1 | // SPDX-License-Identifier: Apache-2.0 |
2 | // ---------------------------------------------------------------------------- |
3 | // Copyright 2019-2022 Arm Limited |
4 | // Copyright 2008 Jose Fonseca |
5 | // |
6 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
7 | // use this file except in compliance with the License. You may obtain a copy |
8 | // of the License at: |
9 | // |
10 | // http://www.apache.org/licenses/LICENSE-2.0 |
11 | // |
12 | // Unless required by applicable law or agreed to in writing, software |
13 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
14 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
15 | // License for the specific language governing permissions and limitations |
16 | // under the License. |
17 | // ---------------------------------------------------------------------------- |
18 | |
19 | /* |
20 | * This module implements vector support for floats, ints, and vector lane |
21 | * control masks. It provides access to both explicit vector width types, and |
22 | * flexible N-wide types where N can be determined at compile time. |
23 | * |
24 | * The design of this module encourages use of vector length agnostic code, via |
25 | * the vint, vfloat, and vmask types. These will take on the widest SIMD vector |
26 | * with that is available at compile time. The current vector width is |
27 | * accessible for e.g. loop strides via the ASTCENC_SIMD_WIDTH constant. |
28 | * |
29 | * Explicit scalar types are accessible via the vint1, vfloat1, vmask1 types. |
30 | * These are provided primarily for prototyping and algorithm debug of VLA |
31 | * implementations. |
32 | * |
33 | * Explicit 4-wide types are accessible via the vint4, vfloat4, and vmask4 |
34 | * types. These are provided for use by VLA code, but are also expected to be |
35 | * used as a fixed-width type and will supported a reference C++ fallback for |
36 | * use on platforms without SIMD intrinsics. |
37 | * |
38 | * Explicit 8-wide types are accessible via the vint8, vfloat8, and vmask8 |
39 | * types. These are provide for use by VLA code, and are not expected to be |
40 | * used as a fixed-width type in normal code. No reference C implementation is |
41 | * provided on platforms without underlying SIMD intrinsics. |
42 | * |
43 | * With the current implementation ISA support is provided for: |
44 | * |
45 | * * 1-wide for scalar reference. |
46 | * * 4-wide for Armv8-A NEON. |
47 | * * 4-wide for x86-64 SSE2. |
48 | * * 4-wide for x86-64 SSE4.1. |
49 | * * 8-wide for x86-64 AVX2. |
50 | */ |
51 | |
52 | #ifndef ASTC_VECMATHLIB_H_INCLUDED |
53 | #define ASTC_VECMATHLIB_H_INCLUDED |
54 | |
55 | #if ASTCENC_SSE != 0 || ASTCENC_AVX != 0 |
56 | #include <immintrin.h> |
57 | #elif ASTCENC_NEON != 0 |
58 | #include <arm_neon.h> |
59 | #endif |
60 | |
61 | #if !defined(__clang__) && defined(_MSC_VER) |
62 | #define ASTCENC_SIMD_INLINE __forceinline |
63 | #define ASTCENC_NO_INLINE |
64 | #elif defined(__GNUC__) && !defined(__clang__) |
65 | #define ASTCENC_SIMD_INLINE __attribute__((always_inline)) inline |
66 | #define ASTCENC_NO_INLINE __attribute__ ((noinline)) |
67 | #else |
68 | #define ASTCENC_SIMD_INLINE __attribute__((always_inline, nodebug)) inline |
69 | #define ASTCENC_NO_INLINE __attribute__ ((noinline)) |
70 | #endif |
71 | |
72 | #if ASTCENC_AVX >= 2 |
73 | /* If we have AVX2 expose 8-wide VLA. */ |
74 | #include "astcenc_vecmathlib_sse_4.h" |
75 | #include "astcenc_vecmathlib_common_4.h" |
76 | #include "astcenc_vecmathlib_avx2_8.h" |
77 | |
78 | #define ASTCENC_SIMD_WIDTH 8 |
79 | |
80 | using vfloat = vfloat8; |
81 | |
82 | #if defined(ASTCENC_NO_INVARIANCE) |
83 | using vfloatacc = vfloat8; |
84 | #else |
85 | using vfloatacc = vfloat4; |
86 | #endif |
87 | |
88 | using vint = vint8; |
89 | using vmask = vmask8; |
90 | |
91 | constexpr auto loada = vfloat8::loada; |
92 | constexpr auto load1 = vfloat8::load1; |
93 | |
94 | #elif ASTCENC_SSE >= 20 |
95 | /* If we have SSE expose 4-wide VLA, and 4-wide fixed width. */ |
96 | #include "astcenc_vecmathlib_sse_4.h" |
97 | #include "astcenc_vecmathlib_common_4.h" |
98 | |
99 | #define ASTCENC_SIMD_WIDTH 4 |
100 | |
101 | using vfloat = vfloat4; |
102 | using vfloatacc = vfloat4; |
103 | using vint = vint4; |
104 | using vmask = vmask4; |
105 | |
106 | constexpr auto loada = vfloat4::loada; |
107 | constexpr auto load1 = vfloat4::load1; |
108 | |
109 | #elif ASTCENC_NEON > 0 |
110 | /* If we have NEON expose 4-wide VLA. */ |
111 | #include "astcenc_vecmathlib_neon_4.h" |
112 | #include "astcenc_vecmathlib_common_4.h" |
113 | |
114 | #define ASTCENC_SIMD_WIDTH 4 |
115 | |
116 | using vfloat = vfloat4; |
117 | using vfloatacc = vfloat4; |
118 | using vint = vint4; |
119 | using vmask = vmask4; |
120 | |
121 | constexpr auto loada = vfloat4::loada; |
122 | constexpr auto load1 = vfloat4::load1; |
123 | |
124 | #else |
125 | // If we have nothing expose 4-wide VLA, and 4-wide fixed width. |
126 | |
127 | // Note: We no longer expose the 1-wide scalar fallback because it is not |
128 | // invariant with the 4-wide path due to algorithms that use horizontal |
129 | // operations that accumulate a local vector sum before accumulating into |
130 | // a running sum. |
131 | // |
132 | // For 4 items adding into an accumulator using 1-wide vectors the sum is: |
133 | // |
134 | // result = ((((sum + l0) + l1) + l2) + l3) |
135 | // |
136 | // ... whereas the accumulator for a 4-wide vector sum is: |
137 | // |
138 | // result = sum + ((l0 + l2) + (l1 + l3)) |
139 | // |
140 | // In "normal maths" this is the same, but the floating point reassociation |
141 | // differences mean that these will not produce the same result. |
142 | |
143 | #include "astcenc_vecmathlib_none_4.h" |
144 | #include "astcenc_vecmathlib_common_4.h" |
145 | |
146 | #define ASTCENC_SIMD_WIDTH 4 |
147 | |
148 | using vfloat = vfloat4; |
149 | using vfloatacc = vfloat4; |
150 | using vint = vint4; |
151 | using vmask = vmask4; |
152 | |
153 | constexpr auto loada = vfloat4::loada; |
154 | constexpr auto load1 = vfloat4::load1; |
155 | #endif |
156 | |
157 | /** |
158 | * @brief Round a count down to the largest multiple of 8. |
159 | * |
160 | * @param count The unrounded value. |
161 | * |
162 | * @return The rounded value. |
163 | */ |
164 | ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_8(unsigned int count) |
165 | { |
166 | return count & static_cast<unsigned int>(~(8 - 1)); |
167 | } |
168 | |
169 | /** |
170 | * @brief Round a count down to the largest multiple of 4. |
171 | * |
172 | * @param count The unrounded value. |
173 | * |
174 | * @return The rounded value. |
175 | */ |
176 | ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_4(unsigned int count) |
177 | { |
178 | return count & static_cast<unsigned int>(~(4 - 1)); |
179 | } |
180 | |
181 | /** |
182 | * @brief Round a count down to the largest multiple of the SIMD width. |
183 | * |
184 | * Assumption that the vector width is a power of two ... |
185 | * |
186 | * @param count The unrounded value. |
187 | * |
188 | * @return The rounded value. |
189 | */ |
190 | ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_vla(unsigned int count) |
191 | { |
192 | return count & static_cast<unsigned int>(~(ASTCENC_SIMD_WIDTH - 1)); |
193 | } |
194 | |
195 | /** |
196 | * @brief Round a count up to the largest multiple of the SIMD width. |
197 | * |
198 | * Assumption that the vector width is a power of two ... |
199 | * |
200 | * @param count The unrounded value. |
201 | * |
202 | * @return The rounded value. |
203 | */ |
204 | ASTCENC_SIMD_INLINE unsigned int round_up_to_simd_multiple_vla(unsigned int count) |
205 | { |
206 | unsigned int multiples = (count + ASTCENC_SIMD_WIDTH - 1) / ASTCENC_SIMD_WIDTH; |
207 | return multiples * ASTCENC_SIMD_WIDTH; |
208 | } |
209 | |
210 | /** |
211 | * @brief Return @c a with lanes negated if the @c b lane is negative. |
212 | */ |
213 | ASTCENC_SIMD_INLINE vfloat change_sign(vfloat a, vfloat b) |
214 | { |
215 | vint ia = float_as_int(a); |
216 | vint ib = float_as_int(b); |
217 | vint sign_mask(static_cast<int>(0x80000000)); |
218 | vint r = ia ^ (ib & sign_mask); |
219 | return int_as_float(r); |
220 | } |
221 | |
222 | /** |
223 | * @brief Return fast, but approximate, vector atan(x). |
224 | * |
225 | * Max error of this implementation is 0.004883. |
226 | */ |
227 | ASTCENC_SIMD_INLINE vfloat atan(vfloat x) |
228 | { |
229 | vmask c = abs(x) > vfloat(1.0f); |
230 | vfloat z = change_sign(vfloat(astc::PI_OVER_TWO), x); |
231 | vfloat y = select(x, vfloat(1.0f) / x, c); |
232 | y = y / (y * y * vfloat(0.28f) + vfloat(1.0f)); |
233 | return select(y, z - y, c); |
234 | } |
235 | |
236 | /** |
237 | * @brief Return fast, but approximate, vector atan2(x, y). |
238 | */ |
239 | ASTCENC_SIMD_INLINE vfloat atan2(vfloat y, vfloat x) |
240 | { |
241 | vfloat z = atan(abs(y / x)); |
242 | vmask xmask = vmask(float_as_int(x).m); |
243 | return change_sign(select_msb(z, vfloat(astc::PI) - z, xmask), y); |
244 | } |
245 | |
246 | /* |
247 | * @brief Factory that returns a unit length 4 component vfloat4. |
248 | */ |
249 | static ASTCENC_SIMD_INLINE vfloat4 unit4() |
250 | { |
251 | return vfloat4(0.5f); |
252 | } |
253 | |
254 | /** |
255 | * @brief Factory that returns a unit length 3 component vfloat4. |
256 | */ |
257 | static ASTCENC_SIMD_INLINE vfloat4 unit3() |
258 | { |
259 | float val = 0.577350258827209473f; |
260 | return vfloat4(val, val, val, 0.0f); |
261 | } |
262 | |
263 | /** |
264 | * @brief Factory that returns a unit length 2 component vfloat4. |
265 | */ |
266 | static ASTCENC_SIMD_INLINE vfloat4 unit2() |
267 | { |
268 | float val = 0.707106769084930420f; |
269 | return vfloat4(val, val, 0.0f, 0.0f); |
270 | } |
271 | |
272 | /** |
273 | * @brief Factory that returns a 3 component vfloat4. |
274 | */ |
275 | static ASTCENC_SIMD_INLINE vfloat4 vfloat3(float a, float b, float c) |
276 | { |
277 | return vfloat4(a, b, c, 0.0f); |
278 | } |
279 | |
280 | /** |
281 | * @brief Factory that returns a 2 component vfloat4. |
282 | */ |
283 | static ASTCENC_SIMD_INLINE vfloat4 vfloat2(float a, float b) |
284 | { |
285 | return vfloat4(a, b, 0.0f, 0.0f); |
286 | } |
287 | |
288 | /** |
289 | * @brief Normalize a non-zero length vector to unit length. |
290 | */ |
291 | static ASTCENC_SIMD_INLINE vfloat4 normalize(vfloat4 a) |
292 | { |
293 | vfloat4 length = dot(a, a); |
294 | return a / sqrt(length); |
295 | } |
296 | |
297 | /** |
298 | * @brief Normalize a vector, returning @c safe if len is zero. |
299 | */ |
300 | static ASTCENC_SIMD_INLINE vfloat4 normalize_safe(vfloat4 a, vfloat4 safe) |
301 | { |
302 | vfloat4 length = dot(a, a); |
303 | if (length.lane<0>() != 0.0f) |
304 | { |
305 | return a / sqrt(length); |
306 | } |
307 | |
308 | return safe; |
309 | } |
310 | |
311 | |
312 | |
313 | #define POLY0(x, c0) ( c0) |
314 | #define POLY1(x, c0, c1) ((POLY0(x, c1) * x) + c0) |
315 | #define POLY2(x, c0, c1, c2) ((POLY1(x, c1, c2) * x) + c0) |
316 | #define POLY3(x, c0, c1, c2, c3) ((POLY2(x, c1, c2, c3) * x) + c0) |
317 | #define POLY4(x, c0, c1, c2, c3, c4) ((POLY3(x, c1, c2, c3, c4) * x) + c0) |
318 | #define POLY5(x, c0, c1, c2, c3, c4, c5) ((POLY4(x, c1, c2, c3, c4, c5) * x) + c0) |
319 | |
320 | /** |
321 | * @brief Compute an approximate exp2(x) for each lane in the vector. |
322 | * |
323 | * Based on 5th degree minimax polynomials, ported from this blog |
324 | * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html |
325 | */ |
326 | static ASTCENC_SIMD_INLINE vfloat4 exp2(vfloat4 x) |
327 | { |
328 | x = clamp(-126.99999f, 129.0f, x); |
329 | |
330 | vint4 ipart = float_to_int(x - 0.5f); |
331 | vfloat4 fpart = x - int_to_float(ipart); |
332 | |
333 | // Integer contrib, using 1 << ipart |
334 | vfloat4 iexp = int_as_float(lsl<23>(ipart + 127)); |
335 | |
336 | // Fractional contrib, using polynomial fit of 2^x in range [-0.5, 0.5) |
337 | vfloat4 fexp = POLY5(fpart, |
338 | 9.9999994e-1f, |
339 | 6.9315308e-1f, |
340 | 2.4015361e-1f, |
341 | 5.5826318e-2f, |
342 | 8.9893397e-3f, |
343 | 1.8775767e-3f); |
344 | |
345 | return iexp * fexp; |
346 | } |
347 | |
348 | /** |
349 | * @brief Compute an approximate log2(x) for each lane in the vector. |
350 | * |
351 | * Based on 5th degree minimax polynomials, ported from this blog |
352 | * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html |
353 | */ |
354 | static ASTCENC_SIMD_INLINE vfloat4 log2(vfloat4 x) |
355 | { |
356 | vint4 exp(0x7F800000); |
357 | vint4 mant(0x007FFFFF); |
358 | vint4 one(0x3F800000); |
359 | |
360 | vint4 i = float_as_int(x); |
361 | |
362 | vfloat4 e = int_to_float(lsr<23>(i & exp) - 127); |
363 | |
364 | vfloat4 m = int_as_float((i & mant) | one); |
365 | |
366 | // Polynomial fit of log2(x)/(x - 1), for x in range [1, 2) |
367 | vfloat4 p = POLY4(m, |
368 | 2.8882704548164776201f, |
369 | -2.52074962577807006663f, |
370 | 1.48116647521213171641f, |
371 | -0.465725644288844778798f, |
372 | 0.0596515482674574969533f); |
373 | |
374 | // Increases the polynomial degree, but ensures that log2(1) == 0 |
375 | p = p * (m - 1.0f); |
376 | |
377 | return p + e; |
378 | } |
379 | |
380 | /** |
381 | * @brief Compute an approximate pow(x, y) for each lane in the vector. |
382 | * |
383 | * Power function based on the exp2(log2(x) * y) transform. |
384 | */ |
385 | static ASTCENC_SIMD_INLINE vfloat4 pow(vfloat4 x, vfloat4 y) |
386 | { |
387 | vmask4 zero_mask = y == vfloat4(0.0f); |
388 | vfloat4 estimate = exp2(log2(x) * y); |
389 | |
390 | // Guarantee that y == 0 returns exactly 1.0f |
391 | return select(estimate, vfloat4(1.0f), zero_mask); |
392 | } |
393 | |
394 | /** |
395 | * @brief Count the leading zeros for each lane in @c a. |
396 | * |
397 | * Valid for all data values of @c a; will return a per-lane value [0, 32]. |
398 | */ |
399 | static ASTCENC_SIMD_INLINE vint4 clz(vint4 a) |
400 | { |
401 | // This function is a horrible abuse of floating point exponents to convert |
402 | // the original integer value into a 2^N encoding we can recover easily. |
403 | |
404 | // Convert to float without risk of rounding up by keeping only top 8 bits. |
405 | // This trick is is guaranteed to keep top 8 bits and clear the 9th. |
406 | a = (~lsr<8>(a)) & a; |
407 | a = float_as_int(int_to_float(a)); |
408 | |
409 | // Extract and unbias exponent |
410 | a = vint4(127 + 31) - lsr<23>(a); |
411 | |
412 | // Clamp result to a valid 32-bit range |
413 | return clamp(0, 32, a); |
414 | } |
415 | |
416 | /** |
417 | * @brief Return lanewise 2^a for each lane in @c a. |
418 | * |
419 | * Use of signed int means that this is only valid for values in range [0, 31]. |
420 | */ |
421 | static ASTCENC_SIMD_INLINE vint4 two_to_the_n(vint4 a) |
422 | { |
423 | // 2^30 is the largest signed number than can be represented |
424 | assert(all(a < vint4(31))); |
425 | |
426 | // This function is a horrible abuse of floating point to use the exponent |
427 | // and float conversion to generate a 2^N multiple. |
428 | |
429 | // Bias the exponent |
430 | vint4 exp = a + 127; |
431 | exp = lsl<23>(exp); |
432 | |
433 | // Reinterpret the bits as a float, and then convert to an int |
434 | vfloat4 f = int_as_float(exp); |
435 | return float_to_int(f); |
436 | } |
437 | |
438 | /** |
439 | * @brief Convert unorm16 [0, 65535] to float16 in range [0, 1]. |
440 | */ |
441 | static ASTCENC_SIMD_INLINE vint4 unorm16_to_sf16(vint4 p) |
442 | { |
443 | vint4 fp16_one = vint4(0x3C00); |
444 | vint4 fp16_small = lsl<8>(p); |
445 | |
446 | vmask4 is_one = p == vint4(0xFFFF); |
447 | vmask4 is_small = p < vint4(4); |
448 | |
449 | // Manually inline clz() on Visual Studio to avoid release build codegen bug |
450 | // see https://github.com/ARM-software/astc-encoder/issues/259 |
451 | #if !defined(__clang__) && defined(_MSC_VER) |
452 | vint4 a = (~lsr<8>(p)) & p; |
453 | a = float_as_int(int_to_float(a)); |
454 | a = vint4(127 + 31) - lsr<23>(a); |
455 | vint4 lz = clamp(0, 32, a) - 16; |
456 | #else |
457 | vint4 lz = clz(p) - 16; |
458 | #endif |
459 | |
460 | p = p * two_to_the_n(lz + 1); |
461 | p = p & vint4(0xFFFF); |
462 | |
463 | p = lsr<6>(p); |
464 | |
465 | p = p | lsl<10>(vint4(14) - lz); |
466 | |
467 | vint4 r = select(p, fp16_one, is_one); |
468 | r = select(r, fp16_small, is_small); |
469 | return r; |
470 | } |
471 | |
472 | /** |
473 | * @brief Convert 16-bit LNS to float16. |
474 | */ |
475 | static ASTCENC_SIMD_INLINE vint4 lns_to_sf16(vint4 p) |
476 | { |
477 | vint4 mc = p & 0x7FF; |
478 | vint4 ec = lsr<11>(p); |
479 | |
480 | vint4 mc_512 = mc * 3; |
481 | vmask4 mask_512 = mc < vint4(512); |
482 | |
483 | vint4 mc_1536 = mc * 4 - 512; |
484 | vmask4 mask_1536 = mc < vint4(1536); |
485 | |
486 | vint4 mc_else = mc * 5 - 2048; |
487 | |
488 | vint4 mt = mc_else; |
489 | mt = select(mt, mc_1536, mask_1536); |
490 | mt = select(mt, mc_512, mask_512); |
491 | |
492 | vint4 res = lsl<10>(ec) | lsr<3>(mt); |
493 | return min(res, vint4(0x7BFF)); |
494 | } |
495 | |
496 | /** |
497 | * @brief Extract mantissa and exponent of a float value. |
498 | * |
499 | * @param a The input value. |
500 | * @param[out] exp The output exponent. |
501 | * |
502 | * @return The mantissa. |
503 | */ |
504 | static ASTCENC_SIMD_INLINE vfloat4 frexp(vfloat4 a, vint4& exp) |
505 | { |
506 | // Interpret the bits as an integer |
507 | vint4 ai = float_as_int(a); |
508 | |
509 | // Extract and unbias the exponent |
510 | exp = (lsr<23>(ai) & 0xFF) - 126; |
511 | |
512 | // Extract and unbias the mantissa |
513 | vint4 manti = (ai & static_cast<int>(0x807FFFFF)) | 0x3F000000; |
514 | return int_as_float(manti); |
515 | } |
516 | |
517 | /** |
518 | * @brief Convert float to 16-bit LNS. |
519 | */ |
520 | static ASTCENC_SIMD_INLINE vfloat4 float_to_lns(vfloat4 a) |
521 | { |
522 | vint4 exp; |
523 | vfloat4 mant = frexp(a, exp); |
524 | |
525 | // Do these early before we start messing about ... |
526 | vmask4 mask_underflow_nan = ~(a > vfloat4(1.0f / 67108864.0f)); |
527 | vmask4 mask_infinity = a >= vfloat4(65536.0f); |
528 | |
529 | // If input is smaller than 2^-14, multiply by 2^25 and don't bias. |
530 | vmask4 exp_lt_m13 = exp < vint4(-13); |
531 | |
532 | vfloat4 a1a = a * 33554432.0f; |
533 | vint4 expa = vint4::zero(); |
534 | |
535 | vfloat4 a1b = (mant - 0.5f) * 4096; |
536 | vint4 expb = exp + 14; |
537 | |
538 | a = select(a1b, a1a, exp_lt_m13); |
539 | exp = select(expb, expa, exp_lt_m13); |
540 | |
541 | vmask4 a_lt_384 = a < vfloat4(384.0f); |
542 | vmask4 a_lt_1408 = a <= vfloat4(1408.0f); |
543 | |
544 | vfloat4 a2a = a * (4.0f / 3.0f); |
545 | vfloat4 a2b = a + 128.0f; |
546 | vfloat4 a2c = (a + 512.0f) * (4.0f / 5.0f); |
547 | |
548 | a = a2c; |
549 | a = select(a, a2b, a_lt_1408); |
550 | a = select(a, a2a, a_lt_384); |
551 | |
552 | a = a + (int_to_float(exp) * 2048.0f) + 1.0f; |
553 | |
554 | a = select(a, vfloat4(65535.0f), mask_infinity); |
555 | a = select(a, vfloat4::zero(), mask_underflow_nan); |
556 | |
557 | return a; |
558 | } |
559 | |
560 | namespace astc |
561 | { |
562 | |
563 | static ASTCENC_SIMD_INLINE float pow(float x, float y) |
564 | { |
565 | return pow(vfloat4(x), vfloat4(y)).lane<0>(); |
566 | } |
567 | |
568 | } |
569 | |
570 | #endif // #ifndef ASTC_VECMATHLIB_H_INCLUDED |
571 | |