| 1 | // SPDX-License-Identifier: Apache-2.0 |
| 2 | // ---------------------------------------------------------------------------- |
| 3 | // Copyright 2011-2022 Arm Limited |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| 6 | // use this file except in compliance with the License. You may obtain a copy |
| 7 | // of the License at: |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, software |
| 12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 14 | // License for the specific language governing permissions and limitations |
| 15 | // under the License. |
| 16 | // ---------------------------------------------------------------------------- |
| 17 | |
| 18 | #if !defined(ASTCENC_DECOMPRESS_ONLY) |
| 19 | |
| 20 | /** |
| 21 | * @brief Functions for finding best endpoint format. |
| 22 | * |
| 23 | * We assume there are two independent sources of error in any given partition: |
| 24 | * |
| 25 | * - Encoding choice errors |
| 26 | * - Quantization errors |
| 27 | * |
| 28 | * Encoding choice errors are caused by encoder decisions. For example: |
| 29 | * |
| 30 | * - Using luminance instead of separate RGB components. |
| 31 | * - Using a constant 1.0 alpha instead of storing an alpha component. |
| 32 | * - Using RGB+scale instead of storing two full RGB endpoints. |
| 33 | * |
| 34 | * Quantization errors occur due to the limited precision we use for storage. These errors generally |
| 35 | * scale with quantization level, but are not actually independent of color encoding. In particular: |
| 36 | * |
| 37 | * - If we can use offset encoding then quantization error is halved. |
| 38 | * - If we can use blue-contraction then quantization error for RG is halved. |
| 39 | * - If we use HDR endpoints the quantization error is higher. |
| 40 | * |
| 41 | * Apart from these effects, we assume the error is proportional to the quantization step size. |
| 42 | */ |
| 43 | |
| 44 | |
| 45 | #include "astcenc_internal.h" |
| 46 | #include "astcenc_vecmathlib.h" |
| 47 | |
| 48 | #include <assert.h> |
| 49 | |
| 50 | /** |
| 51 | * @brief Compute the errors of the endpoint line options for one partition. |
| 52 | * |
| 53 | * Uncorrelated data assumes storing completely independent RGBA channels for each endpoint. Same |
| 54 | * chroma data assumes storing RGBA endpoints which pass though the origin (LDR only). RGBL data |
| 55 | * assumes storing RGB + lumashift (HDR only). Luminance error assumes storing RGB channels as a |
| 56 | * single value. |
| 57 | * |
| 58 | * |
| 59 | * @param pi The partition info data. |
| 60 | * @param partition_index The partition index to compule the error for. |
| 61 | * @param blk The image block. |
| 62 | * @param uncor_pline The endpoint line assuming uncorrelated endpoints. |
| 63 | * @param[out] uncor_err The computed error for the uncorrelated endpoint line. |
| 64 | * @param samec_pline The endpoint line assuming the same chroma for both endpoints. |
| 65 | * @param[out] samec_err The computed error for the uncorrelated endpoint line. |
| 66 | * @param rgbl_pline The endpoint line assuming RGB + lumashift data. |
| 67 | * @param[out] rgbl_err The computed error for the RGB + lumashift endpoint line. |
| 68 | * @param l_pline The endpoint line assuming luminance data. |
| 69 | * @param[out] l_err The computed error for the luminance endpoint line. |
| 70 | * @param[out] a_drop_err The computed error for dropping the alpha component. |
| 71 | */ |
| 72 | static void compute_error_squared_rgb_single_partition( |
| 73 | const partition_info& pi, |
| 74 | int partition_index, |
| 75 | const image_block& blk, |
| 76 | const processed_line3& uncor_pline, |
| 77 | float& uncor_err, |
| 78 | const processed_line3& samec_pline, |
| 79 | float& samec_err, |
| 80 | const processed_line3& rgbl_pline, |
| 81 | float& rgbl_err, |
| 82 | const processed_line3& l_pline, |
| 83 | float& l_err, |
| 84 | float& a_drop_err |
| 85 | ) { |
| 86 | vfloat4 ews = blk.channel_weight; |
| 87 | |
| 88 | unsigned int texel_count = pi.partition_texel_count[partition_index]; |
| 89 | const uint8_t* texel_indexes = pi.texels_of_partition[partition_index]; |
| 90 | promise(texel_count > 0); |
| 91 | |
| 92 | vfloatacc a_drop_errv = vfloatacc::zero(); |
| 93 | vfloat default_a(blk.get_default_alpha()); |
| 94 | |
| 95 | vfloatacc uncor_errv = vfloatacc::zero(); |
| 96 | vfloat uncor_bs0(uncor_pline.bs.lane<0>()); |
| 97 | vfloat uncor_bs1(uncor_pline.bs.lane<1>()); |
| 98 | vfloat uncor_bs2(uncor_pline.bs.lane<2>()); |
| 99 | |
| 100 | vfloat uncor_amod0(uncor_pline.amod.lane<0>()); |
| 101 | vfloat uncor_amod1(uncor_pline.amod.lane<1>()); |
| 102 | vfloat uncor_amod2(uncor_pline.amod.lane<2>()); |
| 103 | |
| 104 | vfloatacc samec_errv = vfloatacc::zero(); |
| 105 | vfloat samec_bs0(samec_pline.bs.lane<0>()); |
| 106 | vfloat samec_bs1(samec_pline.bs.lane<1>()); |
| 107 | vfloat samec_bs2(samec_pline.bs.lane<2>()); |
| 108 | |
| 109 | vfloatacc rgbl_errv = vfloatacc::zero(); |
| 110 | vfloat rgbl_bs0(rgbl_pline.bs.lane<0>()); |
| 111 | vfloat rgbl_bs1(rgbl_pline.bs.lane<1>()); |
| 112 | vfloat rgbl_bs2(rgbl_pline.bs.lane<2>()); |
| 113 | |
| 114 | vfloat rgbl_amod0(rgbl_pline.amod.lane<0>()); |
| 115 | vfloat rgbl_amod1(rgbl_pline.amod.lane<1>()); |
| 116 | vfloat rgbl_amod2(rgbl_pline.amod.lane<2>()); |
| 117 | |
| 118 | vfloatacc l_errv = vfloatacc::zero(); |
| 119 | vfloat l_bs0(l_pline.bs.lane<0>()); |
| 120 | vfloat l_bs1(l_pline.bs.lane<1>()); |
| 121 | vfloat l_bs2(l_pline.bs.lane<2>()); |
| 122 | |
| 123 | vint lane_ids = vint::lane_id(); |
| 124 | for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| 125 | { |
| 126 | vint tix(texel_indexes + i); |
| 127 | |
| 128 | vmask mask = lane_ids < vint(texel_count); |
| 129 | lane_ids += vint(ASTCENC_SIMD_WIDTH); |
| 130 | |
| 131 | // Compute the error that arises from just ditching alpha |
| 132 | vfloat data_a = gatherf(blk.data_a, tix); |
| 133 | vfloat alpha_diff = data_a - default_a; |
| 134 | alpha_diff = alpha_diff * alpha_diff; |
| 135 | |
| 136 | haccumulate(a_drop_errv, alpha_diff, mask); |
| 137 | |
| 138 | vfloat data_r = gatherf(blk.data_r, tix); |
| 139 | vfloat data_g = gatherf(blk.data_g, tix); |
| 140 | vfloat data_b = gatherf(blk.data_b, tix); |
| 141 | |
| 142 | // Compute uncorrelated error |
| 143 | vfloat param = data_r * uncor_bs0 |
| 144 | + data_g * uncor_bs1 |
| 145 | + data_b * uncor_bs2; |
| 146 | |
| 147 | vfloat dist0 = (uncor_amod0 + param * uncor_bs0) - data_r; |
| 148 | vfloat dist1 = (uncor_amod1 + param * uncor_bs1) - data_g; |
| 149 | vfloat dist2 = (uncor_amod2 + param * uncor_bs2) - data_b; |
| 150 | |
| 151 | vfloat error = dist0 * dist0 * ews.lane<0>() |
| 152 | + dist1 * dist1 * ews.lane<1>() |
| 153 | + dist2 * dist2 * ews.lane<2>(); |
| 154 | |
| 155 | haccumulate(uncor_errv, error, mask); |
| 156 | |
| 157 | // Compute same chroma error - no "amod", its always zero |
| 158 | param = data_r * samec_bs0 |
| 159 | + data_g * samec_bs1 |
| 160 | + data_b * samec_bs2; |
| 161 | |
| 162 | dist0 = (param * samec_bs0) - data_r; |
| 163 | dist1 = (param * samec_bs1) - data_g; |
| 164 | dist2 = (param * samec_bs2) - data_b; |
| 165 | |
| 166 | error = dist0 * dist0 * ews.lane<0>() |
| 167 | + dist1 * dist1 * ews.lane<1>() |
| 168 | + dist2 * dist2 * ews.lane<2>(); |
| 169 | |
| 170 | haccumulate(samec_errv, error, mask); |
| 171 | |
| 172 | // Compute rgbl error |
| 173 | param = data_r * rgbl_bs0 |
| 174 | + data_g * rgbl_bs1 |
| 175 | + data_b * rgbl_bs2; |
| 176 | |
| 177 | dist0 = (rgbl_amod0 + param * rgbl_bs0) - data_r; |
| 178 | dist1 = (rgbl_amod1 + param * rgbl_bs1) - data_g; |
| 179 | dist2 = (rgbl_amod2 + param * rgbl_bs2) - data_b; |
| 180 | |
| 181 | error = dist0 * dist0 * ews.lane<0>() |
| 182 | + dist1 * dist1 * ews.lane<1>() |
| 183 | + dist2 * dist2 * ews.lane<2>(); |
| 184 | |
| 185 | haccumulate(rgbl_errv, error, mask); |
| 186 | |
| 187 | // Compute luma error - no "amod", its always zero |
| 188 | param = data_r * l_bs0 |
| 189 | + data_g * l_bs1 |
| 190 | + data_b * l_bs2; |
| 191 | |
| 192 | dist0 = (param * l_bs0) - data_r; |
| 193 | dist1 = (param * l_bs1) - data_g; |
| 194 | dist2 = (param * l_bs2) - data_b; |
| 195 | |
| 196 | error = dist0 * dist0 * ews.lane<0>() |
| 197 | + dist1 * dist1 * ews.lane<1>() |
| 198 | + dist2 * dist2 * ews.lane<2>(); |
| 199 | |
| 200 | haccumulate(l_errv, error, mask); |
| 201 | } |
| 202 | |
| 203 | a_drop_err = hadd_s(a_drop_errv) * ews.lane<3>(); |
| 204 | uncor_err = hadd_s(uncor_errv); |
| 205 | samec_err = hadd_s(samec_errv); |
| 206 | rgbl_err = hadd_s(rgbl_errv); |
| 207 | l_err = hadd_s(l_errv); |
| 208 | } |
| 209 | |
| 210 | /** |
| 211 | * @brief For a given set of input colors and partitioning determine endpoint encode errors. |
| 212 | * |
| 213 | * This function determines the color error that results from RGB-scale encoding (LDR only), |
| 214 | * RGB-lumashift encoding (HDR only), luminance-encoding, and alpha drop. Also determines whether |
| 215 | * the endpoints are eligible for offset encoding or blue-contraction |
| 216 | * |
| 217 | * @param blk The image block. |
| 218 | * @param pi The partition info data. |
| 219 | * @param ep The idealized endpoints. |
| 220 | * @param[out] eci The resulting encoding choice error metrics. |
| 221 | */ |
| 222 | static void compute_encoding_choice_errors( |
| 223 | const image_block& blk, |
| 224 | const partition_info& pi, |
| 225 | const endpoints& ep, |
| 226 | encoding_choice_errors eci[BLOCK_MAX_PARTITIONS]) |
| 227 | { |
| 228 | int partition_count = pi.partition_count; |
| 229 | promise(partition_count > 0); |
| 230 | |
| 231 | partition_metrics pms[BLOCK_MAX_PARTITIONS]; |
| 232 | |
| 233 | compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms); |
| 234 | |
| 235 | for (int i = 0; i < partition_count; i++) |
| 236 | { |
| 237 | partition_metrics& pm = pms[i]; |
| 238 | |
| 239 | line3 uncor_rgb_lines; |
| 240 | line3 samec_rgb_lines; // for LDR-RGB-scale |
| 241 | line3 rgb_luma_lines; // for HDR-RGB-scale |
| 242 | |
| 243 | processed_line3 uncor_rgb_plines; |
| 244 | processed_line3 samec_rgb_plines; |
| 245 | processed_line3 rgb_luma_plines; |
| 246 | processed_line3 luminance_plines; |
| 247 | |
| 248 | float uncorr_rgb_error; |
| 249 | float samechroma_rgb_error; |
| 250 | float rgb_luma_error; |
| 251 | float luminance_rgb_error; |
| 252 | float alpha_drop_error; |
| 253 | |
| 254 | uncor_rgb_lines.a = pm.avg; |
| 255 | uncor_rgb_lines.b = normalize_safe(pm.dir, unit3()); |
| 256 | |
| 257 | samec_rgb_lines.a = vfloat4::zero(); |
| 258 | samec_rgb_lines.b = normalize_safe(pm.avg, unit3()); |
| 259 | |
| 260 | rgb_luma_lines.a = pm.avg; |
| 261 | rgb_luma_lines.b = unit3(); |
| 262 | |
| 263 | uncor_rgb_plines.amod = uncor_rgb_lines.a - uncor_rgb_lines.b * dot3(uncor_rgb_lines.a, uncor_rgb_lines.b); |
| 264 | uncor_rgb_plines.bs = uncor_rgb_lines.b; |
| 265 | |
| 266 | // Same chroma always goes though zero, so this is simpler than the others |
| 267 | samec_rgb_plines.amod = vfloat4::zero(); |
| 268 | samec_rgb_plines.bs = samec_rgb_lines.b; |
| 269 | |
| 270 | rgb_luma_plines.amod = rgb_luma_lines.a - rgb_luma_lines.b * dot3(rgb_luma_lines.a, rgb_luma_lines.b); |
| 271 | rgb_luma_plines.bs = rgb_luma_lines.b; |
| 272 | |
| 273 | // Luminance always goes though zero, so this is simpler than the others |
| 274 | luminance_plines.amod = vfloat4::zero(); |
| 275 | luminance_plines.bs = unit3(); |
| 276 | |
| 277 | compute_error_squared_rgb_single_partition( |
| 278 | pi, i, blk, |
| 279 | uncor_rgb_plines, uncorr_rgb_error, |
| 280 | samec_rgb_plines, samechroma_rgb_error, |
| 281 | rgb_luma_plines, rgb_luma_error, |
| 282 | luminance_plines, luminance_rgb_error, |
| 283 | alpha_drop_error); |
| 284 | |
| 285 | // Determine if we can offset encode RGB lanes |
| 286 | vfloat4 endpt0 = ep.endpt0[i]; |
| 287 | vfloat4 endpt1 = ep.endpt1[i]; |
| 288 | vfloat4 endpt_diff = abs(endpt1 - endpt0); |
| 289 | vmask4 endpt_can_offset = endpt_diff < vfloat4(0.12f * 65535.0f); |
| 290 | bool can_offset_encode = (mask(endpt_can_offset) & 0x7) == 0x7; |
| 291 | |
| 292 | // Store out the settings |
| 293 | eci[i].rgb_scale_error = (samechroma_rgb_error - uncorr_rgb_error) * 0.7f; // empirical |
| 294 | eci[i].rgb_luma_error = (rgb_luma_error - uncorr_rgb_error) * 1.5f; // wild guess |
| 295 | eci[i].luminance_error = (luminance_rgb_error - uncorr_rgb_error) * 3.0f; // empirical |
| 296 | eci[i].alpha_drop_error = alpha_drop_error * 3.0f; |
| 297 | eci[i].can_offset_encode = can_offset_encode; |
| 298 | eci[i].can_blue_contract = !blk.is_luminance(); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | /** |
| 303 | * @brief For a given partition compute the error for every endpoint integer count and quant level. |
| 304 | * |
| 305 | * @param encode_hdr_rgb @c true if using HDR for RGB, @c false for LDR. |
| 306 | * @param encode_hdr_alpha @c true if using HDR for alpha, @c false for LDR. |
| 307 | * @param partition_index The partition index. |
| 308 | * @param pi The partition info. |
| 309 | * @param eci The encoding choice error metrics. |
| 310 | * @param ep The idealized endpoints. |
| 311 | * @param error_weight The resulting encoding choice error metrics. |
| 312 | * @param[out] best_error The best error for each integer count and quant level. |
| 313 | * @param[out] format_of_choice The preferred endpoint format for each integer count and quant level. |
| 314 | */ |
| 315 | static void compute_color_error_for_every_integer_count_and_quant_level( |
| 316 | bool encode_hdr_rgb, |
| 317 | bool encode_hdr_alpha, |
| 318 | int partition_index, |
| 319 | const partition_info& pi, |
| 320 | const encoding_choice_errors& eci, |
| 321 | const endpoints& ep, |
| 322 | vfloat4 error_weight, |
| 323 | float best_error[21][4], |
| 324 | uint8_t format_of_choice[21][4] |
| 325 | ) { |
| 326 | int partition_size = pi.partition_texel_count[partition_index]; |
| 327 | |
| 328 | static const float baseline_quant_error[21 - QUANT_6] { |
| 329 | (65536.0f * 65536.0f / 18.0f) / (5 * 5), |
| 330 | (65536.0f * 65536.0f / 18.0f) / (7 * 7), |
| 331 | (65536.0f * 65536.0f / 18.0f) / (9 * 9), |
| 332 | (65536.0f * 65536.0f / 18.0f) / (11 * 11), |
| 333 | (65536.0f * 65536.0f / 18.0f) / (15 * 15), |
| 334 | (65536.0f * 65536.0f / 18.0f) / (19 * 19), |
| 335 | (65536.0f * 65536.0f / 18.0f) / (23 * 23), |
| 336 | (65536.0f * 65536.0f / 18.0f) / (31 * 31), |
| 337 | (65536.0f * 65536.0f / 18.0f) / (39 * 39), |
| 338 | (65536.0f * 65536.0f / 18.0f) / (47 * 47), |
| 339 | (65536.0f * 65536.0f / 18.0f) / (63 * 63), |
| 340 | (65536.0f * 65536.0f / 18.0f) / (79 * 79), |
| 341 | (65536.0f * 65536.0f / 18.0f) / (95 * 95), |
| 342 | (65536.0f * 65536.0f / 18.0f) / (127 * 127), |
| 343 | (65536.0f * 65536.0f / 18.0f) / (159 * 159), |
| 344 | (65536.0f * 65536.0f / 18.0f) / (191 * 191), |
| 345 | (65536.0f * 65536.0f / 18.0f) / (255 * 255) |
| 346 | }; |
| 347 | |
| 348 | vfloat4 ep0 = ep.endpt0[partition_index]; |
| 349 | vfloat4 ep1 = ep.endpt1[partition_index]; |
| 350 | |
| 351 | float ep1_min = hmin_rgb_s(ep1); |
| 352 | ep1_min = astc::max(ep1_min, 0.0f); |
| 353 | |
| 354 | float error_weight_rgbsum = hadd_rgb_s(error_weight); |
| 355 | |
| 356 | float range_upper_limit_rgb = encode_hdr_rgb ? 61440.0f : 65535.0f; |
| 357 | float range_upper_limit_alpha = encode_hdr_alpha ? 61440.0f : 65535.0f; |
| 358 | |
| 359 | // It is possible to get endpoint colors significantly outside [0,upper-limit] even if the |
| 360 | // input data are safely contained in [0,upper-limit]; we need to add an error term for this |
| 361 | vfloat4 offset(range_upper_limit_rgb, range_upper_limit_rgb, range_upper_limit_rgb, range_upper_limit_alpha); |
| 362 | vfloat4 ep0_range_error_high = max(ep0 - offset, 0.0f); |
| 363 | vfloat4 ep1_range_error_high = max(ep1 - offset, 0.0f); |
| 364 | |
| 365 | vfloat4 ep0_range_error_low = min(ep0, 0.0f); |
| 366 | vfloat4 ep1_range_error_low = min(ep1, 0.0f); |
| 367 | |
| 368 | vfloat4 sum_range_error = |
| 369 | (ep0_range_error_low * ep0_range_error_low) + |
| 370 | (ep1_range_error_low * ep1_range_error_low) + |
| 371 | (ep0_range_error_high * ep0_range_error_high) + |
| 372 | (ep1_range_error_high * ep1_range_error_high); |
| 373 | |
| 374 | float rgb_range_error = dot3_s(sum_range_error, error_weight) |
| 375 | * 0.5f * static_cast<float>(partition_size); |
| 376 | float alpha_range_error = sum_range_error.lane<3>() * error_weight.lane<3>() |
| 377 | * 0.5f * static_cast<float>(partition_size); |
| 378 | |
| 379 | if (encode_hdr_rgb) |
| 380 | { |
| 381 | |
| 382 | // Collect some statistics |
| 383 | float af, cf; |
| 384 | if (ep1.lane<0>() > ep1.lane<1>() && ep1.lane<0>() > ep1.lane<2>()) |
| 385 | { |
| 386 | af = ep1.lane<0>(); |
| 387 | cf = ep1.lane<0>() - ep0.lane<0>(); |
| 388 | } |
| 389 | else if (ep1.lane<1>() > ep1.lane<2>()) |
| 390 | { |
| 391 | af = ep1.lane<1>(); |
| 392 | cf = ep1.lane<1>() - ep0.lane<1>(); |
| 393 | } |
| 394 | else |
| 395 | { |
| 396 | af = ep1.lane<2>(); |
| 397 | cf = ep1.lane<2>() - ep0.lane<2>(); |
| 398 | } |
| 399 | |
| 400 | // Estimate of color-component spread in high endpoint color |
| 401 | float bf = af - ep1_min; |
| 402 | vfloat4 prd = (ep1 - vfloat4(cf)).swz<0, 1, 2>(); |
| 403 | vfloat4 pdif = prd - ep0.swz<0, 1, 2>(); |
| 404 | // Estimate of color-component spread in low endpoint color |
| 405 | float df = hmax_s(abs(pdif)); |
| 406 | |
| 407 | int b = static_cast<int>(bf); |
| 408 | int c = static_cast<int>(cf); |
| 409 | int d = static_cast<int>(df); |
| 410 | |
| 411 | // Determine which one of the 6 submodes is likely to be used in case of an RGBO-mode |
| 412 | int rgbo_mode = 5; // 7 bits per component |
| 413 | // mode 4: 8 7 6 |
| 414 | if (b < 32768 && c < 16384) |
| 415 | { |
| 416 | rgbo_mode = 4; |
| 417 | } |
| 418 | |
| 419 | // mode 3: 9 6 7 |
| 420 | if (b < 8192 && c < 16384) |
| 421 | { |
| 422 | rgbo_mode = 3; |
| 423 | } |
| 424 | |
| 425 | // mode 2: 10 5 8 |
| 426 | if (b < 2048 && c < 16384) |
| 427 | { |
| 428 | rgbo_mode = 2; |
| 429 | } |
| 430 | |
| 431 | // mode 1: 11 6 5 |
| 432 | if (b < 2048 && c < 1024) |
| 433 | { |
| 434 | rgbo_mode = 1; |
| 435 | } |
| 436 | |
| 437 | // mode 0: 11 5 7 |
| 438 | if (b < 1024 && c < 4096) |
| 439 | { |
| 440 | rgbo_mode = 0; |
| 441 | } |
| 442 | |
| 443 | // Determine which one of the 9 submodes is likely to be used in case of an RGB-mode. |
| 444 | int rgb_mode = 8; // 8 bits per component, except 7 bits for blue |
| 445 | |
| 446 | // mode 0: 9 7 6 7 |
| 447 | if (b < 16384 && c < 8192 && d < 8192) |
| 448 | { |
| 449 | rgb_mode = 0; |
| 450 | } |
| 451 | |
| 452 | // mode 1: 9 8 6 6 |
| 453 | if (b < 32768 && c < 8192 && d < 4096) |
| 454 | { |
| 455 | rgb_mode = 1; |
| 456 | } |
| 457 | |
| 458 | // mode 2: 10 6 7 7 |
| 459 | if (b < 4096 && c < 8192 && d < 4096) |
| 460 | { |
| 461 | rgb_mode = 2; |
| 462 | } |
| 463 | |
| 464 | // mode 3: 10 7 7 6 |
| 465 | if (b < 8192 && c < 8192 && d < 2048) |
| 466 | { |
| 467 | rgb_mode = 3; |
| 468 | } |
| 469 | |
| 470 | // mode 4: 11 8 6 5 |
| 471 | if (b < 8192 && c < 2048 && d < 512) |
| 472 | { |
| 473 | rgb_mode = 4; |
| 474 | } |
| 475 | |
| 476 | // mode 5: 11 6 8 6 |
| 477 | if (b < 2048 && c < 8192 && d < 1024) |
| 478 | { |
| 479 | rgb_mode = 5; |
| 480 | } |
| 481 | |
| 482 | // mode 6: 12 7 7 5 |
| 483 | if (b < 2048 && c < 2048 && d < 256) |
| 484 | { |
| 485 | rgb_mode = 6; |
| 486 | } |
| 487 | |
| 488 | // mode 7: 12 6 7 6 |
| 489 | if (b < 1024 && c < 2048 && d < 512) |
| 490 | { |
| 491 | rgb_mode = 7; |
| 492 | } |
| 493 | |
| 494 | static const float rgbo_error_scales[6] { 4.0f, 4.0f, 16.0f, 64.0f, 256.0f, 1024.0f }; |
| 495 | static const float rgb_error_scales[9] { 64.0f, 64.0f, 16.0f, 16.0f, 4.0f, 4.0f, 1.0f, 1.0f, 384.0f }; |
| 496 | |
| 497 | float mode7mult = rgbo_error_scales[rgbo_mode] * 0.0015f; // Empirically determined .... |
| 498 | float mode11mult = rgb_error_scales[rgb_mode] * 0.010f; // Empirically determined .... |
| 499 | |
| 500 | |
| 501 | float lum_high = hadd_rgb_s(ep1) * (1.0f / 3.0f); |
| 502 | float lum_low = hadd_rgb_s(ep0) * (1.0f / 3.0f); |
| 503 | float lumdif = lum_high - lum_low; |
| 504 | float mode23mult = lumdif < 960 ? 4.0f : lumdif < 3968 ? 16.0f : 128.0f; |
| 505 | |
| 506 | mode23mult *= 0.0005f; // Empirically determined .... |
| 507 | |
| 508 | // Pick among the available HDR endpoint modes |
| 509 | for (int i = QUANT_2; i < QUANT_16; i++) |
| 510 | { |
| 511 | best_error[i][3] = ERROR_CALC_DEFAULT; |
| 512 | best_error[i][2] = ERROR_CALC_DEFAULT; |
| 513 | best_error[i][1] = ERROR_CALC_DEFAULT; |
| 514 | best_error[i][0] = ERROR_CALC_DEFAULT; |
| 515 | |
| 516 | format_of_choice[i][3] = static_cast<uint8_t>(encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA); |
| 517 | format_of_choice[i][2] = FMT_HDR_RGB; |
| 518 | format_of_choice[i][1] = FMT_HDR_RGB_SCALE; |
| 519 | format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE; |
| 520 | } |
| 521 | |
| 522 | for (int i = QUANT_16; i <= QUANT_256; i++) |
| 523 | { |
| 524 | // The base_quant_error should depend on the scale-factor that would be used during |
| 525 | // actual encode of the color value |
| 526 | |
| 527 | float base_quant_error = baseline_quant_error[i - QUANT_6] * static_cast<float>(partition_size); |
| 528 | float rgb_quantization_error = error_weight_rgbsum * base_quant_error * 2.0f; |
| 529 | float alpha_quantization_error = error_weight.lane<3>() * base_quant_error * 2.0f; |
| 530 | float rgba_quantization_error = rgb_quantization_error + alpha_quantization_error; |
| 531 | |
| 532 | // For 8 integers, we have two encodings: one with HDR A and another one with LDR A |
| 533 | |
| 534 | float full_hdr_rgba_error = rgba_quantization_error + rgb_range_error + alpha_range_error; |
| 535 | best_error[i][3] = full_hdr_rgba_error; |
| 536 | format_of_choice[i][3] = static_cast<uint8_t>(encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA); |
| 537 | |
| 538 | // For 6 integers, we have one HDR-RGB encoding |
| 539 | float full_hdr_rgb_error = (rgb_quantization_error * mode11mult) + rgb_range_error + eci.alpha_drop_error; |
| 540 | best_error[i][2] = full_hdr_rgb_error; |
| 541 | format_of_choice[i][2] = FMT_HDR_RGB; |
| 542 | |
| 543 | // For 4 integers, we have one HDR-RGB-Scale encoding |
| 544 | float hdr_rgb_scale_error = (rgb_quantization_error * mode7mult) + rgb_range_error + eci.alpha_drop_error + eci.rgb_luma_error; |
| 545 | |
| 546 | best_error[i][1] = hdr_rgb_scale_error; |
| 547 | format_of_choice[i][1] = FMT_HDR_RGB_SCALE; |
| 548 | |
| 549 | // For 2 integers, we assume luminance-with-large-range |
| 550 | float hdr_luminance_error = (rgb_quantization_error * mode23mult) + rgb_range_error + eci.alpha_drop_error + eci.luminance_error; |
| 551 | best_error[i][0] = hdr_luminance_error; |
| 552 | format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE; |
| 553 | } |
| 554 | } |
| 555 | else |
| 556 | { |
| 557 | for (int i = QUANT_2; i < QUANT_6; i++) |
| 558 | { |
| 559 | best_error[i][3] = ERROR_CALC_DEFAULT; |
| 560 | best_error[i][2] = ERROR_CALC_DEFAULT; |
| 561 | best_error[i][1] = ERROR_CALC_DEFAULT; |
| 562 | best_error[i][0] = ERROR_CALC_DEFAULT; |
| 563 | |
| 564 | format_of_choice[i][3] = FMT_RGBA; |
| 565 | format_of_choice[i][2] = FMT_RGB; |
| 566 | format_of_choice[i][1] = FMT_RGB_SCALE; |
| 567 | format_of_choice[i][0] = FMT_LUMINANCE; |
| 568 | } |
| 569 | |
| 570 | float base_quant_error_rgb = error_weight_rgbsum * static_cast<float>(partition_size); |
| 571 | float base_quant_error_a = error_weight.lane<3>() * static_cast<float>(partition_size); |
| 572 | float base_quant_error_rgba = base_quant_error_rgb + base_quant_error_a; |
| 573 | |
| 574 | float error_scale_bc_rgba = eci.can_blue_contract ? 0.625f : 1.0f; |
| 575 | float error_scale_oe_rgba = eci.can_offset_encode ? 0.5f : 1.0f; |
| 576 | |
| 577 | float error_scale_bc_rgb = eci.can_blue_contract ? 0.5f : 1.0f; |
| 578 | float error_scale_oe_rgb = eci.can_offset_encode ? 0.25f : 1.0f; |
| 579 | |
| 580 | // Pick among the available LDR endpoint modes |
| 581 | for (int i = QUANT_6; i <= QUANT_256; i++) |
| 582 | { |
| 583 | // Offset encoding not possible at higher quant levels |
| 584 | if (i >= QUANT_192) |
| 585 | { |
| 586 | error_scale_oe_rgba = 1.0f; |
| 587 | error_scale_oe_rgb = 1.0f; |
| 588 | } |
| 589 | |
| 590 | float base_quant_error = baseline_quant_error[i - QUANT_6]; |
| 591 | float quant_error_rgb = base_quant_error_rgb * base_quant_error; |
| 592 | float quant_error_rgba = base_quant_error_rgba * base_quant_error; |
| 593 | |
| 594 | // 8 integers can encode as RGBA+RGBA |
| 595 | float full_ldr_rgba_error = quant_error_rgba |
| 596 | * error_scale_bc_rgba |
| 597 | * error_scale_oe_rgba |
| 598 | + rgb_range_error |
| 599 | + alpha_range_error; |
| 600 | |
| 601 | best_error[i][3] = full_ldr_rgba_error; |
| 602 | format_of_choice[i][3] = FMT_RGBA; |
| 603 | |
| 604 | // 6 integers can encode as RGB+RGB or RGBS+AA |
| 605 | float full_ldr_rgb_error = quant_error_rgb |
| 606 | * error_scale_bc_rgb |
| 607 | * error_scale_oe_rgb |
| 608 | + rgb_range_error |
| 609 | + eci.alpha_drop_error; |
| 610 | |
| 611 | float rgbs_alpha_error = quant_error_rgba |
| 612 | + eci.rgb_scale_error |
| 613 | + rgb_range_error |
| 614 | + alpha_range_error; |
| 615 | |
| 616 | if (rgbs_alpha_error < full_ldr_rgb_error) |
| 617 | { |
| 618 | best_error[i][2] = rgbs_alpha_error; |
| 619 | format_of_choice[i][2] = FMT_RGB_SCALE_ALPHA; |
| 620 | } |
| 621 | else |
| 622 | { |
| 623 | best_error[i][2] = full_ldr_rgb_error; |
| 624 | format_of_choice[i][2] = FMT_RGB; |
| 625 | } |
| 626 | |
| 627 | // 4 integers can encode as RGBS or LA+LA |
| 628 | float ldr_rgbs_error = quant_error_rgb |
| 629 | + rgb_range_error |
| 630 | + eci.alpha_drop_error |
| 631 | + eci.rgb_scale_error; |
| 632 | |
| 633 | float lum_alpha_error = quant_error_rgba |
| 634 | + rgb_range_error |
| 635 | + alpha_range_error |
| 636 | + eci.luminance_error; |
| 637 | |
| 638 | if (ldr_rgbs_error < lum_alpha_error) |
| 639 | { |
| 640 | best_error[i][1] = ldr_rgbs_error; |
| 641 | format_of_choice[i][1] = FMT_RGB_SCALE; |
| 642 | } |
| 643 | else |
| 644 | { |
| 645 | best_error[i][1] = lum_alpha_error; |
| 646 | format_of_choice[i][1] = FMT_LUMINANCE_ALPHA; |
| 647 | } |
| 648 | |
| 649 | // 2 integers can encode as L+L |
| 650 | float luminance_error = quant_error_rgb |
| 651 | + rgb_range_error |
| 652 | + eci.alpha_drop_error |
| 653 | + eci.luminance_error; |
| 654 | |
| 655 | best_error[i][0] = luminance_error; |
| 656 | format_of_choice[i][0] = FMT_LUMINANCE; |
| 657 | } |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | /** |
| 662 | * @brief For one partition compute the best format and quantization for a given bit count. |
| 663 | * |
| 664 | * @param best_combined_error The best error for each quant level and integer count. |
| 665 | * @param best_combined_format The best format for each quant level and integer count. |
| 666 | * @param bits_available The number of bits available for encoding. |
| 667 | * @param[out] best_quant_level The output best color quant level. |
| 668 | * @param[out] best_format The output best color format. |
| 669 | * |
| 670 | * @return The output error for the best pairing. |
| 671 | */ |
| 672 | static float one_partition_find_best_combination_for_bitcount( |
| 673 | const float best_combined_error[21][4], |
| 674 | const uint8_t best_combined_format[21][4], |
| 675 | int bits_available, |
| 676 | uint8_t& best_quant_level, |
| 677 | uint8_t& best_format |
| 678 | ) { |
| 679 | int best_integer_count = 0; |
| 680 | float best_integer_count_error = ERROR_CALC_DEFAULT; |
| 681 | |
| 682 | for (int integer_count = 1; integer_count <= 4; integer_count++) |
| 683 | { |
| 684 | // Compute the quantization level for a given number of integers and a given number of bits |
| 685 | int quant_level = quant_mode_table[integer_count][bits_available]; |
| 686 | |
| 687 | // Don't have enough bits to represent a given endpoint format at all! |
| 688 | if (quant_level < QUANT_6) |
| 689 | { |
| 690 | continue; |
| 691 | } |
| 692 | |
| 693 | float integer_count_error = best_combined_error[quant_level][integer_count - 1]; |
| 694 | if (integer_count_error < best_integer_count_error) |
| 695 | { |
| 696 | best_integer_count_error = integer_count_error; |
| 697 | best_integer_count = integer_count - 1; |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | int ql = quant_mode_table[best_integer_count + 1][bits_available]; |
| 702 | |
| 703 | best_quant_level = static_cast<uint8_t>(ql); |
| 704 | best_format = FMT_LUMINANCE; |
| 705 | |
| 706 | if (ql >= QUANT_6) |
| 707 | { |
| 708 | best_format = best_combined_format[ql][best_integer_count]; |
| 709 | } |
| 710 | |
| 711 | return best_integer_count_error; |
| 712 | } |
| 713 | |
| 714 | /** |
| 715 | * @brief For 2 partitions compute the best format combinations for every pair of quant mode and integer count. |
| 716 | * |
| 717 | * @param best_error The best error for a single endpoint quant level and integer count. |
| 718 | * @param best_format The best format for a single endpoint quant level and integer count. |
| 719 | * @param[out] best_combined_error The best combined error pairings for the 2 partitions. |
| 720 | * @param[out] best_combined_format The best combined format pairings for the 2 partitions. |
| 721 | */ |
| 722 | static void two_partitions_find_best_combination_for_every_quantization_and_integer_count( |
| 723 | const float best_error[2][21][4], // indexed by (partition, quant-level, integer-pair-count-minus-1) |
| 724 | const uint8_t best_format[2][21][4], |
| 725 | float best_combined_error[21][7], // indexed by (quant-level, integer-pair-count-minus-2) |
| 726 | uint8_t best_combined_format[21][7][2] |
| 727 | ) { |
| 728 | for (int i = QUANT_2; i <= QUANT_256; i++) |
| 729 | { |
| 730 | for (int j = 0; j < 7; j++) |
| 731 | { |
| 732 | best_combined_error[i][j] = ERROR_CALC_DEFAULT; |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | for (int quant = QUANT_6; quant <= QUANT_256; quant++) |
| 737 | { |
| 738 | for (int i = 0; i < 4; i++) // integer-count for first endpoint-pair |
| 739 | { |
| 740 | for (int j = 0; j < 4; j++) // integer-count for second endpoint-pair |
| 741 | { |
| 742 | int low2 = astc::min(i, j); |
| 743 | int high2 = astc::max(i, j); |
| 744 | if ((high2 - low2) > 1) |
| 745 | { |
| 746 | continue; |
| 747 | } |
| 748 | |
| 749 | int intcnt = i + j; |
| 750 | float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j], 1e10f); |
| 751 | if (errorterm <= best_combined_error[quant][intcnt]) |
| 752 | { |
| 753 | best_combined_error[quant][intcnt] = errorterm; |
| 754 | best_combined_format[quant][intcnt][0] = best_format[0][quant][i]; |
| 755 | best_combined_format[quant][intcnt][1] = best_format[1][quant][j]; |
| 756 | } |
| 757 | } |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | /** |
| 763 | * @brief For 2 partitions compute the best format and quantization for a given bit count. |
| 764 | * |
| 765 | * @param best_combined_error The best error for each quant level and integer count. |
| 766 | * @param best_combined_format The best format for each quant level and integer count. |
| 767 | * @param bits_available The number of bits available for encoding. |
| 768 | * @param[out] best_quant_level The output best color quant level. |
| 769 | * @param[out] best_quant_level_mod The output best color quant level assuming two more bits are available. |
| 770 | * @param[out] best_formats The output best color formats. |
| 771 | * |
| 772 | * @return The output error for the best pairing. |
| 773 | */ |
| 774 | static float two_partitions_find_best_combination_for_bitcount( |
| 775 | float best_combined_error[21][7], |
| 776 | uint8_t best_combined_format[21][7][2], |
| 777 | int bits_available, |
| 778 | uint8_t& best_quant_level, |
| 779 | uint8_t& best_quant_level_mod, |
| 780 | uint8_t* best_formats |
| 781 | ) { |
| 782 | int best_integer_count = 0; |
| 783 | float best_integer_count_error = ERROR_CALC_DEFAULT; |
| 784 | |
| 785 | for (int integer_count = 2; integer_count <= 8; integer_count++) |
| 786 | { |
| 787 | // Compute the quantization level for a given number of integers and a given number of bits |
| 788 | int quant_level = quant_mode_table[integer_count][bits_available]; |
| 789 | |
| 790 | // Don't have enough bits to represent a given endpoint format at all! |
| 791 | if (quant_level < QUANT_6) |
| 792 | { |
| 793 | break; |
| 794 | } |
| 795 | |
| 796 | float integer_count_error = best_combined_error[quant_level][integer_count - 2]; |
| 797 | if (integer_count_error < best_integer_count_error) |
| 798 | { |
| 799 | best_integer_count_error = integer_count_error; |
| 800 | best_integer_count = integer_count; |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | int ql = quant_mode_table[best_integer_count][bits_available]; |
| 805 | int ql_mod = quant_mode_table[best_integer_count][bits_available + 2]; |
| 806 | |
| 807 | best_quant_level = static_cast<uint8_t>(ql); |
| 808 | best_quant_level_mod = static_cast<uint8_t>(ql_mod); |
| 809 | |
| 810 | if (ql >= QUANT_6) |
| 811 | { |
| 812 | for (int i = 0; i < 2; i++) |
| 813 | { |
| 814 | best_formats[i] = best_combined_format[ql][best_integer_count - 2][i]; |
| 815 | } |
| 816 | } |
| 817 | else |
| 818 | { |
| 819 | for (int i = 0; i < 2; i++) |
| 820 | { |
| 821 | best_formats[i] = FMT_LUMINANCE; |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | return best_integer_count_error; |
| 826 | } |
| 827 | |
| 828 | /** |
| 829 | * @brief For 3 partitions compute the best format combinations for every pair of quant mode and integer count. |
| 830 | * |
| 831 | * @param best_error The best error for a single endpoint quant level and integer count. |
| 832 | * @param best_format The best format for a single endpoint quant level and integer count. |
| 833 | * @param[out] best_combined_error The best combined error pairings for the 3 partitions. |
| 834 | * @param[out] best_combined_format The best combined format pairings for the 3 partitions. |
| 835 | */ |
| 836 | static void three_partitions_find_best_combination_for_every_quantization_and_integer_count( |
| 837 | const float best_error[3][21][4], // indexed by (partition, quant-level, integer-count) |
| 838 | const uint8_t best_format[3][21][4], |
| 839 | float best_combined_error[21][10], |
| 840 | uint8_t best_combined_format[21][10][3] |
| 841 | ) { |
| 842 | for (int i = QUANT_2; i <= QUANT_256; i++) |
| 843 | { |
| 844 | for (int j = 0; j < 10; j++) |
| 845 | { |
| 846 | best_combined_error[i][j] = ERROR_CALC_DEFAULT; |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | for (int quant = QUANT_6; quant <= QUANT_256; quant++) |
| 851 | { |
| 852 | for (int i = 0; i < 4; i++) // integer-count for first endpoint-pair |
| 853 | { |
| 854 | for (int j = 0; j < 4; j++) // integer-count for second endpoint-pair |
| 855 | { |
| 856 | int low2 = astc::min(i, j); |
| 857 | int high2 = astc::max(i, j); |
| 858 | if ((high2 - low2) > 1) |
| 859 | { |
| 860 | continue; |
| 861 | } |
| 862 | |
| 863 | for (int k = 0; k < 4; k++) // integer-count for third endpoint-pair |
| 864 | { |
| 865 | int low3 = astc::min(k, low2); |
| 866 | int high3 = astc::max(k, high2); |
| 867 | if ((high3 - low3) > 1) |
| 868 | { |
| 869 | continue; |
| 870 | } |
| 871 | |
| 872 | int intcnt = i + j + k; |
| 873 | float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k], 1e10f); |
| 874 | if (errorterm <= best_combined_error[quant][intcnt]) |
| 875 | { |
| 876 | best_combined_error[quant][intcnt] = errorterm; |
| 877 | best_combined_format[quant][intcnt][0] = best_format[0][quant][i]; |
| 878 | best_combined_format[quant][intcnt][1] = best_format[1][quant][j]; |
| 879 | best_combined_format[quant][intcnt][2] = best_format[2][quant][k]; |
| 880 | } |
| 881 | } |
| 882 | } |
| 883 | } |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | /** |
| 888 | * @brief For 3 partitions compute the best format and quantization for a given bit count. |
| 889 | * |
| 890 | * @param best_combined_error The best error for each quant level and integer count. |
| 891 | * @param best_combined_format The best format for each quant level and integer count. |
| 892 | * @param bits_available The number of bits available for encoding. |
| 893 | * @param[out] best_quant_level The output best color quant level. |
| 894 | * @param[out] best_quant_level_mod The output best color quant level assuming two more bits are available. |
| 895 | * @param[out] best_formats The output best color formats. |
| 896 | * |
| 897 | * @return The output error for the best pairing. |
| 898 | */ |
| 899 | static float three_partitions_find_best_combination_for_bitcount( |
| 900 | const float best_combined_error[21][10], |
| 901 | const uint8_t best_combined_format[21][10][3], |
| 902 | int bits_available, |
| 903 | uint8_t& best_quant_level, |
| 904 | uint8_t& best_quant_level_mod, |
| 905 | uint8_t* best_formats |
| 906 | ) { |
| 907 | int best_integer_count = 0; |
| 908 | float best_integer_count_error = ERROR_CALC_DEFAULT; |
| 909 | |
| 910 | for (int integer_count = 3; integer_count <= 9; integer_count++) |
| 911 | { |
| 912 | // Compute the quantization level for a given number of integers and a given number of bits |
| 913 | int quant_level = quant_mode_table[integer_count][bits_available]; |
| 914 | |
| 915 | // Don't have enough bits to represent a given endpoint format at all! |
| 916 | if (quant_level < QUANT_6) |
| 917 | { |
| 918 | break; |
| 919 | } |
| 920 | |
| 921 | float integer_count_error = best_combined_error[quant_level][integer_count - 3]; |
| 922 | if (integer_count_error < best_integer_count_error) |
| 923 | { |
| 924 | best_integer_count_error = integer_count_error; |
| 925 | best_integer_count = integer_count; |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | int ql = quant_mode_table[best_integer_count][bits_available]; |
| 930 | int ql_mod = quant_mode_table[best_integer_count][bits_available + 5]; |
| 931 | |
| 932 | best_quant_level = static_cast<uint8_t>(ql); |
| 933 | best_quant_level_mod = static_cast<uint8_t>(ql_mod); |
| 934 | |
| 935 | if (ql >= QUANT_6) |
| 936 | { |
| 937 | for (int i = 0; i < 3; i++) |
| 938 | { |
| 939 | best_formats[i] = best_combined_format[ql][best_integer_count - 3][i]; |
| 940 | } |
| 941 | } |
| 942 | else |
| 943 | { |
| 944 | for (int i = 0; i < 3; i++) |
| 945 | { |
| 946 | best_formats[i] = FMT_LUMINANCE; |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | return best_integer_count_error; |
| 951 | } |
| 952 | |
| 953 | /** |
| 954 | * @brief For 4 partitions compute the best format combinations for every pair of quant mode and integer count. |
| 955 | * |
| 956 | * @param best_error The best error for a single endpoint quant level and integer count. |
| 957 | * @param best_format The best format for a single endpoint quant level and integer count. |
| 958 | * @param[out] best_combined_error The best combined error pairings for the 4 partitions. |
| 959 | * @param[out] best_combined_format The best combined format pairings for the 4 partitions. |
| 960 | */ |
| 961 | static void four_partitions_find_best_combination_for_every_quantization_and_integer_count( |
| 962 | const float best_error[4][21][4], // indexed by (partition, quant-level, integer-count) |
| 963 | const uint8_t best_format[4][21][4], |
| 964 | float best_combined_error[21][13], |
| 965 | uint8_t best_combined_format[21][13][4] |
| 966 | ) { |
| 967 | for (int i = QUANT_2; i <= QUANT_256; i++) |
| 968 | { |
| 969 | for (int j = 0; j < 13; j++) |
| 970 | { |
| 971 | best_combined_error[i][j] = ERROR_CALC_DEFAULT; |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | for (int quant = QUANT_6; quant <= QUANT_256; quant++) |
| 976 | { |
| 977 | for (int i = 0; i < 4; i++) // integer-count for first endpoint-pair |
| 978 | { |
| 979 | for (int j = 0; j < 4; j++) // integer-count for second endpoint-pair |
| 980 | { |
| 981 | int low2 = astc::min(i, j); |
| 982 | int high2 = astc::max(i, j); |
| 983 | if ((high2 - low2) > 1) |
| 984 | { |
| 985 | continue; |
| 986 | } |
| 987 | |
| 988 | for (int k = 0; k < 4; k++) // integer-count for third endpoint-pair |
| 989 | { |
| 990 | int low3 = astc::min(k, low2); |
| 991 | int high3 = astc::max(k, high2); |
| 992 | if ((high3 - low3) > 1) |
| 993 | { |
| 994 | continue; |
| 995 | } |
| 996 | |
| 997 | for (int l = 0; l < 4; l++) // integer-count for fourth endpoint-pair |
| 998 | { |
| 999 | int low4 = astc::min(l, low3); |
| 1000 | int high4 = astc::max(l, high3); |
| 1001 | if ((high4 - low4) > 1) |
| 1002 | { |
| 1003 | continue; |
| 1004 | } |
| 1005 | |
| 1006 | int intcnt = i + j + k + l; |
| 1007 | float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k] + best_error[3][quant][l], 1e10f); |
| 1008 | if (errorterm <= best_combined_error[quant][intcnt]) |
| 1009 | { |
| 1010 | best_combined_error[quant][intcnt] = errorterm; |
| 1011 | best_combined_format[quant][intcnt][0] = best_format[0][quant][i]; |
| 1012 | best_combined_format[quant][intcnt][1] = best_format[1][quant][j]; |
| 1013 | best_combined_format[quant][intcnt][2] = best_format[2][quant][k]; |
| 1014 | best_combined_format[quant][intcnt][3] = best_format[3][quant][l]; |
| 1015 | } |
| 1016 | } |
| 1017 | } |
| 1018 | } |
| 1019 | } |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | /** |
| 1024 | * @brief For 4 partitions compute the best format and quantization for a given bit count. |
| 1025 | * |
| 1026 | * @param best_combined_error The best error for each quant level and integer count. |
| 1027 | * @param best_combined_format The best format for each quant level and integer count. |
| 1028 | * @param bits_available The number of bits available for encoding. |
| 1029 | * @param[out] best_quant_level The output best color quant level. |
| 1030 | * @param[out] best_quant_level_mod The output best color quant level assuming two more bits are available. |
| 1031 | * @param[out] best_formats The output best color formats. |
| 1032 | * |
| 1033 | * @return best_error The output error for the best pairing. |
| 1034 | */ |
| 1035 | static float four_partitions_find_best_combination_for_bitcount( |
| 1036 | const float best_combined_error[21][13], |
| 1037 | const uint8_t best_combined_format[21][13][4], |
| 1038 | int bits_available, |
| 1039 | uint8_t& best_quant_level, |
| 1040 | uint8_t& best_quant_level_mod, |
| 1041 | uint8_t* best_formats |
| 1042 | ) { |
| 1043 | int best_integer_count = 0; |
| 1044 | float best_integer_count_error = ERROR_CALC_DEFAULT; |
| 1045 | |
| 1046 | for (int integer_count = 4; integer_count <= 9; integer_count++) |
| 1047 | { |
| 1048 | // Compute the quantization level for a given number of integers and a given number of bits |
| 1049 | int quant_level = quant_mode_table[integer_count][bits_available]; |
| 1050 | |
| 1051 | // Don't have enough bits to represent a given endpoint format at all! |
| 1052 | if (quant_level < QUANT_6) |
| 1053 | { |
| 1054 | break; |
| 1055 | } |
| 1056 | |
| 1057 | float integer_count_error = best_combined_error[quant_level][integer_count - 4]; |
| 1058 | if (integer_count_error < best_integer_count_error) |
| 1059 | { |
| 1060 | best_integer_count_error = integer_count_error; |
| 1061 | best_integer_count = integer_count; |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | int ql = quant_mode_table[best_integer_count][bits_available]; |
| 1066 | int ql_mod = quant_mode_table[best_integer_count][bits_available + 8]; |
| 1067 | |
| 1068 | best_quant_level = static_cast<uint8_t>(ql); |
| 1069 | best_quant_level_mod = static_cast<uint8_t>(ql_mod); |
| 1070 | |
| 1071 | if (ql >= QUANT_6) |
| 1072 | { |
| 1073 | for (int i = 0; i < 4; i++) |
| 1074 | { |
| 1075 | best_formats[i] = best_combined_format[ql][best_integer_count - 4][i]; |
| 1076 | } |
| 1077 | } |
| 1078 | else |
| 1079 | { |
| 1080 | for (int i = 0; i < 4; i++) |
| 1081 | { |
| 1082 | best_formats[i] = FMT_LUMINANCE; |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | return best_integer_count_error; |
| 1087 | } |
| 1088 | |
| 1089 | /* See header for documentation. */ |
| 1090 | unsigned int compute_ideal_endpoint_formats( |
| 1091 | const partition_info& pi, |
| 1092 | const image_block& blk, |
| 1093 | const endpoints& ep, |
| 1094 | // bitcounts and errors computed for the various quantization methods |
| 1095 | const int8_t* qwt_bitcounts, |
| 1096 | const float* qwt_errors, |
| 1097 | unsigned int tune_candidate_limit, |
| 1098 | unsigned int start_block_mode, |
| 1099 | unsigned int end_block_mode, |
| 1100 | // output data |
| 1101 | uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS], |
| 1102 | int block_mode[TUNE_MAX_TRIAL_CANDIDATES], |
| 1103 | quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES], |
| 1104 | quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES], |
| 1105 | compression_working_buffers& tmpbuf |
| 1106 | ) { |
| 1107 | int partition_count = pi.partition_count; |
| 1108 | |
| 1109 | promise(partition_count > 0); |
| 1110 | |
| 1111 | bool encode_hdr_rgb = static_cast<bool>(blk.rgb_lns[0]); |
| 1112 | bool encode_hdr_alpha = static_cast<bool>(blk.alpha_lns[0]); |
| 1113 | |
| 1114 | // Compute the errors that result from various encoding choices (such as using luminance instead |
| 1115 | // of RGB, discarding Alpha, using RGB-scale in place of two separate RGB endpoints and so on) |
| 1116 | encoding_choice_errors eci[BLOCK_MAX_PARTITIONS]; |
| 1117 | compute_encoding_choice_errors(blk, pi, ep, eci); |
| 1118 | |
| 1119 | float best_error[BLOCK_MAX_PARTITIONS][21][4]; |
| 1120 | uint8_t format_of_choice[BLOCK_MAX_PARTITIONS][21][4]; |
| 1121 | for (int i = 0; i < partition_count; i++) |
| 1122 | { |
| 1123 | compute_color_error_for_every_integer_count_and_quant_level( |
| 1124 | encode_hdr_rgb, encode_hdr_alpha, i, |
| 1125 | pi, eci[i], ep, blk.channel_weight, best_error[i], |
| 1126 | format_of_choice[i]); |
| 1127 | } |
| 1128 | |
| 1129 | float* errors_of_best_combination = tmpbuf.errors_of_best_combination; |
| 1130 | uint8_t* best_quant_levels = tmpbuf.best_quant_levels; |
| 1131 | uint8_t* best_quant_levels_mod = tmpbuf.best_quant_levels_mod; |
| 1132 | uint8_t (&best_ep_formats)[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS] = tmpbuf.best_ep_formats; |
| 1133 | |
| 1134 | // Ensure that the first iteration understep contains data that will never be picked |
| 1135 | vfloat clear_error(ERROR_CALC_DEFAULT); |
| 1136 | vint clear_quant(0); |
| 1137 | |
| 1138 | unsigned int packed_start_block_mode = round_down_to_simd_multiple_vla(start_block_mode); |
| 1139 | storea(clear_error, errors_of_best_combination + packed_start_block_mode); |
| 1140 | store_nbytes(clear_quant, best_quant_levels + packed_start_block_mode); |
| 1141 | store_nbytes(clear_quant, best_quant_levels_mod + packed_start_block_mode); |
| 1142 | |
| 1143 | // Ensure that last iteration overstep contains data that will never be picked |
| 1144 | unsigned int packed_end_block_mode = round_down_to_simd_multiple_vla(end_block_mode - 1); |
| 1145 | storea(clear_error, errors_of_best_combination + packed_end_block_mode); |
| 1146 | store_nbytes(clear_quant, best_quant_levels + packed_end_block_mode); |
| 1147 | store_nbytes(clear_quant, best_quant_levels_mod + packed_end_block_mode); |
| 1148 | |
| 1149 | // Track a scalar best to avoid expensive search at least once ... |
| 1150 | float error_of_best_combination = ERROR_CALC_DEFAULT; |
| 1151 | int index_of_best_combination = -1; |
| 1152 | |
| 1153 | // The block contains 1 partition |
| 1154 | if (partition_count == 1) |
| 1155 | { |
| 1156 | for (unsigned int i = start_block_mode; i < end_block_mode; i++) |
| 1157 | { |
| 1158 | if (qwt_errors[i] >= ERROR_CALC_DEFAULT) |
| 1159 | { |
| 1160 | errors_of_best_combination[i] = ERROR_CALC_DEFAULT; |
| 1161 | continue; |
| 1162 | } |
| 1163 | |
| 1164 | float error_of_best = one_partition_find_best_combination_for_bitcount( |
| 1165 | best_error[0], format_of_choice[0], qwt_bitcounts[i], |
| 1166 | best_quant_levels[i], best_ep_formats[i][0]); |
| 1167 | |
| 1168 | float total_error = error_of_best + qwt_errors[i]; |
| 1169 | errors_of_best_combination[i] = total_error; |
| 1170 | best_quant_levels_mod[i] = best_quant_levels[i]; |
| 1171 | |
| 1172 | if (total_error < error_of_best_combination) |
| 1173 | { |
| 1174 | error_of_best_combination = total_error; |
| 1175 | index_of_best_combination = i; |
| 1176 | } |
| 1177 | } |
| 1178 | } |
| 1179 | // The block contains 2 partitions |
| 1180 | else if (partition_count == 2) |
| 1181 | { |
| 1182 | float combined_best_error[21][7]; |
| 1183 | uint8_t formats_of_choice[21][7][2]; |
| 1184 | |
| 1185 | two_partitions_find_best_combination_for_every_quantization_and_integer_count( |
| 1186 | best_error, format_of_choice, combined_best_error, formats_of_choice); |
| 1187 | |
| 1188 | assert(start_block_mode == 0); |
| 1189 | for (unsigned int i = 0; i < end_block_mode; i++) |
| 1190 | { |
| 1191 | if (qwt_errors[i] >= ERROR_CALC_DEFAULT) |
| 1192 | { |
| 1193 | errors_of_best_combination[i] = ERROR_CALC_DEFAULT; |
| 1194 | continue; |
| 1195 | } |
| 1196 | |
| 1197 | float error_of_best = two_partitions_find_best_combination_for_bitcount( |
| 1198 | combined_best_error, formats_of_choice, qwt_bitcounts[i], |
| 1199 | best_quant_levels[i], best_quant_levels_mod[i], |
| 1200 | best_ep_formats[i]); |
| 1201 | |
| 1202 | float total_error = error_of_best + qwt_errors[i]; |
| 1203 | errors_of_best_combination[i] = total_error; |
| 1204 | |
| 1205 | if (total_error < error_of_best_combination) |
| 1206 | { |
| 1207 | error_of_best_combination = total_error; |
| 1208 | index_of_best_combination = i; |
| 1209 | } |
| 1210 | } |
| 1211 | } |
| 1212 | // The block contains 3 partitions |
| 1213 | else if (partition_count == 3) |
| 1214 | { |
| 1215 | float combined_best_error[21][10]; |
| 1216 | uint8_t formats_of_choice[21][10][3]; |
| 1217 | |
| 1218 | three_partitions_find_best_combination_for_every_quantization_and_integer_count( |
| 1219 | best_error, format_of_choice, combined_best_error, formats_of_choice); |
| 1220 | |
| 1221 | assert(start_block_mode == 0); |
| 1222 | for (unsigned int i = 0; i < end_block_mode; i++) |
| 1223 | { |
| 1224 | if (qwt_errors[i] >= ERROR_CALC_DEFAULT) |
| 1225 | { |
| 1226 | errors_of_best_combination[i] = ERROR_CALC_DEFAULT; |
| 1227 | continue; |
| 1228 | } |
| 1229 | |
| 1230 | float error_of_best = three_partitions_find_best_combination_for_bitcount( |
| 1231 | combined_best_error, formats_of_choice, qwt_bitcounts[i], |
| 1232 | best_quant_levels[i], best_quant_levels_mod[i], |
| 1233 | best_ep_formats[i]); |
| 1234 | |
| 1235 | float total_error = error_of_best + qwt_errors[i]; |
| 1236 | errors_of_best_combination[i] = total_error; |
| 1237 | |
| 1238 | if (total_error < error_of_best_combination) |
| 1239 | { |
| 1240 | error_of_best_combination = total_error; |
| 1241 | index_of_best_combination = i; |
| 1242 | } |
| 1243 | } |
| 1244 | } |
| 1245 | // The block contains 4 partitions |
| 1246 | else // if (partition_count == 4) |
| 1247 | { |
| 1248 | assert(partition_count == 4); |
| 1249 | float combined_best_error[21][13]; |
| 1250 | uint8_t formats_of_choice[21][13][4]; |
| 1251 | |
| 1252 | four_partitions_find_best_combination_for_every_quantization_and_integer_count( |
| 1253 | best_error, format_of_choice, combined_best_error, formats_of_choice); |
| 1254 | |
| 1255 | assert(start_block_mode == 0); |
| 1256 | for (unsigned int i = 0; i < end_block_mode; i++) |
| 1257 | { |
| 1258 | if (qwt_errors[i] >= ERROR_CALC_DEFAULT) |
| 1259 | { |
| 1260 | errors_of_best_combination[i] = ERROR_CALC_DEFAULT; |
| 1261 | continue; |
| 1262 | } |
| 1263 | |
| 1264 | float error_of_best = four_partitions_find_best_combination_for_bitcount( |
| 1265 | combined_best_error, formats_of_choice, qwt_bitcounts[i], |
| 1266 | best_quant_levels[i], best_quant_levels_mod[i], |
| 1267 | best_ep_formats[i]); |
| 1268 | |
| 1269 | float total_error = error_of_best + qwt_errors[i]; |
| 1270 | errors_of_best_combination[i] = total_error; |
| 1271 | |
| 1272 | if (total_error < error_of_best_combination) |
| 1273 | { |
| 1274 | error_of_best_combination = total_error; |
| 1275 | index_of_best_combination = i; |
| 1276 | } |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | int best_error_weights[TUNE_MAX_TRIAL_CANDIDATES]; |
| 1281 | |
| 1282 | // Fast path the first result and avoid the list search for trial 0 |
| 1283 | best_error_weights[0] = index_of_best_combination; |
| 1284 | if (index_of_best_combination >= 0) |
| 1285 | { |
| 1286 | errors_of_best_combination[index_of_best_combination] = ERROR_CALC_DEFAULT; |
| 1287 | } |
| 1288 | |
| 1289 | // Search the remaining results and pick the best candidate modes for trial 1+ |
| 1290 | for (unsigned int i = 1; i < tune_candidate_limit; i++) |
| 1291 | { |
| 1292 | vint vbest_error_index(-1); |
| 1293 | vfloat vbest_ep_error(ERROR_CALC_DEFAULT); |
| 1294 | |
| 1295 | start_block_mode = round_down_to_simd_multiple_vla(start_block_mode); |
| 1296 | vint lane_ids = vint::lane_id() + vint(start_block_mode); |
| 1297 | for (unsigned int j = start_block_mode; j < end_block_mode; j += ASTCENC_SIMD_WIDTH) |
| 1298 | { |
| 1299 | vfloat err = vfloat(errors_of_best_combination + j); |
| 1300 | vmask mask = err < vbest_ep_error; |
| 1301 | vbest_ep_error = select(vbest_ep_error, err, mask); |
| 1302 | vbest_error_index = select(vbest_error_index, lane_ids, mask); |
| 1303 | lane_ids += vint(ASTCENC_SIMD_WIDTH); |
| 1304 | } |
| 1305 | |
| 1306 | // Pick best mode from the SIMD result, using lowest matching index to ensure invariance |
| 1307 | vmask lanes_min_error = vbest_ep_error == hmin(vbest_ep_error); |
| 1308 | vbest_error_index = select(vint(0x7FFFFFFF), vbest_error_index, lanes_min_error); |
| 1309 | vbest_error_index = hmin(vbest_error_index); |
| 1310 | int best_error_index = vbest_error_index.lane<0>(); |
| 1311 | |
| 1312 | best_error_weights[i] = best_error_index; |
| 1313 | |
| 1314 | // Max the error for this candidate so we don't pick it again |
| 1315 | if (best_error_index >= 0) |
| 1316 | { |
| 1317 | errors_of_best_combination[best_error_index] = ERROR_CALC_DEFAULT; |
| 1318 | } |
| 1319 | // Early-out if no more candidates are valid |
| 1320 | else |
| 1321 | { |
| 1322 | break; |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | for (unsigned int i = 0; i < tune_candidate_limit; i++) |
| 1327 | { |
| 1328 | if (best_error_weights[i] < 0) |
| 1329 | { |
| 1330 | return i; |
| 1331 | } |
| 1332 | |
| 1333 | block_mode[i] = best_error_weights[i]; |
| 1334 | |
| 1335 | quant_level[i] = static_cast<quant_method>(best_quant_levels[best_error_weights[i]]); |
| 1336 | quant_level_mod[i] = static_cast<quant_method>(best_quant_levels_mod[best_error_weights[i]]); |
| 1337 | |
| 1338 | assert(quant_level[i] >= QUANT_6 && quant_level[i] <= QUANT_256); |
| 1339 | assert(quant_level_mod[i] >= QUANT_6 && quant_level_mod[i] <= QUANT_256); |
| 1340 | |
| 1341 | for (int j = 0; j < partition_count; j++) |
| 1342 | { |
| 1343 | partition_format_specifiers[i][j] = best_ep_formats[best_error_weights[i]][j]; |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | return tune_candidate_limit; |
| 1348 | } |
| 1349 | |
| 1350 | #endif |
| 1351 | |