| 1 | // SPDX-License-Identifier: Apache-2.0 |
| 2 | // ---------------------------------------------------------------------------- |
| 3 | // Copyright 2011-2023 Arm Limited |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| 6 | // use this file except in compliance with the License. You may obtain a copy |
| 7 | // of the License at: |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, software |
| 12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 14 | // License for the specific language governing permissions and limitations |
| 15 | // under the License. |
| 16 | // ---------------------------------------------------------------------------- |
| 17 | |
| 18 | #if !defined(ASTCENC_DECOMPRESS_ONLY) |
| 19 | |
| 20 | /** |
| 21 | * @brief Functions for computing color endpoints and texel weights. |
| 22 | */ |
| 23 | |
| 24 | #include <cassert> |
| 25 | |
| 26 | #include "astcenc_internal.h" |
| 27 | #include "astcenc_vecmathlib.h" |
| 28 | |
| 29 | /** |
| 30 | * @brief Compute the infilled weight for N texel indices in a decimated grid. |
| 31 | * |
| 32 | * @param di The weight grid decimation to use. |
| 33 | * @param weights The decimated weight values to use. |
| 34 | * @param index The first texel index to interpolate. |
| 35 | * |
| 36 | * @return The interpolated weight for the given set of SIMD_WIDTH texels. |
| 37 | */ |
| 38 | static vfloat bilinear_infill_vla( |
| 39 | const decimation_info& di, |
| 40 | const float* weights, |
| 41 | unsigned int index |
| 42 | ) { |
| 43 | // Load the bilinear filter texel weight indexes in the decimated grid |
| 44 | vint weight_idx0 = vint(di.texel_weights_tr[0] + index); |
| 45 | vint weight_idx1 = vint(di.texel_weights_tr[1] + index); |
| 46 | vint weight_idx2 = vint(di.texel_weights_tr[2] + index); |
| 47 | vint weight_idx3 = vint(di.texel_weights_tr[3] + index); |
| 48 | |
| 49 | // Load the bilinear filter weights from the decimated grid |
| 50 | vfloat weight_val0 = gatherf(weights, weight_idx0); |
| 51 | vfloat weight_val1 = gatherf(weights, weight_idx1); |
| 52 | vfloat weight_val2 = gatherf(weights, weight_idx2); |
| 53 | vfloat weight_val3 = gatherf(weights, weight_idx3); |
| 54 | |
| 55 | // Load the weight contribution factors for each decimated weight |
| 56 | vfloat tex_weight_float0 = loada(di.texel_weight_contribs_float_tr[0] + index); |
| 57 | vfloat tex_weight_float1 = loada(di.texel_weight_contribs_float_tr[1] + index); |
| 58 | vfloat tex_weight_float2 = loada(di.texel_weight_contribs_float_tr[2] + index); |
| 59 | vfloat tex_weight_float3 = loada(di.texel_weight_contribs_float_tr[3] + index); |
| 60 | |
| 61 | // Compute the bilinear interpolation to generate the per-texel weight |
| 62 | return (weight_val0 * tex_weight_float0 + weight_val1 * tex_weight_float1) + |
| 63 | (weight_val2 * tex_weight_float2 + weight_val3 * tex_weight_float3); |
| 64 | } |
| 65 | |
| 66 | /** |
| 67 | * @brief Compute the infilled weight for N texel indices in a decimated grid. |
| 68 | * |
| 69 | * This is specialized version which computes only two weights per texel for |
| 70 | * encodings that are only decimated in a single axis. |
| 71 | * |
| 72 | * @param di The weight grid decimation to use. |
| 73 | * @param weights The decimated weight values to use. |
| 74 | * @param index The first texel index to interpolate. |
| 75 | * |
| 76 | * @return The interpolated weight for the given set of SIMD_WIDTH texels. |
| 77 | */ |
| 78 | static vfloat bilinear_infill_vla_2( |
| 79 | const decimation_info& di, |
| 80 | const float* weights, |
| 81 | unsigned int index |
| 82 | ) { |
| 83 | // Load the bilinear filter texel weight indexes in the decimated grid |
| 84 | vint weight_idx0 = vint(di.texel_weights_tr[0] + index); |
| 85 | vint weight_idx1 = vint(di.texel_weights_tr[1] + index); |
| 86 | |
| 87 | // Load the bilinear filter weights from the decimated grid |
| 88 | vfloat weight_val0 = gatherf(weights, weight_idx0); |
| 89 | vfloat weight_val1 = gatherf(weights, weight_idx1); |
| 90 | |
| 91 | // Load the weight contribution factors for each decimated weight |
| 92 | vfloat tex_weight_float0 = loada(di.texel_weight_contribs_float_tr[0] + index); |
| 93 | vfloat tex_weight_float1 = loada(di.texel_weight_contribs_float_tr[1] + index); |
| 94 | |
| 95 | // Compute the bilinear interpolation to generate the per-texel weight |
| 96 | return (weight_val0 * tex_weight_float0 + weight_val1 * tex_weight_float1); |
| 97 | } |
| 98 | |
| 99 | /** |
| 100 | * @brief Compute the ideal endpoints and weights for 1 color component. |
| 101 | * |
| 102 | * @param blk The image block color data to compress. |
| 103 | * @param pi The partition info for the current trial. |
| 104 | * @param[out] ei The computed ideal endpoints and weights. |
| 105 | * @param component The color component to compute. |
| 106 | */ |
| 107 | static void compute_ideal_colors_and_weights_1_comp( |
| 108 | const image_block& blk, |
| 109 | const partition_info& pi, |
| 110 | endpoints_and_weights& ei, |
| 111 | unsigned int component |
| 112 | ) { |
| 113 | unsigned int partition_count = pi.partition_count; |
| 114 | ei.ep.partition_count = partition_count; |
| 115 | promise(partition_count > 0); |
| 116 | |
| 117 | unsigned int texel_count = blk.texel_count; |
| 118 | promise(texel_count > 0); |
| 119 | |
| 120 | float error_weight; |
| 121 | const float* data_vr = nullptr; |
| 122 | |
| 123 | assert(component < BLOCK_MAX_COMPONENTS); |
| 124 | switch (component) |
| 125 | { |
| 126 | case 0: |
| 127 | error_weight = blk.channel_weight.lane<0>(); |
| 128 | data_vr = blk.data_r; |
| 129 | break; |
| 130 | case 1: |
| 131 | error_weight = blk.channel_weight.lane<1>(); |
| 132 | data_vr = blk.data_g; |
| 133 | break; |
| 134 | case 2: |
| 135 | error_weight = blk.channel_weight.lane<2>(); |
| 136 | data_vr = blk.data_b; |
| 137 | break; |
| 138 | default: |
| 139 | assert(component == 3); |
| 140 | error_weight = blk.channel_weight.lane<3>(); |
| 141 | data_vr = blk.data_a; |
| 142 | break; |
| 143 | } |
| 144 | |
| 145 | vmask4 sep_mask = vint4::lane_id() == vint4(component); |
| 146 | bool is_constant_wes { true }; |
| 147 | float partition0_len_sq { 0.0f }; |
| 148 | |
| 149 | for (unsigned int i = 0; i < partition_count; i++) |
| 150 | { |
| 151 | float lowvalue { 1e10f }; |
| 152 | float highvalue { -1e10f }; |
| 153 | |
| 154 | unsigned int partition_texel_count = pi.partition_texel_count[i]; |
| 155 | for (unsigned int j = 0; j < partition_texel_count; j++) |
| 156 | { |
| 157 | unsigned int tix = pi.texels_of_partition[i][j]; |
| 158 | float value = data_vr[tix]; |
| 159 | lowvalue = astc::min(value, lowvalue); |
| 160 | highvalue = astc::max(value, highvalue); |
| 161 | } |
| 162 | |
| 163 | if (highvalue <= lowvalue) |
| 164 | { |
| 165 | lowvalue = 0.0f; |
| 166 | highvalue = 1e-7f; |
| 167 | } |
| 168 | |
| 169 | float length = highvalue - lowvalue; |
| 170 | float length_squared = length * length; |
| 171 | float scale = 1.0f / length; |
| 172 | |
| 173 | if (i == 0) |
| 174 | { |
| 175 | partition0_len_sq = length_squared; |
| 176 | } |
| 177 | else |
| 178 | { |
| 179 | is_constant_wes = is_constant_wes && length_squared == partition0_len_sq; |
| 180 | } |
| 181 | |
| 182 | for (unsigned int j = 0; j < partition_texel_count; j++) |
| 183 | { |
| 184 | unsigned int tix = pi.texels_of_partition[i][j]; |
| 185 | float value = (data_vr[tix] - lowvalue) * scale; |
| 186 | value = astc::clamp1f(value); |
| 187 | |
| 188 | ei.weights[tix] = value; |
| 189 | ei.weight_error_scale[tix] = length_squared * error_weight; |
| 190 | assert(!astc::isnan(ei.weight_error_scale[tix])); |
| 191 | } |
| 192 | |
| 193 | ei.ep.endpt0[i] = select(blk.data_min, vfloat4(lowvalue), sep_mask); |
| 194 | ei.ep.endpt1[i] = select(blk.data_max, vfloat4(highvalue), sep_mask); |
| 195 | } |
| 196 | |
| 197 | // Zero initialize any SIMD over-fetch |
| 198 | unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); |
| 199 | for (unsigned int i = texel_count; i < texel_count_simd; i++) |
| 200 | { |
| 201 | ei.weights[i] = 0.0f; |
| 202 | ei.weight_error_scale[i] = 0.0f; |
| 203 | } |
| 204 | |
| 205 | ei.is_constant_weight_error_scale = is_constant_wes; |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | * @brief Compute the ideal endpoints and weights for 2 color components. |
| 210 | * |
| 211 | * @param blk The image block color data to compress. |
| 212 | * @param pi The partition info for the current trial. |
| 213 | * @param[out] ei The computed ideal endpoints and weights. |
| 214 | * @param component1 The first color component to compute. |
| 215 | * @param component2 The second color component to compute. |
| 216 | */ |
| 217 | static void compute_ideal_colors_and_weights_2_comp( |
| 218 | const image_block& blk, |
| 219 | const partition_info& pi, |
| 220 | endpoints_and_weights& ei, |
| 221 | int component1, |
| 222 | int component2 |
| 223 | ) { |
| 224 | unsigned int partition_count = pi.partition_count; |
| 225 | ei.ep.partition_count = partition_count; |
| 226 | promise(partition_count > 0); |
| 227 | |
| 228 | unsigned int texel_count = blk.texel_count; |
| 229 | promise(texel_count > 0); |
| 230 | |
| 231 | partition_metrics pms[BLOCK_MAX_PARTITIONS]; |
| 232 | |
| 233 | float error_weight; |
| 234 | const float* data_vr = nullptr; |
| 235 | const float* data_vg = nullptr; |
| 236 | |
| 237 | if (component1 == 0 && component2 == 1) |
| 238 | { |
| 239 | error_weight = hadd_s(blk.channel_weight.swz<0, 1>()) / 2.0f; |
| 240 | |
| 241 | data_vr = blk.data_r; |
| 242 | data_vg = blk.data_g; |
| 243 | } |
| 244 | else if (component1 == 0 && component2 == 2) |
| 245 | { |
| 246 | error_weight = hadd_s(blk.channel_weight.swz<0, 2>()) / 2.0f; |
| 247 | |
| 248 | data_vr = blk.data_r; |
| 249 | data_vg = blk.data_b; |
| 250 | } |
| 251 | else // (component1 == 1 && component2 == 2) |
| 252 | { |
| 253 | assert(component1 == 1 && component2 == 2); |
| 254 | |
| 255 | error_weight = hadd_s(blk.channel_weight.swz<1, 2>()) / 2.0f; |
| 256 | |
| 257 | data_vr = blk.data_g; |
| 258 | data_vg = blk.data_b; |
| 259 | } |
| 260 | |
| 261 | compute_avgs_and_dirs_2_comp(pi, blk, component1, component2, pms); |
| 262 | |
| 263 | bool is_constant_wes { true }; |
| 264 | float partition0_len_sq { 0.0f }; |
| 265 | |
| 266 | vmask4 comp1_mask = vint4::lane_id() == vint4(component1); |
| 267 | vmask4 comp2_mask = vint4::lane_id() == vint4(component2); |
| 268 | |
| 269 | for (unsigned int i = 0; i < partition_count; i++) |
| 270 | { |
| 271 | vfloat4 dir = pms[i].dir; |
| 272 | if (hadd_s(dir) < 0.0f) |
| 273 | { |
| 274 | dir = vfloat4::zero() - dir; |
| 275 | } |
| 276 | |
| 277 | line2 line { pms[i].avg, normalize_safe(dir, unit2()) }; |
| 278 | float lowparam { 1e10f }; |
| 279 | float highparam { -1e10f }; |
| 280 | |
| 281 | unsigned int partition_texel_count = pi.partition_texel_count[i]; |
| 282 | for (unsigned int j = 0; j < partition_texel_count; j++) |
| 283 | { |
| 284 | unsigned int tix = pi.texels_of_partition[i][j]; |
| 285 | vfloat4 point = vfloat2(data_vr[tix], data_vg[tix]); |
| 286 | float param = dot_s(point - line.a, line.b); |
| 287 | ei.weights[tix] = param; |
| 288 | |
| 289 | lowparam = astc::min(param, lowparam); |
| 290 | highparam = astc::max(param, highparam); |
| 291 | } |
| 292 | |
| 293 | // It is possible for a uniform-color partition to produce length=0; |
| 294 | // this causes NaN issues so set to small value to avoid this problem |
| 295 | if (highparam <= lowparam) |
| 296 | { |
| 297 | lowparam = 0.0f; |
| 298 | highparam = 1e-7f; |
| 299 | } |
| 300 | |
| 301 | float length = highparam - lowparam; |
| 302 | float length_squared = length * length; |
| 303 | float scale = 1.0f / length; |
| 304 | |
| 305 | if (i == 0) |
| 306 | { |
| 307 | partition0_len_sq = length_squared; |
| 308 | } |
| 309 | else |
| 310 | { |
| 311 | is_constant_wes = is_constant_wes && length_squared == partition0_len_sq; |
| 312 | } |
| 313 | |
| 314 | for (unsigned int j = 0; j < partition_texel_count; j++) |
| 315 | { |
| 316 | unsigned int tix = pi.texels_of_partition[i][j]; |
| 317 | float idx = (ei.weights[tix] - lowparam) * scale; |
| 318 | idx = astc::clamp1f(idx); |
| 319 | |
| 320 | ei.weights[tix] = idx; |
| 321 | ei.weight_error_scale[tix] = length_squared * error_weight; |
| 322 | assert(!astc::isnan(ei.weight_error_scale[tix])); |
| 323 | } |
| 324 | |
| 325 | vfloat4 lowvalue = line.a + line.b * lowparam; |
| 326 | vfloat4 highvalue = line.a + line.b * highparam; |
| 327 | |
| 328 | vfloat4 ep0 = select(blk.data_min, vfloat4(lowvalue.lane<0>()), comp1_mask); |
| 329 | vfloat4 ep1 = select(blk.data_max, vfloat4(highvalue.lane<0>()), comp1_mask); |
| 330 | |
| 331 | ei.ep.endpt0[i] = select(ep0, vfloat4(lowvalue.lane<1>()), comp2_mask); |
| 332 | ei.ep.endpt1[i] = select(ep1, vfloat4(highvalue.lane<1>()), comp2_mask); |
| 333 | } |
| 334 | |
| 335 | // Zero initialize any SIMD over-fetch |
| 336 | unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); |
| 337 | for (unsigned int i = texel_count; i < texel_count_simd; i++) |
| 338 | { |
| 339 | ei.weights[i] = 0.0f; |
| 340 | ei.weight_error_scale[i] = 0.0f; |
| 341 | } |
| 342 | |
| 343 | ei.is_constant_weight_error_scale = is_constant_wes; |
| 344 | } |
| 345 | |
| 346 | /** |
| 347 | * @brief Compute the ideal endpoints and weights for 3 color components. |
| 348 | * |
| 349 | * @param blk The image block color data to compress. |
| 350 | * @param pi The partition info for the current trial. |
| 351 | * @param[out] ei The computed ideal endpoints and weights. |
| 352 | * @param omitted_component The color component excluded from the calculation. |
| 353 | */ |
| 354 | static void compute_ideal_colors_and_weights_3_comp( |
| 355 | const image_block& blk, |
| 356 | const partition_info& pi, |
| 357 | endpoints_and_weights& ei, |
| 358 | unsigned int omitted_component |
| 359 | ) { |
| 360 | unsigned int partition_count = pi.partition_count; |
| 361 | ei.ep.partition_count = partition_count; |
| 362 | promise(partition_count > 0); |
| 363 | |
| 364 | unsigned int texel_count = blk.texel_count; |
| 365 | promise(texel_count > 0); |
| 366 | |
| 367 | partition_metrics pms[BLOCK_MAX_PARTITIONS]; |
| 368 | |
| 369 | float error_weight; |
| 370 | const float* data_vr = nullptr; |
| 371 | const float* data_vg = nullptr; |
| 372 | const float* data_vb = nullptr; |
| 373 | if (omitted_component == 0) |
| 374 | { |
| 375 | error_weight = hadd_s(blk.channel_weight.swz<0, 1, 2>()); |
| 376 | data_vr = blk.data_g; |
| 377 | data_vg = blk.data_b; |
| 378 | data_vb = blk.data_a; |
| 379 | } |
| 380 | else if (omitted_component == 1) |
| 381 | { |
| 382 | error_weight = hadd_s(blk.channel_weight.swz<0, 2, 3>()); |
| 383 | data_vr = blk.data_r; |
| 384 | data_vg = blk.data_b; |
| 385 | data_vb = blk.data_a; |
| 386 | } |
| 387 | else if (omitted_component == 2) |
| 388 | { |
| 389 | error_weight = hadd_s(blk.channel_weight.swz<0, 1, 3>()); |
| 390 | data_vr = blk.data_r; |
| 391 | data_vg = blk.data_g; |
| 392 | data_vb = blk.data_a; |
| 393 | } |
| 394 | else |
| 395 | { |
| 396 | assert(omitted_component == 3); |
| 397 | |
| 398 | error_weight = hadd_s(blk.channel_weight.swz<0, 1, 2>()); |
| 399 | data_vr = blk.data_r; |
| 400 | data_vg = blk.data_g; |
| 401 | data_vb = blk.data_b; |
| 402 | } |
| 403 | |
| 404 | error_weight = error_weight * (1.0f / 3.0f); |
| 405 | |
| 406 | if (omitted_component == 3) |
| 407 | { |
| 408 | compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms); |
| 409 | } |
| 410 | else |
| 411 | { |
| 412 | compute_avgs_and_dirs_3_comp(pi, blk, omitted_component, pms); |
| 413 | } |
| 414 | |
| 415 | bool is_constant_wes { true }; |
| 416 | float partition0_len_sq { 0.0f }; |
| 417 | |
| 418 | for (unsigned int i = 0; i < partition_count; i++) |
| 419 | { |
| 420 | vfloat4 dir = pms[i].dir; |
| 421 | if (hadd_rgb_s(dir) < 0.0f) |
| 422 | { |
| 423 | dir = vfloat4::zero() - dir; |
| 424 | } |
| 425 | |
| 426 | line3 line { pms[i].avg, normalize_safe(dir, unit3()) }; |
| 427 | float lowparam { 1e10f }; |
| 428 | float highparam { -1e10f }; |
| 429 | |
| 430 | unsigned int partition_texel_count = pi.partition_texel_count[i]; |
| 431 | for (unsigned int j = 0; j < partition_texel_count; j++) |
| 432 | { |
| 433 | unsigned int tix = pi.texels_of_partition[i][j]; |
| 434 | vfloat4 point = vfloat3(data_vr[tix], data_vg[tix], data_vb[tix]); |
| 435 | float param = dot3_s(point - line.a, line.b); |
| 436 | ei.weights[tix] = param; |
| 437 | |
| 438 | lowparam = astc::min(param, lowparam); |
| 439 | highparam = astc::max(param, highparam); |
| 440 | } |
| 441 | |
| 442 | // It is possible for a uniform-color partition to produce length=0; |
| 443 | // this causes NaN issues so set to small value to avoid this problem |
| 444 | if (highparam <= lowparam) |
| 445 | { |
| 446 | lowparam = 0.0f; |
| 447 | highparam = 1e-7f; |
| 448 | } |
| 449 | |
| 450 | float length = highparam - lowparam; |
| 451 | float length_squared = length * length; |
| 452 | float scale = 1.0f / length; |
| 453 | |
| 454 | if (i == 0) |
| 455 | { |
| 456 | partition0_len_sq = length_squared; |
| 457 | } |
| 458 | else |
| 459 | { |
| 460 | is_constant_wes = is_constant_wes && length_squared == partition0_len_sq; |
| 461 | } |
| 462 | |
| 463 | for (unsigned int j = 0; j < partition_texel_count; j++) |
| 464 | { |
| 465 | unsigned int tix = pi.texels_of_partition[i][j]; |
| 466 | float idx = (ei.weights[tix] - lowparam) * scale; |
| 467 | idx = astc::clamp1f(idx); |
| 468 | |
| 469 | ei.weights[tix] = idx; |
| 470 | ei.weight_error_scale[tix] = length_squared * error_weight; |
| 471 | assert(!astc::isnan(ei.weight_error_scale[tix])); |
| 472 | } |
| 473 | |
| 474 | vfloat4 ep0 = line.a + line.b * lowparam; |
| 475 | vfloat4 ep1 = line.a + line.b * highparam; |
| 476 | |
| 477 | vfloat4 bmin = blk.data_min; |
| 478 | vfloat4 bmax = blk.data_max; |
| 479 | |
| 480 | assert(omitted_component < BLOCK_MAX_COMPONENTS); |
| 481 | switch (omitted_component) |
| 482 | { |
| 483 | case 0: |
| 484 | ei.ep.endpt0[i] = vfloat4(bmin.lane<0>(), ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>()); |
| 485 | ei.ep.endpt1[i] = vfloat4(bmax.lane<0>(), ep1.lane<0>(), ep1.lane<1>(), ep1.lane<2>()); |
| 486 | break; |
| 487 | case 1: |
| 488 | ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), bmin.lane<1>(), ep0.lane<1>(), ep0.lane<2>()); |
| 489 | ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), bmax.lane<1>(), ep1.lane<1>(), ep1.lane<2>()); |
| 490 | break; |
| 491 | case 2: |
| 492 | ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), bmin.lane<2>(), ep0.lane<2>()); |
| 493 | ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), ep1.lane<1>(), bmax.lane<2>(), ep1.lane<2>()); |
| 494 | break; |
| 495 | default: |
| 496 | ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), bmin.lane<3>()); |
| 497 | ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), ep1.lane<1>(), ep1.lane<2>(), bmax.lane<3>()); |
| 498 | break; |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | // Zero initialize any SIMD over-fetch |
| 503 | unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); |
| 504 | for (unsigned int i = texel_count; i < texel_count_simd; i++) |
| 505 | { |
| 506 | ei.weights[i] = 0.0f; |
| 507 | ei.weight_error_scale[i] = 0.0f; |
| 508 | } |
| 509 | |
| 510 | ei.is_constant_weight_error_scale = is_constant_wes; |
| 511 | } |
| 512 | |
| 513 | /** |
| 514 | * @brief Compute the ideal endpoints and weights for 4 color components. |
| 515 | * |
| 516 | * @param blk The image block color data to compress. |
| 517 | * @param pi The partition info for the current trial. |
| 518 | * @param[out] ei The computed ideal endpoints and weights. |
| 519 | */ |
| 520 | static void compute_ideal_colors_and_weights_4_comp( |
| 521 | const image_block& blk, |
| 522 | const partition_info& pi, |
| 523 | endpoints_and_weights& ei |
| 524 | ) { |
| 525 | const float error_weight = hadd_s(blk.channel_weight) / 4.0f; |
| 526 | |
| 527 | unsigned int partition_count = pi.partition_count; |
| 528 | |
| 529 | unsigned int texel_count = blk.texel_count; |
| 530 | promise(texel_count > 0); |
| 531 | promise(partition_count > 0); |
| 532 | |
| 533 | partition_metrics pms[BLOCK_MAX_PARTITIONS]; |
| 534 | |
| 535 | compute_avgs_and_dirs_4_comp(pi, blk, pms); |
| 536 | |
| 537 | bool is_constant_wes { true }; |
| 538 | float partition0_len_sq { 0.0f }; |
| 539 | |
| 540 | for (unsigned int i = 0; i < partition_count; i++) |
| 541 | { |
| 542 | vfloat4 dir = pms[i].dir; |
| 543 | if (hadd_rgb_s(dir) < 0.0f) |
| 544 | { |
| 545 | dir = vfloat4::zero() - dir; |
| 546 | } |
| 547 | |
| 548 | line4 line { pms[i].avg, normalize_safe(dir, unit4()) }; |
| 549 | float lowparam { 1e10f }; |
| 550 | float highparam { -1e10f }; |
| 551 | |
| 552 | unsigned int partition_texel_count = pi.partition_texel_count[i]; |
| 553 | for (unsigned int j = 0; j < partition_texel_count; j++) |
| 554 | { |
| 555 | unsigned int tix = pi.texels_of_partition[i][j]; |
| 556 | vfloat4 point = blk.texel(tix); |
| 557 | float param = dot_s(point - line.a, line.b); |
| 558 | ei.weights[tix] = param; |
| 559 | |
| 560 | lowparam = astc::min(param, lowparam); |
| 561 | highparam = astc::max(param, highparam); |
| 562 | } |
| 563 | |
| 564 | // It is possible for a uniform-color partition to produce length=0; |
| 565 | // this causes NaN issues so set to small value to avoid this problem |
| 566 | if (highparam <= lowparam) |
| 567 | { |
| 568 | lowparam = 0.0f; |
| 569 | highparam = 1e-7f; |
| 570 | } |
| 571 | |
| 572 | float length = highparam - lowparam; |
| 573 | float length_squared = length * length; |
| 574 | float scale = 1.0f / length; |
| 575 | |
| 576 | if (i == 0) |
| 577 | { |
| 578 | partition0_len_sq = length_squared; |
| 579 | } |
| 580 | else |
| 581 | { |
| 582 | is_constant_wes = is_constant_wes && length_squared == partition0_len_sq; |
| 583 | } |
| 584 | |
| 585 | ei.ep.endpt0[i] = line.a + line.b * lowparam; |
| 586 | ei.ep.endpt1[i] = line.a + line.b * highparam; |
| 587 | |
| 588 | for (unsigned int j = 0; j < partition_texel_count; j++) |
| 589 | { |
| 590 | unsigned int tix = pi.texels_of_partition[i][j]; |
| 591 | float idx = (ei.weights[tix] - lowparam) * scale; |
| 592 | idx = astc::clamp1f(idx); |
| 593 | |
| 594 | ei.weights[tix] = idx; |
| 595 | ei.weight_error_scale[tix] = length_squared * error_weight; |
| 596 | assert(!astc::isnan(ei.weight_error_scale[tix])); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | // Zero initialize any SIMD over-fetch |
| 601 | unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); |
| 602 | for (unsigned int i = texel_count; i < texel_count_simd; i++) |
| 603 | { |
| 604 | ei.weights[i] = 0.0f; |
| 605 | ei.weight_error_scale[i] = 0.0f; |
| 606 | } |
| 607 | |
| 608 | ei.is_constant_weight_error_scale = is_constant_wes; |
| 609 | } |
| 610 | |
| 611 | /* See header for documentation. */ |
| 612 | void compute_ideal_colors_and_weights_1plane( |
| 613 | const image_block& blk, |
| 614 | const partition_info& pi, |
| 615 | endpoints_and_weights& ei |
| 616 | ) { |
| 617 | bool uses_alpha = !blk.is_constant_channel(3); |
| 618 | |
| 619 | if (uses_alpha) |
| 620 | { |
| 621 | compute_ideal_colors_and_weights_4_comp(blk, pi, ei); |
| 622 | } |
| 623 | else |
| 624 | { |
| 625 | compute_ideal_colors_and_weights_3_comp(blk, pi, ei, 3); |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | /* See header for documentation. */ |
| 630 | void compute_ideal_colors_and_weights_2planes( |
| 631 | const block_size_descriptor& bsd, |
| 632 | const image_block& blk, |
| 633 | unsigned int plane2_component, |
| 634 | endpoints_and_weights& ei1, |
| 635 | endpoints_and_weights& ei2 |
| 636 | ) { |
| 637 | const auto& pi = bsd.get_partition_info(1, 0); |
| 638 | bool uses_alpha = !blk.is_constant_channel(3); |
| 639 | |
| 640 | assert(plane2_component < BLOCK_MAX_COMPONENTS); |
| 641 | switch (plane2_component) |
| 642 | { |
| 643 | case 0: // Separate weights for red |
| 644 | if (uses_alpha) |
| 645 | { |
| 646 | compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 0); |
| 647 | } |
| 648 | else |
| 649 | { |
| 650 | compute_ideal_colors_and_weights_2_comp(blk, pi, ei1, 1, 2); |
| 651 | } |
| 652 | compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 0); |
| 653 | break; |
| 654 | |
| 655 | case 1: // Separate weights for green |
| 656 | if (uses_alpha) |
| 657 | { |
| 658 | compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 1); |
| 659 | } |
| 660 | else |
| 661 | { |
| 662 | compute_ideal_colors_and_weights_2_comp(blk, pi, ei1, 0, 2); |
| 663 | } |
| 664 | compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 1); |
| 665 | break; |
| 666 | |
| 667 | case 2: // Separate weights for blue |
| 668 | if (uses_alpha) |
| 669 | { |
| 670 | compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 2); |
| 671 | } |
| 672 | else |
| 673 | { |
| 674 | compute_ideal_colors_and_weights_2_comp(blk, pi, ei1, 0, 1); |
| 675 | } |
| 676 | compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 2); |
| 677 | break; |
| 678 | |
| 679 | default: // Separate weights for alpha |
| 680 | assert(uses_alpha); |
| 681 | compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 3); |
| 682 | compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 3); |
| 683 | break; |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | /* See header for documentation. */ |
| 688 | float compute_error_of_weight_set_1plane( |
| 689 | const endpoints_and_weights& eai, |
| 690 | const decimation_info& di, |
| 691 | const float* dec_weight_quant_uvalue |
| 692 | ) { |
| 693 | vfloatacc error_summav = vfloatacc::zero(); |
| 694 | unsigned int texel_count = di.texel_count; |
| 695 | promise(texel_count > 0); |
| 696 | |
| 697 | // Process SIMD-width chunks, safe to over-fetch - the extra space is zero initialized |
| 698 | if (di.max_texel_weight_count > 2) |
| 699 | { |
| 700 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 701 | { |
| 702 | // Compute the bilinear interpolation of the decimated weight grid |
| 703 | vfloat current_values = bilinear_infill_vla(di, dec_weight_quant_uvalue, i); |
| 704 | |
| 705 | // Compute the error between the computed value and the ideal weight |
| 706 | vfloat actual_values = loada(eai.weights + i); |
| 707 | vfloat diff = current_values - actual_values; |
| 708 | vfloat significance = loada(eai.weight_error_scale + i); |
| 709 | vfloat error = diff * diff * significance; |
| 710 | |
| 711 | haccumulate(error_summav, error); |
| 712 | } |
| 713 | } |
| 714 | else if (di.max_texel_weight_count > 1) |
| 715 | { |
| 716 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 717 | { |
| 718 | // Compute the bilinear interpolation of the decimated weight grid |
| 719 | vfloat current_values = bilinear_infill_vla_2(di, dec_weight_quant_uvalue, i); |
| 720 | |
| 721 | // Compute the error between the computed value and the ideal weight |
| 722 | vfloat actual_values = loada(eai.weights + i); |
| 723 | vfloat diff = current_values - actual_values; |
| 724 | vfloat significance = loada(eai.weight_error_scale + i); |
| 725 | vfloat error = diff * diff * significance; |
| 726 | |
| 727 | haccumulate(error_summav, error); |
| 728 | } |
| 729 | } |
| 730 | else |
| 731 | { |
| 732 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 733 | { |
| 734 | // Load the weight set directly, without interpolation |
| 735 | vfloat current_values = loada(dec_weight_quant_uvalue + i); |
| 736 | |
| 737 | // Compute the error between the computed value and the ideal weight |
| 738 | vfloat actual_values = loada(eai.weights + i); |
| 739 | vfloat diff = current_values - actual_values; |
| 740 | vfloat significance = loada(eai.weight_error_scale + i); |
| 741 | vfloat error = diff * diff * significance; |
| 742 | |
| 743 | haccumulate(error_summav, error); |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | // Resolve the final scalar accumulator sum |
| 748 | return hadd_s(error_summav); |
| 749 | } |
| 750 | |
| 751 | /* See header for documentation. */ |
| 752 | float compute_error_of_weight_set_2planes( |
| 753 | const endpoints_and_weights& eai1, |
| 754 | const endpoints_and_weights& eai2, |
| 755 | const decimation_info& di, |
| 756 | const float* dec_weight_quant_uvalue_plane1, |
| 757 | const float* dec_weight_quant_uvalue_plane2 |
| 758 | ) { |
| 759 | vfloatacc error_summav = vfloatacc::zero(); |
| 760 | unsigned int texel_count = di.texel_count; |
| 761 | promise(texel_count > 0); |
| 762 | |
| 763 | // Process SIMD-width chunks, safe to over-fetch - the extra space is zero initialized |
| 764 | if (di.max_texel_weight_count > 2) |
| 765 | { |
| 766 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 767 | { |
| 768 | // Plane 1 |
| 769 | // Compute the bilinear interpolation of the decimated weight grid |
| 770 | vfloat current_values1 = bilinear_infill_vla(di, dec_weight_quant_uvalue_plane1, i); |
| 771 | |
| 772 | // Compute the error between the computed value and the ideal weight |
| 773 | vfloat actual_values1 = loada(eai1.weights + i); |
| 774 | vfloat diff = current_values1 - actual_values1; |
| 775 | vfloat error1 = diff * diff * loada(eai1.weight_error_scale + i); |
| 776 | |
| 777 | // Plane 2 |
| 778 | // Compute the bilinear interpolation of the decimated weight grid |
| 779 | vfloat current_values2 = bilinear_infill_vla(di, dec_weight_quant_uvalue_plane2, i); |
| 780 | |
| 781 | // Compute the error between the computed value and the ideal weight |
| 782 | vfloat actual_values2 = loada(eai2.weights + i); |
| 783 | diff = current_values2 - actual_values2; |
| 784 | vfloat error2 = diff * diff * loada(eai2.weight_error_scale + i); |
| 785 | |
| 786 | haccumulate(error_summav, error1 + error2); |
| 787 | } |
| 788 | } |
| 789 | else if (di.max_texel_weight_count > 1) |
| 790 | { |
| 791 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 792 | { |
| 793 | // Plane 1 |
| 794 | // Compute the bilinear interpolation of the decimated weight grid |
| 795 | vfloat current_values1 = bilinear_infill_vla_2(di, dec_weight_quant_uvalue_plane1, i); |
| 796 | |
| 797 | // Compute the error between the computed value and the ideal weight |
| 798 | vfloat actual_values1 = loada(eai1.weights + i); |
| 799 | vfloat diff = current_values1 - actual_values1; |
| 800 | vfloat error1 = diff * diff * loada(eai1.weight_error_scale + i); |
| 801 | |
| 802 | // Plane 2 |
| 803 | // Compute the bilinear interpolation of the decimated weight grid |
| 804 | vfloat current_values2 = bilinear_infill_vla_2(di, dec_weight_quant_uvalue_plane2, i); |
| 805 | |
| 806 | // Compute the error between the computed value and the ideal weight |
| 807 | vfloat actual_values2 = loada(eai2.weights + i); |
| 808 | diff = current_values2 - actual_values2; |
| 809 | vfloat error2 = diff * diff * loada(eai2.weight_error_scale + i); |
| 810 | |
| 811 | haccumulate(error_summav, error1 + error2); |
| 812 | } |
| 813 | } |
| 814 | else |
| 815 | { |
| 816 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 817 | { |
| 818 | // Plane 1 |
| 819 | // Load the weight set directly, without interpolation |
| 820 | vfloat current_values1 = loada(dec_weight_quant_uvalue_plane1 + i); |
| 821 | |
| 822 | // Compute the error between the computed value and the ideal weight |
| 823 | vfloat actual_values1 = loada(eai1.weights + i); |
| 824 | vfloat diff = current_values1 - actual_values1; |
| 825 | vfloat error1 = diff * diff * loada(eai1.weight_error_scale + i); |
| 826 | |
| 827 | // Plane 2 |
| 828 | // Load the weight set directly, without interpolation |
| 829 | vfloat current_values2 = loada(dec_weight_quant_uvalue_plane2 + i); |
| 830 | |
| 831 | // Compute the error between the computed value and the ideal weight |
| 832 | vfloat actual_values2 = loada(eai2.weights + i); |
| 833 | diff = current_values2 - actual_values2; |
| 834 | vfloat error2 = diff * diff * loada(eai2.weight_error_scale + i); |
| 835 | |
| 836 | haccumulate(error_summav, error1 + error2); |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | // Resolve the final scalar accumulator sum |
| 841 | return hadd_s(error_summav); |
| 842 | } |
| 843 | |
| 844 | /* See header for documentation. */ |
| 845 | void compute_ideal_weights_for_decimation( |
| 846 | const endpoints_and_weights& ei, |
| 847 | const decimation_info& di, |
| 848 | float* dec_weight_ideal_value |
| 849 | ) { |
| 850 | unsigned int texel_count = di.texel_count; |
| 851 | unsigned int weight_count = di.weight_count; |
| 852 | bool is_direct = texel_count == weight_count; |
| 853 | promise(texel_count > 0); |
| 854 | promise(weight_count > 0); |
| 855 | |
| 856 | // Ensure that the end of the output arrays that are used for SIMD paths later are filled so we |
| 857 | // can safely run SIMD elsewhere without a loop tail. Note that this is always safe as weight |
| 858 | // arrays always contain space for 64 elements |
| 859 | unsigned int prev_weight_count_simd = round_down_to_simd_multiple_vla(weight_count - 1); |
| 860 | storea(vfloat::zero(), dec_weight_ideal_value + prev_weight_count_simd); |
| 861 | |
| 862 | // If we have a 1:1 mapping just shortcut the computation. Transfer enough to also copy the |
| 863 | // zero-initialized SIMD over-fetch region |
| 864 | if (is_direct) |
| 865 | { |
| 866 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 867 | { |
| 868 | vfloat weight(ei.weights + i); |
| 869 | storea(weight, dec_weight_ideal_value + i); |
| 870 | } |
| 871 | |
| 872 | return; |
| 873 | } |
| 874 | |
| 875 | // Otherwise compute an estimate and perform single refinement iteration |
| 876 | alignas(ASTCENC_VECALIGN) float infilled_weights[BLOCK_MAX_TEXELS]; |
| 877 | |
| 878 | // Compute an initial average for each decimated weight |
| 879 | bool constant_wes = ei.is_constant_weight_error_scale; |
| 880 | vfloat weight_error_scale(ei.weight_error_scale[0]); |
| 881 | |
| 882 | // This overshoots - this is OK as we initialize the array tails in the |
| 883 | // decimation table structures to safe values ... |
| 884 | for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) |
| 885 | { |
| 886 | // Start with a small value to avoid div-by-zero later |
| 887 | vfloat weight_weight(1e-10f); |
| 888 | vfloat initial_weight = vfloat::zero(); |
| 889 | |
| 890 | // Accumulate error weighting of all the texels using this weight |
| 891 | vint weight_texel_count(di.weight_texel_count + i); |
| 892 | unsigned int max_texel_count = hmax(weight_texel_count).lane<0>(); |
| 893 | promise(max_texel_count > 0); |
| 894 | |
| 895 | for (unsigned int j = 0; j < max_texel_count; j++) |
| 896 | { |
| 897 | vint texel(di.weight_texels_tr[j] + i); |
| 898 | vfloat weight = loada(di.weights_texel_contribs_tr[j] + i); |
| 899 | |
| 900 | if (!constant_wes) |
| 901 | { |
| 902 | weight_error_scale = gatherf(ei.weight_error_scale, texel); |
| 903 | } |
| 904 | |
| 905 | vfloat contrib_weight = weight * weight_error_scale; |
| 906 | |
| 907 | weight_weight += contrib_weight; |
| 908 | initial_weight += gatherf(ei.weights, texel) * contrib_weight; |
| 909 | } |
| 910 | |
| 911 | storea(initial_weight / weight_weight, dec_weight_ideal_value + i); |
| 912 | } |
| 913 | |
| 914 | // Populate the interpolated weight grid based on the initial average |
| 915 | // Process SIMD-width texel coordinates at at time while we can. Safe to |
| 916 | // over-process full SIMD vectors - the tail is zeroed. |
| 917 | if (di.max_texel_weight_count <= 2) |
| 918 | { |
| 919 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 920 | { |
| 921 | vfloat weight = bilinear_infill_vla_2(di, dec_weight_ideal_value, i); |
| 922 | storea(weight, infilled_weights + i); |
| 923 | } |
| 924 | } |
| 925 | else |
| 926 | { |
| 927 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 928 | { |
| 929 | vfloat weight = bilinear_infill_vla(di, dec_weight_ideal_value, i); |
| 930 | storea(weight, infilled_weights + i); |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | // Perform a single iteration of refinement |
| 935 | // Empirically determined step size; larger values don't help but smaller drops image quality |
| 936 | constexpr float stepsize = 0.25f; |
| 937 | constexpr float chd_scale = -WEIGHTS_TEXEL_SUM; |
| 938 | |
| 939 | for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) |
| 940 | { |
| 941 | vfloat weight_val = loada(dec_weight_ideal_value + i); |
| 942 | |
| 943 | // Accumulate error weighting of all the texels using this weight |
| 944 | // Start with a small value to avoid div-by-zero later |
| 945 | vfloat error_change0(1e-10f); |
| 946 | vfloat error_change1(0.0f); |
| 947 | |
| 948 | // Accumulate error weighting of all the texels using this weight |
| 949 | vint weight_texel_count(di.weight_texel_count + i); |
| 950 | unsigned int max_texel_count = hmax(weight_texel_count).lane<0>(); |
| 951 | promise(max_texel_count > 0); |
| 952 | |
| 953 | for (unsigned int j = 0; j < max_texel_count; j++) |
| 954 | { |
| 955 | vint texel(di.weight_texels_tr[j] + i); |
| 956 | vfloat contrib_weight = loada(di.weights_texel_contribs_tr[j] + i); |
| 957 | |
| 958 | if (!constant_wes) |
| 959 | { |
| 960 | weight_error_scale = gatherf(ei.weight_error_scale, texel); |
| 961 | } |
| 962 | |
| 963 | vfloat scale = weight_error_scale * contrib_weight; |
| 964 | vfloat old_weight = gatherf(infilled_weights, texel); |
| 965 | vfloat ideal_weight = gatherf(ei.weights, texel); |
| 966 | |
| 967 | error_change0 += contrib_weight * scale; |
| 968 | error_change1 += (old_weight - ideal_weight) * scale; |
| 969 | } |
| 970 | |
| 971 | vfloat step = (error_change1 * chd_scale) / error_change0; |
| 972 | step = clamp(-stepsize, stepsize, step); |
| 973 | |
| 974 | // Update the weight; note this can store negative values |
| 975 | storea(weight_val + step, dec_weight_ideal_value + i); |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | /* See header for documentation. */ |
| 980 | void compute_quantized_weights_for_decimation( |
| 981 | const decimation_info& di, |
| 982 | float low_bound, |
| 983 | float high_bound, |
| 984 | const float* dec_weight_ideal_value, |
| 985 | float* weight_set_out, |
| 986 | uint8_t* quantized_weight_set, |
| 987 | quant_method quant_level |
| 988 | ) { |
| 989 | int weight_count = di.weight_count; |
| 990 | promise(weight_count > 0); |
| 991 | const quant_and_transfer_table& qat = quant_and_xfer_tables[quant_level]; |
| 992 | |
| 993 | // The available quant levels, stored with a minus 1 bias |
| 994 | static const float quant_levels_m1[12] { |
| 995 | 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 7.0f, 9.0f, 11.0f, 15.0f, 19.0f, 23.0f, 31.0f |
| 996 | }; |
| 997 | |
| 998 | vint steps_m1(get_quant_level(quant_level) - 1); |
| 999 | float quant_level_m1 = quant_levels_m1[quant_level]; |
| 1000 | |
| 1001 | // Quantize the weight set using both the specified low/high bounds and standard 0..1 bounds |
| 1002 | |
| 1003 | // TODO: Oddity to investigate; triggered by test in issue #265. |
| 1004 | if (high_bound <= low_bound) |
| 1005 | { |
| 1006 | low_bound = 0.0f; |
| 1007 | high_bound = 1.0f; |
| 1008 | } |
| 1009 | |
| 1010 | float rscale = high_bound - low_bound; |
| 1011 | float scale = 1.0f / rscale; |
| 1012 | |
| 1013 | float scaled_low_bound = low_bound * scale; |
| 1014 | rscale *= 1.0f / 64.0f; |
| 1015 | |
| 1016 | vfloat scalev(scale); |
| 1017 | vfloat scaled_low_boundv(scaled_low_bound); |
| 1018 | vfloat quant_level_m1v(quant_level_m1); |
| 1019 | vfloat rscalev(rscale); |
| 1020 | vfloat low_boundv(low_bound); |
| 1021 | |
| 1022 | // This runs to the rounded-up SIMD size, which is safe as the loop tail is filled with known |
| 1023 | // safe data in compute_ideal_weights_for_decimation and arrays are always 64 elements |
| 1024 | if (get_quant_level(quant_level) <= 16) |
| 1025 | { |
| 1026 | vint4 tab0(reinterpret_cast<const int*>(qat.quant_to_unquant)); |
| 1027 | vint tab0p; |
| 1028 | vtable_prepare(tab0, tab0p); |
| 1029 | |
| 1030 | for (int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) |
| 1031 | { |
| 1032 | vfloat ix = loada(dec_weight_ideal_value + i) * scalev - scaled_low_boundv; |
| 1033 | ix = clampzo(ix); |
| 1034 | |
| 1035 | // Look up the two closest indexes and return the one that was closest |
| 1036 | vfloat ix1 = ix * quant_level_m1v; |
| 1037 | |
| 1038 | vint weightl = float_to_int(ix1); |
| 1039 | vint weighth = min(weightl + vint(1), steps_m1); |
| 1040 | |
| 1041 | vint ixli = vtable_8bt_32bi(tab0p, weightl); |
| 1042 | vint ixhi = vtable_8bt_32bi(tab0p, weighth); |
| 1043 | |
| 1044 | vfloat ixl = int_to_float(ixli); |
| 1045 | vfloat ixh = int_to_float(ixhi); |
| 1046 | |
| 1047 | vmask mask = (ixl + ixh) < (vfloat(128.0f) * ix); |
| 1048 | vint weight = select(ixli, ixhi, mask); |
| 1049 | ixl = select(ixl, ixh, mask); |
| 1050 | |
| 1051 | // Invert the weight-scaling that was done initially |
| 1052 | storea(ixl * rscalev + low_boundv, weight_set_out + i); |
| 1053 | vint scn = pack_low_bytes(weight); |
| 1054 | store_nbytes(scn, quantized_weight_set + i); |
| 1055 | } |
| 1056 | } |
| 1057 | else |
| 1058 | { |
| 1059 | vint4 tab0(reinterpret_cast<const int*>(qat.quant_to_unquant)); |
| 1060 | vint4 tab1(reinterpret_cast<const int*>(qat.quant_to_unquant + 16)); |
| 1061 | vint tab0p, tab1p; |
| 1062 | vtable_prepare(tab0, tab1, tab0p, tab1p); |
| 1063 | |
| 1064 | for (int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) |
| 1065 | { |
| 1066 | vfloat ix = loada(dec_weight_ideal_value + i) * scalev - scaled_low_boundv; |
| 1067 | ix = clampzo(ix); |
| 1068 | |
| 1069 | // Look up the two closest indexes and return the one that was closest |
| 1070 | vfloat ix1 = ix * quant_level_m1v; |
| 1071 | |
| 1072 | vint weightl = float_to_int(ix1); |
| 1073 | vint weighth = min(weightl + vint(1), steps_m1); |
| 1074 | |
| 1075 | vint ixli = vtable_8bt_32bi(tab0p, tab1p, weightl); |
| 1076 | vint ixhi = vtable_8bt_32bi(tab0p, tab1p, weighth); |
| 1077 | |
| 1078 | vfloat ixl = int_to_float(ixli); |
| 1079 | vfloat ixh = int_to_float(ixhi); |
| 1080 | |
| 1081 | vmask mask = (ixl + ixh) < (vfloat(128.0f) * ix); |
| 1082 | vint weight = select(ixli, ixhi, mask); |
| 1083 | ixl = select(ixl, ixh, mask); |
| 1084 | |
| 1085 | // Invert the weight-scaling that was done initially |
| 1086 | storea(ixl * rscalev + low_boundv, weight_set_out + i); |
| 1087 | vint scn = pack_low_bytes(weight); |
| 1088 | store_nbytes(scn, quantized_weight_set + i); |
| 1089 | } |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | /** |
| 1094 | * @brief Compute the RGB + offset for a HDR endpoint mode #7. |
| 1095 | * |
| 1096 | * Since the matrix needed has a regular structure we can simplify the inverse calculation. This |
| 1097 | * gives us ~24 multiplications vs. 96 for a generic inverse. |
| 1098 | * |
| 1099 | * mat[0] = vfloat4(rgba_ws.x, 0.0f, 0.0f, wght_ws.x); |
| 1100 | * mat[1] = vfloat4( 0.0f, rgba_ws.y, 0.0f, wght_ws.y); |
| 1101 | * mat[2] = vfloat4( 0.0f, 0.0f, rgba_ws.z, wght_ws.z); |
| 1102 | * mat[3] = vfloat4(wght_ws.x, wght_ws.y, wght_ws.z, psum); |
| 1103 | * mat = invert(mat); |
| 1104 | * |
| 1105 | * @param rgba_weight_sum Sum of partition component error weights. |
| 1106 | * @param weight_weight_sum Sum of partition component error weights * texel weight. |
| 1107 | * @param rgbq_sum Sum of partition component error weights * texel weight * color data. |
| 1108 | * @param psum Sum of RGB color weights * texel weight^2. |
| 1109 | */ |
| 1110 | static inline vfloat4 compute_rgbo_vector( |
| 1111 | vfloat4 rgba_weight_sum, |
| 1112 | vfloat4 weight_weight_sum, |
| 1113 | vfloat4 rgbq_sum, |
| 1114 | float psum |
| 1115 | ) { |
| 1116 | float X = rgba_weight_sum.lane<0>(); |
| 1117 | float Y = rgba_weight_sum.lane<1>(); |
| 1118 | float Z = rgba_weight_sum.lane<2>(); |
| 1119 | float P = weight_weight_sum.lane<0>(); |
| 1120 | float Q = weight_weight_sum.lane<1>(); |
| 1121 | float R = weight_weight_sum.lane<2>(); |
| 1122 | float S = psum; |
| 1123 | |
| 1124 | float PP = P * P; |
| 1125 | float QQ = Q * Q; |
| 1126 | float RR = R * R; |
| 1127 | |
| 1128 | float SZmRR = S * Z - RR; |
| 1129 | float DT = SZmRR * Y - Z * QQ; |
| 1130 | float YP = Y * P; |
| 1131 | float QX = Q * X; |
| 1132 | float YX = Y * X; |
| 1133 | float mZYP = -Z * YP; |
| 1134 | float mZQX = -Z * QX; |
| 1135 | float mRYX = -R * YX; |
| 1136 | float ZQP = Z * Q * P; |
| 1137 | float RYP = R * YP; |
| 1138 | float RQX = R * QX; |
| 1139 | |
| 1140 | // Compute the reciprocal of matrix determinant |
| 1141 | float rdet = 1.0f / (DT * X + mZYP * P); |
| 1142 | |
| 1143 | // Actually compute the adjugate, and then apply 1/det separately |
| 1144 | vfloat4 mat0(DT, ZQP, RYP, mZYP); |
| 1145 | vfloat4 mat1(ZQP, SZmRR * X - Z * PP, RQX, mZQX); |
| 1146 | vfloat4 mat2(RYP, RQX, (S * Y - QQ) * X - Y * PP, mRYX); |
| 1147 | vfloat4 mat3(mZYP, mZQX, mRYX, Z * YX); |
| 1148 | vfloat4 vect = rgbq_sum * rdet; |
| 1149 | |
| 1150 | return vfloat4(dot_s(mat0, vect), |
| 1151 | dot_s(mat1, vect), |
| 1152 | dot_s(mat2, vect), |
| 1153 | dot_s(mat3, vect)); |
| 1154 | } |
| 1155 | |
| 1156 | /* See header for documentation. */ |
| 1157 | void recompute_ideal_colors_1plane( |
| 1158 | const image_block& blk, |
| 1159 | const partition_info& pi, |
| 1160 | const decimation_info& di, |
| 1161 | const uint8_t* dec_weights_uquant, |
| 1162 | endpoints& ep, |
| 1163 | vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS], |
| 1164 | vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS] |
| 1165 | ) { |
| 1166 | unsigned int weight_count = di.weight_count; |
| 1167 | unsigned int total_texel_count = blk.texel_count; |
| 1168 | unsigned int partition_count = pi.partition_count; |
| 1169 | |
| 1170 | promise(weight_count > 0); |
| 1171 | promise(total_texel_count > 0); |
| 1172 | promise(partition_count > 0); |
| 1173 | |
| 1174 | alignas(ASTCENC_VECALIGN) float dec_weight[BLOCK_MAX_WEIGHTS]; |
| 1175 | for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) |
| 1176 | { |
| 1177 | vint unquant_value(dec_weights_uquant + i); |
| 1178 | vfloat unquant_valuef = int_to_float(unquant_value) * vfloat(1.0f / 64.0f); |
| 1179 | storea(unquant_valuef, dec_weight + i); |
| 1180 | } |
| 1181 | |
| 1182 | alignas(ASTCENC_VECALIGN) float undec_weight[BLOCK_MAX_TEXELS]; |
| 1183 | float* undec_weight_ref; |
| 1184 | if (di.max_texel_weight_count == 1) |
| 1185 | { |
| 1186 | undec_weight_ref = dec_weight; |
| 1187 | } |
| 1188 | else if (di.max_texel_weight_count <= 2) |
| 1189 | { |
| 1190 | for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH) |
| 1191 | { |
| 1192 | vfloat weight = bilinear_infill_vla_2(di, dec_weight, i); |
| 1193 | storea(weight, undec_weight + i); |
| 1194 | } |
| 1195 | |
| 1196 | undec_weight_ref = undec_weight; |
| 1197 | } |
| 1198 | else |
| 1199 | { |
| 1200 | for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH) |
| 1201 | { |
| 1202 | vfloat weight = bilinear_infill_vla(di, dec_weight, i); |
| 1203 | storea(weight, undec_weight + i); |
| 1204 | } |
| 1205 | |
| 1206 | undec_weight_ref = undec_weight; |
| 1207 | } |
| 1208 | |
| 1209 | vfloat4 rgba_sum(blk.data_mean * static_cast<float>(blk.texel_count)); |
| 1210 | |
| 1211 | for (unsigned int i = 0; i < partition_count; i++) |
| 1212 | { |
| 1213 | unsigned int texel_count = pi.partition_texel_count[i]; |
| 1214 | const uint8_t *texel_indexes = pi.texels_of_partition[i]; |
| 1215 | |
| 1216 | // Only compute a partition mean if more than one partition |
| 1217 | if (partition_count > 1) |
| 1218 | { |
| 1219 | rgba_sum = vfloat4::zero(); |
| 1220 | promise(texel_count > 0); |
| 1221 | for (unsigned int j = 0; j < texel_count; j++) |
| 1222 | { |
| 1223 | unsigned int tix = texel_indexes[j]; |
| 1224 | rgba_sum += blk.texel(tix); |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | rgba_sum = rgba_sum * blk.channel_weight; |
| 1229 | vfloat4 rgba_weight_sum = max(blk.channel_weight * static_cast<float>(texel_count), 1e-17f); |
| 1230 | vfloat4 scale_dir = normalize((rgba_sum / rgba_weight_sum).swz<0, 1, 2>()); |
| 1231 | |
| 1232 | float scale_max = 0.0f; |
| 1233 | float scale_min = 1e10f; |
| 1234 | |
| 1235 | float wmin1 = 1.0f; |
| 1236 | float wmax1 = 0.0f; |
| 1237 | |
| 1238 | float left_sum_s = 0.0f; |
| 1239 | float middle_sum_s = 0.0f; |
| 1240 | float right_sum_s = 0.0f; |
| 1241 | |
| 1242 | vfloat4 color_vec_x = vfloat4::zero(); |
| 1243 | vfloat4 color_vec_y = vfloat4::zero(); |
| 1244 | |
| 1245 | vfloat4 scale_vec = vfloat4::zero(); |
| 1246 | |
| 1247 | float weight_weight_sum_s = 1e-17f; |
| 1248 | |
| 1249 | vfloat4 color_weight = blk.channel_weight; |
| 1250 | float ls_weight = hadd_rgb_s(color_weight); |
| 1251 | |
| 1252 | for (unsigned int j = 0; j < texel_count; j++) |
| 1253 | { |
| 1254 | unsigned int tix = texel_indexes[j]; |
| 1255 | vfloat4 rgba = blk.texel(tix); |
| 1256 | |
| 1257 | float idx0 = undec_weight_ref[tix]; |
| 1258 | |
| 1259 | float om_idx0 = 1.0f - idx0; |
| 1260 | wmin1 = astc::min(idx0, wmin1); |
| 1261 | wmax1 = astc::max(idx0, wmax1); |
| 1262 | |
| 1263 | float scale = dot3_s(scale_dir, rgba); |
| 1264 | scale_min = astc::min(scale, scale_min); |
| 1265 | scale_max = astc::max(scale, scale_max); |
| 1266 | |
| 1267 | left_sum_s += om_idx0 * om_idx0; |
| 1268 | middle_sum_s += om_idx0 * idx0; |
| 1269 | right_sum_s += idx0 * idx0; |
| 1270 | weight_weight_sum_s += idx0; |
| 1271 | |
| 1272 | vfloat4 color_idx(idx0); |
| 1273 | vfloat4 cwprod = rgba; |
| 1274 | vfloat4 cwiprod = cwprod * color_idx; |
| 1275 | |
| 1276 | color_vec_y += cwiprod; |
| 1277 | color_vec_x += cwprod - cwiprod; |
| 1278 | |
| 1279 | scale_vec += vfloat2(om_idx0, idx0) * (scale * ls_weight); |
| 1280 | } |
| 1281 | |
| 1282 | vfloat4 left_sum = vfloat4(left_sum_s) * color_weight; |
| 1283 | vfloat4 middle_sum = vfloat4(middle_sum_s) * color_weight; |
| 1284 | vfloat4 right_sum = vfloat4(right_sum_s) * color_weight; |
| 1285 | vfloat4 lmrs_sum = vfloat3(left_sum_s, middle_sum_s, right_sum_s) * ls_weight; |
| 1286 | |
| 1287 | color_vec_x = color_vec_x * color_weight; |
| 1288 | color_vec_y = color_vec_y * color_weight; |
| 1289 | |
| 1290 | // Initialize the luminance and scale vectors with a reasonable default |
| 1291 | float scalediv = scale_min / astc::max(scale_max, 1e-10f); |
| 1292 | scalediv = astc::clamp1f(scalediv); |
| 1293 | |
| 1294 | vfloat4 sds = scale_dir * scale_max; |
| 1295 | |
| 1296 | rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), scalediv); |
| 1297 | |
| 1298 | if (wmin1 >= wmax1 * 0.999f) |
| 1299 | { |
| 1300 | // If all weights in the partition were equal, then just take average of all colors in |
| 1301 | // the partition and use that as both endpoint colors |
| 1302 | vfloat4 avg = (color_vec_x + color_vec_y) / rgba_weight_sum; |
| 1303 | |
| 1304 | vmask4 notnan_mask = avg == avg; |
| 1305 | ep.endpt0[i] = select(ep.endpt0[i], avg, notnan_mask); |
| 1306 | ep.endpt1[i] = select(ep.endpt1[i], avg, notnan_mask); |
| 1307 | |
| 1308 | rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), 1.0f); |
| 1309 | } |
| 1310 | else |
| 1311 | { |
| 1312 | // Otherwise, complete the analytic calculation of ideal-endpoint-values for the given |
| 1313 | // set of texel weights and pixel colors |
| 1314 | vfloat4 color_det1 = (left_sum * right_sum) - (middle_sum * middle_sum); |
| 1315 | vfloat4 color_rdet1 = 1.0f / color_det1; |
| 1316 | |
| 1317 | float ls_det1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<2>()) - (lmrs_sum.lane<1>() * lmrs_sum.lane<1>()); |
| 1318 | float ls_rdet1 = 1.0f / ls_det1; |
| 1319 | |
| 1320 | vfloat4 color_mss1 = (left_sum * left_sum) |
| 1321 | + (2.0f * middle_sum * middle_sum) |
| 1322 | + (right_sum * right_sum); |
| 1323 | |
| 1324 | float ls_mss1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<0>()) |
| 1325 | + (2.0f * lmrs_sum.lane<1>() * lmrs_sum.lane<1>()) |
| 1326 | + (lmrs_sum.lane<2>() * lmrs_sum.lane<2>()); |
| 1327 | |
| 1328 | vfloat4 ep0 = (right_sum * color_vec_x - middle_sum * color_vec_y) * color_rdet1; |
| 1329 | vfloat4 ep1 = (left_sum * color_vec_y - middle_sum * color_vec_x) * color_rdet1; |
| 1330 | |
| 1331 | vmask4 det_mask = abs(color_det1) > (color_mss1 * 1e-4f); |
| 1332 | vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1); |
| 1333 | vmask4 full_mask = det_mask & notnan_mask; |
| 1334 | |
| 1335 | ep.endpt0[i] = select(ep.endpt0[i], ep0, full_mask); |
| 1336 | ep.endpt1[i] = select(ep.endpt1[i], ep1, full_mask); |
| 1337 | |
| 1338 | float scale_ep0 = (lmrs_sum.lane<2>() * scale_vec.lane<0>() - lmrs_sum.lane<1>() * scale_vec.lane<1>()) * ls_rdet1; |
| 1339 | float scale_ep1 = (lmrs_sum.lane<0>() * scale_vec.lane<1>() - lmrs_sum.lane<1>() * scale_vec.lane<0>()) * ls_rdet1; |
| 1340 | |
| 1341 | if (fabsf(ls_det1) > (ls_mss1 * 1e-4f) && scale_ep0 == scale_ep0 && scale_ep1 == scale_ep1 && scale_ep0 < scale_ep1) |
| 1342 | { |
| 1343 | float scalediv2 = scale_ep0 / scale_ep1; |
| 1344 | vfloat4 sdsm = scale_dir * scale_ep1; |
| 1345 | rgbs_vectors[i] = vfloat4(sdsm.lane<0>(), sdsm.lane<1>(), sdsm.lane<2>(), scalediv2); |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | // Calculations specific to mode #7, the HDR RGB-scale mode - skip if known LDR |
| 1350 | if (blk.rgb_lns[0] || blk.alpha_lns[0]) |
| 1351 | { |
| 1352 | vfloat4 weight_weight_sum = vfloat4(weight_weight_sum_s) * color_weight; |
| 1353 | float psum = right_sum_s * hadd_rgb_s(color_weight); |
| 1354 | |
| 1355 | vfloat4 rgbq_sum = color_vec_x + color_vec_y; |
| 1356 | rgbq_sum.set_lane<3>(hadd_rgb_s(color_vec_y)); |
| 1357 | |
| 1358 | vfloat4 rgbovec = compute_rgbo_vector(rgba_weight_sum, weight_weight_sum, rgbq_sum, psum); |
| 1359 | rgbo_vectors[i] = rgbovec; |
| 1360 | |
| 1361 | // We can get a failure due to the use of a singular (non-invertible) matrix |
| 1362 | // If it failed, compute rgbo_vectors[] with a different method ... |
| 1363 | if (astc::isnan(dot_s(rgbovec, rgbovec))) |
| 1364 | { |
| 1365 | vfloat4 v0 = ep.endpt0[i]; |
| 1366 | vfloat4 v1 = ep.endpt1[i]; |
| 1367 | |
| 1368 | float avgdif = hadd_rgb_s(v1 - v0) * (1.0f / 3.0f); |
| 1369 | avgdif = astc::max(avgdif, 0.0f); |
| 1370 | |
| 1371 | vfloat4 avg = (v0 + v1) * 0.5f; |
| 1372 | vfloat4 ep0 = avg - vfloat4(avgdif) * 0.5f; |
| 1373 | rgbo_vectors[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), avgdif); |
| 1374 | } |
| 1375 | } |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | /* See header for documentation. */ |
| 1380 | void recompute_ideal_colors_2planes( |
| 1381 | const image_block& blk, |
| 1382 | const block_size_descriptor& bsd, |
| 1383 | const decimation_info& di, |
| 1384 | const uint8_t* dec_weights_uquant_plane1, |
| 1385 | const uint8_t* dec_weights_uquant_plane2, |
| 1386 | endpoints& ep, |
| 1387 | vfloat4& rgbs_vector, |
| 1388 | vfloat4& rgbo_vector, |
| 1389 | int plane2_component |
| 1390 | ) { |
| 1391 | unsigned int weight_count = di.weight_count; |
| 1392 | unsigned int total_texel_count = blk.texel_count; |
| 1393 | |
| 1394 | promise(total_texel_count > 0); |
| 1395 | promise(weight_count > 0); |
| 1396 | |
| 1397 | alignas(ASTCENC_VECALIGN) float dec_weight_plane1[BLOCK_MAX_WEIGHTS_2PLANE]; |
| 1398 | alignas(ASTCENC_VECALIGN) float dec_weight_plane2[BLOCK_MAX_WEIGHTS_2PLANE]; |
| 1399 | |
| 1400 | assert(weight_count <= BLOCK_MAX_WEIGHTS_2PLANE); |
| 1401 | |
| 1402 | for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) |
| 1403 | { |
| 1404 | vint unquant_value1(dec_weights_uquant_plane1 + i); |
| 1405 | vfloat unquant_value1f = int_to_float(unquant_value1) * vfloat(1.0f / 64.0f); |
| 1406 | storea(unquant_value1f, dec_weight_plane1 + i); |
| 1407 | |
| 1408 | vint unquant_value2(dec_weights_uquant_plane2 + i); |
| 1409 | vfloat unquant_value2f = int_to_float(unquant_value2) * vfloat(1.0f / 64.0f); |
| 1410 | storea(unquant_value2f, dec_weight_plane2 + i); |
| 1411 | } |
| 1412 | |
| 1413 | alignas(ASTCENC_VECALIGN) float undec_weight_plane1[BLOCK_MAX_TEXELS]; |
| 1414 | alignas(ASTCENC_VECALIGN) float undec_weight_plane2[BLOCK_MAX_TEXELS]; |
| 1415 | |
| 1416 | float* undec_weight_plane1_ref; |
| 1417 | float* undec_weight_plane2_ref; |
| 1418 | |
| 1419 | if (di.max_texel_weight_count == 1) |
| 1420 | { |
| 1421 | undec_weight_plane1_ref = dec_weight_plane1; |
| 1422 | undec_weight_plane2_ref = dec_weight_plane2; |
| 1423 | } |
| 1424 | else if (di.max_texel_weight_count <= 2) |
| 1425 | { |
| 1426 | for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH) |
| 1427 | { |
| 1428 | vfloat weight = bilinear_infill_vla_2(di, dec_weight_plane1, i); |
| 1429 | storea(weight, undec_weight_plane1 + i); |
| 1430 | |
| 1431 | weight = bilinear_infill_vla_2(di, dec_weight_plane2, i); |
| 1432 | storea(weight, undec_weight_plane2 + i); |
| 1433 | } |
| 1434 | |
| 1435 | undec_weight_plane1_ref = undec_weight_plane1; |
| 1436 | undec_weight_plane2_ref = undec_weight_plane2; |
| 1437 | } |
| 1438 | else |
| 1439 | { |
| 1440 | for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH) |
| 1441 | { |
| 1442 | vfloat weight = bilinear_infill_vla(di, dec_weight_plane1, i); |
| 1443 | storea(weight, undec_weight_plane1 + i); |
| 1444 | |
| 1445 | weight = bilinear_infill_vla(di, dec_weight_plane2, i); |
| 1446 | storea(weight, undec_weight_plane2 + i); |
| 1447 | } |
| 1448 | |
| 1449 | undec_weight_plane1_ref = undec_weight_plane1; |
| 1450 | undec_weight_plane2_ref = undec_weight_plane2; |
| 1451 | } |
| 1452 | |
| 1453 | unsigned int texel_count = bsd.texel_count; |
| 1454 | vfloat4 rgba_weight_sum = max(blk.channel_weight * static_cast<float>(texel_count), 1e-17f); |
| 1455 | vfloat4 scale_dir = normalize(blk.data_mean.swz<0, 1, 2>()); |
| 1456 | |
| 1457 | float scale_max = 0.0f; |
| 1458 | float scale_min = 1e10f; |
| 1459 | |
| 1460 | float wmin1 = 1.0f; |
| 1461 | float wmax1 = 0.0f; |
| 1462 | |
| 1463 | float wmin2 = 1.0f; |
| 1464 | float wmax2 = 0.0f; |
| 1465 | |
| 1466 | float left1_sum_s = 0.0f; |
| 1467 | float middle1_sum_s = 0.0f; |
| 1468 | float right1_sum_s = 0.0f; |
| 1469 | |
| 1470 | float left2_sum_s = 0.0f; |
| 1471 | float middle2_sum_s = 0.0f; |
| 1472 | float right2_sum_s = 0.0f; |
| 1473 | |
| 1474 | vfloat4 color_vec_x = vfloat4::zero(); |
| 1475 | vfloat4 color_vec_y = vfloat4::zero(); |
| 1476 | |
| 1477 | vfloat4 scale_vec = vfloat4::zero(); |
| 1478 | |
| 1479 | vfloat4 weight_weight_sum = vfloat4(1e-17f); |
| 1480 | |
| 1481 | vmask4 p2_mask = vint4::lane_id() == vint4(plane2_component); |
| 1482 | vfloat4 color_weight = blk.channel_weight; |
| 1483 | float ls_weight = hadd_rgb_s(color_weight); |
| 1484 | |
| 1485 | for (unsigned int j = 0; j < texel_count; j++) |
| 1486 | { |
| 1487 | vfloat4 rgba = blk.texel(j); |
| 1488 | |
| 1489 | float idx0 = undec_weight_plane1_ref[j]; |
| 1490 | |
| 1491 | float om_idx0 = 1.0f - idx0; |
| 1492 | wmin1 = astc::min(idx0, wmin1); |
| 1493 | wmax1 = astc::max(idx0, wmax1); |
| 1494 | |
| 1495 | float scale = dot3_s(scale_dir, rgba); |
| 1496 | scale_min = astc::min(scale, scale_min); |
| 1497 | scale_max = astc::max(scale, scale_max); |
| 1498 | |
| 1499 | left1_sum_s += om_idx0 * om_idx0; |
| 1500 | middle1_sum_s += om_idx0 * idx0; |
| 1501 | right1_sum_s += idx0 * idx0; |
| 1502 | |
| 1503 | float idx1 = undec_weight_plane2_ref[j]; |
| 1504 | |
| 1505 | float om_idx1 = 1.0f - idx1; |
| 1506 | wmin2 = astc::min(idx1, wmin2); |
| 1507 | wmax2 = astc::max(idx1, wmax2); |
| 1508 | |
| 1509 | left2_sum_s += om_idx1 * om_idx1; |
| 1510 | middle2_sum_s += om_idx1 * idx1; |
| 1511 | right2_sum_s += idx1 * idx1; |
| 1512 | |
| 1513 | vfloat4 color_idx = select(vfloat4(idx0), vfloat4(idx1), p2_mask); |
| 1514 | |
| 1515 | vfloat4 cwprod = rgba; |
| 1516 | vfloat4 cwiprod = cwprod * color_idx; |
| 1517 | |
| 1518 | color_vec_y += cwiprod; |
| 1519 | color_vec_x += cwprod - cwiprod; |
| 1520 | |
| 1521 | scale_vec += vfloat2(om_idx0, idx0) * (ls_weight * scale); |
| 1522 | weight_weight_sum += color_idx; |
| 1523 | } |
| 1524 | |
| 1525 | vfloat4 left1_sum = vfloat4(left1_sum_s) * color_weight; |
| 1526 | vfloat4 middle1_sum = vfloat4(middle1_sum_s) * color_weight; |
| 1527 | vfloat4 right1_sum = vfloat4(right1_sum_s) * color_weight; |
| 1528 | vfloat4 lmrs_sum = vfloat3(left1_sum_s, middle1_sum_s, right1_sum_s) * ls_weight; |
| 1529 | |
| 1530 | vfloat4 left2_sum = vfloat4(left2_sum_s) * color_weight; |
| 1531 | vfloat4 middle2_sum = vfloat4(middle2_sum_s) * color_weight; |
| 1532 | vfloat4 right2_sum = vfloat4(right2_sum_s) * color_weight; |
| 1533 | |
| 1534 | color_vec_x = color_vec_x * color_weight; |
| 1535 | color_vec_y = color_vec_y * color_weight; |
| 1536 | |
| 1537 | // Initialize the luminance and scale vectors with a reasonable default |
| 1538 | float scalediv = scale_min / astc::max(scale_max, 1e-10f); |
| 1539 | scalediv = astc::clamp1f(scalediv); |
| 1540 | |
| 1541 | vfloat4 sds = scale_dir * scale_max; |
| 1542 | |
| 1543 | rgbs_vector = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), scalediv); |
| 1544 | |
| 1545 | if (wmin1 >= wmax1 * 0.999f) |
| 1546 | { |
| 1547 | // If all weights in the partition were equal, then just take average of all colors in |
| 1548 | // the partition and use that as both endpoint colors |
| 1549 | vfloat4 avg = (color_vec_x + color_vec_y) / rgba_weight_sum; |
| 1550 | |
| 1551 | vmask4 p1_mask = vint4::lane_id() != vint4(plane2_component); |
| 1552 | vmask4 notnan_mask = avg == avg; |
| 1553 | vmask4 full_mask = p1_mask & notnan_mask; |
| 1554 | |
| 1555 | ep.endpt0[0] = select(ep.endpt0[0], avg, full_mask); |
| 1556 | ep.endpt1[0] = select(ep.endpt1[0], avg, full_mask); |
| 1557 | |
| 1558 | rgbs_vector = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), 1.0f); |
| 1559 | } |
| 1560 | else |
| 1561 | { |
| 1562 | // Otherwise, complete the analytic calculation of ideal-endpoint-values for the given |
| 1563 | // set of texel weights and pixel colors |
| 1564 | vfloat4 color_det1 = (left1_sum * right1_sum) - (middle1_sum * middle1_sum); |
| 1565 | vfloat4 color_rdet1 = 1.0f / color_det1; |
| 1566 | |
| 1567 | float ls_det1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<2>()) - (lmrs_sum.lane<1>() * lmrs_sum.lane<1>()); |
| 1568 | float ls_rdet1 = 1.0f / ls_det1; |
| 1569 | |
| 1570 | vfloat4 color_mss1 = (left1_sum * left1_sum) |
| 1571 | + (2.0f * middle1_sum * middle1_sum) |
| 1572 | + (right1_sum * right1_sum); |
| 1573 | |
| 1574 | float ls_mss1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<0>()) |
| 1575 | + (2.0f * lmrs_sum.lane<1>() * lmrs_sum.lane<1>()) |
| 1576 | + (lmrs_sum.lane<2>() * lmrs_sum.lane<2>()); |
| 1577 | |
| 1578 | vfloat4 ep0 = (right1_sum * color_vec_x - middle1_sum * color_vec_y) * color_rdet1; |
| 1579 | vfloat4 ep1 = (left1_sum * color_vec_y - middle1_sum * color_vec_x) * color_rdet1; |
| 1580 | |
| 1581 | float scale_ep0 = (lmrs_sum.lane<2>() * scale_vec.lane<0>() - lmrs_sum.lane<1>() * scale_vec.lane<1>()) * ls_rdet1; |
| 1582 | float scale_ep1 = (lmrs_sum.lane<0>() * scale_vec.lane<1>() - lmrs_sum.lane<1>() * scale_vec.lane<0>()) * ls_rdet1; |
| 1583 | |
| 1584 | vmask4 p1_mask = vint4::lane_id() != vint4(plane2_component); |
| 1585 | vmask4 det_mask = abs(color_det1) > (color_mss1 * 1e-4f); |
| 1586 | vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1); |
| 1587 | vmask4 full_mask = p1_mask & det_mask & notnan_mask; |
| 1588 | |
| 1589 | ep.endpt0[0] = select(ep.endpt0[0], ep0, full_mask); |
| 1590 | ep.endpt1[0] = select(ep.endpt1[0], ep1, full_mask); |
| 1591 | |
| 1592 | if (fabsf(ls_det1) > (ls_mss1 * 1e-4f) && scale_ep0 == scale_ep0 && scale_ep1 == scale_ep1 && scale_ep0 < scale_ep1) |
| 1593 | { |
| 1594 | float scalediv2 = scale_ep0 / scale_ep1; |
| 1595 | vfloat4 sdsm = scale_dir * scale_ep1; |
| 1596 | rgbs_vector = vfloat4(sdsm.lane<0>(), sdsm.lane<1>(), sdsm.lane<2>(), scalediv2); |
| 1597 | } |
| 1598 | } |
| 1599 | |
| 1600 | if (wmin2 >= wmax2 * 0.999f) |
| 1601 | { |
| 1602 | // If all weights in the partition were equal, then just take average of all colors in |
| 1603 | // the partition and use that as both endpoint colors |
| 1604 | vfloat4 avg = (color_vec_x + color_vec_y) / rgba_weight_sum; |
| 1605 | |
| 1606 | vmask4 notnan_mask = avg == avg; |
| 1607 | vmask4 full_mask = p2_mask & notnan_mask; |
| 1608 | |
| 1609 | ep.endpt0[0] = select(ep.endpt0[0], avg, full_mask); |
| 1610 | ep.endpt1[0] = select(ep.endpt1[0], avg, full_mask); |
| 1611 | } |
| 1612 | else |
| 1613 | { |
| 1614 | // Otherwise, complete the analytic calculation of ideal-endpoint-values for the given |
| 1615 | // set of texel weights and pixel colors |
| 1616 | vfloat4 color_det2 = (left2_sum * right2_sum) - (middle2_sum * middle2_sum); |
| 1617 | vfloat4 color_rdet2 = 1.0f / color_det2; |
| 1618 | |
| 1619 | vfloat4 color_mss2 = (left2_sum * left2_sum) |
| 1620 | + (2.0f * middle2_sum * middle2_sum) |
| 1621 | + (right2_sum * right2_sum); |
| 1622 | |
| 1623 | vfloat4 ep0 = (right2_sum * color_vec_x - middle2_sum * color_vec_y) * color_rdet2; |
| 1624 | vfloat4 ep1 = (left2_sum * color_vec_y - middle2_sum * color_vec_x) * color_rdet2; |
| 1625 | |
| 1626 | vmask4 det_mask = abs(color_det2) > (color_mss2 * 1e-4f); |
| 1627 | vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1); |
| 1628 | vmask4 full_mask = p2_mask & det_mask & notnan_mask; |
| 1629 | |
| 1630 | ep.endpt0[0] = select(ep.endpt0[0], ep0, full_mask); |
| 1631 | ep.endpt1[0] = select(ep.endpt1[0], ep1, full_mask); |
| 1632 | } |
| 1633 | |
| 1634 | // Calculations specific to mode #7, the HDR RGB-scale mode - skip if known LDR |
| 1635 | if (blk.rgb_lns[0] || blk.alpha_lns[0]) |
| 1636 | { |
| 1637 | weight_weight_sum = weight_weight_sum * color_weight; |
| 1638 | float psum = dot3_s(select(right1_sum, right2_sum, p2_mask), color_weight); |
| 1639 | |
| 1640 | vfloat4 rgbq_sum = color_vec_x + color_vec_y; |
| 1641 | rgbq_sum.set_lane<3>(hadd_rgb_s(color_vec_y)); |
| 1642 | |
| 1643 | rgbo_vector = compute_rgbo_vector(rgba_weight_sum, weight_weight_sum, rgbq_sum, psum); |
| 1644 | |
| 1645 | // We can get a failure due to the use of a singular (non-invertible) matrix |
| 1646 | // If it failed, compute rgbo_vectors[] with a different method ... |
| 1647 | if (astc::isnan(dot_s(rgbo_vector, rgbo_vector))) |
| 1648 | { |
| 1649 | vfloat4 v0 = ep.endpt0[0]; |
| 1650 | vfloat4 v1 = ep.endpt1[0]; |
| 1651 | |
| 1652 | float avgdif = hadd_rgb_s(v1 - v0) * (1.0f / 3.0f); |
| 1653 | avgdif = astc::max(avgdif, 0.0f); |
| 1654 | |
| 1655 | vfloat4 avg = (v0 + v1) * 0.5f; |
| 1656 | vfloat4 ep0 = avg - vfloat4(avgdif) * 0.5f; |
| 1657 | |
| 1658 | rgbo_vector = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), avgdif); |
| 1659 | } |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | #endif |
| 1664 | |