1 | // SPDX-License-Identifier: Apache-2.0 |
2 | // ---------------------------------------------------------------------------- |
3 | // Copyright 2011-2023 Arm Limited |
4 | // |
5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
6 | // use this file except in compliance with the License. You may obtain a copy |
7 | // of the License at: |
8 | // |
9 | // http://www.apache.org/licenses/LICENSE-2.0 |
10 | // |
11 | // Unless required by applicable law or agreed to in writing, software |
12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
14 | // License for the specific language governing permissions and limitations |
15 | // under the License. |
16 | // ---------------------------------------------------------------------------- |
17 | |
18 | #if !defined(ASTCENC_DECOMPRESS_ONLY) |
19 | |
20 | /** |
21 | * @brief Functions to compress a symbolic block. |
22 | */ |
23 | |
24 | #include "astcenc_internal.h" |
25 | #include "astcenc_diagnostic_trace.h" |
26 | |
27 | #include <cassert> |
28 | |
29 | /** |
30 | * @brief Merge two planes of endpoints into a single vector. |
31 | * |
32 | * @param ep_plane1 The endpoints for plane 1. |
33 | * @param ep_plane2 The endpoints for plane 2. |
34 | * @param component_plane2 The color component for plane 2. |
35 | * @param[out] result The merged output. |
36 | */ |
37 | static void merge_endpoints( |
38 | const endpoints& ep_plane1, |
39 | const endpoints& ep_plane2, |
40 | unsigned int component_plane2, |
41 | endpoints& result |
42 | ) { |
43 | unsigned int partition_count = ep_plane1.partition_count; |
44 | assert(partition_count == 1); |
45 | |
46 | vmask4 sep_mask = vint4::lane_id() == vint4(component_plane2); |
47 | |
48 | result.partition_count = partition_count; |
49 | result.endpt0[0] = select(ep_plane1.endpt0[0], ep_plane2.endpt0[0], sep_mask); |
50 | result.endpt1[0] = select(ep_plane1.endpt1[0], ep_plane2.endpt1[0], sep_mask); |
51 | } |
52 | |
53 | /** |
54 | * @brief Attempt to improve weights given a chosen configuration. |
55 | * |
56 | * Given a fixed weight grid decimation and weight value quantization, iterate over all weights (per |
57 | * partition and per plane) and attempt to improve image quality by moving each weight up by one or |
58 | * down by one quantization step. |
59 | * |
60 | * This is a specialized function which only supports operating on undecimated weight grids, |
61 | * therefore primarily improving the performance of 4x4 and 5x5 blocks where grid decimation |
62 | * is needed less often. |
63 | * |
64 | * @param decode_mode The decode mode (LDR, HDR). |
65 | * @param bsd The block size information. |
66 | * @param blk The image block color data to compress. |
67 | * @param[out] scb The symbolic compressed block output. |
68 | */ |
69 | static bool realign_weights_undecimated( |
70 | astcenc_profile decode_mode, |
71 | const block_size_descriptor& bsd, |
72 | const image_block& blk, |
73 | symbolic_compressed_block& scb |
74 | ) { |
75 | // Get the partition descriptor |
76 | unsigned int partition_count = scb.partition_count; |
77 | const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); |
78 | |
79 | // Get the quantization table |
80 | const block_mode& bm = bsd.get_block_mode(scb.block_mode); |
81 | unsigned int weight_quant_level = bm.quant_mode; |
82 | const quant_and_transfer_table& qat = quant_and_xfer_tables[weight_quant_level]; |
83 | |
84 | unsigned int max_plane = bm.is_dual_plane; |
85 | int plane2_component = scb.plane2_component; |
86 | vmask4 plane_mask = vint4::lane_id() == vint4(plane2_component); |
87 | |
88 | // Decode the color endpoints |
89 | bool rgb_hdr; |
90 | bool alpha_hdr; |
91 | vint4 endpnt0[BLOCK_MAX_PARTITIONS]; |
92 | vint4 endpnt1[BLOCK_MAX_PARTITIONS]; |
93 | vfloat4 endpnt0f[BLOCK_MAX_PARTITIONS]; |
94 | vfloat4 offset[BLOCK_MAX_PARTITIONS]; |
95 | |
96 | promise(partition_count > 0); |
97 | |
98 | for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) |
99 | { |
100 | unpack_color_endpoints(decode_mode, |
101 | scb.color_formats[pa_idx], |
102 | scb.color_values[pa_idx], |
103 | rgb_hdr, alpha_hdr, |
104 | endpnt0[pa_idx], |
105 | endpnt1[pa_idx]); |
106 | } |
107 | |
108 | uint8_t* dec_weights_uquant = scb.weights; |
109 | bool adjustments = false; |
110 | |
111 | // For each plane and partition ... |
112 | for (unsigned int pl_idx = 0; pl_idx <= max_plane; pl_idx++) |
113 | { |
114 | for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) |
115 | { |
116 | // Compute the endpoint delta for all components in current plane |
117 | vint4 epd = endpnt1[pa_idx] - endpnt0[pa_idx]; |
118 | epd = select(epd, vint4::zero(), plane_mask); |
119 | |
120 | endpnt0f[pa_idx] = int_to_float(endpnt0[pa_idx]); |
121 | offset[pa_idx] = int_to_float(epd) * (1.0f / 64.0f); |
122 | } |
123 | |
124 | // For each weight compute previous, current, and next errors |
125 | promise(bsd.texel_count > 0); |
126 | for (unsigned int texel = 0; texel < bsd.texel_count; texel++) |
127 | { |
128 | int uqw = dec_weights_uquant[texel]; |
129 | |
130 | uint32_t prev_and_next = qat.prev_next_values[uqw]; |
131 | int uqw_down = prev_and_next & 0xFF; |
132 | int uqw_up = (prev_and_next >> 8) & 0xFF; |
133 | |
134 | // Interpolate the colors to create the diffs |
135 | float weight_base = static_cast<float>(uqw); |
136 | float weight_down = static_cast<float>(uqw_down - uqw); |
137 | float weight_up = static_cast<float>(uqw_up - uqw); |
138 | |
139 | unsigned int partition = pi.partition_of_texel[texel]; |
140 | vfloat4 color_offset = offset[partition]; |
141 | vfloat4 color_base = endpnt0f[partition]; |
142 | |
143 | vfloat4 color = color_base + color_offset * weight_base; |
144 | vfloat4 orig_color = blk.texel(texel); |
145 | vfloat4 error_weight = blk.channel_weight; |
146 | |
147 | vfloat4 color_diff = color - orig_color; |
148 | vfloat4 color_diff_down = color_diff + color_offset * weight_down; |
149 | vfloat4 color_diff_up = color_diff + color_offset * weight_up; |
150 | |
151 | float error_base = dot_s(color_diff * color_diff, error_weight); |
152 | float error_down = dot_s(color_diff_down * color_diff_down, error_weight); |
153 | float error_up = dot_s(color_diff_up * color_diff_up, error_weight); |
154 | |
155 | // Check if the prev or next error is better, and if so use it |
156 | if ((error_up < error_base) && (error_up < error_down) && (uqw < 64)) |
157 | { |
158 | dec_weights_uquant[texel] = static_cast<uint8_t>(uqw_up); |
159 | adjustments = true; |
160 | } |
161 | else if ((error_down < error_base) && (uqw > 0)) |
162 | { |
163 | dec_weights_uquant[texel] = static_cast<uint8_t>(uqw_down); |
164 | adjustments = true; |
165 | } |
166 | } |
167 | |
168 | // Prepare iteration for plane 2 |
169 | dec_weights_uquant += WEIGHTS_PLANE2_OFFSET; |
170 | plane_mask = ~plane_mask; |
171 | } |
172 | |
173 | return adjustments; |
174 | } |
175 | |
176 | /** |
177 | * @brief Attempt to improve weights given a chosen configuration. |
178 | * |
179 | * Given a fixed weight grid decimation and weight value quantization, iterate over all weights (per |
180 | * partition and per plane) and attempt to improve image quality by moving each weight up by one or |
181 | * down by one quantization step. |
182 | * |
183 | * @param decode_mode The decode mode (LDR, HDR). |
184 | * @param bsd The block size information. |
185 | * @param blk The image block color data to compress. |
186 | * @param[out] scb The symbolic compressed block output. |
187 | */ |
188 | static bool realign_weights_decimated( |
189 | astcenc_profile decode_mode, |
190 | const block_size_descriptor& bsd, |
191 | const image_block& blk, |
192 | symbolic_compressed_block& scb |
193 | ) { |
194 | // Get the partition descriptor |
195 | unsigned int partition_count = scb.partition_count; |
196 | const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); |
197 | |
198 | // Get the quantization table |
199 | const block_mode& bm = bsd.get_block_mode(scb.block_mode); |
200 | unsigned int weight_quant_level = bm.quant_mode; |
201 | const quant_and_transfer_table& qat = quant_and_xfer_tables[weight_quant_level]; |
202 | |
203 | // Get the decimation table |
204 | const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); |
205 | unsigned int weight_count = di.weight_count; |
206 | assert(weight_count != bsd.texel_count); |
207 | |
208 | unsigned int max_plane = bm.is_dual_plane; |
209 | int plane2_component = scb.plane2_component; |
210 | vmask4 plane_mask = vint4::lane_id() == vint4(plane2_component); |
211 | |
212 | // Decode the color endpoints |
213 | bool rgb_hdr; |
214 | bool alpha_hdr; |
215 | vint4 endpnt0[BLOCK_MAX_PARTITIONS]; |
216 | vint4 endpnt1[BLOCK_MAX_PARTITIONS]; |
217 | vfloat4 endpnt0f[BLOCK_MAX_PARTITIONS]; |
218 | vfloat4 offset[BLOCK_MAX_PARTITIONS]; |
219 | |
220 | promise(partition_count > 0); |
221 | promise(weight_count > 0); |
222 | |
223 | for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) |
224 | { |
225 | unpack_color_endpoints(decode_mode, |
226 | scb.color_formats[pa_idx], |
227 | scb.color_values[pa_idx], |
228 | rgb_hdr, alpha_hdr, |
229 | endpnt0[pa_idx], |
230 | endpnt1[pa_idx]); |
231 | } |
232 | |
233 | uint8_t* dec_weights_uquant = scb.weights; |
234 | bool adjustments = false; |
235 | |
236 | // For each plane and partition ... |
237 | for (unsigned int pl_idx = 0; pl_idx <= max_plane; pl_idx++) |
238 | { |
239 | for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) |
240 | { |
241 | // Compute the endpoint delta for all components in current plane |
242 | vint4 epd = endpnt1[pa_idx] - endpnt0[pa_idx]; |
243 | epd = select(epd, vint4::zero(), plane_mask); |
244 | |
245 | endpnt0f[pa_idx] = int_to_float(endpnt0[pa_idx]); |
246 | offset[pa_idx] = int_to_float(epd) * (1.0f / 64.0f); |
247 | } |
248 | |
249 | // Create an unquantized weight grid for this decimation level |
250 | alignas(ASTCENC_VECALIGN) float uq_weightsf[BLOCK_MAX_WEIGHTS]; |
251 | for (unsigned int we_idx = 0; we_idx < weight_count; we_idx += ASTCENC_SIMD_WIDTH) |
252 | { |
253 | vint unquant_value(dec_weights_uquant + we_idx); |
254 | vfloat unquant_valuef = int_to_float(unquant_value); |
255 | storea(unquant_valuef, uq_weightsf + we_idx); |
256 | } |
257 | |
258 | // For each weight compute previous, current, and next errors |
259 | for (unsigned int we_idx = 0; we_idx < weight_count; we_idx++) |
260 | { |
261 | int uqw = dec_weights_uquant[we_idx]; |
262 | uint32_t prev_and_next = qat.prev_next_values[uqw]; |
263 | |
264 | float uqw_base = uq_weightsf[we_idx]; |
265 | float uqw_down = static_cast<float>(prev_and_next & 0xFF); |
266 | float uqw_up = static_cast<float>((prev_and_next >> 8) & 0xFF); |
267 | |
268 | float uqw_diff_down = uqw_down - uqw_base; |
269 | float uqw_diff_up = uqw_up - uqw_base; |
270 | |
271 | vfloat4 error_basev = vfloat4::zero(); |
272 | vfloat4 error_downv = vfloat4::zero(); |
273 | vfloat4 error_upv = vfloat4::zero(); |
274 | |
275 | // Interpolate the colors to create the diffs |
276 | unsigned int texels_to_evaluate = di.weight_texel_count[we_idx]; |
277 | promise(texels_to_evaluate > 0); |
278 | for (unsigned int te_idx = 0; te_idx < texels_to_evaluate; te_idx++) |
279 | { |
280 | unsigned int texel = di.weight_texels_tr[te_idx][we_idx]; |
281 | |
282 | float tw_base = di.texel_contrib_for_weight[te_idx][we_idx]; |
283 | |
284 | float weight_base = (uq_weightsf[di.texel_weights_tr[0][texel]] * di.texel_weight_contribs_float_tr[0][texel] |
285 | + uq_weightsf[di.texel_weights_tr[1][texel]] * di.texel_weight_contribs_float_tr[1][texel]) |
286 | + (uq_weightsf[di.texel_weights_tr[2][texel]] * di.texel_weight_contribs_float_tr[2][texel] |
287 | + uq_weightsf[di.texel_weights_tr[3][texel]] * di.texel_weight_contribs_float_tr[3][texel]); |
288 | |
289 | // Ideally this is integer rounded, but IQ gain it isn't worth the overhead |
290 | // float weight = astc::flt_rd(weight_base + 0.5f); |
291 | // float weight_down = astc::flt_rd(weight_base + 0.5f + uqw_diff_down * tw_base) - weight; |
292 | // float weight_up = astc::flt_rd(weight_base + 0.5f + uqw_diff_up * tw_base) - weight; |
293 | float weight_down = weight_base + uqw_diff_down * tw_base - weight_base; |
294 | float weight_up = weight_base + uqw_diff_up * tw_base - weight_base; |
295 | |
296 | unsigned int partition = pi.partition_of_texel[texel]; |
297 | vfloat4 color_offset = offset[partition]; |
298 | vfloat4 color_base = endpnt0f[partition]; |
299 | |
300 | vfloat4 color = color_base + color_offset * weight_base; |
301 | vfloat4 orig_color = blk.texel(texel); |
302 | |
303 | vfloat4 color_diff = color - orig_color; |
304 | vfloat4 color_down_diff = color_diff + color_offset * weight_down; |
305 | vfloat4 color_up_diff = color_diff + color_offset * weight_up; |
306 | |
307 | error_basev += color_diff * color_diff; |
308 | error_downv += color_down_diff * color_down_diff; |
309 | error_upv += color_up_diff * color_up_diff; |
310 | } |
311 | |
312 | vfloat4 error_weight = blk.channel_weight; |
313 | float error_base = hadd_s(error_basev * error_weight); |
314 | float error_down = hadd_s(error_downv * error_weight); |
315 | float error_up = hadd_s(error_upv * error_weight); |
316 | |
317 | // Check if the prev or next error is better, and if so use it |
318 | if ((error_up < error_base) && (error_up < error_down) && (uqw < 64)) |
319 | { |
320 | uq_weightsf[we_idx] = uqw_up; |
321 | dec_weights_uquant[we_idx] = static_cast<uint8_t>(uqw_up); |
322 | adjustments = true; |
323 | } |
324 | else if ((error_down < error_base) && (uqw > 0)) |
325 | { |
326 | uq_weightsf[we_idx] = uqw_down; |
327 | dec_weights_uquant[we_idx] = static_cast<uint8_t>(uqw_down); |
328 | adjustments = true; |
329 | } |
330 | } |
331 | |
332 | // Prepare iteration for plane 2 |
333 | dec_weights_uquant += WEIGHTS_PLANE2_OFFSET; |
334 | plane_mask = ~plane_mask; |
335 | } |
336 | |
337 | return adjustments; |
338 | } |
339 | |
340 | /** |
341 | * @brief Compress a block using a chosen partitioning and 1 plane of weights. |
342 | * |
343 | * @param config The compressor configuration. |
344 | * @param bsd The block size information. |
345 | * @param blk The image block color data to compress. |
346 | * @param only_always True if we only use "always" percentile block modes. |
347 | * @param tune_errorval_threshold The error value threshold. |
348 | * @param partition_count The partition count. |
349 | * @param partition_index The partition index if @c partition_count is 2-4. |
350 | * @param[out] scb The symbolic compressed block output. |
351 | * @param[out] tmpbuf The quantized weights for plane 1. |
352 | */ |
353 | static float compress_symbolic_block_for_partition_1plane( |
354 | const astcenc_config& config, |
355 | const block_size_descriptor& bsd, |
356 | const image_block& blk, |
357 | bool only_always, |
358 | float tune_errorval_threshold, |
359 | unsigned int partition_count, |
360 | unsigned int partition_index, |
361 | symbolic_compressed_block& scb, |
362 | compression_working_buffers& tmpbuf, |
363 | int quant_limit |
364 | ) { |
365 | promise(partition_count > 0); |
366 | promise(config.tune_candidate_limit > 0); |
367 | promise(config.tune_refinement_limit > 0); |
368 | |
369 | int max_weight_quant = astc::min(static_cast<int>(QUANT_32), quant_limit); |
370 | |
371 | auto compute_difference = &compute_symbolic_block_difference_1plane; |
372 | if ((partition_count == 1) && !(config.flags & ASTCENC_FLG_MAP_RGBM)) |
373 | { |
374 | compute_difference = &compute_symbolic_block_difference_1plane_1partition; |
375 | } |
376 | |
377 | const auto& pi = bsd.get_partition_info(partition_count, partition_index); |
378 | |
379 | // Compute ideal weights and endpoint colors, with no quantization or decimation |
380 | endpoints_and_weights& ei = tmpbuf.ei1; |
381 | compute_ideal_colors_and_weights_1plane(blk, pi, ei); |
382 | |
383 | // Compute ideal weights and endpoint colors for every decimation |
384 | float* dec_weights_ideal = tmpbuf.dec_weights_ideal; |
385 | uint8_t* dec_weights_uquant = tmpbuf.dec_weights_uquant; |
386 | |
387 | // For each decimation mode, compute an ideal set of weights with no quantization |
388 | unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always |
389 | : bsd.decimation_mode_count_selected; |
390 | promise(max_decimation_modes > 0); |
391 | for (unsigned int i = 0; i < max_decimation_modes; i++) |
392 | { |
393 | const auto& dm = bsd.get_decimation_mode(i); |
394 | if (!dm.is_ref_1plane(static_cast<quant_method>(max_weight_quant))) |
395 | { |
396 | continue; |
397 | } |
398 | |
399 | const auto& di = bsd.get_decimation_info(i); |
400 | |
401 | compute_ideal_weights_for_decimation( |
402 | ei, |
403 | di, |
404 | dec_weights_ideal + i * BLOCK_MAX_WEIGHTS); |
405 | } |
406 | |
407 | // Compute maximum colors for the endpoints and ideal weights, then for each endpoint and ideal |
408 | // weight pair, compute the smallest weight that will result in a color value greater than 1 |
409 | vfloat4 min_ep(10.0f); |
410 | for (unsigned int i = 0; i < partition_count; i++) |
411 | { |
412 | vfloat4 ep = (vfloat4(1.0f) - ei.ep.endpt0[i]) / (ei.ep.endpt1[i] - ei.ep.endpt0[i]); |
413 | |
414 | vmask4 use_ep = (ep > vfloat4(0.5f)) & (ep < min_ep); |
415 | min_ep = select(min_ep, ep, use_ep); |
416 | } |
417 | |
418 | float min_wt_cutoff = hmin_s(min_ep); |
419 | |
420 | // For each mode, use the angular method to compute a shift |
421 | compute_angular_endpoints_1plane( |
422 | only_always, bsd, dec_weights_ideal, max_weight_quant, tmpbuf); |
423 | |
424 | float* weight_low_value = tmpbuf.weight_low_value1; |
425 | float* weight_high_value = tmpbuf.weight_high_value1; |
426 | int8_t* qwt_bitcounts = tmpbuf.qwt_bitcounts; |
427 | float* qwt_errors = tmpbuf.qwt_errors; |
428 | |
429 | // For each mode (which specifies a decimation and a quantization): |
430 | // * Compute number of bits needed for the quantized weights |
431 | // * Generate an optimized set of quantized weights |
432 | // * Compute quantization errors for the mode |
433 | |
434 | |
435 | static const int8_t free_bits_for_partition_count[4] { |
436 | 115 - 4, 111 - 4 - PARTITION_INDEX_BITS, 108 - 4 - PARTITION_INDEX_BITS, 105 - 4 - PARTITION_INDEX_BITS |
437 | }; |
438 | |
439 | unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always |
440 | : bsd.block_mode_count_1plane_selected; |
441 | promise(max_block_modes > 0); |
442 | for (unsigned int i = 0; i < max_block_modes; i++) |
443 | { |
444 | const block_mode& bm = bsd.block_modes[i]; |
445 | |
446 | if (bm.quant_mode > max_weight_quant) |
447 | { |
448 | qwt_errors[i] = 1e38f; |
449 | continue; |
450 | } |
451 | |
452 | assert(!bm.is_dual_plane); |
453 | int bitcount = free_bits_for_partition_count[partition_count - 1] - bm.weight_bits; |
454 | if (bitcount <= 0) |
455 | { |
456 | qwt_errors[i] = 1e38f; |
457 | continue; |
458 | } |
459 | |
460 | if (weight_high_value[i] > 1.02f * min_wt_cutoff) |
461 | { |
462 | weight_high_value[i] = 1.0f; |
463 | } |
464 | |
465 | int decimation_mode = bm.decimation_mode; |
466 | const auto& di = bsd.get_decimation_info(decimation_mode); |
467 | |
468 | qwt_bitcounts[i] = static_cast<int8_t>(bitcount); |
469 | |
470 | alignas(ASTCENC_VECALIGN) float dec_weights_uquantf[BLOCK_MAX_WEIGHTS]; |
471 | |
472 | // Generate the optimized set of weights for the weight mode |
473 | compute_quantized_weights_for_decimation( |
474 | di, |
475 | weight_low_value[i], weight_high_value[i], |
476 | dec_weights_ideal + BLOCK_MAX_WEIGHTS * decimation_mode, |
477 | dec_weights_uquantf, |
478 | dec_weights_uquant + BLOCK_MAX_WEIGHTS * i, |
479 | bm.get_weight_quant_mode()); |
480 | |
481 | // Compute weight quantization errors for the block mode |
482 | qwt_errors[i] = compute_error_of_weight_set_1plane( |
483 | ei, |
484 | di, |
485 | dec_weights_uquantf); |
486 | } |
487 | |
488 | // Decide the optimal combination of color endpoint encodings and weight encodings |
489 | uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS]; |
490 | int block_mode_index[TUNE_MAX_TRIAL_CANDIDATES]; |
491 | |
492 | quant_method color_quant_level[TUNE_MAX_TRIAL_CANDIDATES]; |
493 | quant_method color_quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES]; |
494 | |
495 | unsigned int candidate_count = compute_ideal_endpoint_formats( |
496 | pi, blk, ei.ep, qwt_bitcounts, qwt_errors, |
497 | config.tune_candidate_limit, 0, max_block_modes, |
498 | partition_format_specifiers, block_mode_index, |
499 | color_quant_level, color_quant_level_mod, tmpbuf); |
500 | |
501 | // Iterate over the N believed-to-be-best modes to find out which one is actually best |
502 | float best_errorval_in_mode = ERROR_CALC_DEFAULT; |
503 | float best_errorval_in_scb = scb.errorval; |
504 | |
505 | for (unsigned int i = 0; i < candidate_count; i++) |
506 | { |
507 | TRACE_NODE(node0, "candidate" ); |
508 | |
509 | const int bm_packed_index = block_mode_index[i]; |
510 | assert(bm_packed_index >= 0 && bm_packed_index < static_cast<int>(bsd.block_mode_count_1plane_selected)); |
511 | const block_mode& qw_bm = bsd.block_modes[bm_packed_index]; |
512 | |
513 | int decimation_mode = qw_bm.decimation_mode; |
514 | const auto& di = bsd.get_decimation_info(decimation_mode); |
515 | promise(di.weight_count > 0); |
516 | |
517 | trace_add_data("weight_x" , di.weight_x); |
518 | trace_add_data("weight_y" , di.weight_y); |
519 | trace_add_data("weight_z" , di.weight_z); |
520 | trace_add_data("weight_quant" , qw_bm.quant_mode); |
521 | |
522 | // Recompute the ideal color endpoints before storing them |
523 | vfloat4 rgbs_colors[BLOCK_MAX_PARTITIONS]; |
524 | vfloat4 rgbo_colors[BLOCK_MAX_PARTITIONS]; |
525 | |
526 | symbolic_compressed_block workscb; |
527 | endpoints workep = ei.ep; |
528 | |
529 | uint8_t* u8_weight_src = dec_weights_uquant + BLOCK_MAX_WEIGHTS * bm_packed_index; |
530 | |
531 | for (unsigned int j = 0; j < di.weight_count; j++) |
532 | { |
533 | workscb.weights[j] = u8_weight_src[j]; |
534 | } |
535 | |
536 | for (unsigned int l = 0; l < config.tune_refinement_limit; l++) |
537 | { |
538 | recompute_ideal_colors_1plane( |
539 | blk, pi, di, workscb.weights, |
540 | workep, rgbs_colors, rgbo_colors); |
541 | |
542 | // Quantize the chosen color, tracking if worth trying the mod value |
543 | bool all_same = color_quant_level[i] != color_quant_level_mod[i]; |
544 | for (unsigned int j = 0; j < partition_count; j++) |
545 | { |
546 | workscb.color_formats[j] = pack_color_endpoints( |
547 | workep.endpt0[j], |
548 | workep.endpt1[j], |
549 | rgbs_colors[j], |
550 | rgbo_colors[j], |
551 | partition_format_specifiers[i][j], |
552 | workscb.color_values[j], |
553 | color_quant_level[i]); |
554 | |
555 | all_same = all_same && workscb.color_formats[j] == workscb.color_formats[0]; |
556 | } |
557 | |
558 | // If all the color endpoint modes are the same, we get a few more bits to store colors; |
559 | // let's see if we can take advantage of this: requantize all the colors and see if the |
560 | // endpoint modes remain the same. |
561 | workscb.color_formats_matched = 0; |
562 | if (partition_count >= 2 && all_same) |
563 | { |
564 | uint8_t colorvals[BLOCK_MAX_PARTITIONS][8]; |
565 | uint8_t color_formats_mod[BLOCK_MAX_PARTITIONS] { 0 }; |
566 | bool all_same_mod = true; |
567 | for (unsigned int j = 0; j < partition_count; j++) |
568 | { |
569 | color_formats_mod[j] = pack_color_endpoints( |
570 | workep.endpt0[j], |
571 | workep.endpt1[j], |
572 | rgbs_colors[j], |
573 | rgbo_colors[j], |
574 | partition_format_specifiers[i][j], |
575 | colorvals[j], |
576 | color_quant_level_mod[i]); |
577 | |
578 | // Early out as soon as it's no longer possible to use mod |
579 | if (color_formats_mod[j] != color_formats_mod[0]) |
580 | { |
581 | all_same_mod = false; |
582 | break; |
583 | } |
584 | } |
585 | |
586 | if (all_same_mod) |
587 | { |
588 | workscb.color_formats_matched = 1; |
589 | for (unsigned int j = 0; j < BLOCK_MAX_PARTITIONS; j++) |
590 | { |
591 | for (unsigned int k = 0; k < 8; k++) |
592 | { |
593 | workscb.color_values[j][k] = colorvals[j][k]; |
594 | } |
595 | |
596 | workscb.color_formats[j] = color_formats_mod[j]; |
597 | } |
598 | } |
599 | } |
600 | |
601 | // Store header fields |
602 | workscb.partition_count = static_cast<uint8_t>(partition_count); |
603 | workscb.partition_index = static_cast<uint16_t>(partition_index); |
604 | workscb.plane2_component = -1; |
605 | workscb.quant_mode = workscb.color_formats_matched ? color_quant_level_mod[i] : color_quant_level[i]; |
606 | workscb.block_mode = qw_bm.mode_index; |
607 | workscb.block_type = SYM_BTYPE_NONCONST; |
608 | |
609 | // Pre-realign test |
610 | if (l == 0) |
611 | { |
612 | float errorval = compute_difference(config, bsd, workscb, blk); |
613 | if (errorval == -ERROR_CALC_DEFAULT) |
614 | { |
615 | errorval = -errorval; |
616 | workscb.block_type = SYM_BTYPE_ERROR; |
617 | } |
618 | |
619 | trace_add_data("error_prerealign" , errorval); |
620 | best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); |
621 | |
622 | // Average refinement improvement is 3.5% per iteration (allow 4.5%), but the first |
623 | // iteration can help more so we give it a extra 8% leeway. Use this knowledge to |
624 | // drive a heuristic to skip blocks that are unlikely to catch up with the best |
625 | // block we have already. |
626 | unsigned int iters_remaining = config.tune_refinement_limit - l; |
627 | float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.08f; |
628 | if (errorval > (threshold * best_errorval_in_scb)) |
629 | { |
630 | break; |
631 | } |
632 | |
633 | if (errorval < best_errorval_in_scb) |
634 | { |
635 | best_errorval_in_scb = errorval; |
636 | workscb.errorval = errorval; |
637 | scb = workscb; |
638 | |
639 | if (errorval < tune_errorval_threshold) |
640 | { |
641 | // Skip remaining candidates - this is "good enough" |
642 | i = candidate_count; |
643 | break; |
644 | } |
645 | } |
646 | } |
647 | |
648 | bool adjustments; |
649 | if (di.weight_count != bsd.texel_count) |
650 | { |
651 | adjustments = realign_weights_decimated( |
652 | config.profile, bsd, blk, workscb); |
653 | } |
654 | else |
655 | { |
656 | adjustments = realign_weights_undecimated( |
657 | config.profile, bsd, blk, workscb); |
658 | } |
659 | |
660 | // Post-realign test |
661 | float errorval = compute_difference(config, bsd, workscb, blk); |
662 | if (errorval == -ERROR_CALC_DEFAULT) |
663 | { |
664 | errorval = -errorval; |
665 | workscb.block_type = SYM_BTYPE_ERROR; |
666 | } |
667 | |
668 | trace_add_data("error_postrealign" , errorval); |
669 | best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); |
670 | |
671 | // Average refinement improvement is 3.5% per iteration, so skip blocks that are |
672 | // unlikely to catch up with the best block we have already. Assume a 4.5% per step to |
673 | // give benefit of the doubt ... |
674 | unsigned int iters_remaining = config.tune_refinement_limit - 1 - l; |
675 | float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.0f; |
676 | if (errorval > (threshold * best_errorval_in_scb)) |
677 | { |
678 | break; |
679 | } |
680 | |
681 | if (errorval < best_errorval_in_scb) |
682 | { |
683 | best_errorval_in_scb = errorval; |
684 | workscb.errorval = errorval; |
685 | scb = workscb; |
686 | |
687 | if (errorval < tune_errorval_threshold) |
688 | { |
689 | // Skip remaining candidates - this is "good enough" |
690 | i = candidate_count; |
691 | break; |
692 | } |
693 | } |
694 | |
695 | if (!adjustments) |
696 | { |
697 | break; |
698 | } |
699 | } |
700 | } |
701 | |
702 | return best_errorval_in_mode; |
703 | } |
704 | |
705 | /** |
706 | * @brief Compress a block using a chosen partitioning and 2 planes of weights. |
707 | * |
708 | * @param config The compressor configuration. |
709 | * @param bsd The block size information. |
710 | * @param blk The image block color data to compress. |
711 | * @param tune_errorval_threshold The error value threshold. |
712 | * @param plane2_component The component index for the second plane of weights. |
713 | * @param[out] scb The symbolic compressed block output. |
714 | * @param[out] tmpbuf The quantized weights for plane 1. |
715 | */ |
716 | static float compress_symbolic_block_for_partition_2planes( |
717 | const astcenc_config& config, |
718 | const block_size_descriptor& bsd, |
719 | const image_block& blk, |
720 | float tune_errorval_threshold, |
721 | unsigned int plane2_component, |
722 | symbolic_compressed_block& scb, |
723 | compression_working_buffers& tmpbuf, |
724 | int quant_limit |
725 | ) { |
726 | promise(config.tune_candidate_limit > 0); |
727 | promise(config.tune_refinement_limit > 0); |
728 | promise(bsd.decimation_mode_count_selected > 0); |
729 | |
730 | int max_weight_quant = astc::min(static_cast<int>(QUANT_32), quant_limit); |
731 | |
732 | // Compute ideal weights and endpoint colors, with no quantization or decimation |
733 | endpoints_and_weights& ei1 = tmpbuf.ei1; |
734 | endpoints_and_weights& ei2 = tmpbuf.ei2; |
735 | |
736 | compute_ideal_colors_and_weights_2planes(bsd, blk, plane2_component, ei1, ei2); |
737 | |
738 | // Compute ideal weights and endpoint colors for every decimation |
739 | float* dec_weights_ideal = tmpbuf.dec_weights_ideal; |
740 | uint8_t* dec_weights_uquant = tmpbuf.dec_weights_uquant; |
741 | |
742 | // For each decimation mode, compute an ideal set of weights with no quantization |
743 | for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++) |
744 | { |
745 | const auto& dm = bsd.get_decimation_mode(i); |
746 | if (!dm.is_ref_2plane(static_cast<quant_method>(max_weight_quant))) |
747 | { |
748 | continue; |
749 | } |
750 | |
751 | const auto& di = bsd.get_decimation_info(i); |
752 | |
753 | compute_ideal_weights_for_decimation( |
754 | ei1, |
755 | di, |
756 | dec_weights_ideal + i * BLOCK_MAX_WEIGHTS); |
757 | |
758 | compute_ideal_weights_for_decimation( |
759 | ei2, |
760 | di, |
761 | dec_weights_ideal + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET); |
762 | } |
763 | |
764 | // Compute maximum colors for the endpoints and ideal weights, then for each endpoint and ideal |
765 | // weight pair, compute the smallest weight that will result in a color value greater than 1 |
766 | vfloat4 min_ep1(10.0f); |
767 | vfloat4 min_ep2(10.0f); |
768 | |
769 | vfloat4 ep1 = (vfloat4(1.0f) - ei1.ep.endpt0[0]) / (ei1.ep.endpt1[0] - ei1.ep.endpt0[0]); |
770 | vmask4 use_ep1 = (ep1 > vfloat4(0.5f)) & (ep1 < min_ep1); |
771 | min_ep1 = select(min_ep1, ep1, use_ep1); |
772 | |
773 | vfloat4 ep2 = (vfloat4(1.0f) - ei2.ep.endpt0[0]) / (ei2.ep.endpt1[0] - ei2.ep.endpt0[0]); |
774 | vmask4 use_ep2 = (ep2 > vfloat4(0.5f)) & (ep2 < min_ep2); |
775 | min_ep2 = select(min_ep2, ep2, use_ep2); |
776 | |
777 | vfloat4 err_max(ERROR_CALC_DEFAULT); |
778 | vmask4 err_mask = vint4::lane_id() == vint4(plane2_component); |
779 | |
780 | // Set the plane2 component to max error in ep1 |
781 | min_ep1 = select(min_ep1, err_max, err_mask); |
782 | |
783 | float min_wt_cutoff1 = hmin_s(min_ep1); |
784 | |
785 | // Set the minwt2 to the plane2 component min in ep2 |
786 | float min_wt_cutoff2 = hmin_s(select(err_max, min_ep2, err_mask)); |
787 | |
788 | compute_angular_endpoints_2planes( |
789 | bsd, dec_weights_ideal, max_weight_quant, tmpbuf); |
790 | |
791 | // For each mode (which specifies a decimation and a quantization): |
792 | // * Compute number of bits needed for the quantized weights |
793 | // * Generate an optimized set of quantized weights |
794 | // * Compute quantization errors for the mode |
795 | |
796 | float* weight_low_value1 = tmpbuf.weight_low_value1; |
797 | float* weight_high_value1 = tmpbuf.weight_high_value1; |
798 | float* weight_low_value2 = tmpbuf.weight_low_value2; |
799 | float* weight_high_value2 = tmpbuf.weight_high_value2; |
800 | |
801 | int8_t* qwt_bitcounts = tmpbuf.qwt_bitcounts; |
802 | float* qwt_errors = tmpbuf.qwt_errors; |
803 | |
804 | unsigned int start_2plane = bsd.block_mode_count_1plane_selected; |
805 | unsigned int end_2plane = bsd.block_mode_count_1plane_2plane_selected; |
806 | |
807 | for (unsigned int i = start_2plane; i < end_2plane; i++) |
808 | { |
809 | const block_mode& bm = bsd.block_modes[i]; |
810 | assert(bm.is_dual_plane); |
811 | |
812 | if (bm.quant_mode > max_weight_quant) |
813 | { |
814 | qwt_errors[i] = 1e38f; |
815 | continue; |
816 | } |
817 | |
818 | qwt_bitcounts[i] = static_cast<int8_t>(109 - bm.weight_bits); |
819 | |
820 | if (weight_high_value1[i] > 1.02f * min_wt_cutoff1) |
821 | { |
822 | weight_high_value1[i] = 1.0f; |
823 | } |
824 | |
825 | if (weight_high_value2[i] > 1.02f * min_wt_cutoff2) |
826 | { |
827 | weight_high_value2[i] = 1.0f; |
828 | } |
829 | |
830 | unsigned int decimation_mode = bm.decimation_mode; |
831 | const auto& di = bsd.get_decimation_info(decimation_mode); |
832 | |
833 | alignas(ASTCENC_VECALIGN) float dec_weights_uquantf[BLOCK_MAX_WEIGHTS]; |
834 | |
835 | // Generate the optimized set of weights for the mode |
836 | compute_quantized_weights_for_decimation( |
837 | di, |
838 | weight_low_value1[i], |
839 | weight_high_value1[i], |
840 | dec_weights_ideal + BLOCK_MAX_WEIGHTS * decimation_mode, |
841 | dec_weights_uquantf, |
842 | dec_weights_uquant + BLOCK_MAX_WEIGHTS * i, |
843 | bm.get_weight_quant_mode()); |
844 | |
845 | compute_quantized_weights_for_decimation( |
846 | di, |
847 | weight_low_value2[i], |
848 | weight_high_value2[i], |
849 | dec_weights_ideal + BLOCK_MAX_WEIGHTS * decimation_mode + WEIGHTS_PLANE2_OFFSET, |
850 | dec_weights_uquantf + WEIGHTS_PLANE2_OFFSET, |
851 | dec_weights_uquant + BLOCK_MAX_WEIGHTS * i + WEIGHTS_PLANE2_OFFSET, |
852 | bm.get_weight_quant_mode()); |
853 | |
854 | // Compute weight quantization errors for the block mode |
855 | qwt_errors[i] = compute_error_of_weight_set_2planes( |
856 | ei1, |
857 | ei2, |
858 | di, |
859 | dec_weights_uquantf, |
860 | dec_weights_uquantf + WEIGHTS_PLANE2_OFFSET); |
861 | } |
862 | |
863 | // Decide the optimal combination of color endpoint encodings and weight encodings |
864 | uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS]; |
865 | int block_mode_index[TUNE_MAX_TRIAL_CANDIDATES]; |
866 | |
867 | quant_method color_quant_level[TUNE_MAX_TRIAL_CANDIDATES]; |
868 | quant_method color_quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES]; |
869 | |
870 | endpoints epm; |
871 | merge_endpoints(ei1.ep, ei2.ep, plane2_component, epm); |
872 | |
873 | const auto& pi = bsd.get_partition_info(1, 0); |
874 | unsigned int candidate_count = compute_ideal_endpoint_formats( |
875 | pi, blk, epm, qwt_bitcounts, qwt_errors, |
876 | config.tune_candidate_limit, |
877 | bsd.block_mode_count_1plane_selected, bsd.block_mode_count_1plane_2plane_selected, |
878 | partition_format_specifiers, block_mode_index, |
879 | color_quant_level, color_quant_level_mod, tmpbuf); |
880 | |
881 | // Iterate over the N believed-to-be-best modes to find out which one is actually best |
882 | float best_errorval_in_mode = ERROR_CALC_DEFAULT; |
883 | float best_errorval_in_scb = scb.errorval; |
884 | |
885 | for (unsigned int i = 0; i < candidate_count; i++) |
886 | { |
887 | TRACE_NODE(node0, "candidate" ); |
888 | |
889 | const int bm_packed_index = block_mode_index[i]; |
890 | assert(bm_packed_index >= static_cast<int>(bsd.block_mode_count_1plane_selected) && |
891 | bm_packed_index < static_cast<int>(bsd.block_mode_count_1plane_2plane_selected)); |
892 | const block_mode& qw_bm = bsd.block_modes[bm_packed_index]; |
893 | |
894 | int decimation_mode = qw_bm.decimation_mode; |
895 | const auto& di = bsd.get_decimation_info(decimation_mode); |
896 | promise(di.weight_count > 0); |
897 | |
898 | trace_add_data("weight_x" , di.weight_x); |
899 | trace_add_data("weight_y" , di.weight_y); |
900 | trace_add_data("weight_z" , di.weight_z); |
901 | trace_add_data("weight_quant" , qw_bm.quant_mode); |
902 | |
903 | vfloat4 rgbs_color; |
904 | vfloat4 rgbo_color; |
905 | |
906 | symbolic_compressed_block workscb; |
907 | endpoints workep = epm; |
908 | |
909 | uint8_t* u8_weight1_src = dec_weights_uquant + BLOCK_MAX_WEIGHTS * bm_packed_index; |
910 | uint8_t* u8_weight2_src = dec_weights_uquant + BLOCK_MAX_WEIGHTS * bm_packed_index + WEIGHTS_PLANE2_OFFSET; |
911 | |
912 | for (int j = 0; j < di.weight_count; j++) |
913 | { |
914 | workscb.weights[j] = u8_weight1_src[j]; |
915 | workscb.weights[j + WEIGHTS_PLANE2_OFFSET] = u8_weight2_src[j]; |
916 | } |
917 | |
918 | for (unsigned int l = 0; l < config.tune_refinement_limit; l++) |
919 | { |
920 | recompute_ideal_colors_2planes( |
921 | blk, bsd, di, |
922 | workscb.weights, workscb.weights + WEIGHTS_PLANE2_OFFSET, |
923 | workep, rgbs_color, rgbo_color, plane2_component); |
924 | |
925 | // Quantize the chosen color |
926 | workscb.color_formats[0] = pack_color_endpoints( |
927 | workep.endpt0[0], |
928 | workep.endpt1[0], |
929 | rgbs_color, rgbo_color, |
930 | partition_format_specifiers[i][0], |
931 | workscb.color_values[0], |
932 | color_quant_level[i]); |
933 | |
934 | // Store header fields |
935 | workscb.partition_count = 1; |
936 | workscb.partition_index = 0; |
937 | workscb.quant_mode = color_quant_level[i]; |
938 | workscb.color_formats_matched = 0; |
939 | workscb.block_mode = qw_bm.mode_index; |
940 | workscb.plane2_component = static_cast<int8_t>(plane2_component); |
941 | workscb.block_type = SYM_BTYPE_NONCONST; |
942 | |
943 | // Pre-realign test |
944 | if (l == 0) |
945 | { |
946 | float errorval = compute_symbolic_block_difference_2plane(config, bsd, workscb, blk); |
947 | if (errorval == -ERROR_CALC_DEFAULT) |
948 | { |
949 | errorval = -errorval; |
950 | workscb.block_type = SYM_BTYPE_ERROR; |
951 | } |
952 | |
953 | trace_add_data("error_prerealign" , errorval); |
954 | best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); |
955 | |
956 | // Average refinement improvement is 3.5% per iteration (allow 4.5%), but the first |
957 | // iteration can help more so we give it a extra 8% leeway. Use this knowledge to |
958 | // drive a heuristic to skip blocks that are unlikely to catch up with the best |
959 | // block we have already. |
960 | unsigned int iters_remaining = config.tune_refinement_limit - l; |
961 | float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.08f; |
962 | if (errorval > (threshold * best_errorval_in_scb)) |
963 | { |
964 | break; |
965 | } |
966 | |
967 | if (errorval < best_errorval_in_scb) |
968 | { |
969 | best_errorval_in_scb = errorval; |
970 | workscb.errorval = errorval; |
971 | scb = workscb; |
972 | |
973 | if (errorval < tune_errorval_threshold) |
974 | { |
975 | // Skip remaining candidates - this is "good enough" |
976 | i = candidate_count; |
977 | break; |
978 | } |
979 | } |
980 | } |
981 | |
982 | // Perform a final pass over the weights to try to improve them. |
983 | bool adjustments; |
984 | if (di.weight_count != bsd.texel_count) |
985 | { |
986 | adjustments = realign_weights_decimated( |
987 | config.profile, bsd, blk, workscb); |
988 | } |
989 | else |
990 | { |
991 | adjustments = realign_weights_undecimated( |
992 | config.profile, bsd, blk, workscb); |
993 | } |
994 | |
995 | // Post-realign test |
996 | float errorval = compute_symbolic_block_difference_2plane(config, bsd, workscb, blk); |
997 | if (errorval == -ERROR_CALC_DEFAULT) |
998 | { |
999 | errorval = -errorval; |
1000 | workscb.block_type = SYM_BTYPE_ERROR; |
1001 | } |
1002 | |
1003 | trace_add_data("error_postrealign" , errorval); |
1004 | best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); |
1005 | |
1006 | // Average refinement improvement is 3.5% per iteration, so skip blocks that are |
1007 | // unlikely to catch up with the best block we have already. Assume a 4.5% per step to |
1008 | // give benefit of the doubt ... |
1009 | unsigned int iters_remaining = config.tune_refinement_limit - 1 - l; |
1010 | float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.0f; |
1011 | if (errorval > (threshold * best_errorval_in_scb)) |
1012 | { |
1013 | break; |
1014 | } |
1015 | |
1016 | if (errorval < best_errorval_in_scb) |
1017 | { |
1018 | best_errorval_in_scb = errorval; |
1019 | workscb.errorval = errorval; |
1020 | scb = workscb; |
1021 | |
1022 | if (errorval < tune_errorval_threshold) |
1023 | { |
1024 | // Skip remaining candidates - this is "good enough" |
1025 | i = candidate_count; |
1026 | break; |
1027 | } |
1028 | } |
1029 | |
1030 | if (!adjustments) |
1031 | { |
1032 | break; |
1033 | } |
1034 | } |
1035 | } |
1036 | |
1037 | return best_errorval_in_mode; |
1038 | } |
1039 | |
1040 | /** |
1041 | * @brief Determine the lowest cross-channel correlation factor. |
1042 | * |
1043 | * @param texels_per_block The number of texels in a block. |
1044 | * @param blk The image block color data to compress. |
1045 | * |
1046 | * @return Return the lowest correlation factor. |
1047 | */ |
1048 | static float prepare_block_statistics( |
1049 | int texels_per_block, |
1050 | const image_block& blk |
1051 | ) { |
1052 | // Compute covariance matrix, as a collection of 10 scalars that form the upper-triangular row |
1053 | // of the matrix. The matrix is symmetric, so this is all we need for this use case. |
1054 | float rs = 0.0f; |
1055 | float gs = 0.0f; |
1056 | float bs = 0.0f; |
1057 | float as = 0.0f; |
1058 | float rr_var = 0.0f; |
1059 | float gg_var = 0.0f; |
1060 | float bb_var = 0.0f; |
1061 | float aa_var = 0.0f; |
1062 | float rg_cov = 0.0f; |
1063 | float rb_cov = 0.0f; |
1064 | float ra_cov = 0.0f; |
1065 | float gb_cov = 0.0f; |
1066 | float ga_cov = 0.0f; |
1067 | float ba_cov = 0.0f; |
1068 | |
1069 | float weight_sum = 0.0f; |
1070 | |
1071 | promise(texels_per_block > 0); |
1072 | for (int i = 0; i < texels_per_block; i++) |
1073 | { |
1074 | float weight = hadd_s(blk.channel_weight) / 4.0f; |
1075 | assert(weight >= 0.0f); |
1076 | weight_sum += weight; |
1077 | |
1078 | float r = blk.data_r[i]; |
1079 | float g = blk.data_g[i]; |
1080 | float b = blk.data_b[i]; |
1081 | float a = blk.data_a[i]; |
1082 | |
1083 | float rw = r * weight; |
1084 | rs += rw; |
1085 | rr_var += r * rw; |
1086 | rg_cov += g * rw; |
1087 | rb_cov += b * rw; |
1088 | ra_cov += a * rw; |
1089 | |
1090 | float gw = g * weight; |
1091 | gs += gw; |
1092 | gg_var += g * gw; |
1093 | gb_cov += b * gw; |
1094 | ga_cov += a * gw; |
1095 | |
1096 | float bw = b * weight; |
1097 | bs += bw; |
1098 | bb_var += b * bw; |
1099 | ba_cov += a * bw; |
1100 | |
1101 | float aw = a * weight; |
1102 | as += aw; |
1103 | aa_var += a * aw; |
1104 | } |
1105 | |
1106 | float rpt = 1.0f / astc::max(weight_sum, 1e-7f); |
1107 | |
1108 | rr_var -= rs * (rs * rpt); |
1109 | rg_cov -= gs * (rs * rpt); |
1110 | rb_cov -= bs * (rs * rpt); |
1111 | ra_cov -= as * (rs * rpt); |
1112 | |
1113 | gg_var -= gs * (gs * rpt); |
1114 | gb_cov -= bs * (gs * rpt); |
1115 | ga_cov -= as * (gs * rpt); |
1116 | |
1117 | bb_var -= bs * (bs * rpt); |
1118 | ba_cov -= as * (bs * rpt); |
1119 | |
1120 | aa_var -= as * (as * rpt); |
1121 | |
1122 | // These will give a NaN if a channel is constant - these are fixed up in the next step |
1123 | rg_cov *= astc::rsqrt(rr_var * gg_var); |
1124 | rb_cov *= astc::rsqrt(rr_var * bb_var); |
1125 | ra_cov *= astc::rsqrt(rr_var * aa_var); |
1126 | gb_cov *= astc::rsqrt(gg_var * bb_var); |
1127 | ga_cov *= astc::rsqrt(gg_var * aa_var); |
1128 | ba_cov *= astc::rsqrt(bb_var * aa_var); |
1129 | |
1130 | if (astc::isnan(rg_cov)) rg_cov = 1.0f; |
1131 | if (astc::isnan(rb_cov)) rb_cov = 1.0f; |
1132 | if (astc::isnan(ra_cov)) ra_cov = 1.0f; |
1133 | if (astc::isnan(gb_cov)) gb_cov = 1.0f; |
1134 | if (astc::isnan(ga_cov)) ga_cov = 1.0f; |
1135 | if (astc::isnan(ba_cov)) ba_cov = 1.0f; |
1136 | |
1137 | float lowest_correlation = astc::min(fabsf(rg_cov), fabsf(rb_cov)); |
1138 | lowest_correlation = astc::min(lowest_correlation, fabsf(ra_cov)); |
1139 | lowest_correlation = astc::min(lowest_correlation, fabsf(gb_cov)); |
1140 | lowest_correlation = astc::min(lowest_correlation, fabsf(ga_cov)); |
1141 | lowest_correlation = astc::min(lowest_correlation, fabsf(ba_cov)); |
1142 | |
1143 | // Diagnostic trace points |
1144 | trace_add_data("min_r" , blk.data_min.lane<0>()); |
1145 | trace_add_data("max_r" , blk.data_max.lane<0>()); |
1146 | trace_add_data("min_g" , blk.data_min.lane<1>()); |
1147 | trace_add_data("max_g" , blk.data_max.lane<1>()); |
1148 | trace_add_data("min_b" , blk.data_min.lane<2>()); |
1149 | trace_add_data("max_b" , blk.data_max.lane<2>()); |
1150 | trace_add_data("min_a" , blk.data_min.lane<3>()); |
1151 | trace_add_data("max_a" , blk.data_max.lane<3>()); |
1152 | trace_add_data("cov_rg" , fabsf(rg_cov)); |
1153 | trace_add_data("cov_rb" , fabsf(rb_cov)); |
1154 | trace_add_data("cov_ra" , fabsf(ra_cov)); |
1155 | trace_add_data("cov_gb" , fabsf(gb_cov)); |
1156 | trace_add_data("cov_ga" , fabsf(ga_cov)); |
1157 | trace_add_data("cov_ba" , fabsf(ba_cov)); |
1158 | |
1159 | return lowest_correlation; |
1160 | } |
1161 | |
1162 | /* See header for documentation. */ |
1163 | void compress_block( |
1164 | const astcenc_contexti& ctx, |
1165 | const image_block& blk, |
1166 | physical_compressed_block& pcb, |
1167 | compression_working_buffers& tmpbuf) |
1168 | { |
1169 | astcenc_profile decode_mode = ctx.config.profile; |
1170 | symbolic_compressed_block scb; |
1171 | const block_size_descriptor& bsd = *ctx.bsd; |
1172 | float lowest_correl; |
1173 | |
1174 | TRACE_NODE(node0, "block" ); |
1175 | trace_add_data("pos_x" , blk.xpos); |
1176 | trace_add_data("pos_y" , blk.ypos); |
1177 | trace_add_data("pos_z" , blk.zpos); |
1178 | |
1179 | // Set stricter block targets for luminance data as we have more bits to play with |
1180 | bool block_is_l = blk.is_luminance(); |
1181 | float block_is_l_scale = block_is_l ? 1.0f / 1.5f : 1.0f; |
1182 | |
1183 | // Set slightly stricter block targets for lumalpha data as we have more bits to play with |
1184 | bool block_is_la = blk.is_luminancealpha(); |
1185 | float block_is_la_scale = block_is_la ? 1.0f / 1.05f : 1.0f; |
1186 | |
1187 | bool block_skip_two_plane = false; |
1188 | int max_partitions = ctx.config.tune_partition_count_limit; |
1189 | |
1190 | unsigned int requested_partition_indices[3] { |
1191 | ctx.config.tune_2partition_index_limit, |
1192 | ctx.config.tune_3partition_index_limit, |
1193 | ctx.config.tune_4partition_index_limit |
1194 | }; |
1195 | |
1196 | unsigned int requested_partition_trials[3] { |
1197 | ctx.config.tune_2partitioning_candidate_limit, |
1198 | ctx.config.tune_3partitioning_candidate_limit, |
1199 | ctx.config.tune_4partitioning_candidate_limit |
1200 | }; |
1201 | |
1202 | #if defined(ASTCENC_DIAGNOSTICS) |
1203 | // Do this early in diagnostic builds so we can dump uniform metrics |
1204 | // for every block. Do it later in release builds to avoid redundant work! |
1205 | float error_weight_sum = hadd_s(blk.channel_weight) * bsd.texel_count; |
1206 | float error_threshold = ctx.config.tune_db_limit |
1207 | * error_weight_sum |
1208 | * block_is_l_scale |
1209 | * block_is_la_scale; |
1210 | |
1211 | lowest_correl = prepare_block_statistics(bsd.texel_count, blk); |
1212 | trace_add_data("lowest_correl" , lowest_correl); |
1213 | trace_add_data("tune_error_threshold" , error_threshold); |
1214 | #endif |
1215 | |
1216 | // Detected a constant-color block |
1217 | if (all(blk.data_min == blk.data_max)) |
1218 | { |
1219 | TRACE_NODE(node1, "pass" ); |
1220 | trace_add_data("partition_count" , 0); |
1221 | trace_add_data("plane_count" , 1); |
1222 | |
1223 | scb.partition_count = 0; |
1224 | |
1225 | // Encode as FP16 if using HDR |
1226 | if ((decode_mode == ASTCENC_PRF_HDR) || |
1227 | (decode_mode == ASTCENC_PRF_HDR_RGB_LDR_A)) |
1228 | { |
1229 | scb.block_type = SYM_BTYPE_CONST_F16; |
1230 | vint4 color_f16 = float_to_float16(blk.origin_texel); |
1231 | store(color_f16, scb.constant_color); |
1232 | } |
1233 | // Encode as UNORM16 if NOT using HDR |
1234 | else |
1235 | { |
1236 | scb.block_type = SYM_BTYPE_CONST_U16; |
1237 | vfloat4 color_f32 = clamp(0.0f, 1.0f, blk.origin_texel) * 65535.0f; |
1238 | vint4 color_u16 = float_to_int_rtn(color_f32); |
1239 | store(color_u16, scb.constant_color); |
1240 | } |
1241 | |
1242 | trace_add_data("exit" , "quality hit" ); |
1243 | |
1244 | symbolic_to_physical(bsd, scb, pcb); |
1245 | return; |
1246 | } |
1247 | |
1248 | #if !defined(ASTCENC_DIAGNOSTICS) |
1249 | float error_weight_sum = hadd_s(blk.channel_weight) * bsd.texel_count; |
1250 | float error_threshold = ctx.config.tune_db_limit |
1251 | * error_weight_sum |
1252 | * block_is_l_scale |
1253 | * block_is_la_scale; |
1254 | #endif |
1255 | |
1256 | // Set SCB and mode errors to a very high error value |
1257 | scb.errorval = ERROR_CALC_DEFAULT; |
1258 | scb.block_type = SYM_BTYPE_ERROR; |
1259 | |
1260 | float best_errorvals_for_pcount[BLOCK_MAX_PARTITIONS] { |
1261 | ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT |
1262 | }; |
1263 | |
1264 | float exit_thresholds_for_pcount[BLOCK_MAX_PARTITIONS] { |
1265 | 0.0f, |
1266 | ctx.config.tune_2partition_early_out_limit_factor, |
1267 | ctx.config.tune_3partition_early_out_limit_factor, |
1268 | 0.0f |
1269 | }; |
1270 | |
1271 | // Trial using 1 plane of weights and 1 partition. |
1272 | |
1273 | // Most of the time we test it twice, first with a mode cutoff of 0 and then with the specified |
1274 | // mode cutoff. This causes an early-out that speeds up encoding of easy blocks. However, this |
1275 | // optimization is disabled for 4x4 and 5x4 blocks where it nearly always slows down the |
1276 | // compression and slightly reduces image quality. |
1277 | |
1278 | float errorval_mult[2] { |
1279 | 1.0f / ctx.config.tune_mse_overshoot, |
1280 | 1.0f |
1281 | }; |
1282 | |
1283 | static const float errorval_overshoot = 1.0f / ctx.config.tune_mse_overshoot; |
1284 | |
1285 | // Only enable MODE0 fast path (trial 0) if 2D, and more than 25 texels |
1286 | int start_trial = 1; |
1287 | if ((bsd.texel_count >= TUNE_MIN_TEXELS_MODE0_FASTPATH) && (bsd.zdim == 1)) |
1288 | { |
1289 | start_trial = 0; |
1290 | } |
1291 | |
1292 | int quant_limit = QUANT_32; |
1293 | for (int i = start_trial; i < 2; i++) |
1294 | { |
1295 | TRACE_NODE(node1, "pass" ); |
1296 | trace_add_data("partition_count" , 1); |
1297 | trace_add_data("plane_count" , 1); |
1298 | trace_add_data("search_mode" , i); |
1299 | |
1300 | float errorval = compress_symbolic_block_for_partition_1plane( |
1301 | ctx.config, bsd, blk, i == 0, |
1302 | error_threshold * errorval_mult[i] * errorval_overshoot, |
1303 | 1, 0, scb, tmpbuf, QUANT_32); |
1304 | |
1305 | // Record the quant level so we can use the filter later searches |
1306 | const auto& bm = bsd.get_block_mode(scb.block_mode); |
1307 | quant_limit = bm.get_weight_quant_mode(); |
1308 | |
1309 | best_errorvals_for_pcount[0] = astc::min(best_errorvals_for_pcount[0], errorval); |
1310 | if (errorval < (error_threshold * errorval_mult[i])) |
1311 | { |
1312 | trace_add_data("exit" , "quality hit" ); |
1313 | goto END_OF_TESTS; |
1314 | } |
1315 | } |
1316 | |
1317 | #if !defined(ASTCENC_DIAGNOSTICS) |
1318 | lowest_correl = prepare_block_statistics(bsd.texel_count, blk); |
1319 | #endif |
1320 | |
1321 | block_skip_two_plane = lowest_correl > ctx.config.tune_2plane_early_out_limit_correlation; |
1322 | |
1323 | // Test the four possible 1-partition, 2-planes modes. Do this in reverse, as |
1324 | // alpha is the most likely to be non-correlated if it is present in the data. |
1325 | for (int i = BLOCK_MAX_COMPONENTS - 1; i >= 0; i--) |
1326 | { |
1327 | TRACE_NODE(node1, "pass" ); |
1328 | trace_add_data("partition_count" , 1); |
1329 | trace_add_data("plane_count" , 2); |
1330 | trace_add_data("plane_component" , i); |
1331 | |
1332 | if (block_skip_two_plane) |
1333 | { |
1334 | trace_add_data("skip" , "tune_2plane_early_out_limit_correlation" ); |
1335 | continue; |
1336 | } |
1337 | |
1338 | if (blk.grayscale && i != 3) |
1339 | { |
1340 | trace_add_data("skip" , "grayscale block" ); |
1341 | continue; |
1342 | } |
1343 | |
1344 | if (blk.is_constant_channel(i)) |
1345 | { |
1346 | trace_add_data("skip" , "constant component" ); |
1347 | continue; |
1348 | } |
1349 | |
1350 | float errorval = compress_symbolic_block_for_partition_2planes( |
1351 | ctx.config, bsd, blk, error_threshold * errorval_overshoot, |
1352 | i, scb, tmpbuf, quant_limit); |
1353 | |
1354 | // If attempting two planes is much worse than the best one plane result |
1355 | // then further two plane searches are unlikely to help so move on ... |
1356 | if (errorval > (best_errorvals_for_pcount[0] * 1.85f)) |
1357 | { |
1358 | break; |
1359 | } |
1360 | |
1361 | if (errorval < error_threshold) |
1362 | { |
1363 | trace_add_data("exit" , "quality hit" ); |
1364 | goto END_OF_TESTS; |
1365 | } |
1366 | } |
1367 | |
1368 | // Find best blocks for 2, 3 and 4 partitions |
1369 | for (int partition_count = 2; partition_count <= max_partitions; partition_count++) |
1370 | { |
1371 | unsigned int partition_indices[TUNE_MAX_PARTITIONING_CANDIDATES]; |
1372 | |
1373 | unsigned int requested_indices = requested_partition_indices[partition_count - 2]; |
1374 | |
1375 | unsigned int requested_trials = requested_partition_trials[partition_count - 2]; |
1376 | requested_trials = astc::min(requested_trials, requested_indices); |
1377 | |
1378 | unsigned int actual_trials = find_best_partition_candidates( |
1379 | bsd, blk, partition_count, requested_indices, partition_indices, requested_trials); |
1380 | |
1381 | float best_error_in_prev = best_errorvals_for_pcount[partition_count - 2]; |
1382 | |
1383 | for (unsigned int i = 0; i < actual_trials; i++) |
1384 | { |
1385 | TRACE_NODE(node1, "pass" ); |
1386 | trace_add_data("partition_count" , partition_count); |
1387 | trace_add_data("partition_index" , partition_indices[i]); |
1388 | trace_add_data("plane_count" , 1); |
1389 | trace_add_data("search_mode" , i); |
1390 | |
1391 | float errorval = compress_symbolic_block_for_partition_1plane( |
1392 | ctx.config, bsd, blk, false, |
1393 | error_threshold * errorval_overshoot, |
1394 | partition_count, partition_indices[i], |
1395 | scb, tmpbuf, quant_limit); |
1396 | |
1397 | best_errorvals_for_pcount[partition_count - 1] = astc::min(best_errorvals_for_pcount[partition_count - 1], errorval); |
1398 | |
1399 | // If using N partitions doesn't improve much over using N-1 partitions then skip trying |
1400 | // N+1. Error can dramatically improve if the data is correlated or non-correlated and |
1401 | // aligns with a partitioning that suits that encoding, so for this inner loop check add |
1402 | // a large error scale because the "other" trial could be a lot better. |
1403 | float best_error = best_errorvals_for_pcount[partition_count - 1]; |
1404 | float best_error_scale = exit_thresholds_for_pcount[partition_count - 1] * 1.85f; |
1405 | if (best_error > (best_error_in_prev * best_error_scale)) |
1406 | { |
1407 | trace_add_data("skip" , "tune_partition_early_out_limit_factor" ); |
1408 | goto END_OF_TESTS; |
1409 | } |
1410 | |
1411 | if (errorval < error_threshold) |
1412 | { |
1413 | trace_add_data("exit" , "quality hit" ); |
1414 | goto END_OF_TESTS; |
1415 | } |
1416 | } |
1417 | |
1418 | // If using N partitions doesn't improve much over using N-1 partitions then skip trying N+1 |
1419 | float best_error = best_errorvals_for_pcount[partition_count - 1]; |
1420 | float best_error_scale = exit_thresholds_for_pcount[partition_count - 1]; |
1421 | if (best_error > (best_error_in_prev * best_error_scale)) |
1422 | { |
1423 | trace_add_data("skip" , "tune_partition_early_out_limit_factor" ); |
1424 | goto END_OF_TESTS; |
1425 | } |
1426 | } |
1427 | |
1428 | trace_add_data("exit" , "quality not hit" ); |
1429 | |
1430 | END_OF_TESTS: |
1431 | // If we still have an error block then convert to something we can encode |
1432 | // TODO: Do something more sensible here, such as average color block |
1433 | if (scb.block_type == SYM_BTYPE_ERROR) |
1434 | { |
1435 | #if defined(ASTCENC_DIAGNOSTICS) |
1436 | static bool printed_once = false; |
1437 | if (!printed_once) |
1438 | { |
1439 | printed_once = true; |
1440 | printf("WARN: At least one block failed to find a valid encoding.\n" |
1441 | " Try increasing compression quality settings.\n\n" ); |
1442 | } |
1443 | #endif |
1444 | |
1445 | scb.block_type = SYM_BTYPE_CONST_U16; |
1446 | vfloat4 color_f32 = clamp(0.0f, 1.0f, blk.origin_texel) * 65535.0f; |
1447 | vint4 color_u16 = float_to_int_rtn(color_f32); |
1448 | store(color_u16, scb.constant_color); |
1449 | } |
1450 | |
1451 | // Compress to a physical block |
1452 | symbolic_to_physical(bsd, scb, pcb); |
1453 | } |
1454 | |
1455 | #endif |
1456 | |