_n(1); |
| 1292 | setup_offset_edge(currEdge, |
| 1293 | inputPolygonVerts[currIndex] + normals[currIndex], |
| 1294 | inputPolygonVerts[nextIndex] + normals[currIndex], |
| 1295 | currIndex, nextIndex); |
| 1296 | currEdge->fPrev = prevEdge; |
| 1297 | if (prevEdge) { |
| 1298 | prevEdge->fNext = currEdge; |
| 1299 | } |
| 1300 | prevEdge = currEdge; |
| 1301 | } |
| 1302 | // close up the linked list |
| 1303 | SkASSERT(prevEdge); |
| 1304 | prevEdge->fNext = &edgeData[0]; |
| 1305 | edgeData[0].fPrev = prevEdge; |
| 1306 | |
| 1307 | // now clip edges |
| 1308 | SkASSERT(edgeData.count() == (int)numEdges); |
| 1309 | auto head = &edgeData[0]; |
| 1310 | auto currEdge = head; |
| 1311 | unsigned int offsetVertexCount = numEdges; |
| 1312 | unsigned long long iterations = 0; |
| 1313 | unsigned long long maxIterations = (unsigned long long)(numEdges) * numEdges; |
| 1314 | while (head && prevEdge != currEdge && offsetVertexCount > 0) { |
| 1315 | ++iterations; |
| 1316 | // we should check each edge against each other edge at most once |
| 1317 | if (iterations > maxIterations) { |
| 1318 | return false; |
| 1319 | } |
| 1320 | |
| 1321 | SkScalar s, t; |
| 1322 | SkPoint intersection; |
| 1323 | if (prevEdge->checkIntersection(currEdge, &intersection, &s, &t)) { |
| 1324 | // if new intersection is further back on previous inset from the prior intersection |
| 1325 | if (s < prevEdge->fTValue) { |
| 1326 | // no point in considering this one again |
| 1327 | remove_node(prevEdge, &head); |
| 1328 | --offsetVertexCount; |
| 1329 | // go back one segment |
| 1330 | prevEdge = prevEdge->fPrev; |
| 1331 | // we've already considered this intersection, we're done |
| 1332 | } else if (currEdge->fTValue > SK_ScalarMin && |
| 1333 | SkPointPriv::EqualsWithinTolerance(intersection, |
| 1334 | currEdge->fIntersection, |
| 1335 | 1.0e-6f)) { |
| 1336 | break; |
| 1337 | } else { |
| 1338 | // add intersection |
| 1339 | currEdge->fIntersection = intersection; |
| 1340 | currEdge->fTValue = t; |
| 1341 | currEdge->fIndex = prevEdge->fEnd; |
| 1342 | |
| 1343 | // go to next segment |
| 1344 | prevEdge = currEdge; |
| 1345 | currEdge = currEdge->fNext; |
| 1346 | } |
| 1347 | } else { |
| 1348 | // If there is no intersection, we want to minimize the distance between |
| 1349 | // the point where the segment lines cross and the segments themselves. |
| 1350 | OffsetEdge* prevPrevEdge = prevEdge->fPrev; |
| 1351 | OffsetEdge* currNextEdge = currEdge->fNext; |
| 1352 | SkScalar dist0 = currEdge->computeCrossingDistance(prevPrevEdge); |
| 1353 | SkScalar dist1 = prevEdge->computeCrossingDistance(currNextEdge); |
| 1354 | // if both lead to direct collision |
| 1355 | if (dist0 < 0 && dist1 < 0) { |
| 1356 | // check first to see if either represent parts of one contour |
| 1357 | SkPoint p1 = prevPrevEdge->fOffset.fP0 + prevPrevEdge->fOffset.fV; |
| 1358 | bool prevSameContour = SkPointPriv::EqualsWithinTolerance(p1, |
| 1359 | prevEdge->fOffset.fP0); |
| 1360 | p1 = currEdge->fOffset.fP0 + currEdge->fOffset.fV; |
| 1361 | bool currSameContour = SkPointPriv::EqualsWithinTolerance(p1, |
| 1362 | currNextEdge->fOffset.fP0); |
| 1363 | |
| 1364 | // want to step along contour to find intersections rather than jump to new one |
| 1365 | if (currSameContour && !prevSameContour) { |
| 1366 | remove_node(currEdge, &head); |
| 1367 | currEdge = currNextEdge; |
| 1368 | --offsetVertexCount; |
| 1369 | continue; |
| 1370 | } else if (prevSameContour && !currSameContour) { |
| 1371 | remove_node(prevEdge, &head); |
| 1372 | prevEdge = prevPrevEdge; |
| 1373 | --offsetVertexCount; |
| 1374 | continue; |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | // otherwise minimize collision distance along segment |
| 1379 | if (dist0 < dist1) { |
| 1380 | remove_node(prevEdge, &head); |
| 1381 | prevEdge = prevPrevEdge; |
| 1382 | } else { |
| 1383 | remove_node(currEdge, &head); |
| 1384 | currEdge = currNextEdge; |
| 1385 | } |
| 1386 | --offsetVertexCount; |
| 1387 | } |
| 1388 | } |
| 1389 | |
| 1390 | // store all the valid intersections that aren't nearly coincident |
| 1391 | // TODO: look at the main algorithm and see if we can detect these better |
| 1392 | offsetPolygon->reset(); |
| 1393 | if (!head || offsetVertexCount == 0 || |
| 1394 | offsetVertexCount >= std::numeric_limits<uint16_t>::max()) { |
| 1395 | return false; |
| 1396 | } |
| 1397 | |
| 1398 | static constexpr SkScalar kCleanupTolerance = 0.01f; |
| 1399 | offsetPolygon->setReserve(offsetVertexCount); |
| 1400 | int currIndex = 0; |
| 1401 | *offsetPolygon->push() = head->fIntersection; |
| 1402 | if (polygonIndices) { |
| 1403 | *polygonIndices->push() = head->fIndex; |
| 1404 | } |
| 1405 | currEdge = head->fNext; |
| 1406 | while (currEdge != head) { |
| 1407 | if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection, |
| 1408 | (*offsetPolygon)[currIndex], |
| 1409 | kCleanupTolerance)) { |
| 1410 | *offsetPolygon->push() = currEdge->fIntersection; |
| 1411 | if (polygonIndices) { |
| 1412 | *polygonIndices->push() = currEdge->fIndex; |
| 1413 | } |
| 1414 | currIndex++; |
| 1415 | } |
| 1416 | currEdge = currEdge->fNext; |
| 1417 | } |
| 1418 | // make sure the first and last points aren't coincident |
| 1419 | if (currIndex >= 1 && |
| 1420 | SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex], |
| 1421 | kCleanupTolerance)) { |
| 1422 | offsetPolygon->pop(); |
| 1423 | if (polygonIndices) { |
| 1424 | polygonIndices->pop(); |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | // check winding of offset polygon (it should be same as the original polygon) |
| 1429 | SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->count()); |
| 1430 | |
| 1431 | return (winding*offsetWinding > 0 && |
| 1432 | SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->count())); |
| 1433 | } |
| 1434 | |
| 1435 | ////////////////////////////////////////////////////////////////////////////////////////// |
| 1436 | |
| 1437 | struct TriangulationVertex { |
| 1438 | SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex); |
| 1439 | |
| 1440 | enum class VertexType { kConvex, kReflex }; |
| 1441 | |
| 1442 | SkPoint fPosition; |
| 1443 | VertexType fVertexType; |
| 1444 | uint16_t fIndex; |
| 1445 | uint16_t fPrevIndex; |
| 1446 | uint16_t fNextIndex; |
| 1447 | }; |
| 1448 | |
| 1449 | static void compute_triangle_bounds(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |
| 1450 | SkRect* bounds) { |
| 1451 | Sk4s min, max; |
| 1452 | min = max = Sk4s(p0.fX, p0.fY, p0.fX, p0.fY); |
| 1453 | Sk4s xy(p1.fX, p1.fY, p2.fX, p2.fY); |
| 1454 | min = Sk4s::Min(min, xy); |
| 1455 | max = Sk4s::Max(max, xy); |
| 1456 | bounds->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]), |
| 1457 | std::max(max[0], max[2]), std::max(max[1], max[3])); |
| 1458 | } |
| 1459 | |
| 1460 | // test to see if point p is in triangle p0p1p2. |
| 1461 | // for now assuming strictly inside -- if on the edge it's outside |
| 1462 | static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |
| 1463 | const SkPoint& p) { |
| 1464 | SkVector v0 = p1 - p0; |
| 1465 | SkVector v1 = p2 - p1; |
| 1466 | SkScalar n = v0.cross(v1); |
| 1467 | |
| 1468 | SkVector w0 = p - p0; |
| 1469 | if (n*v0.cross(w0) < SK_ScalarNearlyZero) { |
| 1470 | return false; |
| 1471 | } |
| 1472 | |
| 1473 | SkVector w1 = p - p1; |
| 1474 | if (n*v1.cross(w1) < SK_ScalarNearlyZero) { |
| 1475 | return false; |
| 1476 | } |
| 1477 | |
| 1478 | SkVector v2 = p0 - p2; |
| 1479 | SkVector w2 = p - p2; |
| 1480 | if (n*v2.cross(w2) < SK_ScalarNearlyZero) { |
| 1481 | return false; |
| 1482 | } |
| 1483 | |
| 1484 | return true; |
| 1485 | } |
| 1486 | |
| 1487 | // Data structure to track reflex vertices and check whether any are inside a given triangle |
| 1488 | class ReflexHash { |
| 1489 | public: |
| 1490 | bool init(const SkRect& bounds, int vertexCount) { |
| 1491 | fBounds = bounds; |
| 1492 | fNumVerts = 0; |
| 1493 | SkScalar width = bounds.width(); |
| 1494 | SkScalar height = bounds.height(); |
| 1495 | if (!SkScalarIsFinite(width) || !SkScalarIsFinite(height)) { |
| 1496 | return false; |
| 1497 | } |
| 1498 | |
| 1499 | // We want vertexCount grid cells, roughly distributed to match the bounds ratio |
| 1500 | SkScalar hCount = SkScalarSqrt(sk_ieee_float_divide(vertexCount*width, height)); |
| 1501 | if (!SkScalarIsFinite(hCount)) { |
| 1502 | return false; |
| 1503 | } |
| 1504 | fHCount = std::max(std::min(SkScalarRoundToInt(hCount), vertexCount), 1); |
| 1505 | fVCount = vertexCount/fHCount; |
| 1506 | fGridConversion.set(sk_ieee_float_divide(fHCount - 0.001f, width), |
| 1507 | sk_ieee_float_divide(fVCount - 0.001f, height)); |
| 1508 | if (!fGridConversion.isFinite()) { |
| 1509 | return false; |
| 1510 | } |
| 1511 | |
| 1512 | fGrid.setCount(fHCount*fVCount); |
| 1513 | for (int i = 0; i < fGrid.count(); ++i) { |
| 1514 | fGrid[i].reset(); |
| 1515 | } |
| 1516 | |
| 1517 | return true; |
| 1518 | } |
| 1519 | |
| 1520 | void add(TriangulationVertex* v) { |
| 1521 | int index = hash(v); |
| 1522 | fGrid[index].addToTail(v); |
| 1523 | ++fNumVerts; |
| 1524 | } |
| 1525 | |
| 1526 | void remove(TriangulationVertex* v) { |
| 1527 | int index = hash(v); |
| 1528 | fGrid[index].remove(v); |
| 1529 | --fNumVerts; |
| 1530 | } |
| 1531 | |
| 1532 | bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |
| 1533 | uint16_t ignoreIndex0, uint16_t ignoreIndex1) const { |
| 1534 | if (!fNumVerts) { |
| 1535 | return false; |
| 1536 | } |
| 1537 | |
| 1538 | SkRect triBounds; |
| 1539 | compute_triangle_bounds(p0, p1, p2, &triBounds); |
| 1540 | int h0 = (triBounds.fLeft - fBounds.fLeft)*fGridConversion.fX; |
| 1541 | int h1 = (triBounds.fRight - fBounds.fLeft)*fGridConversion.fX; |
| 1542 | int v0 = (triBounds.fTop - fBounds.fTop)*fGridConversion.fY; |
| 1543 | int v1 = (triBounds.fBottom - fBounds.fTop)*fGridConversion.fY; |
| 1544 | |
| 1545 | for (int v = v0; v <= v1; ++v) { |
| 1546 | for (int h = h0; h <= h1; ++h) { |
| 1547 | int i = v * fHCount + h; |
| 1548 | for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fGrid[i].begin(); |
| 1549 | reflexIter != fGrid[i].end(); ++reflexIter) { |
| 1550 | TriangulationVertex* reflexVertex = *reflexIter; |
| 1551 | if (reflexVertex->fIndex != ignoreIndex0 && |
| 1552 | reflexVertex->fIndex != ignoreIndex1 && |
| 1553 | point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) { |
| 1554 | return true; |
| 1555 | } |
| 1556 | } |
| 1557 | |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | return false; |
| 1562 | } |
| 1563 | |
| 1564 | private: |
| 1565 | int hash(TriangulationVertex* vert) const { |
| 1566 | int h = (vert->fPosition.fX - fBounds.fLeft)*fGridConversion.fX; |
| 1567 | int v = (vert->fPosition.fY - fBounds.fTop)*fGridConversion.fY; |
| 1568 | SkASSERT(v*fHCount + h >= 0); |
| 1569 | return v*fHCount + h; |
| 1570 | } |
| 1571 | |
| 1572 | SkRect fBounds; |
| 1573 | int fHCount; |
| 1574 | int fVCount; |
| 1575 | int fNumVerts; |
| 1576 | // converts distance from the origin to a grid location (when cast to int) |
| 1577 | SkVector fGridConversion; |
| 1578 | SkTDArray<SkTInternalLList<TriangulationVertex>> fGrid; |
| 1579 | }; |
| 1580 | |
| 1581 | // Check to see if a reflex vertex has become a convex vertex after clipping an ear |
| 1582 | static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts, |
| 1583 | int winding, ReflexHash* reflexHash, |
| 1584 | SkTInternalLList<TriangulationVertex>* convexList) { |
| 1585 | if (TriangulationVertex::VertexType::kReflex == p->fVertexType) { |
| 1586 | SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex]; |
| 1587 | SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition; |
| 1588 | if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) { |
| 1589 | p->fVertexType = TriangulationVertex::VertexType::kConvex; |
| 1590 | reflexHash->remove(p); |
| 1591 | p->fPrev = p->fNext = nullptr; |
| 1592 | convexList->addToTail(p); |
| 1593 | } |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize, |
| 1598 | SkTDArray<uint16_t>* triangleIndices) { |
| 1599 | if (polygonSize < 3) { |
| 1600 | return false; |
| 1601 | } |
| 1602 | // need to be able to represent all the vertices in the 16-bit indices |
| 1603 | if (polygonSize >= std::numeric_limits<uint16_t>::max()) { |
| 1604 | return false; |
| 1605 | } |
| 1606 | |
| 1607 | // get bounds |
| 1608 | SkRect bounds; |
| 1609 | if (!bounds.setBoundsCheck(polygonVerts, polygonSize)) { |
| 1610 | return false; |
| 1611 | } |
| 1612 | // get winding direction |
| 1613 | // TODO: we do this for all the polygon routines -- might be better to have the client |
| 1614 | // compute it and pass it in |
| 1615 | int winding = SkGetPolygonWinding(polygonVerts, polygonSize); |
| 1616 | if (0 == winding) { |
| 1617 | return false; |
| 1618 | } |
| 1619 | |
| 1620 | // Set up vertices |
| 1621 | SkAutoSTMalloc<64, TriangulationVertex> triangulationVertices(polygonSize); |
| 1622 | int prevIndex = polygonSize - 1; |
| 1623 | SkVector v0 = polygonVerts[0] - polygonVerts[prevIndex]; |
| 1624 | for (int currIndex = 0; currIndex < polygonSize; ++currIndex) { |
| 1625 | int nextIndex = (currIndex + 1) % polygonSize; |
| 1626 | |
| 1627 | triangulationVertices[currIndex] = TriangulationVertex{}; |
| 1628 | triangulationVertices[currIndex].fPosition = polygonVerts[currIndex]; |
| 1629 | triangulationVertices[currIndex].fIndex = currIndex; |
| 1630 | triangulationVertices[currIndex].fPrevIndex = prevIndex; |
| 1631 | triangulationVertices[currIndex].fNextIndex = nextIndex; |
| 1632 | SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; |
| 1633 | if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) { |
| 1634 | triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex; |
| 1635 | } else { |
| 1636 | triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex; |
| 1637 | } |
| 1638 | |
| 1639 | prevIndex = currIndex; |
| 1640 | v0 = v1; |
| 1641 | } |
| 1642 | |
| 1643 | // Classify initial vertices into a list of convex vertices and a hash of reflex vertices |
| 1644 | // TODO: possibly sort the convexList in some way to get better triangles |
| 1645 | SkTInternalLList<TriangulationVertex> convexList; |
| 1646 | ReflexHash reflexHash; |
| 1647 | if (!reflexHash.init(bounds, polygonSize)) { |
| 1648 | return false; |
| 1649 | } |
| 1650 | prevIndex = polygonSize - 1; |
| 1651 | for (int currIndex = 0; currIndex < polygonSize; prevIndex = currIndex, ++currIndex) { |
| 1652 | TriangulationVertex::VertexType currType = triangulationVertices[currIndex].fVertexType; |
| 1653 | if (TriangulationVertex::VertexType::kConvex == currType) { |
| 1654 | int nextIndex = (currIndex + 1) % polygonSize; |
| 1655 | TriangulationVertex::VertexType prevType = triangulationVertices[prevIndex].fVertexType; |
| 1656 | TriangulationVertex::VertexType nextType = triangulationVertices[nextIndex].fVertexType; |
| 1657 | // We prioritize clipping vertices with neighboring reflex vertices. |
| 1658 | // The intent here is that it will cull reflex vertices more quickly. |
| 1659 | if (TriangulationVertex::VertexType::kReflex == prevType || |
| 1660 | TriangulationVertex::VertexType::kReflex == nextType) { |
| 1661 | convexList.addToHead(&triangulationVertices[currIndex]); |
| 1662 | } else { |
| 1663 | convexList.addToTail(&triangulationVertices[currIndex]); |
| 1664 | } |
| 1665 | } else { |
| 1666 | // We treat near collinear vertices as reflex |
| 1667 | reflexHash.add(&triangulationVertices[currIndex]); |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | // The general concept: We are trying to find three neighboring vertices where |
| 1672 | // no other vertex lies inside the triangle (an "ear"). If we find one, we clip |
| 1673 | // that ear off, and then repeat on the new polygon. Once we get down to three vertices |
| 1674 | // we have triangulated the entire polygon. |
| 1675 | // In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by |
| 1676 | // noting that only convex vertices can be potential ears, and we only need to check whether |
| 1677 | // any reflex vertices lie inside the ear. |
| 1678 | triangleIndices->setReserve(triangleIndices->count() + 3 * (polygonSize - 2)); |
| 1679 | int vertexCount = polygonSize; |
| 1680 | while (vertexCount > 3) { |
| 1681 | bool success = false; |
| 1682 | TriangulationVertex* earVertex = nullptr; |
| 1683 | TriangulationVertex* p0 = nullptr; |
| 1684 | TriangulationVertex* p2 = nullptr; |
| 1685 | // find a convex vertex to clip |
| 1686 | for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin(); |
| 1687 | convexIter != convexList.end(); ++convexIter) { |
| 1688 | earVertex = *convexIter; |
| 1689 | SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType); |
| 1690 | |
| 1691 | p0 = &triangulationVertices[earVertex->fPrevIndex]; |
| 1692 | p2 = &triangulationVertices[earVertex->fNextIndex]; |
| 1693 | |
| 1694 | // see if any reflex vertices are inside the ear |
| 1695 | bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition, |
| 1696 | p2->fPosition, p0->fIndex, p2->fIndex); |
| 1697 | if (failed) { |
| 1698 | continue; |
| 1699 | } |
| 1700 | |
| 1701 | // found one we can clip |
| 1702 | success = true; |
| 1703 | break; |
| 1704 | } |
| 1705 | // If we can't find any ears to clip, this probably isn't a simple polygon |
| 1706 | if (!success) { |
| 1707 | return false; |
| 1708 | } |
| 1709 | |
| 1710 | // add indices |
| 1711 | auto indices = triangleIndices->append(3); |
| 1712 | indices[0] = indexMap[p0->fIndex]; |
| 1713 | indices[1] = indexMap[earVertex->fIndex]; |
| 1714 | indices[2] = indexMap[p2->fIndex]; |
| 1715 | |
| 1716 | // clip the ear |
| 1717 | convexList.remove(earVertex); |
| 1718 | --vertexCount; |
| 1719 | |
| 1720 | // reclassify reflex verts |
| 1721 | p0->fNextIndex = earVertex->fNextIndex; |
| 1722 | reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList); |
| 1723 | |
| 1724 | p2->fPrevIndex = earVertex->fPrevIndex; |
| 1725 | reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList); |
| 1726 | } |
| 1727 | |
| 1728 | // output indices |
| 1729 | for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin(); |
| 1730 | vertexIter != convexList.end(); ++vertexIter) { |
| 1731 | TriangulationVertex* vertex = *vertexIter; |
| 1732 | *triangleIndices->push() = indexMap[vertex->fIndex]; |
| 1733 | } |
| 1734 | |
| 1735 | return true; |
| 1736 | } |
| 1737 | |
| 1738 | /////////// |
| 1739 | |
| 1740 | static double crs(SkVector a, SkVector b) { |
| 1741 | return a.fX * b.fY - a.fY * b.fX; |
| 1742 | } |
| 1743 | |
| 1744 | static int sign(SkScalar v) { |
| 1745 | return v < 0 ? -1 : (v > 0); |
| 1746 | } |
| 1747 | |
| 1748 | struct SignTracker { |
| 1749 | int fSign; |
| 1750 | int fSignChanges; |
| 1751 | |
| 1752 | void reset() { |
| 1753 | fSign = 0; |
| 1754 | fSignChanges = 0; |
| 1755 | } |
| 1756 | |
| 1757 | void init(int s) { |
| 1758 | SkASSERT(fSignChanges == 0); |
| 1759 | SkASSERT(s == 1 || s == -1 || s == 0); |
| 1760 | fSign = s; |
| 1761 | fSignChanges = 1; |
| 1762 | } |
| 1763 | |
| 1764 | void update(int s) { |
| 1765 | if (s) { |
| 1766 | if (fSign != s) { |
| 1767 | fSignChanges += 1; |
| 1768 | fSign = s; |
| 1769 | } |
| 1770 | } |
| 1771 | } |
| 1772 | }; |
| 1773 | |
| 1774 | struct { |
| 1775 | SkVector , ; |
| 1776 | SignTracker , ; |
| 1777 | int ; |
| 1778 | bool ; |
| 1779 | |
| 1780 | () { this->reset(); } |
| 1781 | |
| 1782 | void () { |
| 1783 | fPrev = {0, 0}; |
| 1784 | fDSign.reset(); |
| 1785 | fCSign.reset(); |
| 1786 | fVecCounter = 0; |
| 1787 | fIsConcave = false; |
| 1788 | } |
| 1789 | |
| 1790 | void (SkPoint p1, SkPoint p0) { |
| 1791 | this->addVec(p1 - p0); |
| 1792 | } |
| 1793 | void (SkVector v) { |
| 1794 | if (v.fX == 0 && v.fY == 0) { |
| 1795 | return; |
| 1796 | } |
| 1797 | |
| 1798 | fVecCounter += 1; |
| 1799 | if (fVecCounter == 1) { |
| 1800 | fFirst = fPrev = v; |
| 1801 | fDSign.update(sign(v.fX)); |
| 1802 | return; |
| 1803 | } |
| 1804 | |
| 1805 | SkScalar d = v.fX; |
| 1806 | SkScalar c = crs(fPrev, v); |
| 1807 | int sign_c; |
| 1808 | if (c) { |
| 1809 | sign_c = sign(c); |
| 1810 | } else { |
| 1811 | if (d >= 0) { |
| 1812 | sign_c = fCSign.fSign; |
| 1813 | } else { |
| 1814 | sign_c = -fCSign.fSign; |
| 1815 | } |
| 1816 | } |
| 1817 | |
| 1818 | fDSign.update(sign(d)); |
| 1819 | fCSign.update(sign_c); |
| 1820 | fPrev = v; |
| 1821 | |
| 1822 | if (fDSign.fSignChanges > 3 || fCSign.fSignChanges > 1) { |
| 1823 | fIsConcave = true; |
| 1824 | } |
| 1825 | } |
| 1826 | |
| 1827 | void () { |
| 1828 | this->addVec(fFirst); |
| 1829 | } |
| 1830 | }; |
| 1831 | |
| 1832 | bool SkIsPolyConvex_experimental(const SkPoint pts[], int count) { |
| 1833 | if (count <= 3) { |
| 1834 | return true; |
| 1835 | } |
| 1836 | |
| 1837 | ConvexTracker tracker; |
| 1838 | |
| 1839 | for (int i = 0; i < count - 1; ++i) { |
| 1840 | tracker.addVec(pts[i + 1], pts[i]); |
| 1841 | if (tracker.fIsConcave) { |
| 1842 | return false; |
| 1843 | } |
| 1844 | } |
| 1845 | tracker.addVec(pts[0], pts[count - 1]); |
| 1846 | tracker.finalCross(); |
| 1847 | return !tracker.fIsConcave; |
| 1848 | } |
| 1849 | |
| 1850 | |