| 1 | /**************************************************************************/ |
| 2 | /* audio_filter_sw.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "audio_filter_sw.h" |
| 32 | |
| 33 | void AudioFilterSW::set_mode(Mode p_mode) { |
| 34 | mode = p_mode; |
| 35 | } |
| 36 | |
| 37 | void AudioFilterSW::set_cutoff(float p_cutoff) { |
| 38 | cutoff = p_cutoff; |
| 39 | } |
| 40 | |
| 41 | void AudioFilterSW::set_resonance(float p_resonance) { |
| 42 | resonance = p_resonance; |
| 43 | } |
| 44 | |
| 45 | void AudioFilterSW::set_gain(float p_gain) { |
| 46 | gain = p_gain; |
| 47 | } |
| 48 | |
| 49 | void AudioFilterSW::set_sampling_rate(float p_srate) { |
| 50 | sampling_rate = p_srate; |
| 51 | } |
| 52 | |
| 53 | void AudioFilterSW::prepare_coefficients(Coeffs *p_coeffs) { |
| 54 | int sr_limit = (sampling_rate / 2) + 512; |
| 55 | |
| 56 | double final_cutoff = (cutoff > sr_limit) ? sr_limit : cutoff; |
| 57 | if (final_cutoff < 1) { |
| 58 | final_cutoff = 1; //don't allow less than this |
| 59 | } |
| 60 | |
| 61 | double omega = Math_TAU * final_cutoff / sampling_rate; |
| 62 | |
| 63 | double sin_v = Math::sin(omega); |
| 64 | double cos_v = Math::cos(omega); |
| 65 | |
| 66 | double Q = resonance; |
| 67 | if (Q <= 0.0) { |
| 68 | Q = 0.0001; |
| 69 | } |
| 70 | |
| 71 | if (mode == BANDPASS) { |
| 72 | Q *= 2.0; |
| 73 | } else if (mode == PEAK) { |
| 74 | Q *= 3.0; |
| 75 | } |
| 76 | |
| 77 | double tmpgain = gain; |
| 78 | |
| 79 | if (tmpgain < 0.001) { |
| 80 | tmpgain = 0.001; |
| 81 | } |
| 82 | |
| 83 | if (stages > 1) { |
| 84 | Q = (Q > 1.0 ? Math::pow(Q, 1.0 / stages) : Q); |
| 85 | tmpgain = Math::pow(tmpgain, 1.0 / (stages + 1)); |
| 86 | } |
| 87 | double alpha = sin_v / (2 * Q); |
| 88 | |
| 89 | double a0 = 1.0 + alpha; |
| 90 | |
| 91 | switch (mode) { |
| 92 | case LOWPASS: { |
| 93 | p_coeffs->b0 = (1.0 - cos_v) / 2.0; |
| 94 | p_coeffs->b1 = 1.0 - cos_v; |
| 95 | p_coeffs->b2 = (1.0 - cos_v) / 2.0; |
| 96 | p_coeffs->a1 = -2.0 * cos_v; |
| 97 | p_coeffs->a2 = 1.0 - alpha; |
| 98 | } break; |
| 99 | |
| 100 | case HIGHPASS: { |
| 101 | p_coeffs->b0 = (1.0 + cos_v) / 2.0; |
| 102 | p_coeffs->b1 = -(1.0 + cos_v); |
| 103 | p_coeffs->b2 = (1.0 + cos_v) / 2.0; |
| 104 | p_coeffs->a1 = -2.0 * cos_v; |
| 105 | p_coeffs->a2 = 1.0 - alpha; |
| 106 | } break; |
| 107 | |
| 108 | case BANDPASS: { |
| 109 | p_coeffs->b0 = alpha * sqrt(Q + 1); |
| 110 | p_coeffs->b1 = 0.0; |
| 111 | p_coeffs->b2 = -alpha * sqrt(Q + 1); |
| 112 | p_coeffs->a1 = -2.0 * cos_v; |
| 113 | p_coeffs->a2 = 1.0 - alpha; |
| 114 | } break; |
| 115 | |
| 116 | case NOTCH: { |
| 117 | p_coeffs->b0 = 1.0; |
| 118 | p_coeffs->b1 = -2.0 * cos_v; |
| 119 | p_coeffs->b2 = 1.0; |
| 120 | p_coeffs->a1 = -2.0 * cos_v; |
| 121 | p_coeffs->a2 = 1.0 - alpha; |
| 122 | } break; |
| 123 | case PEAK: { |
| 124 | p_coeffs->b0 = (1.0 + alpha * tmpgain); |
| 125 | p_coeffs->b1 = (-2.0 * cos_v); |
| 126 | p_coeffs->b2 = (1.0 - alpha * tmpgain); |
| 127 | p_coeffs->a1 = -2 * cos_v; |
| 128 | p_coeffs->a2 = (1 - alpha / tmpgain); |
| 129 | } break; |
| 130 | case BANDLIMIT: { |
| 131 | //this one is extra tricky |
| 132 | double hicutoff = resonance; |
| 133 | double centercutoff = (cutoff + resonance) / 2.0; |
| 134 | double bandwidth = (Math::log(centercutoff) - Math::log(hicutoff)) / Math::log((double)2); |
| 135 | omega = Math_TAU * centercutoff / sampling_rate; |
| 136 | alpha = Math::sin(omega) * Math::sinh(Math::log((double)2) / 2 * bandwidth * omega / Math::sin(omega)); |
| 137 | a0 = 1 + alpha; |
| 138 | |
| 139 | p_coeffs->b0 = alpha; |
| 140 | p_coeffs->b1 = 0; |
| 141 | p_coeffs->b2 = -alpha; |
| 142 | p_coeffs->a1 = -2 * Math::cos(omega); |
| 143 | p_coeffs->a2 = 1 - alpha; |
| 144 | |
| 145 | } break; |
| 146 | case LOWSHELF: { |
| 147 | double tmpq = Math::sqrt(Q); |
| 148 | if (tmpq <= 0) { |
| 149 | tmpq = 0.001; |
| 150 | } |
| 151 | double beta = Math::sqrt(tmpgain) / tmpq; |
| 152 | |
| 153 | a0 = (tmpgain + 1.0) + (tmpgain - 1.0) * cos_v + beta * sin_v; |
| 154 | p_coeffs->b0 = tmpgain * ((tmpgain + 1.0) - (tmpgain - 1.0) * cos_v + beta * sin_v); |
| 155 | p_coeffs->b1 = 2.0 * tmpgain * ((tmpgain - 1.0) - (tmpgain + 1.0) * cos_v); |
| 156 | p_coeffs->b2 = tmpgain * ((tmpgain + 1.0) - (tmpgain - 1.0) * cos_v - beta * sin_v); |
| 157 | p_coeffs->a1 = -2.0 * ((tmpgain - 1.0) + (tmpgain + 1.0) * cos_v); |
| 158 | p_coeffs->a2 = ((tmpgain + 1.0) + (tmpgain - 1.0) * cos_v - beta * sin_v); |
| 159 | |
| 160 | } break; |
| 161 | case HIGHSHELF: { |
| 162 | double tmpq = Math::sqrt(Q); |
| 163 | if (tmpq <= 0) { |
| 164 | tmpq = 0.001; |
| 165 | } |
| 166 | double beta = Math::sqrt(tmpgain) / tmpq; |
| 167 | |
| 168 | a0 = (tmpgain + 1.0) - (tmpgain - 1.0) * cos_v + beta * sin_v; |
| 169 | p_coeffs->b0 = tmpgain * ((tmpgain + 1.0) + (tmpgain - 1.0) * cos_v + beta * sin_v); |
| 170 | p_coeffs->b1 = -2.0 * tmpgain * ((tmpgain - 1.0) + (tmpgain + 1.0) * cos_v); |
| 171 | p_coeffs->b2 = tmpgain * ((tmpgain + 1.0) + (tmpgain - 1.0) * cos_v - beta * sin_v); |
| 172 | p_coeffs->a1 = 2.0 * ((tmpgain - 1.0) - (tmpgain + 1.0) * cos_v); |
| 173 | p_coeffs->a2 = ((tmpgain + 1.0) - (tmpgain - 1.0) * cos_v - beta * sin_v); |
| 174 | |
| 175 | } break; |
| 176 | } |
| 177 | |
| 178 | p_coeffs->b0 /= a0; |
| 179 | p_coeffs->b1 /= a0; |
| 180 | p_coeffs->b2 /= a0; |
| 181 | p_coeffs->a1 /= 0.0 - a0; |
| 182 | p_coeffs->a2 /= 0.0 - a0; |
| 183 | } |
| 184 | |
| 185 | void AudioFilterSW::set_stages(int p_stages) { |
| 186 | stages = p_stages; |
| 187 | } |
| 188 | |
| 189 | /* Fourier transform kernel to obtain response */ |
| 190 | |
| 191 | float AudioFilterSW::get_response(float p_freq, Coeffs *p_coeffs) { |
| 192 | float freq = p_freq / sampling_rate * Math_TAU; |
| 193 | |
| 194 | float cx = p_coeffs->b0, cy = 0.0; |
| 195 | |
| 196 | cx += cos(freq) * p_coeffs->b1; |
| 197 | cy -= sin(freq) * p_coeffs->b1; |
| 198 | cx += cos(2 * freq) * p_coeffs->b2; |
| 199 | cy -= sin(2 * freq) * p_coeffs->b2; |
| 200 | |
| 201 | float H = cx * cx + cy * cy; |
| 202 | cx = 1.0; |
| 203 | cy = 0.0; |
| 204 | |
| 205 | cx -= cos(freq) * p_coeffs->a1; |
| 206 | cy += sin(freq) * p_coeffs->a1; |
| 207 | cx -= cos(2 * freq) * p_coeffs->a2; |
| 208 | cy += sin(2 * freq) * p_coeffs->a2; |
| 209 | |
| 210 | H = H / (cx * cx + cy * cy); |
| 211 | return H; |
| 212 | } |
| 213 | |
| 214 | AudioFilterSW::Processor::Processor() { |
| 215 | set_filter(nullptr); |
| 216 | } |
| 217 | |
| 218 | void AudioFilterSW::Processor::set_filter(AudioFilterSW *p_filter, bool p_clear_history) { |
| 219 | if (p_clear_history) { |
| 220 | ha1 = ha2 = hb1 = hb2 = 0; |
| 221 | } |
| 222 | filter = p_filter; |
| 223 | } |
| 224 | |
| 225 | void AudioFilterSW::Processor::update_coeffs(int p_interp_buffer_len) { |
| 226 | if (!filter) { |
| 227 | return; |
| 228 | } |
| 229 | |
| 230 | if (p_interp_buffer_len) { //interpolate |
| 231 | Coeffs old_coeffs = coeffs; |
| 232 | filter->prepare_coefficients(&coeffs); |
| 233 | incr_coeffs.a1 = (coeffs.a1 - old_coeffs.a1) / p_interp_buffer_len; |
| 234 | incr_coeffs.a2 = (coeffs.a2 - old_coeffs.a2) / p_interp_buffer_len; |
| 235 | incr_coeffs.b0 = (coeffs.b0 - old_coeffs.b0) / p_interp_buffer_len; |
| 236 | incr_coeffs.b1 = (coeffs.b1 - old_coeffs.b1) / p_interp_buffer_len; |
| 237 | incr_coeffs.b2 = (coeffs.b2 - old_coeffs.b2) / p_interp_buffer_len; |
| 238 | coeffs = old_coeffs; |
| 239 | } else { |
| 240 | filter->prepare_coefficients(&coeffs); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | void AudioFilterSW::Processor::process(float *p_samples, int p_amount, int p_stride, bool p_interpolate) { |
| 245 | if (!filter) { |
| 246 | return; |
| 247 | } |
| 248 | |
| 249 | if (p_interpolate) { |
| 250 | for (int i = 0; i < p_amount; i++) { |
| 251 | process_one_interp(*p_samples); |
| 252 | p_samples += p_stride; |
| 253 | } |
| 254 | } else { |
| 255 | for (int i = 0; i < p_amount; i++) { |
| 256 | process_one(*p_samples); |
| 257 | p_samples += p_stride; |
| 258 | } |
| 259 | } |
| 260 | } |
| 261 | |