1 | /**************************************************************************/ |
2 | /* triangulate.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "triangulate.h" |
32 | |
33 | real_t Triangulate::get_area(const Vector<Vector2> &contour) { |
34 | int n = contour.size(); |
35 | const Vector2 *c = &contour[0]; |
36 | |
37 | real_t A = 0.0; |
38 | |
39 | for (int p = n - 1, q = 0; q < n; p = q++) { |
40 | A += c[p].cross(c[q]); |
41 | } |
42 | return A * 0.5f; |
43 | } |
44 | |
45 | /* `is_inside_triangle` decides if a point P is inside the triangle |
46 | * defined by A, B, C. */ |
47 | bool Triangulate::is_inside_triangle(real_t Ax, real_t Ay, |
48 | real_t Bx, real_t By, |
49 | real_t Cx, real_t Cy, |
50 | real_t Px, real_t Py, |
51 | bool include_edges) { |
52 | real_t ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy; |
53 | real_t cCROSSap, bCROSScp, aCROSSbp; |
54 | |
55 | ax = Cx - Bx; |
56 | ay = Cy - By; |
57 | bx = Ax - Cx; |
58 | by = Ay - Cy; |
59 | cx = Bx - Ax; |
60 | cy = By - Ay; |
61 | apx = Px - Ax; |
62 | apy = Py - Ay; |
63 | bpx = Px - Bx; |
64 | bpy = Py - By; |
65 | cpx = Px - Cx; |
66 | cpy = Py - Cy; |
67 | |
68 | aCROSSbp = ax * bpy - ay * bpx; |
69 | cCROSSap = cx * apy - cy * apx; |
70 | bCROSScp = bx * cpy - by * cpx; |
71 | |
72 | if (include_edges) { |
73 | return ((aCROSSbp > 0.0f) && (bCROSScp > 0.0f) && (cCROSSap > 0.0f)); |
74 | } else { |
75 | return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f)); |
76 | } |
77 | } |
78 | |
79 | bool Triangulate::snip(const Vector<Vector2> &p_contour, int u, int v, int w, int n, const Vector<int> &V, bool relaxed) { |
80 | int p; |
81 | real_t Ax, Ay, Bx, By, Cx, Cy, Px, Py; |
82 | const Vector2 *contour = &p_contour[0]; |
83 | |
84 | Ax = contour[V[u]].x; |
85 | Ay = contour[V[u]].y; |
86 | |
87 | Bx = contour[V[v]].x; |
88 | By = contour[V[v]].y; |
89 | |
90 | Cx = contour[V[w]].x; |
91 | Cy = contour[V[w]].y; |
92 | |
93 | // It can happen that the triangulation ends up with three aligned vertices to deal with. |
94 | // In this scenario, making the check below strict may reject the possibility of |
95 | // forming a last triangle with these aligned vertices, preventing the triangulation |
96 | // from completing. |
97 | // To avoid that we allow zero-area triangles if all else failed. |
98 | float threshold = relaxed ? -CMP_EPSILON : CMP_EPSILON; |
99 | |
100 | if (threshold > (((Bx - Ax) * (Cy - Ay)) - ((By - Ay) * (Cx - Ax)))) { |
101 | return false; |
102 | } |
103 | |
104 | for (p = 0; p < n; p++) { |
105 | if ((p == u) || (p == v) || (p == w)) { |
106 | continue; |
107 | } |
108 | Px = contour[V[p]].x; |
109 | Py = contour[V[p]].y; |
110 | if (is_inside_triangle(Ax, Ay, Bx, By, Cx, Cy, Px, Py, relaxed)) { |
111 | return false; |
112 | } |
113 | } |
114 | |
115 | return true; |
116 | } |
117 | |
118 | bool Triangulate::triangulate(const Vector<Vector2> &contour, Vector<int> &result) { |
119 | /* allocate and initialize list of Vertices in polygon */ |
120 | |
121 | int n = contour.size(); |
122 | if (n < 3) { |
123 | return false; |
124 | } |
125 | |
126 | Vector<int> V; |
127 | V.resize(n); |
128 | |
129 | /* we want a counter-clockwise polygon in V */ |
130 | |
131 | if (0.0f < get_area(contour)) { |
132 | for (int v = 0; v < n; v++) { |
133 | V.write[v] = v; |
134 | } |
135 | } else { |
136 | for (int v = 0; v < n; v++) { |
137 | V.write[v] = (n - 1) - v; |
138 | } |
139 | } |
140 | |
141 | bool relaxed = false; |
142 | |
143 | int nv = n; |
144 | |
145 | /* remove nv-2 Vertices, creating 1 triangle every time */ |
146 | int count = 2 * nv; /* error detection */ |
147 | |
148 | for (int v = nv - 1; nv > 2;) { |
149 | /* if we loop, it is probably a non-simple polygon */ |
150 | if (0 >= (count--)) { |
151 | if (relaxed) { |
152 | //** Triangulate: ERROR - probable bad polygon! |
153 | return false; |
154 | } else { |
155 | // There may be aligned vertices that the strict |
156 | // checks prevent from triangulating. In this situation |
157 | // we are better off adding flat triangles than |
158 | // failing, so we relax the checks and try one last |
159 | // round. |
160 | // Only relaxing the constraints as a last resort avoids |
161 | // degenerate triangles when they aren't necessary. |
162 | count = 2 * nv; |
163 | relaxed = true; |
164 | } |
165 | } |
166 | |
167 | /* three consecutive vertices in current polygon, <u,v,w> */ |
168 | int u = v; |
169 | if (nv <= u) { |
170 | u = 0; /* previous */ |
171 | } |
172 | v = u + 1; |
173 | if (nv <= v) { |
174 | v = 0; /* new v */ |
175 | } |
176 | int w = v + 1; |
177 | if (nv <= w) { |
178 | w = 0; /* next */ |
179 | } |
180 | |
181 | if (snip(contour, u, v, w, nv, V, relaxed)) { |
182 | int a, b, c, s, t; |
183 | |
184 | /* true names of the vertices */ |
185 | a = V[u]; |
186 | b = V[v]; |
187 | c = V[w]; |
188 | |
189 | /* output Triangle */ |
190 | result.push_back(a); |
191 | result.push_back(b); |
192 | result.push_back(c); |
193 | |
194 | /* remove v from remaining polygon */ |
195 | for (s = v, t = v + 1; t < nv; s++, t++) { |
196 | V.write[s] = V[t]; |
197 | } |
198 | |
199 | nv--; |
200 | |
201 | /* reset error detection counter */ |
202 | count = 2 * nv; |
203 | } |
204 | } |
205 | |
206 | return true; |
207 | } |
208 | |