| 1 | // SPDX-License-Identifier: Apache-2.0 |
| 2 | // ---------------------------------------------------------------------------- |
| 3 | // Copyright 2011-2023 Arm Limited |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| 6 | // use this file except in compliance with the License. You may obtain a copy |
| 7 | // of the License at: |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, software |
| 12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 14 | // License for the specific language governing permissions and limitations |
| 15 | // under the License. |
| 16 | // ---------------------------------------------------------------------------- |
| 17 | |
| 18 | /** |
| 19 | * @brief Functions for finding dominant direction of a set of colors. |
| 20 | */ |
| 21 | #if !defined(ASTCENC_DECOMPRESS_ONLY) |
| 22 | |
| 23 | #include "astcenc_internal.h" |
| 24 | |
| 25 | #include <cassert> |
| 26 | |
| 27 | /** |
| 28 | * @brief Compute the average RGB color of each partition. |
| 29 | * |
| 30 | * The algorithm here uses a vectorized sequential scan and per-partition |
| 31 | * color accumulators, using select() to mask texel lanes in other partitions. |
| 32 | * |
| 33 | * We only accumulate sums for N-1 partitions during the scan; the value for |
| 34 | * the last partition can be computed given that we know the block-wide average |
| 35 | * already. |
| 36 | * |
| 37 | * Because of this we could reduce the loop iteration count so it "just" spans |
| 38 | * the max texel index needed for the N-1 partitions, which could need fewer |
| 39 | * iterations than the full block texel count. However, this makes the loop |
| 40 | * count erratic and causes more branch mispredictions so is a net loss. |
| 41 | * |
| 42 | * @param pi The partitioning to use. |
| 43 | * @param blk The block data to process. |
| 44 | * @param[out] averages The output averages. Unused partition indices will |
| 45 | * not be initialized, and lane<3> will be zero. |
| 46 | */ |
| 47 | static void compute_partition_averages_rgb( |
| 48 | const partition_info& pi, |
| 49 | const image_block& blk, |
| 50 | vfloat4 averages[BLOCK_MAX_PARTITIONS] |
| 51 | ) { |
| 52 | unsigned int partition_count = pi.partition_count; |
| 53 | unsigned int texel_count = blk.texel_count; |
| 54 | promise(texel_count > 0); |
| 55 | |
| 56 | // For 1 partition just use the precomputed mean |
| 57 | if (partition_count == 1) |
| 58 | { |
| 59 | averages[0] = blk.data_mean.swz<0, 1, 2>(); |
| 60 | } |
| 61 | // For 2 partitions scan results for partition 0, compute partition 1 |
| 62 | else if (partition_count == 2) |
| 63 | { |
| 64 | vfloatacc pp_avg_rgb[3] {}; |
| 65 | |
| 66 | vint lane_id = vint::lane_id(); |
| 67 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 68 | { |
| 69 | vint texel_partition(pi.partition_of_texel + i); |
| 70 | |
| 71 | vmask lane_mask = lane_id < vint(texel_count); |
| 72 | lane_id += vint(ASTCENC_SIMD_WIDTH); |
| 73 | |
| 74 | vmask p0_mask = lane_mask & (texel_partition == vint(0)); |
| 75 | |
| 76 | vfloat data_r = loada(blk.data_r + i); |
| 77 | haccumulate(pp_avg_rgb[0], data_r, p0_mask); |
| 78 | |
| 79 | vfloat data_g = loada(blk.data_g + i); |
| 80 | haccumulate(pp_avg_rgb[1], data_g, p0_mask); |
| 81 | |
| 82 | vfloat data_b = loada(blk.data_b + i); |
| 83 | haccumulate(pp_avg_rgb[2], data_b, p0_mask); |
| 84 | } |
| 85 | |
| 86 | vfloat4 block_total = blk.data_mean.swz<0, 1, 2>() * static_cast<float>(blk.texel_count); |
| 87 | |
| 88 | vfloat4 p0_total = vfloat3(hadd_s(pp_avg_rgb[0]), |
| 89 | hadd_s(pp_avg_rgb[1]), |
| 90 | hadd_s(pp_avg_rgb[2])); |
| 91 | |
| 92 | vfloat4 p1_total = block_total - p0_total; |
| 93 | |
| 94 | averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); |
| 95 | averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); |
| 96 | } |
| 97 | // For 3 partitions scan results for partition 0/1, compute partition 2 |
| 98 | else if (partition_count == 3) |
| 99 | { |
| 100 | vfloatacc pp_avg_rgb[2][3] {}; |
| 101 | |
| 102 | vint lane_id = vint::lane_id(); |
| 103 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 104 | { |
| 105 | vint texel_partition(pi.partition_of_texel + i); |
| 106 | |
| 107 | vmask lane_mask = lane_id < vint(texel_count); |
| 108 | lane_id += vint(ASTCENC_SIMD_WIDTH); |
| 109 | |
| 110 | vmask p0_mask = lane_mask & (texel_partition == vint(0)); |
| 111 | vmask p1_mask = lane_mask & (texel_partition == vint(1)); |
| 112 | |
| 113 | vfloat data_r = loada(blk.data_r + i); |
| 114 | haccumulate(pp_avg_rgb[0][0], data_r, p0_mask); |
| 115 | haccumulate(pp_avg_rgb[1][0], data_r, p1_mask); |
| 116 | |
| 117 | vfloat data_g = loada(blk.data_g + i); |
| 118 | haccumulate(pp_avg_rgb[0][1], data_g, p0_mask); |
| 119 | haccumulate(pp_avg_rgb[1][1], data_g, p1_mask); |
| 120 | |
| 121 | vfloat data_b = loada(blk.data_b + i); |
| 122 | haccumulate(pp_avg_rgb[0][2], data_b, p0_mask); |
| 123 | haccumulate(pp_avg_rgb[1][2], data_b, p1_mask); |
| 124 | } |
| 125 | |
| 126 | vfloat4 block_total = blk.data_mean.swz<0, 1, 2>() * static_cast<float>(blk.texel_count); |
| 127 | |
| 128 | vfloat4 p0_total = vfloat3(hadd_s(pp_avg_rgb[0][0]), |
| 129 | hadd_s(pp_avg_rgb[0][1]), |
| 130 | hadd_s(pp_avg_rgb[0][2])); |
| 131 | |
| 132 | vfloat4 p1_total = vfloat3(hadd_s(pp_avg_rgb[1][0]), |
| 133 | hadd_s(pp_avg_rgb[1][1]), |
| 134 | hadd_s(pp_avg_rgb[1][2])); |
| 135 | |
| 136 | vfloat4 p2_total = block_total - p0_total - p1_total; |
| 137 | |
| 138 | averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); |
| 139 | averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); |
| 140 | averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); |
| 141 | } |
| 142 | else |
| 143 | { |
| 144 | // For 4 partitions scan results for partition 0/1/2, compute partition 3 |
| 145 | vfloatacc pp_avg_rgb[3][3] {}; |
| 146 | |
| 147 | vint lane_id = vint::lane_id(); |
| 148 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 149 | { |
| 150 | vint texel_partition(pi.partition_of_texel + i); |
| 151 | |
| 152 | vmask lane_mask = lane_id < vint(texel_count); |
| 153 | lane_id += vint(ASTCENC_SIMD_WIDTH); |
| 154 | |
| 155 | vmask p0_mask = lane_mask & (texel_partition == vint(0)); |
| 156 | vmask p1_mask = lane_mask & (texel_partition == vint(1)); |
| 157 | vmask p2_mask = lane_mask & (texel_partition == vint(2)); |
| 158 | |
| 159 | vfloat data_r = loada(blk.data_r + i); |
| 160 | haccumulate(pp_avg_rgb[0][0], data_r, p0_mask); |
| 161 | haccumulate(pp_avg_rgb[1][0], data_r, p1_mask); |
| 162 | haccumulate(pp_avg_rgb[2][0], data_r, p2_mask); |
| 163 | |
| 164 | vfloat data_g = loada(blk.data_g + i); |
| 165 | haccumulate(pp_avg_rgb[0][1], data_g, p0_mask); |
| 166 | haccumulate(pp_avg_rgb[1][1], data_g, p1_mask); |
| 167 | haccumulate(pp_avg_rgb[2][1], data_g, p2_mask); |
| 168 | |
| 169 | vfloat data_b = loada(blk.data_b + i); |
| 170 | haccumulate(pp_avg_rgb[0][2], data_b, p0_mask); |
| 171 | haccumulate(pp_avg_rgb[1][2], data_b, p1_mask); |
| 172 | haccumulate(pp_avg_rgb[2][2], data_b, p2_mask); |
| 173 | } |
| 174 | |
| 175 | vfloat4 block_total = blk.data_mean.swz<0, 1, 2>() * static_cast<float>(blk.texel_count); |
| 176 | |
| 177 | vfloat4 p0_total = vfloat3(hadd_s(pp_avg_rgb[0][0]), |
| 178 | hadd_s(pp_avg_rgb[0][1]), |
| 179 | hadd_s(pp_avg_rgb[0][2])); |
| 180 | |
| 181 | vfloat4 p1_total = vfloat3(hadd_s(pp_avg_rgb[1][0]), |
| 182 | hadd_s(pp_avg_rgb[1][1]), |
| 183 | hadd_s(pp_avg_rgb[1][2])); |
| 184 | |
| 185 | vfloat4 p2_total = vfloat3(hadd_s(pp_avg_rgb[2][0]), |
| 186 | hadd_s(pp_avg_rgb[2][1]), |
| 187 | hadd_s(pp_avg_rgb[2][2])); |
| 188 | |
| 189 | vfloat4 p3_total = block_total - p0_total - p1_total- p2_total; |
| 190 | |
| 191 | averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); |
| 192 | averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); |
| 193 | averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); |
| 194 | averages[3] = p3_total / static_cast<float>(pi.partition_texel_count[3]); |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | /** |
| 199 | * @brief Compute the average RGBA color of each partition. |
| 200 | * |
| 201 | * The algorithm here uses a vectorized sequential scan and per-partition |
| 202 | * color accumulators, using select() to mask texel lanes in other partitions. |
| 203 | * |
| 204 | * We only accumulate sums for N-1 partitions during the scan; the value for |
| 205 | * the last partition can be computed given that we know the block-wide average |
| 206 | * already. |
| 207 | * |
| 208 | * Because of this we could reduce the loop iteration count so it "just" spans |
| 209 | * the max texel index needed for the N-1 partitions, which could need fewer |
| 210 | * iterations than the full block texel count. However, this makes the loop |
| 211 | * count erratic and causes more branch mispredictions so is a net loss. |
| 212 | * |
| 213 | * @param pi The partitioning to use. |
| 214 | * @param blk The block data to process. |
| 215 | * @param[out] averages The output averages. Unused partition indices will |
| 216 | * not be initialized. |
| 217 | */ |
| 218 | static void compute_partition_averages_rgba( |
| 219 | const partition_info& pi, |
| 220 | const image_block& blk, |
| 221 | vfloat4 averages[BLOCK_MAX_PARTITIONS] |
| 222 | ) { |
| 223 | unsigned int partition_count = pi.partition_count; |
| 224 | unsigned int texel_count = blk.texel_count; |
| 225 | promise(texel_count > 0); |
| 226 | |
| 227 | // For 1 partition just use the precomputed mean |
| 228 | if (partition_count == 1) |
| 229 | { |
| 230 | averages[0] = blk.data_mean; |
| 231 | } |
| 232 | // For 2 partitions scan results for partition 0, compute partition 1 |
| 233 | else if (partition_count == 2) |
| 234 | { |
| 235 | vfloat4 pp_avg_rgba[4] {}; |
| 236 | |
| 237 | vint lane_id = vint::lane_id(); |
| 238 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 239 | { |
| 240 | vint texel_partition(pi.partition_of_texel + i); |
| 241 | |
| 242 | vmask lane_mask = lane_id < vint(texel_count); |
| 243 | lane_id += vint(ASTCENC_SIMD_WIDTH); |
| 244 | |
| 245 | vmask p0_mask = lane_mask & (texel_partition == vint(0)); |
| 246 | |
| 247 | vfloat data_r = loada(blk.data_r + i); |
| 248 | haccumulate(pp_avg_rgba[0], data_r, p0_mask); |
| 249 | |
| 250 | vfloat data_g = loada(blk.data_g + i); |
| 251 | haccumulate(pp_avg_rgba[1], data_g, p0_mask); |
| 252 | |
| 253 | vfloat data_b = loada(blk.data_b + i); |
| 254 | haccumulate(pp_avg_rgba[2], data_b, p0_mask); |
| 255 | |
| 256 | vfloat data_a = loada(blk.data_a + i); |
| 257 | haccumulate(pp_avg_rgba[3], data_a, p0_mask); |
| 258 | } |
| 259 | |
| 260 | vfloat4 block_total = blk.data_mean * static_cast<float>(blk.texel_count); |
| 261 | |
| 262 | vfloat4 p0_total = vfloat4(hadd_s(pp_avg_rgba[0]), |
| 263 | hadd_s(pp_avg_rgba[1]), |
| 264 | hadd_s(pp_avg_rgba[2]), |
| 265 | hadd_s(pp_avg_rgba[3])); |
| 266 | |
| 267 | vfloat4 p1_total = block_total - p0_total; |
| 268 | |
| 269 | averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); |
| 270 | averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); |
| 271 | } |
| 272 | // For 3 partitions scan results for partition 0/1, compute partition 2 |
| 273 | else if (partition_count == 3) |
| 274 | { |
| 275 | vfloat4 pp_avg_rgba[2][4] {}; |
| 276 | |
| 277 | vint lane_id = vint::lane_id(); |
| 278 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 279 | { |
| 280 | vint texel_partition(pi.partition_of_texel + i); |
| 281 | |
| 282 | vmask lane_mask = lane_id < vint(texel_count); |
| 283 | lane_id += vint(ASTCENC_SIMD_WIDTH); |
| 284 | |
| 285 | vmask p0_mask = lane_mask & (texel_partition == vint(0)); |
| 286 | vmask p1_mask = lane_mask & (texel_partition == vint(1)); |
| 287 | |
| 288 | vfloat data_r = loada(blk.data_r + i); |
| 289 | haccumulate(pp_avg_rgba[0][0], data_r, p0_mask); |
| 290 | haccumulate(pp_avg_rgba[1][0], data_r, p1_mask); |
| 291 | |
| 292 | vfloat data_g = loada(blk.data_g + i); |
| 293 | haccumulate(pp_avg_rgba[0][1], data_g, p0_mask); |
| 294 | haccumulate(pp_avg_rgba[1][1], data_g, p1_mask); |
| 295 | |
| 296 | vfloat data_b = loada(blk.data_b + i); |
| 297 | haccumulate(pp_avg_rgba[0][2], data_b, p0_mask); |
| 298 | haccumulate(pp_avg_rgba[1][2], data_b, p1_mask); |
| 299 | |
| 300 | vfloat data_a = loada(blk.data_a + i); |
| 301 | haccumulate(pp_avg_rgba[0][3], data_a, p0_mask); |
| 302 | haccumulate(pp_avg_rgba[1][3], data_a, p1_mask); |
| 303 | } |
| 304 | |
| 305 | vfloat4 block_total = blk.data_mean * static_cast<float>(blk.texel_count); |
| 306 | |
| 307 | vfloat4 p0_total = vfloat4(hadd_s(pp_avg_rgba[0][0]), |
| 308 | hadd_s(pp_avg_rgba[0][1]), |
| 309 | hadd_s(pp_avg_rgba[0][2]), |
| 310 | hadd_s(pp_avg_rgba[0][3])); |
| 311 | |
| 312 | vfloat4 p1_total = vfloat4(hadd_s(pp_avg_rgba[1][0]), |
| 313 | hadd_s(pp_avg_rgba[1][1]), |
| 314 | hadd_s(pp_avg_rgba[1][2]), |
| 315 | hadd_s(pp_avg_rgba[1][3])); |
| 316 | |
| 317 | vfloat4 p2_total = block_total - p0_total - p1_total; |
| 318 | |
| 319 | averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); |
| 320 | averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); |
| 321 | averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); |
| 322 | } |
| 323 | else |
| 324 | { |
| 325 | // For 4 partitions scan results for partition 0/1/2, compute partition 3 |
| 326 | vfloat4 pp_avg_rgba[3][4] {}; |
| 327 | |
| 328 | vint lane_id = vint::lane_id(); |
| 329 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 330 | { |
| 331 | vint texel_partition(pi.partition_of_texel + i); |
| 332 | |
| 333 | vmask lane_mask = lane_id < vint(texel_count); |
| 334 | lane_id += vint(ASTCENC_SIMD_WIDTH); |
| 335 | |
| 336 | vmask p0_mask = lane_mask & (texel_partition == vint(0)); |
| 337 | vmask p1_mask = lane_mask & (texel_partition == vint(1)); |
| 338 | vmask p2_mask = lane_mask & (texel_partition == vint(2)); |
| 339 | |
| 340 | vfloat data_r = loada(blk.data_r + i); |
| 341 | haccumulate(pp_avg_rgba[0][0], data_r, p0_mask); |
| 342 | haccumulate(pp_avg_rgba[1][0], data_r, p1_mask); |
| 343 | haccumulate(pp_avg_rgba[2][0], data_r, p2_mask); |
| 344 | |
| 345 | vfloat data_g = loada(blk.data_g + i); |
| 346 | haccumulate(pp_avg_rgba[0][1], data_g, p0_mask); |
| 347 | haccumulate(pp_avg_rgba[1][1], data_g, p1_mask); |
| 348 | haccumulate(pp_avg_rgba[2][1], data_g, p2_mask); |
| 349 | |
| 350 | vfloat data_b = loada(blk.data_b + i); |
| 351 | haccumulate(pp_avg_rgba[0][2], data_b, p0_mask); |
| 352 | haccumulate(pp_avg_rgba[1][2], data_b, p1_mask); |
| 353 | haccumulate(pp_avg_rgba[2][2], data_b, p2_mask); |
| 354 | |
| 355 | vfloat data_a = loada(blk.data_a + i); |
| 356 | haccumulate(pp_avg_rgba[0][3], data_a, p0_mask); |
| 357 | haccumulate(pp_avg_rgba[1][3], data_a, p1_mask); |
| 358 | haccumulate(pp_avg_rgba[2][3], data_a, p2_mask); |
| 359 | } |
| 360 | |
| 361 | vfloat4 block_total = blk.data_mean * static_cast<float>(blk.texel_count); |
| 362 | |
| 363 | vfloat4 p0_total = vfloat4(hadd_s(pp_avg_rgba[0][0]), |
| 364 | hadd_s(pp_avg_rgba[0][1]), |
| 365 | hadd_s(pp_avg_rgba[0][2]), |
| 366 | hadd_s(pp_avg_rgba[0][3])); |
| 367 | |
| 368 | vfloat4 p1_total = vfloat4(hadd_s(pp_avg_rgba[1][0]), |
| 369 | hadd_s(pp_avg_rgba[1][1]), |
| 370 | hadd_s(pp_avg_rgba[1][2]), |
| 371 | hadd_s(pp_avg_rgba[1][3])); |
| 372 | |
| 373 | vfloat4 p2_total = vfloat4(hadd_s(pp_avg_rgba[2][0]), |
| 374 | hadd_s(pp_avg_rgba[2][1]), |
| 375 | hadd_s(pp_avg_rgba[2][2]), |
| 376 | hadd_s(pp_avg_rgba[2][3])); |
| 377 | |
| 378 | vfloat4 p3_total = block_total - p0_total - p1_total- p2_total; |
| 379 | |
| 380 | averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); |
| 381 | averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); |
| 382 | averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); |
| 383 | averages[3] = p3_total / static_cast<float>(pi.partition_texel_count[3]); |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | /* See header for documentation. */ |
| 388 | void compute_avgs_and_dirs_4_comp( |
| 389 | const partition_info& pi, |
| 390 | const image_block& blk, |
| 391 | partition_metrics pm[BLOCK_MAX_PARTITIONS] |
| 392 | ) { |
| 393 | int partition_count = pi.partition_count; |
| 394 | promise(partition_count > 0); |
| 395 | |
| 396 | // Pre-compute partition_averages |
| 397 | vfloat4 partition_averages[BLOCK_MAX_PARTITIONS]; |
| 398 | compute_partition_averages_rgba(pi, blk, partition_averages); |
| 399 | |
| 400 | for (int partition = 0; partition < partition_count; partition++) |
| 401 | { |
| 402 | const uint8_t *texel_indexes = pi.texels_of_partition[partition]; |
| 403 | unsigned int texel_count = pi.partition_texel_count[partition]; |
| 404 | promise(texel_count > 0); |
| 405 | |
| 406 | vfloat4 average = partition_averages[partition]; |
| 407 | pm[partition].avg = average; |
| 408 | |
| 409 | vfloat4 sum_xp = vfloat4::zero(); |
| 410 | vfloat4 sum_yp = vfloat4::zero(); |
| 411 | vfloat4 sum_zp = vfloat4::zero(); |
| 412 | vfloat4 sum_wp = vfloat4::zero(); |
| 413 | |
| 414 | for (unsigned int i = 0; i < texel_count; i++) |
| 415 | { |
| 416 | unsigned int iwt = texel_indexes[i]; |
| 417 | vfloat4 texel_datum = blk.texel(iwt); |
| 418 | texel_datum = texel_datum - average; |
| 419 | |
| 420 | vfloat4 zero = vfloat4::zero(); |
| 421 | |
| 422 | vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; |
| 423 | sum_xp += select(zero, texel_datum, tdm0); |
| 424 | |
| 425 | vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; |
| 426 | sum_yp += select(zero, texel_datum, tdm1); |
| 427 | |
| 428 | vmask4 tdm2 = texel_datum.swz<2,2,2,2>() > zero; |
| 429 | sum_zp += select(zero, texel_datum, tdm2); |
| 430 | |
| 431 | vmask4 tdm3 = texel_datum.swz<3,3,3,3>() > zero; |
| 432 | sum_wp += select(zero, texel_datum, tdm3); |
| 433 | } |
| 434 | |
| 435 | vfloat4 prod_xp = dot(sum_xp, sum_xp); |
| 436 | vfloat4 prod_yp = dot(sum_yp, sum_yp); |
| 437 | vfloat4 prod_zp = dot(sum_zp, sum_zp); |
| 438 | vfloat4 prod_wp = dot(sum_wp, sum_wp); |
| 439 | |
| 440 | vfloat4 best_vector = sum_xp; |
| 441 | vfloat4 best_sum = prod_xp; |
| 442 | |
| 443 | vmask4 mask = prod_yp > best_sum; |
| 444 | best_vector = select(best_vector, sum_yp, mask); |
| 445 | best_sum = select(best_sum, prod_yp, mask); |
| 446 | |
| 447 | mask = prod_zp > best_sum; |
| 448 | best_vector = select(best_vector, sum_zp, mask); |
| 449 | best_sum = select(best_sum, prod_zp, mask); |
| 450 | |
| 451 | mask = prod_wp > best_sum; |
| 452 | best_vector = select(best_vector, sum_wp, mask); |
| 453 | |
| 454 | pm[partition].dir = best_vector; |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | /* See header for documentation. */ |
| 459 | void compute_avgs_and_dirs_3_comp( |
| 460 | const partition_info& pi, |
| 461 | const image_block& blk, |
| 462 | unsigned int omitted_component, |
| 463 | partition_metrics pm[BLOCK_MAX_PARTITIONS] |
| 464 | ) { |
| 465 | // Pre-compute partition_averages |
| 466 | vfloat4 partition_averages[BLOCK_MAX_PARTITIONS]; |
| 467 | compute_partition_averages_rgba(pi, blk, partition_averages); |
| 468 | |
| 469 | const float* data_vr = blk.data_r; |
| 470 | const float* data_vg = blk.data_g; |
| 471 | const float* data_vb = blk.data_b; |
| 472 | |
| 473 | // TODO: Data-driven permute would be useful to avoid this ... |
| 474 | if (omitted_component == 0) |
| 475 | { |
| 476 | partition_averages[0] = partition_averages[0].swz<1, 2, 3>(); |
| 477 | partition_averages[1] = partition_averages[1].swz<1, 2, 3>(); |
| 478 | partition_averages[2] = partition_averages[2].swz<1, 2, 3>(); |
| 479 | partition_averages[3] = partition_averages[3].swz<1, 2, 3>(); |
| 480 | |
| 481 | data_vr = blk.data_g; |
| 482 | data_vg = blk.data_b; |
| 483 | data_vb = blk.data_a; |
| 484 | } |
| 485 | else if (omitted_component == 1) |
| 486 | { |
| 487 | partition_averages[0] = partition_averages[0].swz<0, 2, 3>(); |
| 488 | partition_averages[1] = partition_averages[1].swz<0, 2, 3>(); |
| 489 | partition_averages[2] = partition_averages[2].swz<0, 2, 3>(); |
| 490 | partition_averages[3] = partition_averages[3].swz<0, 2, 3>(); |
| 491 | |
| 492 | data_vg = blk.data_b; |
| 493 | data_vb = blk.data_a; |
| 494 | } |
| 495 | else if (omitted_component == 2) |
| 496 | { |
| 497 | partition_averages[0] = partition_averages[0].swz<0, 1, 3>(); |
| 498 | partition_averages[1] = partition_averages[1].swz<0, 1, 3>(); |
| 499 | partition_averages[2] = partition_averages[2].swz<0, 1, 3>(); |
| 500 | partition_averages[3] = partition_averages[3].swz<0, 1, 3>(); |
| 501 | |
| 502 | data_vb = blk.data_a; |
| 503 | } |
| 504 | else |
| 505 | { |
| 506 | partition_averages[0] = partition_averages[0].swz<0, 1, 2>(); |
| 507 | partition_averages[1] = partition_averages[1].swz<0, 1, 2>(); |
| 508 | partition_averages[2] = partition_averages[2].swz<0, 1, 2>(); |
| 509 | partition_averages[3] = partition_averages[3].swz<0, 1, 2>(); |
| 510 | } |
| 511 | |
| 512 | unsigned int partition_count = pi.partition_count; |
| 513 | promise(partition_count > 0); |
| 514 | |
| 515 | for (unsigned int partition = 0; partition < partition_count; partition++) |
| 516 | { |
| 517 | const uint8_t *texel_indexes = pi.texels_of_partition[partition]; |
| 518 | unsigned int texel_count = pi.partition_texel_count[partition]; |
| 519 | promise(texel_count > 0); |
| 520 | |
| 521 | vfloat4 average = partition_averages[partition]; |
| 522 | pm[partition].avg = average; |
| 523 | |
| 524 | vfloat4 sum_xp = vfloat4::zero(); |
| 525 | vfloat4 sum_yp = vfloat4::zero(); |
| 526 | vfloat4 sum_zp = vfloat4::zero(); |
| 527 | |
| 528 | for (unsigned int i = 0; i < texel_count; i++) |
| 529 | { |
| 530 | unsigned int iwt = texel_indexes[i]; |
| 531 | |
| 532 | vfloat4 texel_datum = vfloat3(data_vr[iwt], |
| 533 | data_vg[iwt], |
| 534 | data_vb[iwt]); |
| 535 | texel_datum = texel_datum - average; |
| 536 | |
| 537 | vfloat4 zero = vfloat4::zero(); |
| 538 | |
| 539 | vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; |
| 540 | sum_xp += select(zero, texel_datum, tdm0); |
| 541 | |
| 542 | vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; |
| 543 | sum_yp += select(zero, texel_datum, tdm1); |
| 544 | |
| 545 | vmask4 tdm2 = texel_datum.swz<2,2,2,2>() > zero; |
| 546 | sum_zp += select(zero, texel_datum, tdm2); |
| 547 | } |
| 548 | |
| 549 | vfloat4 prod_xp = dot(sum_xp, sum_xp); |
| 550 | vfloat4 prod_yp = dot(sum_yp, sum_yp); |
| 551 | vfloat4 prod_zp = dot(sum_zp, sum_zp); |
| 552 | |
| 553 | vfloat4 best_vector = sum_xp; |
| 554 | vfloat4 best_sum = prod_xp; |
| 555 | |
| 556 | vmask4 mask = prod_yp > best_sum; |
| 557 | best_vector = select(best_vector, sum_yp, mask); |
| 558 | best_sum = select(best_sum, prod_yp, mask); |
| 559 | |
| 560 | mask = prod_zp > best_sum; |
| 561 | best_vector = select(best_vector, sum_zp, mask); |
| 562 | |
| 563 | pm[partition].dir = best_vector; |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | /* See header for documentation. */ |
| 568 | void compute_avgs_and_dirs_3_comp_rgb( |
| 569 | const partition_info& pi, |
| 570 | const image_block& blk, |
| 571 | partition_metrics pm[BLOCK_MAX_PARTITIONS] |
| 572 | ) { |
| 573 | unsigned int partition_count = pi.partition_count; |
| 574 | promise(partition_count > 0); |
| 575 | |
| 576 | // Pre-compute partition_averages |
| 577 | vfloat4 partition_averages[BLOCK_MAX_PARTITIONS]; |
| 578 | compute_partition_averages_rgb(pi, blk, partition_averages); |
| 579 | |
| 580 | for (unsigned int partition = 0; partition < partition_count; partition++) |
| 581 | { |
| 582 | const uint8_t *texel_indexes = pi.texels_of_partition[partition]; |
| 583 | unsigned int texel_count = pi.partition_texel_count[partition]; |
| 584 | promise(texel_count > 0); |
| 585 | |
| 586 | vfloat4 average = partition_averages[partition]; |
| 587 | pm[partition].avg = average; |
| 588 | |
| 589 | vfloat4 sum_xp = vfloat4::zero(); |
| 590 | vfloat4 sum_yp = vfloat4::zero(); |
| 591 | vfloat4 sum_zp = vfloat4::zero(); |
| 592 | |
| 593 | for (unsigned int i = 0; i < texel_count; i++) |
| 594 | { |
| 595 | unsigned int iwt = texel_indexes[i]; |
| 596 | |
| 597 | vfloat4 texel_datum = blk.texel3(iwt); |
| 598 | texel_datum = texel_datum - average; |
| 599 | |
| 600 | vfloat4 zero = vfloat4::zero(); |
| 601 | |
| 602 | vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; |
| 603 | sum_xp += select(zero, texel_datum, tdm0); |
| 604 | |
| 605 | vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; |
| 606 | sum_yp += select(zero, texel_datum, tdm1); |
| 607 | |
| 608 | vmask4 tdm2 = texel_datum.swz<2,2,2,2>() > zero; |
| 609 | sum_zp += select(zero, texel_datum, tdm2); |
| 610 | } |
| 611 | |
| 612 | vfloat4 prod_xp = dot(sum_xp, sum_xp); |
| 613 | vfloat4 prod_yp = dot(sum_yp, sum_yp); |
| 614 | vfloat4 prod_zp = dot(sum_zp, sum_zp); |
| 615 | |
| 616 | vfloat4 best_vector = sum_xp; |
| 617 | vfloat4 best_sum = prod_xp; |
| 618 | |
| 619 | vmask4 mask = prod_yp > best_sum; |
| 620 | best_vector = select(best_vector, sum_yp, mask); |
| 621 | best_sum = select(best_sum, prod_yp, mask); |
| 622 | |
| 623 | mask = prod_zp > best_sum; |
| 624 | best_vector = select(best_vector, sum_zp, mask); |
| 625 | |
| 626 | pm[partition].dir = best_vector; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | /* See header for documentation. */ |
| 631 | void compute_avgs_and_dirs_2_comp( |
| 632 | const partition_info& pt, |
| 633 | const image_block& blk, |
| 634 | unsigned int component1, |
| 635 | unsigned int component2, |
| 636 | partition_metrics pm[BLOCK_MAX_PARTITIONS] |
| 637 | ) { |
| 638 | vfloat4 average; |
| 639 | |
| 640 | const float* data_vr = nullptr; |
| 641 | const float* data_vg = nullptr; |
| 642 | |
| 643 | if (component1 == 0 && component2 == 1) |
| 644 | { |
| 645 | average = blk.data_mean.swz<0, 1>(); |
| 646 | |
| 647 | data_vr = blk.data_r; |
| 648 | data_vg = blk.data_g; |
| 649 | } |
| 650 | else if (component1 == 0 && component2 == 2) |
| 651 | { |
| 652 | average = blk.data_mean.swz<0, 2>(); |
| 653 | |
| 654 | data_vr = blk.data_r; |
| 655 | data_vg = blk.data_b; |
| 656 | } |
| 657 | else // (component1 == 1 && component2 == 2) |
| 658 | { |
| 659 | assert(component1 == 1 && component2 == 2); |
| 660 | |
| 661 | average = blk.data_mean.swz<1, 2>(); |
| 662 | |
| 663 | data_vr = blk.data_g; |
| 664 | data_vg = blk.data_b; |
| 665 | } |
| 666 | |
| 667 | unsigned int partition_count = pt.partition_count; |
| 668 | promise(partition_count > 0); |
| 669 | |
| 670 | for (unsigned int partition = 0; partition < partition_count; partition++) |
| 671 | { |
| 672 | const uint8_t *texel_indexes = pt.texels_of_partition[partition]; |
| 673 | unsigned int texel_count = pt.partition_texel_count[partition]; |
| 674 | promise(texel_count > 0); |
| 675 | |
| 676 | // Only compute a partition mean if more than one partition |
| 677 | if (partition_count > 1) |
| 678 | { |
| 679 | average = vfloat4::zero(); |
| 680 | for (unsigned int i = 0; i < texel_count; i++) |
| 681 | { |
| 682 | unsigned int iwt = texel_indexes[i]; |
| 683 | average += vfloat2(data_vr[iwt], data_vg[iwt]); |
| 684 | } |
| 685 | |
| 686 | average = average / static_cast<float>(texel_count); |
| 687 | } |
| 688 | |
| 689 | pm[partition].avg = average; |
| 690 | |
| 691 | vfloat4 sum_xp = vfloat4::zero(); |
| 692 | vfloat4 sum_yp = vfloat4::zero(); |
| 693 | |
| 694 | for (unsigned int i = 0; i < texel_count; i++) |
| 695 | { |
| 696 | unsigned int iwt = texel_indexes[i]; |
| 697 | vfloat4 texel_datum = vfloat2(data_vr[iwt], data_vg[iwt]); |
| 698 | texel_datum = texel_datum - average; |
| 699 | |
| 700 | vfloat4 zero = vfloat4::zero(); |
| 701 | |
| 702 | vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; |
| 703 | sum_xp += select(zero, texel_datum, tdm0); |
| 704 | |
| 705 | vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; |
| 706 | sum_yp += select(zero, texel_datum, tdm1); |
| 707 | } |
| 708 | |
| 709 | vfloat4 prod_xp = dot(sum_xp, sum_xp); |
| 710 | vfloat4 prod_yp = dot(sum_yp, sum_yp); |
| 711 | |
| 712 | vfloat4 best_vector = sum_xp; |
| 713 | vfloat4 best_sum = prod_xp; |
| 714 | |
| 715 | vmask4 mask = prod_yp > best_sum; |
| 716 | best_vector = select(best_vector, sum_yp, mask); |
| 717 | |
| 718 | pm[partition].dir = best_vector; |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | /* See header for documentation. */ |
| 723 | void compute_error_squared_rgba( |
| 724 | const partition_info& pi, |
| 725 | const image_block& blk, |
| 726 | const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS], |
| 727 | const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS], |
| 728 | float line_lengths[BLOCK_MAX_PARTITIONS], |
| 729 | float& uncor_error, |
| 730 | float& samec_error |
| 731 | ) { |
| 732 | unsigned int partition_count = pi.partition_count; |
| 733 | promise(partition_count > 0); |
| 734 | |
| 735 | vfloatacc uncor_errorsumv = vfloatacc::zero(); |
| 736 | vfloatacc samec_errorsumv = vfloatacc::zero(); |
| 737 | |
| 738 | for (unsigned int partition = 0; partition < partition_count; partition++) |
| 739 | { |
| 740 | const uint8_t *texel_indexes = pi.texels_of_partition[partition]; |
| 741 | |
| 742 | processed_line4 l_uncor = uncor_plines[partition]; |
| 743 | processed_line4 l_samec = samec_plines[partition]; |
| 744 | |
| 745 | unsigned int texel_count = pi.partition_texel_count[partition]; |
| 746 | promise(texel_count > 0); |
| 747 | |
| 748 | // Vectorize some useful scalar inputs |
| 749 | vfloat l_uncor_bs0(l_uncor.bs.lane<0>()); |
| 750 | vfloat l_uncor_bs1(l_uncor.bs.lane<1>()); |
| 751 | vfloat l_uncor_bs2(l_uncor.bs.lane<2>()); |
| 752 | vfloat l_uncor_bs3(l_uncor.bs.lane<3>()); |
| 753 | |
| 754 | vfloat l_uncor_amod0(l_uncor.amod.lane<0>()); |
| 755 | vfloat l_uncor_amod1(l_uncor.amod.lane<1>()); |
| 756 | vfloat l_uncor_amod2(l_uncor.amod.lane<2>()); |
| 757 | vfloat l_uncor_amod3(l_uncor.amod.lane<3>()); |
| 758 | |
| 759 | vfloat l_samec_bs0(l_samec.bs.lane<0>()); |
| 760 | vfloat l_samec_bs1(l_samec.bs.lane<1>()); |
| 761 | vfloat l_samec_bs2(l_samec.bs.lane<2>()); |
| 762 | vfloat l_samec_bs3(l_samec.bs.lane<3>()); |
| 763 | |
| 764 | assert(all(l_samec.amod == vfloat4(0.0f))); |
| 765 | |
| 766 | vfloat uncor_loparamv(1e10f); |
| 767 | vfloat uncor_hiparamv(-1e10f); |
| 768 | |
| 769 | vfloat ew_r(blk.channel_weight.lane<0>()); |
| 770 | vfloat ew_g(blk.channel_weight.lane<1>()); |
| 771 | vfloat ew_b(blk.channel_weight.lane<2>()); |
| 772 | vfloat ew_a(blk.channel_weight.lane<3>()); |
| 773 | |
| 774 | // This implementation over-shoots, but this is safe as we initialize the texel_indexes |
| 775 | // array to extend the last value. This means min/max are not impacted, but we need to mask |
| 776 | // out the dummy values when we compute the line weighting. |
| 777 | vint lane_ids = vint::lane_id(); |
| 778 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 779 | { |
| 780 | vmask mask = lane_ids < vint(texel_count); |
| 781 | vint texel_idxs(texel_indexes + i); |
| 782 | |
| 783 | vfloat data_r = gatherf(blk.data_r, texel_idxs); |
| 784 | vfloat data_g = gatherf(blk.data_g, texel_idxs); |
| 785 | vfloat data_b = gatherf(blk.data_b, texel_idxs); |
| 786 | vfloat data_a = gatherf(blk.data_a, texel_idxs); |
| 787 | |
| 788 | vfloat uncor_param = (data_r * l_uncor_bs0) |
| 789 | + (data_g * l_uncor_bs1) |
| 790 | + (data_b * l_uncor_bs2) |
| 791 | + (data_a * l_uncor_bs3); |
| 792 | |
| 793 | uncor_loparamv = min(uncor_param, uncor_loparamv); |
| 794 | uncor_hiparamv = max(uncor_param, uncor_hiparamv); |
| 795 | |
| 796 | vfloat uncor_dist0 = (l_uncor_amod0 - data_r) |
| 797 | + (uncor_param * l_uncor_bs0); |
| 798 | vfloat uncor_dist1 = (l_uncor_amod1 - data_g) |
| 799 | + (uncor_param * l_uncor_bs1); |
| 800 | vfloat uncor_dist2 = (l_uncor_amod2 - data_b) |
| 801 | + (uncor_param * l_uncor_bs2); |
| 802 | vfloat uncor_dist3 = (l_uncor_amod3 - data_a) |
| 803 | + (uncor_param * l_uncor_bs3); |
| 804 | |
| 805 | vfloat uncor_err = (ew_r * uncor_dist0 * uncor_dist0) |
| 806 | + (ew_g * uncor_dist1 * uncor_dist1) |
| 807 | + (ew_b * uncor_dist2 * uncor_dist2) |
| 808 | + (ew_a * uncor_dist3 * uncor_dist3); |
| 809 | |
| 810 | haccumulate(uncor_errorsumv, uncor_err, mask); |
| 811 | |
| 812 | // Process samechroma data |
| 813 | vfloat samec_param = (data_r * l_samec_bs0) |
| 814 | + (data_g * l_samec_bs1) |
| 815 | + (data_b * l_samec_bs2) |
| 816 | + (data_a * l_samec_bs3); |
| 817 | |
| 818 | vfloat samec_dist0 = samec_param * l_samec_bs0 - data_r; |
| 819 | vfloat samec_dist1 = samec_param * l_samec_bs1 - data_g; |
| 820 | vfloat samec_dist2 = samec_param * l_samec_bs2 - data_b; |
| 821 | vfloat samec_dist3 = samec_param * l_samec_bs3 - data_a; |
| 822 | |
| 823 | vfloat samec_err = (ew_r * samec_dist0 * samec_dist0) |
| 824 | + (ew_g * samec_dist1 * samec_dist1) |
| 825 | + (ew_b * samec_dist2 * samec_dist2) |
| 826 | + (ew_a * samec_dist3 * samec_dist3); |
| 827 | |
| 828 | haccumulate(samec_errorsumv, samec_err, mask); |
| 829 | |
| 830 | lane_ids += vint(ASTCENC_SIMD_WIDTH); |
| 831 | } |
| 832 | |
| 833 | // Turn very small numbers and NaNs into a small number |
| 834 | float uncor_linelen = hmax_s(uncor_hiparamv) - hmin_s(uncor_loparamv); |
| 835 | line_lengths[partition] = astc::max(uncor_linelen, 1e-7f); |
| 836 | } |
| 837 | |
| 838 | uncor_error = hadd_s(uncor_errorsumv); |
| 839 | samec_error = hadd_s(samec_errorsumv); |
| 840 | } |
| 841 | |
| 842 | /* See header for documentation. */ |
| 843 | void compute_error_squared_rgb( |
| 844 | const partition_info& pi, |
| 845 | const image_block& blk, |
| 846 | partition_lines3 plines[BLOCK_MAX_PARTITIONS], |
| 847 | float& uncor_error, |
| 848 | float& samec_error |
| 849 | ) { |
| 850 | unsigned int partition_count = pi.partition_count; |
| 851 | promise(partition_count > 0); |
| 852 | |
| 853 | vfloatacc uncor_errorsumv = vfloatacc::zero(); |
| 854 | vfloatacc samec_errorsumv = vfloatacc::zero(); |
| 855 | |
| 856 | for (unsigned int partition = 0; partition < partition_count; partition++) |
| 857 | { |
| 858 | partition_lines3& pl = plines[partition]; |
| 859 | const uint8_t *texel_indexes = pi.texels_of_partition[partition]; |
| 860 | unsigned int texel_count = pi.partition_texel_count[partition]; |
| 861 | promise(texel_count > 0); |
| 862 | |
| 863 | processed_line3 l_uncor = pl.uncor_pline; |
| 864 | processed_line3 l_samec = pl.samec_pline; |
| 865 | |
| 866 | // Vectorize some useful scalar inputs |
| 867 | vfloat l_uncor_bs0(l_uncor.bs.lane<0>()); |
| 868 | vfloat l_uncor_bs1(l_uncor.bs.lane<1>()); |
| 869 | vfloat l_uncor_bs2(l_uncor.bs.lane<2>()); |
| 870 | |
| 871 | vfloat l_uncor_amod0(l_uncor.amod.lane<0>()); |
| 872 | vfloat l_uncor_amod1(l_uncor.amod.lane<1>()); |
| 873 | vfloat l_uncor_amod2(l_uncor.amod.lane<2>()); |
| 874 | |
| 875 | vfloat l_samec_bs0(l_samec.bs.lane<0>()); |
| 876 | vfloat l_samec_bs1(l_samec.bs.lane<1>()); |
| 877 | vfloat l_samec_bs2(l_samec.bs.lane<2>()); |
| 878 | |
| 879 | assert(all(l_samec.amod == vfloat4(0.0f))); |
| 880 | |
| 881 | vfloat uncor_loparamv(1e10f); |
| 882 | vfloat uncor_hiparamv(-1e10f); |
| 883 | |
| 884 | vfloat ew_r(blk.channel_weight.lane<0>()); |
| 885 | vfloat ew_g(blk.channel_weight.lane<1>()); |
| 886 | vfloat ew_b(blk.channel_weight.lane<2>()); |
| 887 | |
| 888 | // This implementation over-shoots, but this is safe as we initialize the weights array |
| 889 | // to extend the last value. This means min/max are not impacted, but we need to mask |
| 890 | // out the dummy values when we compute the line weighting. |
| 891 | vint lane_ids = vint::lane_id(); |
| 892 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 893 | { |
| 894 | vmask mask = lane_ids < vint(texel_count); |
| 895 | vint texel_idxs(texel_indexes + i); |
| 896 | |
| 897 | vfloat data_r = gatherf(blk.data_r, texel_idxs); |
| 898 | vfloat data_g = gatherf(blk.data_g, texel_idxs); |
| 899 | vfloat data_b = gatherf(blk.data_b, texel_idxs); |
| 900 | |
| 901 | vfloat uncor_param = (data_r * l_uncor_bs0) |
| 902 | + (data_g * l_uncor_bs1) |
| 903 | + (data_b * l_uncor_bs2); |
| 904 | |
| 905 | uncor_loparamv = min(uncor_param, uncor_loparamv); |
| 906 | uncor_hiparamv = max(uncor_param, uncor_hiparamv); |
| 907 | |
| 908 | vfloat uncor_dist0 = (l_uncor_amod0 - data_r) |
| 909 | + (uncor_param * l_uncor_bs0); |
| 910 | vfloat uncor_dist1 = (l_uncor_amod1 - data_g) |
| 911 | + (uncor_param * l_uncor_bs1); |
| 912 | vfloat uncor_dist2 = (l_uncor_amod2 - data_b) |
| 913 | + (uncor_param * l_uncor_bs2); |
| 914 | |
| 915 | vfloat uncor_err = (ew_r * uncor_dist0 * uncor_dist0) |
| 916 | + (ew_g * uncor_dist1 * uncor_dist1) |
| 917 | + (ew_b * uncor_dist2 * uncor_dist2); |
| 918 | |
| 919 | haccumulate(uncor_errorsumv, uncor_err, mask); |
| 920 | |
| 921 | // Process samechroma data |
| 922 | vfloat samec_param = (data_r * l_samec_bs0) |
| 923 | + (data_g * l_samec_bs1) |
| 924 | + (data_b * l_samec_bs2); |
| 925 | |
| 926 | vfloat samec_dist0 = samec_param * l_samec_bs0 - data_r; |
| 927 | vfloat samec_dist1 = samec_param * l_samec_bs1 - data_g; |
| 928 | vfloat samec_dist2 = samec_param * l_samec_bs2 - data_b; |
| 929 | |
| 930 | vfloat samec_err = (ew_r * samec_dist0 * samec_dist0) |
| 931 | + (ew_g * samec_dist1 * samec_dist1) |
| 932 | + (ew_b * samec_dist2 * samec_dist2); |
| 933 | |
| 934 | haccumulate(samec_errorsumv, samec_err, mask); |
| 935 | |
| 936 | lane_ids += vint(ASTCENC_SIMD_WIDTH); |
| 937 | } |
| 938 | |
| 939 | // Turn very small numbers and NaNs into a small number |
| 940 | float uncor_linelen = hmax_s(uncor_hiparamv) - hmin_s(uncor_loparamv); |
| 941 | pl.line_length = astc::max(uncor_linelen, 1e-7f); |
| 942 | } |
| 943 | |
| 944 | uncor_error = hadd_s(uncor_errorsumv); |
| 945 | samec_error = hadd_s(samec_errorsumv); |
| 946 | } |
| 947 | |
| 948 | #endif |
| 949 | |