| 1 | /**************************************************************************/ |
| 2 | /* hash_map.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef HASH_MAP_H |
| 32 | #define HASH_MAP_H |
| 33 | |
| 34 | #include "core/math/math_funcs.h" |
| 35 | #include "core/os/memory.h" |
| 36 | #include "core/templates/hashfuncs.h" |
| 37 | #include "core/templates/paged_allocator.h" |
| 38 | #include "core/templates/pair.h" |
| 39 | |
| 40 | /** |
| 41 | * A HashMap implementation that uses open addressing with Robin Hood hashing. |
| 42 | * Robin Hood hashing swaps out entries that have a smaller probing distance |
| 43 | * than the to-be-inserted entry, that evens out the average probing distance |
| 44 | * and enables faster lookups. Backward shift deletion is employed to further |
| 45 | * improve the performance and to avoid infinite loops in rare cases. |
| 46 | * |
| 47 | * Keys and values are stored in a double linked list by insertion order. This |
| 48 | * has a slight performance overhead on lookup, which can be mostly compensated |
| 49 | * using a paged allocator if required. |
| 50 | * |
| 51 | * The assignment operator copy the pairs from one map to the other. |
| 52 | */ |
| 53 | |
| 54 | template <class TKey, class TValue> |
| 55 | struct HashMapElement { |
| 56 | HashMapElement *next = nullptr; |
| 57 | HashMapElement *prev = nullptr; |
| 58 | KeyValue<TKey, TValue> data; |
| 59 | HashMapElement() {} |
| 60 | HashMapElement(const TKey &p_key, const TValue &p_value) : |
| 61 | data(p_key, p_value) {} |
| 62 | }; |
| 63 | |
| 64 | template <class TKey, class TValue, |
| 65 | class Hasher = HashMapHasherDefault, |
| 66 | class Comparator = HashMapComparatorDefault<TKey>, |
| 67 | class Allocator = DefaultTypedAllocator<HashMapElement<TKey, TValue>>> |
| 68 | class HashMap { |
| 69 | public: |
| 70 | static constexpr uint32_t MIN_CAPACITY_INDEX = 2; // Use a prime. |
| 71 | static constexpr float MAX_OCCUPANCY = 0.75; |
| 72 | static constexpr uint32_t EMPTY_HASH = 0; |
| 73 | |
| 74 | private: |
| 75 | Allocator element_alloc; |
| 76 | HashMapElement<TKey, TValue> **elements = nullptr; |
| 77 | uint32_t *hashes = nullptr; |
| 78 | HashMapElement<TKey, TValue> *head_element = nullptr; |
| 79 | HashMapElement<TKey, TValue> *tail_element = nullptr; |
| 80 | |
| 81 | uint32_t capacity_index = 0; |
| 82 | uint32_t num_elements = 0; |
| 83 | |
| 84 | _FORCE_INLINE_ uint32_t _hash(const TKey &p_key) const { |
| 85 | uint32_t hash = Hasher::hash(p_key); |
| 86 | |
| 87 | if (unlikely(hash == EMPTY_HASH)) { |
| 88 | hash = EMPTY_HASH + 1; |
| 89 | } |
| 90 | |
| 91 | return hash; |
| 92 | } |
| 93 | |
| 94 | static _FORCE_INLINE_ uint32_t _get_probe_length(const uint32_t p_pos, const uint32_t p_hash, const uint32_t p_capacity, const uint64_t p_capacity_inv) { |
| 95 | const uint32_t original_pos = fastmod(p_hash, p_capacity_inv, p_capacity); |
| 96 | return fastmod(p_pos - original_pos + p_capacity, p_capacity_inv, p_capacity); |
| 97 | } |
| 98 | |
| 99 | bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) const { |
| 100 | if (elements == nullptr || num_elements == 0) { |
| 101 | return false; // Failed lookups, no elements |
| 102 | } |
| 103 | |
| 104 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 105 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
| 106 | uint32_t hash = _hash(p_key); |
| 107 | uint32_t pos = fastmod(hash, capacity_inv, capacity); |
| 108 | uint32_t distance = 0; |
| 109 | |
| 110 | while (true) { |
| 111 | if (hashes[pos] == EMPTY_HASH) { |
| 112 | return false; |
| 113 | } |
| 114 | |
| 115 | if (distance > _get_probe_length(pos, hashes[pos], capacity, capacity_inv)) { |
| 116 | return false; |
| 117 | } |
| 118 | |
| 119 | if (hashes[pos] == hash && Comparator::compare(elements[pos]->data.key, p_key)) { |
| 120 | r_pos = pos; |
| 121 | return true; |
| 122 | } |
| 123 | |
| 124 | pos = fastmod((pos + 1), capacity_inv, capacity); |
| 125 | distance++; |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | void _insert_with_hash(uint32_t p_hash, HashMapElement<TKey, TValue> *p_value) { |
| 130 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 131 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
| 132 | uint32_t hash = p_hash; |
| 133 | HashMapElement<TKey, TValue> *value = p_value; |
| 134 | uint32_t distance = 0; |
| 135 | uint32_t pos = fastmod(hash, capacity_inv, capacity); |
| 136 | |
| 137 | while (true) { |
| 138 | if (hashes[pos] == EMPTY_HASH) { |
| 139 | elements[pos] = value; |
| 140 | hashes[pos] = hash; |
| 141 | |
| 142 | num_elements++; |
| 143 | |
| 144 | return; |
| 145 | } |
| 146 | |
| 147 | // Not an empty slot, let's check the probing length of the existing one. |
| 148 | uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos], capacity, capacity_inv); |
| 149 | if (existing_probe_len < distance) { |
| 150 | SWAP(hash, hashes[pos]); |
| 151 | SWAP(value, elements[pos]); |
| 152 | distance = existing_probe_len; |
| 153 | } |
| 154 | |
| 155 | pos = fastmod((pos + 1), capacity_inv, capacity); |
| 156 | distance++; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | void _resize_and_rehash(uint32_t p_new_capacity_index) { |
| 161 | uint32_t old_capacity = hash_table_size_primes[capacity_index]; |
| 162 | |
| 163 | // Capacity can't be 0. |
| 164 | capacity_index = MAX((uint32_t)MIN_CAPACITY_INDEX, p_new_capacity_index); |
| 165 | |
| 166 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 167 | |
| 168 | HashMapElement<TKey, TValue> **old_elements = elements; |
| 169 | uint32_t *old_hashes = hashes; |
| 170 | |
| 171 | num_elements = 0; |
| 172 | hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 173 | elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static(sizeof(HashMapElement<TKey, TValue> *) * capacity)); |
| 174 | |
| 175 | for (uint32_t i = 0; i < capacity; i++) { |
| 176 | hashes[i] = 0; |
| 177 | elements[i] = nullptr; |
| 178 | } |
| 179 | |
| 180 | if (old_capacity == 0) { |
| 181 | // Nothing to do. |
| 182 | return; |
| 183 | } |
| 184 | |
| 185 | for (uint32_t i = 0; i < old_capacity; i++) { |
| 186 | if (old_hashes[i] == EMPTY_HASH) { |
| 187 | continue; |
| 188 | } |
| 189 | |
| 190 | _insert_with_hash(old_hashes[i], old_elements[i]); |
| 191 | } |
| 192 | |
| 193 | Memory::free_static(old_elements); |
| 194 | Memory::free_static(old_hashes); |
| 195 | } |
| 196 | |
| 197 | _FORCE_INLINE_ HashMapElement<TKey, TValue> *_insert(const TKey &p_key, const TValue &p_value, bool p_front_insert = false) { |
| 198 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 199 | if (unlikely(elements == nullptr)) { |
| 200 | // Allocate on demand to save memory. |
| 201 | |
| 202 | hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 203 | elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static(sizeof(HashMapElement<TKey, TValue> *) * capacity)); |
| 204 | |
| 205 | for (uint32_t i = 0; i < capacity; i++) { |
| 206 | hashes[i] = EMPTY_HASH; |
| 207 | elements[i] = nullptr; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | uint32_t pos = 0; |
| 212 | bool exists = _lookup_pos(p_key, pos); |
| 213 | |
| 214 | if (exists) { |
| 215 | elements[pos]->data.value = p_value; |
| 216 | return elements[pos]; |
| 217 | } else { |
| 218 | if (num_elements + 1 > MAX_OCCUPANCY * capacity) { |
| 219 | ERR_FAIL_COND_V_MSG(capacity_index + 1 == HASH_TABLE_SIZE_MAX, nullptr, "Hash table maximum capacity reached, aborting insertion." ); |
| 220 | _resize_and_rehash(capacity_index + 1); |
| 221 | } |
| 222 | |
| 223 | HashMapElement<TKey, TValue> *elem = element_alloc.new_allocation(HashMapElement<TKey, TValue>(p_key, p_value)); |
| 224 | |
| 225 | if (tail_element == nullptr) { |
| 226 | head_element = elem; |
| 227 | tail_element = elem; |
| 228 | } else if (p_front_insert) { |
| 229 | head_element->prev = elem; |
| 230 | elem->next = head_element; |
| 231 | head_element = elem; |
| 232 | } else { |
| 233 | tail_element->next = elem; |
| 234 | elem->prev = tail_element; |
| 235 | tail_element = elem; |
| 236 | } |
| 237 | |
| 238 | uint32_t hash = _hash(p_key); |
| 239 | _insert_with_hash(hash, elem); |
| 240 | return elem; |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | public: |
| 245 | _FORCE_INLINE_ uint32_t get_capacity() const { return hash_table_size_primes[capacity_index]; } |
| 246 | _FORCE_INLINE_ uint32_t size() const { return num_elements; } |
| 247 | |
| 248 | /* Standard Godot Container API */ |
| 249 | |
| 250 | bool is_empty() const { |
| 251 | return num_elements == 0; |
| 252 | } |
| 253 | |
| 254 | void clear() { |
| 255 | if (elements == nullptr || num_elements == 0) { |
| 256 | return; |
| 257 | } |
| 258 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 259 | for (uint32_t i = 0; i < capacity; i++) { |
| 260 | if (hashes[i] == EMPTY_HASH) { |
| 261 | continue; |
| 262 | } |
| 263 | |
| 264 | hashes[i] = EMPTY_HASH; |
| 265 | element_alloc.delete_allocation(elements[i]); |
| 266 | elements[i] = nullptr; |
| 267 | } |
| 268 | |
| 269 | tail_element = nullptr; |
| 270 | head_element = nullptr; |
| 271 | num_elements = 0; |
| 272 | } |
| 273 | |
| 274 | TValue &get(const TKey &p_key) { |
| 275 | uint32_t pos = 0; |
| 276 | bool exists = _lookup_pos(p_key, pos); |
| 277 | CRASH_COND_MSG(!exists, "HashMap key not found." ); |
| 278 | return elements[pos]->data.value; |
| 279 | } |
| 280 | |
| 281 | const TValue &get(const TKey &p_key) const { |
| 282 | uint32_t pos = 0; |
| 283 | bool exists = _lookup_pos(p_key, pos); |
| 284 | CRASH_COND_MSG(!exists, "HashMap key not found." ); |
| 285 | return elements[pos]->data.value; |
| 286 | } |
| 287 | |
| 288 | const TValue *getptr(const TKey &p_key) const { |
| 289 | uint32_t pos = 0; |
| 290 | bool exists = _lookup_pos(p_key, pos); |
| 291 | |
| 292 | if (exists) { |
| 293 | return &elements[pos]->data.value; |
| 294 | } |
| 295 | return nullptr; |
| 296 | } |
| 297 | |
| 298 | TValue *getptr(const TKey &p_key) { |
| 299 | uint32_t pos = 0; |
| 300 | bool exists = _lookup_pos(p_key, pos); |
| 301 | |
| 302 | if (exists) { |
| 303 | return &elements[pos]->data.value; |
| 304 | } |
| 305 | return nullptr; |
| 306 | } |
| 307 | |
| 308 | _FORCE_INLINE_ bool has(const TKey &p_key) const { |
| 309 | uint32_t _pos = 0; |
| 310 | return _lookup_pos(p_key, _pos); |
| 311 | } |
| 312 | |
| 313 | bool erase(const TKey &p_key) { |
| 314 | uint32_t pos = 0; |
| 315 | bool exists = _lookup_pos(p_key, pos); |
| 316 | |
| 317 | if (!exists) { |
| 318 | return false; |
| 319 | } |
| 320 | |
| 321 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 322 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
| 323 | uint32_t next_pos = fastmod((pos + 1), capacity_inv, capacity); |
| 324 | while (hashes[next_pos] != EMPTY_HASH && _get_probe_length(next_pos, hashes[next_pos], capacity, capacity_inv) != 0) { |
| 325 | SWAP(hashes[next_pos], hashes[pos]); |
| 326 | SWAP(elements[next_pos], elements[pos]); |
| 327 | pos = next_pos; |
| 328 | next_pos = fastmod((pos + 1), capacity_inv, capacity); |
| 329 | } |
| 330 | |
| 331 | hashes[pos] = EMPTY_HASH; |
| 332 | |
| 333 | if (head_element == elements[pos]) { |
| 334 | head_element = elements[pos]->next; |
| 335 | } |
| 336 | |
| 337 | if (tail_element == elements[pos]) { |
| 338 | tail_element = elements[pos]->prev; |
| 339 | } |
| 340 | |
| 341 | if (elements[pos]->prev) { |
| 342 | elements[pos]->prev->next = elements[pos]->next; |
| 343 | } |
| 344 | |
| 345 | if (elements[pos]->next) { |
| 346 | elements[pos]->next->prev = elements[pos]->prev; |
| 347 | } |
| 348 | |
| 349 | element_alloc.delete_allocation(elements[pos]); |
| 350 | elements[pos] = nullptr; |
| 351 | |
| 352 | num_elements--; |
| 353 | return true; |
| 354 | } |
| 355 | |
| 356 | // Replace the key of an entry in-place, without invalidating iterators or changing the entries position during iteration. |
| 357 | // p_old_key must exist in the map and p_new_key must not, unless it is equal to p_old_key. |
| 358 | bool replace_key(const TKey &p_old_key, const TKey &p_new_key) { |
| 359 | if (p_old_key == p_new_key) { |
| 360 | return true; |
| 361 | } |
| 362 | uint32_t pos = 0; |
| 363 | ERR_FAIL_COND_V(_lookup_pos(p_new_key, pos), false); |
| 364 | ERR_FAIL_COND_V(!_lookup_pos(p_old_key, pos), false); |
| 365 | HashMapElement<TKey, TValue> *element = elements[pos]; |
| 366 | |
| 367 | // Delete the old entries in hashes and elements. |
| 368 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 369 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
| 370 | uint32_t next_pos = fastmod((pos + 1), capacity_inv, capacity); |
| 371 | while (hashes[next_pos] != EMPTY_HASH && _get_probe_length(next_pos, hashes[next_pos], capacity, capacity_inv) != 0) { |
| 372 | SWAP(hashes[next_pos], hashes[pos]); |
| 373 | SWAP(elements[next_pos], elements[pos]); |
| 374 | pos = next_pos; |
| 375 | next_pos = fastmod((pos + 1), capacity_inv, capacity); |
| 376 | } |
| 377 | hashes[pos] = EMPTY_HASH; |
| 378 | elements[pos] = nullptr; |
| 379 | // _insert_with_hash will increment this again. |
| 380 | num_elements--; |
| 381 | |
| 382 | // Update the HashMapElement with the new key and reinsert it. |
| 383 | const_cast<TKey &>(element->data.key) = p_new_key; |
| 384 | uint32_t hash = _hash(p_new_key); |
| 385 | _insert_with_hash(hash, element); |
| 386 | |
| 387 | return true; |
| 388 | } |
| 389 | |
| 390 | // Reserves space for a number of elements, useful to avoid many resizes and rehashes. |
| 391 | // If adding a known (possibly large) number of elements at once, must be larger than old capacity. |
| 392 | void reserve(uint32_t p_new_capacity) { |
| 393 | uint32_t new_index = capacity_index; |
| 394 | |
| 395 | while (hash_table_size_primes[new_index] < p_new_capacity) { |
| 396 | ERR_FAIL_COND_MSG(new_index + 1 == (uint32_t)HASH_TABLE_SIZE_MAX, nullptr); |
| 397 | new_index++; |
| 398 | } |
| 399 | |
| 400 | if (new_index == capacity_index) { |
| 401 | return; |
| 402 | } |
| 403 | |
| 404 | if (elements == nullptr) { |
| 405 | capacity_index = new_index; |
| 406 | return; // Unallocated yet. |
| 407 | } |
| 408 | _resize_and_rehash(new_index); |
| 409 | } |
| 410 | |
| 411 | /** Iterator API **/ |
| 412 | |
| 413 | struct ConstIterator { |
| 414 | _FORCE_INLINE_ const KeyValue<TKey, TValue> &operator*() const { |
| 415 | return E->data; |
| 416 | } |
| 417 | _FORCE_INLINE_ const KeyValue<TKey, TValue> *operator->() const { return &E->data; } |
| 418 | _FORCE_INLINE_ ConstIterator &operator++() { |
| 419 | if (E) { |
| 420 | E = E->next; |
| 421 | } |
| 422 | return *this; |
| 423 | } |
| 424 | _FORCE_INLINE_ ConstIterator &operator--() { |
| 425 | if (E) { |
| 426 | E = E->prev; |
| 427 | } |
| 428 | return *this; |
| 429 | } |
| 430 | |
| 431 | _FORCE_INLINE_ bool operator==(const ConstIterator &b) const { return E == b.E; } |
| 432 | _FORCE_INLINE_ bool operator!=(const ConstIterator &b) const { return E != b.E; } |
| 433 | |
| 434 | _FORCE_INLINE_ explicit operator bool() const { |
| 435 | return E != nullptr; |
| 436 | } |
| 437 | |
| 438 | _FORCE_INLINE_ ConstIterator(const HashMapElement<TKey, TValue> *p_E) { E = p_E; } |
| 439 | _FORCE_INLINE_ ConstIterator() {} |
| 440 | _FORCE_INLINE_ ConstIterator(const ConstIterator &p_it) { E = p_it.E; } |
| 441 | _FORCE_INLINE_ void operator=(const ConstIterator &p_it) { |
| 442 | E = p_it.E; |
| 443 | } |
| 444 | |
| 445 | private: |
| 446 | const HashMapElement<TKey, TValue> *E = nullptr; |
| 447 | }; |
| 448 | |
| 449 | struct Iterator { |
| 450 | _FORCE_INLINE_ KeyValue<TKey, TValue> &operator*() const { |
| 451 | return E->data; |
| 452 | } |
| 453 | _FORCE_INLINE_ KeyValue<TKey, TValue> *operator->() const { return &E->data; } |
| 454 | _FORCE_INLINE_ Iterator &operator++() { |
| 455 | if (E) { |
| 456 | E = E->next; |
| 457 | } |
| 458 | return *this; |
| 459 | } |
| 460 | _FORCE_INLINE_ Iterator &operator--() { |
| 461 | if (E) { |
| 462 | E = E->prev; |
| 463 | } |
| 464 | return *this; |
| 465 | } |
| 466 | |
| 467 | _FORCE_INLINE_ bool operator==(const Iterator &b) const { return E == b.E; } |
| 468 | _FORCE_INLINE_ bool operator!=(const Iterator &b) const { return E != b.E; } |
| 469 | |
| 470 | _FORCE_INLINE_ explicit operator bool() const { |
| 471 | return E != nullptr; |
| 472 | } |
| 473 | |
| 474 | _FORCE_INLINE_ Iterator(HashMapElement<TKey, TValue> *p_E) { E = p_E; } |
| 475 | _FORCE_INLINE_ Iterator() {} |
| 476 | _FORCE_INLINE_ Iterator(const Iterator &p_it) { E = p_it.E; } |
| 477 | _FORCE_INLINE_ void operator=(const Iterator &p_it) { |
| 478 | E = p_it.E; |
| 479 | } |
| 480 | |
| 481 | operator ConstIterator() const { |
| 482 | return ConstIterator(E); |
| 483 | } |
| 484 | |
| 485 | private: |
| 486 | HashMapElement<TKey, TValue> *E = nullptr; |
| 487 | }; |
| 488 | |
| 489 | _FORCE_INLINE_ Iterator begin() { |
| 490 | return Iterator(head_element); |
| 491 | } |
| 492 | _FORCE_INLINE_ Iterator end() { |
| 493 | return Iterator(nullptr); |
| 494 | } |
| 495 | _FORCE_INLINE_ Iterator last() { |
| 496 | return Iterator(tail_element); |
| 497 | } |
| 498 | |
| 499 | _FORCE_INLINE_ Iterator find(const TKey &p_key) { |
| 500 | uint32_t pos = 0; |
| 501 | bool exists = _lookup_pos(p_key, pos); |
| 502 | if (!exists) { |
| 503 | return end(); |
| 504 | } |
| 505 | return Iterator(elements[pos]); |
| 506 | } |
| 507 | |
| 508 | _FORCE_INLINE_ void remove(const Iterator &p_iter) { |
| 509 | if (p_iter) { |
| 510 | erase(p_iter->key); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | _FORCE_INLINE_ ConstIterator begin() const { |
| 515 | return ConstIterator(head_element); |
| 516 | } |
| 517 | _FORCE_INLINE_ ConstIterator end() const { |
| 518 | return ConstIterator(nullptr); |
| 519 | } |
| 520 | _FORCE_INLINE_ ConstIterator last() const { |
| 521 | return ConstIterator(tail_element); |
| 522 | } |
| 523 | |
| 524 | _FORCE_INLINE_ ConstIterator find(const TKey &p_key) const { |
| 525 | uint32_t pos = 0; |
| 526 | bool exists = _lookup_pos(p_key, pos); |
| 527 | if (!exists) { |
| 528 | return end(); |
| 529 | } |
| 530 | return ConstIterator(elements[pos]); |
| 531 | } |
| 532 | |
| 533 | /* Indexing */ |
| 534 | |
| 535 | const TValue &operator[](const TKey &p_key) const { |
| 536 | uint32_t pos = 0; |
| 537 | bool exists = _lookup_pos(p_key, pos); |
| 538 | CRASH_COND(!exists); |
| 539 | return elements[pos]->data.value; |
| 540 | } |
| 541 | |
| 542 | TValue &operator[](const TKey &p_key) { |
| 543 | uint32_t pos = 0; |
| 544 | bool exists = _lookup_pos(p_key, pos); |
| 545 | if (!exists) { |
| 546 | return _insert(p_key, TValue())->data.value; |
| 547 | } else { |
| 548 | return elements[pos]->data.value; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | /* Insert */ |
| 553 | |
| 554 | Iterator insert(const TKey &p_key, const TValue &p_value, bool p_front_insert = false) { |
| 555 | return Iterator(_insert(p_key, p_value, p_front_insert)); |
| 556 | } |
| 557 | |
| 558 | /* Constructors */ |
| 559 | |
| 560 | HashMap(const HashMap &p_other) { |
| 561 | reserve(hash_table_size_primes[p_other.capacity_index]); |
| 562 | |
| 563 | if (p_other.num_elements == 0) { |
| 564 | return; |
| 565 | } |
| 566 | |
| 567 | for (const KeyValue<TKey, TValue> &E : p_other) { |
| 568 | insert(E.key, E.value); |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | void operator=(const HashMap &p_other) { |
| 573 | if (this == &p_other) { |
| 574 | return; // Ignore self assignment. |
| 575 | } |
| 576 | if (num_elements != 0) { |
| 577 | clear(); |
| 578 | } |
| 579 | |
| 580 | reserve(hash_table_size_primes[p_other.capacity_index]); |
| 581 | |
| 582 | if (p_other.elements == nullptr) { |
| 583 | return; // Nothing to copy. |
| 584 | } |
| 585 | |
| 586 | for (const KeyValue<TKey, TValue> &E : p_other) { |
| 587 | insert(E.key, E.value); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | HashMap(uint32_t p_initial_capacity) { |
| 592 | // Capacity can't be 0. |
| 593 | capacity_index = 0; |
| 594 | reserve(p_initial_capacity); |
| 595 | } |
| 596 | HashMap() { |
| 597 | capacity_index = MIN_CAPACITY_INDEX; |
| 598 | } |
| 599 | |
| 600 | uint32_t debug_get_hash(uint32_t p_index) { |
| 601 | if (num_elements == 0) { |
| 602 | return 0; |
| 603 | } |
| 604 | ERR_FAIL_INDEX_V(p_index, get_capacity(), 0); |
| 605 | return hashes[p_index]; |
| 606 | } |
| 607 | Iterator debug_get_element(uint32_t p_index) { |
| 608 | if (num_elements == 0) { |
| 609 | return Iterator(); |
| 610 | } |
| 611 | ERR_FAIL_INDEX_V(p_index, get_capacity(), Iterator()); |
| 612 | return Iterator(elements[p_index]); |
| 613 | } |
| 614 | |
| 615 | ~HashMap() { |
| 616 | clear(); |
| 617 | |
| 618 | if (elements != nullptr) { |
| 619 | Memory::free_static(elements); |
| 620 | Memory::free_static(hashes); |
| 621 | } |
| 622 | } |
| 623 | }; |
| 624 | |
| 625 | #endif // HASH_MAP_H |
| 626 | |