| 1 | /**************************************************************************/ |
| 2 | /* math_funcs.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef MATH_FUNCS_H |
| 32 | #define MATH_FUNCS_H |
| 33 | |
| 34 | #include "core/error/error_macros.h" |
| 35 | #include "core/math/math_defs.h" |
| 36 | #include "core/math/random_pcg.h" |
| 37 | #include "core/typedefs.h" |
| 38 | |
| 39 | #include "thirdparty/misc/pcg.h" |
| 40 | |
| 41 | #include <float.h> |
| 42 | #include <math.h> |
| 43 | |
| 44 | class Math { |
| 45 | static RandomPCG default_rand; |
| 46 | |
| 47 | public: |
| 48 | Math() {} // useless to instance |
| 49 | |
| 50 | // Not using 'RANDOM_MAX' to avoid conflict with system headers on some OSes (at least NetBSD). |
| 51 | static const uint64_t RANDOM_32BIT_MAX = 0xFFFFFFFF; |
| 52 | |
| 53 | static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); } |
| 54 | static _ALWAYS_INLINE_ float sin(float p_x) { return ::sinf(p_x); } |
| 55 | |
| 56 | static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); } |
| 57 | static _ALWAYS_INLINE_ float cos(float p_x) { return ::cosf(p_x); } |
| 58 | |
| 59 | static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); } |
| 60 | static _ALWAYS_INLINE_ float tan(float p_x) { return ::tanf(p_x); } |
| 61 | |
| 62 | static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); } |
| 63 | static _ALWAYS_INLINE_ float sinh(float p_x) { return ::sinhf(p_x); } |
| 64 | |
| 65 | static _ALWAYS_INLINE_ float sinc(float p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; } |
| 66 | static _ALWAYS_INLINE_ double sinc(double p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; } |
| 67 | |
| 68 | static _ALWAYS_INLINE_ float sincn(float p_x) { return sinc((float)Math_PI * p_x); } |
| 69 | static _ALWAYS_INLINE_ double sincn(double p_x) { return sinc(Math_PI * p_x); } |
| 70 | |
| 71 | static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); } |
| 72 | static _ALWAYS_INLINE_ float cosh(float p_x) { return ::coshf(p_x); } |
| 73 | |
| 74 | static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); } |
| 75 | static _ALWAYS_INLINE_ float tanh(float p_x) { return ::tanhf(p_x); } |
| 76 | |
| 77 | // Always does clamping so always safe to use. |
| 78 | static _ALWAYS_INLINE_ double asin(double p_x) { return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asin(p_x)); } |
| 79 | static _ALWAYS_INLINE_ float asin(float p_x) { return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asinf(p_x)); } |
| 80 | |
| 81 | // Always does clamping so always safe to use. |
| 82 | static _ALWAYS_INLINE_ double acos(double p_x) { return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acos(p_x)); } |
| 83 | static _ALWAYS_INLINE_ float acos(float p_x) { return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acosf(p_x)); } |
| 84 | |
| 85 | static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); } |
| 86 | static _ALWAYS_INLINE_ float atan(float p_x) { return ::atanf(p_x); } |
| 87 | |
| 88 | static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y, p_x); } |
| 89 | static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) { return ::atan2f(p_y, p_x); } |
| 90 | |
| 91 | static _ALWAYS_INLINE_ double asinh(double p_x) { return ::asinh(p_x); } |
| 92 | static _ALWAYS_INLINE_ float asinh(float p_x) { return ::asinhf(p_x); } |
| 93 | |
| 94 | // Always does clamping so always safe to use. |
| 95 | static _ALWAYS_INLINE_ double acosh(double p_x) { return p_x < 1 ? 0 : ::acosh(p_x); } |
| 96 | static _ALWAYS_INLINE_ float acosh(float p_x) { return p_x < 1 ? 0 : ::acoshf(p_x); } |
| 97 | |
| 98 | // Always does clamping so always safe to use. |
| 99 | static _ALWAYS_INLINE_ double atanh(double p_x) { return p_x <= -1 ? -INFINITY : (p_x >= 1 ? INFINITY : ::atanh(p_x)); } |
| 100 | static _ALWAYS_INLINE_ float atanh(float p_x) { return p_x <= -1 ? -INFINITY : (p_x >= 1 ? INFINITY : ::atanhf(p_x)); } |
| 101 | |
| 102 | static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); } |
| 103 | static _ALWAYS_INLINE_ float sqrt(float p_x) { return ::sqrtf(p_x); } |
| 104 | |
| 105 | static _ALWAYS_INLINE_ double fmod(double p_x, double p_y) { return ::fmod(p_x, p_y); } |
| 106 | static _ALWAYS_INLINE_ float fmod(float p_x, float p_y) { return ::fmodf(p_x, p_y); } |
| 107 | |
| 108 | static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); } |
| 109 | static _ALWAYS_INLINE_ float floor(float p_x) { return ::floorf(p_x); } |
| 110 | |
| 111 | static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); } |
| 112 | static _ALWAYS_INLINE_ float ceil(float p_x) { return ::ceilf(p_x); } |
| 113 | |
| 114 | static _ALWAYS_INLINE_ double pow(double p_x, double p_y) { return ::pow(p_x, p_y); } |
| 115 | static _ALWAYS_INLINE_ float pow(float p_x, float p_y) { return ::powf(p_x, p_y); } |
| 116 | |
| 117 | static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); } |
| 118 | static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); } |
| 119 | |
| 120 | static _ALWAYS_INLINE_ double log1p(double p_x) { return ::log1p(p_x); } |
| 121 | static _ALWAYS_INLINE_ float log1p(float p_x) { return ::log1pf(p_x); } |
| 122 | |
| 123 | static _ALWAYS_INLINE_ double log2(double p_x) { return ::log2(p_x); } |
| 124 | static _ALWAYS_INLINE_ float log2(float p_x) { return ::log2f(p_x); } |
| 125 | |
| 126 | static _ALWAYS_INLINE_ double exp(double p_x) { return ::exp(p_x); } |
| 127 | static _ALWAYS_INLINE_ float exp(float p_x) { return ::expf(p_x); } |
| 128 | |
| 129 | static _ALWAYS_INLINE_ bool is_nan(double p_val) { |
| 130 | #ifdef _MSC_VER |
| 131 | return _isnan(p_val); |
| 132 | #elif defined(__GNUC__) && __GNUC__ < 6 |
| 133 | union { |
| 134 | uint64_t u; |
| 135 | double f; |
| 136 | } ieee754; |
| 137 | ieee754.f = p_val; |
| 138 | // (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000 |
| 139 | return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000); |
| 140 | #else |
| 141 | return isnan(p_val); |
| 142 | #endif |
| 143 | } |
| 144 | |
| 145 | static _ALWAYS_INLINE_ bool is_nan(float p_val) { |
| 146 | #ifdef _MSC_VER |
| 147 | return _isnan(p_val); |
| 148 | #elif defined(__GNUC__) && __GNUC__ < 6 |
| 149 | union { |
| 150 | uint32_t u; |
| 151 | float f; |
| 152 | } ieee754; |
| 153 | ieee754.f = p_val; |
| 154 | // ----------------------------------- |
| 155 | // (single-precision floating-point) |
| 156 | // NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx |
| 157 | // : (> 0x7f800000) |
| 158 | // where, |
| 159 | // s : sign |
| 160 | // x : non-zero number |
| 161 | // ----------------------------------- |
| 162 | return ((ieee754.u & 0x7fffffff) > 0x7f800000); |
| 163 | #else |
| 164 | return isnan(p_val); |
| 165 | #endif |
| 166 | } |
| 167 | |
| 168 | static _ALWAYS_INLINE_ bool is_inf(double p_val) { |
| 169 | #ifdef _MSC_VER |
| 170 | return !_finite(p_val); |
| 171 | // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era |
| 172 | #elif defined(__GNUC__) && __GNUC__ < 6 |
| 173 | union { |
| 174 | uint64_t u; |
| 175 | double f; |
| 176 | } ieee754; |
| 177 | ieee754.f = p_val; |
| 178 | return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 && |
| 179 | ((unsigned)ieee754.u == 0); |
| 180 | #else |
| 181 | return isinf(p_val); |
| 182 | #endif |
| 183 | } |
| 184 | |
| 185 | static _ALWAYS_INLINE_ bool is_inf(float p_val) { |
| 186 | #ifdef _MSC_VER |
| 187 | return !_finite(p_val); |
| 188 | // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era |
| 189 | #elif defined(__GNUC__) && __GNUC__ < 6 |
| 190 | union { |
| 191 | uint32_t u; |
| 192 | float f; |
| 193 | } ieee754; |
| 194 | ieee754.f = p_val; |
| 195 | return (ieee754.u & 0x7fffffff) == 0x7f800000; |
| 196 | #else |
| 197 | return isinf(p_val); |
| 198 | #endif |
| 199 | } |
| 200 | |
| 201 | static _ALWAYS_INLINE_ bool is_finite(double p_val) { return isfinite(p_val); } |
| 202 | static _ALWAYS_INLINE_ bool is_finite(float p_val) { return isfinite(p_val); } |
| 203 | |
| 204 | static _ALWAYS_INLINE_ double abs(double g) { return absd(g); } |
| 205 | static _ALWAYS_INLINE_ float abs(float g) { return absf(g); } |
| 206 | static _ALWAYS_INLINE_ int abs(int g) { return g > 0 ? g : -g; } |
| 207 | |
| 208 | static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) { |
| 209 | double value = Math::fmod(p_x, p_y); |
| 210 | if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) { |
| 211 | value += p_y; |
| 212 | } |
| 213 | value += 0.0; |
| 214 | return value; |
| 215 | } |
| 216 | static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) { |
| 217 | float value = Math::fmod(p_x, p_y); |
| 218 | if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) { |
| 219 | value += p_y; |
| 220 | } |
| 221 | value += 0.0f; |
| 222 | return value; |
| 223 | } |
| 224 | static _ALWAYS_INLINE_ float fposmodp(float p_x, float p_y) { |
| 225 | float value = Math::fmod(p_x, p_y); |
| 226 | if (value < 0) { |
| 227 | value += p_y; |
| 228 | } |
| 229 | value += 0.0f; |
| 230 | return value; |
| 231 | } |
| 232 | static _ALWAYS_INLINE_ double fposmodp(double p_x, double p_y) { |
| 233 | double value = Math::fmod(p_x, p_y); |
| 234 | if (value < 0) { |
| 235 | value += p_y; |
| 236 | } |
| 237 | value += 0.0; |
| 238 | return value; |
| 239 | } |
| 240 | |
| 241 | static _ALWAYS_INLINE_ int64_t posmod(int64_t p_x, int64_t p_y) { |
| 242 | ERR_FAIL_COND_V_MSG(p_y == 0, 0, "Division by zero in posmod is undefined. Returning 0 as fallback." ); |
| 243 | int64_t value = p_x % p_y; |
| 244 | if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) { |
| 245 | value += p_y; |
| 246 | } |
| 247 | return value; |
| 248 | } |
| 249 | |
| 250 | static _ALWAYS_INLINE_ double deg_to_rad(double p_y) { return p_y * (Math_PI / 180.0); } |
| 251 | static _ALWAYS_INLINE_ float deg_to_rad(float p_y) { return p_y * (float)(Math_PI / 180.0); } |
| 252 | |
| 253 | static _ALWAYS_INLINE_ double rad_to_deg(double p_y) { return p_y * (180.0 / Math_PI); } |
| 254 | static _ALWAYS_INLINE_ float rad_to_deg(float p_y) { return p_y * (float)(180.0 / Math_PI); } |
| 255 | |
| 256 | static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; } |
| 257 | static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; } |
| 258 | |
| 259 | static _ALWAYS_INLINE_ double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) { |
| 260 | return 0.5 * |
| 261 | ((p_from * 2.0) + |
| 262 | (-p_pre + p_to) * p_weight + |
| 263 | (2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) + |
| 264 | (-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight)); |
| 265 | } |
| 266 | static _ALWAYS_INLINE_ float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) { |
| 267 | return 0.5f * |
| 268 | ((p_from * 2.0f) + |
| 269 | (-p_pre + p_to) * p_weight + |
| 270 | (2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) + |
| 271 | (-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight)); |
| 272 | } |
| 273 | |
| 274 | static _ALWAYS_INLINE_ double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) { |
| 275 | double from_rot = fmod(p_from, Math_TAU); |
| 276 | |
| 277 | double pre_diff = fmod(p_pre - from_rot, Math_TAU); |
| 278 | double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff; |
| 279 | |
| 280 | double to_diff = fmod(p_to - from_rot, Math_TAU); |
| 281 | double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff; |
| 282 | |
| 283 | double post_diff = fmod(p_post - to_rot, Math_TAU); |
| 284 | double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff; |
| 285 | |
| 286 | return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight); |
| 287 | } |
| 288 | |
| 289 | static _ALWAYS_INLINE_ float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) { |
| 290 | float from_rot = fmod(p_from, (float)Math_TAU); |
| 291 | |
| 292 | float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU); |
| 293 | float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff; |
| 294 | |
| 295 | float to_diff = fmod(p_to - from_rot, (float)Math_TAU); |
| 296 | float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff; |
| 297 | |
| 298 | float post_diff = fmod(p_post - to_rot, (float)Math_TAU); |
| 299 | float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff; |
| 300 | |
| 301 | return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight); |
| 302 | } |
| 303 | |
| 304 | static _ALWAYS_INLINE_ double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight, |
| 305 | double p_to_t, double p_pre_t, double p_post_t) { |
| 306 | /* Barry-Goldman method */ |
| 307 | double t = Math::lerp(0.0, p_to_t, p_weight); |
| 308 | double a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t); |
| 309 | double a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t); |
| 310 | double a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t)); |
| 311 | double b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t)); |
| 312 | double b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t); |
| 313 | return Math::lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t); |
| 314 | } |
| 315 | |
| 316 | static _ALWAYS_INLINE_ float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight, |
| 317 | float p_to_t, float p_pre_t, float p_post_t) { |
| 318 | /* Barry-Goldman method */ |
| 319 | float t = Math::lerp(0.0f, p_to_t, p_weight); |
| 320 | float a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t); |
| 321 | float a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t); |
| 322 | float a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t)); |
| 323 | float b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t)); |
| 324 | float b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t); |
| 325 | return Math::lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t); |
| 326 | } |
| 327 | |
| 328 | static _ALWAYS_INLINE_ double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight, |
| 329 | double p_to_t, double p_pre_t, double p_post_t) { |
| 330 | double from_rot = fmod(p_from, Math_TAU); |
| 331 | |
| 332 | double pre_diff = fmod(p_pre - from_rot, Math_TAU); |
| 333 | double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff; |
| 334 | |
| 335 | double to_diff = fmod(p_to - from_rot, Math_TAU); |
| 336 | double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff; |
| 337 | |
| 338 | double post_diff = fmod(p_post - to_rot, Math_TAU); |
| 339 | double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff; |
| 340 | |
| 341 | return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t); |
| 342 | } |
| 343 | |
| 344 | static _ALWAYS_INLINE_ float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight, |
| 345 | float p_to_t, float p_pre_t, float p_post_t) { |
| 346 | float from_rot = fmod(p_from, (float)Math_TAU); |
| 347 | |
| 348 | float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU); |
| 349 | float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff; |
| 350 | |
| 351 | float to_diff = fmod(p_to - from_rot, (float)Math_TAU); |
| 352 | float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff; |
| 353 | |
| 354 | float post_diff = fmod(p_post - to_rot, (float)Math_TAU); |
| 355 | float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff; |
| 356 | |
| 357 | return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t); |
| 358 | } |
| 359 | |
| 360 | static _ALWAYS_INLINE_ double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) { |
| 361 | /* Formula from Wikipedia article on Bezier curves. */ |
| 362 | double omt = (1.0 - p_t); |
| 363 | double omt2 = omt * omt; |
| 364 | double omt3 = omt2 * omt; |
| 365 | double t2 = p_t * p_t; |
| 366 | double t3 = t2 * p_t; |
| 367 | |
| 368 | return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3; |
| 369 | } |
| 370 | |
| 371 | static _ALWAYS_INLINE_ float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) { |
| 372 | /* Formula from Wikipedia article on Bezier curves. */ |
| 373 | float omt = (1.0f - p_t); |
| 374 | float omt2 = omt * omt; |
| 375 | float omt3 = omt2 * omt; |
| 376 | float t2 = p_t * p_t; |
| 377 | float t3 = t2 * p_t; |
| 378 | |
| 379 | return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3; |
| 380 | } |
| 381 | |
| 382 | static _ALWAYS_INLINE_ double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) { |
| 383 | /* Formula from Wikipedia article on Bezier curves. */ |
| 384 | double omt = (1.0 - p_t); |
| 385 | double omt2 = omt * omt; |
| 386 | double t2 = p_t * p_t; |
| 387 | |
| 388 | double d = (p_control_1 - p_start) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2; |
| 389 | return d; |
| 390 | } |
| 391 | |
| 392 | static _ALWAYS_INLINE_ float bezier_derivative(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) { |
| 393 | /* Formula from Wikipedia article on Bezier curves. */ |
| 394 | float omt = (1.0f - p_t); |
| 395 | float omt2 = omt * omt; |
| 396 | float t2 = p_t * p_t; |
| 397 | |
| 398 | float d = (p_control_1 - p_start) * 3.0f * omt2 + (p_control_2 - p_control_1) * 6.0f * omt * p_t + (p_end - p_control_2) * 3.0f * t2; |
| 399 | return d; |
| 400 | } |
| 401 | |
| 402 | static _ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) { |
| 403 | double difference = fmod(p_to - p_from, Math_TAU); |
| 404 | double distance = fmod(2.0 * difference, Math_TAU) - difference; |
| 405 | return p_from + distance * p_weight; |
| 406 | } |
| 407 | static _ALWAYS_INLINE_ float lerp_angle(float p_from, float p_to, float p_weight) { |
| 408 | float difference = fmod(p_to - p_from, (float)Math_TAU); |
| 409 | float distance = fmod(2.0f * difference, (float)Math_TAU) - difference; |
| 410 | return p_from + distance * p_weight; |
| 411 | } |
| 412 | |
| 413 | static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) { |
| 414 | return (p_value - p_from) / (p_to - p_from); |
| 415 | } |
| 416 | static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) { |
| 417 | return (p_value - p_from) / (p_to - p_from); |
| 418 | } |
| 419 | |
| 420 | static _ALWAYS_INLINE_ double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { |
| 421 | return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); |
| 422 | } |
| 423 | static _ALWAYS_INLINE_ float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { |
| 424 | return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); |
| 425 | } |
| 426 | |
| 427 | static _ALWAYS_INLINE_ double smoothstep(double p_from, double p_to, double p_s) { |
| 428 | if (is_equal_approx(p_from, p_to)) { |
| 429 | return p_from; |
| 430 | } |
| 431 | double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0); |
| 432 | return s * s * (3.0 - 2.0 * s); |
| 433 | } |
| 434 | static _ALWAYS_INLINE_ float smoothstep(float p_from, float p_to, float p_s) { |
| 435 | if (is_equal_approx(p_from, p_to)) { |
| 436 | return p_from; |
| 437 | } |
| 438 | float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f); |
| 439 | return s * s * (3.0f - 2.0f * s); |
| 440 | } |
| 441 | static _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) { |
| 442 | return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta; |
| 443 | } |
| 444 | static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) { |
| 445 | return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta; |
| 446 | } |
| 447 | |
| 448 | static _ALWAYS_INLINE_ double linear_to_db(double p_linear) { |
| 449 | return Math::log(p_linear) * 8.6858896380650365530225783783321; |
| 450 | } |
| 451 | static _ALWAYS_INLINE_ float linear_to_db(float p_linear) { |
| 452 | return Math::log(p_linear) * (float)8.6858896380650365530225783783321; |
| 453 | } |
| 454 | |
| 455 | static _ALWAYS_INLINE_ double db_to_linear(double p_db) { |
| 456 | return Math::exp(p_db * 0.11512925464970228420089957273422); |
| 457 | } |
| 458 | static _ALWAYS_INLINE_ float db_to_linear(float p_db) { |
| 459 | return Math::exp(p_db * (float)0.11512925464970228420089957273422); |
| 460 | } |
| 461 | |
| 462 | static _ALWAYS_INLINE_ double round(double p_val) { return ::round(p_val); } |
| 463 | static _ALWAYS_INLINE_ float round(float p_val) { return ::roundf(p_val); } |
| 464 | |
| 465 | static _ALWAYS_INLINE_ int64_t wrapi(int64_t value, int64_t min, int64_t max) { |
| 466 | int64_t range = max - min; |
| 467 | return range == 0 ? min : min + ((((value - min) % range) + range) % range); |
| 468 | } |
| 469 | static _ALWAYS_INLINE_ double wrapf(double value, double min, double max) { |
| 470 | double range = max - min; |
| 471 | if (is_zero_approx(range)) { |
| 472 | return min; |
| 473 | } |
| 474 | double result = value - (range * Math::floor((value - min) / range)); |
| 475 | if (is_equal_approx(result, max)) { |
| 476 | return min; |
| 477 | } |
| 478 | return result; |
| 479 | } |
| 480 | static _ALWAYS_INLINE_ float wrapf(float value, float min, float max) { |
| 481 | float range = max - min; |
| 482 | if (is_zero_approx(range)) { |
| 483 | return min; |
| 484 | } |
| 485 | float result = value - (range * Math::floor((value - min) / range)); |
| 486 | if (is_equal_approx(result, max)) { |
| 487 | return min; |
| 488 | } |
| 489 | return result; |
| 490 | } |
| 491 | |
| 492 | static _ALWAYS_INLINE_ float fract(float value) { |
| 493 | return value - floor(value); |
| 494 | } |
| 495 | static _ALWAYS_INLINE_ double fract(double value) { |
| 496 | return value - floor(value); |
| 497 | } |
| 498 | static _ALWAYS_INLINE_ float pingpong(float value, float length) { |
| 499 | return (length != 0.0f) ? abs(fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f; |
| 500 | } |
| 501 | static _ALWAYS_INLINE_ double pingpong(double value, double length) { |
| 502 | return (length != 0.0) ? abs(fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0; |
| 503 | } |
| 504 | |
| 505 | // double only, as these functions are mainly used by the editor and not performance-critical, |
| 506 | static double ease(double p_x, double p_c); |
| 507 | static int step_decimals(double p_step); |
| 508 | static int range_step_decimals(double p_step); // For editor use only. |
| 509 | static double snapped(double p_value, double p_step); |
| 510 | |
| 511 | static uint32_t larger_prime(uint32_t p_val); |
| 512 | |
| 513 | static void seed(uint64_t x); |
| 514 | static void randomize(); |
| 515 | static uint32_t rand_from_seed(uint64_t *seed); |
| 516 | static uint32_t rand(); |
| 517 | static _ALWAYS_INLINE_ double randd() { return (double)rand() / (double)Math::RANDOM_32BIT_MAX; } |
| 518 | static _ALWAYS_INLINE_ float randf() { return (float)rand() / (float)Math::RANDOM_32BIT_MAX; } |
| 519 | static double randfn(double mean, double deviation); |
| 520 | |
| 521 | static double random(double from, double to); |
| 522 | static float random(float from, float to); |
| 523 | static int random(int from, int to); |
| 524 | |
| 525 | static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b) { |
| 526 | // Check for exact equality first, required to handle "infinity" values. |
| 527 | if (a == b) { |
| 528 | return true; |
| 529 | } |
| 530 | // Then check for approximate equality. |
| 531 | float tolerance = (float)CMP_EPSILON * abs(a); |
| 532 | if (tolerance < (float)CMP_EPSILON) { |
| 533 | tolerance = (float)CMP_EPSILON; |
| 534 | } |
| 535 | return abs(a - b) < tolerance; |
| 536 | } |
| 537 | |
| 538 | static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b, float tolerance) { |
| 539 | // Check for exact equality first, required to handle "infinity" values. |
| 540 | if (a == b) { |
| 541 | return true; |
| 542 | } |
| 543 | // Then check for approximate equality. |
| 544 | return abs(a - b) < tolerance; |
| 545 | } |
| 546 | |
| 547 | static _ALWAYS_INLINE_ bool is_zero_approx(float s) { |
| 548 | return abs(s) < (float)CMP_EPSILON; |
| 549 | } |
| 550 | |
| 551 | static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b) { |
| 552 | // Check for exact equality first, required to handle "infinity" values. |
| 553 | if (a == b) { |
| 554 | return true; |
| 555 | } |
| 556 | // Then check for approximate equality. |
| 557 | double tolerance = CMP_EPSILON * abs(a); |
| 558 | if (tolerance < CMP_EPSILON) { |
| 559 | tolerance = CMP_EPSILON; |
| 560 | } |
| 561 | return abs(a - b) < tolerance; |
| 562 | } |
| 563 | |
| 564 | static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b, double tolerance) { |
| 565 | // Check for exact equality first, required to handle "infinity" values. |
| 566 | if (a == b) { |
| 567 | return true; |
| 568 | } |
| 569 | // Then check for approximate equality. |
| 570 | return abs(a - b) < tolerance; |
| 571 | } |
| 572 | |
| 573 | static _ALWAYS_INLINE_ bool is_zero_approx(double s) { |
| 574 | return abs(s) < CMP_EPSILON; |
| 575 | } |
| 576 | |
| 577 | static _ALWAYS_INLINE_ float absf(float g) { |
| 578 | union { |
| 579 | float f; |
| 580 | uint32_t i; |
| 581 | } u; |
| 582 | |
| 583 | u.f = g; |
| 584 | u.i &= 2147483647u; |
| 585 | return u.f; |
| 586 | } |
| 587 | |
| 588 | static _ALWAYS_INLINE_ double absd(double g) { |
| 589 | union { |
| 590 | double d; |
| 591 | uint64_t i; |
| 592 | } u; |
| 593 | u.d = g; |
| 594 | u.i &= (uint64_t)9223372036854775807ll; |
| 595 | return u.d; |
| 596 | } |
| 597 | |
| 598 | // This function should be as fast as possible and rounding mode should not matter. |
| 599 | static _ALWAYS_INLINE_ int fast_ftoi(float a) { |
| 600 | // Assuming every supported compiler has `lrint()`. |
| 601 | return lrintf(a); |
| 602 | } |
| 603 | |
| 604 | static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) { |
| 605 | uint16_t h_exp, h_sig; |
| 606 | uint32_t f_sgn, f_exp, f_sig; |
| 607 | |
| 608 | h_exp = (h & 0x7c00u); |
| 609 | f_sgn = ((uint32_t)h & 0x8000u) << 16; |
| 610 | switch (h_exp) { |
| 611 | case 0x0000u: /* 0 or subnormal */ |
| 612 | h_sig = (h & 0x03ffu); |
| 613 | /* Signed zero */ |
| 614 | if (h_sig == 0) { |
| 615 | return f_sgn; |
| 616 | } |
| 617 | /* Subnormal */ |
| 618 | h_sig <<= 1; |
| 619 | while ((h_sig & 0x0400u) == 0) { |
| 620 | h_sig <<= 1; |
| 621 | h_exp++; |
| 622 | } |
| 623 | f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23; |
| 624 | f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13; |
| 625 | return f_sgn + f_exp + f_sig; |
| 626 | case 0x7c00u: /* inf or NaN */ |
| 627 | /* All-ones exponent and a copy of the significand */ |
| 628 | return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13); |
| 629 | default: /* normalized */ |
| 630 | /* Just need to adjust the exponent and shift */ |
| 631 | return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13); |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) { |
| 636 | union { |
| 637 | uint32_t u32; |
| 638 | float f32; |
| 639 | } u; |
| 640 | |
| 641 | u.u32 = halfbits_to_floatbits(*h); |
| 642 | return u.f32; |
| 643 | } |
| 644 | |
| 645 | static _ALWAYS_INLINE_ float half_to_float(const uint16_t h) { |
| 646 | return halfptr_to_float(&h); |
| 647 | } |
| 648 | |
| 649 | static _ALWAYS_INLINE_ uint16_t make_half_float(float f) { |
| 650 | union { |
| 651 | float fv; |
| 652 | uint32_t ui; |
| 653 | } ci; |
| 654 | ci.fv = f; |
| 655 | |
| 656 | uint32_t x = ci.ui; |
| 657 | uint32_t sign = (unsigned short)(x >> 31); |
| 658 | uint32_t mantissa; |
| 659 | uint32_t exponent; |
| 660 | uint16_t hf; |
| 661 | |
| 662 | // get mantissa |
| 663 | mantissa = x & ((1 << 23) - 1); |
| 664 | // get exponent bits |
| 665 | exponent = x & (0xFF << 23); |
| 666 | if (exponent >= 0x47800000) { |
| 667 | // check if the original single precision float number is a NaN |
| 668 | if (mantissa && (exponent == (0xFF << 23))) { |
| 669 | // we have a single precision NaN |
| 670 | mantissa = (1 << 23) - 1; |
| 671 | } else { |
| 672 | // 16-bit half-float representation stores number as Inf |
| 673 | mantissa = 0; |
| 674 | } |
| 675 | hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) | |
| 676 | (uint16_t)(mantissa >> 13); |
| 677 | } |
| 678 | // check if exponent is <= -15 |
| 679 | else if (exponent <= 0x38000000) { |
| 680 | /* |
| 681 | // store a denorm half-float value or zero |
| 682 | exponent = (0x38000000 - exponent) >> 23; |
| 683 | mantissa >>= (14 + exponent); |
| 684 | |
| 685 | hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa); |
| 686 | */ |
| 687 | hf = 0; //denormals do not work for 3D, convert to zero |
| 688 | } else { |
| 689 | hf = (((uint16_t)sign) << 15) | |
| 690 | (uint16_t)((exponent - 0x38000000) >> 13) | |
| 691 | (uint16_t)(mantissa >> 13); |
| 692 | } |
| 693 | |
| 694 | return hf; |
| 695 | } |
| 696 | |
| 697 | static _ALWAYS_INLINE_ float snap_scalar(float p_offset, float p_step, float p_target) { |
| 698 | return p_step != 0 ? Math::snapped(p_target - p_offset, p_step) + p_offset : p_target; |
| 699 | } |
| 700 | |
| 701 | static _ALWAYS_INLINE_ float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) { |
| 702 | if (p_step != 0) { |
| 703 | float a = Math::snapped(p_target - p_offset, p_step + p_separation) + p_offset; |
| 704 | float b = a; |
| 705 | if (p_target >= 0) { |
| 706 | b -= p_separation; |
| 707 | } else { |
| 708 | b += p_step; |
| 709 | } |
| 710 | return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b; |
| 711 | } |
| 712 | return p_target; |
| 713 | } |
| 714 | }; |
| 715 | |
| 716 | #endif // MATH_FUNCS_H |
| 717 | |