| 1 | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "MatrixStack.hpp" |
| 16 | |
| 17 | #include "Common/Math.hpp" |
| 18 | |
| 19 | namespace sw |
| 20 | { |
| 21 | MatrixStack::MatrixStack(int size) |
| 22 | { |
| 23 | stack = new Matrix[size]; |
| 24 | stack[0] = 1; |
| 25 | |
| 26 | top = 0; |
| 27 | this->size = size; |
| 28 | } |
| 29 | |
| 30 | MatrixStack::~MatrixStack() |
| 31 | { |
| 32 | delete[] stack; |
| 33 | stack = 0; |
| 34 | } |
| 35 | |
| 36 | void MatrixStack::identity() |
| 37 | { |
| 38 | stack[top] = 1; |
| 39 | } |
| 40 | |
| 41 | void MatrixStack::load(const Matrix &M) |
| 42 | { |
| 43 | stack[top] = M; |
| 44 | } |
| 45 | |
| 46 | void MatrixStack::load(const float *M) |
| 47 | { |
| 48 | stack[top] = Matrix(M[0], M[4], M[8], M[12], |
| 49 | M[1], M[5], M[9], M[13], |
| 50 | M[2], M[6], M[10], M[14], |
| 51 | M[3], M[7], M[11], M[15]); |
| 52 | } |
| 53 | |
| 54 | void MatrixStack::load(const double *M) |
| 55 | { |
| 56 | stack[top] = Matrix((float)M[0], (float)M[4], (float)M[8], (float)M[12], |
| 57 | (float)M[1], (float)M[5], (float)M[9], (float)M[13], |
| 58 | (float)M[2], (float)M[6], (float)M[10], (float)M[14], |
| 59 | (float)M[3], (float)M[7], (float)M[11], (float)M[15]); |
| 60 | } |
| 61 | |
| 62 | void MatrixStack::translate(float x, float y, float z) |
| 63 | { |
| 64 | stack[top] *= Matrix::translate(x, y, z); |
| 65 | } |
| 66 | |
| 67 | void MatrixStack::translate(double x, double y, double z) |
| 68 | { |
| 69 | translate((float)x, (float)y, (float)z); |
| 70 | } |
| 71 | |
| 72 | void MatrixStack::rotate(float angle, float x, float y, float z) |
| 73 | { |
| 74 | float n = 1.0f / sqrt(x*x + y*y + z*z); |
| 75 | |
| 76 | x *= n; |
| 77 | y *= n; |
| 78 | z *= n; |
| 79 | |
| 80 | float theta = angle * 0.0174532925f; // In radians |
| 81 | float c = cos(theta); |
| 82 | float _c = 1 - c; |
| 83 | float s = sin(theta); |
| 84 | |
| 85 | // Rodrigues' rotation formula |
| 86 | sw::Matrix rotate(c+x*x*_c, x*y*_c-z*s, x*z*_c+y*s, |
| 87 | x*y*_c+z*s, c+y*y*_c, y*z*_c-x*s, |
| 88 | x*z*_c-y*s, y*z*_c+x*s, c+z*z*_c); |
| 89 | |
| 90 | stack[top] *= rotate; |
| 91 | } |
| 92 | |
| 93 | void MatrixStack::rotate(double angle, double x, double y, double z) |
| 94 | { |
| 95 | rotate((float)angle, (float)x, (float)y, (float)z); |
| 96 | } |
| 97 | |
| 98 | void MatrixStack::scale(float x, float y, float z) |
| 99 | { |
| 100 | stack[top] *= Matrix::scale(x, y, z); |
| 101 | } |
| 102 | |
| 103 | void MatrixStack::scale(double x, double y, double z) |
| 104 | { |
| 105 | scale((float)x, (float)y, (float)z); |
| 106 | } |
| 107 | |
| 108 | void MatrixStack::multiply(const float *M) |
| 109 | { |
| 110 | stack[top] *= Matrix(M[0], M[4], M[8], M[12], |
| 111 | M[1], M[5], M[9], M[13], |
| 112 | M[2], M[6], M[10], M[14], |
| 113 | M[3], M[7], M[11], M[15]); |
| 114 | } |
| 115 | |
| 116 | void MatrixStack::multiply(const double *M) |
| 117 | { |
| 118 | stack[top] *= Matrix((float)M[0], (float)M[4], (float)M[8], (float)M[12], |
| 119 | (float)M[1], (float)M[5], (float)M[9], (float)M[13], |
| 120 | (float)M[2], (float)M[6], (float)M[10], (float)M[14], |
| 121 | (float)M[3], (float)M[7], (float)M[11], (float)M[15]); |
| 122 | } |
| 123 | |
| 124 | void MatrixStack::frustum(float left, float right, float bottom, float top, float zNear, float zFar) |
| 125 | { |
| 126 | float l = (float)left; |
| 127 | float r = (float)right; |
| 128 | float b = (float)bottom; |
| 129 | float t = (float)top; |
| 130 | float n = (float)zNear; |
| 131 | float f = (float)zFar; |
| 132 | |
| 133 | float A = (r + l) / (r - l); |
| 134 | float B = (t + b) / (t - b); |
| 135 | float C = -(f + n) / (f - n); |
| 136 | float D = -2 * f * n / (f - n); |
| 137 | |
| 138 | Matrix frustum(2 * n / (r - l), 0, A, 0, |
| 139 | 0, 2 * n / (t - b), B, 0, |
| 140 | 0, 0, C, D, |
| 141 | 0, 0, -1, 0); |
| 142 | |
| 143 | stack[this->top] *= frustum; |
| 144 | } |
| 145 | |
| 146 | void MatrixStack::ortho(double left, double right, double bottom, double top, double zNear, double zFar) |
| 147 | { |
| 148 | float l = (float)left; |
| 149 | float r = (float)right; |
| 150 | float b = (float)bottom; |
| 151 | float t = (float)top; |
| 152 | float n = (float)zNear; |
| 153 | float f = (float)zFar; |
| 154 | |
| 155 | float tx = -(r + l) / (r - l); |
| 156 | float ty = -(t + b) / (t - b); |
| 157 | float tz = -(f + n) / (f - n); |
| 158 | |
| 159 | Matrix ortho(2 / (r - l), 0, 0, tx, |
| 160 | 0, 2 / (t - b), 0, ty, |
| 161 | 0, 0, -2 / (f - n), tz, |
| 162 | 0, 0, 0, 1); |
| 163 | |
| 164 | stack[this->top] *= ortho; |
| 165 | } |
| 166 | |
| 167 | bool MatrixStack::push() |
| 168 | { |
| 169 | if(top >= size - 1) return false; |
| 170 | |
| 171 | stack[top + 1] = stack[top]; |
| 172 | top++; |
| 173 | |
| 174 | return true; |
| 175 | } |
| 176 | |
| 177 | bool MatrixStack::pop() |
| 178 | { |
| 179 | if(top <= 0) return false; |
| 180 | |
| 181 | top--; |
| 182 | |
| 183 | return true; |
| 184 | } |
| 185 | |
| 186 | const Matrix &MatrixStack::current() |
| 187 | { |
| 188 | return stack[top]; |
| 189 | } |
| 190 | |
| 191 | bool MatrixStack::isIdentity() const |
| 192 | { |
| 193 | const Matrix &m = stack[top]; |
| 194 | |
| 195 | if(m.m[0][0] != 1.0f) return false; |
| 196 | if(m.m[0][1] != 0.0f) return false; |
| 197 | if(m.m[0][2] != 0.0f) return false; |
| 198 | if(m.m[0][3] != 0.0f) return false; |
| 199 | |
| 200 | if(m.m[1][0] != 0.0f) return false; |
| 201 | if(m.m[1][1] != 1.0f) return false; |
| 202 | if(m.m[1][2] != 0.0f) return false; |
| 203 | if(m.m[1][3] != 0.0f) return false; |
| 204 | |
| 205 | if(m.m[2][0] != 0.0f) return false; |
| 206 | if(m.m[2][1] != 0.0f) return false; |
| 207 | if(m.m[2][2] != 1.0f) return false; |
| 208 | if(m.m[2][3] != 0.0f) return false; |
| 209 | |
| 210 | if(m.m[3][0] != 0.0f) return false; |
| 211 | if(m.m[3][1] != 0.0f) return false; |
| 212 | if(m.m[3][2] != 0.0f) return false; |
| 213 | if(m.m[3][3] != 1.0f) return false; |
| 214 | |
| 215 | return true; |
| 216 | } |
| 217 | } |
| 218 | |